

SPLIT-TYPE, HEAT PUMP AIR CONDITIONER

No. OB280

SERVICE MANUAL

Inverter-controlled multi system Model

MXZ-18TV - **E**

Model indication

CONTENTS

1. TECHNICAL CHANGES	2
2. PART NAMES AND FUNCTIONS	2
3. INDOOR/OUTDOOR	
CORRESPONDENCE TABLE	3
4. INDOOR UNITS COMBINATION	3
5. SPECIFICATION	4
6. NOISE CRITERIA CURVES	5
7. OUTLINES AND DIMENSIONS	6
8. WIRING DIAGRAM	7
9. REFRIGERANT SYSTEM DIAGRAM	8
10. PERFORMANCE CURVES	9
11. MICROPROCESSOR CONTROL	14
12. TROUBLESHOOTING	19
13. DISASSEMBLY INSTRUCTIONS	29
14. PARTS LIST	32
15 OPTIONAL PARTS	3/

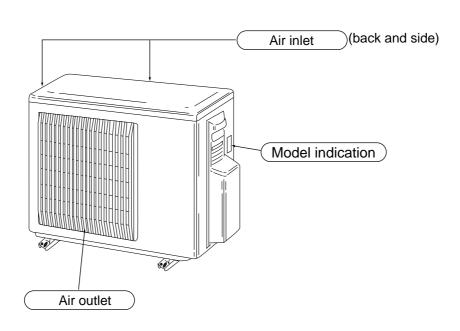
This manual describes technical data of outdoor unit.

For the indoor unit refer to the service manuals No. OB229, OB227 REVISED EDITION-B, OB252 REVISED EDITION-A, and OC165 of corresponding models.

1

TECHNICAL CHANGES

MXZ-18RV -**■** → MXZ-18TV -**■**


- 1. The combination pattern of indoor unit has increased.
- 2. Outside dimension of the outdoor equipment changed.
- 3. Ball valve has changed to stop valve.
- 4. Accumulator has been removed.
- 5. Hight pressure switch has been removed.
- 6. Compressor has changed.
- 7. Refrigerant filling capacity has changed. (1.3kg → 1.55kg)

2

PART NAMES AND FUNCTIONS

OUTDOOR UNIT

MXZ-18TV-E1

INDOOR / OUTDOOR CORRESPONDENCE TABLE

	OUTDOOR UNIT
	MXZ-18TV-E1
he units	07+09
the	07+12
ion of tl indoor	07+SEH-1.6
	09+09
nbir ctab	09+12
	09+SEH-1.6
8	12+12

^{*}There is no combination other than this table.

4

3

INDOOR UNITS COMBINATION

MXZ-18TV - E1

NOTE: Electrical data is for outdoor unit only.

				NOTE. Electrical dat	a is ioi outdoor	uriit Oriiy.
Indoor units		Cooling capacity	(kw)	Outdoor unit	Current	Power
combination	Unit A	Unit B	Total	power consumption (kw)	(A) 230V	factor (%)
07	2.3	_	2.3 (0.9-2.8)	0.850 (0.225-1.055)	3.88	90
09	2.5	_	2.5 (0.9-3.0)	0.865 (0.225-1.125)	4.17	90
12	3.4	_	3.4 (0.9-3.8)	1.29 (0.220-1.550)	6.22	90
07+09	2.3	2.5	4.8 (1.49-5.25)	1.82 (0.370-2.11)	8.79	90
07+12	2.02	2.98	5.0 (1.51-5.45)	1.835 (0.365-2.125)	8.85	90
09+09	2.5	2.5	5.0 (1.51-5.45)	1.840 (0.370-2.130)	8.88	90
09+12	2.2	3.0	5.2 (1.53-5.60)	1.865 (0.365-2.145)	9.00	90
12+12	2.65	2.65	5.3 (1.55-5.70)	1.88 (0.370-2.190)	9.07	90

NOTE: Electrical data is for outdoor unit only.

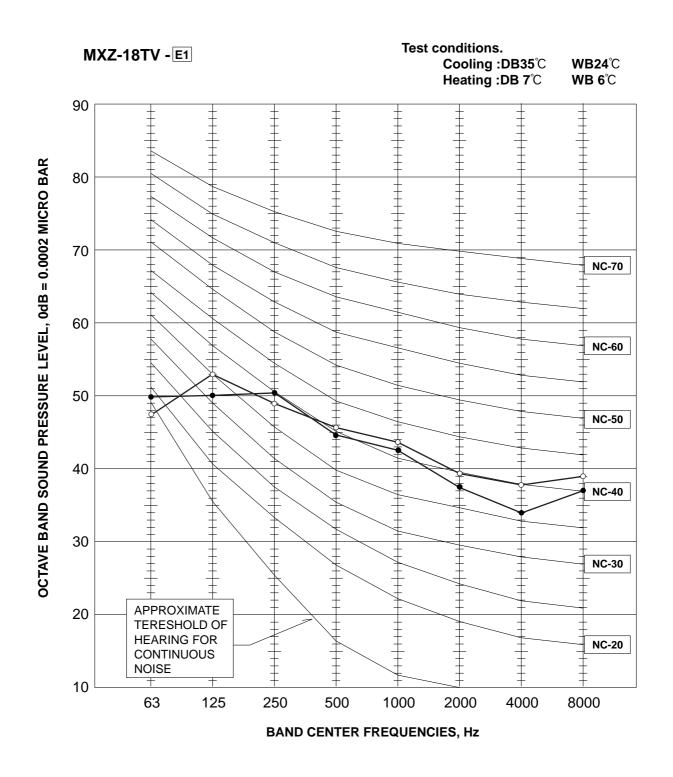
				ITOTE. Electrical date		
Indoor units		Heating capacity	(kw)	Outdoor unit	Current	Power
combination	Unit A	Unit B	Total	power consumption	(A)	factor
	OTHE / C	OTHE D		(kw)	230V	(%)
07	3.3	_	3.3 (0.9-4.0)	1.005 (0.225-1.115)	4.85	90
09	3.6	_	3.6 (0.9-4.5)	1.085 (0.225-1.195)	5.23	90
40	4.0		4.0	1.440	2.05	00
12	4.0	(0.9-4.7)	(0.220-1.490)	6.95	90	
07+09	2.97	3.23	6.2	1.92	9.27	90
01+09	2.31	3.23	(1.53-6.70)	(0.300-2.030)	9.21	90
07+12	2.62	3.88	6.5	1.895	9.14	90
07112	2.02	0.00	(1.55-7.00)	(0.295-2.005)	0.11	
09+09	3.25	3.25	6.5 (1.55-7.0)	1.900 (0.300-2.010)	9.17	90
00:40	0.70	0.77	6.55	1.825	0.04	00
09+12	2.78	3.77	(1.56-7.1)	(0.295-1.925)	8.81	90
12+12	3.30	3.30	6.6	1.790	8.64	90
IZTIZ	3.30	3.30	(1.58-7.2)	(0.290-1.840)	0.04	90

NOTE: SEH-1.6AR is equivalent to class 12 (12000BTU).

However, the combination of "12+12" has only the MSC type.

SPECIFICATION

	Outdoor model		MXZ-18	BTV - 🗉
	Outdoor unit nowar august.		Single phase	
	Outdoor unit power supply		230V,50Hz	
	Indoor units number		2	
	Indoor units total capacity (Connectable)		Total model name 24	
٤	indoor units total capacity (Simultaneous operation)		Total model name 24	
System	Piping total length	m	Max. 30 (chargeless 20)	
Š	Connecting pipe length	m	,	k. 20
	Height difference (Indoor ~ Outdoor)	m		0
	Height difference (Indoor ~ Indoor)	m	10	
	Function		Cooling	Heating
	Capacity	kW	5.3 (1.55~5.7)	6.6 (1.58~7.2)
Sapacity	Dehumidification	ℓ/h		
Sap	Outdoor air flow	m³ /h	1.8	360
	Power outlet	Α Α	·	20
	Running current	A	9.08	8.64
	Power input	W	1,880 (370~2,190)	1,790 (290~1,840)
ਲ	Auxiliary heater	A(kW)		_
Electrical data	Crankcase heater	W	_	
Elect	Power factor	%	90.0	
	Starting current	A	9.08	
	Compressor motor current	A	8.70	8.26
	Fan motor current	A		38
C	Coefficient of performance(C.O.P)		2.82	3.69
	Model		SHV-130FEA (ROTARY)	
Compressor	Output	W	1,400	
πpr	Winding		U-V 0.45	
Ŝ	resistance(at20°C)	Ω	V-W 0.45 W-U 0.45	
	Model			35-AA
Fan motor	Winding		WHT-BLK 236.2	
щE	resistance(at20°C)	Ω		ED 224.1
	Dimensions W×H×D	mm		×600×300
	Weight	kg		-66 -6
	Sound level (Hi)	dB	48	49
	Fan speed (Hi)	rpm		30
ks al	Fan speed regulator		2	
Special remarks	Refrigerant filling	l.a		
Sp rer	capacity(R-22)	kg	1.55	
	Refrigerating oil (Model)	СС	350 (MS-56)	
	Thermistor RT61	kΩ	13.4 (at 100°C)	
	Thermistor RT62	kΩ		at 25℃)
	Thermistor RT63	kΩ	10.0 (a	•
	Thermistor RT65,66	kΩ	10.0 (a	•
	Thermistor RT67	kΩ	17.0 (a	
	E: Toot conditions are based on ISO 5151		•	

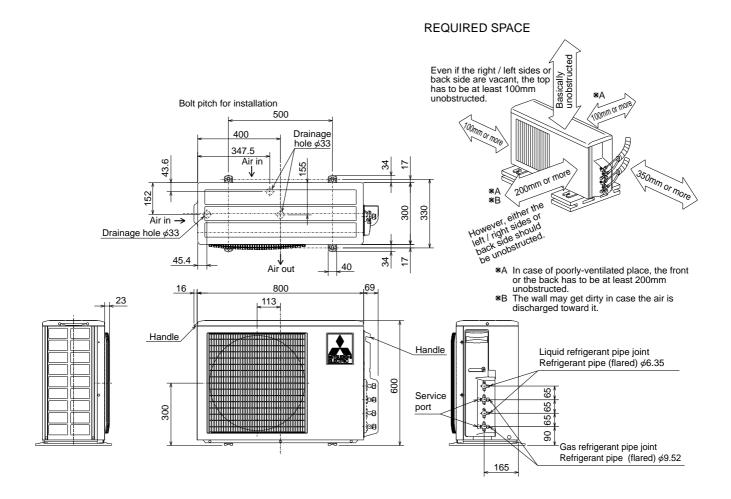

NOTE: Test conditions are based on ISO 5151 (Refrigerant piping length (one way) :5m \pm 1 Electrical data is for only outdoor unit.

TEST CONDITIONS COOLING INDOOR DB27.0°C WB19.0°C OUTDOOR DB35.0°C WB24.0°C

HEATING INDOOR DB20.0°C

OUTDOOR DB 7.0°C WB 6.0°C

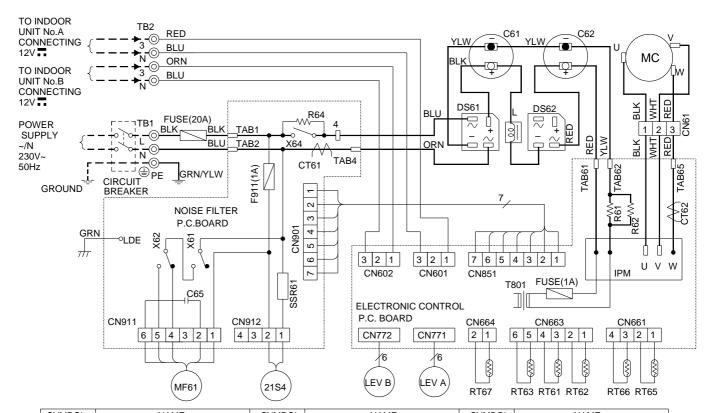
NOTCH	SPL(dB(A))	LINE
Cooling	48	•
Heating	49	00



7

OUTLINES AND DIMENSIONS

OUTDOOR UNIT


Unit: mm

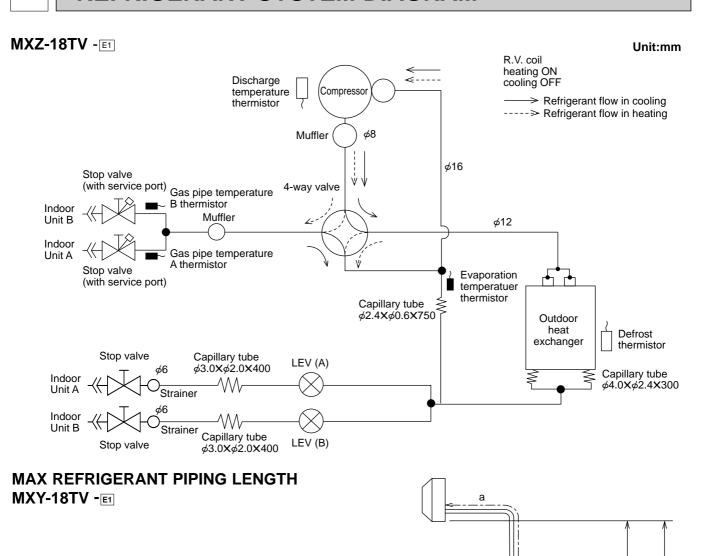
WIRING DIAGRAM

OUTDOOR UNIT

MODELS MXZ-18TV- [1]

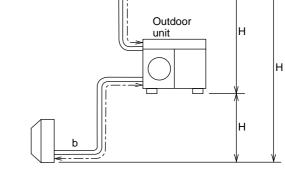
SYMBOL	NAME	SYMBOL	NAME	SYMBOL	NAME
C61	POWER-FACTOR CAPACITOR	R64	RESISTOR	RT66	GAS PIPE TEMP. B THERMISTOR
C62	SMOOTHING CAPACITOR	R61,R62	RESISTOR	RT67	FIN TEMP. THERMISTOR
C65	FAN MOTOR CAPACITOR	LEV A	EXPANSION VALVE A,COIL	SSR61	SOLENOID COIL RELAY
CT61	CURRENT TRANSFORMER	LEV B	EXPANSION VALVE B,COIL	T801	TRANSFORMER
CT62	CURRENT TRANSFORMER	21S4	REVERSING VALVE SOLENOID COIL	TB1	TERMINAL BLOCK
DS61,DS62	DIODE MODULE	MC	COMPRESSOR	TB2	TERMINAL BLOCK
FUSE	FUSE(20A)	MF61	FAN MOTOR	X61	FAN MOTOR RELAY
FUSE	FUSE(1A)	RT61	DISCHARGE TEMP. THERMISTOR	X62	FAN MOTOR RELAY
F911	FUSE(1A)	RT62	DEFROST TEMP. THERMISTOR	X64	RELAY
IPM	POWER TRANSISTOR MODULE	RT63	EVAPORATOR TEMP. THERMISTOR	CN61	CONNECTOR
L	REACTOR	RT65	GAS PIPE TEMP. A THERMISTOR		

NOTES: SG79J191H01


3.Symbols below indicate.

©:Terminal block ::Connector

^{1.} About the indoor side electric wiring refer to the indoor unit electric wiring diagram for servicing.


^{2.}Use copper conductors only (For field wiring).

REFRIGERANT SYSTEM DIAGRAM

Piping length each indoor unit (a, b)	20m
Total piping length (a+b)	30m
Height difference between units (H)	10m
Bending point for each unit	15
Total bending point	30

^{*}It does not matter which unit is higher.

- Refrigerant pipe diameter is different according to indoor unit to be connected. When using extension pipes,refer to the tables below.
- When diameter of refrigerant pipe is different from that of outdoor unit union, use optional Different-diameter pipe.
 For further information on Different-diameter pipe, see page BACK COVER.
 Unit: mm (inch)

	Indo	or unit	Extension pipe diameter		
class	F	Pipe diameter	Exter	ision pipe diameter	
07/09	Liquid	6.35(1/4)	Liquid	6.35(1/4)	
01/09	Gas	9.52(3/8)	Gas	9.52(3/8)	
12	Liquid	6.35(1/4)	Liquid	6.35(1/4)	
12	Gas	12.7(1/2)	Gas	12.7(1/2)	

NOTE: SEH-1.6AR is equivalent to class 12.

Outdoor unit union diameter				
For				
Indoor unit A	Liquid	6.35(1/4)		
indoor drift A	Gas	9.52(3/8)		
Indoor unit B	Liquid	6.35(1/4)		
Illudoi ullit b	Gas	9.52(3/8)		

PERFORMANCE CURVES

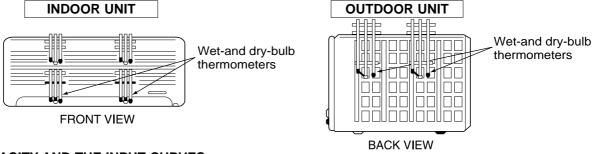
The standard data contained in these specifications apply only to the operation of the air conditioner under normal conditions, since operating conditions vary according to the areas where these units are installed. The following information has been provided to clarify the operating characteristics of the air conditioner under the conditions indicated by the performance curve.

(1) GUARANTEED VOLTAGE

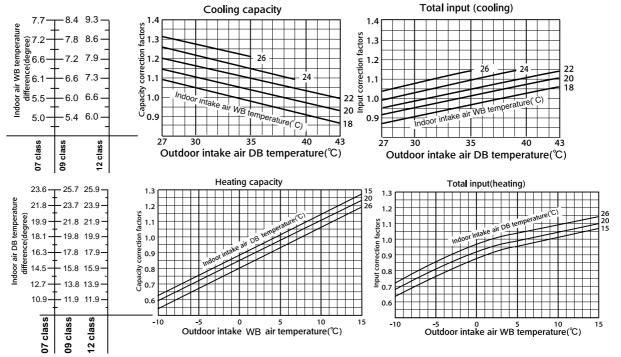
198 ~ 264V, 50Hz

(2) AIR FLOW

Air flow should be set at MAX.

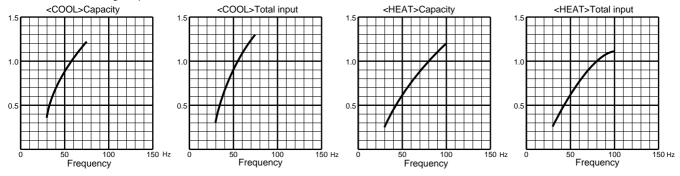

(3) MAIN READINGS

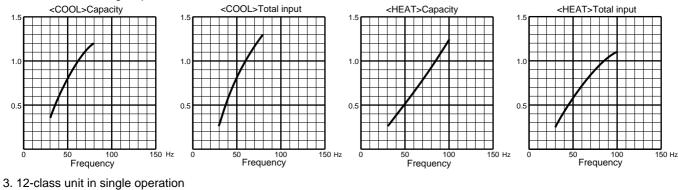
(1) Indoor intake air wet-bulb temperature: °CWB (2) Indoor outlet air wet-bulb temperature : °CWB Cooling (3) Outdoor intake air dry-bulb temperature : °CDB (4) Total input: W (5) Indoor intake air dry-bulb temperature : °CDB (6) Outdoor intake air wet-bulb temperature : °CWB Heating (7) Total input: ۱۸/

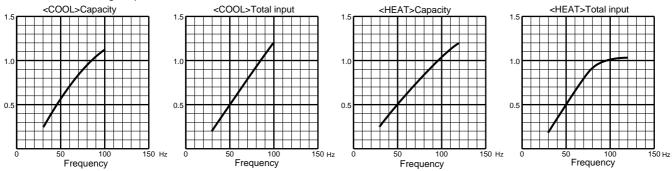

Indoor air wet/dry-bulb temperature difference on the left side of the chart on page 10 and 11 shows the difference between the indoor intake air wet/dry-bulb temperature and the indoor outlet air wet/dry-bulb temperature for your reference at service.

How to measure the indoor air wet-bulb/dry-bulb temperature difference

- Attach at least 2 sets of wet-and dry-bulb thermometers to the indoor air intake as shown in the figure, and at least 2 sets
 of wet-and dry-bulb thermometers to the indoor air outlet. The thermometers must be attached to the position where air
 speed is high.
- 2. Attach at least 2 sets of wet-and dry-bulb thermometers to the outdoor air intake. Cover the thermometers to prevent direct rays of the sun.
- 3. Check that the air filter is cleaned.
- 4. Open windows and doors of room.
- 5. Press the EMERGENCY OPERATION switch once(twice) to start the EMERGENCY COOL(HEAT) MODE.
- 6. When system stabilizes after more than 15 minutes, measure temperature and take an average temperature.
- 7. 10 minutes later, measure temperature again and check that the temperature does not change.


10-1. CAPACITY AND THE INPUT CURVES


10-2. Capacity and input correction by inverter output frequency


(OUTDOOR UNIT:MXZ-18TV)
NOTE 1: Inverter output frequency: COOL 55Hz,HEAT 80Hz
NOTE 2: The dotted line on graphs connects the frequency range in normal operation shown by the full line and the frequency in test run shown by the point.

1. 07-class unit in single operation

2. 09-class unit in single operation

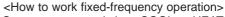
10-3. Outdoor low pressure and outdoor unit current

1. 07-class unit in single operation (OUTDOOR UNIT : MXZ-18TV)

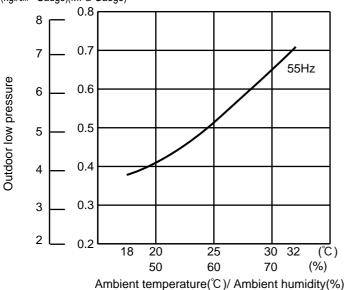
NOTE: The unit of pressure has been changed to MPa on the international system of units (SI unit system).

The converted score against the traditional unit system can be gotten according to the formula below.

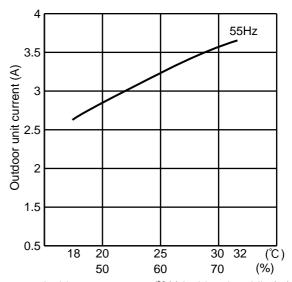
1(MPa • G) =10.2(kgf/cm² • G)


(1) COOL operation

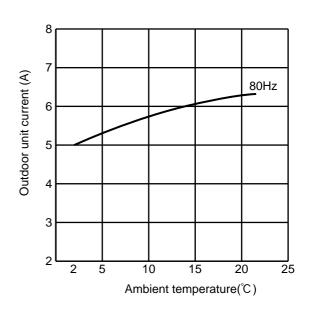
①Both indoor and outdoor units are under the same temperature/humidity condition.


Dry-bulb temperature(°C)	Relative humidity(%)
20	50
25	60
30	70

- ②Air flow speed: HI
- ③Inverter output frequency: 55Hz


(kgf/cm²• Gauge)(MPa•Gauge)

- Set emergency switch to COOL or HEAT. The switch is located on indoor unit.
- 2.Press emergency run ON/OFF button.
- 3. Compressor starts running at 55Hz (COOL) or 80Hz (HEAT).
- 4. Indoor fan runs at HI speed and continues for 30 minutes.
- 5.To cancel this operation, press emergency run ON/OFF button or any button on remote controller.


Ambient temperature(°C)/ Ambient humidity(%)

(2) HEAT operation

① Indoor	DB(°C)	20.0
	WB(°C)	14.5

Outdoor DB(°C) 2 7 15 20.0 WB(°C) 1 6 12 14.5

- ² Set air flow to Hi speed.
- 3 Inverter output frequency is 80Hz.

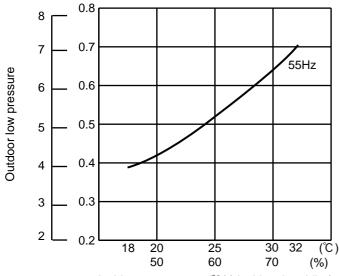
2. 09-class unit in single operation (OUTDOOR UNIT: MXZ-18TV)

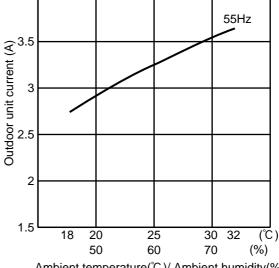
NOTE: The unit of pressure has been changed to MPa on the international system of units(SI unit system). The converted score against the traditional unit system can be gotten according to the formula below.

1(MPa • G) =10.2(kgf/cm² • G)

(1) COOL operation

①Both indoor and outdoor units are under the same temperature/humidity condition.


Dry-bulb temperature(°C)	Relative humidity(%)
20	50
25	60
30	70

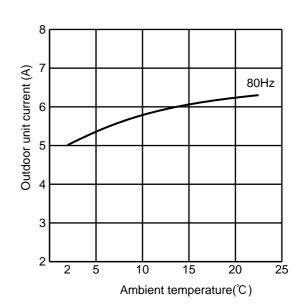

- ②Air flow speed: HI
- ③Inverter output frequency: 55Hz

<How to work fixed-frequency operation>

- 1.Set emergency switch to COOL or HEAT. The switch is located on indoor unit.
- 2.Press emergency run ON/OFF button.
- 3. Compressor starts running at 55Hz (COOL) or 80Hz (HEAT).
- 4.Indoor fan runs at HI speed and continues for 30 minutes.
- 5.To cancel this operation, press emergency run ON/OFF button or any button on remote controller.

(kgf/cm2• Gauge)(MPa•Gauge)

Ambient temperature(°C)/ Ambient humidity(%)


Ambient temperature(°C)/ Ambient humidity(%)

(2) HEAT operation

① Indoor	DB(°C)	20.0
	WB(°C)	14.5

Outdoor	DB(°C)	2	7	15	20.0
	WB(°C)	1	6	12	14.5

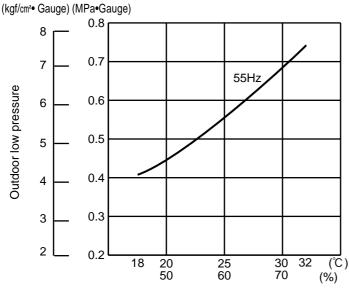
- ² Set air flow to Hi speed.
- 3 Inverter output frequency is 80Hz.

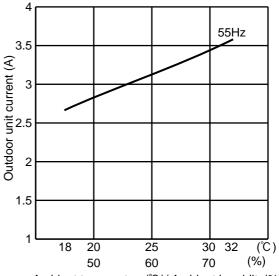
3. 12-class unit in single operation (OUTDOOR UNIT: MXZ-18TV)

NOTE: The unit of pressure has been changed to MPa on the international system of units(SI unit system). The converted score against the traditional unit system can be gotten according to the formula below.

1(MPa • G) =10.2(kgf/cm² • G)

(1) COOL operation


①Both indoor and outdoor units are under the same temperature/humidity condition.

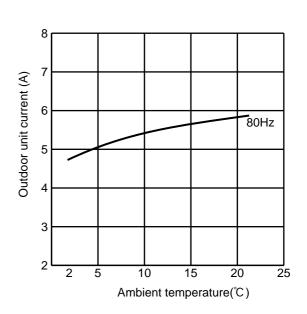

Dry-bulb temperature(°C)	Relative humidity(%)
20	50
25	60
30	70

- ②Air flow speed: HI
- ③Inverter output frequency: 55Hz

<How to work fixed-frequency operation>

- 1.Set emergency switch to COOL or HEAT.The switch is located on indoor unit.
- 2.Press emergency run ON/OFF button.
- 3.Compressor starts running at 55Hz (COOL) or 80Hz (HEAT).
- 4.Indoor fan runs at HI speed and continues for 30 minutes.
- 5.To cancel this operation, press emergency run ON/OFF button or any button on remote controller.

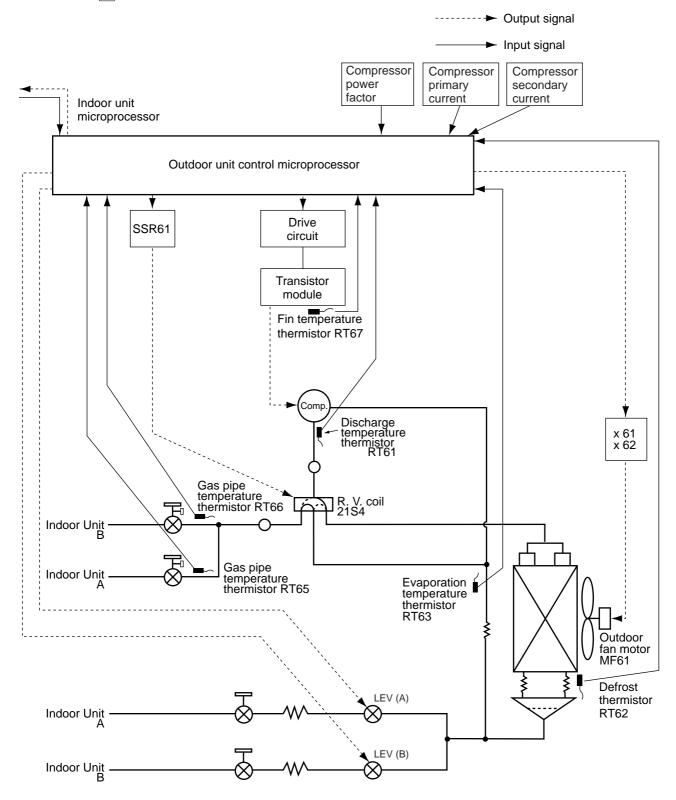
Ambient temperature(°C)/ Ambient humidity(%)


Ambient temperature(°C)/ Ambient humidity(%)

(2) HEAT operation

① Indoor	DB(°C)	20.0
	WB(°C)	14.5

Outdoor	DB(°C)	2	7	15	20.0
	WB(°C)	1	6	12	14.5


- ² Set air flow to Hi speed.
- ³ Inverter output frequency is 80Hz.

MICROPROCESSOR CONTROL

INVERTER MULTI SYSTEM CONTROL

MXZ-18TV -E1

11-1.LEV control

Linear expansion valve (LEV) is controlled by "Thermostat ON" commands given from each unit.

Indoor unit status	LEV opening
Stop of all indoor unit	Opening before stop → 500 pulse in 15 minutes
When outdoor unit is operating, some indoor unit stops and some operates.	COOL : 5 pulse (full closed) HEAT : 59 pulse (slightly opened)
Thermostat OFF in COOL or DRY mode	When the outdoor unit operation (When the other indoor unit operate): 5 pulse. When outdoor unit stops. (When the other indoor unit stops or thermo off): Maintain LEV opening before stop → 500 pulse in 15 minutes
Thermostat ON in COOL or DRY mode	 LEV opening for each indoor unit is determined by adding adjustment in accordance with the number of operating unit and the capacity class to standard opening, based on the operation frequency: Ex.) Opening 130 pulse in standard opening 1 → Minimum 80 pulse, Maximum 205 pulse. (Capacity code 4 at 1 unit operation) (Capacity code 1 at 4 unit operation) After starting operation, adjustment in accordance with intake super heat, discharge temperature is included in standard opening. *1 Note: LEV opening in each frequency at DRY operation and COOL operation is the same. However, velocity and compressor operation frequency controls are different. See 11-2 Operational frequency range (As far as the indoor unit velocity control goes, refer to DRY operation in MICROPROCESSOR CONTROL in the indoor unit service manual.)
Thermostat OFF in HEAT mode	 When the outdoor unit operates. (When the other indoor unit operates): 59 pulse When the outdoor unit stops. (When the other indoor unit stops or thermo off): Maintain LEV opening before stop → 500 pulse in 15 minutes.
Thermostat ON in HEAT mode	 LEV opening for each indoor unit is determined by adding adjustment in accordance with the number of operating unit and the capacity class to standard opening, based on the operation frequency: Ex.) Opening 120 pulse in standard opening 1 → Minimum 70 pulse, Maximum 165 pulse. (Capacity code 4 at 1 unit operation) (Capacity code 1 at 4 unit operation) After starting operation, opening becomes the one that adjustment in accordance with discharge temperature was added to basic opening. **1

^{*1} LEV opening when the outdoor unit operating: Upper limit 500 pulse, Lower limit 59 pulse.

Determination of LEV standard opening in each indoor unit

• The standard opening is on the straight line, which connects an each standard point in the section where divided into seven according to the operation frequency of compressor as shown in the figure below.

(LEV opening is controlled in proportion to the operation frequency.)

Note: Opening is adjusted at the standard opening according to the indoor unit conditions.

However, inclination of standard opening in each point of opening does not change with the original curve.

- Add opening provided in Difference in Capacity in the table below to the standard opening from 1 to 8, when capacity of the indoor unit is excluding code 1.
- Add opening provided in Difference in Operation number in the table below to determined LEV opening for each indoor unit, when 2, 3 or 4 indoor units are operated at the same time.

Note: Even when the adjusted standard opening exceeds the driving range from 59 to 500 pulse, actual driving output opening is in a range from 59 to 500 pulse.

< Calculation example of LEV opening >

Cool operation: Compressor frequency 70Hz: 2 unit ON: 18class

(170-150)÷(80-60)×(70-60)+150+75-30=205 pulse

Standard opening 3 5 8 220 210 LEV opening (Pulse) 200 190 180 170 COOL 160 o-o HEAT 150 140 130 140 20 100 Operation frequency of compressor (Hz): F

	Standard opening						Differe capac	ence in	Difference in operation number		
	1	2	3	4	5	6	7	8	Code2	Code3	2
COOL	150	160	170	180	190	190	200	200	25	50	-60
HEAT	120	130	140	150	160	170	180	180	20	40	-60

Capacity code	1	2	3	4
Indoor unit	07	09	12	18

<Correction>

	COOL	DRY	HEAT
① Suction super heat (MIN gas pipe temperature thermistor - Evaporation temperature thermistor)			
Each correction * 1 • (Each gas pipe temperature thermistor - Evaporation temperature thermistor) • (Main pipe temperature thermistor - sub pipe temperature thermistor)	•	•	_
③ Discharge temperature	● * 2	● * 2	•

- * 1 Perform this, when number of operation units is 2 units or more
- * 2 When the correction opening of suction super heat is 0, correct the LEV opening by dischaege temperature.

(1) LEV opening correction by suction super heat (COOL, DRY)

(Suction super heat) = (Minimum gas pipe temperature) - (Evaporation temperature)

When COOL and DRY, correct the LEV openings corrected from the table below

Suction superheat (S.H.)	LEV opening correction (pulse)
more than 12	6
10 to12	4
8 to 10	3
6 to 8	2
6 or less	0

(2) Separate correction (COOL,DRY)

(When number of operation unit is 2 units)

- (a) Correction by the separate super heat
 - Correct the LEV separately by temperature difference between each gas pipe temperature thermistor and evaporator temperature thermistor.
 - ① Calculate each super heat of the unit from the expression below;

(Super heat) = (Gas pipe temperature thermistor) - (Evaporation temperature thermistor)

- ② Select a minimum super heat from among them.
- ③ Correct an each LEV is corrected opening is corrected by difference between each super heat and minimum super heat.

Difference of superheat	LEV opening correction (pulse)
more than 9	8
6 to9	6
3to 6	2
6 or less	0

(3) LEV opening correction by discharge temperature

When LEV correction output is 0 pulse by the suction super heat at cool or dry operation, or dry operating, correct LEV is corrected according to the following table.

The target discharge temperature is determined according to frequency zone and number of operation unit of the compressor.

•	COOL, DRY		HE	AT
Operation frequency	Number of o	perating unit.	Number of o	perating unit.
of compressor	Single	Double	Single	Double
Minimum ~ 20	40	40	40	40
21 ~ 33	40	40	45	45
34 ~ 46	45	45	50	50
47 ~ 59	45	45	55	55
60 ~ 72	50	50	60	60
73 ~ 85	55	55	65	65
86 ~ 98	65	65	70	70
97 ~ 111	70	70	75	73
111 ~ Maximum	75	75	75	73

Correct the LEV opening according to difference between the target discharge temperature and discharge temperature.

Discharge temperature (°C)	LEV opening correction (pulse)	
	COOL	HEAT
more than Target discharge temperature+11	10	8
Target discharge temperature+11 to Target discharge temperature+8	4	2
Target discharge temperature+8 to Target discharge temperature+5	2	1
Target discharge temperature+5 to Target discharge temperature+2	1	1
Target discharge temperature+2 to Target discharge temperature-2	0	0
Target discharge temperature-2 to Target discharge temperature-5	-1	-1
Target discharge temperature-5 to Target discharge temperature-8	-2	-1
Target discharge temperature-8 to Target discharge temperature-11	-5	-2
Target discharge temperature-11 or less	-8	-6

11-2. Operational frequency range

I	Number of	capacity		COOL		DRY		HE	AT	
I	operating unit	cord 1	Min.	Max.	Rated		Min.	Max.	Defrost	Rated
I		1		70	55	30		100	100	80
I	1	2	30	80	61	41	30	100	100	85
ı		3		100	85	53		120	100	94
	2	2 3 4 5 6 7	30	120	108	72	30	120	100	120

Note: When the fan speed of indoor unit is total Lo notch, restrict the maximum frequency is rated frequency.

11-3.Heat defrosting control

- (1) Conditions to enter defrosting mode
 - ①. When temperature of defrosting thermistor is -3 $^{\circ}$ C or less.
 - ②.When specified non-defrosting time, is counted in the control p.c.board is satisfied.

(Total time of compressor operating)

Going to defrosting mode at both condition of ① and ②.

(2) Defrosting operation

- $\ensuremath{\mathbb{O}}.$ Compressor stops for 50 seconds, Indoor fan is off, Defrosting lamp lights
- ②.4-way valve reverses flow, Compressor operates by the frequency in heat defrosting control.
- ③. After compressor stops for 35 seconds, 4-way valve reverses flow, then defrosting finishes.

(3) Conditions to finish defrosting mode

- \odot . When the defrosting thermistor temperature is 8°C or more.
- ②. When it has spent 10 minutes for defrosting.

Defrosting finishes at condition of $\ensuremath{\mathbb{O}}$ or $\ensuremath{\mathbb{O}}.$

11-5.Discharge temperature protection control

This protection controls the compressor ON/OFF and operation frequency according to temperature of the discharge temp. thermistor.

(1) Compressor ON/OFF

When temperature of the discharge temp. thermistor exceeds $116\,^{\circ}$ C, the control stops the compressor.

When temperature of the discharge temp. thermistor is 80° C or less, the controls starts the compressor.

(2) Compressor operation frequency

When temperature of the discharge temp. thermistor is expected to be higher than 116°C, the control decreases 12Hz from the current frequency.

When temperature of the discharge temp, thermistor is expected to be higher than 111 $^{\circ}$ C and less than 116 $^{\circ}$ C, the control decreases 6Hz from the current frequency.

When temperature of the discharge temp. thermistor is expected to be higher than 104° C and less than 111° C, the control is set at the current frequency.

11-6.Refrigerant recovery control on heating

<Control status>

The control performs when the following status are satisfied everything;

- When there is 1 unit or more not operating indoor unit on heat operation. (Excluding thermo OFF)
- When discharge temperature becomes 107°C or more.
- When it passed 60 minutes or more since the operation has started or the last refrigerant recovery has controlled.

<Control details>

LEV opening, which adjusts to not operating indoor unit, is considered to be 80 pulse.

<Control finish status>

The control finishes either as follows. However, the LEV opening is considered to be 59 pulse.

- When it passed 60 seconds since the control has started.
- When the discharge temperature is 90°C or less.

11-7.Outdoor fan control

Fan speed is switched according to a number of operating indoor unit and the compressor frequency.

Fan speed

Hi ----
Low

Min. Compressor frequency Max.

<Relation between compressor frequency and fan speed.>

Mode		Indoor unit operation	
Wiodo	Fan speed	Single	Double
COOL	Up	60Hz	60Hz
COOL	Down	50Hz	50Hz
HEAT	Up	60Hz	60Hz
IILAI	Down	50Hz	50Hz

Note

- •When operation, fan speed of Hi/ Low mode changes to VHi/ Hi mode by promoting those fan speeds respectively by 1 step after defrosting is operated. This control is cleared, when the compressor off.
- •When overheat protection of P.C. board temperature or fin temperature operates, the outdoor fan speed is fixed to VHi mode regardless of compressor frequency. Also, when the overheat protection is cleared, the fan speed is back to normal
- •When the indoor coil thermistor is 57° C or more on HEAT operation, fan speed is fixed to Low notch . Or, the indoor coil thermistor is 45° C or less on HEAT operation, fan speed is back to normal.

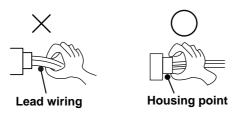
11-8. Relation between main sensor and actuator

Relation between main sensor and actuator.

		Actuator			
Sensor	Purpose		LEV	Outdoor fan motor	Reversing valve
Discharge temperature thermistor	Protection	0	0		
Indoor pipe temperature thermistor	Defrosting Protection	0	0		
Defrost thermistor	Defrosting	0	0		0
Evaporation temperature thermistor	Control		\bigcirc		
Gas pipe temperature thermistor Control			\bigcirc		
Fin temperature thermistor Protection				0	
Capacity code	Control		0		

12

TROUBLESHOOTING

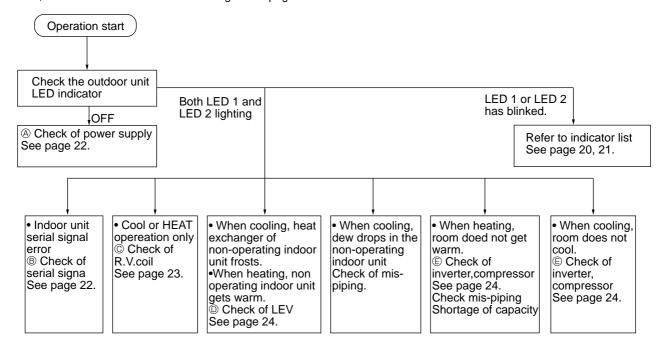

12-1. Cautions on troubleshooting

1. Before troubleshooting, check the following:

- 1) Check the power supply voltage.
- 2) Check the indoor/outdoor connecting wire for mis-wiring.

2. Take care the following during servicing.

- 1) Before servicing the air conditioner, be sure to first turn off the remote controller to stop the unit, and then after confirming the horizontal vane is closed, turn off the breaker and / or disconnect the power plug.
- 2) Be sure to unplug the power cord before removing the front panel, the cabinet, the top panel, and the electronic control P.C. board.
- 3) When removing the electronic control P.C. board, hold the edge of the board with care NOT to apply stress on the components.
- 4) When connecting or disconnecting the connectors, hold the housing of the connector. DO NOT pull the lead wires.



3. Troubleshooting procedure

- 1) First, check if the OPERATION INDICATOR lamp on the indoor unit is flashing on and off to indicate an abnormality. To make sure, check how many times the abnormality indication is flashing on and off before starting service work.
- 2) If the electronic control P.C. board is supposed to be defective, check the copper foil pattern for disconnection and the components for bursting and discoloration.
- 3) When troubleshooting, refer to the flow chart on page 19 and the check table on page 20, 21.

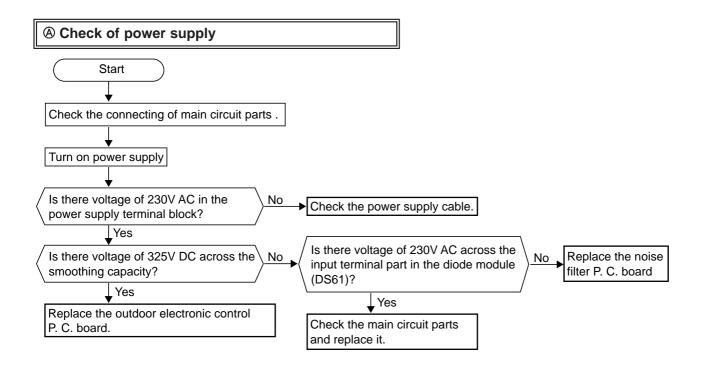
12-2. Instruction of troubleshooting

• Check the indoor unit with referring to the indoor unit service manual, and confirm that there is any problem in the indoor unit. Then, check the outdoor unit with referring to this page.

Troubleshooting check table <OUTDOOR UNIT>

LED 1 (red)	LED 2 (yellow)	Error mode
Lighting	Lighting	Normal

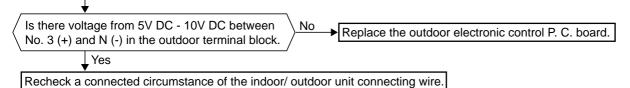
	Symptom: Outdoor unit does not operate.						
Indication							
LED 1 (red)	LED 2 (Yellow)	Abnormal point	Detecting method	Check points			
Lighting	Twice	Outdoor power system	When the compressor operation has been interrupted by overcurrent protection continuously three times within 1 minute after start-up.	Check the inverter / compressor. Refer to "©" on page 24.			
Lighting	7 times	Outdoor control system	When the nonvolatile memory data cannot be read properly on the out-door electronic control P.C. board.	Replace the outdoor electronic control P.C. board.			
6 times	Goes out	Indoor unit and LEV	When the drain abnormality is detected in the indoor unit and the indoor unit coil temperature is too low, or when any abnormality is detected in the components of indoor unit.	Check the abnormality indication on the indoor unit. Check the LEV. Refer to "©" on page 24.			
Lighting	9 times	DC voltage sensing circuit	When DC voltage sensing circuit detects 57V or below or 395V or above	Replace the outdoor electronic control P.C. board.			


	Symptom: Outdoor unit repeats to stop and restart in 3 minutes					
Indic	ation					
LED 1 (red)	LED 2 (Yellow)	Abnormal point	Detecting method	Check points		
Lighting	3 times	Discharge temperature thermistor	When a short or open circuit occurs in the discharge temperature thermistor during compressor running.	Check the characteristic of the discharge temperature thermistor. Refer to "©" on page 25. Check the connector. (CN663)		
Lighting	4 times	Fin temperature ther- mistor	When a short or opern circuit occurs in the fin temperature thermistor during compressor running.	Check the characteristic of the fin temperature thermistor. Refer to "©" on page 25. Check the connector. (CN664)		
Lighting	5 times	P.C. board temperature thermistor	When a short or open circuit occurs in the P.C. board temperature thermistor during compressor running.	Replace the outdoor electronic control P.C. board.		
Lighting	10 times	Evaporation temperature thermistor	When a short or open circuit occurs in the evaporation temperature thermistor during compressor running.	Check the characteristic of the evaopration temperature thermistor. Refer to "©" on page 25. Check the connector. (CN663)		
Lighting	11 times	Gas pipe temperature A thermistor	When a short or open circuit occurs in the gas pipe temperature A thermistor during compressor running.	Check the characteristic of the gas pipe temperature A thermistor. Refer to "©" on page 25. Check the connector. (CN661)		
Lighting	12 times	Gas pipe temperature B thermistor	When a short or open circuit occurs in the gas pipe temperature B thermistor during compressor running.	Check the characteristic of the gas pipe temperature B thermistor. Refer to "©" on page 25. Check the connector. (CN661)		
Twice	Goes out	Over current protection	When over current is applied to the power module.	Check the inverter / compressor. Refer to "©" on page 24. Check the amount of gas. Check the indoor / outdoor air flow for short cycle. Check the indoor unit air filter for clogging.		
3 times	Goes out	Discharge temperature overheat protection	When the discharge temperature thermistor detects 116°C or above. (Protection will be released at 100°C or below.)	Check the amount of gas and the refrigerant cycle. Check the outdoor unit air passage.		
4 times	Goes out	Fin temperature over- heat protection	When the fin temperature thermistor detects 91℃ or above.	Check the outdoor unit air passage. Check the outdoor fan motor. Refer to "©" on page 25. Check the power module.		
4 times	Goes out	P.C. board temperature overheat protection	When the P.C. board temperature thermistor detects 79°C or above.	Check the outdoor unit air passage. Check the outdoor fan motor. Refer to "©" on page 25. Replace the outdoor electronic control P.C. board.		

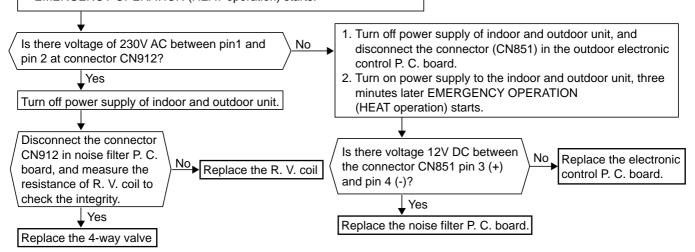
	Symptom: Oudtoor unit operates (The compressor operates at reduced frequency)					
Indication						
LED 1 (red)	LED 2 (Yellow)	Abnormal point	Detecting method	Check points		
Once	Lighting	Current protection	When the outdoor unit input current exceeds 15.5A.			
Twice	Lighting	Overload protection	When the compressor load exceed the specified value.	These symptoms do not mean any abnor-		
3 times	Lighting	High pressure protection	When indoor pipe temperature exceeds 55°C during heating.	mality of the product, but check the following points.		
3 times	Lighting	Defrosting in cooling	When indoor pipe temperature falls to 6°C or below during cooling.	Air filter clogging. Amount of gas. Short ovel of indees / outdoor oir flow.		
4 times	Lighting	Discharge temperature protection	When the discharge temperature exceeds 111°C.	Short cycle of indoor / outdoor air flow.		
7 times	Lighting	Low discharge tempera- ture protection	When the state with low discharge temperature of which 50.4°C or below in cool and 48.8°C or below in heat for 20 minutes.			

	Symptom: Outdoor unit operates						
Indication							
LED 1 (red)	LED 2 (Yellow)	Abnormal point	Detecting method	Check points			
5 times	Lighting	Defrost thermistor	When a short or open circuit occurs in the defrost thermistor during heating.	Check the characteristic of the defrost temperature thermistor. Refer to "©" on page 25. Check the connector. (CN663)			
6 times	Lighting	Power factor detection	When the compressor power factor cannot be detected.	Check the compressor wiring.			

12-4. Trouble criterion of main parts


Part name	Check method and criterion			
Defrost thermistor	Measure the resistance us (Part temperature -10°C -	•		
Evaporation / Gas pipe temperature thermistor	No	rmal	abn	ormal
temperature thermistor	5kΩ -	~ 55kΩ	Opened or s	short-circuited
Discharge temperature	Measure the resistance us (Part temperature : 20°C		ming up the thermis	tor by holding by hand.
thermistor	No	rmal	abn	ormal
	100kΩ	~ 250kΩ	Opened or s	short-circuited
Compressor	Measure the resistance be (Winding temperature : -1		g a tester.	
The second	No	Normal		ormal
WHT BLK	1Each phase $0.39\Omega \sim 0.50\Omega$		Opened or s	short-circuited
Outdoor fan motor	Measure the resistance be (Part temperature : -10°C		ng a tester.	
		Normal		abnormal
ORN RED	WHT - BLK	$208.4\Omega \sim 254.8\Omega$		Opened or
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	BLK - YLW	42.4Ω ~ 51.	9Ω	Opened or short-circuited
YLW	BLK - RED	197.7Ω ~ 241.7Ω		311011-Circuited
	Measure the resistance u	sing a tester. (Part tem	nperature -10°C ~ 40)°C)
R. V. coil	No	rmal	abn	ormal
	2.6kΩ ~ 3.3kΩ		Opened or short-circuited	
Linear expansion valve	Measure the resistance us	sing a tester.(Part tem	perature -10°C ~ 40°	°C)
WHT	Lead wire color	Normal		Abnormal
RED (LEV)	WHT - RED			
ORN	RED - ORN	37.4Ω ~ 53.9Ω	Onana	d or chart circuited
000 000	YLW - BRN	31.422 ~ 33.92	2 Opened	d or short-circuited
 YLW BRN BLU	BRN - BLU			

- 1. Check the indoor unit with referring to the indoor unit service manual.
- 2. Turn off the power supply of the indoor and outdoor unit and return the indoor/ outdoor unit connecting wire to former original.
- 3. Check the connection of indoor/ outdoor unit connecting wire in the outdoor unit terminal block, and check the connection of the connector (CN601: unit A, CN602: unit B) in the control P. C. board
- 4. Disconnect the lead wire to the compressor. Turn on the power supply (indoor/ outdoor unit) 3 minutes later, EMERGENCY OPERATION starts.

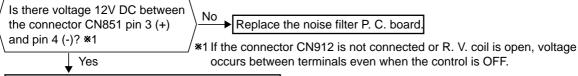

22

© Check of R. V. coil

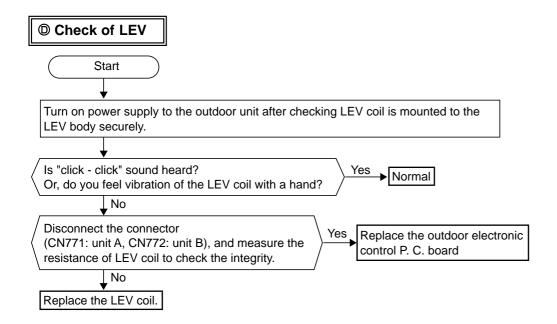
· When heating operation does not work.

- 1. Disconnect the lead wire leading to the compressor.
- 2. Turn on power supply to the indoor and outdoor unit, three minutes later EMERGENCY OPERATION (HEAT operation) starts.

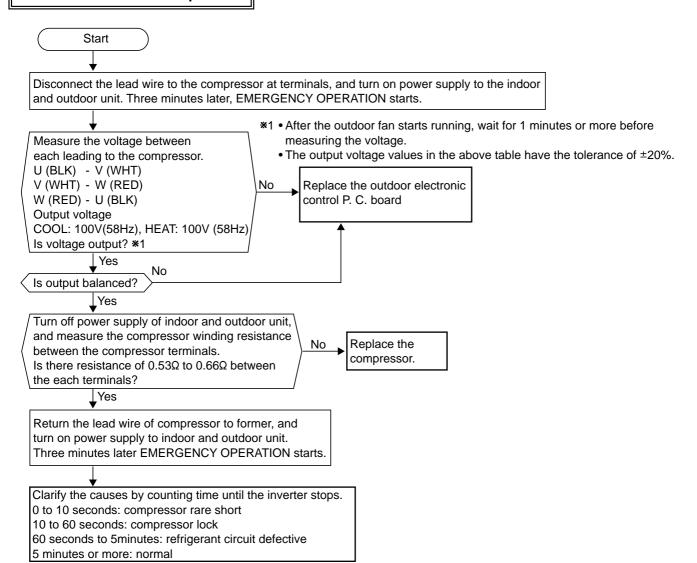
· When cooling operation does not work.

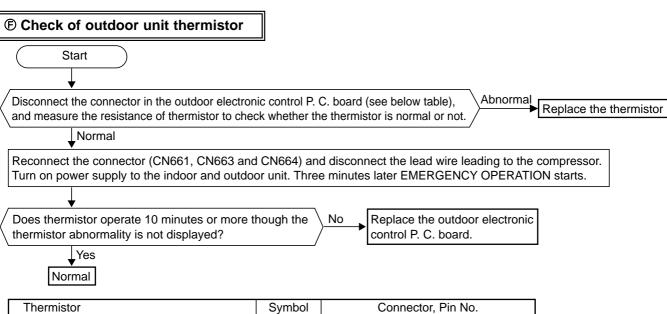


- 1. Disconnect the lead wire leading to the compressor.
- Turn on power supply to the indoor and outdoor unit, three minutes later EMERGENCY OPERATION (COOL operation) starts.

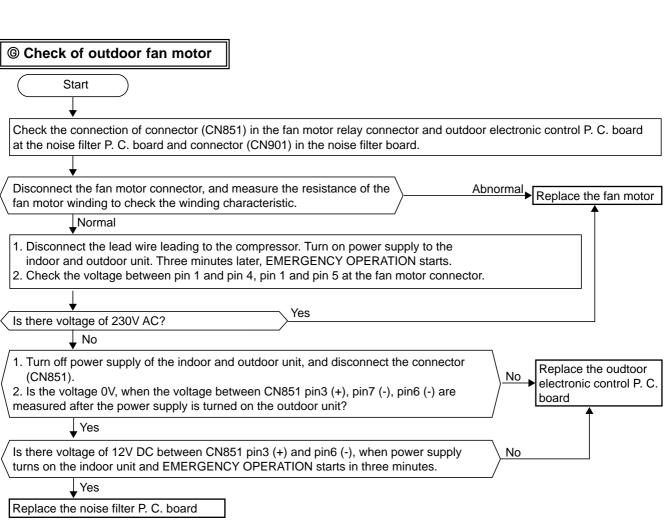

Is there voltage of 230V AC between pin1 and pin 2 at connector CN912?

| Yes | No | Replace the 4-way valve |

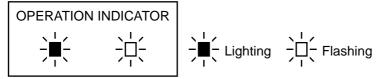

- Turn off power supply of indoor and outdoor unit, and disconnect the connector (CN851) in the outdoor electronic control P. C. board.
- Turn on power supply to the indoor and outdoor unit, three minutes later EMERGENCY OPERATION (COOL operation) starts.



Replace the outdoor electronic control P. C. board.

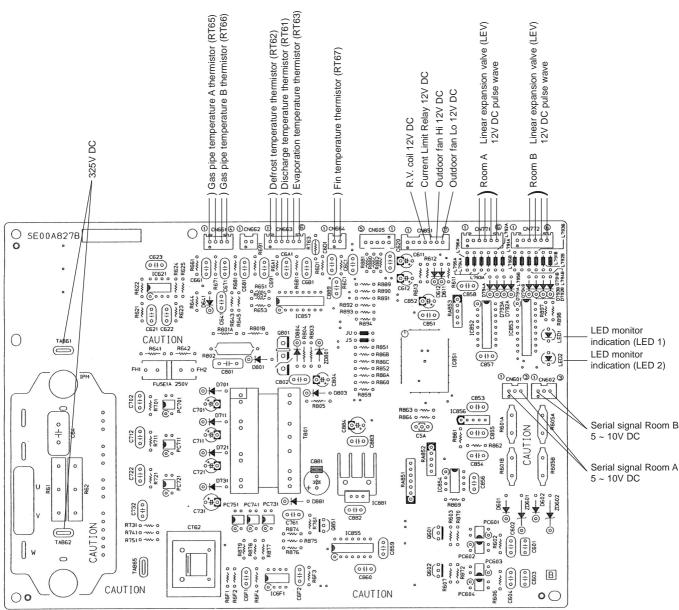


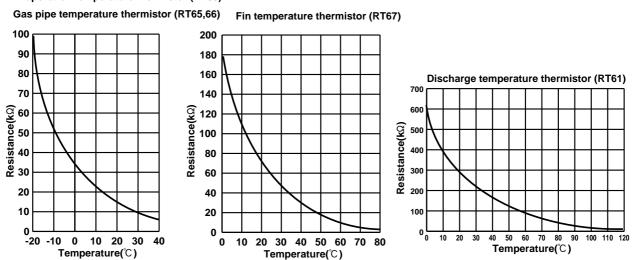
© Check of inverter/ compressor



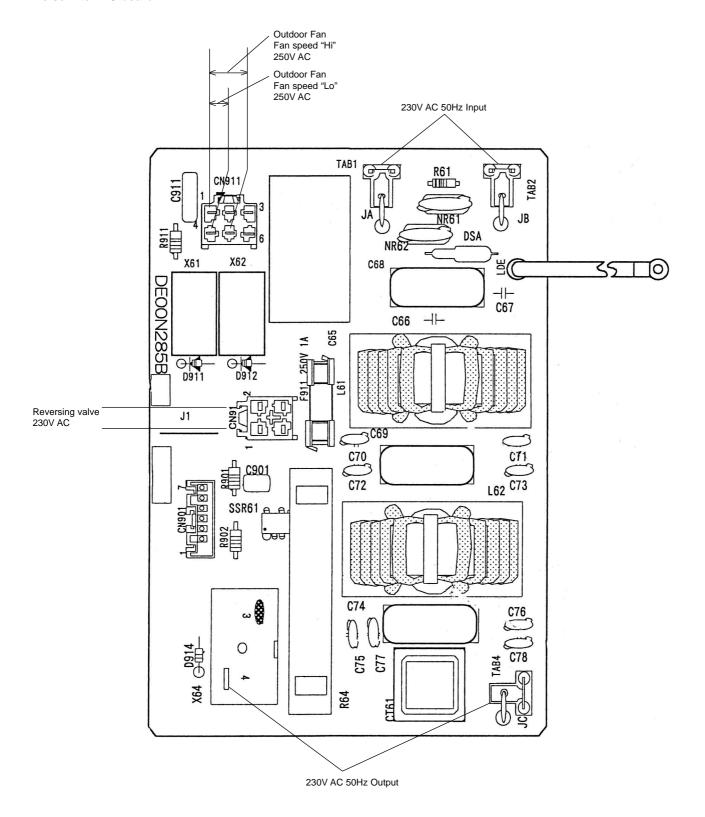
Thermistor	Symbol	Connector, Pin No.
Discharge temperature thermistor	RT61	Between CN663 pin3 and pin4
Defrost thermistor	RT62	Between CN663 pin1 and pin2
Evaporation temperature thermistor	RT63	Between CN663 pin5 and pin6
Gas pipe temperature A thermistor	RT65	Between CN661 pin1 and pin2
Gas pipe temperature B thermistor	RT66	Between CN661 pin3 and pin4
Fin temperature thermistor	RT67	Between CN664 pin1 and pin2

⊕ The other cases


- ① Indoor unit dose not operate. (difference modes)
 - When you try to run two indoor unit simultaneously, one for cooling and the other for heating, the unit which transmits signal to the outdoor units earlier decides the operation mode. The other unit indicates as shown in the figure below.
 - When the above situation occurs, set all the indoor units to the same mode, turn OFF the indoor units, and then turn them back ON.
 - Though the top of the indoor unit sometimes gets warm, this does not mean malfunction. The reason is that the refrigerant gas continuously flows into the indoor unit even while it is not operating.


TEST POINT DIAGRAM AND VOLTAGE

MXZ-18TV - E1


Outdoor Electronic control P.C.board

Evaporation temperature thermistor (RT63)

Noise filter P.C.board

DISASSEMBLY INSTRUCTIONS

MXZ-18TV - EI OUTDOOR UNIT

OPERATING PROCEDURE

1. Removing the top panel ~ back panel

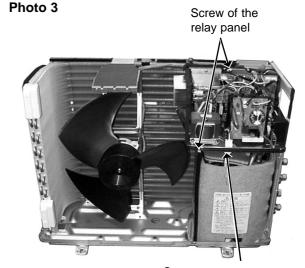
- Remove the screws fixing the top panel and remove it. (Photo 1)
- (2) Remove the screw fixing the service panel, next pull down the service panel and remove it from the cabinet. (Photo 2)
- (3) Remove the screws fixing the front cover and remove it.
- (4) Remove the inside and outside connection electric wire.
- (5) Remove the screws fixing the back panel and remove it.

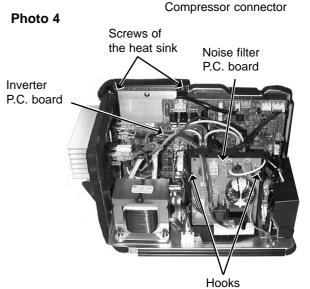
Photo 2

Photo 1 Top panel Back panel Screw of the service panel Service panel

PHOTOS

2. Removing the inverter assembly


- (1) Remove the top panel, front cover, and service panel.
- (2) Remove the inside and outside connection electric wire, next remove the back panel.
- (3) Disconnect the noise filter P.C. board 4-way connector (CN722), fan motor (CN903, CN904) Defrost, discharge temperature thermistor (CN641) air temperature thermistor (CN643) LEV A (CN724), LEV B (CN726).
- (4) Remove the compressor relay connector. (Photo 3)
- (5) Remove the two screws fixing the relay panel, and remove the inverter assembly. (Photo 3)


3. Removing the inverter P.C. board

- (1) Remove the top panel, front panel, and service panel.
- (2) Remove all the connectors the lead wire and the earth wire on the electronic control P.C board.
- (3) Remove the compressor relay connector.
- (4) Remove the two screws fixing the heat sink, and pull up the inverter P.C. board.
- (5) Remove the screws fixing the transistor module.
- (6) Remove the inverter P.C. board.

4. Removing the noise filter

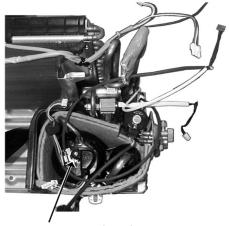
- (1) Remove the top panel, front cover, and service panel.
- (2) Remove all the connectors the lead wire and earth wire on the electronic control P.C. board.
- (3) Remove the two hooks, then remove the noise filter P.C. board.

OPERATING PROCEDURE

5. Removing the 4-way coil

- (1) Remove the top panel, front cover and service panel.
- (2) Remove the inside and outside connection electric wire, next remove the back panel.
- (3) Remove 4-way coil and disconnect the noise filter P.C. board connectors CN722

6. Defrost, Discharge temperature thermistor


- (1) Remove the top panel, front cover, service panel.
- (2) Remove the inside and outside connection electric wire, next remove the back panel.
- (3) Remove the connector CN641 on inverter P.C. board.
- (4) Remove the defrost thermistor and remove the discharge temperature thermistor on the compressor. (Photo 5, 6)

7. Fin temperature thermistor

- (1) Remove the top panel, front cover, service panel.
- (2) Remove the inside and outside connection electric wire, next remove the back panel.
- (3) Remove all the connectors the lead wire and the earth wire on the electronic control P.C. board.
- (4) Remove the compressor relay connector. (Photo 3)
- (5) Remove the two screws fixing the heat sink, and pull up the inverter P.C. board. (Photo 4)
- (6) Remove the screws fixing the transistor module. (Photo 4)
- (7) Remove the screws the fin temperature thermistor, and remove it. (Photo 7)

PHOTOS

Photo 5

Discharge temperature thermistor

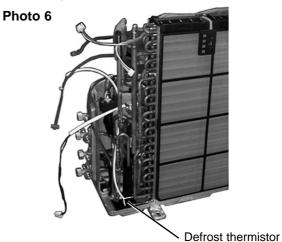
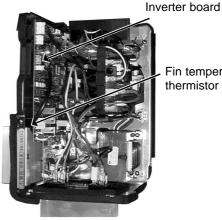
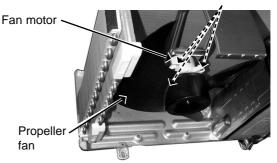



Photo 7

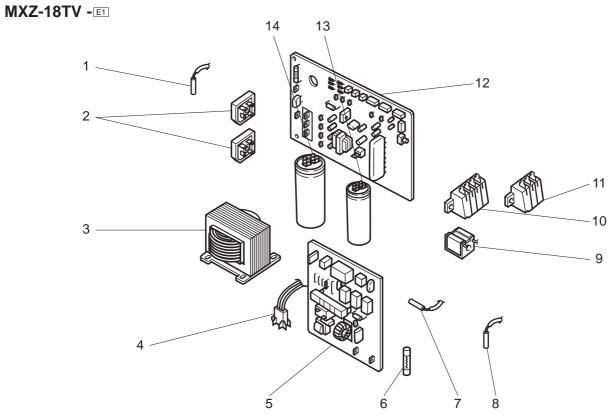

Fin temperature thermistor

8. Removing the fan motor

- (1) Remove the top panel, front cover.
- (2) Remove the fan motor connectors (CN903, CN904) on the noise filter P.C. board.
- (3) Remove the propeller fan.
- (4) Remove the screws fixing the fan motor and remove it.

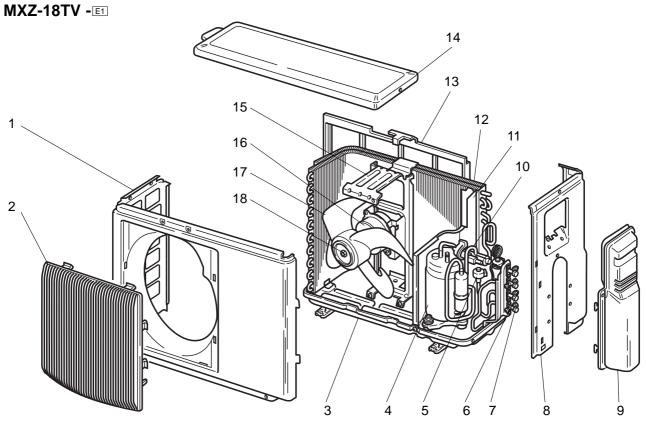
Photo 8

Screws of fan motor


OPERATING PROCEDURE 9. Remove the compressor (1) Remove the top panel, front cover, service panel. (2) Remove the inside and outside connection electric wire, next remove the back panel. (3) Remove the inverter assembly. (4) Can have the service of compression, 4-way and other refrigerant circuit.. (5) Remove then the part (four places) which welds it when you leave 4-way. (Photo 9)

Welded part

14

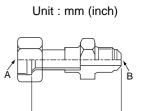

PARTS LIST

14-1. OUTDOOR UNIT FUNCTIONAL PARTS

			Symbol	Q'ty / unit	
No.	Parts No.	Parts Name	in Wiring	MV7 40TV [54]	Remarks
			Diagram	MXZ-18TV- E1	
1	T2W E87 308	FIN TEMPERATURE THERMISTOR	RT67	1	
2	T2W E45 447	DIODE STACK	DS61, DS62	2	
3	M21 68K 337	REACTOR	L	1	
4	T2W E87 471	CONNECTOR POST ASSY		1	
5	T2W E87 424	NOISE FILTER P.C. BOARD		1	
6	T2W E66 382	FUSE		1	
7	T2W E87 309	THERMISTOR SET	RT61,RT62,RT63	1	EVAOPRATION DISCHARGE, DEFROST
8	T2W E87 306	GAS PIPE TEMPERATURE THERMISTOR SET	RT66, RT65	1	GAS PIPE TEMPERATURE THREMISTOR
9	T2W E87 389	R.V. COIL	21S4	1	
10	T2W E64 376	TERMINAL BED	TB2	1	
11	T2W E75 375	TERMINAL BED	TB1	1	
12	T2W E87 451	ELECTRONIC CONTROL P.C. BOARD		1	
13	T2W E45 357	POWER FACTOR CAPACITOR	C61	1	
14	T2W E75 356	SMOOTHING CAPACITOR	C62	1	

14-2. OUTDOOR UNIT STRUCTURAL PARTS

Part numbers that are circled are not shown in the illustration.


	Parts No.	Parts Name	Symbol	Q'ty / unit	
No.			in Wiring Diagram	MXZ-18TV- E1	Remarks
1	T2W E87 232	FRONT PANEL ASSEMBLY		1	
2	T2W E87 521	GRILLE		1	
3	M21 68N 290	BASE ASSEMBLY		1	
4	T92 501 280	COMPRESSOR		1	SHV-130FEA
5	T2W E87 646	EXPANSION VALVE	LEV	1	
6	M21 21J 662	STOP VALVE (LIQUID)		2	
7	M21 00A 661	STOP VALVE (GAS)		2	
8	T2W E87 531	BACK PANEL		1	
9	T2W E87 245	SERVICE PANEL ASSEMBLY		1	
10	M21 20A 961	4-WAY VALVE		1	
11	T2W E87 293	SEPARATOR		1	
12	T2W E87 630	OUTDOOR HEAT EXCHANGER		1	
13	M21 68K 523	CONDENSER NET		1	
14	M21 68N 297	TOP PANEL		1	
15	T2W E87 515	MOTOR SUPPORT		1	
16	T2W E87 301	OUTDOOR FAN MOTOR		1	
17	M21 68N 501	PROPELLER FAN		1	
18	M21 61G 972	PROPELLER FAN NUT		1	
19	T2W E87 645	LEV ASSEMBLY		1	
20	M21 PA2 642	STRAINER		2	

15

OPTIONAL PARTS

15-1. Different-diameter pipe

MXZ-18TV	Model name	Model code	Connected pipes diameter (mm)	Length A	Length B	Length C
For different- diameter pipes	MAC-454JP	51H-454	φ9.52 — φ12.7 (3/8) (1/2)	ø9.52 (3/8)	ø12.7 (1/2)	69

HEAD OFFICE: MITSUBISHI DENKI BLDG.,2-2-3, MARUNOUCHI, CHIYODA-KU, TOKYO100-8310, JAPAN