

Agilent Technologies 85059A 1.0 mm Precision Calibration and Verification Kit

Operating and Service Manual

Agilent Part Number: 85059-90003 Printed in USA Print Date: August 2013 Supersedes: August 2012 © Copyright 2000, 2010, 2012, 2013 Agilent Technologies Inc. All rights reserved.

-ii Agilent Technologies 85059A 1.0 mm Calibration and Verification Kit

Documentation Warranty

THE MATERIAL CONTAINED IN THIS DOCUMENT IS PROVIDED "AS IS," AND IS SUBJECT TO BEING CHANGED, WITHOUT NOTICE, IN FUTURE EDITIONS. FURTHER, TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, AGILENT DISCLAIMS ALL WARRANTIES, EITHER EXPRESS OR IMPLIED WITH REGARD TO THIS MANUAL AND ANY INFORMATION CONTAINED HEREIN, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. AGILENT SHALL NOT BE LIABLE FOR ERRORS OR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING, USE, OR PERFORMANCE OF THIS DOCUMENT OR ANY INFORMATION CONTAINED HEREIN. SHOULD AGILENT AND THE USER HAVE A SEPARATE WRITTEN AGREEMENT WITH WARRANTY TERMS COVERING THE MATERIAL IN THIS DOCUMENT THAT CONFLICT WITH THESE TERMS, THE WARRANTY TERMS IN THE SEPARATE AGREEMENT WILL CONTROL.

DFARS/Restricted Rights Notice

If software is for use in the performance of a U.S. Government prime contract or subcontract, Software is delivered and licensed as "Commercial computer software" as defined in DFAR 252.227-7014 (June 1995), or as a "commercial item" as defined in FAR 2.101(a) or as "Restricted computer software" as defined in FAR 52.227-19 (June 1987) or any equivalent agency regulation or contract clause. Use, duplication or disclosure of Software is subject to Agilent Technologies' standard commercial license terms, and non-DOD Departments and Agencies of the U.S. Government will receive no greater than Restricted Rights as defined in FAR 52.227-19(c)(1-2) (June 1987). U.S. Government users will receive no greater than Limited Rights as defined in FAR 52.227-14 (June 1987) or DFAR 252.227-7015 (b)(2) (November 1995), as applicable in any technical data.

Assistance

Product maintenance agreements and other customer assistance agreements are available for Agilent products.

For any assistance, contact Agilent Technologies. Refer to "Contacting Agilent" on page 6-2.

Printing Copies of Documentation from the Web

To print copies of documentation from the Web, download the PDF file from the Agilent web site:

• Go to www.agilent.com.

• Enter the document's part number (located on the title page) in the **Search** box.

- Click Search.
- Open the PDF and print the document.

Documentation Warranty iii DFARS/Restricted Rights Notice iv
Assistancev
Printing Copies of Documentation from the Web vi
What You'll Find in This Manualvii
1. General Information
Calibration and Verification Kit Overview
About This Manual 1-2
Make Backup Copies 1-2
How To Identify Shorts 1-2
Kit Contents
Compatible Network Analyzers 1-2
Achieving Specified Frequency Performance
Calibration Standards
Table 1-1. Calibration Techniques and Standards
Table 1-2. Broadband SOLT 1-4
Broadband Load Construction
Figure 1-1. Lossy Delay Line (male end) Attached To 50 GHz Load
(female end)
Figure 1-2. Lossy Delay Line (female end) Attached To 50 GHz Load
(male end) (male end)
Equipment Required but Not Supplied
Serial Numbers
Serial Number Prefix 1-7
Serial Number Suffix 1-7
Figure 1-3. Typical Kit Serial Number Label
Device Serial Numbers 1-7
Table 1-3. Kit and Device Serial Number Record 1-8
Incoming Inspection 1-9
Clarifying Connector Gender 1-10
Figure 1-4. Clarifying Connector Gender 1-10
Figure 1-5. Male and Female Connectors 1-10
Preventive Maintenance
When to Calibrate 1-12
2. Specifications
Environmental Requirements
Table 2-1. Environmental Requirements 2-1
Temperature - What to Watch Out For. 2-2
Mechanical Characteristics
Supplemental Mechanical Characteristics
Table 2-2. Offset Short Typical Mechanical Characteristics 2-3 Contor Conductor Protrucion and Pin Donth 2-3
Center Conductor Protrusion and Pin Depth
Electrical Characteristics
Supplemental Electrical Characteristics
Table 2-3. Offset Short Electrical Characteristics 2-4

Contents

Table 2-4. Adapter Electrical Characteristics 2	2-4
Electrical Specifications 2	
Table 2-5. Electrical Specifications for 1.0 mm 50W Devices 2	2-5
Table 2-6. Typical Electrical Specifications for 1.0 mm 50w Devices 2	2-6
3. Making Connections	
Electrostatic Discharge 3	3-1
Visual Inspection	3-3
Obvious Defects or Damage 3	3-3
Figure 3-1. Contact Integrity 3	3-4
Concentricity	
Figure 3-2. Concentricity - Female Connector. 3	3-4
Figure 3-3. Concentricity - Male Connector 3	
Mating Plane Surfaces	
Supplies and Equipment Needed 3	
Pin Depth 3	
Protrusion and Recession 3	
Figure 3-4. Connector Pin Depth 3	
Making Connections	
Connection Procedure	
Figure 3-5. Alignment	
Connector Misalignment 3-	
Figure 3-6. Misalignment 3-	
Cleaning Connectors	
Supplies and Equipment Needed 3-	
Basic Cleaning Procedure	
Figure 3-7. Cleaning Illustration	
Making a Connection	
Connection Procedure	
Using the Torque Wrench	
Table 3-1. Torque Wrench Information 3- Torque Wrench Drocodure 2	
Torque Wrench Procedure 3- Figure 3-8. Correct Wrench Position 3-	
Figure 3-9. Incorrect Wrench Position	
Figure 3-10. Where to Hold the Torque Wrench	
Figure 3-11. Using the Torque Wrench	
Disconnection Procedure	
Handling and Storage	
	10
4. User Information	
Calibration and Verification Devices	
Offset Opens and Shorts	
Offset Shorts (3 rings)	
Verification Devices 4	1-1
	1 0
Adapters	

5. Performance Verification

System Verification E Calibration Kit Verification E What Recertification Provides E How Often to Recertify E Where to Send a Kit for Recertification E How Agilent Technologies Verifies Devices in this Kit E	5-1 5-1 5-1 5-2
	J-7
6. Troubleshooting	
Returning a Kit or Device to Agilent Technologies	6-1
Where To Look For More Information	6-1
Contacting Agilent	
Figure 6-1. Troubleshooting Flowchart	
7. Replaceable Parts	
Replacing the Verification Data	7-1
Table 7-1. Replaceable Parts	
8. Standard Definitions	
Class Assignments and Standard Definitions Values are Available on the Web	8-1

Contents

General Information

Calibration and Verification Kit Overview

The 85059A 1.0 mm precision calibration and verification kit is used to calibrate and verify your PNA series network analyzer system. This kit is used for the measurement of components with 50Ω , 1.0 mm connectors with a frequency range of DC to 110 GHz.

Because it is physically impossible to construct a slotless version of the 1.0 mm female contact, the female devices in this kit use slotted contacts. The slotted female contact does not have the same electrical characteristics as a solid conductor, and therefore, the male and female devices in this kit have different coefficients.

Although the male and female devices are designed to have the same mechanical length, their electrical delays are different. This reflects the differences in the connector interface compression. When the male and female devices are torqued together the male side compresses more than the female side.

The 1.0 mm connector utilizes an air dielectric interface for the highest accuracy and repeatability. The coupling diameter and thread size were chosen to maximize strength, increase durability and provide highly repeatable connections. The connectors are designed so that the outer conductors engage before the center conductors.

To obtain the best performance possible, the manufacturing tolerances of the connectors are tighter than the standard 1.0 mm specifications per the IEEE 287 precision connector standard.

The verification kit provides a set of standards with known characteristics, traceable to primary standards in the Agilent Technologies calibration lab. This set of standards is used to verify your measurement calibration and also to verify that your PNA system is operating within its specifications. The kit includes the following verification items:

- · Mismatched thru adapter
- Matched thru adapter
- USB drive that contains factory-measured verification data
- · Data sheet for each device that contains factory-measured verification data
- Anti-virus scan report

About This Manual	This manual describes the 85059A calibration and verification kit and provides replacement part numbers, specifications, and procedures for using, maintaining and troubleshooting this kit.
Make Backup Copies	Backup copies of the data sheets, anti-virus scan reports, and the data on the USB drive should be made immediately upon receipt of the verification kit.
	A file containing the verification data for your kit is maintained for one year from the time of measurement. If you lose this data, contact Agilent.
How To Identify Shorts	The shorts in this kit are identified by the number of rings (or bands) around the body of the short.
	• 1.0 x 1.30 mm short has 1 ring or band and is identified as Short 1
	• 1.0 x 1.825 mm short has 2 rings or bands and is identified as Short 2
	• 1.0 x 2.45 mm short has 3 rings or bands and is identified as Short 3
	• 1.0 x 3.0 mm short has 4 rings or bands and is identified as Short 4
Kit Contents	Use the Contents List in the shipping container to verify the completeness of your shipment. Although this list is the most accurate, you can also use the illustration in Figure 7-1 on page 7-2 to verify the items in your shipment. If your shipment is not complete, contact Agilent Technologies - refer to "Contacting Agilent" on page 6-2.
Compatible Network Analyzers	The devices in this kit and their data are compatible with the PNA series network analyzers. The USB drive provided contains the unique factory-measured S-parameter data for each device in the kit. It also contains the factory measurement uncertainty used in the PNA system verification procedure to calculate the test limits.
	Older models of this verification kit provided data disks for the 8510, 8720, and 8722 network analyzers. Since these analyzers have been discontinued, the data disks are no longer provided. When old verification kits that include the data disks are returned to Agilent for recertification, the disks will be reproduced with new data for each device in the kit. Please specify your VNA model(s) when returning kits for service or when ordering kit replacement parts.

Achieving Specified Frequency Performance

 The standards in this calibration and verification kit allow you to perform simple 1- or 2-port calibrations, as well as TRM (thru-reflect-match) calibrations, and to verify the performance of your PNA system.

 NOTE
 Above 50 GHz, offset shorts are substituted for the opens and loads.

 NOTE
 For best results, before beginning calibration refer to "Clarifying Connector Gender" on page 1-10.

Calibration Standards

Frequency Range	Calibration Technique	"Open" Standard (Reflection)	"Short" Standard (Reflection)	"Load" Standard (Reflection)	"Thru" Standard (not used for 1-port cal)	"Isolation" Standard ¹
DC - 50 GHz	SOLT ²	Open	Short 3	50 GHz Load	Thru	50 GHz Load
50 - 75 GHz	Offset Shorts	Short 3	Short 1	Short 4	Thru	Load BB ³
75 - 110 GHz	Offset Shorts	Short 3	Short 1	Short 2	Thru	Load BB ³
		To Combine	Frequency Ranges	1		
DC - 75GHz	SOLT ² and Offset Shorts	Open Short 3	Short 3 Short 1	50 GHz Load Short 4	Thru	Load BB ³
50 - 110 GHz	Offset Shorts	Short 3	Short 1	Short 4 Short 2	Thru	Load BB ³
DC - 110 GHz	SOLT ² and Offset Shorts	Open Short 3	Short 3 Short 1	50 GHz Load Short 4 Short 2	Thru	Load BB ³

Table 1-1 Calibration Techniques and Standards

1. For best measurement results, the isolation standard should be the equivalent impedance of the device under test.

2. SOLT = Short, Open, Load and Thru standards

3. The broadband load is a combination of a lossy delay line plus a 50 GHz load (see Figures 1-1 and 1-2 on page 1-5).

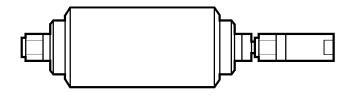
4. Combinations of the calibration methods shown in the upper half of Table 1-1 are used to calibrate over the frequency ranges shown in the lower half of the table.

	General Information Achieving Specified Frequency Performance
Broadband SOLT Calibration	As a time saver, you can use an alternate SOLT technique. You can calibrate from DC to 110 GHz using the standards in Table 1-2. The broadband SOLT technique is quicker than the full calibration outlined in Table 1-1 on page 1-3, but it is substantially <i>less</i> accurate.
CAUTION	The broadband SOLT technique is not recommended. It is meant to be used <i>only</i> in situations where measurement accuracy is <i>not</i> critical.

Table 1-2 Broadband SOLT¹

Frequency Range	Calibration Technique	"Open" Standard	"Short" Standard	"Load" Standard	"Thru" Standard (not used for 1-port cal)	"Isolation" Standard
DC - 110 GHz	SOLT ¹	Open (broadband)	Short 3 (broadband)	Load BB ²	Thru	Load BB ³

1. SOLT = Short, Open, Load and Thru standards


2. The broadband load is a combination of a lossy delay line plus a 50 GHz load (see Figures 1-1 and 1-2 on page 1-5).

 Broadband Load
Construction
 For broadband calibration it is necessary to add the Lossy Delay Line to the
appropriate gender 50 GHz load (see Figures 1-1 and Figures 1-2).

 CAUTION
 The two Lossy delay lines in this kit are the same and may be used
interchangeably. However, once they are mated with a particular 50 GHz load
and the calibration sequence is started, the assembly should be considered a
matched unit until the calibration has been completed.

lossyf

Figure 1-1 Lossy Delay Line (male end) Attached To 50 GHz Load (female end)

lossym

Figure 1-2 Lossy Delay Line (female end) Attached To 50 GHz Load (male end)

Equipment Required but Not Supplied

Various connector cleaning supplies and electrostatic discharge safety supplies are *not* provided in this kit. (Refer to Chapter 7, "Replaceable Parts" for ordering information.)

Serial Numbers

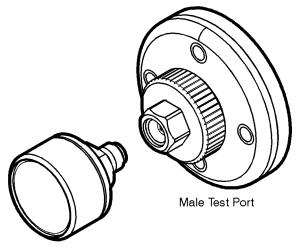
Serial Number Prefix	A serial number label is attached to the calibration and verification kit. A typical kit serial number label is shown in Figures 1-3. The prefix is made up of six characters. The first two characters show the country, the next two digits represent the year, and the last two digits designate the week of manufacturing.	
Serial Number Suffix	The last five digits are the suffix numbers. The suffix numbers are unique to each calibration kit. Figure 1-3 Typical Kit Serial Number Label Installed Options	
Device Serial Numbers	In addition to the kit serial number, the devices in this kit are individually serialized (serial numbers are printed on an attached label, or scribed onto the body of each device). Record these serial numbers in Table 1-3 on page 1-8. This can help you avoid confusing the devices in this kit with similar devices from other kits.	

General Information
Serial Numbers

Serial Number Record Log

Device Description	Serial Number
-m- Short 1	
-f- Short 1	
-m- Short 2	
-f- Short 2	
-m- Short 3	
-f- Short 3	
-m- Short 4	
-f- Short 4	
-m- Load	
-f- Load	
Lossy Delay Line (1)	
Lossy Delay Line (2)	
-m- Open	
-f- Open	
Mismatched Thru Adapter	
Matched Thru Adapter	
-m- to -m- Adapter	
-f- to -f- Adapter	
-m- to -f- Adapter	

Table 1-3 Kit and Device Serial Number Record


Incoming Inspection

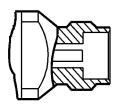
The foam-lined storage case provides protection during shipping. If the case or any device appears damaged, contact Agilent Technologies - refer to "Contacting Agilent" on page 6-2. Agilent will arrange for repair or replacement of incomplete or damaged shipments without waiting for a settlement from the transportation company. When you send the kit or device to Agilent, include a service tag (located at the rear of this manual) on which you provide the following information:

- Your company name and address.
- A technical contact person within your company, and the person's complete phone number.
- If you are returning a complete kit, include the model number and serial number.
- If you are returning one or more devices, include the part numbers and serial numbers.
- Indicate the type of service required.
- Include any applicable information.

Clarifying Connector Gender

In this manual, connectors are referred to in terms of their device gender unless otherwise stated. For example, a male open has a male connector.

Female Calibration Standard


∞nnmf

Male Connector

mfconn

Female Connector

Figure 1-5 Male and Female Connectors

Preventive Maintenance

The best techniques for maintaining the integrity of the devices in this kit include routine visual inspection, cleaning and proper connection techniques. Failure to detect and remove dirt or metallic particles on a mating plane surface can degrade repeatability and accuracy, and can damage any connector mated to it. Improper connections resulting from poor connection techniques can also damage these devices.

Visual inspection, cleaning techniques, and connection techniques are all described in Chapter 3, "Making Connections".

General Information
When to Calibrate

When to Calibrate

A PNA calibration remains valid as long as the changes in the systematic error are insignificant. This means that changes to the uncorrected leakages (directivity and isolation), mismatches (source match and load match), and frequency response of the system are small (<10%) relative to accuracy specifications.

Change in the environment (especially temperature) between calibration and measurement is the major cause in calibration accuracy degradation. The major effect is a change in the physical length of external and internal cables. Other important causes are dirty and damaged test port connectors and calibration standards. If the connectors become dirty or damaged, measurement repeatability and accuracy is affected. Fortunately, it is relatively easy to evaluate the general validity of the calibration. To test repeatability, remeasure one of the calibration standards. If you can not obtain repeatable measurements from your calibration standards, maintenance needs to be performed on the test port connectors, cables and calibration standards. Also, maintain at least one sample of the device under test or some known device as your reference device. A verification kit may be used for this purpose. After calibration, measure the reference device and note its responses. Periodically remeasure the device and note any changes in its corrected response which can be attributed to the test system. With experience you will be able to see changes in the reference responses that indicate a need to perform the measurement calibration again.

Specifications

Environmental Requirements

 Table 2-1 shows the environmental requirements necessary for optimum performance.

Table 2-1 Environmental Requirements

Parameter	Required Values/Ranges	
Operating Temperature ¹	20° to 26°C (68° to 79° F)	
Error-Corrected Temperature Range ²	$\pm \ 1 \ ^{\rm o}{\rm C}$ of measurement calibration temperature	
Storage Temperature	-40° to $+75^{\circ}$ C (-40° to $+167^{\circ}$ F)	
Relative Humidity	Relative Humidity: Type tested, 0% to 95% at 40°C, Non-Condensing	

1. The temperature range over which the calibration standards maintain performance to their specifications.

2. The allowable network analyzer ambient temperature drift during measurement calibration and during measurements when the network analyzer correction is turned on. Also, the range over which the network analyzer maintains its specified performance while correction is turned on.

Temperature –What To Watch Out For	Due to the small dimensions and tight tolerances of the calibration and verification devices, electrical characteristics will change with temperature. Therefore, the operating temperature is a critical factor in their performance. During a measurement calibration, the temperature of the calibration devices must be stable and within the range shown in Table 2-1 on page 2-1.
NOTE	<i>Remember</i> your fingers are a heat source, so avoid handling the devices unnecessarily during calibration.
	Performance verification and measurements of devices-under-test (DUT's) do not need to be performed within the operating temperature range of the calibration devices. However, the DUT's must be within the error-corrected temperature range of the network analyzer (\pm 1° C of the measurement calibration temperature). For example, if the calibration is performed at +20° C, the error-corrected temperature range is +19° to +21° C. It is then appropriate to perform measurements and performance verifications even though +19° is outside the operating temperature range of the calibration devices.

Mechanical Characteristics

Supplemental Mechanical Characteristics

Supplemental mechanical characteristics are values which are typically met by the majority of calibration and verification kit devices that have been tested at Agilent Technologies. These supplemental characteristics are intended to provide useful information in calibration and verification kit applications. These are typical but non-warranted performance parameters. The following table lists the typical mechanical characteristics of the devices in this kit.

Characteristic	Typical Value
Inside Diameter of Outer Conductor	$1.000\pm0.005~\text{mm}$
Outside Diameter of Center Conductor	$0.434\pm0.003~\text{mm}$
Offset Length	Nominal \pm 0.008 mm
Pin Depth	0 (flush) to 0.010 mm (maximum recession)
Flatness of Reference Plane	0.002 mm (worst case)

Table 2-2 Offset Short Typical Mechanical Characteristics

Center Conductor Protrusion and Pin Depth

Mechanical characteristics such as center conductor protrusion and pin depth are *not* performance specifications. They are, however, important supplemental characteristics related to electrical performance.

Agilent Technologies verifies the mechanical characteristics of the devices in this kit with special gaging processes and electrical testing. This ensures that the device connectors do not exhibit any center conductor protrusion and have proper pin depth when the kit leaves the factory.

Electrical Characteristics

Supplemental Electrical Characteristics

Table 2-3	Offset Short Electrical Characteristics

Characteristic	Typical Value @ 50 GHz to 110 GHz	
Phase Error (with respect to calibration constant model)	2.0 °	
Connector Repeatability	-40 dB	
Residual Directivity	–30 dB	
Residual Port Match	–30 dB	
Residual Reflection Tracking	± 0.25 dB	

Table 2-4 Adapter Electrical Characteristics

Characteristic	Typical Value @ 0 - 110 GHz	
Return Loss	16 dB	
Insertion Loss	< 0.50 dB	

Electrical Specifications

Device	Frequency	Parameter	Specifications	
			Male	Female
Loads	DC to 2 GHz	Return Loss	30 dB	30 dB
	2 GHz to 18 GHz		30 dB	30 dB
	18 GHz to 40 GHz		26 dB	26 dB
	40 GHz to 50 GHz		24 dB	24 dB
Opens	DC to 2 GHz	Deviation from	\pm 1.0 degrees	\pm 1.0 degrees
	2 GHz to 18 GHz	Nominal Phase	\pm 1.5 degrees	\pm 3.0 degrees
	18 GHz to 50 GHz		\pm 2.5 degrees	\pm 4.0 degrees
Short 3	DC to 2 GHz	Deviation from	\pm 0.8 degrees	\pm 1.0 degrees
	2 GHz to 18 GHz	Nominal Phase	\pm 1.2 degrees	\pm 2.0 degrees
	18 GHz to 50 GHz		\pm 1.5 degrees	\pm 2.5 degrees
	50 GHz to 110 GHz		\pm 3.0 degrees	\pm 5.0 degrees
Short1	50 GHz to 110 GHz	Deviation from	\pm 2.5 degrees	\pm 4.0 degrees
		Nominal Phase		
Short 2	75 GHz to 110 GHz	Deviation from	\pm 2.5 degrees	\pm 4.0 degrees
		Nominal Phase		
Short 4	50 GHz to 75 GHz	Deviation from	\pm 2 degrees	\pm 3.5 degrees
		Nominal Phase		
Device	Frequency	Parameter	Specifications	
Lossy Delay Line	DC to110 GHz	Return Loss	18 dB	
Adapters	DC to 20 GHz	Return Loss	24 dB	
	20 GHz to 50 GHz		20 dB	
	50 GHz to 75 GHz		18 dB	
	75 GHz to 110 GHz		14 dB	
Verification Match	DC to 20 GHz	Return Loss	24 dB	
Thru (adapter)	20 GHz to 50 GHz		20 dB	
,	50 GHz to 75GHz		18 dB	
	75 GHz to 110 GHz		14 dB	
Verification	DC to 110 GHz	Return Loss	6 dB @ ~ 22.6 GHz	
Mismatch Thru (adapter)			intervals	

Table 2-5Electrical Specifications for 1.0 mm 50Ω Devices

Device	Frequency	Parameter	Specifications	
			Male	Female
Load + Lossy Delay Lines	DC to 2 GHz	Return Loss	25 dB	25 dB
or	2 GHz to 18 GHz		20 dB	20 dB
load (broadband)	18 GHz to 50 GHz		20 dB	20 dB
	50 GHz to 110 GHz		18 dB	18 dB
Short 3	DC to 2 GHz	Deviation from	\pm 1.0 degrees	\pm 1.0 degrees
	2 GHz to 18 GHz	Nominal Phase	\pm 1.5 degrees	\pm 2.5 degrees
	18 GHz to 50 GHz		\pm 2.0 degrees	\pm 3.0 degrees
	50 GHz to 110 GHz		$\pm3.0~\text{degrees}$	\pm 7.0 degrees
Open (broadband)	DC to 2 GHz	Deviation from	± 1.0 degrees	\pm 1.5 degrees
	2 GHz to 18 GHz	Nominal Phase	\pm 1.8 degrees	\pm 3.5 degrees
	18 GHz to 50 GHz		\pm 2.5 degrees	\pm 4.5 degrees
	50 GHz to 110 GHz		±5.0 degrees	\pm 8.0 degrees
Device	Frequency	Parameter	Specifications	
Lossy Delay Line	DC to 110 GHz	Delay	$7.01\pm0.4~\text{n-sec}$	
		Insertion Loss	1.63 dB *(f/GHz) ^{1/2}	

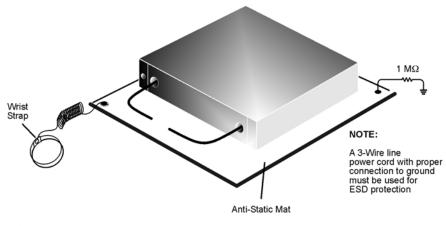
Table 2-6Typical Electrical Specifications for 1.0 mm 50 Ω Devices

Electrostatic Discharge

Protection against ESD (electrostatic discharge) is essential while cleaning, inspecting, or connecting any connector attached to a static–sensitive circuit (such as those found in test sets).

Static electricity builds up on the body, and can easily damage sensitive internal circuit elements when discharged. Static discharges too small to be felt, can cause permanent damage. Devices such as calibration and verification components and devices under test can also carry an electrostatic charge. To prevent damage to the test set, components and devices:

- Always wear a grounded wrist strap having a 1 meg-ohm resistor in series with it when handling components and devices or when making connections to the test set.
- Always have a grounded antistatic mat in front of your test equipment.
- Always wear a heel strap when working in an area with a conductive floor. If you are uncertain about the conductivity of your floor, wear a heel strap.
- Always ground the center conductor of a test cable before making a connection to the analyzer test port or other static-sensitive device. This can be done as follows:


1) Connect a short (from your calibration kit) to one end of the cable to short the center conductor to the outer conductor.

2) While wearing a grounded wrist strap, grasp the outer shell of the cable connector.

- 3) Connect the other end of the cable to the test port.
- 4) Remove the short from the cable.

The following graphic shows a typical ESD protection setup using a grounded mat and wrist strap. Refer to Chapter 7, "Replaceable Parts" for information on ordering supplies for ESD protection.

Making Connections

esd_setup

Visual Inspection

Visual inspection and, if necessary, cleaning should be done every time a connection is made. Metal particles from the connector threads may fall into the connector when it is disconnected. One connection made with a dirty or damaged connector can damage both connectors beyond repair.

Magnification is helpful when inspecting connectors, but it is not required and may actually be misleading. Defects and damage that cannot be seen without magnification generally have no effect on electrical or mechanical performance. Magnification is of great use in analyzing the nature and cause of damage and in cleaning connectors, but it is not required for inspection.

Obvious Defects or Damage

Examine the connectors first for obvious defects or damage:

- Plating
 - Bare metal showing
 - s Burrs or blisters
- Deformed threads
- Center Conductors
 - s Bent
 - s Broken
 - s Misaligned
 - s Concentricity

Connector nuts should move smoothly and be free of:

- Burrs
- Loose metal particles
- Rough spots

Any connector that has obvious defects should be discarded or sent for repair - refer to "Contacting Agilent" on page 6-2.

Making Connections Visual Inspection

Connector Contacts

Inspect the connector contacts for integrity. It is necessary to use good lighting (such as a halogen task light) to see the contacts.

NOTE

Notice the location of the cross hairs in relationship to the center of the figures.

See Figure 3-1 for visual guidelines when evaluating the contact integrity of a connector.

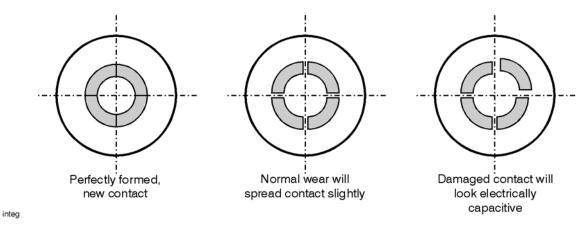
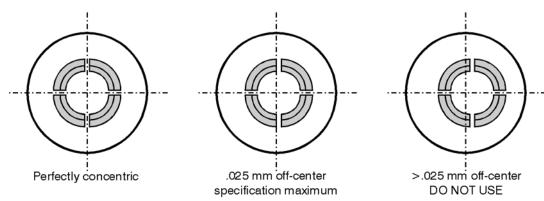



Figure 3-1 Contact Integrity

Concentricity

Figure 3-2 and Figure 3-3 on page 3-5 show the concentricity of both the male and female 1.0 mm connectors.

feconect

Figure 3-2 Concentricity - Female Connector

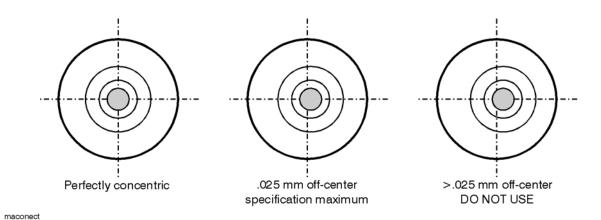


Figure 3-3 Concentricity - Male Connector

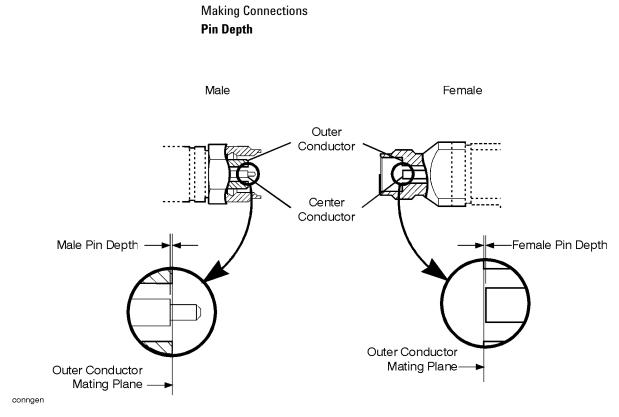
Mating Plane Surfaces

Flat contact between the connectors at all points on their mating plane surfaces is required for a good connection.

Look for deep scratches or dents, and for dirt and metal particles on the connector mating plane surfaces. Also look for "dings" on the mating plane surfaces of the center and outer conductors, and for signs of damage due to misalignment, and excessive or uneven wear.

A light burnishing of the mating plane surfaces is normal. This is evident as light scratches, or shallow circular marks distributed more or less uniformly over the mating plane surface. Other small defects and cosmetic imperfections are also normal. None of these affect electrical or mechanical performance.

Clean and inspect the connector again if it shows:

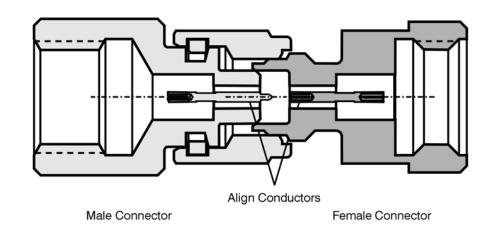

- Deep scratches or dents
- Particles clinging to the mating plane surfaces
- Uneven wear

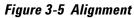
Damaged connectors should be discarded or sent for repair. Try to determine the cause of damage before connecting a new, undamaged connector in the same configuration. Magnification is of great use in analyzing the nature and cause of damaged connectors.

	Making Connections Visual Inspection
Connector Wear	Connector wear eventually degrades performance. The more use a connector gets, the faster it wears and degrades. The wear is greatly accelerated when connectors are not kept clean.
	Calibration devices should have a long life if their usage is a few times per week. The test port connectors on your network analyzer test set may have many connections each day, and therefore, are more subject to wear. It is recommended that an adapter be used as a test port saver. The use of an adapter will help to minimize the wear on your test set's connectors. When your connectors become worn, replace them.
Supplies and Equipment Needed	The supplies and equipment needed to perform the cleaning procedure, and their Agilent Technologies part numbers are listed in Table 7-1 on page 7-2 and page 7-3.

Pin Depth

	Pin depth is the distance that the center conductor mating plane differs from being flush with the outer conductor mating plane. The pin depth of a connector can be in one of two states, either protruding or recessed.
Protrusion and Recession	• Protrusion - the center conductor <i>extends</i> beyond the outer conductor mating plane.
CAUTION	At <i>no</i> time should the pin depth of the 1.0 mm connector be protruding.
	• Recession - the center conductor is <i>set back</i> from the outer conductor mating plane.
	The pin depth value of each calibration device in your kit is not specified, but is an important mechanical parameter. The electrical performance of the device depends, to some extent, on its pin depth.
	Agilent verifies the pin depth characteristics of the connectors in this kit with special gaging processes and electrical testing. This ensures that the device connectors do not exhibit any center conductor protrusion and have proper pin depth when the kit leaves the factory.
	The electrical specifications for each device in this kit take into account the effect of pin depth on the device's performance. See Figure 3-4 on page 3-8 for a visual representation of proper pin depth (slightly recessed).





Making Connections

	Good connections require a skilled operator. Instrument sensitivity and coaxial connector mechanical tolerances are such that slight errors in operator technique can have a significant effect on measurements and measurement uncertainties.			
NOTE	The most common cause of measurement error is poor connections.			
Connection Procedure	1. Ground yourself and all devices (wear a grounded wrist strap and work on an antistatic mat).			
	2. Visually inspect the connectors (refer to "Visual Inspection" on page 3-3).			
	 If necessary, clean the connectors (refer to "Cleaning Connectors" on page 3-12). 			
	 Carefully align the connectors. The male connector center pin must slip concentrically into the contact fingers of the female connector (see Figure 3-5 on page 3-10 and Figure 3-6 on page 3-11). 			
	5. Push the connectors straight together. Do <i>not</i> twist or screw them together. As the center conductors mate, there is usually a slight resistance.			
CAUTION	Do <i>not</i> twist one connector into the other (like inserting a light bulb). This happens when you turn the device body, rather than the connector nut. Major <i>damage</i> to the center conductor and the outer conductor can occur if the device body is twisted.			
	6. Initial tightening can be done by hand, or with a 6 mm open-end wrench. Tighten until "snug" or where the connectors are first making contact. The preliminary connection is tight enough when the mating plane surfaces make uniform, light contact. <i>Do not overtighten</i> this connection.			
	At this point, all you want is for the outer conductors to make gentle contact on both mating surfaces. Use very light finger pressure (no more than 2 inch–pounds of torque).			
	 Relieve any side pressure on the connection from long or heavy devices, or cables. This assures consistent torque (refer to "Using the Torque Wrench" on page 3-14). 			

Making Connections
Making Connections

Connector Misalignment

alignmnt

Forced misalignment could damage the female center conductor.

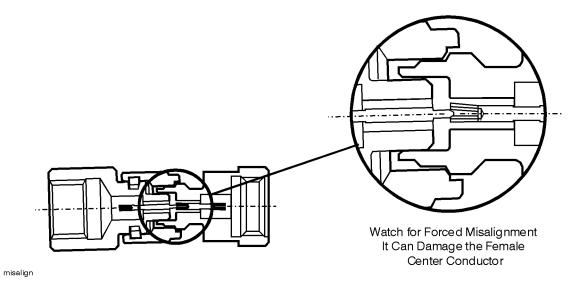
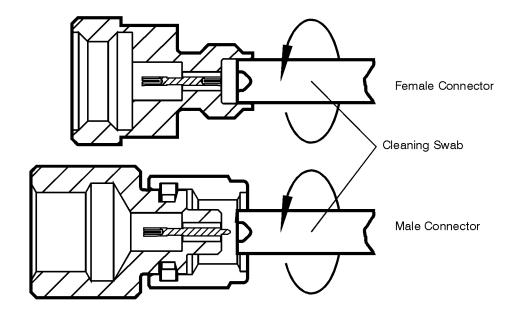



Figure 3-6 Misalignment

Cleaning Connectors

Supplies and Equipment Needed	The supplies and equipment that are needed to perform the cleaning procedures, and their Agilent Technologies part numbers are listed in Table 7-1 on page 7-2 and page 7-3.
Basic Cleaning Procedure	 Inspect the connectors for dust, dirt, metal fragments, oils or films, and debris.
	2. Blow off any dust with a filtered, clean supply of compressed air.
	3. Add a few drops of high-purity isopropyl alcohol to a small cleaning swab (do not apply alcohol directly to the parts).
NOTE	When using isopropyl alcohol to clean connectors <i>do not</i> allow the liquid to flow down inside the connector. This may cause measurement errors due to residue inside the connector. If possible keep the connector facing down.
	4. <i>Gently</i> wipe connecting surfaces with the end of the cleaning swab (see Figure 3-7).
	5. Blow dry with compressed air.

6. Inspect and repeat cleaning procedure if necessary.

cleaning

Figure 3-7 Cleaning Illustration

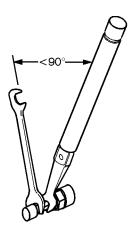

Using the Torque Wrench

Table 3-1 provides information on the required settings and tolerances for the1.0 mm torque wrench supplied in this kit.

Table 3-1 Torque Wrench Information

	Connector Type	Torque Setting	Torque Tolerance
	1.0 mm	45 N–cm (4 in–lb)	5.4 N–cm (\pm 0.5 in–lb)
Torque Wrench	Using the torque wren	ch guarantees that a	connection is not too tight.
Procedure	• • • •	lly tight each time. Fig	also guarantees that all pure 3-10 on page 3-16 sho ptimum performance.
NOTE			th that there is no rotation of the that there is no rotation of the present during toro
	1. Use the torque wi connections.	rench supplied with y	our kit to make the final
	2. Rotate <i>only</i> the co	nnector nut when yo	u tighten the connector.
	turning. Position both applying force (see Fig (180 degrees apart) w	wrenches within 90 o gure 3-8 on page 3-15 ill cause a <i>lifting action</i>	o keep the body of the dev legrees of each other befo). Wrenches opposing eacl n. This lifting action can mi nvolved. This is especially

when several devices are connected together.

wj67d

Figure 3-8 Correct Wrench Position

Narrow separation of the wrenches produces a small residual lateral force on the structure of connected devices.

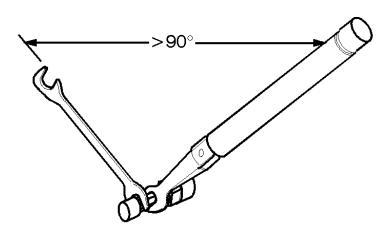


Figure 3-9 Incorrect Wrench Position

Wide separation of the wrenches produces a larger residual lateral force on the structure of connected devices. This can *degrade* connector repeatability.

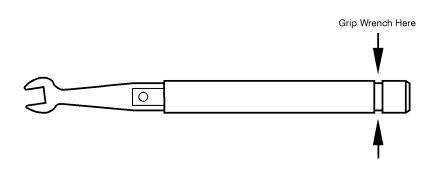


Figure 3-10 Where to Hold the Torque Wrench

3. Hold the torque wrench lightly at the end of the handle *only* (beyond the groove). See Figure 3-10.

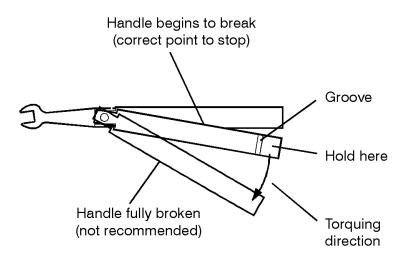


Figure 3-11 Using the Torque Wrench

4. Apply force perpendicular to the wrench handle. This applies torque to the connection *through* the wrench.

Do *not* hold the wrench so tightly that you push the handle straight down along its length rather than pivoting it. Doing so may apply an unlimited amount of torque.

5. Tighten the connection just to the torque wrench "break" point (see Figure 3-11). Do *not* tighten the connection further.

CAUTION

You don't have to "fully break" the handle of the torque wrench to reach the specified torque; doing so can cause the handle to kick back and loosen the connection. Any give at *all* in the handle is sufficient torque.

Do *not* pivot the wrench handle on your thumb or other fingers, you may apply an unknown amount of torque to the connection when the wrench reaches its "break" point.

Do *not* twist the head of the wrench relative to the outer conductor mating plane. If you do, you will apply more than the recommended torque.

Disconnection Procedure

To avoid lateral (bending) force on the connector mating plane surfaces, always support the devices and connections.

- 1. Use an open-end wrench to prevent the device body from turning.
- 2. Use another wrench to loosen the connector nut.
- 3. Complete the disconnection by hand, turning *only* the connector nut.

CAUTION

Do *not* twist one connector out of the other, (like removing a light bulb). Turn the connector nut, not the device body. Major damage to the center conductor and the outer conductor can occur if the device body is twisted.

4. Pull the connectors straight apart without twisting or bending.

Handling and Storage

- Store calibration and verification devices with end caps on, in a foam–lined storage case.
- Never store connectors loose in a box, in a desk, or in a bench drawer. This is the most common cause of connector damage during storage.
- Keep connectors clean.
- Do not touch mating plane surfaces. Natural skin oils and microscopic particles of dirt are easily transferred to the connector interface and are very difficult to remove.
- Do not set connectors contact—end down on a hard surface. The plating and the mating plane surfaces can be damaged if the interface comes in contact with any hard surface.
- When you are not using a connector, use plastic end caps over the mating plane surfaces to keep them clean and protected.

Making Connections
Handling and Storage

Calibration and Verification Devices

The following section briefly describes the design and construction of all the calibration and verification kit devices.

Offset Opens and Shorts	The offset opens and shorts are built from parts that are machined to the current state-of-the-art in precision machining. The offset short's inner conductors have a one-piece construction, common with the shorting plane. This construction provides for extremely repeatable connections. The offset opens have inner conductors that are supported by a strong, low dielectric plastic to provide repeatability and reliability. Both the opens and shorts are constructed so that the pin depth can be controlled very tightly, thereby minimizing phase errors. The length of the offset opens are designed so that the difference in phase of their reflection coefficients is approximately 180° at all frequencies, with respect to offset short 3.
	Above 50 GHz, the offset short calibration technique is used. Different combinations of offset shorts using three different lengths are used to calibrate frequency ranges from 50 to 75 GHz and from 75 to 110 GHz. The calibration coefficients for these offset shorts are optimized for their applicable bandwidths.
Offset Shorts (3 rings)	The offset shorts with three rings have three sets of calibration coefficients. The lowband and broadband sets are optimized over the frequency range of DC to 50 GHz. The highband optimized over the 50 to 110 GHz frequency range. Again, female and male devices have different coefficients.
Verification Devices	The verification devices are designed to provide S-parameter measurement comparisons over a broad range of signal levels. The matched thru (adapter) checks the system performance for low loss and low reflection characteristics. The mismatch thru (adapter) checks the system performance over the medium to high reflection and medium loss ranges. The verification devices in this kit are not totally a pass or fail system, but should be considered probability indicators.

User Information

Adapters	Like the other devices in your kit, the adapters are built to very tight tolerances. This provides a good performance and ensures stable, repeatable connections. The adapters are designed so that their nominal electrical lengths are the same, this allows them to be used in the calibration procedures for non-insertable devices, but can also be used as connector savers.
Loads	The loads have been optimized for broadband performance up to 50 GHz. The Load can be combined with the Lossy Delay Line to construct a broadband termination. The Load and Lossy Delay Line combination can be used for such purposes as terminating an unused port on a device-under-test, or a "quick" open/short/load calibration from DC to 110 GHz.
NOTE	The best operating region of the load is from DC to 50 GHz. Performance degrades quickly above 50 GHz. For best results, the "lowband load" definition should be used. If desired, an open/short/ broadband load calibration may be performed up to 110 GHz by choosing the broadband load, broadband open and then the broadband Short 3.

Performing A Calibration

Using a Network Analyzer

To find information about performing a calibration with your network analyzer, refer to your analyzer's User's Guide or Help system. To find an online copy on the Agilent web site:

- Go to www.agilent.com.
- Enter the analyzer's model number in the **Search** box.
- Click Search.
- Next to the heading "Technical Support," click Manuals.
- Click the link for the document you want to view.

User Information
Performing A Calibration

Performance Verification

System Verification	After installation of the system is complete, a performance verification is necessary to assure proper system operation. The initial verification is included with the installation of your system, but it is necessary to perform system verification at regular intervals. Included with this kit are a matched thru adapter and a mismatched thru adapter for use in system verification. For more information on system verification see the analyzer's <i>User's Guide</i> or <i>Help System</i> .
Calibration Kit Verification	The performance of your calibration and verification kit can only be verified by returning the kit to Agilent Technologies for recertification. The equipment and calibration standards required to verify the specification limits of the devices inside this kit have been specially manufactured, and are not commercially available. Agilent recognizes its responsibility to provide you with procedures to reconfirm the published specifications of any product offered. That commitment applies equally to the 85059A 1.0 mm calibration and verification kit.
What Recertification Provides	 The following will be provided with a recertified kit: New calibration sticker affixed to the case Certificate of Calibration A calibration report for each device in this kit listing measured values, specifications, and uncertainties.
NOTE	A list of NIST traceable numbers may be purchased upon request to be included in the calibration report.
	For more information, contact the nearest Agilent Technologies office (sales and service offices are listed in the front of this manual).
How Often to Recertify	The suggested initial interval for recertification is 12 months or sooner. The actual need for recertification depends on the use of your kit. After reviewing the results of the initial recertification, you may want to establish a different recertification interval that reflects the usage and wear of your kit.

NOTE	In some cases, the first time a kit is used after being recertified occurs some time after the actual recertification date. The recertification interval should begin on the date the kit is <i>first</i> used.
Where to Send a Kit for Recertification	Contact Agilent for information on where to send your kit for recertification - refer to "Contacting Agilent" on page 6-2.
How Agilent	Agilent verifies the specifications of these devices as follows:
Technologies Verifies Devices in this Kit	1. The residual microwave error terms of the test system are verified with precision airlines and shorts that are directly traced to the National Institute of Standards and Technology (NIST). The airline and short characteristics are developed from mechanical measurements. The mechanical measurements and material properties are carefully modeled to give very accurate electrical representation. The mechanical measurements are then traced to NIST through various plug and ring gages and other mechanical measurements.
	2. Each device is electrically tested on this system. The measurement uncertainty for each device is recorded in the calibration report that accompanies every kit.
	These two steps establish a traceable link to NIST for Agilent to the extent allowed by the institute's calibration facility. The specifications data provided for the devices in the kit is traceable to NIST through Agilent Technologies

If you suspect a bad calibration, or if your network analyzer does not pass performance verification, follow the steps in Figure 6-1 on page 6-2.

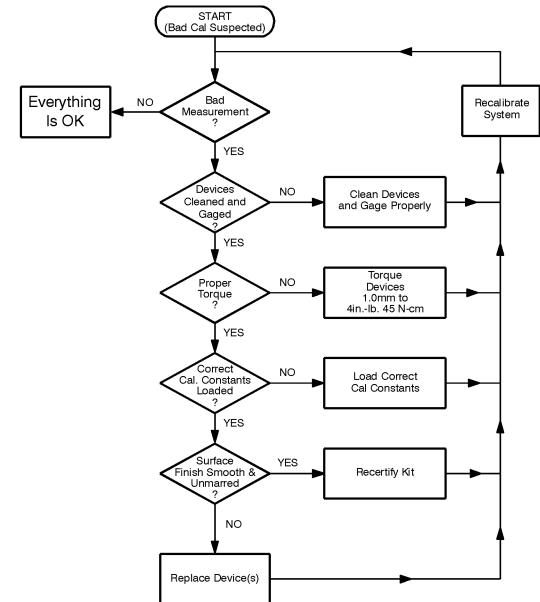
Returning a Kit or Device to Agilent Technologies

If your kit or device requires service, contact Agilent - refer to "Contacting Agilent" on page 6-2. When you send the kit or device to Agilent, include a service tag (found at the end of this manual) on which you provide the following information:

- Your company name and address.
- A technical contact person within your company, and the person's complete phone number.
- If you are returning a complete kit, include the model number and serial number.
- A list of your network analyzer model numbers.
- If you are returning one or more devices, include the part numbers and serial numbers.
- Indicate the type of service required.
- Include any applicable information.

Where To Look For More Information

This manual contains limited information about network analyzer system operation. For complete information, refer to the PNA Help System. To do so, press the Help key on the front panel of the PNA.


If you need additional information, contact your local Agilent Technologies representatives- refer to "Contacting Agilent" on page 6-2.

Troubleshooting

Contacting Agilent

Assistance with test and measurements needs and information on finding a local Agilent office are available at: www.agilent.com/find/assist

If you don't have Internet access, please contact your Agilent field engineer.

trobflow

The following replaceable parts table lists the replacement part numbers for the 85059A calibration and verification kit contents. To order a listed part, note the description, part number, and the quantity desired and contact Agilent Technologies - refer to "Contacting Agilent" on page 6-2.

Replacing the Verification Data

The verification data contains unique data that applies to the individual verification devices. No two devices have the same performance data. It is not a trivial matter to replace lost or damaged data, so it is important to make one or more backup copies.

If your verification data is lost or damaged, and you have no backup copies, take one of the following actions:

If Recertification is not required in the near future. Contact your nearest Agilent service office for a replacement. Please specify the information in the table below.

If recertification will be required soon. Agilent recommends that you have the verification kit recertified early. New verification data will be generated during the recertification process.

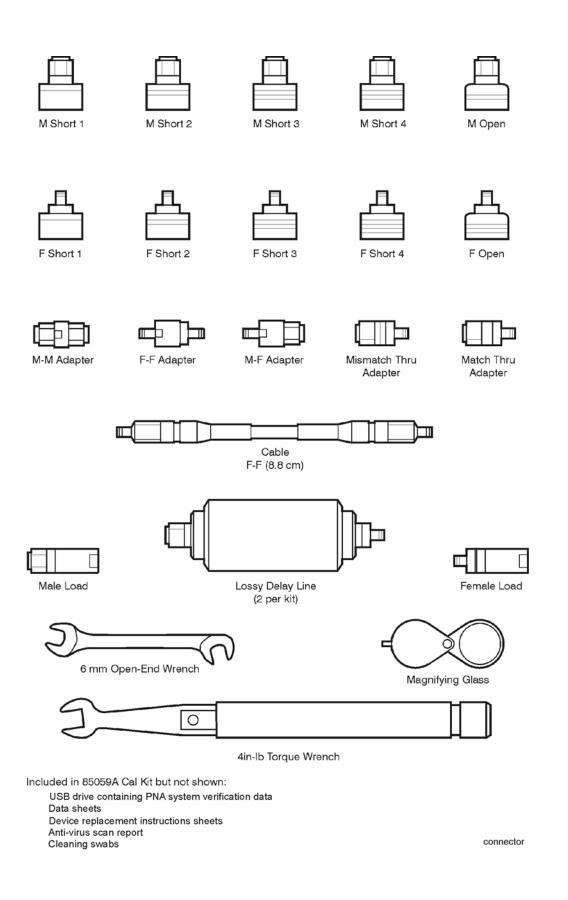
Device	Model Number	Serial Number	Part Number
Kit			
Device 1 Device 2			
Device 3 Device 4			
	PNA USB drive ; Data she	ets	
	 tion: Date	; Serviced by	

 Table 7-1 Information to Specify When Ordering Replacement Verification

 Data

85059A 1.0 mm Calibration and Verification Kit 7-1

Description	Qty Replaceable Per Part Number Kit	
Calibr	ation Devices	
Shorts:		
-m- Short 3	1 85059–60003	
-f- Short 3	1 85059–60007	
-m- Short 4	1 85059–60004	
-f- Short 4	1 85059–60008	
-m- Short 2	1 85059–60002	
-f- Short 2	1 85059–60006	
-m- Short 1	1 85059–60001	
-f- Short 1	1 85059–60005	
Opens:		
Male Open	1 85059–60009	
Female Open	1 85059–60010	
Loads:		
Male Load	1 85059–60019	
Female Load	1 85059–60020	
Lossy Delay Line	2 85059–60021	
Adapters:		
Male to Male Adapter	1 11920–60001	
Female to Female Adapter	1 11920–60002	
Male to Female Adapter	1 11920–60003	
Cables:		
Female to Female Cable (8.8 cm)	1 11500–60001	


Description	Qty Per Kit	Replaceable Part Number
Verification I	Devices	
Mismatched Thru Adapter with data	1	85059AR01
Matched Thru Adapter with data	1	85059AR02
Wrench	es	
6 mm 4 in—lb Torque	1	8710–2079
6 mm Open-end	1	8710–2156
Miscellaneou	ıs Items	
Disk Holder	1	5180-8491
Operating and Service Manual	1	85059–90003
Plastic Box	1	1540–1218
Cleaning Swabs	1	9301–1243
10X Magnifying Glass	1	1000–1114
Items Not Inclu	ıded In Kit	
Anhydrous Isopropyl Alcohol (>92% pure)		
Grounding Wrist Strap		9300–1367
5 Foot Grounding Cord (for wrist strap)		9300–0980
2' x 4' Conductive Table Mat & 15' Ground Wire		9300–0797

9300-1126

ESD Heel Strap (for conductive floors)

Table 7-1 Replaceable Parts (Continued)

Replaceable Parts

Standard Definitions

Class Assignments and Standard Definitions Values are Available on the Web

Class assignments and standard definitions may change as more accurate model and calibration methods are developed. You can download the most accurate class assignments and standard definitions from Agilent's Calibration Kit Definitions Web page at

http://na.tm.agilent.com/pna/caldefs/stddefs.html.

For a detailed discussion of calibration kits, refer to the Agilent Application Note, "Specifying Calibration Standards and Kits for Agilent Vector Network Analyzers." This application note covers calibration standard definitions, calibration kit content and its structure requirements for Agilent vector network analyzers. It also provides some examples of how to set up a new calibration kit and how to modify an existing calibration kit definition file. To download a free copy, go to www.agilent.com and enter literature number 5989-4840EN in the Search window. **Standard Definitions**

Numerics

A

adapters, 4-2 Agilent, contacting, 6-1 assistance, -v

B

broadband load construction, 1-5 broadband SOLT, 1-4

C

calibration broadband SOLT, 1-4 performing, 4-3 standards, 1-3 calibration constants, 8-1 calibration devices adapter, 4-2 loads, 4-2 offset opens and shorts, 4-1 their use, 4-1 center conductor protrusion and pin depth, 2-3 characteristics adapter, 2-4 electrical, 2-4 mechanical, 2-3 offset short electrical, 2-4 supplemental electrical, 2-4 supplemental mechanical, 2-3 class assignments downloading from Agilent Web site, 8-1 cleaning process, 3-12 connections, 3-9 connectors clarifying gender, 1-10 cleaning, 3-12 procedure, 3-12 contacts, 3-4 defects or damage, 3-3 mating plane surface, 3-5 wear, 3-6 contacting Agilent, 6-1 contents of kit, 1-2

D

devices adapters, 4-2 loads, 4-2 offset opens and shorts, 4-1 verification, 4-1 disconnection procedure, 3-18 documentation printing copies from Web, -vi replacement, 7-3 warranty, -iii downloading class assignments & std definitions from the Web, 8-1 duplicating verification data, 1-2

E

electrical specifications, 2-5 electrostatic discharge, 3-1 environmental requirements, 2-1 equipment required but not supplied, 1-6

F

figure clarifying connector gender, 1-10 concentricity male, 3-5 connector alignment, 3-10 connector cleaning, 3-12 connector misalignment, 3-10 connector pin depth, 3-8 contact integrity, 3-4 correct wrench position, 3-15 incorrect wrench position, 3-15 lossy delay line construction, 1-5 male and female connectors, 1-10 troubleshooting diagram, 6-2 using the torgue wrench, 3-16 where to hold torgue wrench, 3-16 frequency, specified performance, 1-3

G

general information about this manual, 1-2 calibration kit, 1-1

Η

handling and strorage, 3-19 how to identify shorts, 1-1

I

information, where to look, 6-1 inspection incoming, 1-9 visual, 3-3 concentricity female, 3-4 connector contacts, 3-4

Agilent Technologies 85059A 1.0 mm Calibration and Verification Kit i

K

kit contents, 1-2

L

loads, 4-2

Μ

maintenance preventive, 1-11 making a connection, 3-1 manual, what you'll find, -vii mating plane surface, 3-5

Ρ

part numbers, 7-2 parts, replacing, 7-2 performance verification, 5-1 calibration kit verification, 5-1 system verification, 5-1 performing a calibration, 4-3 pin depth, 3-7 protrusion and recession, 3-7 visual, 3-8 preventive maintenance, 1-11 printing copies of documentation from Web, -vi

R

recertification how often, 5-1 what it provides, 5-1 where to send kit, 5-2 replaceable parts, 7-1 returning a device or kit to Agilent Technologies, 6-1

S

serial numbers, 1-7 device, 1-7 label, 1-7 record, 1-8 shorts, 4-1 identifying, 1-2 specifications, 2-1 electrical, 2-5 standard definitions, 8-1 downloading from Agilent Web site, 8-1

T

temperature, environmental requirements, 2-1

torque wrench procedure, 3-14 settings and tolerance, 3-14 using, 3-14, 3-16 visual, 3-13 where to hold, 3-16 troubleshooting, 6-1 troubleshooting diagram, 6-2

U

user information, 4-1

V

verification, how Agilent Technologies verifies devices, 5-2 visual inspection, 3-3 connector wear, 3-6 mating plane surfaces, 3-5 obvious defects or damage, 3-3

W

what you'll find in this manual, -vii