HITACHI UTOPIA SERIES INVERTER-DRIVEN SPLIT-SYSTEM HEAT PUMP AIR CONDITIONERS

- DC Inverter UTOPIA for Europe -

SERVICE MANUAL

Models

Indoor Units

In-the-Ceiling Type
 RPI-2.5HRG
 RPI-4.0HRG
 RPI-5.0HRG

4-Way Cassette Type
 RCI-2.5HRG RCI-4.0HRG
 RCI-3.0HRG RCI-5.0HRG

2-Way Cassette Type
 RCD-2.5HRG RCD-4.0HRG
 RCD-3.0HRG RCD-5.0HRG

 Ceiling Type RPC-2.5HRG RPC-4.0HRG RPC-3.0HRG RPC-5.0HRG

Outdoor Units

RAS-3HVRG RAS-4HVRG RAS-5HVRG

- CONTENTS -

No.		Page
1. TROUI	BLESHOOTING	1-1
1.1 Init	ial Troubleshooting	1-1
1.1.1	Rotary Switch and Dip Switch Setting	1-1
1.1.2	Checking of Electrical Wiring	1-5
1.1.3	Checking by 7-Segment Display	1-6
1.1.4	Failure of Power Supply to Indoor Unit and Remote Control Switch	1-7
1.1.5	Abnormal Transmission between Remote Control Switch and Indoor Unit	1-8
1.1.6	Abnormalities of Devices	1-9
1.2 Tro	publeshooting Procedure	1-17
1.2.1	Alarm Code Table	1-17
1.2.2	Troubleshooting by Alarm Code	1-18
1.2.3	Troubleshooting in Check Mode by Remote Control Switch	1-53
1.2.4	Troubleshooting by 7-Segment Display	1-59
1.2.5	Protection Control Code on 7-Segment Display	1-61
1.2.6	Function of LEDs	1-62
1.3 Pro	ocedure of Checking Each Main Parts	1-64
1.3.1	Self-Checking of PCBs using Remote Control Switch	1-64
1.3.2	Self-Checking of Remote Control Switch	1-66
1.3.3	Procedure of Checking Other Main Parts	1-68
2. SERVI	CING	2-1
2.1 Ou	tdoor Unit	2-1
2.1.1	Removing Service Cover	2-1
2.1.2	Removing Air Outlet Grille	2-1
2.1.3	Removing Outdoor Fan	2-2
2.1.4	Removing Outdoor Fan Motor	2-2
2.1.5	Removing Compressor	2-3
2.1.6	Removing High Pressure Switch and Pressure Switch for Control	2-5
2.1.7	Removing Coil for Reversing Valve	2-6
2.1.8	Removing Coil for Expansion Valve	2-7
2.1.9	Removing Printed Circuit Board (PCB1)	2-8
2.1.10	Removing ISPM and ACT Module	2-9
2.1.11	Removing Electrical Components	2-11
2.2 Inc	oor Unit	

* Refer to Service Manual P5413553

- CONTENTS -

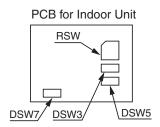
No) .		Page
3.	MA	IN PARTS	3-1
	3.1	Inverter	3-1
	3.1	1.1 Specifications of Inverter	3-1
	3.1	.2 Arrangement of Inverter Power Unit	3-2
	3.2	AC Chopper	3-3
	3.3	Auto-Louver Mechanism	3-5
	3.3	3.1 4-Way Cassette Type	3-5
	3.3	3.2 2-Way Cassette Type	3-6
	3.3	3.3 Ceiling Type	3-7
	3.4	Scroll Compressor	3-8
	3.4	I.1 Reliable Mechanism for Low Vibration and Low Sound	3-8
	3.4	- · · · · · · · · · · · · · · · · · · ·	
	3.4	I.3 Structure	3-8
	3.5	Thermistor	3-9
	3.5		
	3.5	5.2 Thermistor for Outdoor Unit	3-10
	3.6	Electronic Expansion Valve	3-12
	3.6		
	3.6	S.2 Electronic Expansion Valve for Indoor Units	3-13
	3.7	High Pressure Switch and Pressure Switch for Control	3-14
4.	FIE	LD WORK INSTRUCTION	4-1
	4.1	Overheating in Case of Using PC-5H	4-1
	4.2	Alarm 36	4-2
	4.3	Select Guide of Drain Pipe for Indoor Unit	4-3
	4.4	Maintenance Work	4-4
	4.5	Service & Maintenance Record by 7-Segment Display	4-5
	4.6	Service & Maintenance Record by Remote Control Switch	4-6
	4.7	Service & Maintenance Record	4-7

1. TROUBLESHOOTING

- 1.1 Initial Troubleshooting
- 1.1.1 Rotary Switch and Dip Switch Setting
- (1) Indoor Unit

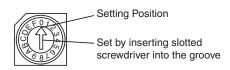
The PCB in the indoor unit is equipped with 3 or 4 types of dip switches and rotary switch. Before testing unit, set these dip switches according to the following instructions. Unless these dip switches are set in the field, the unit can not be operated.

ACAUTION


Before setting dip switches, firstly turn OFF power source and set the position of the dip switches. If the switches are set without turning OFF the power source, the switches can not function.

NOTE

The "I" mark indicates position of dip switches. Figures show the setting before shipment.


<RCI Models>

(A) Position of Dip Switches

- (B) The PCB in the indoor unit is equipped with 3 types of dip switches and rotary switch. Before testing unit, set these dip switches according to the following instructions. Unless these dip switches are set in the field, the unit can not be operated.
- (a) Unit No. Setting (RSW)

Setting is required. Set the unit No. of all indoor units respectively and serially, by following setting position shown in the table below. Numbering must start from "0" for every outdoor unit.

	No.0	No. 1	No. 2	No. 3	No. 4	No.5	No. 6	No. 7
	Unit	Unit	Unit	Unit	Unit	Unit	Unit	Unit
Rotary Switch Setting								
	No. 8	No. 9	No. 10	No. 11	No. 12	No. 13	No. 14	No. 15
	Unit	Unit	Unit	Unit	Unit	Unit	Unit	Unit
Rotary Switch Setting								

(b) Capacity Code Setting (DSW3)

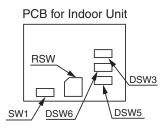
No setting is required, due to setting before shipment. This switch is utilized for setting the capacity code which corresponds to the Horse Power of the indoor unit.

Horsepower	2.5	3.0	4.0	5.0
Setting Position	ON 1 2 3 4 OFF			

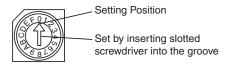
TROUBLESHOOTING

(c) Refrigerant Cycle No. Setting (DSW5)Setting is required.Setting position before shipment is all OFF.

- (d) Fuse Recover (DSW7)
 - * No Setting is required.
 Setting position before shipment is all OFF.



* In the case of applying high voltage to the terminal 1, 2 of TB2, the fuse (0.5A) on the PCB, is cut. In such a case, firstly correct the wiring to TB2, and then turn on No.1 pin.



<RPI, RCD and RPC Models>

(A) Position of Dip Switches

- (B) The PCB in the indoor unit is equipped with 4 types of dip switches and rotary switch. Before testing unit, set these dip switches according to the following instructions. Unless these dip switches are set in the field, the unit can not be operated.
- (a) Unit No. Setting (RSW)
 Setting is required. Set the unit No. of all indoor units respectively and serially, by following setting position shown in the table below. Numbering must start from "0" for every outdoor unit.

	No.0 Unit	No. 1 Unit	No. 2 Unit	No. 3 Unit	No. 4 Unit	No.5 Unit	No. 6 Unit	No. 7 Unit
Rotary Switch Setting								
	No. 8 Unit	No. 9 Unit	No. 10 Unit	No. 11 Unit	No. 12 Unit	No. 13 Unit	No. 14 Unit	No. 15 Unit
Rotary Switch Setting								

(b) Capacity Code Setting (DSW3) No setting is required, due to setting before shipment. This switch is utilized for setting the capacity code which corresponds to the Horse Power of the indoor unit.

Horsepower	2.5	3.0	4.0	5.0
Setting Position	ON 1 2 3 4 OFF			

(c) Refrigerant Cycle No. Setting (DSW5)Setting is required.Setting position before shipment is all OFF.

(d) Unit Model Code Setting (DSW6)

No setting is required. Setting the model code of the indoor unit.

RPI-2.0HRG

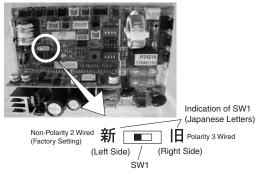
Model Code

Model Code	(a)	(b)	(c)
Setting Position	ON ON	ON	ON
Position	1 2 3 4 OFF	1 2 3 4 OFF	1 2 3 4 OFF

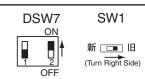
Model Code:

- (a) RPI-HRG
- (b) RCD-HRG
- (c) RPC-HRG

- (e) DSW7
 - * Factory Setting



* No.1 Pin: Fuse Recover When fuse is cut, turn No.1 Pin ON.


* No.2 Pin: Transmission Selection OFF: Non-Polarity 2 Wired (PC-P1H) ON: Polarity 3 Wired (PC-2H2)

(f) Transmission Selection (SW1)

NOTE

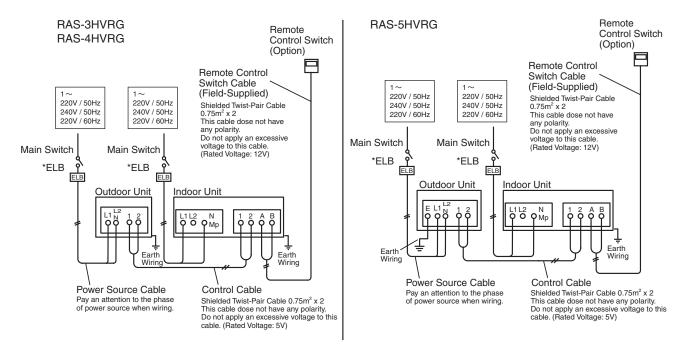
Factory Setting is for PC-P1H.
 In the case of using PC-2H2, set as below.

TROUBLESHOOTING

(2) Outdoor Unit

TURN OFF all power sources before setting. Without turning OFF, the switches do not work and the contents of the setting are invalid. Mark of "\blue" indicates the position of dip switches. Set the dip switches according to the figure below.

NOTE


- By using switch DSW1 the unit is started or stopped after 10 to 20 seconds after the switch is operated.
- Make the outdoor unit No. clear to distinguish from other outdoor units for service and maintenance.

DSW1		DSW2	DSW4
For Test Run ON 1 2 3 4 OFF 1. Test Run (Cooling) 2. Test Run (Heating) 3. OFF 4. Compressor	Optional Function Setting ON 1 2 3 4 5 6 OFF	1. OFF 2. Energy Saving Operation (ON: Cancel, OFF: Set) 3. Night-Shift Mode (Low Sound) (OFF: No Set, ON: Set) 4. Cancellation of Outdoor Ambient Temp. Limit (OFF: No Set, ON: Set) 5. Cancellation of Fan Stop Operation during Defrost (OFF: No Set, ON: Set) 6. OFF	Ref. Cycle No. Setting ON 1 2 3 4 OFF
Forced Stop		DSW3	DSW5
	RAS-3HVRG F	Capacity RAS-4HVRG RAS-5HVRG ON 1 2 3 4 OFF Capacity RAS-5HVRG ON 1 2 3 4 OFF	Transmission Setting ON 1 2

1.1.2 Checking of Electrical Wiring

- Check to ensure that the terminal for power source wiring (terminals "L1" to "L1" and "N" to "N" of each terminal board: AC220V) and intermediate wiring (Operating Line: terminals "1" to "1" and "2" to "2" of each terminal board: DC5V) between the indoor unit and the outdoor unit coincide correctly, as figure below. If not, some component will be damaged.
- Check to ensure that the twist pair cable with shield (≥0.75mm2) are used for intermediate wiring to protect noise obstacle at total length of less than 1000m and size complied with local code.
- Check to ensure that the wirings and the breakers are chosen correctly, as shown in Table 1.1.
- All the field wiring and equipment must comply with local codes.

Example for Electrical Wiring Connection (Single Type)

Wiring Connection for Single Type

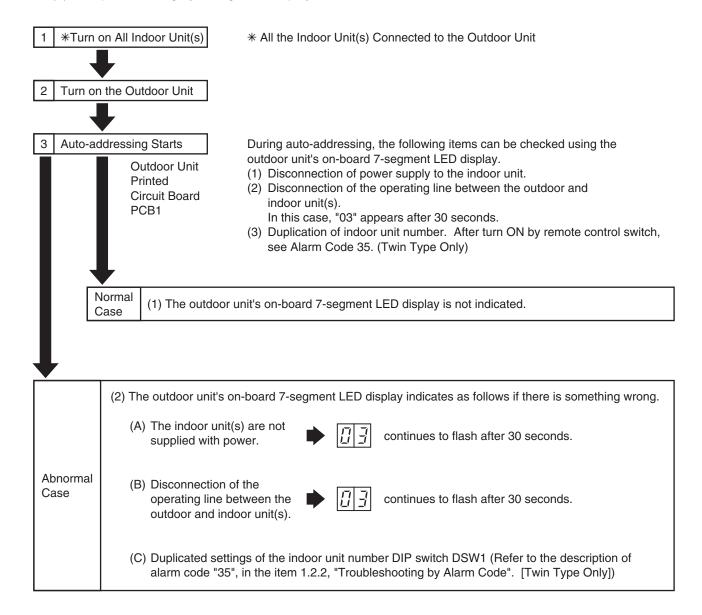
NOTE:

In case of the other wiring connection, refer to Technical Catalogue II.

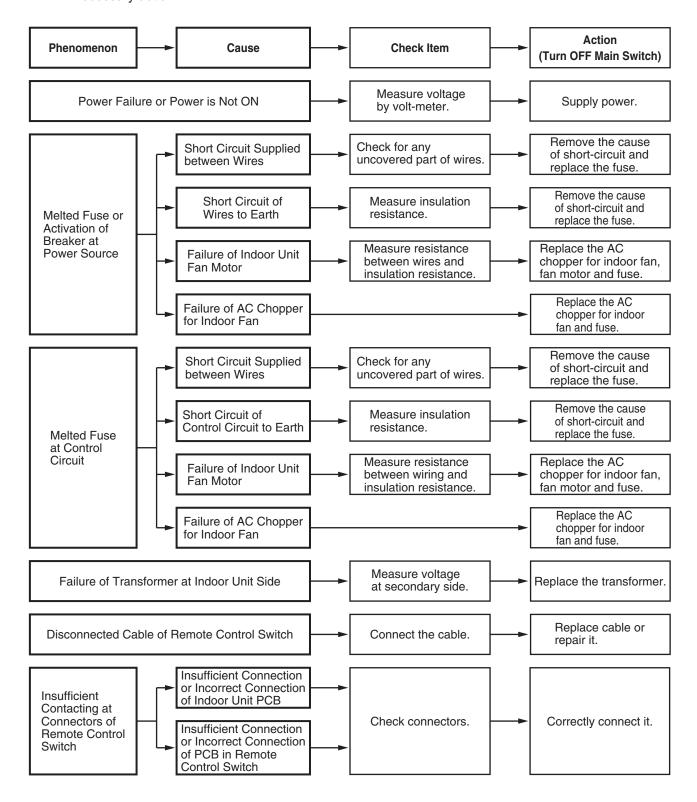
Table 1.1 Electrical Data and Recommended Wiring, Breaker Size/1 Outdoor Unit

		M	D	El	_B	
Model	Power Supply	Max. Running Current	Power Supply Line	Nominal Current	Nominal Sensitive Current	Fuse
		(A)	(фmm)	(A)	(mA)	(A)
RAS-3HVRG		22	MLFC 1.25SQ	40		40
RAS-4HVRG	220-240V/50Hz, 220V/60Hz	23	IVILI O 1.233Q	40	30	40
RAS-5HVRG		31	MLFC 2SQ	50		50

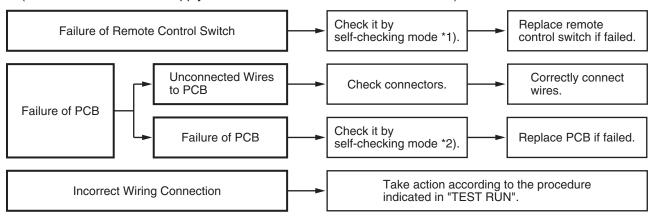
ELB: Earthleakage Breaker: Apply low sensibility type.

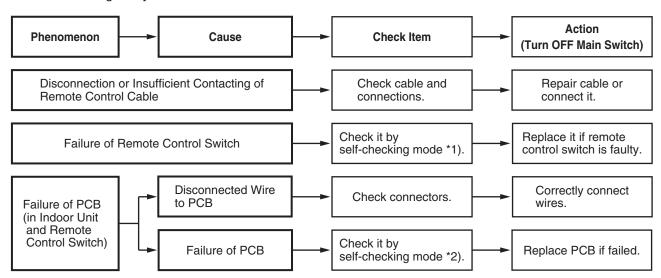

MLFC: Flame Retardant Polyflex Wire

NOTE:

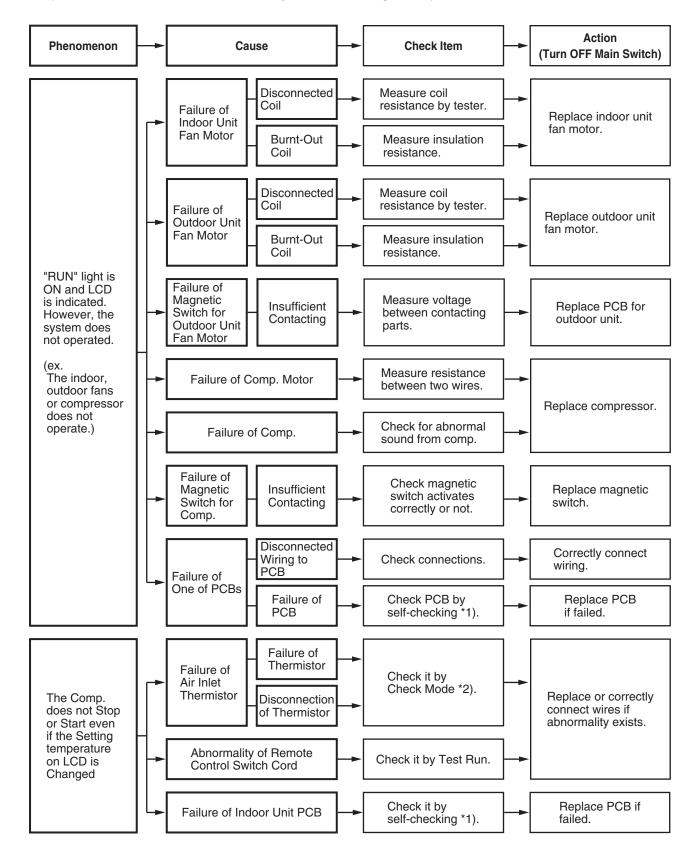

Regarding the wiring or breakers, follow to the local code.

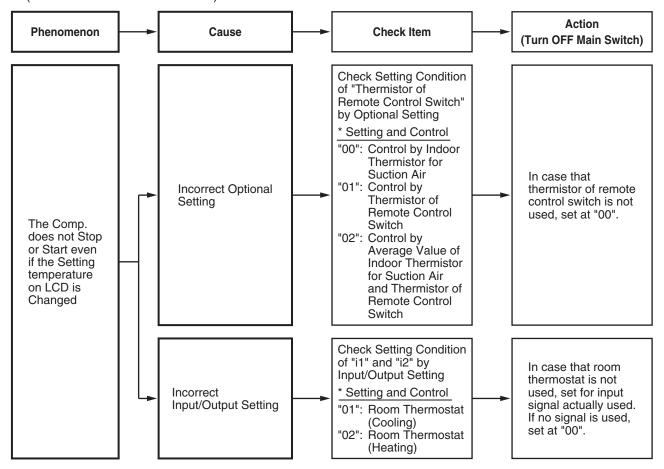
TROUBLESHOOTING

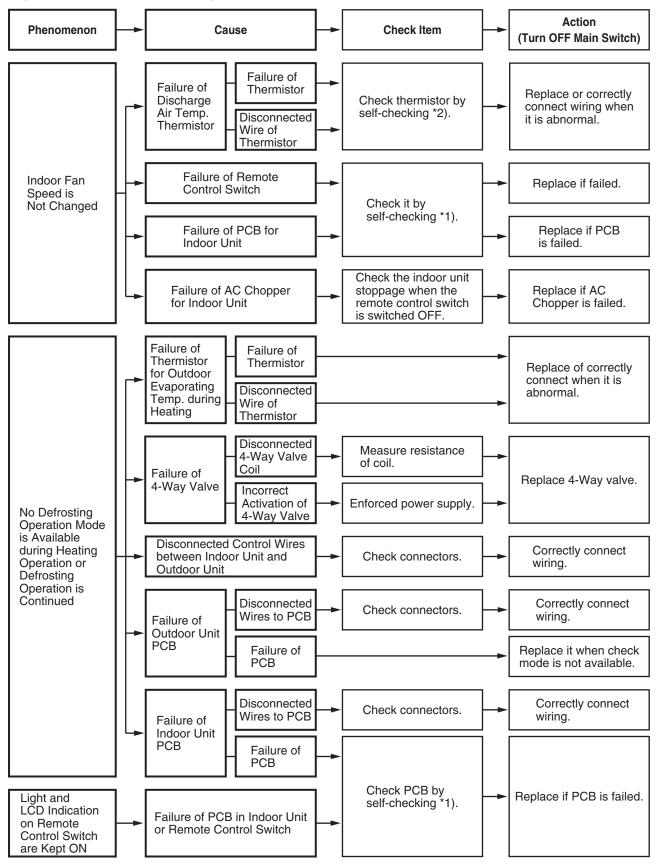

- 1.1.3 Checking by 7-Segment Display
- (1) Simple Checking by 7-Segment Display


- 1.1.4 Failure of Power Supply to Indoor Unit and Remote Control Switch
 - Lights and LCD are not Indicated.
 - Not Operated
 If fuses are melted or a breaker is activated, investigate the cause of over current and take necessary action.

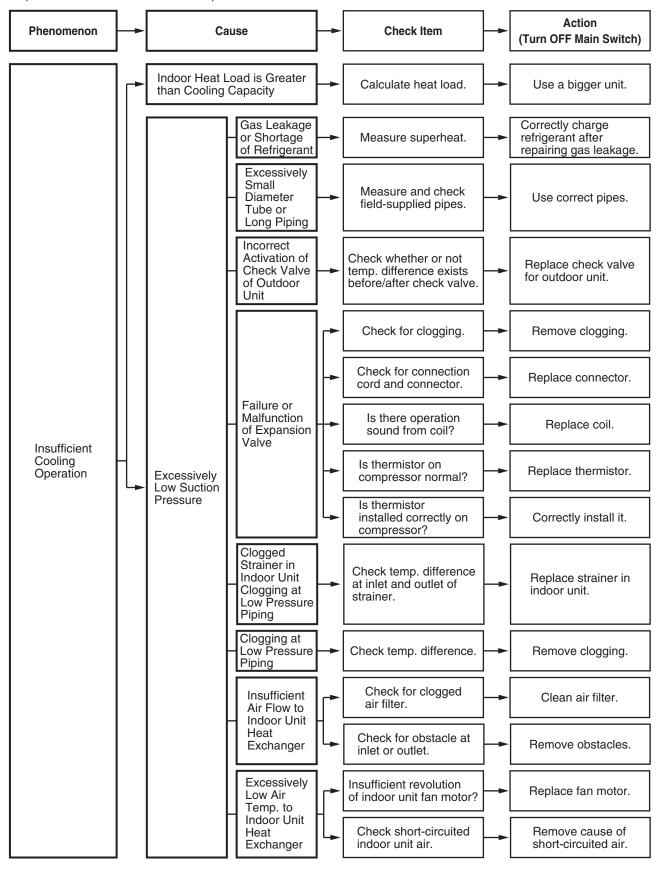
(1.1.4 Failure of Power Supply to Indoor Unit and Remote Control Switch)

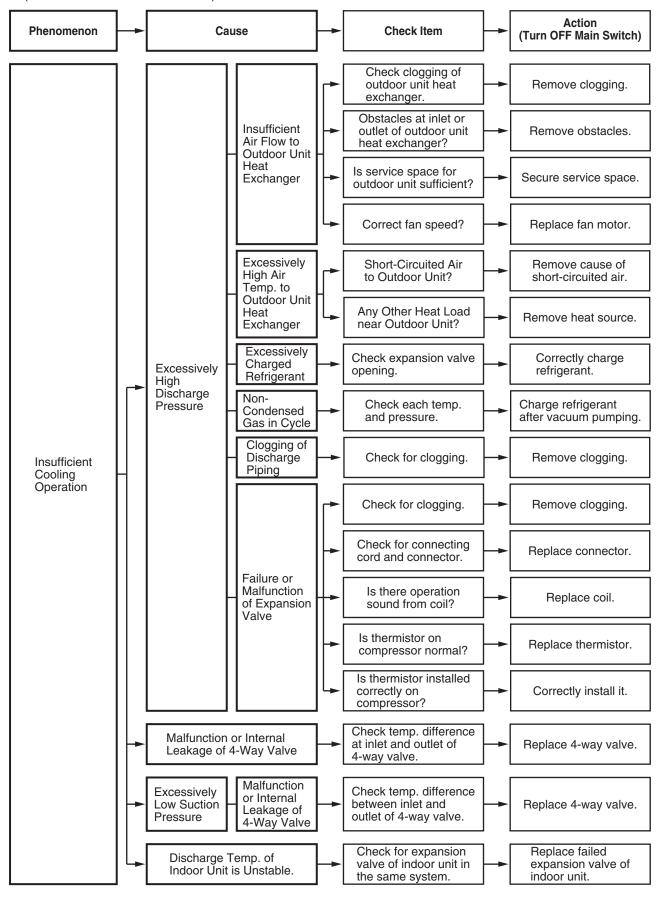


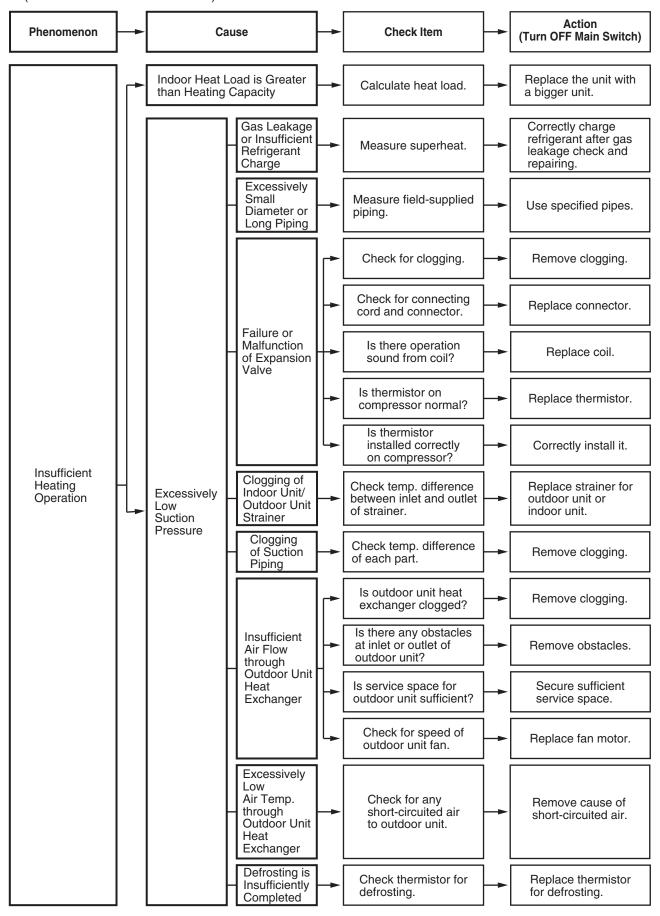

- *1): Refer to Item 1.3.2.
- *2): Refer to Item 1.3.1.
- 1.1.5 Abnormal Transmission between Remote Control Switch and Indoor Unit
 - "RUN" Lamp on Remote Control Switch: Flickering every 2 seconds

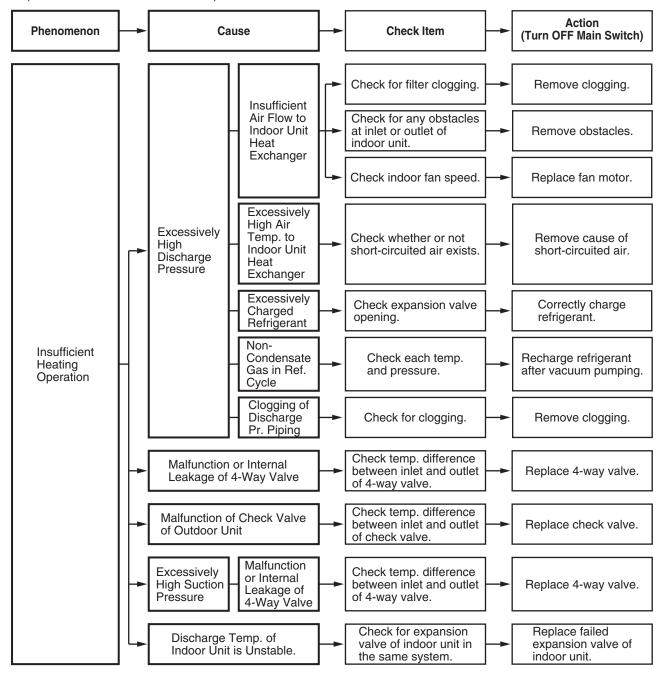

- *1): Refer to Item 1.3.2.
- *2): Refer to Item 1.3.1.

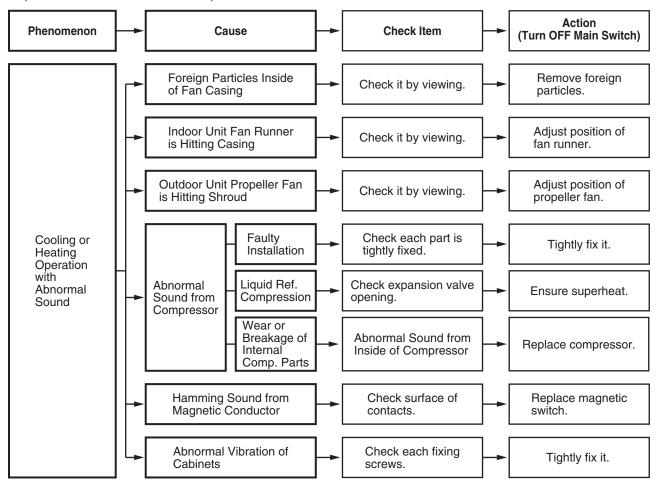
In the case that no abnormality (Alarm Code) is indicated on the remote control switch, and normal operation is not available, take necessary action according to the procedures mentioned below.



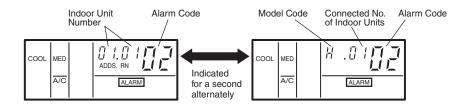

- *1): Refer to Item 1.3.1.
- *2): Refer to Item 1.2.3.
- *3): Even if controllers are normal, the compressor does not operate under the following conditions.
 - $^{\star}\,$ Indoor Air Temp. is lower than -21°C or Outdoor Air Temp. is lower than -5°C during cooling operation.
 - * Indoor Air Temp. is higher than 30°C or Outdoor Air Temp. is higher than 23°C during heating operation.
 - * When a cooling (or heating) operation signal is given to the outdoor unit and a different mode as heating (or cooling) operation signal is given to indoor units.
 - * When an emergency stop signal is given to outdoor unit.


- *1): Refer to Item 1.3.1 to 1.3.2.
- *2): Refer to Item 1.2.3.


(1.1.6 Abnormalities of Devices)

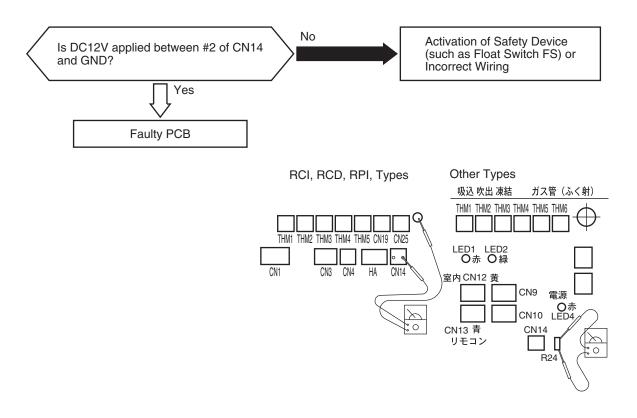


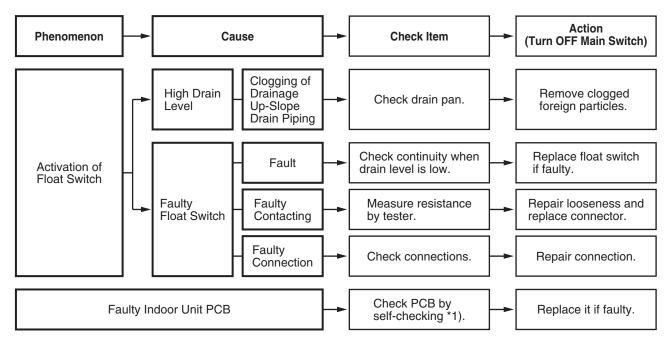
(1.1.6 Abnormalities of Devices)



1.2 Troubleshooting Procedure

Alarm Code Indication of Remote Control Switch

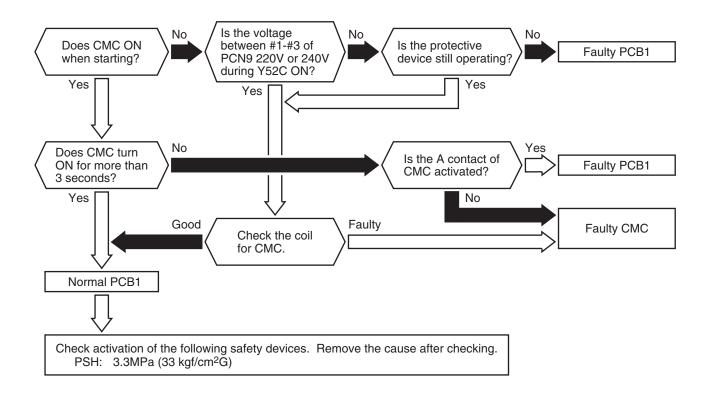

1.2.1 Alarm Code Table

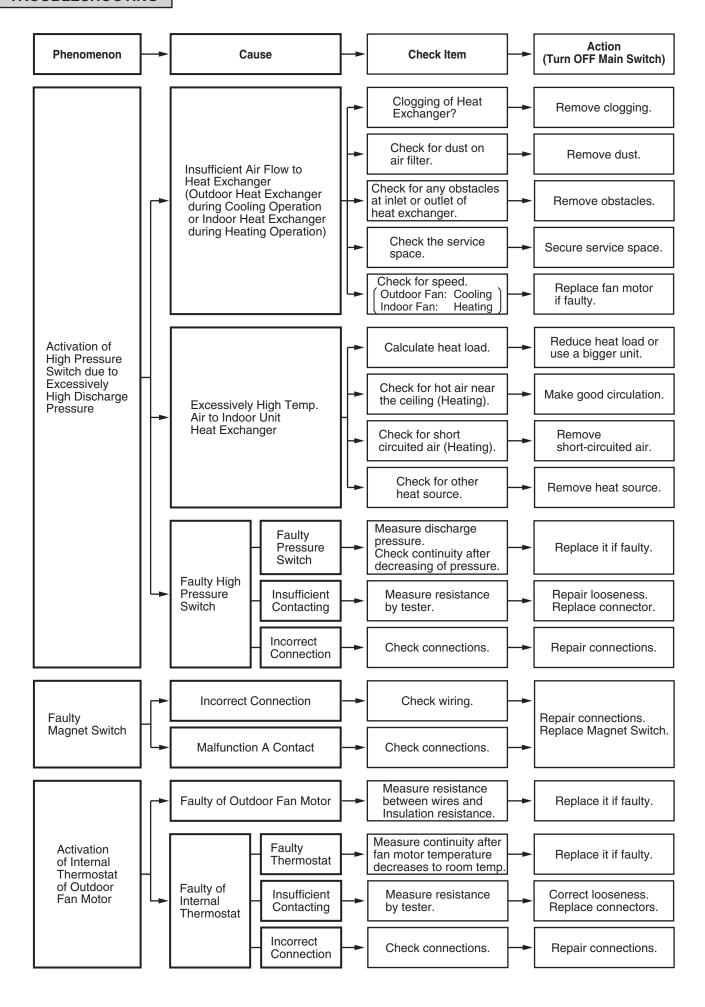

Code No.	Category	Content of Abnormality	Leading Cause
01	Indoor Unit	Tripping of Protection Device	High Water Level in Drain Pan, Activated Float Switch.
02	Outdoor Unit Tripping of Protection Device (Except Alarm Code 41 and 42)		Activated High Pressure Switch. Locked Motor in Cooling Operation.
03	Transmission	Abnormality between Indoor and Outdoor	Incorrect Wiring. Loose Terminals, Disconnected wire, Tripping of Fuse.
04		Abnormality between Inverter and Control PCB	Failure in Transmission of PCB for Inverter.
06	Voltage Drop	Voltage Drop by Excessively Low or High Voltage to Outdoor Unit	Voltage Drop of Power Supply Insufficient Capacity of Power Supply Wiring.
07		Decrease of Discharge Gas Superheat	Discharge Gas SUPERHEAT less than 10 deg. is maintained for one hour.
08	Cycle	Increase of Discharge Gas Temperature	Temperature of the top of Compressor: Td Td ≥127°C(Cooling), Td ≥120°C(Heating) over 10 minutes, or Td ≥140°C over 5 seconds.
11		Inlet Air Thermistor	
12		Outlet Air Thermistor	Failure of Thermistor, Loose Terminal,
13	Sensor on Indoor Unit	Freeze Protection Thermistor	Disconnected Wire.
14	maoor oriit	Gas Piping Thermistor	7
19		Tripping of Protection Device	Activated Internal Thermo of Fan Motor.
20		Compressor Thermistor	Failure of Thermister Lease Terminal
22	Sensor on	Outdoor Air Thermistor	Failure of Thermistor, Loose Terminal, Disconnected Wire.
24	Outdoor Unit	Evaporating Thermistor	Locked Motor in Heating Operation.
31		Incorrect Capacity of Outdoor and Indoor Unit	Incorrect Setting of Capacity Combination or Incorrect O.U. Capacity Setting.
35		Incorrect Indoor Unit No. Setting	Duplication of Indoor Unit No.
36	System	Incorrect Combination of Indoor Unit	FSG2E series connects to HVRG series outdoor unit (European Area Only). HRG series of the indoor unit is connected to FSG(1) and FXG(1) series outdoor units (European Area Only).
38		Abnormality of Protective Circuit in outdoor Unit	Failure of Protection detecting Circuit
41		Overload cooling (Possibility of high pressure device activation.)	O.U. Pipe Thermistor Temp. is Higher than 55°C and the Comp. Top Temp. is Higher than 95°C when O.U. Protection Device is activated.
42	Pressure	Overload heating (Possibility of high pressure device activation.)	I.U. Freeze Protection Thermistor Temp. is Higher than 55°C and the Comp. Top Temp. is Higher than 95°C when O.U. Protection Device is activated.
47		Activation of Low Pressure Decrease Protection Device	Stoppage by Excessively Decrease of evaporating Temperature (Te ≤-35°C) is activated 3 times in one hour, Locked Motor in Heating Operation.
51		Abnormality of Current Sensor for Inverter	Failure of Control PCB, ISPM
52		Activating Overcurrent Protection	Failure of ISPM, Clogging of Heat Exchanger.
53	Inverter	Activating Protection of ISPM	ISPM Abnormality Failure of Compressor, clogging of Heat Exchanger.
54		Inverter Fin Temperature Increase	Abnormal Inverter Fin Thermistor, Clogging of Heat Exchanger Abnormal Outdoor Fan
57	Outdoor Fan	Fan Motor Abnormality	Disconnected wire or Incorrect wiring between Control PCB and Inverter PCB. Incorrect Wiring or Fan Motor Abnormality
EE	Compressor	Compressor Protection Alarm	Failure of Compressor.

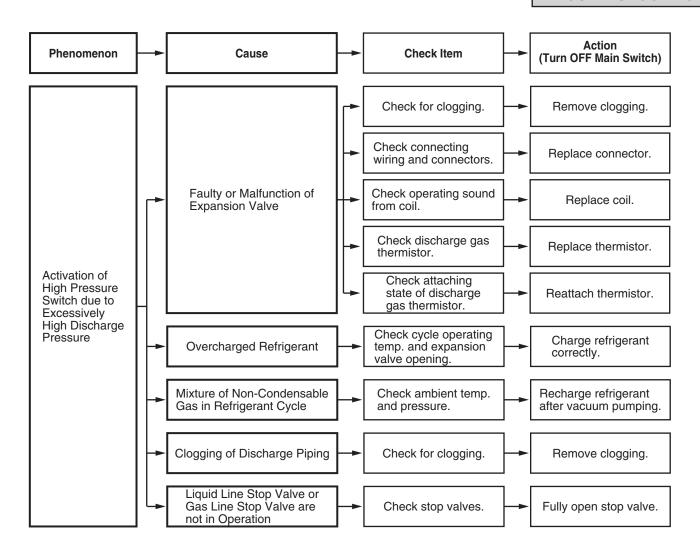
1.2.2 Troubleshooting by Alarm Code

Alarm Code Activation of Safety Device in Indoor Unit

- "RUN" light flickers and "ALARM" is indicated on the remote control switch.
- The unit No., alarm code and the unit code is alternately indicated on the set temperature section, and the unit No. and alarm code are indicated on the display of the outdoor unit PCB.
- ★ This alarm code is indicated when the contact between #1 and #2 of CN14 is not closed over 120 seconds during the cooling, fan or heating operation.

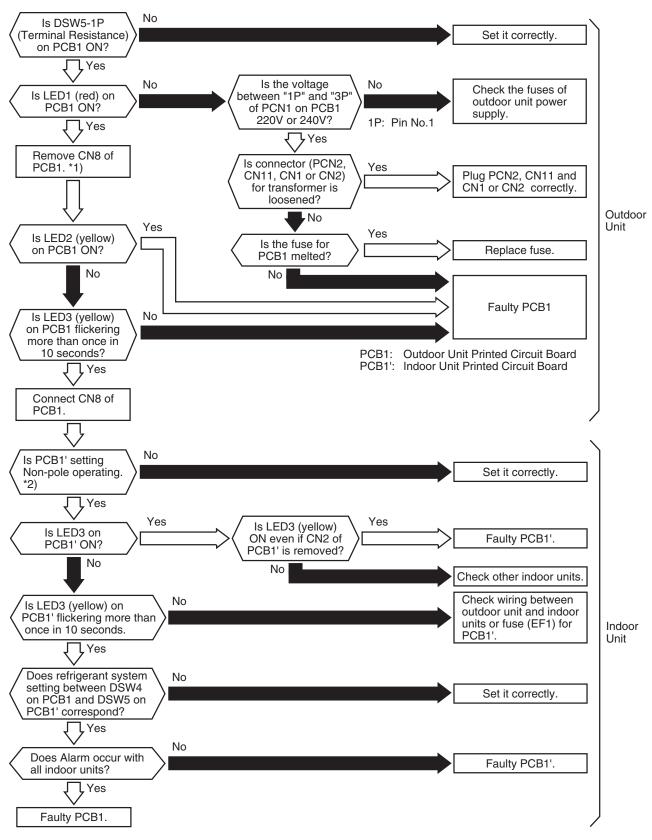





*1): Refer to 1.3.1 "Self Checking of PCBs using Remote Control Switch".

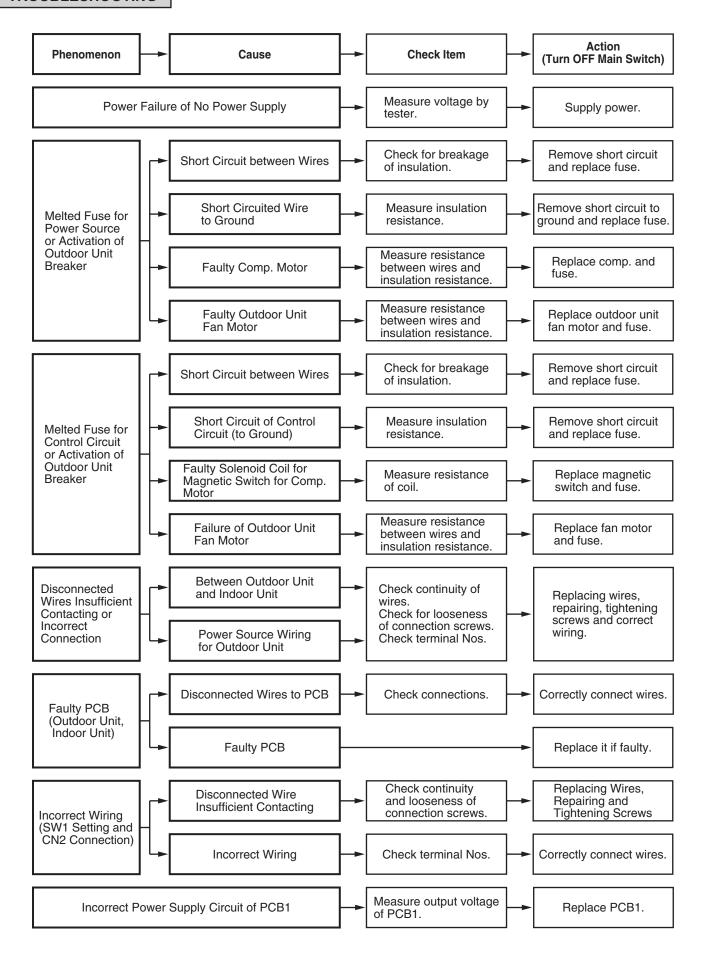
Activation of Safety Device in Outdoor Unit

- "RUN" light flickers and "ALARM" is indicated on the remote control switch.
- The unit No., alarm code and the unit code is alternately indicated on the set temperature section and the alarm code is indicated on the display of the outdoor unit PCB.
 If the stoppage of the unit is caused by cooling overload or heating overload, the alarm code 41 or 42 is indicated.
- ★ This alarm is indicated when one of safety devices is activated during compressor running.

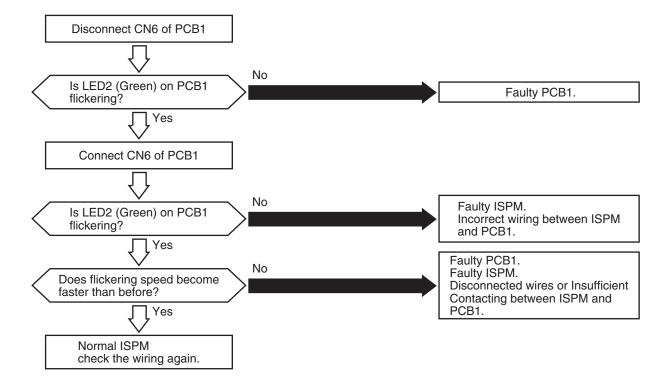


TROUBLESHOOTING

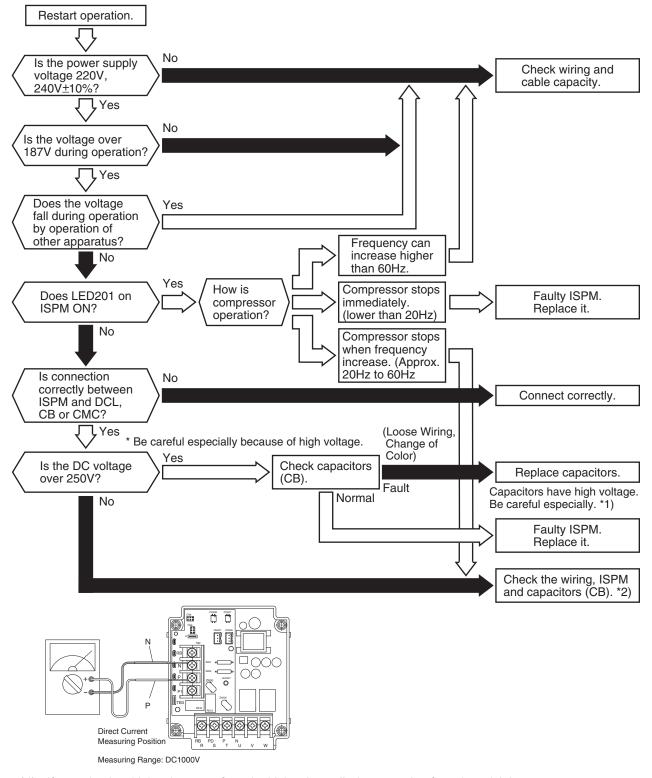
Alarm Code


Abnormal Transmitting between Indoor Units and Outdoor Unit

- "RUN" light flickers and "ALARM" is indicated on the remote control switch.
- The unit No., alarm code and the unit code is alternately indicated on the set temperature section, or the alarm code is indicated on the display of the outdoor unit PCB.
- This alarm is indicated when abnormality is maintained for 3 minutes after normal transmitting between indoor units and outdoor unit, and also abnormality is maintained for 30 seconds after the micro-computer is automatically reset.
 - The alarm is indicated when the abnormal transmitting is maintained for 30 seconds from starting of the outdoor unit.
- ★ Investigate the cause of overcurrent and take necessary action when fuses are melted or the breaker for the outdoor unit are activated.

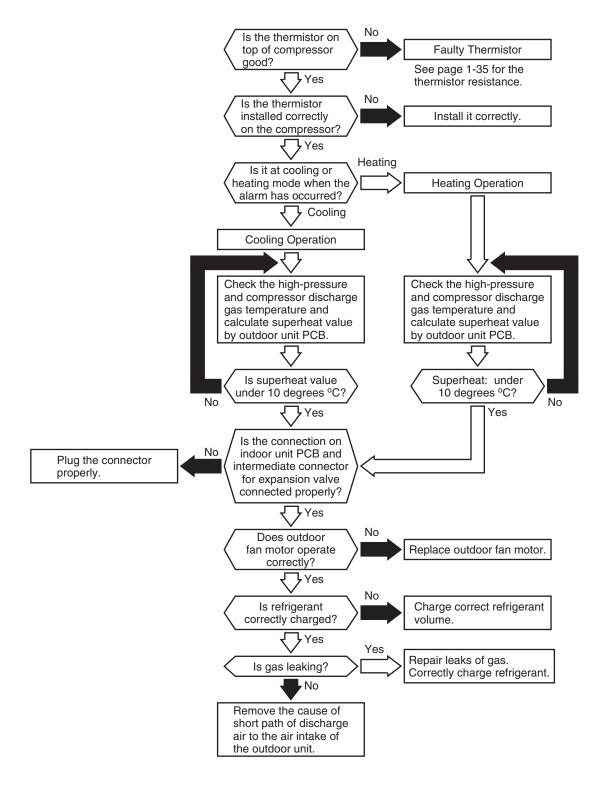

- *1): In case that terminal resistance (DSW5-1P) is OFF when H-Link Connection is performed. Set the terminal resistance to ON when CN8 is removed.
 - Set the terminal resistance to OFF when CN8 is reconnected.
- *2): PCB1' Factory Setting for Non-Pole Transmitting

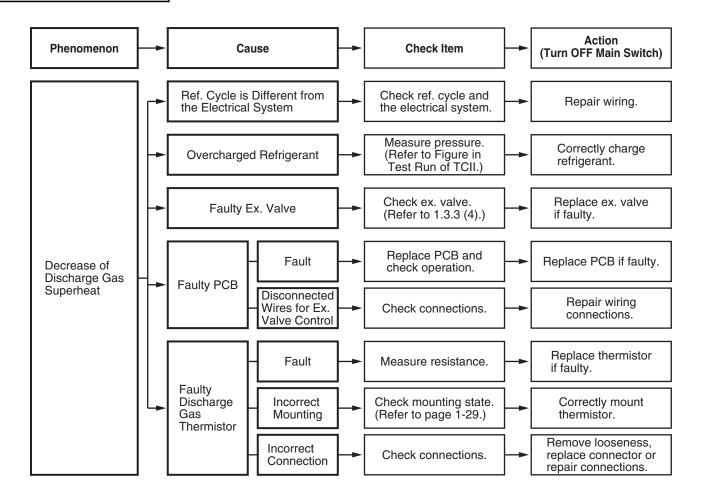
Item Setting Position				
SW2	SW2 Left Side (New Transmission Side)			
JP1 Short Circuited				
CN2	Transmission Wire Connecting			
CN18	Non-Occupied			


Abnormal Transmitting between Inverter and Outdoor PCB1

- "RUN" light flickers and "ALARM" is indicated on the remote control switch.
- The unit No., alarm code and the unit code is alternately indicated on the set temperature section, and the alarm code is indicated on the display of the outdoor unit PCB1.
- ★ This alarm is indicated when abnormality is maintained for 30 seconds after normal transmitting between the outdoor unit PCB1 and ISPM, and also abnormality is maintained for 30 seconds after the micro-computer is automatically reset. The alarm is indicated when the abnormal transmitting is maintained for 30 seconds from starting of the outdoor unit.

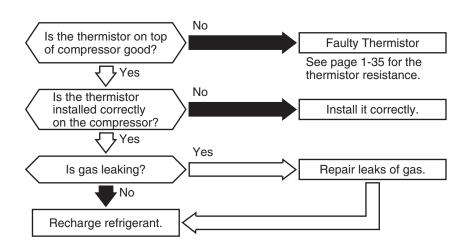
Excessively Low or High Voltage for Inverter

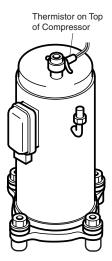

- "RUN" light flickers and "ALARM" is indicated on the remote control switch.
- The unit No., alarm code and the unit code is alternately indicated on the set temperature section, and the alarm code is indicated on the display of the outdoor unit PCB.
- ★ This alarm code is indicated when voltage between terminal "P" and "N" of ISPM is insufficient and its occurrence is three times in 30 minutes. In the case that the occurrence is smaller than 2 times, retry is performed.


- *1): If capacitor has high voltage, perform the high voltage discharge work refer to item 1.3.3.
- *2): Checking procedures of ISPM is indicated in item 1.3.3.

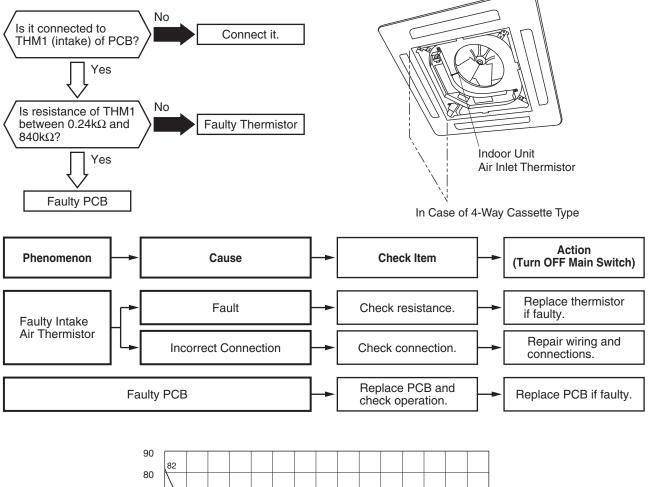
Decrease of Discharge Gas Superheat

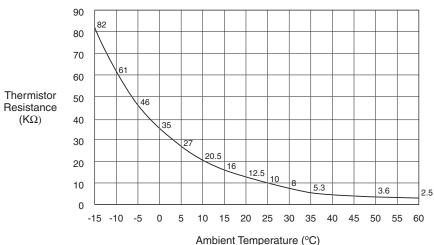
- "RUN" light flickers and "ALARM" is indicated on the remote control switch.
- The unit No., alarm code and the unit code is alternately indicated on the set temperature section, and the alarm code is indicated on the display of the outdoor unit PCB.
- ★ In the case that the discharge gas superheat less than 10 deg. at the top of the compressor is maintained for one hour, the alarm code is indicated.




TROUBLESHOOTING

Excessively High Discharge Gas Temperature at the Top of Compressor Chamber


- "RUN" light flickers and "ALARM" is indicated on the remote control switch.
- The unit No., alarm code and the unit code is alternately indicated on the set temperature section, and the alarm code is indicated on the display of the outdoor unit PCB.
- ★ This alarm is indicated when the following conditions occurs three times within one hour;
 - (1) The temperature of the thermistor on the top of the compressor is maintained higher than 127°C for 10 minutes, or the temperature of the thermistor on the top of the compressor is maintained higher than 140°C for 5 seconds during cooling.
 - (2) The temperature of the thermistor on the top of the compressor is maintained higher than 120°C for 10 minutes, or the temperature of the thermistor on the top of the compressor is maintained higher than 140°C for 5 seconds during heating.



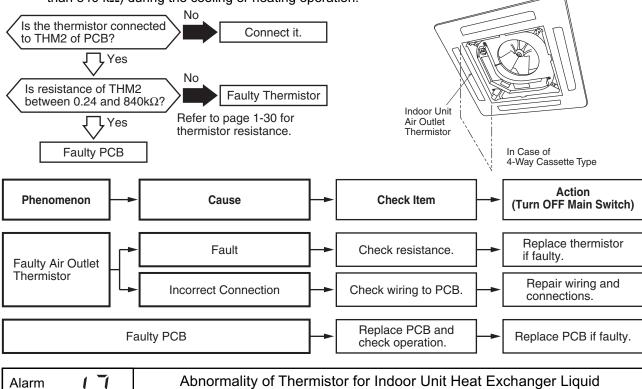
Alarm Abnormality of Thermistor for Indoor Unit Inlet Air Temperature
(Air Inlet Thermistor)

- "RUN" light flickers and "ALARM" is indicated on the remote control switch.
- The unit No., alarm code and the unit code is alternately indicated on the set temperature section, and the alarm code is indicated on the display of the outdoor unit PCB.
- \star This alarm code is indicated when the thermistor is short-circuited (less than 0.24 k Ω) or cut (greater than 840 k Ω) during the cooling or heating operation. The system is automatically restarted when the fault is removed.

Thermistor Characteristics

NOTE:

This data is applicable to the following thermistors;

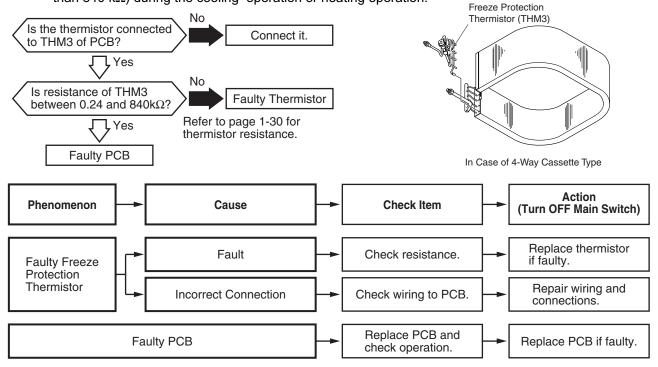

1. Indoor Unit Discharge Air Temperature, 2. Indoor Unit Liquid Refrigerant Temperature, 3 Indoor Unit Intake Air Temperature, 4. Outdoor Air Temperature, 5. Outdoor Unit Evaporating Temperature, 6. Indoor Unit Gas Piping

Code

Abnormality of Thermistor for Indoor Unit Discharge Air Temperature (Air Outlet Thermistor)

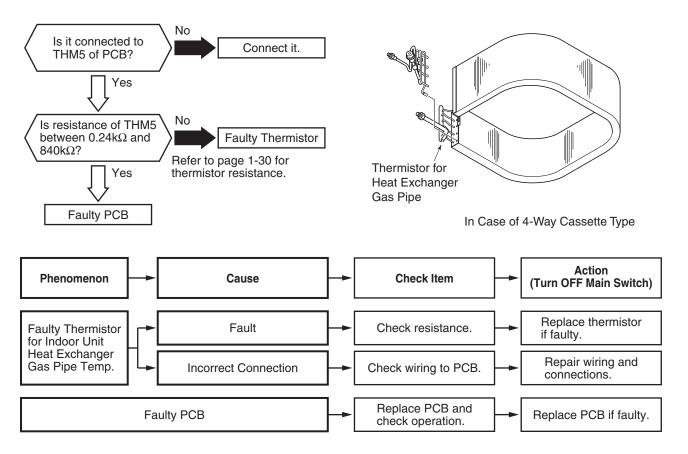
- "RUN" light flickers and "ALARM" is indicated on the remote control switch.
- The unit No., alarm code and the unit code is alternately indicated on the set temperature section, and the alarm code is indicated on the display of the outdoor unit PCB.

 \star This alarm code is indicated when the thermistor is short-circuited (less than 0.24 k Ω) or cut (greater than 840 k Ω) during the cooling or heating operation.

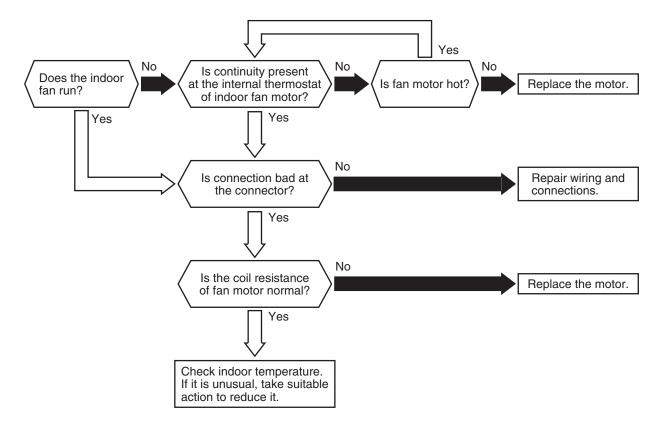


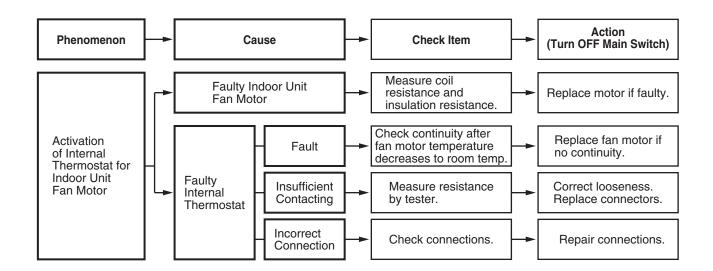
"RUN" light flickers and "ALARM" is indicated on the remote control switch.

• The unit No., alarm code and the unit code is alternately indicated on the set temperature section, and the alarm code is indicated on the display of the outdoor unit PCB.


 \star This alarm code is indicated when the thermistor is short-circuited (less than 0.24 k Ω) or cut (greater than 840 k Ω) during the cooling operation or heating operation.

Refrigerant Pipe Temperature (Freeze Protection Thermistor)

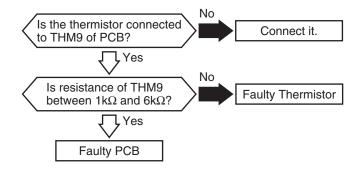

Abnormality of Thermistor for Indoor Unit Heat Exchanger Gas Refrigerant Pipe Temperature (Gas Piping Thermistor)

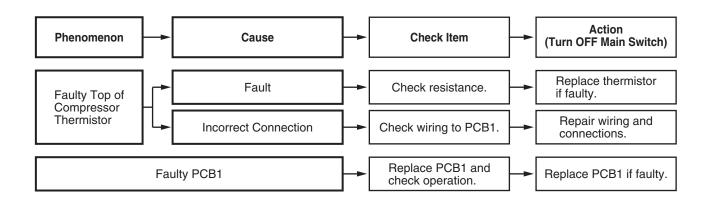

- "RUN" light flickers and "ALARM" is indicated on the remote control switch.
- The unit No., alarm code and the unit code is alternately indicated on the set temperature section, and the alarm code is indicated on the display of the outdoor unit PCB.
- \star This alarm code is indicated when the thermistor is short-circuited (less than 0.24 k Ω) or cut (greater than 840 k Ω) during the cooling or heating operation. The system is automatically restarted when the fault is removed.

Alarm Activation of Protection Device for Indoor Fan Motor
Code (except RCI-Model)

- "RUN" light flickers and "ALARM" is indicated on the remote control switch.
- The unit No., alarm code and the unit code is alternately indicated on the set temperature section, and the alarm code is indicated on the display of the outdoor unit PCB.
- ★ This alarm code is indicated when the temperature of the internal thermostat for the indoor fan motor is higher than 130°C.

Alarm Activation of Protection Device for Indoor Fan Motor (RCI-Model)

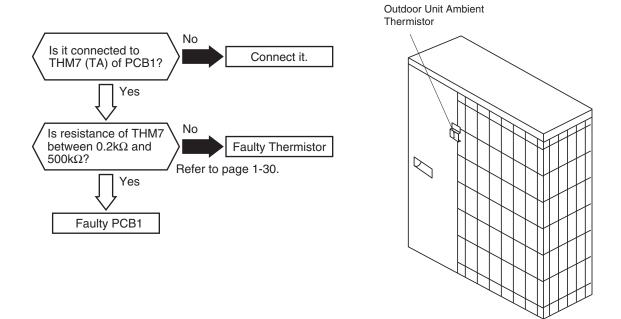

- "RUN" light flickers and "ALARM" is indicated on the remote control switch.
- The unit No., alarm code and the unit code is alternately indicated on the set temperature section, and the alarm code is indicated on the display of the outdoor unit PCB.
- ★ This alarm code is indicated when the following conditions occurs three times in 30 minutes.
 - * Indoor fan rotates less than 70rpm for 5 seconds during operation.

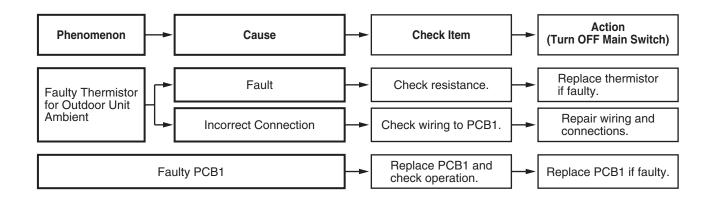


Alarm Code LU

Abnormality of Thermistor for Discharge Gas Temperature (Compressor Thermistor)

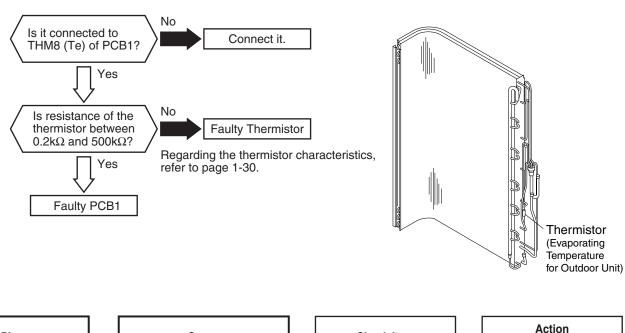
- "RUN" light flickers and "ALARM" is indicated on the remote control switch.
- The unit No., alarm code and the unit code is alternately indicated on the set temperature section, and the unit No. and alarm code are indicated on the display of the outdoor unit PCB.
- \star This alarm code is indicated when the thermistor is short-circuited (less than 1 k Ω) or cut (greater than 6 M Ω) during the cooling or heating operation.

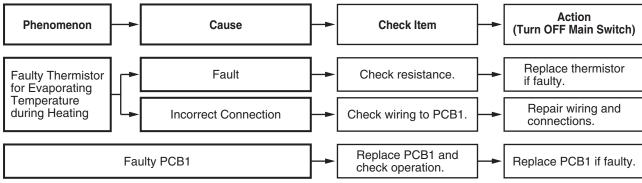



Temperature (°C)	Resistance (kΩ)	Temperature (°C)	Resistance (kΩ)
0	640.44	65	41.79
5	500.66	70	35.11
10	394.16	75	29.61
15	312.41	80	25.07
20	249.20	85	21.31
25	200.00	90	18.17
30	161.45	95	15.55
35	131.06	100	13.35
40	106.96	105	11.50
45	87.74	110	9.93
50	72.32	115	8.60
55	59.97	120	7.47
60	49.96	125	6.51

The resistance value have fudge factor ($\pm 10\%$).

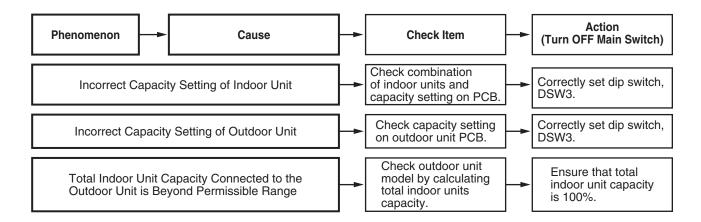
Abnormality of Thermistor for Outdoor Air Temperature (Outdoor Unit Ambient Thermistor)


- "RUN" light flickers and "ALARM" is indicated on the remote control switch.
- The unit No., alarm code and the unit code is alternately indicated on the set temperature section, and the alarm code is indicated on the display of the outdoor unit PCB.
- ★ This alarm code is indicated when the thermistor is short-circuited (less than $0.2 \text{ k}\Omega$) or cut (greater than $500 \text{ k}\Omega$) during running. However, this alarm occurs during test running mode only. In the case that the thermistor is abnormal during running, operation continues based on the assumption that the outdoor temperature, is 35°C (Cooling) / 6°C (Heating).



Abnormality of Thermistor for Evaporating Temperature during Heating Operation (Outdoor Unit Evaporating Thermistor)

- "RUN" light flickers and "ALARM" is indicated on the remote control switch.
- The unit No., alarm code and the unit code is alternately indicated on the set temperature section, and the alarm code is indicated on the display of the outdoor unit PCB.
 If abnormality with the thermistor is found, check all the thermistors as shown below.
- \star This alarm code is indicated when the thermistor is short-circuited (less than 0.2 k Ω) or cut (greater than 500 k Ω) during operation. The evaporating thermistor during the heating operation is attached to the heat exchanger as shown below figure.



Alarm Incorrect Capacity Setting or Combined Capacity
Code Details and Outdoor Unit

- "RUN" light flickers and "ALARM" is indicated on the remote control switch.
- The unit No., alarm code and the unit code is alternately indicated on the set temperature section, and the alarm code is indicated on the display of the outdoor unit PCB.
- ★ This alarm code is indicated when the total indoor unit capacity is not equal to the combined outdoor unit capacity.

NOTE:

In case of H-LINK system, this alarm code is indicated when DSW4 of outdoor unit PCB and DSW5 of indoor unit PCB are incorrectly set.

In this case, set correctly DSW4 and DSW5 after turning off main switch.

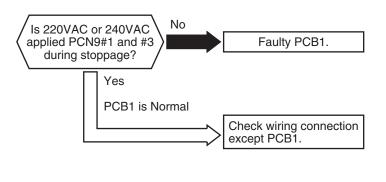
Incorrect Indoor Unit No. Setting

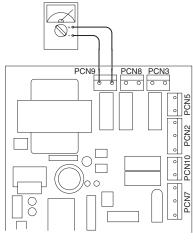
- "RUN" light flickers and "ALARM" is indicated on the remote control switch.
- The unit No., alarm code and the unit code is alternately indicated on the set temperature section, and the alarm code is indicated on the display of the outdoor unit PCB.
- ★ This alarm code is indicated 3 minutes after power is supplied to the outdoor unit when the indoor unit No. connected to the outdoor unit is duplicated by setting of RSW.
- ★ This alarm code is indicated that it is connected the same indoor unit number in the same refrigerant cycle.

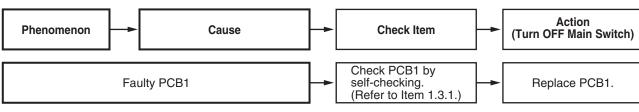
In the case of H-Link System, this alarm code is indicated when DSW4 of the outdoor unit PCB and DSW5 of the indoor unit PCB are incorrectly set.

In this case, set correctly DSW4 and DSW5 after turning off Main Switch.

Alarm Code

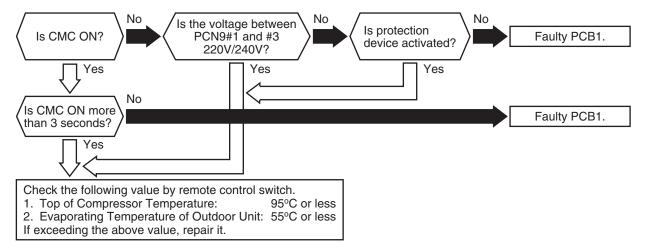

Incorrect Combined Unit between Indoor Unit and Outdoor Unit

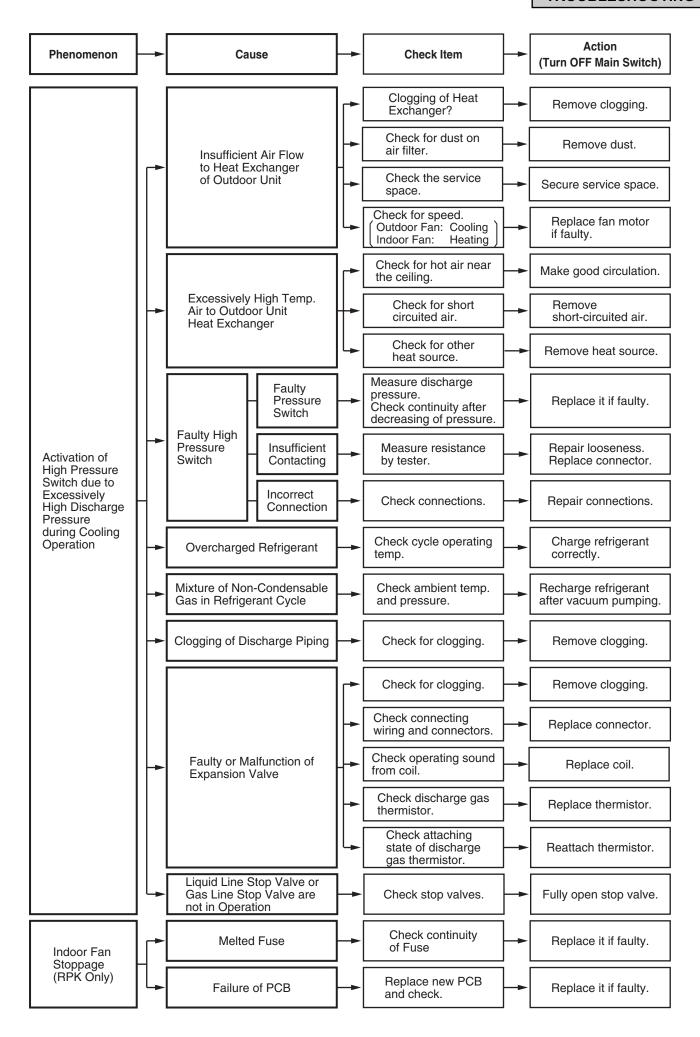

- "RUN" light flickers and "ALARM" is indicated on the remote control switch.
- The unit No., alarm code and the unit code is alternately indicated on the set temperature section, and the alarm code is indicated on the display of the outdoor unit PCB.
- ★ This alarm code is indicated when the indoor unit does not suit for this outdoor unit.

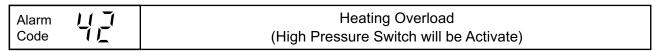

Alarm Code

Abnormality of Picking up Circuit for Protection (Outdoor Unit)

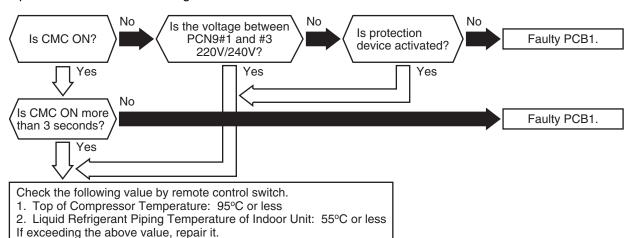
- "RUN" light flickers and "ALARM" is indicated on the remote control switch.
- The unit No., alarm code and the unit code is alternately indicated on the set temperature section, and the alarm code is indicated on the display of the outdoor unit PCB.
- ★ This alarm code is indicated when AC 220V or 240V is supplied to voltage PCN9#1 and #3 on PCB1 in the outdoor unit during CMC is opened.

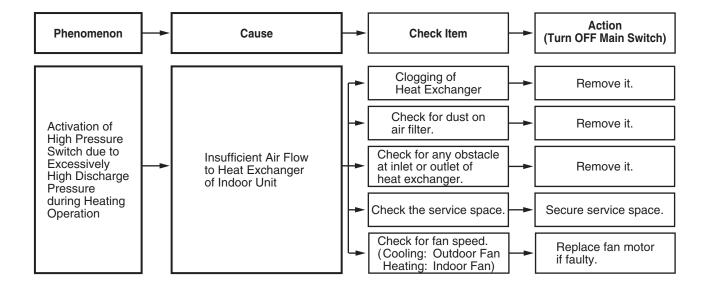


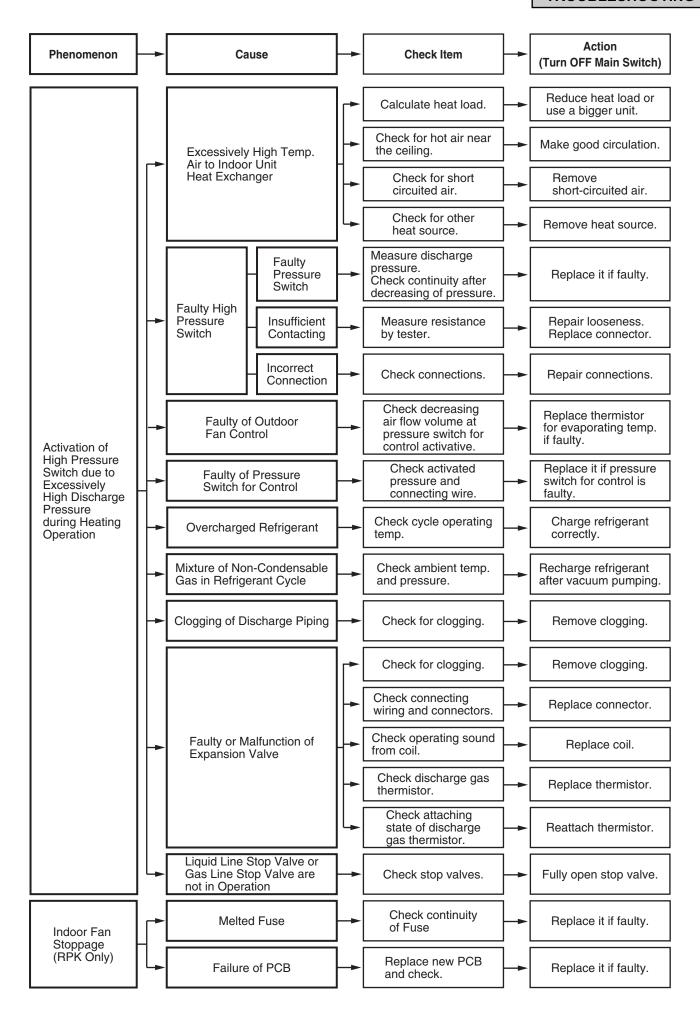



TROUBLESHOOTING

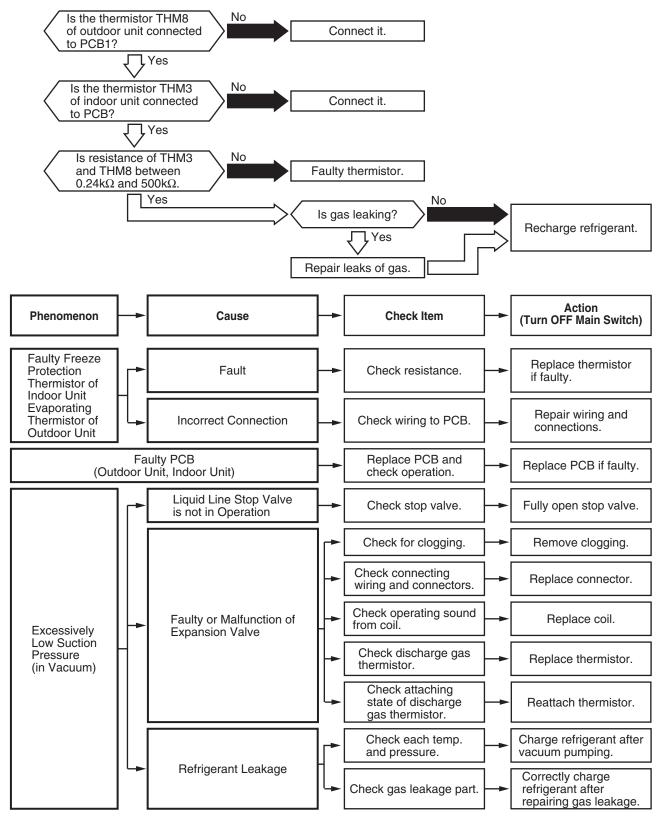
Alarm Code	4 ;	Cooling Overload (High Pressure Switch will be Activate)
Code	• •	(Flight Flessure Switch will be Activate)


This alarm code is indicated when the protection device is activated at following condition. Evaporating temperature of outdoor unit is more than 55 degree and top of compressor temperature is more than 95 degree.



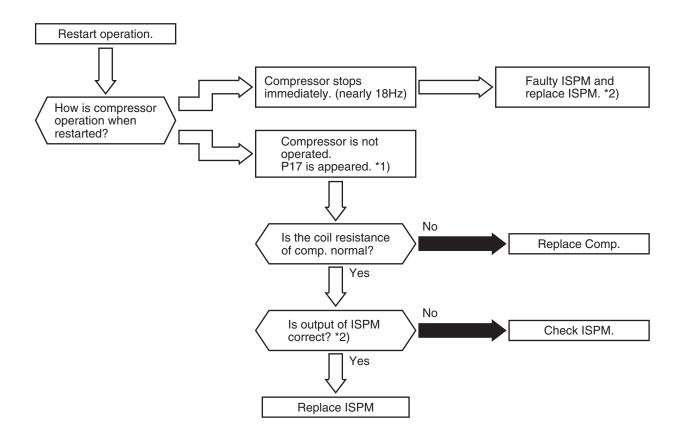


This alarm code is indicated when the protection device is activated at following condition. Liquid refrigerant piping temperature of indoor unit is more than 55 degree and top of compressor temperature is more than 95 degree.



Activation to Protect System from Excessively Low Suction Pressure (Protection from Vacuum Operation)

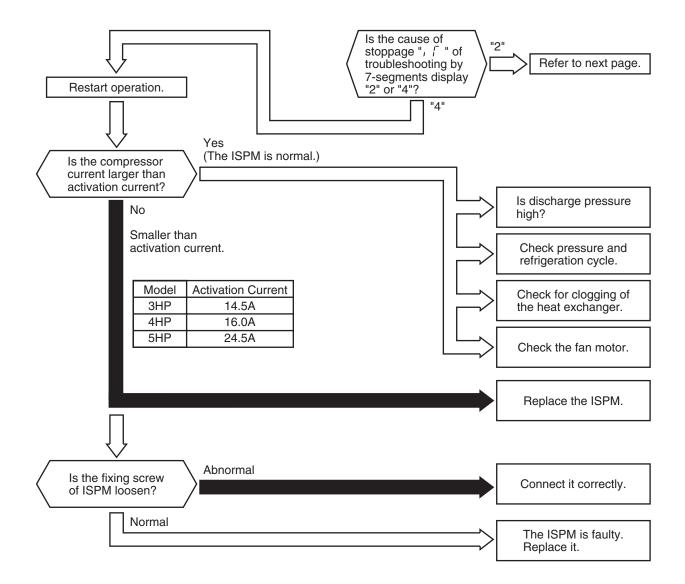
- "RUN" light flickers and "ALARM" is indicated on the remote control switch.
- The unit No., alarm code and the unit code is alternately indicated on the set temperature section, and the alarm code is indicated on the display of the outdoor unit PCB.
- ★ In the case that the evaporating temperature (Cooling: Liquid Refrigerant Piping Temp. of Indoor Unit, Heating: Evaporating Temp. of Outdoor Unit) is lower than -35 deg. retry operation is performed 3 minutes after compressor stoppage.


However, when the state occurs more than 3 times including 3 in one hour, this alarm code is indicated.

Alarm Code Abnormality of Current Transformer (0A Detection)

- "RUN" light flickers and "ALARM" is indicated on the remote control switch.
- The unit No., alarm code and the unit code is alternately indicated on the set temperature section, and the alarm code is indicated on the display of the outdoor unit PCB.
- ★ This alarm code is indicated when the current transformer is abnormal (0A detection) and its state occurs more than 3 times in 30 minutes.

Condition of Activation: When the frequency of compressor is maintained at 15 to 18Hz after compressor is started, one of the absolute value of running current at each phase (Phase U+, Phase U-, Phase V+, Phase V-) is less than 0.5A (including 0.5A).

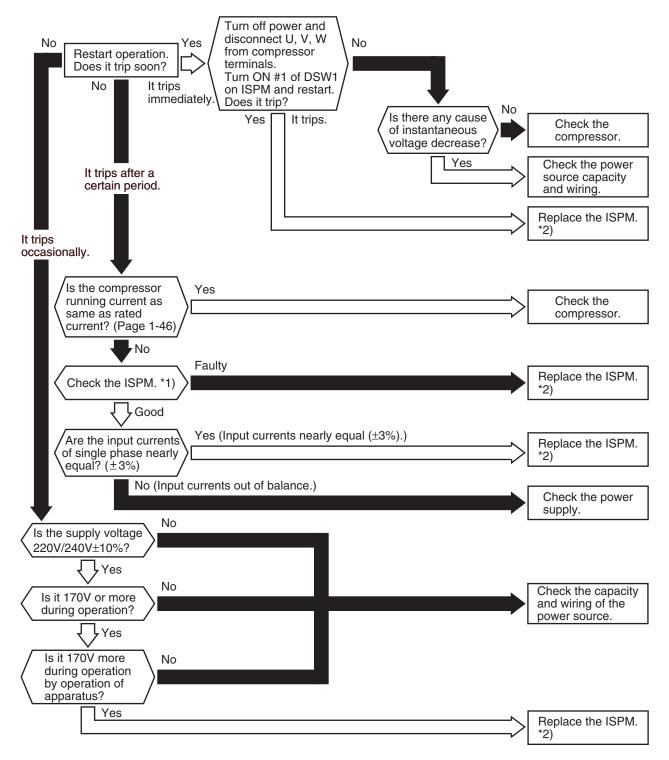


- *1): P17 is shown at 7-segment on the outdoor unit PCB.
- *2): Perform the high voltage discharge work by referring to 1.3.3 before checking and replacing the inverter parts.

Activating Protection Against Instantaneous Overcurrent of Inverter (1)

- "RUN" light flickers and "ALARM" is indicated on the remote control switch.
- The unit No., alarm code and the unit code is alternately indicated on the set temperature section, and the alarm code is indicated on the display of the outdoor unit PCB.
- ★ This alarm code is indicated when the any alarm code of 51, 52, 53 and 54 is activated 3 times including 3 in 30 minutes. Retry operation is performed up to the occurrence of 2 times.

Conditions: Inverter current with 105% of the rated current, (1) runs continuously for 30 seconds or (2) runs intermittently and the accumulated time reaches up to 3.5 minutes, in 10 minutes.



^{*1):} Before replacing or the checking of inverter components, refer to item 1.3.3 regarding electrical discharge.

Activating Protection Against Instantaneous Overcurrent of Inverter (2)

- "RUN" light flickers and "ALARM" is indicated on the remote control switch.
- The unit No., alarm code and the unit code is alternately indicated on the set temperature section, and the alarm code is indicated on the display of the outdoor unit PCB.
- ★ This alarm code is indicated when the any alarm code of 51, 52, 53 and 54 occurs 3 times including 3 in 30 minutes. Retry operation is performed up to the occurrence of 2 times.

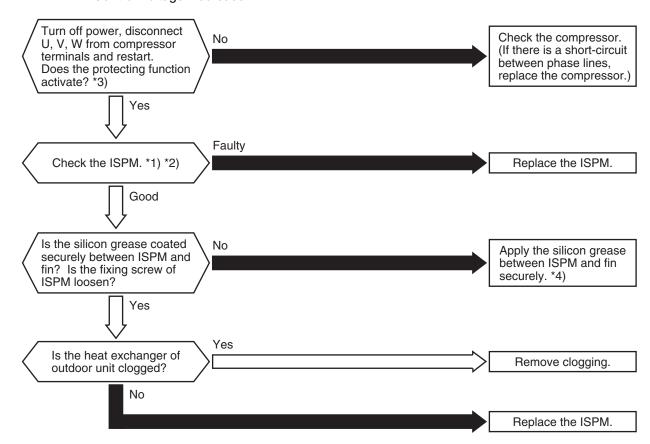
Conditions: Inverter current with 150% of the rated current.

- 1*): Regarding the checking method for the ISPM, refer to item 1.3.3 (2).
- 2*): Before replacing the ISPM, refer to item 1.3.3 (1) regarding electrical discharge.

Protection Activation of ISPM

- "RUN" light flickers and "ALARM" is indicated on the remote control switch.
- The unit No., alarm code and the unit code is alternately indicated on the set temperature section, and the alarm code is indicated on the display of the outdoor unit PCB.
- ★ ISPM have detecting function of abnormality.

 This alarm is indicated when the any alarm code of 51, 52, 53 and 54 occurs the abnormality 3 times in 30 minutes including 3. Retry operation is performed up to the occurrence of 2 times.

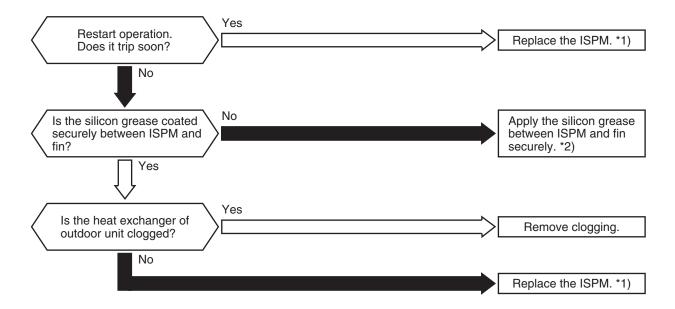

Conditions: Abnormal Current to the ISPM such as Short Circuited or Grounded

or

Abnormal Temperature of the ISPM

or

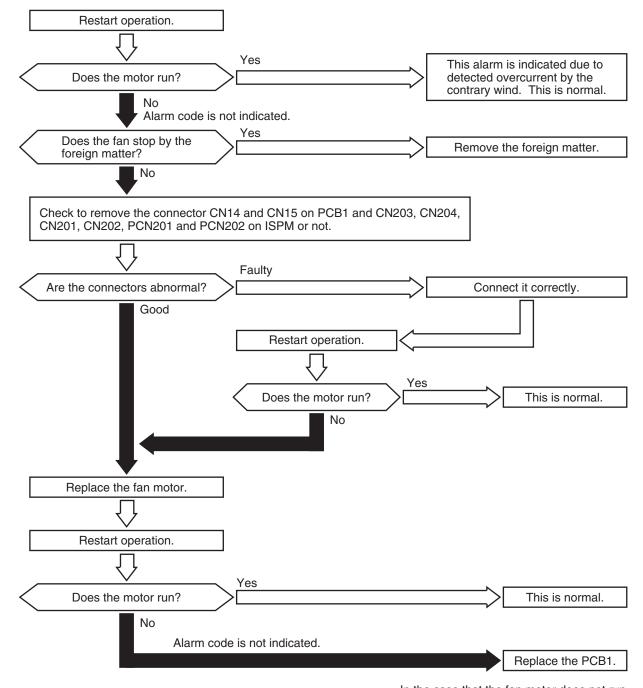
Control Voltage Decrease



- 1*): Before replacing the ISPM, refer to item 1.3.3 (1) regarding electrical discharge.
- 2*): Regarding the checking of the ISPM, refer to item 1.3.3 (2).
- 3*): Turn ON the No.1 switch of the dip switch DSW1 on ISPM when restarting with disconnecting the terminals of the compressor. After troubleshooting, turn OFF the No.1 switch of the dip switch DSW1 on ISPM.
- 4*): Silicone grease (P22760) is available as a spare parts.

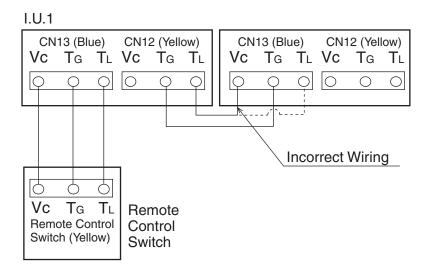
Activating Protection Against Temperature Increasing of Inverter Fin

- "RUN" light flickers and "ALARM" is indicated on the remote control switch.
- The unit No., alarm code and the unit code is alternately indicated on the set temperature section, and the alarm code is indicated on the display of the outdoor unit PCB.
- ★ This alarm is indicated when the any alarm code of 51, 52, 53 and 54 occurs the abnormality 3 times in 30 minutes including 3. Retry operation is performed up to the occurrence of 2 times.

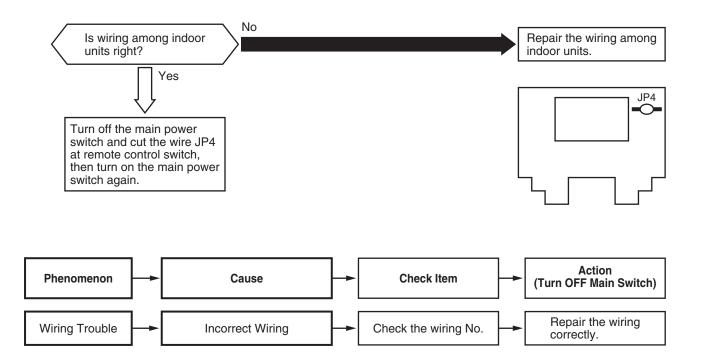

Conditions: ISPM Thermistor is more than 100 deg.

- 1*): Before replacing the ISPM, refer to item 1.3.3 (1) regarding electrical discharge.
- 2*): Silicone grease (P22760) is available as a spare parts.

Alarm Code Abnormality of Fan Motor Protection


- "RUN" light flickers and "ALARM" is indicated on the remote control switch.
- The unit No., alarm code and the unit code is alternately indicated on the set temperature section, and the unit No. and alarm code are indicated on the display of the outdoor unit PCB.
- ★ This alarm is indicated when the revolution pulse output from the fan motor is 10rpm or less and the reverse revolution signal is detected. The fan motor is stopped once, and restarted after 10 seconds. It occurs more than 10 times in 30 minutes, this alarm is indicated. The abnormality occurs when the fan motor is stopped.

In the case that the fan motor does not run even the PCB1 is replaced, replace ISPM.


Incorrect Wiring Among Indoor Units

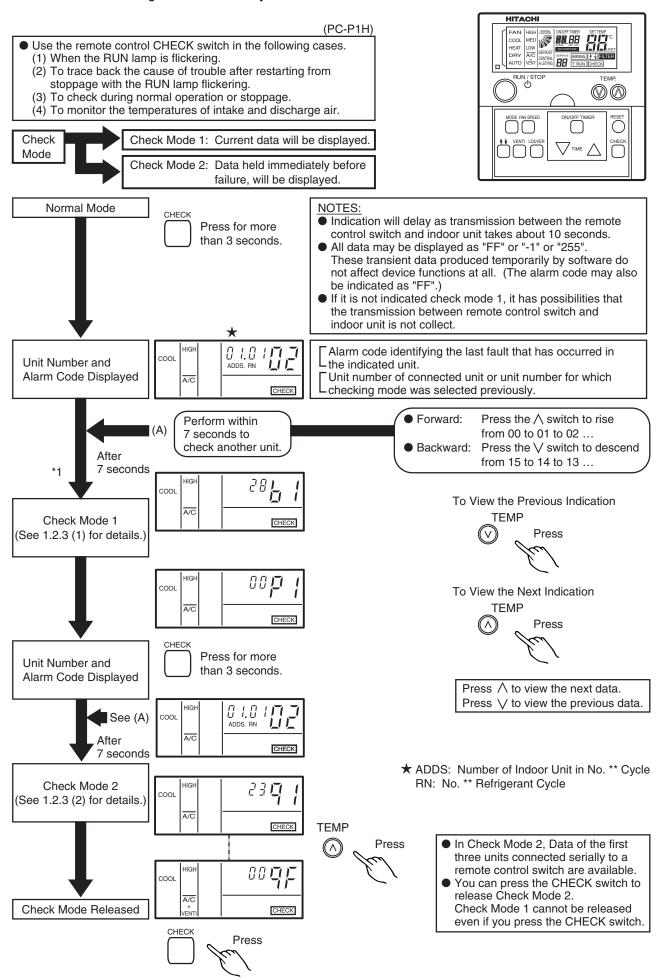
- ★ This alarm code is indicated only when remote control switch PC-2H2 is used being connected to indoor unit.
- ★ This alarm occurs in the case of incorrect connection like that TL terminal is connected to Vc terminal as below when indoor units are wired.

The unit No. and unit code are as below regardless of the indoor unit.

Unit No. **00**Cycle System **00**Unit Code **E.00**

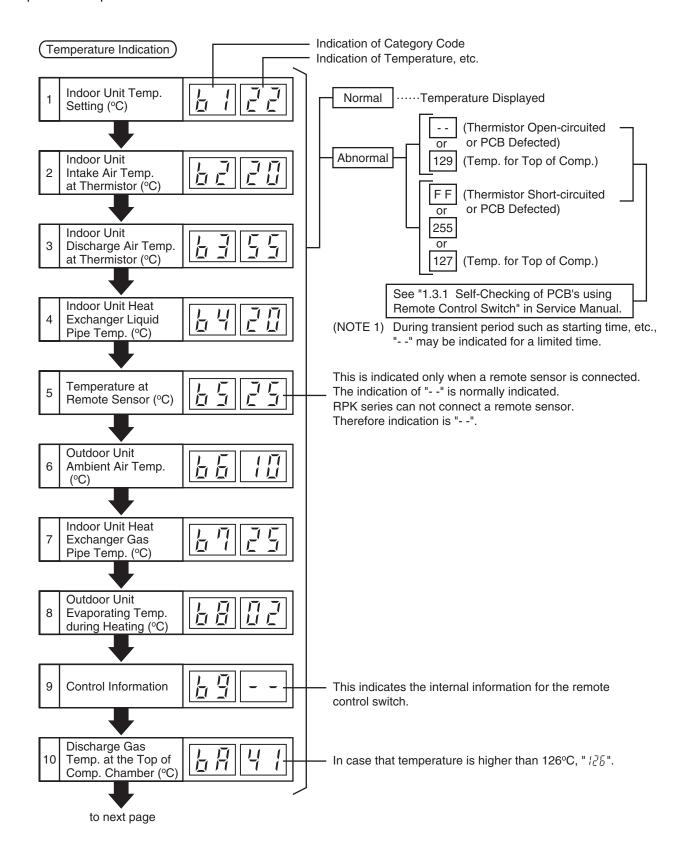
TROUBLESHOOTING

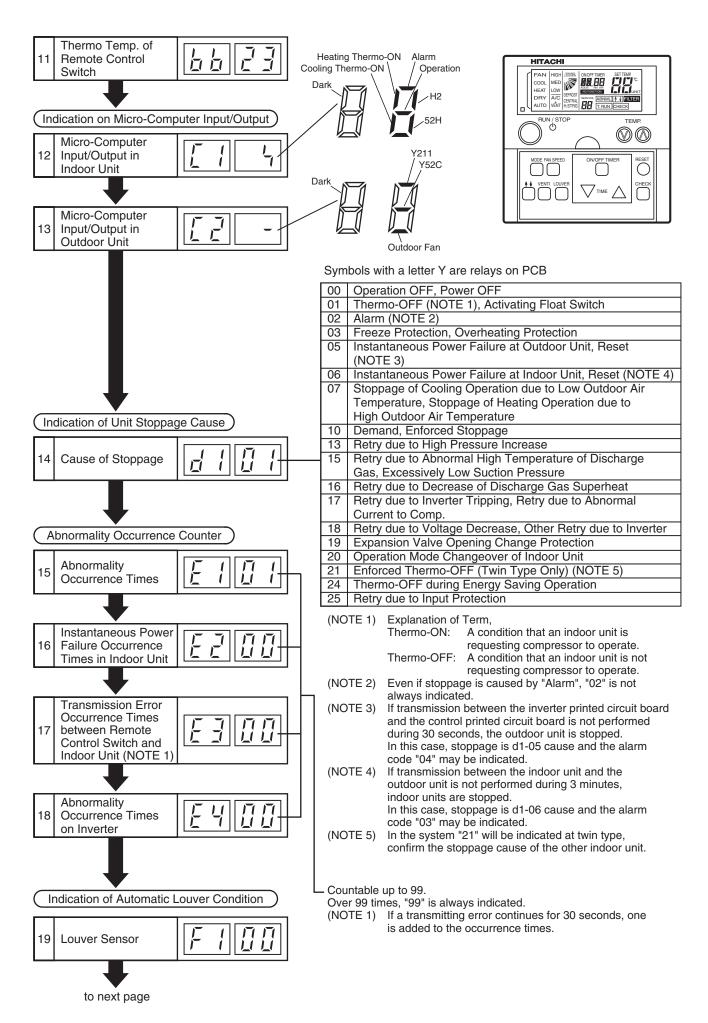
Alarm Code		Compressor Protection
---------------	--	-----------------------

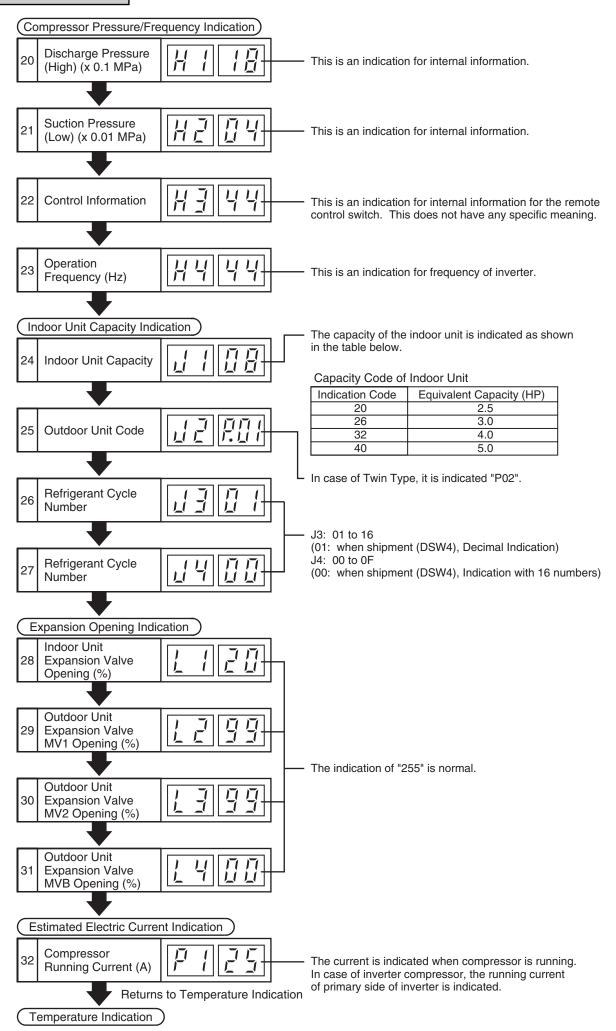

★ This alarm code appears when one of the following alarms occurs three times within 6 hours, which may result in serious compressor damages, if the outdoor unit is continuously operated without removing the cause.

Alarm Code:	Content of Abnormality
02	Tripping of Protection Device in Outdoor Unit
07	Decrease in Discharge Gas Superheat
08	Increase in Discharge Gas Temperature
41	Cooling Overload
42	Heating Overload
47	Low Pressure Decrease Protection Activating

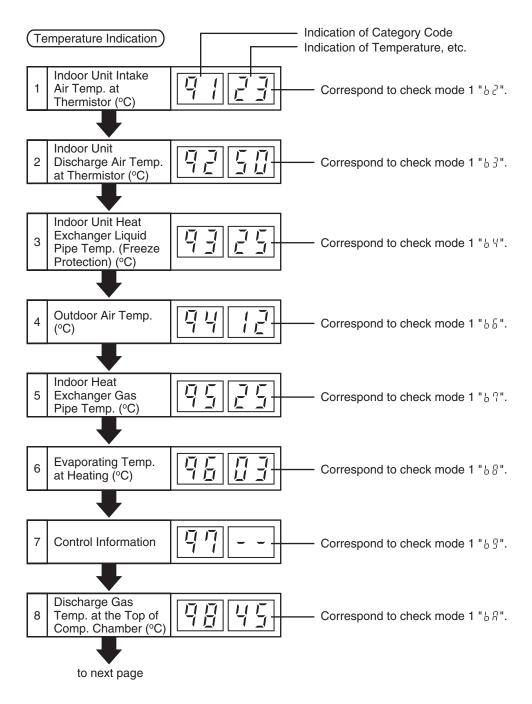
These alarms are able to be checked by the CHECK Mode 1. Follow the action indicated in each alarm chart.

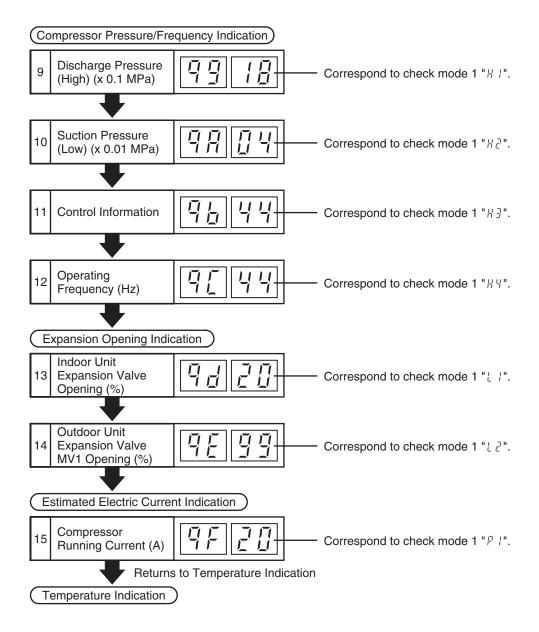

These alarms are cleared only by turning OFF the main power switch to the system. <u>However</u>, <u>careful attention is required before starting</u>, <u>since there is a possibility which will result in serious damages to the compressors</u>.


1.2.3 Troubleshooting in Check Mode by Remote Control Switch


(1) Contents of Check Mode 1

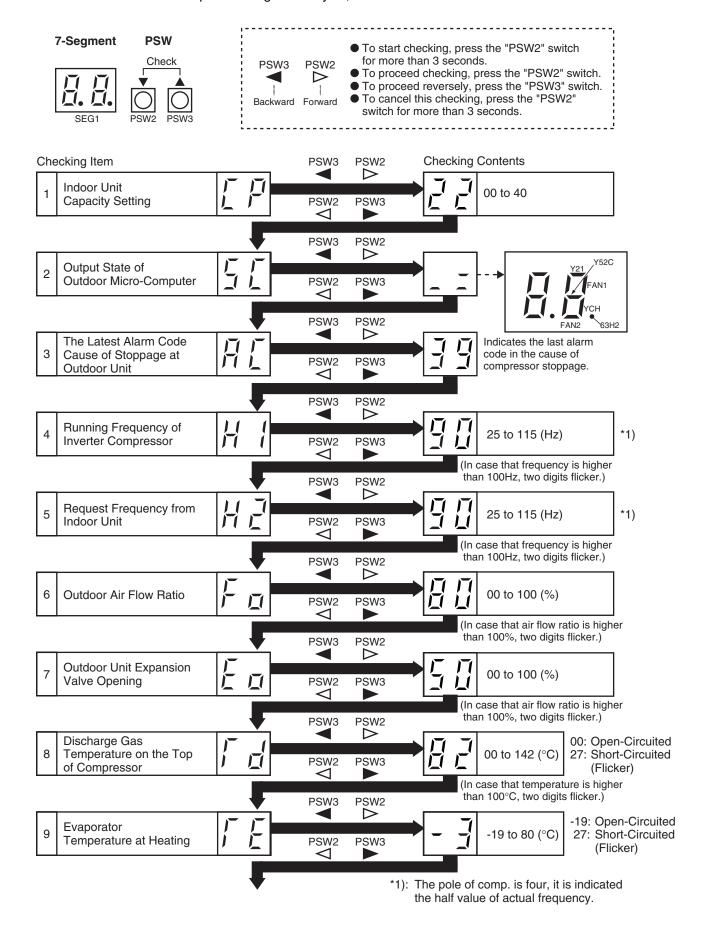
The next indication is shown by pressing Λ the part of "TEMP" switch. If the V part of "TEMP" switch is pressed the previous indication is shown.

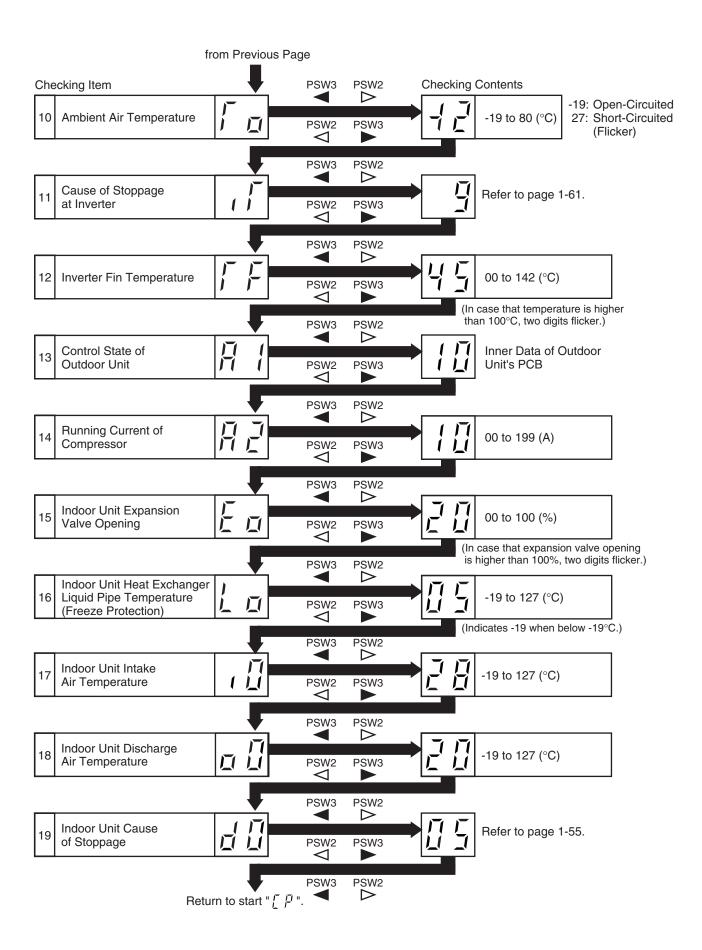

TROUBLESHOOTING


(2) Contents of Check Mode 2

The latest data of the first three indoor units only connected serially are indicated when more than three indoor units are connected to one remote control switch.

By pressing the Λ part of "TEMP" switch, the next display is indicated, If the V part of "TEMP" switch is pressed, the previous display is indicated.


TROUBLESHOOTING



1.2.4 Troubleshooting by 7-Segment Display

(1) Checking Method by 7-Segment Display

By using the 7-segments and check switch (PSW) on the PCB1 in the outdoor unit, operation conditions and each part of refrigeration cycle, can be checked.

- 1.2.5 Protection Control Code on 7-Segment Display
- (1) Protection control code is displayed on 7-segment when a protection control is activated.
- (2) Protection control code is displayed while function is working, and goes out when released.
- (3) When several protection control are activated, code number with higher priority will be indicated (see below for the priority order).
 - (a) Higher priority is given to protection control related to frequency control than the other.

<Priority Order>

- * Low Pressure Ratio Protection
- * High Pressure Ratio Protection
- * High-Pressure Increase Protection
- * Input Protection
- * Current Protection
- * Discharge Gas Temperature Increase Protection
- * Frost Protection
- (b) In relation to retry control, the latest retrial will be indicated unless a protection control related to frequency control is indicated.

Со	de	Protection Control	
ŗ	<u> </u>	Low Pressure Ratio Control	
Ţ		High Pressure Ratio Control	
ŗ	17((High-Pressure Increase Protection	
Ţ)(_	Current Protection	
Ţ]-[-	Input Protection	
F	14	Inverter Module Temperature Increase Protection	

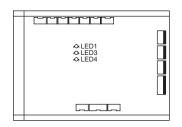
Co	de	Protection Control	
ŗ	しげ	Discharge Gas Temperature Increase Protection	
Ţ	<u> </u>	Frost Protection	
٢	11	Inverter Trip Retry	
Ţ		Insufficient Voltage/Excessively High Voltage Retry	
ווו		Imbalanced Voltage Protection	

- Retry indication continues for 30 minutes unless a protection control is indicated.
- Retry indication disappears if the stop signal comes from all rooms.

NOTE:

The protection control code being indicated on 7-segment display is changed to an alarm code when the abnormal operation occurs. Also, the same alarm code is indicated on the remote control switch.

		Cause of Stoppage for	Remark		
Code	Cause	Corresponding Unit	Indication during Retry	Alarm Code	
1	Automatic Stoppage of Transistor Module (IPM Error) (Over Current, Decrease Voltage, Increase Temperature)	17	ρŋ	53	
Ľ.	Instantaneous Over Current	177	₽ŋ	55	
3	Inverter Fin Thermistor Error, Protection	17	Pŋ	54	
4	Electronic Thermal Activation	17	Pη	52	
5	Inverter Voltage Decrease	<i> []</i>	PB	88	
5	Increase Voltage	<i>\B</i>	PB	88	
B	Abnormal Current Sensor	17	Pη	51	
9	Instantaneous Power Failure Detection	<i> []</i>	-	-	
Ŀ	Reset of Micro-Computer for Inverter	18	-	-	
Ľ	Earth Fault Detection for Compressor (Only Starting)	17	Pη	53	
ď	Abnormal Power Source Phase	18	-	-	
	Increase Input	25	PB	_	


TROUBLESHOOTING

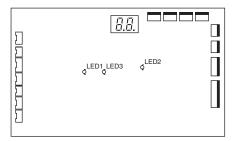
1.2.6 Function of LEDs

(1) Printed Circuit Board in Indoor Unit (* Following figure shows a separated-board type PCB.)

RCI Series PCB1 PCB2 OLED1 OLED1

RPI, RCD and RPC Series

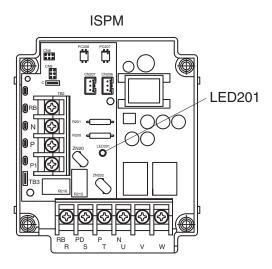
■ LED Functions on Indoor Unit Printed Circuit Board for Control


Pa	rt Name	Contents of Functions		Remarks
1	LED1	This LED1 indicates the transmission state between		
	(Red)	the indoor unit and remot	e control switch.	
		Normal Condition:	Flickering	_
		Abnormal Condition:	Activated or Deactivated	
2	LED3	This LED3 indicates the t	ransmission state between	
	(Yellow)	the indoor unit and outdo	or unit.	
		Normal Condition:	Flickering One Time/Some Seconds	
		Abnormal Condition:	Activated or Deactivated more	_
			than 30 seconds or Flickering	
			(30 times/1 second)	
3	LED4	This LED4 indicates the power supply (5V) for		
	(Red)	micro-computer.		
		Normal Condition:	Activated	<u> </u>
		Abnormal Condition:	Deactivated	

■ LED Functions on Indoor Unit Printed Circuit Boards for Power Supply (PCB2 for RCI Series only)

Part Name	Contents of Functions		Remarks
LED1	This indicates the	This indicates the voltage between terminals of capacity	
(Red)	C1 on the PCB for	C1 on the PCB for DC fan motor.	
	Activated:	Activated: The voltage between both terminals	
	Deactivated:	of capacity, C is 50±20V or greater. The voltage between both terminals	-
		of capacity, C is 50±20V or smaller.	

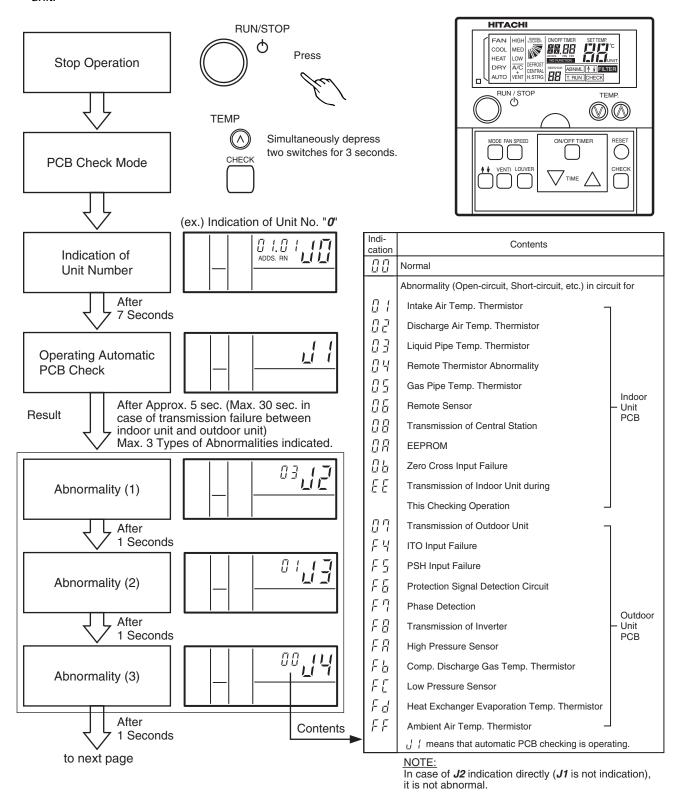
(2) Printed Circuit Board in Outdoor Unit


PCB for Outdoor Unit

■ Dip Switches and LED Functions on Outdoor Unit Printed Circuit Boards

Name of Internal Circuit Board	Part Name		Contents of Functions
Controlling Board:	14	LED1	Power Source for PCB1
PCB1		(Red)	Normal Condition: Activated
			Abnormal Condition: Deactivated
	15	LED2	This LED2 indicates the transmission state between the PCB1
		(Green)	and ISPM.
			Normal Condition: Flickering
			Abnormal Condition: Activated or Deactivated
	16 LED3		This LED3 indicates the transmission state between the
		(Yellow)	indoor unit and outdoor unit.
			Normal Condition: Flickering
			Abnormal Condition: Activated or Deactivated
	18 SEG1		This SEG1 indicate the following: "alarm", "protective safety
			device has tripped" or "checking items".

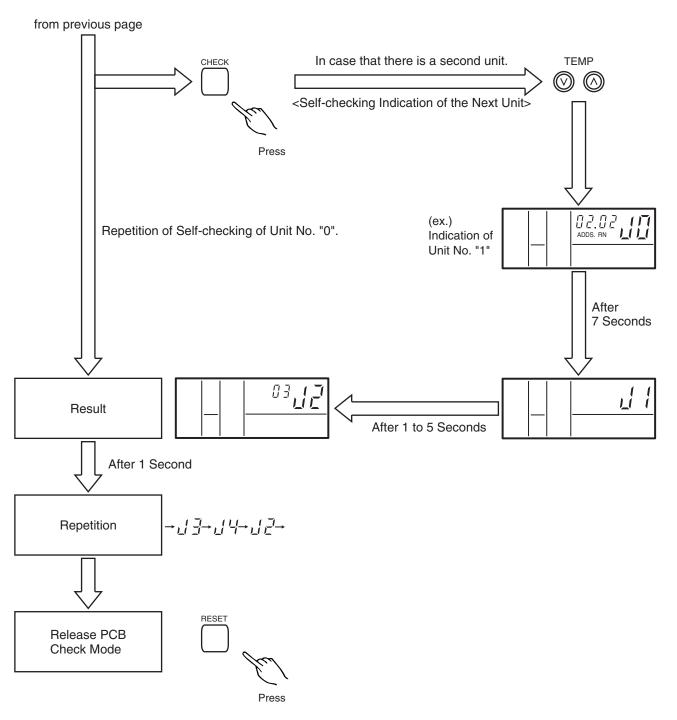
<Inverter Printed Circuit Board on ISPM>


• LED Functions on Outdoor Unit ISPM

Name of Printed Circuit Board	Function	
* LED (Red)	This indicates the voltage between both terminal of capacitor	
201	CB1 and CB2 for inverter part.	
	Activated:	The voltage between both terminals of capacitor, CB is 50V±20V or greater.
	Deactivated:	The voltage between both terminals of capacitor,
		CB is 50V±20V or smaller.

1.3 Procedure of Checking Each Main Parts

1.3.1 Self-Checking of PCBs using Remote Control Switch


The following troubleshooting procedure is utilized for function test of PCBs in the indoor unit and outdoor unit.

When the indoor unit of RPK series is using wireless remote controller (PC-LH3), the above check is used by PC-P1H and operate according to below items.

- (1) Turn OFF of Power Supply
- (2) Disconnect CN25 on PCB(M)
- (3) Connect the Connector of PC-P1H to CN12 or CN13
- (4) Turn ON of Power Supply

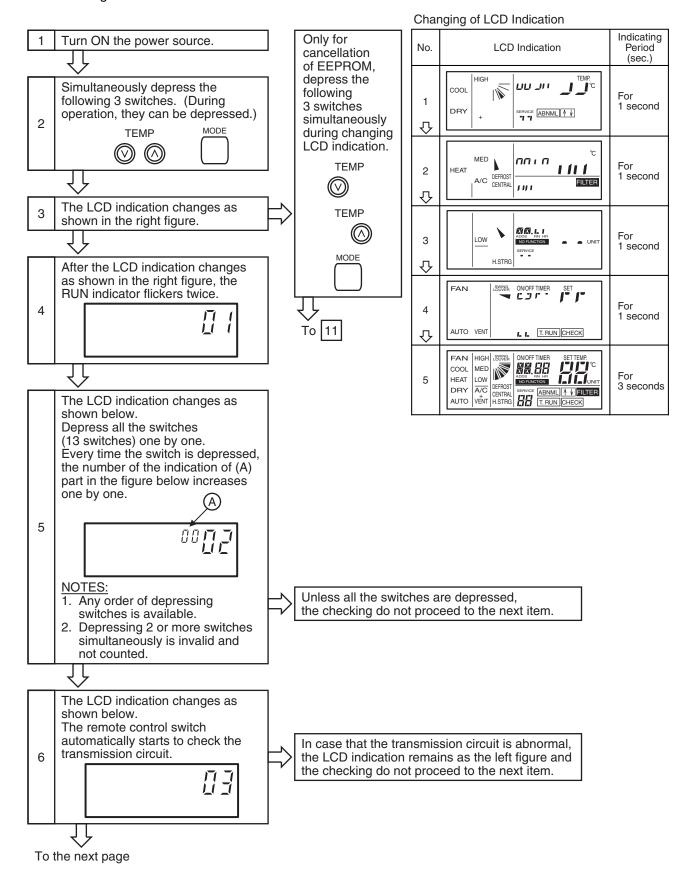
After checking turn OFF again and reconnectable perform the procedure in reverse.

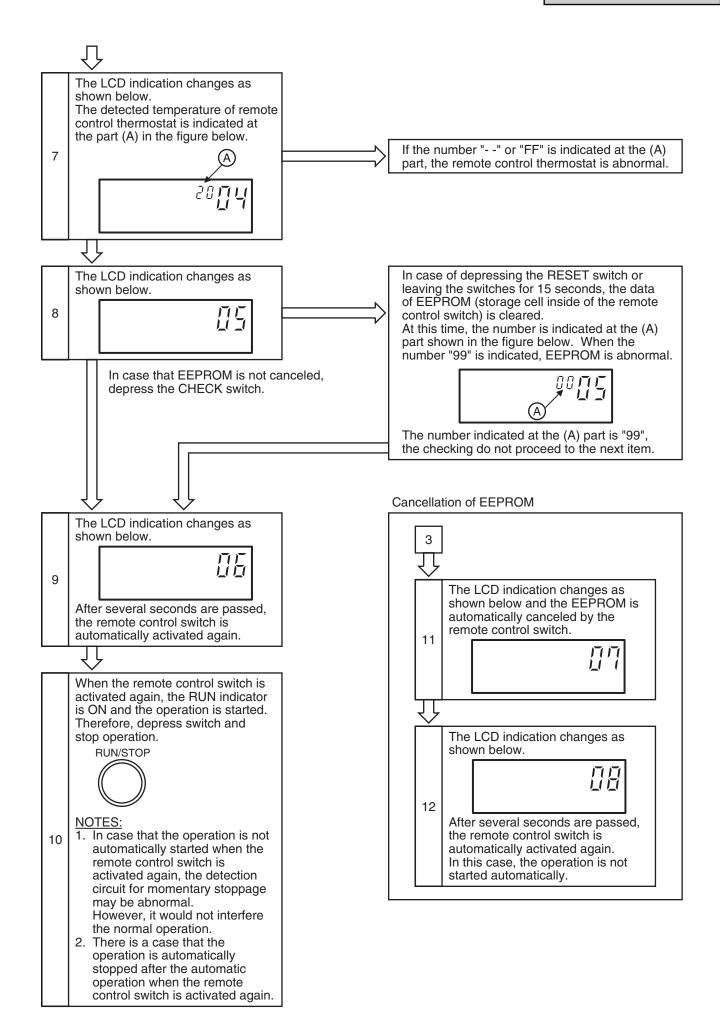
NOTES:

If this indication is continued and "J1" is not shown, this indicates that each one of indoor units is not connected to the remote control switch. Check the wiring between the remote control switch and indoor unit.

- (2) In this troubleshooting procedure, checking of the following part of the PCB's is not available.

 PCB in Indoor Unit: Relay Circuit, Dip Switch, Option Circuit, Fan Circuit, Protection Circuit

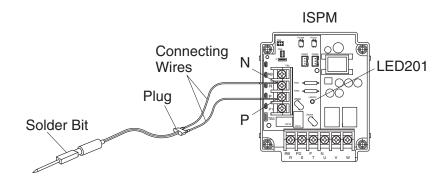

 PCB in Outdoor Unit: Relay Circuit, Dip Switch, Option Circuit
- (3) In the case that this troubleshooting is performed in the system using the central station, indication of the central station may change during this procedure. However, this is not abnormal.


TROUBLESHOOTING

1.3.2 Self-Checking of Remote Control Switch

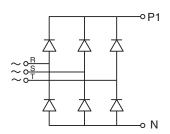
Cases where CHECK switch is utilized.

- 1. If the remote control switch readouts malfunction.
- 2. For regular maintenance check.



- 1.3.3 Procedure of Checking Other Main Parts
- (1) High Voltage Discharge Work for Replacing Parts

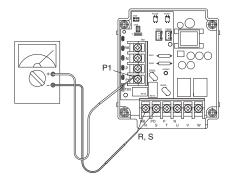
<Perform this high voltage discharge work to avoid an electric shock.> [Procedure]


- (a) Check to ensure that no high voltage exists. If LED201 is ON after start-up and LED201 is OFF after turning OFF the power source, the voltage will decrease lower than DC50V.
- (b) Connect connecting wires to an electrical solder bit.
- (c) Connect the wires to terminals P and N on ISPM. => Discharging is started, resulting in hot solder bit.
- (d) Wait for 2 or 3 minutes and measure the voltage once again. Check to ensure that no voltage is charged.

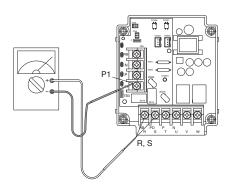
AWARNING

Pay attention not to short-circuit between terminal P and N. If it occurs short-circuit, it may cause a serious damage.

(2) Checking Procedures ISPM
Rectification Parts of Internal Circuit of ISPM (Common)

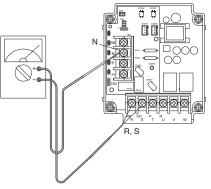

Remove all the terminals of the ISPM before check.

If items (a) to (h) are performed and the results are satisfactory, ISPM is normal. Measure it under 1 k Ω range of a tester.

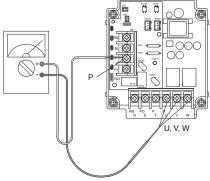

ACAUTION

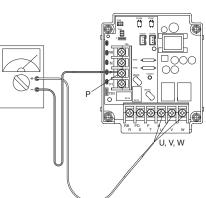
Do not use a digital tester.

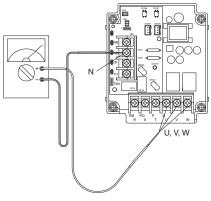
(a) By touching the + side of the tester to the P1 terminal of ISPM and the - side of the tester to R and S of ISPM, measure the resistance. If all the resistances are more than 100 k Ω , it is normal.

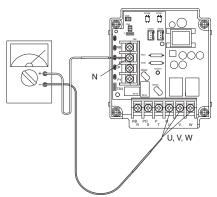

(b) By touching the - side of the tester to the P1 terminal of ISPM and the + side of the tester to R and S of ISPM, measure the resistance. If all the resistances are more than 1 $k\Omega$, it is normal.

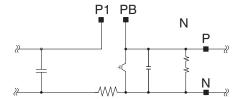
(c) By touching the - side of the tester to the N terminal of ISPM and the + side of the tester to R and S of ISPM, measure the resistance. If all the resistances are more than 100 k Ω , it is normal.


(d) By touching the + side of the tester to the N terminal of ISPM and the - side of the tester to R and S of ISPM, measure the resistance. If all the resistances are more than 1 k Ω , it is normal.

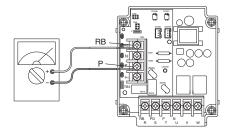

TROUBLESHOOTING


(e) By touching the + side of the tester to the P terminal of ISPM and the - side of the tester to U, V and W of ISPM, measure the resistance. If all the resistances are more than 100 k Ω , it is normal.

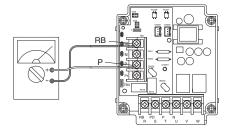

(f) By touching the - side of the tester to the P terminal of ISPM and the + side of the tester to U, V and W of ISPM, measure the resistance. If all the resistances are more than 1 k Ω , it is normal.


(g) By touching the - side of the tester to the N terminal of ISPM and the + side of the tester to U, V and W of ISPM, measure the resistance. If all the resistances are more than 100 $k\Omega,$ it is normal.

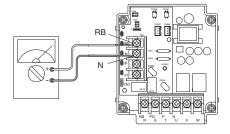
(h) By touching the + side of the tester to the N terminal of ISPM and the - side of the tester to U, V and W of ISPM, measure the resistance. If all the resistances are more than 1 k Ω , it is normal.

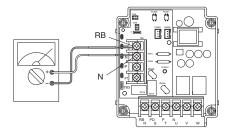


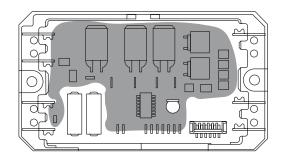
Active Parts of Internal Circuit of ISPM (for 3 and 4HP)

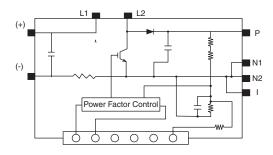


If item (i) to (m) are performed and the results are satisfactory, ISPM is normal. Measure it under 1 k Ω range of a tester. Do not use a digital tester.

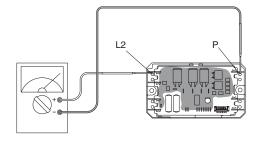

- (i) Perform the item (a) to (h).
- (j) By touching the + side of the tester to the RB terminal of ISPM and the side of the tester to P terminal of ISPM. If the resistance is more than 1 $k\Omega$, it is normal.

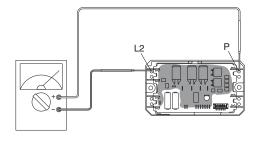

(k) By touching the - side of the tester to the RB terminal of ISPM and the + side of the tester to P terminal of ISPM. If the resistance is more than 100 k Ω , it is normal.


(I) By touching the + side of the tester to the RB terminal of ISPM and the - side of the tester to N terminal of ISPM. If the resistance is more than 90 k Ω , it is normal.

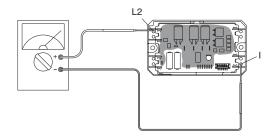


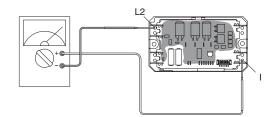
(m) By touching the - side of the tester to the RB terminal of ISPM and the + side of the tester to N terminal of ISPM. If the resistance is more than 90 k Ω , it is normal.

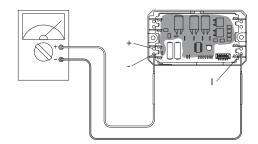

(3) Checking Procedures ACT Module (for 5HP only)
Outer Appearance and Internal Circuit of ACT Module



Remove all the terminals of the ACT module before check. If items (a) to (f) are performed and the results are satisfactory, the ACT module is normal. Measure it under 1 k Ω range of a tester. Do not use a digital tester.


- (a) Check the mounted part is broken or not by visual check.
- (b) By touching the + side of the tester to the L2 terminal of ACT module and the side of the tester to the P terminal of ACT module, measure the resistance. If all the resistances are greater than 100 k Ω , it is normal.


(c) By touching the - side of the tester to the L2 terminal of ACT module and the + side of the tester to the P terminal of ACT module, measure the resistance. If all the resistances are from 1 to 5 k Ω , it is normal.


(d) By touching the + side of the tester to the L2 terminal of ACT module and the - side of the tester to the I terminal of ACT module, measure the resistance. If all the resistances are from 50 to 200 k Ω , it is normal.

(e) By touching the - side of the tester to the L2 terminal of ACT module and the + side of the tester to the I terminal of ACT module, measure the resistance. If all the resistances are greater than 100 k Ω , it is normal.

(f) By touching the + side of the tester to the - terminal of ACT module and the - side of the tester to the I terminal of ACT module, measure the resistance. If all the resistances are less than 100 k Ω , it is normal.

(4) Checking Method of Electronic Expansion Valve

-		
	Indoor Unit Electronic Expansion Valve	Outdoor Unit Electronic Expansion Valve
Locked	Check for the liquid pipe temperature	It is abnormal if the liquid pipe pressure
with	during heating operation.	does not increase during cooling
Fully Closed	It is abnormal if the temperature does	operation.
	not increase.	
Locked	It is abnormal under the following	It is abnormal if the liquid pipe pressure
with	conditions; The temperature of freeze	does not increase and the outlet
Slightly Open	protection thermistor becomes lower	temperature of the expansion valve
	than the suction air temperature when	decreases after the cooling operation
	the unit under checking is stopped and	is started.
	other units are under cooling operation.	
Locked] _, , , ,	It is abnormal under the following
with	Electronic Expansion Valve	conditions; After heating operation for
Fully Open	Freeze Protection Z Thermistor	more than 30 min., the discharge gas
	<u>→</u> /	temperature of compressor is not 10°C
		higher than the condensing temperature
		and there is no other faults such as
		excessive charge of refrigerant, etc.
	│ ┌┙┕┯┙┕┑ ┌┙┕┯┙┕┑	
	Unit Other Units	
	Under Units Checking	
	<u> </u>	
	← ←	

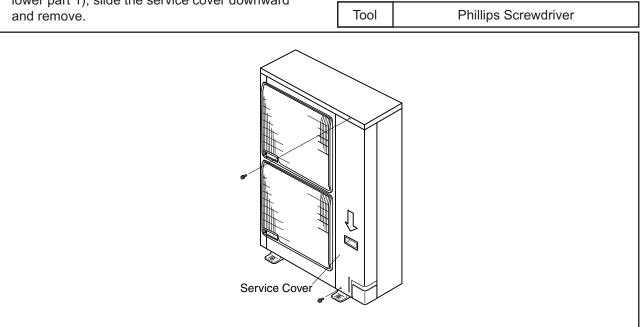
2. SERVICING

2.1 Outdoor Unit

AWARNING

TURN OFF all power source switches.

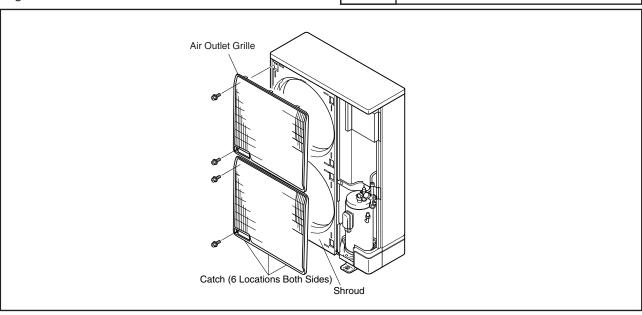
2.1.1 Removing Service Cover


Remove the main parts according to the following procedures.

To reassemble perform the procedures in reverse.

To prevent contamination of the refrigerant with water or foreign particles, do not expose open to atmosphere for long periods.

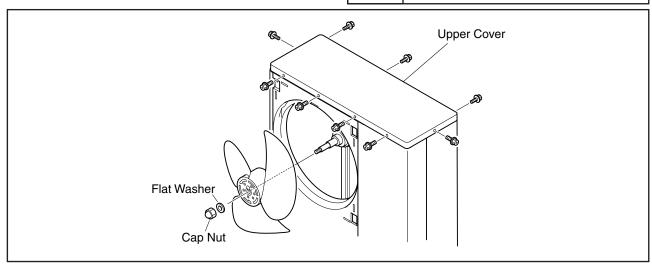
If necessary, seal pipe ends using caps or tape.


Remove the two fixing screws (upper part 1, lower part 1), slide the service cover downward and remove.

2.1.2 Removing Air Outlet Grille

Remove the two (2) fixing screws of the shroud. Lift the air outlet grille holding the lower parts and unhook the extrusion (3 locations) of the air outlet grille from the shroud.

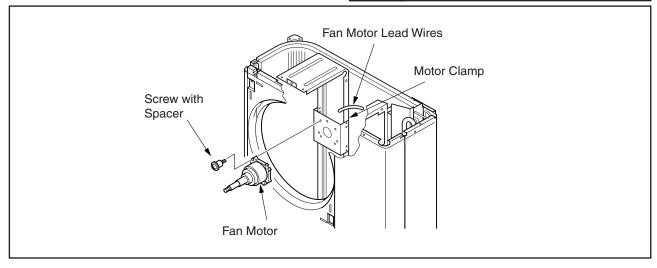
Tool Phillips Screwdriver



TURN OFF all power source switches.

2.1.3 Removing Outdoor Fan

- (1) Remove the service cover according to the item 2.1.1 "Removing Service Cover".
- (2) Remove the air outlet grille according to the item 2.1.2 "Removing Air Outlet Grille".
- (3) Remove the fans by removing the cap nuts and the flat washers fixing the propeller fans onto the motor shaft. If it is difficult to remove the fan, use pullers.
- (4) Remove the eight (8) screws fixing the upper cover and remove the upper cover.

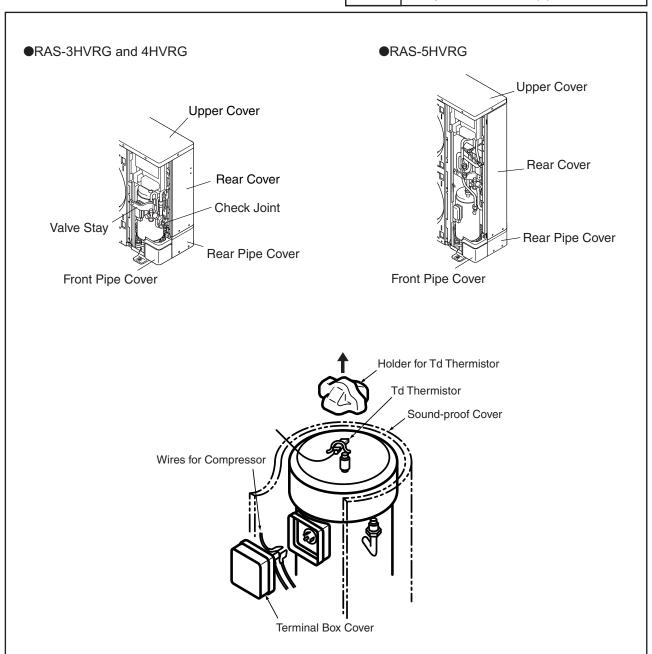

Tool Phillips Screwdriver, Spanner,
Adjustable Wrench or Puller

2.1.4 Removing Outdoor Fan Motor

- (1) Disconnect the connectors for the motors in the electrical box.
- (2) Cut the plastic tie of the motor clamp by using nipper.
- (3) Remove the four (4) fixing screws for the motor.

Tool Nipper, Phillips Screwdriver,
Spanner, Adjustable Wrench or Puller

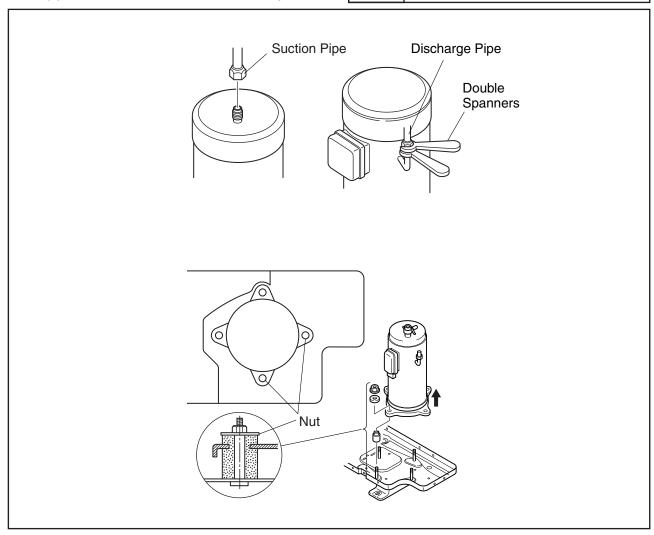
NOTES:


- 1. When mounting the motor, ensure the cables point directly downward. Fix the protection tube edge downward to ensure the water may not keep in it.
- 2. Fix the motor wires onto the motor clamp with a plastic tie to prevent them obstructing the propeller fans.
- 3. Mounting Propeller Fan
 Insert the skidding protection part of fan boss in accordance with the cutting part of the motor shaft, and fix the screw after exserting screw part of the shaft. (Tightening Torque of 8.0 N.m. 80kg.cm)
- 4. When connecting the motor wire, check to ensure that the colors of the connectors on the PCB are matched with wires.
- 5. Firmly fix the air outlet grille to the shroud.

TURN OFF all power source switches.

2.1.5 Removing Compressor

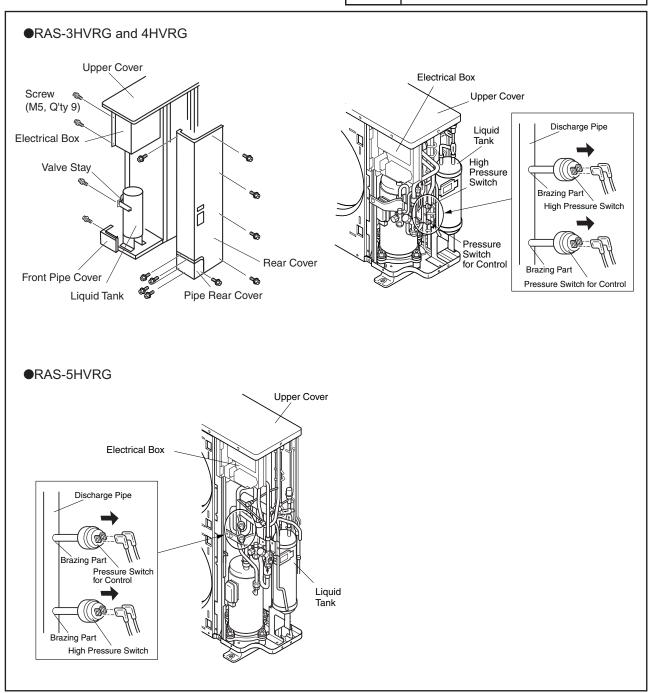
- (1) Remove the service cover according to the item **2.1.1** "Removing Service Cover". If the outdoor unit is installed close to a wall, disconnect the refrigerant pipe and move the outdoor unit away from the wall.
- (2) Collect the refrigerant from the check joint.
- (3) Remove the valve stay.
- (4) Open the soundproof cover of the compressor, remove the terminal cover for the compressor and disconnect the wiring from the compressor terminals. NOTE:
 - Check to ensure each terminal Nos. when connecting the compressor power wires. If incorrectly connected, the compressor will fail due to reverse rotation.
- (5) Remove the soundproof cover, thermistor holder on the compressor and thermistor.


Tool Phillips Screwdriver, Charge Hose,
Adjustable Wrench (2)

TURN OFF all power source switches.

- (6) Disconnect the suction pipe from the compressor.
- (7) Disconnect the discharge pipe from the compressor by using two spanners.
- (8) Remove the two (2) nuts fixing the compressor and remove the compressor by lifting.
 - (a) Check to ensure that the faston terminals of the wires is normal. When a pulling force of 20N or more is required, it is normal.
 - If abnormal, replace the faston terminals with new ones.
 - (b) Check to ensure that wires are firmly fixed.

Tool Phillips Screwdriver, Charge Hose, Adjustable Wrench (2)


NOTES:

- 1. To prevent contamination of the refrigerant with water or foreign particles, do not expose open pipes to atmosphere for long periods. If necessary, seal pipe ends using caps or tape.
- 2. Remove the caps for the new compressor just before replacing the compressor. Seal suction and discharge pipe using tape when mounting to prevent the foreign particles barge in the compressor.
- 3. Check to ensure each terminal Nos. when connecting the compressor power wires. If incorrectly connected, the compressor will fail due to reverse rotation.

TURN OFF all power source switches.

- 2.1.6 Removing High Pressure Switch and Pressure Switch for Control
- (1) Remove the service cover according to the item 2.1.1 "Removing Service Cover".
- (2) Remove the nine (9) M5 screws fixing the rear cover and the five (5) M5 screws fixing the pipe rear cover. Slide the rear cover and pipe cover downward.
- (3) Collect the refrigerant from the check joint according to the item 2.1.5 "Removing Compressor".
 - (a) Disconnect the fasten terminals.
 - (b) Remove the high pressure switch and pressure switch for control from the brazing part by a burner.

Tool Phillips Screwdriver, Charge Hose, Burner

TURN OFF all power source switches.

2.1.7 Removing Coil for Reversing Valve

A DANGER

Do not touch the electrical parts when LED201 (Red) on the ISPM is lit to prevent from an electrical shock.

- (1) Remove the service cover according to the item 2.1.1 "Removing Service Cover".
- (2) RAS-3HVRG and 4HVRG
 - (a) Remove three (3) screws fixing the power plate and turn the one toward the front side. NOTE:

Check to ensure that LED201 (Red) is OFF when turning the power plate.

- (b) Disconnect the PCN6 on the PCB1 of the electrical box.
- (c) Remove the coil for the reversing valve after removing the fixing screw (1 piece).
- RAS-5HVRG
- (a) Remove three (3) screws fixing the power plate and turn the one toward the front side. NOTE:

Check to ensure that LED201 (Red) is OFF when turning the power plate.

- (b) Disconnect the PCN6 connector on the PCB1 of the electrical box.
- (c) Remove the coil for the reversing valve after removing the fixing screw (1 piece).

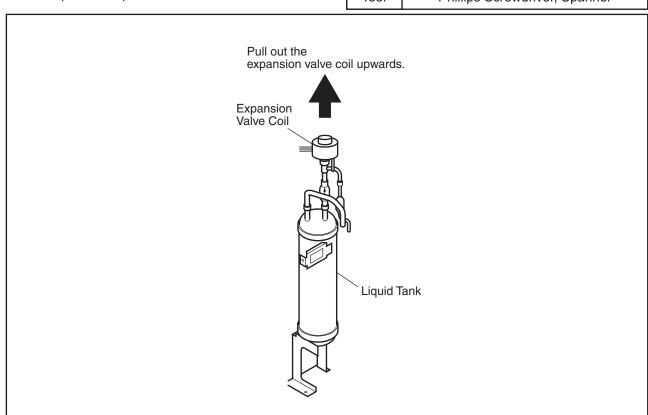
Tool Phillips Screwdriver ●RAS-3HVRG and 4HVRG ●RAS-5HVRG Reversing Valve Electrical Box **Upper Cover** Reversing Valve P-Attaching **Upper Cover** Plate Remove PCN6 Screws PCN6 Fixing Screw for Reversing Valve Coil **Electrical Box** Remove Screws Reversing Valve Coil Compressor Reversing Valve Coil Fixing Screw for Compressor Reversing Valve Coil ISPM ISPM LED201 (Red) LED201 Act Module Fuse (Red) Capacitor Magnetic Noise Filter Power Plate Capacitor Magnetic Contactor Power Plate Noise Filter Reactor In Case of 3HP and 4HP In Case of 5HP

TURN OFF all power source switches.

2.1.8 Removing Coil for Expansion Valve

A DANGER

Do not touch the electrical parts when LED201 (Red) on the ISPM is lit to prevent from an electrical shock.


- (1) Remove the service cover according to the item 2.1.1 "Removing Service Cover".
- (2) Remove the three (3) screws fixing the electrical box and turn the power plate toward the front side as shown in the item **2.1.7** "Removing Coil for Reverse Valve".

 NOTE:

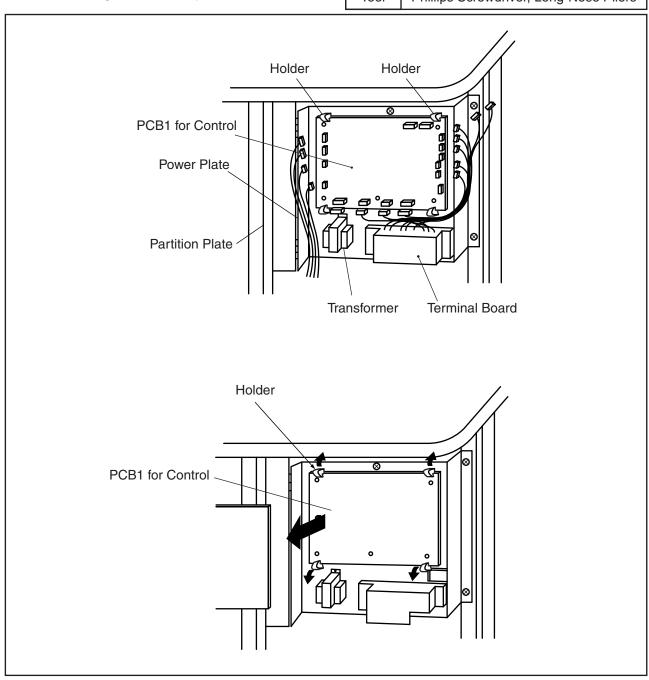
Check to ensure that LED201 (Red) is OFF when turning the power plate.

- (3) Disconnect the CN5A connector on the PCB1 of the electrical box.
- (4) Pull out the coil for expansion valve on the liquid tank upwards.

Tool Phillips Screwdriver, Spanner

TURN OFF all power source switches.

2.1.9 Removing Printed Circuit Board (PCB1)


A DANGER

Do not touch the electrical components.

When handling the PCB1, take care of not to use excessive force as this will cause damage.

- (1) Remove the service cover according to the item **2.1.1** "Removing Service Cover".
- (2) Disconnect all the connectors connected to the PCB1.
- (3) Pull out the PCB1 from the power plate by unhooking the extrusion parts.

Tool Phillips Screwdriver, Long-Nose Pliers

TURN OFF all power source switches.

2.1.10 Removing ISPM and ACT Module

A DANGER

Do not touch the electrical parts when LED201 (Red) on the ISPM is lit to prevent from an electrical shock.

- (1) Remove the service cover according to the item 2.1.1 "Removing Service Cover".
- (2) Remove the three (3) screws fixing the electrical box and turn the power plate toward the front side. NOTE:

Check to ensure that LED201 (Red) is OFF when turning the power plate.

Tool Phillips Screwdriver, Spanner ●RAS-3HVRG and 4HVRG ●RAS-5HVRG ISPM ISPM LED201 (Red) _ED201 Act Module (Red) Capacitor Noise Filter Power Plate Reactor Capacitor Magnetic Power Plate Contactor Reactor Magnetic

NOTES:

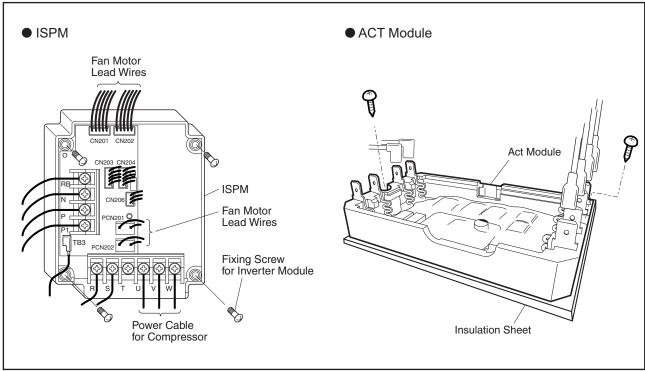
- 1. Identify terminal Nos. with the mark band Nos. when reassembling. If incorrectly connected, malfunction or damage to the electrical parts will occur.
- 2. When changing the PCB, ensure to set all the dip switches to the same configuration as the original.

TURN OFF all power source switches.

- (3) Disconnect all wires connecting to the ISPM.
 - Disconnect CN201, CN202, PCN201, PCN202 (Wire for Fan Motor)
 - Disconnect CN203, CN204, CN206, CN101 (5HVRG only)
 - Disconnect RB, N, P, P1 and R, S, U, V, W on the terminal board and the faston terminal TB3 of ISPM.
- (4) Remove the four (4) screws fixing the ISPM.

NOTE:

Do not hold the PCB on the ISPM when removing the ISPM. When handling the PCB, take care of not to use


excessive force as this will cause damage.

- (5) Disconnect all wires connecting to the ACT module.
 - Disconnect CN101
 - Disconnect the faston terminal L1, L2, P, N1, + and of ACT module.
- (6) Remove the two (2) screws fixing the ACT module.

NOTES:

- 1. Do not remove the insulation part from the screw after removing the screws.
- 2. Do not lose the insulation sheet between ACT module and fin.

Tool Phillips Screwdriver, Long-Nose Pliers

NOTES:

- 1. Identify terminal Nos. with the mark band Nos. when reassembling. If incorrectly connected, malfunction or damage to the electrical parts will occur.
- 2. In the case of mounting ACT module, check the insulation sheet does not have any hole and insulation tube attach to the fixing screw.
- 3. Pay attention not to clamp the wires when close the power plate.

TURN OFF all power source switches.

2.1.11 Removing Electrical Components

A DANGER

Do not touch the electrical parts when LED201(Red) is on the ISPM is lit to prevent from an electrical shock.

- (1) Remove the service cover according to the item 2.1.1 "Removing Service Cover".
- (2) Remove three (3) screws fixing the electrical box and turn the power plate toward the front side. NOTE:
 - Check to ensure that LED201 (Red) is OFF when turning the power plate.
- (3) Removing Other Electrical Components
 - (a) Remove the wire connecting to the capacitor.

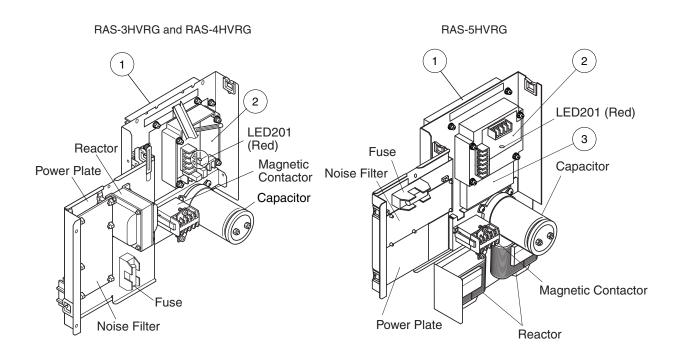
NOTE:

Capacitor has polarity (+ and -), check to ensure each terminal No..

- (b) Disconnect the wire connecting to the magnetic contactor. Remove the magnetic contactor by removing two (2) screws.
- (c) Remove the reactor by removing four (4) screws. (In case of 5HP the screws are eight.)
- (d) Disconnect the wire connecting to the noise filter.
 Remove the noise filter by holding the expanded part of the holders (6 pcs.) with long-nose pliers.
 NOTE:

When reassembling, identify terminal Nos. with the mark band Nos.

Tool Phillips Screwdriver, Long-Nose Pliers RAS-3HVRG and 4HVRG ●RAS-5HVRG ISPM ISPM LED201 (Red) Act Module LED201 (Red) Reactor Fuse Fixing Screw for Magnetic Capacitor (3 pieces) Power Plate Noise Filter Capacitor Capacitor Reactor Magnetic Contactor Fixing Screw for Magnetic Contactor Fuse Fixing Screw for Reactor Noise Filter Power Plate Fixing Screw for Reactor Fixing Screw for Reactor Long-nose Plier Noise Filter Holder Details of Q


3. MAIN PARTS

3.1 Inverter

3.1.1 Specifications of Inverter

Applicable Model	RAS-3HVRG, RAS-4HVRG, RAS-5HVRG		
Applicable Power Source	1 Phase, 220V, 240V 50Hz/220V 60 Hz		
Output Voltage (Maximum)	200V, 3 Phase		
Output Current (Maximum)	14.5/16/24.5 (3HVRG/4HVRG/5HVRG)		
Control Method	Vector Control		
Range Output Frequency	25 to 115Hz		
Accuracy of Frequency	0.01Hz at Applicable Frequency Range		
Controlled Frequency	1Hz		
Output / Characteristics	ITIZ		
Output / Characteristics	[V] 200		
	f (Hz)		
	Characteristics are general idea.		
Soft Start Stop	0.5Hz/S, 1Hz/S, 3Hz/S, 6Hz/S, 30Hz/S (5 Steps)		
Protection Function	(
Excessive High or Low	Excessive Low Voltage at a voltage is lower than 194V DC		
Voltage for Inverter	Excessive High Voltage at a voltage is higher than 440V DC		
Abnormality of Current Sensor (0A Detection)	Stoppage at a current of compressor smaller than 1.5A. When the frequency is 15 to 18Hz after starting. Cause of Abnormality: Failure of Current Sensor		
	Failure of ISPM Failure of Compressor Disconnected Wiring		
Protection Function	. (1)		
Overcurrent Protection for Inverter	Rated Current x 150% Rated Current x 105% (3) (4) 20µs 50ms 30s (1) Short-Circuit Trip of Arm (2) Instantaneous Overcurrent Trip (3) Instantaneous Overcurrent Trip (4) Electronic Thermal Trip Condition is maintained longer than 30 seconds or accumulated longer than 3 minutes during 10 minutes sampling time.		
Protection of ISPM	ISPM has four protection function for self-protection. (1) Some of the output terminals between "U" and "V", "V" and "W", "W" and "U" has a short-circuit. (2) Running current reaches the maximum rated current. (3) Temperature is measured by internal thermistor increases excessively.		
	"W" and "U" has a short-circuit. (2) Running current reaches the maximum rated current. (3) Temperature is measured by internal thermistor increases excessively.		
Overload Control	"W" and "U" has a short-circuit. (2) Running current reaches the maximum rated current.		
Overload Control Fin Temperature Decrease Earth Detection	"W" and "U" has a short-circuit. (2) Running current reaches the maximum rated current. (3) Temperature is measured by internal thermistor increases excessively. (4) Control voltage decreases excessively. Overload control as a current greater than (Rated Current X105%).		

3.1.2 Arrangement of Inverter Power Unit

No.	Parts	Model
1	Fin (mm)	-
2	ISPM	HS17A1F06 (3HP and 4HP), HF30A1F06 (5HP)
3	ACT Module	LACT33020B

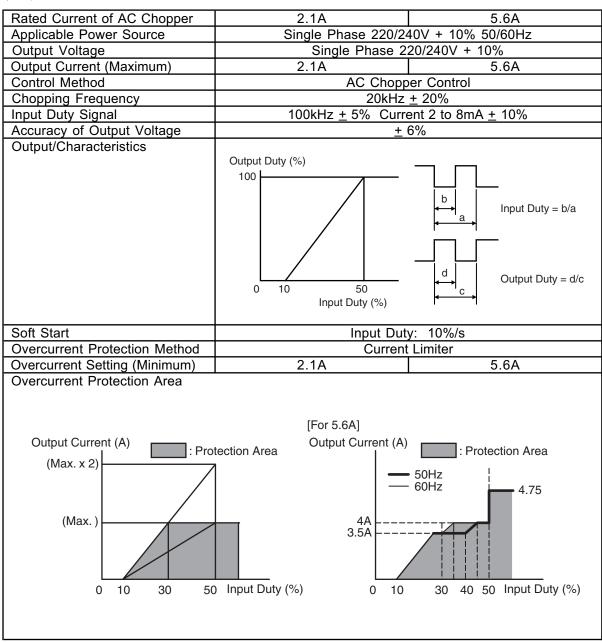
3.2 AC Chopper

Reduction of Electromagnetic Sound

Fan Motor Control by AC Chopper:

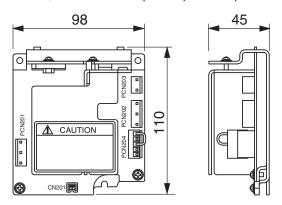
Lower electromagnetic sound and vibration have been achieved by AC Chopper control than thyristor control.

AC Chopper Control

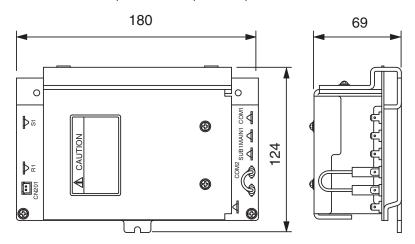

Concept of Fan Speed Control

The voltage applied to the fan motor is controlled by chopping (ON/OFF) the power supply voltage at a frequency of 20kHz.

Features

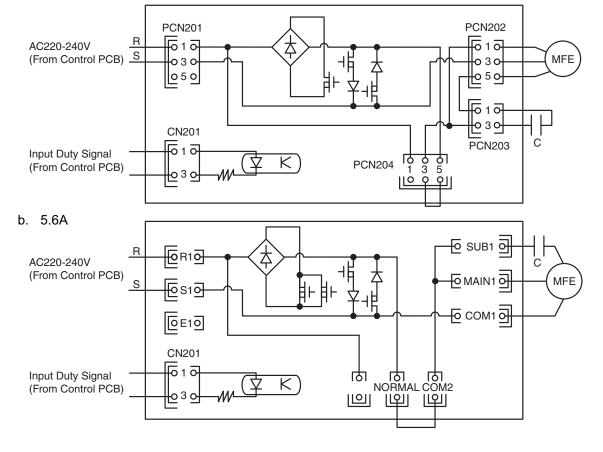

- · Sinusoidal Wave Pattern and Remarkable Low Level of Electromagnetic Sound
- · No Generation of Harmonic Current

(1) Specifications



(2) Structure

a. 2.1A (For Indoor Units: RCD, RPC and RPI (2.5HP) Models)



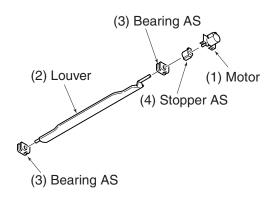
b. 5.6A (For Indoor Units: RPI (3.0 to 5.0HP) Models)

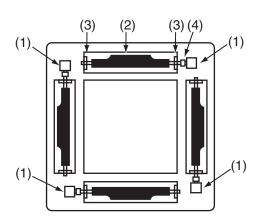
(3) Circuit Diagram (Outline)

a. 2.1A

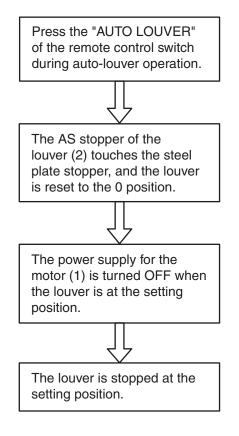
3.3 Auto-Louver Mechanism

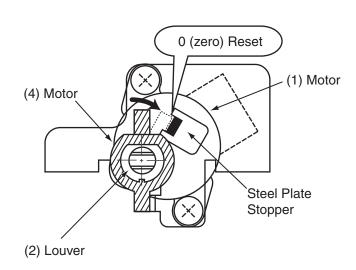
3.3.1 4-Way Cassette Type


(1) Auto-Louver Operation

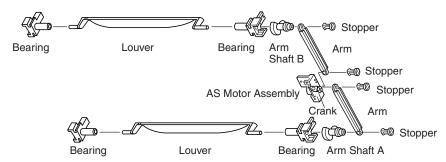

The louvers of the optional air panel with auto-louver swing simultaneously by four drive motor. The parts of the auto-louver mechanism are shown below.

The motor (1) is installed to the louver directly. The louver (2) is operated by rotating the motor.


Four pieces of the motor (1) are installed to the unit and rotated simultaneously.


No.	Part Name	No.	Part Name
1	Motor	3	Bearing
2	Louver	4	Stopper AS

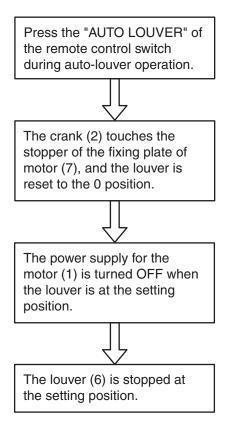
(2) Auto-Louver Stoppage

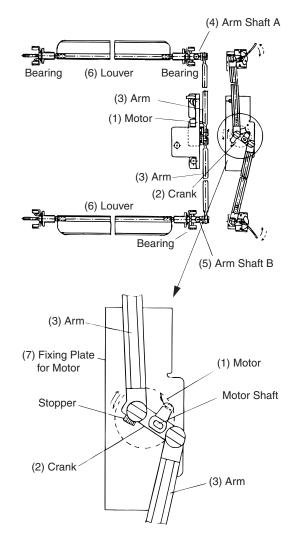


3.3.2 2-Way Cassette Type

(1) Auto-Louver Operation

The louvers of the optional air panel with auto-louver swing simultaneously by a drive motor. The parts of the auto-louver mechanism are shown below.

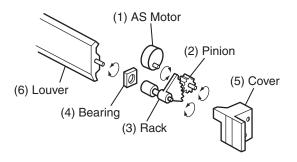

The principle of the auto-louver mechanism is as follows;

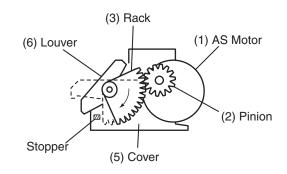

The motor (1) rotates, the crank (2) fixed to the shaft of the motor (1) rotates, the rotating torque is changed at the arm (3) and transmitted to the arm shaft A (4) and the arm shaft B (5).

The circular reciprocating force gives the driving force to the louver (6) and rotates the louver.

No.	Part Name	No.	Part Name
1	Motor	5	Arm Shaft B
2	Crank	6	Louver
3	Arm	7	Fixing Plate of
4	Arm Shaft A		Motor

(2) Auto-Louver Stoppage


3.3.3 Ceiling Type


(1) Auto-Louver Operation

The louvers of the optional air panel with autolouver swing simultaneously by a drive motor. The parts and the principle of the auto-louver mechanism are shown in the right figure. The AS motor (1) rotates, the pinion (2) fixed to the shaft of the AS motor (1) rotates, the rotating torque is changed at the rack (3) and the circular reciprocating force gives the driving force to the louver (4) and rotates the louver.

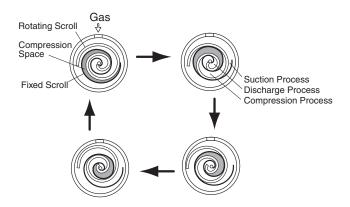
(2) Auto-Louver Stoppage

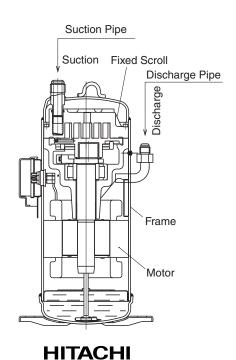
3.4 Scroll Compressor

- 3.4.1 Reliable Mechanism for Low Vibration and Low Sound
- (1) The rotating direction is definite.
- (2) The pressure inside of the chamber is high pressure, and the surface temperature of the chamber is 60°C to 110°C.

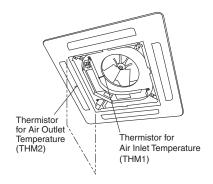
3.4.2 Principle of Compression

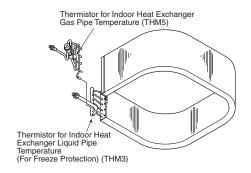
(1) The gas is inhaled from the inlet port at the outer frame of the fixed scroll.


(2) The gas inside of the compression space is compressed toward the center of the scroll.


(3) The compression space is minimum at the center of the scroll, and the gas compressed at the maximum is discharged from the outlet port of at the center of the scroll.

(4) The above procedures (Suction → Compression → Discharge) is repeated continuously.

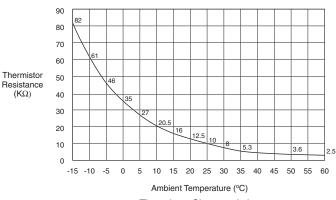

3.4.3 Structure



3.5 Thermistor

3.5.1 Thermistor for Indoor Unit

(1) Position of Thermistor (In Case of 4-Way Cassette Type)


(2) Thermistor for Indoor Suction Air Temperature (For Room Temperature Control)

The room temperature is controlled by the thermistor for indoor suction air temperature detecting the temperature at the suction air inlet of the indoor unit.

The setting temperature is indicated on the L.C.D. of the remote control switch by number.

Adjust the setting temperature for prevention from excessive cooling and heating.

It is recommended to set the temperature as follows:

Thermistor Characteristics

Economical Cooling Operation: 27°C to 29°C / Economical Heating Operation: 18°C to 20°C The resistance characteristics of thermistor is shown in the above figure.

ATTENTION:

The thermo-off value of the indoor unit air inlet thermistor is set at the temperature higher than the value indicated on the remote control switch by 4°C and the maximum is 30°C, because the suction air temperature during heating operation has a tendency to become higher than that of the occupied zone, intending comfortable heating operation.

(3) Thermistor for Indoor Discharge Air Temperature (For Discharge Air Temperature Control)

The thermistor for indoor discharge air temperature is utilized for the control of prevention from cold air discharge in heating operation, etc.

The resistance characteristics of thermistor is shown in the above figure.

(4) Thermistor for Liquid Pipe Temperature of Indoor Heat Exchanger

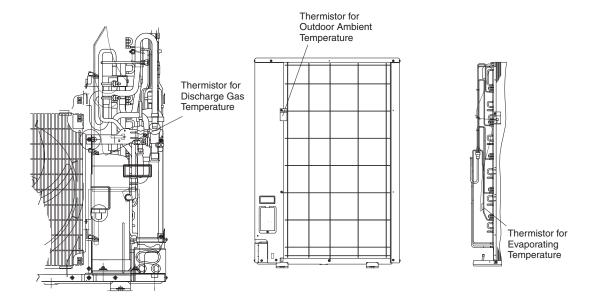
When the temperature of the heat exchanger is below 0°C, thermostat is turned OFF automatically and over 14°C, thermostat is turned ON again.

Prevention from freezing onto the heat exchanger in COOL and DRY operation.

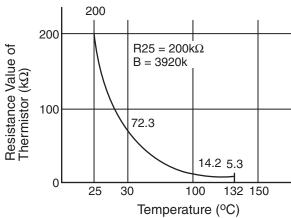
The resistance characteristics of thermistor is shown in the above figure.

(5) Thermistor for Gas Pipe Temperature of Indoor Heat Exchanger

When the temperature of the heat exchanger is below 0°C, thermostat is turned OFF automatically and over 14°C, thermostat is turned ON again.


Prevention from freezing onto the heat exchanger in COOL and DRY operation.

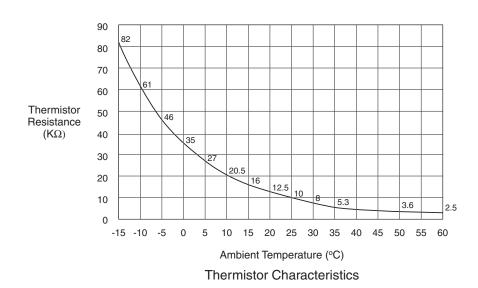
The evaporating temperature in heating operation is detected.


The resistance characteristics of thermistor is shown in the above figure.

3.5.2 Thermistor for Outdoor Unit

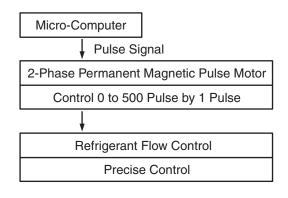
(1) Position of Thermistor

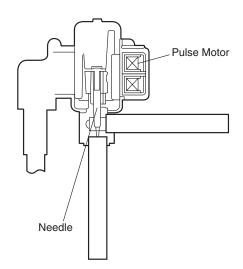
- (2) Thermistor for Upper Part Temperature of Compressor
 - (For Prevention of Discharge Gas Overheating)
 - a. A thermistor for the upper part temperature
 of the compressor is installed to prevent
 discharge gas from overheating.
 If discharge gas temperature increases
 excessively lubricating oil deterioration
 occurs and lubricating properties deteriorate,
 resulting in short compressor life.
 - b. If discharge gas temperature increases excessively, compressor temperature increases. At the worst, compressor motor winding will be burnt out.
 - c. When the upper part temperature of compressor increases during heating operation, the unit is controlled according to the following method.


Resistance Characteristics of Thermistor for Discharge Gas Overheating Protection

- An electronic expansion valve of indoor units and high pressure refrigerant is returned to the compressor through the accumulator, decreasing compressor temperature.
- If the compressor upper part temperature increases exceeding 132°C even if an electronic expansion valve opens, the compressor is stopped, in order to protect the compressor. In cooling operation, the above function is also available.

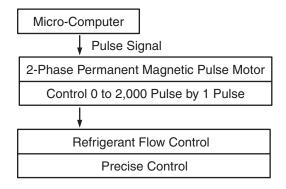
d. If compressor upper part temperature increases excessively, the protection control is activated and the compressor is stopped according to the following method.

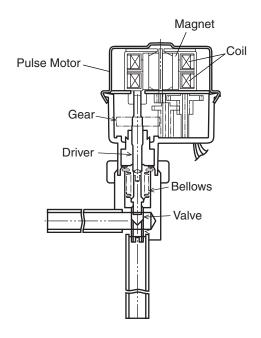

Operation	Upper Part Temperature of Compressor	Defecting Period
Cooling	Over 127°C	10 minutes (Continuously)
	Over 140°C	5 seconds (Continuously)
Heating	Over 120°C	10 minutes (Continuously)
	Over 140°C	5 seconds (Continuously)
Defrosting	Over 120°C	5 seconds (Continuously)


- (3) Thermistor for Outdoor Ambient Temperature
 The thermistor resistance characteristics are shown in the figure below.
- (4) Thermistor for Evaporating Temperature of Outdoor Unit in Heating Operation (For Defrosting)
 The characteristics for the thermistor is the same with the value of outdoor ambient temperature thermistor as shown in the figure below.

3.6 Electronic Expansion Valve

3.6.1 Electronic Expansion Valve for Outdoor Units

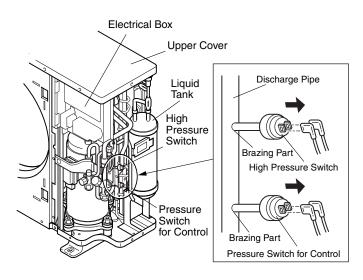




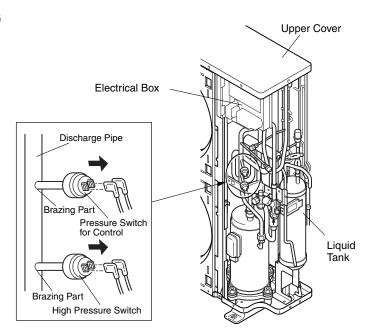
Specifications

Specifications			
Items	Specifications		
Type	EKV Series or CAM Series		
Refrigerant Used	R22 or R407C		
Working Temperature Range	-30°C to 65°C/ -30°C to 60°C (Operating Time of Coil: less than 50%)		
Mounting Direction	Drive Shaft in Vertical Direction within an Angle of 45° as Maximum		
Flow Direction	Reversible		
Drive Method	4-Phase Pulse Motor Method		
Rated Voltage	DC12V <u>+</u> 1.8V		
Drive Condition	83PPS (Pulse Width at ON: 36mm sec, OFF: 60mm sec) 1, 2 Phase Excitation		
Coil Resistance (each Phase)	46Ω <u>+</u> 10% (at 20°C)		
Wiring Diagram, Drive Circuit and Activation Mode	Wiring Diagram A ON OFF B Walve Close Open Activation		

3.6.2 Electronic Expansion Valve for Indoor Units


Specifications

Specifications				
Items	Specifications			
Туре	EDM Type			
Refrigerant Used	R22 or R407C			
Working Temperature Range	-30°C to 70°C (With Coils Not Electrified)			
Mounting Direction	Drive Shaft in Vertical Direction, Motor Upside and 90° in Four Direction			
Flow Direction	Reversible			
Rated Electricity				
Drive Method	4-Phase Pulse Motor Method			
Rated Voltage	DC12V <u>+</u> 1.2V			
Drive Condition	100Ω±250PPS (Pulse Width Over 3mm) 2 Phase Excitation			
Coil Resistance (1 Phase)	150 <u>+</u> 10% (at 20°C)			
Wiring Diagram, Drive Circuit and Activation Mode	Phase 1 2 3 4 1 I phase 1 2 3 4 1 I phase 2 3 4 1 I phase 3 4 1 I phase 3 4 1 I phase 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			


3.7 High Pressure Switch and Pressure Switch for Control

- (1) High Pressure Switch (for Protection)
 When the discharge pressure reaches 3.3Mpa, compressor is stopped to protect the refrigerant cycle components.
- (2) Pressure Switch for Control
 When the discharge pressure reaches 2.75MPa during heating operation, gas by-pass control or fan
 control are performed.

●RAS-3HVRG and 4HVRG

●RAS-5HVRG

4. FIELD WORK INSTRUCTION

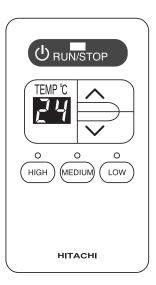
4.1 Overheating in Case of Using PC-5H

Question and Answer for Field Work

Example 1: Overheating in Case of Using PC-5H

[Phenomenon]

After test run, indoor temperature increases more than 30°C even if the setting temperature is 20°C.


[Cause]

Test running is performed from the outdoor unit, the operation mode at the test running is memorized.

[Countermeasure]

In such case, perform the self checking and initialize the memory by following procedure.

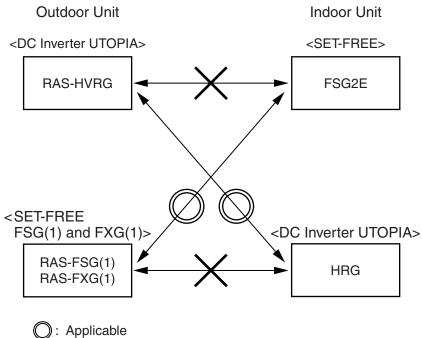
- 1. Depress "Λ", "V", "High" and "Medium" simultaneously.
- 2. 7-segment and LED will be lit.
- 3. Depress all the touch type switches one by one.
- 4. 7-segment indicates "Ou".
- 5. Transmission check will be performed.
- 6. After 3 seconds, 7-segment indicates "77" (for Main Unit) or "88" (for Sub Unit) or "EE" (Abnormal).
- 7. After 3 seconds, voltage check will be performed.
- 8. After 3 seconds, 7-segment indicates "AA" (Normal) or "EE" (Abnormal).
- 9. After 3 seconds, automatically indicates "5", "4", "3", (Count Down).
- 10. Depress "Λ" before "**0**" is appeared.
- 11. If the temperature setting become 25 deg. and all the LEDs are turned OFF, initial condition is set.

4.2 Alarm 36

Question and Answer for Field Work

Example 2: Alarm 36

[Phenomenon]


Alarm code "36" appeared and the system didn't operate.

[Cause]

Combination of the indoor unit and outdoor unit was wrong.

[Countermeasure]

Check an applicable unit model code as shown below.

(: Applicable

4.3 Select Guide of Drain Pipe for Indoor Unit

Selecting Method of Drain Pipe Diameter

<Step 1> Calculation of Drain Flow Volume

Calculate from that the drain flow volume is approximately 3 [ℓ /hr] per 1HP of the indoor unit nominal capacity.

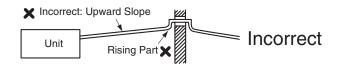
For Example:

Common drain pipe for four 2HP indoor units and four 2.5HP indoor units.

- (1) Total Horse Power of Indoor Unit: 4×2HP+4×2.5HP=18HP
- (2) Total Drain Flow Volume: 18HP×3 [ℓ /hr.HP] =54 [ℓ /hr]

<Step 2> Select Drain Pipe from Table A and B

(1) Horizontal Common Pipe with Slope 1/50: VP30 for above Example
 (2) Horizontal Common Pipe with Slope 1/100: VP30 for above Example
 (3) Vertical Common Pipe: VP30 for above Example


Table A. Permissible Drain Flow Volume of Horizontal Vinyl Pipe

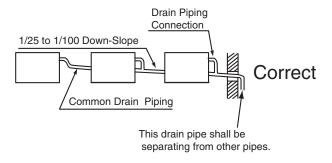

IIC Cymbol	Inner Diameter	Permissible Flow Volume [ℓ/hr]		NOTE
JIS Symbol	[mm]	Slope=1/50	Slope=1/100	NOTE
VP20	20	39	27	Not Applicable to
VP25	25	70	50	Common Pipe
VP30	31	125	88	
VP40	40	247	175	Applicable to Common Pipe
VP50	51	473	334	Common ripe

Table B. Permissible Drain Flow Volume of Vertical Vinyl Pipe

JIS Symbol	Inner Diameter [mm]	Permissible Flow Volume [ℓ/hr]	NOTE
VP20	20	220	Not Applicable to
VP25	25	410	Common Pipe
VP30	31	730	
VP40	40	1,440	A 11 1 1
VP50	51	2,760	Applicable to Common Pipe
VP65	67	5,710	Common Fipe
VP75	77	8,280	

Drain Piping

FIELD WORK INSTRUCTION

4.4 Maintenance Work

- (1) For Indoor Unit and Outdoor Unit
 - (a) Fan and Fan Motor
 - Lubrication All fan motors are pre-lubricated and sealed at the factory. Therefore, no lubricating maintenance is required.
 - Sound and Vibration Inspect for abnormal sound and vibration.
 - Rotation Inspect for clockwise rotation and rotating speed.
 - Insulation Inspect for electrical insulation resistance.
 - (b) Heat Exchanger
 - Clog Inspect and remove any accumulated dirt and dust from the heat exchanger at regular intervals. As for outdoor unit, other obstacles such as growing grass and pieces of paper, which might restrict air flow, should also be removed.
 - (c) Piping Connection
 - Leakage Inspect for refrigerant leakage at piping connection.
 - (d) Cabinet
 - Stain and Lubrication Inspect and remove any stain and lubrication.
 - Fixing Screw Inspect and fix loosened or lost screws.
 - Insulation Inspect and repair peeled thermal insulation material on cabinet.
 - (e) Electrical Equipment
 - Activation Inspect for abnormal activation of the magnetic contactor, auxiliary relay, PCB and etc.
 - Line Condition Pay attention to working voltage, amperage and phase balance. Inspect for faulty contact caused by loosened terminal connections, oxidized contacts, foreign matter, and other items. Inspect for electrical insulation resistance.
 - (f) Control and Protective Devices
 - Setting Do not readjust the setting in the field unless the setting is maintained at a point other than the point listed in "9. SAFETY AND CONTROL DEVICE SETTING" of "TCII".
- (2) For Indoor Unit
 - (a) Air Filter
 - Cleaning Inspect and remove any accumulated dirt and dust according to "Common Chapter -1.2 Filter Cleaning" of "TCII".
 - (b) Drain Pan, Drain-up Mechanism and Drain Pipe
 - Drain Line Inspect and clean the condensate drain line at least twice a year.
 - Drain-up Mechanism Inspect for activation of drain-up mechanism.
 - (c) Float Switch
 - Activation Inspect for activation of float switch.
- (3) For Outdoor Unit
 - (a) Compressor
 - Sound and Vibration Inspect for abnormal sound and vibration.
 - Activation Inspect for that the voltage drop of power supply line is within 16% at start and within 2% during operation.
 - (b) Reverse Valve
 - Activation Inspect for any abnormal activating sound.
 - (c) Strainer
 - Clog Inspect for that no temperature difference between both ends.
 - (d) Earth Wire
 - Earth Line Inspect for continuity to the earth.
 - (e) Oil Heater
 - Activation The oil heater should be activated at least 12 hours before start-up, by switching ON the main power source.

4.5 Service & Maintenance Record by 7-Segment Display

Data Sheet for Checking by 7-Segment Display										Client:				Checked by:	d by:			Date:				
Outdoor Unit Model (Serial No.)		RAS-		(Serial No.	<u> </u>	RAS-	(Se	(Serial No.	^	RAS-		(Serial No.	_	RAS-	-	(Serial No.		RAS-	ဟ်	(Serial No.	Š	
(1) Operation Model																						
(2) Test Run Start Time																						
(3) Data Collect Start Time																						
(4) Read Out Data from 7-Segment in Outdoor Unit																						
Total Indoor Unit Capacity (X1/8HP)	<u>P</u>																					
Outdoor Microcomputer Output	SC	52C	ပ္	FAN	ź	52C		FAN	_ź													
		FAN ₂	63H2	21	HJ.	FAN ₂	63H2	21	H)			21				21				21	H	П
Indoor Total Operating Capacity	Ф																					
Outdoor Alarm Code	AC																					
Inverter Frequency	Ξ																					
Required Frequency	모																					
Outdoor Fan Step	Ы																					
Outdoor Unit Expansion Valve Opening	В																					
Discharge Gas Temperature	P																					
Heat Exchanger Liquid Pipe Temperature	μ																					
Outdoor Temperature	욘																					
Inverter Stoppage Cause Code	Ŀ																					
Inverter Fin Temperature	۴																					
Control Information	A1																					
Compressor Running Current																						
Indoor Unit (Unit No.)																						
Expansion Valve Opening	EO																					
Heat Exchanger Liquid Temp.	ГО																					
Intake Air Temp.	Ö																					
Outlet Air Temp.	00																					
Indoor Unit Stoppage Cause Code	oр																				_	
	-	<u> </u>	1	1				1								•	•	•]

R. C. Sw. Remote Control Switch, O.U.: Outdoor Unit, I.U.: Indoor Unit 52C: CMC, 63Hz: PSC, 21: RVR, CH: Oil Heater ⁺: Multiply 1/8 by the code on the 7-segment.

FIELD WORK INSTRUCTION

4.6 Service & Maintenance Record by Remote Control Switch

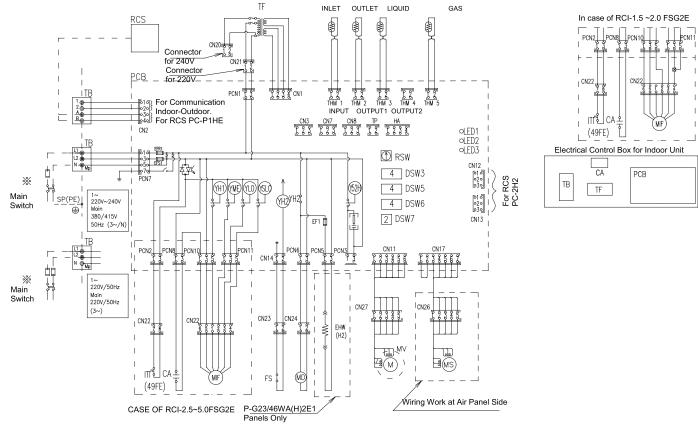
Data Sheet for Checking by Remote Control Switch

Time											Client:
I.U. Model											Installation Date:
I.U. Serial No.											System No.:
I.U. No. / Alarm Code											Date Checked:
	Check Mode 1	Check Mode 2	1 · 2	1 · 2	1 · 2	1 · 2	1 · 2	1 · 2	1 · 2	1 · 2	Checked by:
B Temp. Indication											
Set Temp.	b1	:									Result
Inlet Air Temp.	b2	91									
Discharge Air Temp.	p3	92									
Liquid Pipe Temp.	p4	93									
Remote Thermistor Temp.	p2	:									
Outdoor Air Temp.	99	76									
Gas Pipe Temp.	P2	92									
Evaporating Temp. at Heating	8q	96									
Control Information	6q	26									
Comp. Top Temp.	Ρq	86									
C Micro-Computer State Indication	-										
I.U. Micro-Computer	5	:									
O.U. Micro-Computer	C2	:									
D Stopping Cause State Indication											
Stopping Cause State Indication	d1										
E Alarm Occurrence											
Times of Abnormality	E1										
Times of Power Failure	E2	:									
Times of Abnormal Transmitting	E3										
Times of Inverter Tripping	E4	:									
F Automatic Louver State											
Louver Sensor State	F1	-									
H Pressure, Frequency State Indication											
Discharge Pressure	H1	66									
Suction Pressure	H2	9A									
Control Information	H3	q6									
Operating Frequency	H4	Э6									
J I.U. Capacity Indication											
I.U. Capacity (×1/8HP)	J1										
O.U. Code	J2	:									
Refrigerant Cycle Number	J3										
Refrigerant Cycle Number	4ς	:									
L Opening of Ex. Valve											
I.U. Ex. Valve	L1	p6									
O.U. Ex. Valve 1	L2	3E									
O.U. Ex. Valve 2	L3	:									
O.U. Ex. Valve B	L4	-									
P Running Current Indication (Reference)											
Comp. Current	P1	9F									

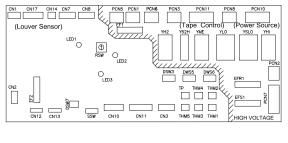
4.7 Service & Maintenance Record

Service & Maintenance Record

No.	Check Item	Action	Judgement
1		Action	YES or NO
2	Is service space sufficient?		YES or NO
	Short Circuit of Discharge Air?		YES or NO
3	Any Heat Influence		
4	Is earth wire connected?		YES or NO
5	Refrigeration Piping		GOOD or NOT GOOD
6	Fixing of Units		GOOD or NOT GOOD
7	Any Damage on Outer or Internal Surface?		YES or NO
8	Checking of Screw and Bolts	Tighten if loosen.	TIGHTENED or NOT TIGHTENED
9	Tightening of Terminal Screws	Tighten all terminal screws by phillips driver.	TIGHTENED or NOT TIGHTENED
10	Are compressor terminals tightly fixed?	Push all terminals.	PUSHED or NOT PUSHED
11	Insulation Resistance	Measure insulation resistance by insulation resistance-meter. Comp. and Fan Motor: greater than $3M\Omega$ Others: greater than $3M\Omega$	GOOD or NOT GOOD
12	Does drain water smoothly flow?	Check for smooth flow by pouring water.	GOOD or NOT GOOD
13	Check for leakage at compressor.	Check for any leakage.	GOOD or NOT GOOD
14	Check for leakage at outdoor heat exchanger.	ditto	GOOD or NOT GOOD
15	Check for leakage at indoor heat exchanger.	ditto	GOOD or NOT GOOD
16	Check for leakage at 4-way valve.	ditto	GOOD or NOT GOOD
17	Check for leakage at check valve.	ditto	GOOD or NOT GOOD
18	Check for leakage at liquid tank.	ditto	GOOD or NOT GOOD
19	Check for leakage at strainer.	ditto	GOOD or NOT GOOD
20	Check for leakage at electronic Ex. Valve.	ditto	GOOD or NOT GOOD
21	Check for leakage at piping.	ditto	GOOD or NOT GOOD
22	Check direction of fans.	by Viewing or Air Flow Volume	GOOD or NOT GOOD
23	Voltage among each Phase.	higher than 220V	GOOD or NOT GOOD
24	Vibration and Sound	Check fan, compressor, piping, etc.	GOOD or NOT GOOD
25	Activation of Each Operation Mode	Check activation of COOL, HEAT, STOP and TEMP. switches.	GOOD or NOT GOOD
26	High Pressure Cut-out Switch	Check actual activation value.	GOOD or NOT GOOD
27	Check activation of drain mechanism.	Check it during cooling operation.	GOOD or NOT GOOD
28	Indoor Inlet Air Temp. (DB/WB)		°C DB/ °C WB
29	Indoor Outlet Air Temp. (DB/WB)		°C DB/ °C WB
30	Outdoor Inlet Air Temp. (DB/WB)		°C DB/ °C WB
31	Outdoor Outlet Air Temp. (DB/WB)		°C DB/ °C WB
32	Operating Voltage		V
33	Operating Current		A
34	Instruction Cleaning of Air Filter to Client		DONE or NOT YET
35	Instruction for Cleaning Method to Client		DONE or NOT YET



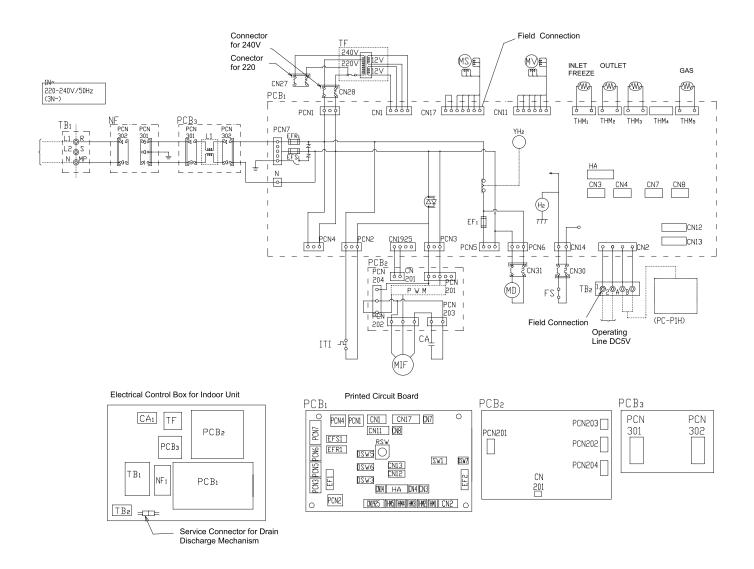
7 ELECTRICAL WIRING DIAGRAMS


CONTENTS

7	ELECTRICAL WIRING DIAGRAMS	1
7.1	Electrical Wiring Diagram (for models: RCI-1.5~5.0FSG2Ei)	2
7.2.	Electrical Wiring Diagram (for models: RCD-1.5~3.0FSG2)	3
7.3	Electrical Wiring Diagram (for models: RCD-4.0~5.0FSG2)	4
7.4	Electrical Wiring Diagram (for models: RPC-2.0~5.0FSG2Ei)	5
7.5.	Electrical Wiring Diagram (for models: RPI-1.5FSG2Ei)	6
7.6.	Electrical Wiring Diagram (for models: RPI-2.0~5.0FSG2Ei)	7
7.7.	Electrical Wiring Diagram (for models: RPK-1.5~2.0FSG2M)	8
7.8.	Electrical Wiring Diagram (for models: RPF(I)-1.5/2.5FSG2Ei)	8
7.9.	Electrical Wiring Diagram (for models: RAS-3/4HVRG)	9
7.10.	Electrical Wiring Diagram (for models: RAS-5HVRG)	11

7.1. ELECTRICAL WIRING DIAGRAM (FOR MODELS: RCI-1.5~5.0FSG2Ei)

PCB Sockets Location

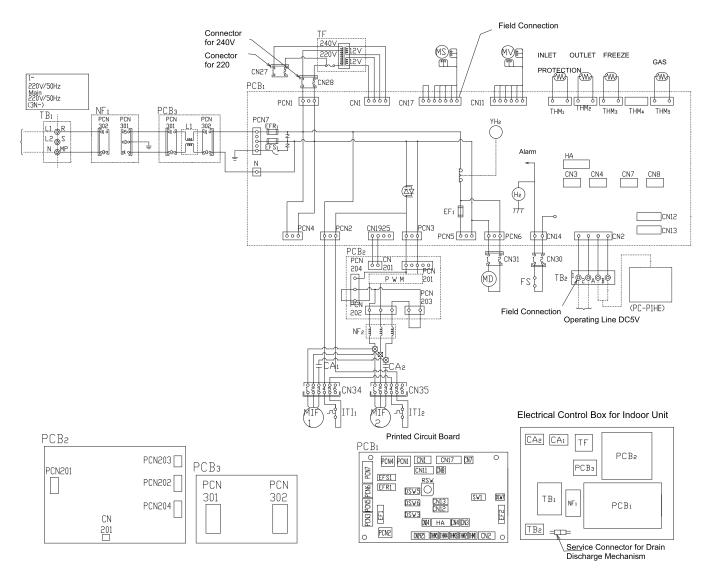


NOTE:

Mark	Name
CA	Capacitor for Indoor Fan
CN 21~27	Connector
DSW ₃	Unit Capacity Code
DSW ₅	Refrigerant Cycle No.
DSW ₆	Unit Code
DSW ₇	Fuse Recover/ Remote Controller Selector
EFR1	Fuse
EFS1	Fuse
EHW(H2)	Electric Heater for Condensate Air Protection
FS	Float Switch
ITI	Internal Thermostat for Indoor Fan Motor
MD	Motor for Drain Discharge Mechanism
MIF	Motor for Indoor Fan
MS	Motor for Automatic Swing Louver
MV	Micro-Computer Control Expansion Valve
LED1~3	Alarm Code
PCB	Printed Circuit Board
RCS	Remote Control Switch
RSW	Indoor Unit No. Settings

Mark	Name	
SA	Surge Absorber	
SSW	Slide Switch	
TB	Terminal Board	
TF	Transformer	
THM1	Inlet Air Thermistor	
THM2	Outlet Air Thermistor	
THM3	Liquid Pipe Thermistor	
THM5	Gas Pipe Thermistor	
YH2	Relay for HI Fan Motor Tap	
YH1	Relay for HI Fan Motor Tap	
YME	Relay for ME Fan Motor Tap	
YLO	Relay for LO Fan Motor Tap	
YSLO	Relay for SLO Fan Motor Tap	
Y52H	Relay for Electric Heatrer	
0	Terminals	
<u> </u>	Close-end Connector	
·X·	Field Supplied	
	Field Witinrg	
	Earth Wiring	
	Factory Wiring	

7.2. ELECTRICAL WIRING DIAGRAM (FOR MODELS: RCD-1.5~3.0FSG2)

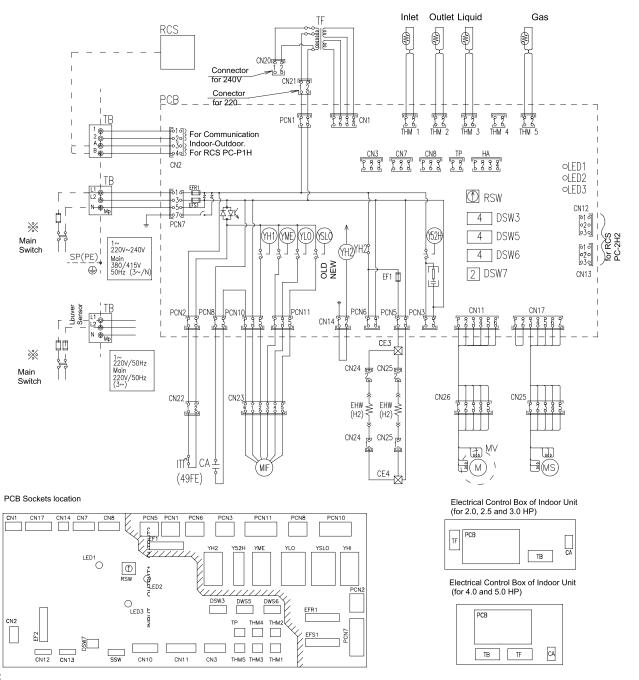


NOTE:

Mark	Name
CA	Capacitor for Indoor Fan
CN 21~27	Connector
DSW ₃	Unit Capacity Code
DSW ₅	Refrigerant Cycle No.
DSW ₆	Unit Code
DSW ₇	Fuse Recover/ Remote Controller Selector
EFR1	Fuse
EFS1	Fuse
EF1	Fuse
EF2	Fuse
FS	Float Switch
ITI	Internal Thermostat for Indoor Fan Motor
MD	Motor for Drain Discharge Mechanism
MIF	Motor for Indoor Fan
MS	Motor for Automatic Swing Louver
MV	Micro-Computer Control Expansion Valve
NF	Noise Filter
LED1~3	Alarm Code

Mark	Name
PCB ₁	Printed Circuit Board
PCB ₂	Printed Circuit Board
PCB ₃	Printed Circuit Board
RSW	Indoor Unit N° Settings
PWM	Pulse width Modulation
TB ₁	Terminal Board 1
TB ₂	Terminal Board 1
TF	Transformer
THM₁	Inlet Air Thermistor
THM ₂	Outlet Air Thermistor
THM ₃	Liquid Pipe Thermistor
THM ₅	Gas Pipe Thermistor
YH ₂	Relay on PCB
0	Terminals
·X·	Field Supplied
	Field Witinrg
	Earth Wiring
	Factory Wiring

7.3. ELECTRICAL WIRING DIAGRAM (FOR MODELS: RCD-4.0~5.0FSG2)

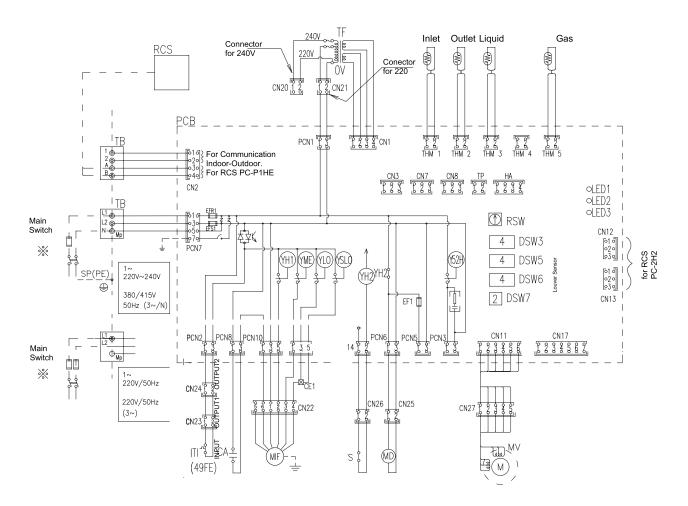


NOTE:

Mark	Name
CA	Capacitor for Indoor Fan
CN 21~27	Connector
DSW ₃	Unit Capacity Code
DSW ₅	Refrigerant Cycle No.
DSW ₆	Unit Code
DSW ₇	Fuse Recover/ Remote Controller Selector
EFR1	Fuse
EFS1	Fuse
EF1	Fuse
EF2	Fuse
FS	Float Switch
ITI	Internal Thermostat for Indoor Fan Motor
MD	Motor for Drain Discharge Mechanism
MIF	Motor for Indoor Fan
MS	Motor for Automatic Swing Louver
MV	Micro-Computer Control Expansion Valve
NF	Noise Filter
LED1~3	Alarm Code

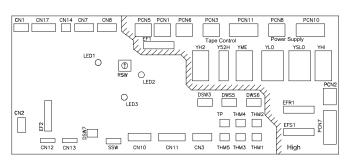
Mark	Name
PCB ₁	Printed Circuit Board
PCB ₂	Printed Circuit Board
PCB ₃	Printed Circuit Board
RSW	Indoor Unit Nº Settings
PWM	Pulse width Modulation
TB ₁	Terminal Board 1
TB ₂	Terminal Board 1
TF	Transformer
THM ₁	Inlet Air Thermistor
THM ₂	Outlet Air Thermistor
ТНМз	Liquid Pipe Thermistor
THM ₅	Gas Pipe Thermistor
YH2	Relay on PCB
0	Terminals
·X·	Field Supplied
	Field Witinrg
	Earth Wiring
	Factory Wiring

7.4. ELECTRICAL WIRING DIAGRAM (FOR MODELS: RPC-2.0~5. 5FSG2Ei)

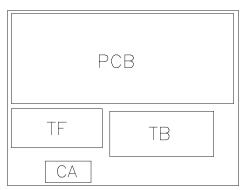

NOTE:

All the field wiring equipment must comply with local codes

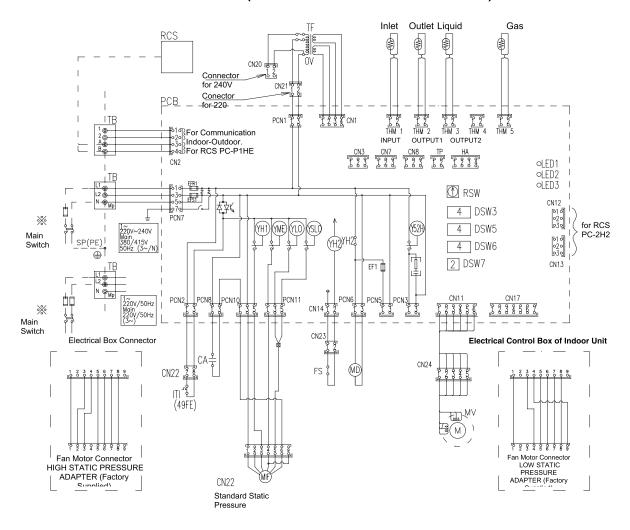
Mark	Name
CA	Capacitor for Indoor Fan
CN 21~26	Connector
DSW₃	Unit Capacity Code
DSW ₅	Refrigerant Cycle No.
DSW ₆	Unit Code
DSW ₇	Fuse Recover/ Remote Controller Selector
EFR1	Fuse
EFS1	Fuse
EHW(H2)	Electric Heater for Condensate Air Protection
FS	Float Switch
ITI	Internal Thermostat for Indoor Fan Motor
MD	Motor for Drain Discharge Mechanism
MIF	Motor for Indoor Fan
MS	Motor for Automatic Swing Louver
MV	Micro-Computer Control Expansion Valve
LED1~3	Alarm Code
PCB	Printed Circuit Board
RCS	Remote Control Switch
RSW	Indoor Unit No. Settings
SA	Surge Absorber


Maul	No
Mark	Name
SSW	Slide Switch
TB	Terminal Board
TF	Transformer
TH	Thermistor for Electric Heater
THM1	Inlet Air Thermistor
THM2	Outlet Air Thermistor
THM3	Liquid Pipe Thermistor
THM5	Gas Pipe Thermistor
YH2	Relay for HI Fan Motor Tap
YH1	Relay for HI Fan Motor Tap
YME	Relay for ME Fan Motor Tap
YLO	Relay for LO Fan Motor Tap
YSLO	Relay for SLO Fan Motor Tap
Y52H	Relay for Electric Heatrer
0	Terminals
-X	Close-end Connector
·X·	Field Supplied
	Field Wiring
	Earth Wiring
	Factory Wiring

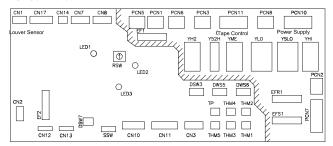
7.5. ELECTRICAL WIRING DIAGRAM (FOR MODELS: RPI-1.5FSG2Ei)

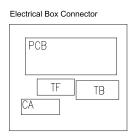

TB

Mark	Name
CA	Capacitor for Indoor Fan
CN 21~27	Connector
DSW ₃	Unit Capacity Code
DSW ₅	Refrigerant Cycle No.
DSW ₆	Unit Code
DSW ₇	Fuse Recover/ Remote Controller Selector
EFR1	Fuse
EFS1	Fuse
FS	Float Switch
ITI	Internal Thermostat for Indoor Fan Motor
MD	Motor for Drain Discharge Mechanism
MIF	Motor for Indoor Fan
MV	Micro-Computer Control Expansion Valve
LED1~3	Alarm Code
PCB	Printed Circuit Board
RCS	Remote Control Switch
RSW	Indoor Unit No. Settings
SSW	Slide Switch


Terminal Board

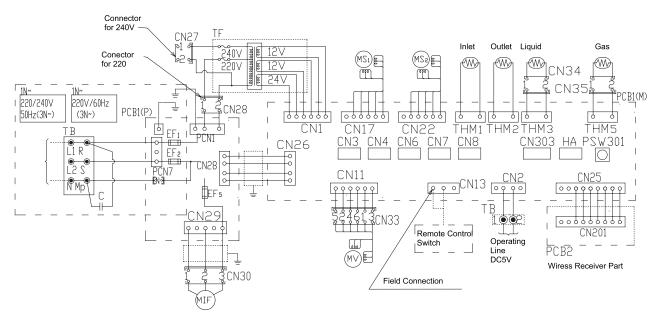
Electrical Control Box of Indoor Unit

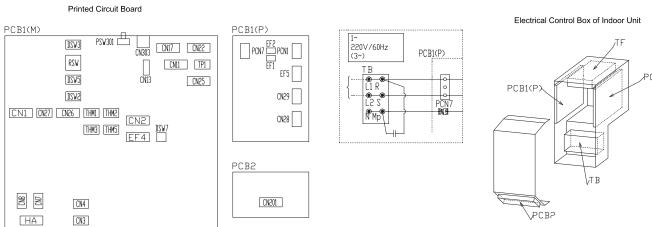



Mark	Name
TF	Transformer
TH	Thermistor for Electric Heater
THM1	Inlet Air Thermistor
THM2	Outlet Air Thermistor
THM3	Liquid Pipe Thermistor
THM5	Gas Pipe Thermistor
YH2	Relay for HI Fan Motor Tap
YH1	Relay for HI Fan Motor Tap
YME	Relay for ME Fan Motor Tap
YLO	Relay for LO Fan Motor Tap
Yslo	Relay for SLO Fan Motor Tap
Y52H	Relay for Electric Heatrer
0	Terminals
<u> </u>	Close-end Connector
·X·	Field Supplied
	Field Wiring
	Earth Wiring
	Factory Wiring

7.6. ELECTRICAL WIRING DIAGRAM (FOR MODELS: RPI-2.0~5.0FSG2Ei)

PCB Sockets location

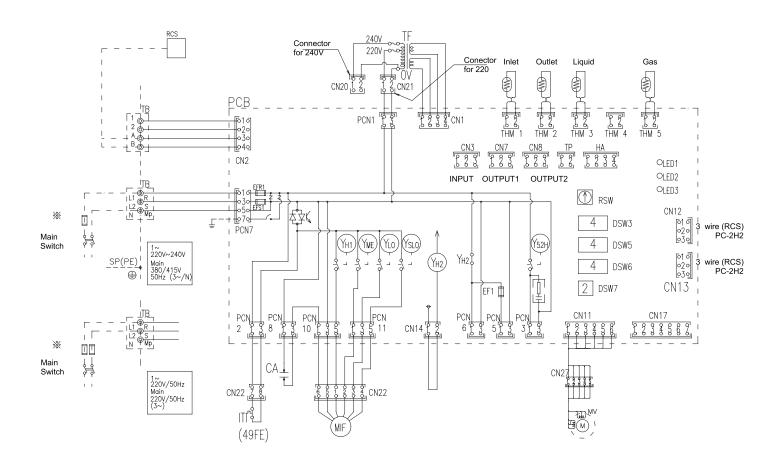


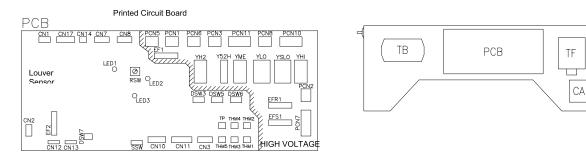

NOTE:

Mark	Name
CA	Capacitor for Indoor Fan
CN 20~24	Connector
DSW ₃	Unit Capacity Code
DSW ₅	Refrigerant Cycle No.
DSW ₆	Unit Code
DSW ₇	Fuse Recover/ Remote Controller Selector
EFR1	Fuse
EFS1	Fuse
FS	Float Switch
ITI	Internal Thermostat for Indoor Fan Motor
MD	Motor for Drain Discharge Mechanism
MIF	Motor for Indoor Fan
MV	Micro-Computer Control Expansion Valve
LED1~3	Alarm Code
PCB	Printed Circuit Board
RCS	Remote Control Switch
RSW	Indoor Unit No. Settings
SSW	Slide Switch
TB	Terminal Board

Mark	Name
TF	Transformer
TH	Thermistor for Electric Heater
THM1	Inlet Air Thermistor
THM2	Outlet Air Thermistor
THM3	Liquid Pipe Thermistor
THM5	Gas Pipe Thermistor
YH2	Relay for HI Fan Motor Tap
YH1	Relay for HI Fan Motor Tap
YME	Relay for ME Fan Motor Tap
YLO	Relay for LO Fan Motor Tap
Yslo	Relay for SLO Fan Motor Tap
Y52H	Relay for Electric Heatrer
0	Terminals
	Close-end Connector
·X·	Field Supplied
	Field Wiring
	Earth Wiring
	Factory Wiring

7.7. ELECTRICAL WIRING DIAGRAM (FOR MODELS: RPK-1.5/2.0FSG2M)

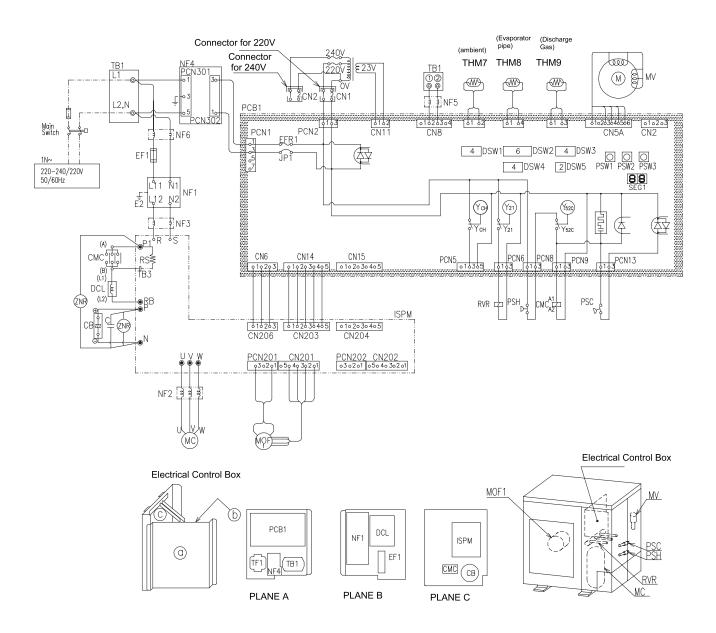



NOTE:

Mark	Name
CA	Capacitor
CN 3~13,303	Connector on PCB1(M)
CN 27~35,	Connector
CN 25,201	Connector on PCB1(M) and PCB2
DSW ₂	Factory fixed settings
DSW ₃	Unit Capacity Code
DSW ₅	Refrigerant Cycle No.
DSW ₇	Fuse Recover/ Remote Controller Selector
EF1	Fuse
EF ₂	Fuse
EF4	Fuse
EF5	Fuse
MIF	Motor for Indoor Fan
MS ₁	Motor for Automatic Swing Louver
MS ₂	Motor for Automatic Swing Louver
MV	Micro-Computer Control Expansion Valve
PCB _{1(M)}	Printed Circuit Board

Mark	Name
PCB _{1(P)}	Printed Circuit Board
PCB ₂	Printed Circuit Board
PSW ₃₀₁	Switch for emergency operation
RSW	Indoor Unit N° Settings
TB	Terminal Board
TF	Transformer
THM ₁	Inlet Air Thermistor
THM ₂	Oulet Air Thermistor
ТНМз	Liquid Pipe Thermistor
THM4	Gas Pipe Thermistor
THM1~5	Thermistor for Electric Heater
0	Terminals
·X·	Field Supplied
	Field Wiring
	Earth Wiring
	Factory Wiring

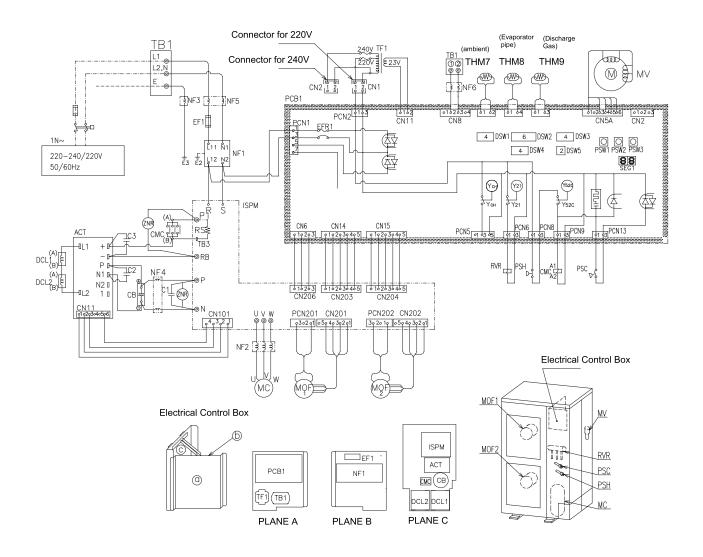
7.8. ELECTRICAL WIRING DIAGRAM (FOR MODELS: RPF(I)-1.5/2.5FSG2EI)



NOTE:

Mark	Name	Remarks
CA	Capacitor for Indoor Fan	
CN 1~n	Connectors	
DSW ₃	Unit Capacity Code	On PCB
DSW ₅	Refrigerant Cycle No.	On PCB
DSW ₆	Unit Models Code	On PCB
DSW ₇	Fuse Recover/ Remote Controller Selector	On PCB
RSW	Indoor Unit no. Setting	On PCB
EFR1	Fuse	On PCB
EFS1	Fuse	On PCB
ITI	Internal Thermostst for Indoor Fan Motor	
LD1~3	Alarm Code	On PCB
MIF	Motor for Indoor Fan	
MV	Expansion valve	On PCB
PCB	Printed Circuit Board	
RCS	Remote Control Switch	Optional Part
RSW	Indoor Unit No. Settings	On PCB

Mark	Name	Remarks
SSW	Slide Switch	
TB	Terminal Board	
THM1	Inlet Air Thermistor	On PCB
THM2	Outlet Air Thermistor	On PCB
THM3	Liquid Pipe Thermistor	On PCB
THM5	Gas Pipe Thermistor	On PCB
TF	Transformer	
YME	Relay for ME Fan Motor Tap	DC Coil
YLO	Relay for LO Fan Motor Tap	DC Coil
Yslo	Relay for SLO Fan Motor Tap	DC Coil
YH1	Relay for Hi Fan Motor Tap	DC Coil
0	Terminals	
·X·	Field Connection	
	Field Wiring	
	Earth Wiring	
	Factory Wiring	

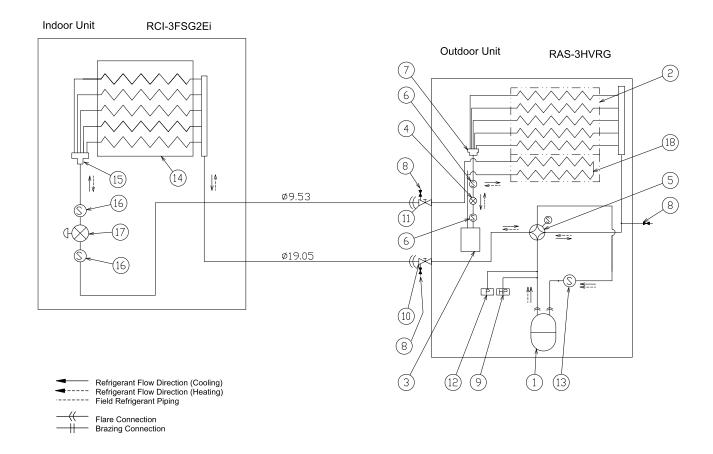

7.9. ELECTRICAL WIRING DIAGRAM (FOR MODELS: RAS-3/4HVRG)

Mark	Name
CA	Capacitor
СВ	Capacitor
CMC	Contactor for Compressor Motor
DCL	Reactor
DSW ₁	Test Run
DSW ₂	Optional Function Setting
DSW ₃	Unit Capacity Code
DSW ₄	Refrigerant cycle N°
DSW ₅	Transmission setting
EF1	Fuse
ISPM	Inverter System Power Module
MC	Motor for Compressor
MOF1	Motor for Outdoor Fan
MV	Micro-Computer Control Expansion Valve
NF _{1~6}	Noise Filter

Mark	Name
PCB1	Capacitor
PSC	Pressure Switch for Control
PSH	High Pressure Switch for Protection
PSW ₁	Push Switch on PCB1
PSW ₂	Push Switch on PCB2
PSW ₃	Push Switch on PCB3
RS	Resistor for Starting
RVR	Reversing Valve Relay
TB1	Terminal Board
TF1	Transformer
THM ₇	Ambient Air Thermistor
THM ₈	Evaporator Pipe Thermistor
THM ₉	Dsicharge Gas Thermistor
ZNR	Surge absorber

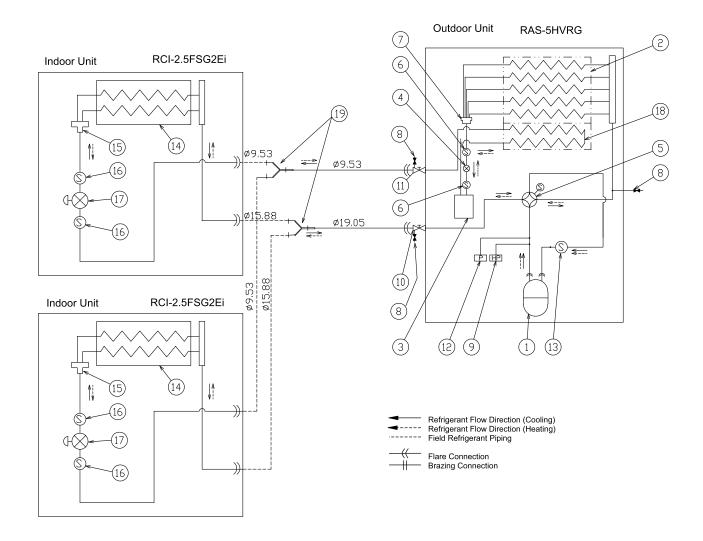
7.10. ELECTRICAL WIRING DIAGRAM (FOR MODELS: RAS-5HVRG)

Mark	Name
ACT	Active Module
C _{1~3}	Capacitor
СВ	Capacitor
CMC	Contactor for Compressor Motor
DCL _{1,2}	Reactor
DSW ₁	Test Run
DSW ₂	Optional Function Setting
DSW ₃	Unit Capacity Code
DSW ₄	Refrigerant cycle N°
DSW ₅	Transmission setting
EF1	Fuse
ISPM	Inverter System Power Module
MC	Motor for Compressor
MOF ₁	Motor for Outdoor Fan 1
MOF ₂	Motor for Outdoor Fan 2
MV	Micro-Computer Control Expansion Valve


Mark	Name
NF _{1~6}	Noise Filter
PCB1	Printed Circuit Board
PSC	Pressure Switch for Control
PSH	High Pressure Switch for Protection
PSW ₁	Push Switch on PCB1
PSW ₂	Push Switch on PCB2
PSW ₃	Push Switch on PCB3
RS	Resistor for Starting
RVR	Reversing Valve Relay
TB1	Terminal Board
TF1	Transformer
THM ₇	Ambient Air Thermistor
THM ₈	Evaporator Pipe Thermistor
THM ₉	Dsicharge Gas Thermistor
ZNR	Surge absorver

8 REFRIGERANT CYCLE

CONTENTS


8	REFRIGERANT CYCLE	•
8.1.	Refrigeration Cycle Single type	2
8.2.	Refrigeration Cycle Twin type	3

8.1. REFRIGERATION CYCLE SINGLE TYPE

Mark	Part Name		
1	Compressor		
2	Heat Exchanger		
3	Receiver		
4	Micro-Computer Control Expansion Valve		
5	Reversing Valve		
6	Strainer 3/8		
7	Distributor		
8	Check Joint		
9	High Pressure Switch for Protection		
10	Stop Valve for Gas Line		
11	Stop Valve for Liquid Line		
12	Pressure Switch for Control		
13	Strainer 5/8		
14	Heat Exchanger		
15	Distributor		
16	Strainer		
17	Micro-Computer Control Expansion Valve		
18	Sub-Cooler		

8.2. REFRIGERATION CYCLE TWIN TYPE

Mark	Part Name		
1	Compressor		
2	Heat Exchanger		
3	Receiver		
4	Micro-Computer Control Expansion Valve		
5	Reversing Valve		
6	Strainer 3/8		
7	Distributor		
8	Check Joint		
9	High Pressure Switch for Protection		
10	Stop Valve for Gas Line		
11	Stop Valve for Liquid Line		
12	Pressure Switch for Control		
13	Strainer 5/8		
14	Heat Exchanger		
15	Distributor		
16	Strainer		
17	Micro-Computer Control Expansion Valve		
18	Sub-Cooler		
19	Branch Pipe (TE-56)		