
Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 1 of 93

IBM 1401

A Modern Theory of Operation1
Gungsuh font

-- or --

What’s Inside That 1401 Computer?

Version 0.6
Guy C. Fedorkow, with substantial content from Ken Shirriff

Version dates: Mar 2015, Apr 10, 2015, May 17, 2015, May 24, 2015, May 31, 2015

Merged Card Reader and Printer sections Jun 28, 2015

Second batch of 1402 Reader/Punch notes from Ken merged Jul 19, 2015

Many corrections merged, Aug 1, 2015

Merged notes on Qui-Binary, numerous corrections.

Merged notes on Core Memory, plus other corrections, Sep 7, 2015

Merged notes on Console operation, Sept 19, 2015

 Caution! Construction Site!
If you see errors or can offer corrections or content, please contact guy dot fedorkow at gmail dot com.

1. INTRODUCTION ... 3

1.1 OBJECTIVE ... 3

1.2 1401 APPLICATION ENVIRONMENT ... 4

1.3 REFERENCE MATERIAL .. 4

1.4 TIME LINE ... 4

1.5 DESIGN TEAM ... 4

2. 1401 SYSTEM OVERVIEW ... 5

2.1 SPECIFICATIONS ... 5

2.1.1 Performance Metrics ... 5

2.1.2 Other Metrics ... 6

2.2 THE 1401 MACHINES AT CHM ... 6

2.3 THE MANY VARIATIONS ... 7

2.4 COMPARISON TO CURRENT COMPUTER ARCHITECTURES ... 7

1 Actually, it’s more a “Hypothesis of Operation” than a fully-qualified Theory…

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 2 of 93

3. INSTRUCTION SET .. 8

3.1.1 Data Representation ... 8

3.1.2 Character Set .. 9

3.1.3 Op Codes .. 11

3.1.4 Using the Word Mark ... 12

3.1.5 Addressing ... 13

3.1.6 Reserved Memory Locations ... 13

4. PRINCIPLES OF OPERATION ... 14

4.1 TOP-LEVEL BLOCK DIAGRAMS ... 14

4.2 DATA PATH ... 14

4.3 DESIGN METHODOLOGY .. 15

4.3.1 Design Flow ... 16

4.4 READING THE INSTRUCTIONAL LOGIC DIAGRAMS .. 16

4.5 CLOCKING AND CYCLE TIMING IN THE 1401 .. 19

4.5.1 Clock Timing .. 19

4.5.2 Instruction Cycle Timing .. 21

5. HARDWARE DESIGN ... 21

5.1 PHYSICAL LAYOUT AND PACKAGING ... 21

5.1.1 Locating Cards in a 1401 .. 22

5.1.2 Placement of Logic Functions ... 23

5.2 READING THE ALD’S ... 24

5.2.1 Page Cross-References .. 26

5.3 CTDL LOGIC FAMILY ... 28

5.3.1 Gates ... 28

5.3.2 Latches .. 33

5.3.3 Triggers ... 34

5.3.4 Putting the Gates Together ... 36

5.4 MAJOR BLOCKS .. 38

5.4.1 Core Storage Memory in the IBM 1401 ... 38

5.4.2 Expansion Memory Systems ... 54

5.4.3 Qui-Binary Arithmetic Unit ... 54

5.4.4 I/O Overlap .. 61

5.4.5 Multiplier .. 61

5.5 POWER SYSTEM .. 61

5.5.1 Marginal Power System .. 62

6. PERIPHERALS ... 62

6.1 1402 CARD READER/PUNCH ... 62

6.1.1 Reader ... 62

6.1.2 Logic Implementation .. 66

6.1.3 1402 Card Punch .. 69

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 3 of 93

6.1.4 The 1402 Card Reader/Punch Mechanism ... 69

6.1.5 Options and More Options .. 77

6.1.6 The Dynamic Timer and the Mysterious Vacuum Tube .. 78

6.2 1403 PRINTER .. 79

6.2.1 The IBM 1403 printer ... 79

6.3 729 TAPE DRIVE ... 82

7. SOFTWARE ENVIRONMENT ... 82

8. OPERATIONAL ENVIRONMENT ... 83

8.1 OPERATIONAL GUIDE .. 83

8.2 OPERATOR’S PANEL – THE 1401 CONSOLE ... 83

8.2.1 Default settings .. 83

8.2.2 Useful buttons.. 83

8.2.3 Console layout ... 83

8.2.4 Debugging with the console .. 85

8.3 BOOTSTRAPPING A PROGRAM.. 86

8.4 DEBUG TECHNIQUES ... 86

9. REFERENCE MATERIAL ... 87

9.1 REFERENCE DOCUMENTS .. 87

9.1.1 IBM Docs about the 1401 System ... 87

9.1.2 Programming the 1401 .. 89

9.1.3 Peripherals .. 89

9.1.4 Docs about 1401 Technology .. 90

9.2 GLOSSARY ... 91

10. APPENDIX ... 91

10.1 CARL’S SUMMARY OF LOGIC FAMILIES .. 91

10.2 REVISION HISTORY .. 93

1. Introduction

1.1 Objective

This document is intended to be used by individuals working on restoration of an IBM 1401 computer, or
by anyone who’s interested in how the machine works.

The doc outlines the machine’s capabilities, but goes on to provide information on how the machine is
organized, and how to read the primary source material.

There are many surviving documents on the IBM 1401, although none of the original engineering design
specifications have been found yet. A lot has changed since 1959; this doc serves to provide a starting
point to understand the basic concepts, and goes on to guide the reader in understanding how to interpret
the surviving primary source material.

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 4 of 93

1.2 1401 Application Environment

The 1401 computer system was released in 1959, carefully aimed at displacing so-called Unit Record
equipment (i.e. mechanical punch-card sorters, collators, tabulators, etc) for use in what was at the time a
thriving market for punched-card machines in managing business operations.

[see guy’s blog]

http://www.computerhistory.org/atchm/about-the-computer-history-museums-ibm-1401-machines/

1.3 Reference Material

There’s a large collection of documents on the www.ibm-1401.info web page; See Section 9.1 of this
document for an annotated bibliography of some of the docs that are critical to understanding this
machine.

1.4 Time Line

Is there a simple picture that shows the evolution of electronic computing, e.g. von-Neumann-to-now, that
would position the 1401? The famous paper First Draft of a Report on the EDVAC by von Neumann was
distributed in June of 1945, less than 15 years prior to the release of the 1401.

In this document, “modern” and “current” refer to early 21st century, e.g. Year 2000-2015.

1.5 Design Team

Names and biographies of some of the original 1401 design team members can be found at this link:

http://ibm-1401.info/1950sTeamBios.html

Project Manager

Architect
Fran Underwood

I/O Manager

5 Engineers

Processor
Manager

12-14 Engineers
Including one Clocking
Expert and One Edit

Instruction Expert
As told by George Ahearn, Jun 2015

Figure 1: Design Team
Org Chart

http://www.computerhistory.org/atchm/about-the-computer-history-museums-ibm-1401-machines/
http://www.ibm-1401.info/
http://ibm-1401.info/1950sTeamBios.html

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 5 of 93

2. 1401 System Overview

While the 1401 appeared early in the development of stored program computers, its overall architecture
and structure would be very familiar to a modern computer architect.

 The machine features a single, unified memory system in which both instructions and data are
stored. The memory system is addressed by character2 , and based on magnetic core
technology

 There are no plug-boards or mechanical configurations; a program is read in to core, then the
machine operates on data until the job is completed.

 The machine has a hard-wired instruction set, with instructions such as Add, Subtract, Move,
Branch, etc.

 The machine features what has now become a conventional Instruction Fetch / Execute pipeline
with an arithmetic unit in the data path, and additional logic for address calculation.

In addition to the computer itself, the initial 1401 system incorporated several tightly-integrated I/O
devices:

 1402 Card Reader/Punch

 1403 Printer

 729 Tape Drives

 RAMAC disk (added to the product later [date?])

 1407 Typewriter Console (added to the product later [date?])

There’s much more overview material at the http://ibm-1401.info/ home page.

Also, see Ken Shiriff’s article at

http://www.righto.com/2015/03/12-minute-mandelbrot-fractals-on-50.html

2.1 Specifications

Clock Frequency 87.5 kHz (11.50 usec cycle time)
(11.5 usec is the time required to do one core memory operation)

Instruction Fetch Time Up to eight cycles, or ~92 usec.

Memory Capacity 1400 characters minimum,
16,000 characters, maximum (using an IBM 1406 memory expansion chassis)

Nominal gate delay ~0.25 usec

Gate Count Logic for a fully-configured 1401 system comprises about 3,000 plug-in circuit
cards (“SMS” cards)
Logic totals about 10,000 gates.

2.1.1 Performance Metrics

The 1403 Reference Manual [RefMan] gives detailed guidance on how to estimate instruction execution
timing, and with no cache, prefetch, branch-prediction or other S/370-era performance-optimizers, timing
and performance is quite predictable. Here’s an example from the Reference Manual for timing for an
Add instruction (see pg 29).

2 In the 1401, the unit of storage is a Character, corresponding to the symbols one could punch on a card. “Bytes” came later in the
history of computing…

http://ibm-1401.info/
http://www.righto.com/2015/03/12-minute-mandelbrot-fractals-on-50.html

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 6 of 93

As an example, we can estimate the time to complete an Add instruction. Using a seven-character
instruction (comprising the Add op-code and six characters of source & destination address), an operation
to add two positive3 six-digit numbers would take about 253 usec, resulting in about 4,000 adds per
second.

Function Cycles

Fetch op-code, A and B addresses 7

overhead 3

Fetch A operand 6

Fetch and Store B operand 6

Total cycles at 11.5 usec each --> 22

Total Microseconds --> 253

2.1.2 Other Metrics

1402 Card Reader 800 Cards per Minute

1402 Card Punch 250 Cards per Minute

1403 Printer 600 132-character lines per minute - normal alphabetic printing.

http://ibm-1401.info/Dhrystone.html (?? Did someone do this??)

2.2 The 1401 Machines at CHM

The Computer History Museum (CHM) has two operational 1401 systems, each with all the usual options:

 16,000 characters of core memory

 Three or more 729 mag tape units each

 Optional index registers, branch conditions, ...

 Capable of running all IBM standard software not needing additional peripherals.

3 Operations for negative numbers are more complicated and slower

http://ibm-1401.info/Dhrystone.html

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 7 of 93

 Both 1403 controllers have buffers permitting concurrent computing and printing.4

 One of the machines has the “Overlap” option for concurrent computing and I/O, although this
has been disabled to simplify maintenance.

Both were built after the “Serial Number 25,000 Repackaging”

 1st IBM 1401 from Hamm, Germany (built 1964)
German (DE) 1401:

 Serial number 28,421

 Built: May, 1964

 Elapse run time meter at arrival = 68,730.02 hours

 Includes ‘overlap’ option

 2nd IBM 1401 from Darien, Connecticut (built 1961)

Connecticut (CT) 1401:

 Serial number = 25,478

 Built: 1961

 Run time meter at arrival = ? (The CT machine may not have a total elapsed time meter.)

 This machine does not have the Overlap option.

For more on the story of how these machines came to CHM, see

http://ibm-1401.info/Connecticut1401ProposalV2-.pdf

2.3 The Many Variations

[Let’s add a few notes on how many Optional Features were available for the 1401; there are a lot!]

https://archive.org/details/bitsavers_ibm140x225aturesCEApr61_10729447

2.4 Comparison to Current Computer Architectures

The 1401 was designed at a time when the basic architecture of a stored-program computer was
beginning to stabilize. The machine has a uniform memory system used for instructions and data without
restriction. There’s an instruction fetch pipeline that reads instructions comprising an op-code and some
operands. There’s an arithmetic unit, and a handful of registers for storing operands and addresses.

But there are some unique features that are not common in current machines:

 BCD data representation: The 1401 does not “do” bytes; the fundamental unit of storage is an
extended BCD character, encompassing numbers, the alphabet and some special characters

 Variable Precision Arithmetic: All operations in the 1401 are performed on variable-length strings
of decimal digits or characters

4 Yes, concurrent computing and I/O was a value-add option added later in the machine’s life cycle.

http://ibm-1401.info/Connecticut1401ProposalV2-.pdf
https://archive.org/details/bitsavers_ibm140x225aturesCEApr61_10729447

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 8 of 93

 Word Mark: While the BCD character format stored in memory is closely aligned with punched-
card character encoding, each character in memory has an additional ‘out-of-band’ bit called a
Word Mark that’s used to mark the end of a variable-precision data object or instruction.

 No Stack: The hardware provided no call stack. Programmers could still store return address for
subroutines, but there’s no help from the hardware

 Integrated I/O: The initial I/O devices were very tightly integrated with the CPU hardware; for
example, punched cards always are read into a fixed memory address (locations 1 through 80)
after the execution of a unique CPU instruction

 No Operating System: The 1401 does not have an OS. Application programs run directly on bare
metal, and manage I/O devices directly. The first card of an application program deck must
contain the loader that reads in and then executes the rest of the application.

 Optional Overlapped I/O: Overlapped I/O and processing was added a later option [when?].
Without the option, the programmer would execute an I/O instruction and stall until the card was
read or line printed, continuing at the next instruction.5

 RAMAC Disk Drives and an IBM-1407 typewriter console were added later [date?]

3. Instruction Set

The 1401 offers about forty instructions, most of which directly reference operands in main memory. The
machine has a handful of registers (See Data Path in Section 4.2), but each one has a specific purpose,
and they are mostly referenced or updated as side effects of operations on memory.

3.1.1 Data Representation

The 1401 data path operates directly on BCD characters, rather than the (now more common) binary
byte-and-word data objects found in most current architectures. The data path was designed to mesh
(almost) seamlessly with Hollerith punched-cards, including the conventional punched-card character set.

A character stored in 1401 memory comprises 8 bits6:

Bit Function

1 Binary values for BCD numbers, corresponding
to rows 1-10 on a punched card

2

4

8

A Zone A & B bits
 – see Character Set, Section 3.1.2

B

CD Check Digit – odd Parity (right?)

WM Word Mark; demarcates instructions and
character strings. (See Section 3.1.4)

5 Apparently use of I/O Overlap was complicated and error-prone, so it didn’t get used much

6 But don’t call it a Byte – that’s sooo IBM-360…

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 9 of 93

Objects are stored in memory as variable-length strings and BCD numbers. The most-significant digit in a
number is stored at the lowest address, and is signified by a Word Mark. Instruction addresses indicate
the least-significant digit, at the highest address.7

 Most Significant Digit has the lowest address

 The Word Mark must be on the most-significant digit, at the lowest address of the object

 Note that a zero is represented as a BCD Zero character, (binary 0b1010) not zero, so the ALU
needs translation before using the numbers.

 A Negative number is indicated by setting the “B” Zone bit in the “units” (i.e., least significant)
digit. See the Reference Manual [RefMan] pg XX for coding of negative numbers.

3.1.1.1 Arithmetic

[There’s a wicked confusing story about how tens-complement works in this machine; R Garner
summarized it, I’ll copy it here]

3.1.2 Character Set

From Ken Shirriff

Understanding the IBM punch card code

An IBM card consists of 80 characters in 80 columns.
The card has 12 rows. The top row is the 12 row, and
below that is the 11 row; these are both used for zone
punches. Below that row are rows 0 through 9, for
numeric data. The top of the card is known as the 12
edge, and the bottom of the card is the 9 edge. This is
important to remember, since cards are fed into the card
reader face down, 9 edge first.

The punch card code is mostly straightforward, but has a
few complications, closely tied to the 1401 BCD code.

The 1401 stores a character with a numeric part (bits 8421 storing a number from 0 through 15) and two
zone bits (none, A, B, or AB). Note that the character '0' (zero) is stored internally as 10, not as 0 as you
would expect.

7 In other words, arithmetic ops start with the least significant digit and auto-decrement addresses to get to the most-significant digit.

Row 12

Row 9

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 10 of 93

A character is punched onto a card as a numeric (digit) part and a zone part. The following system is
used:

The numeric part (0-15) of the character is usually punched as follows:

 0: no punch (example characters: blank or '&')

 1-9: punched in that row (e.g. digit or letter)

 10: punched as 8-2 or 0, depending on the circumstances. (e.g.
character '0' or '!')

 11-15: punched as 8-3 through 8-7. The second punch is the
numeric value minus 8, so the two punches add up to the desired
value. (e.g. '#' or '=')

The zone punches are usually punched as follows:

 No zone bits: no punch. (e.g. digit)

 Zone bits A: row 0 punched. (e.g. 'S' through 'Z')

 Zone bits B: row 11 punched. (e.g. 'J' through 'R')

 Zone bits AB: row 12 punched. (e.g. 'A' through 'I')

The main complication in the code is that the 0 row on a card can indicate
a zone (A) or a numeric value (0). Also, the 1401 stores a blank character
as numeric value 0, while a zero character is stored as numeric value 10.
This results in special cases, which are handled as follows:

 BCD value 10 with no zone (digit '0') is punched as 0.

 BCD value 10 with zone A (record mark) is punched as 0-8-2
(since row 0 can't indicate a zone and a digit at the same time).

 BCD value 10 with zone B or zone AB ('!' or '?') are punched as 0-
11 and 0-12 respectively. Interestingly, the 029 keypunch handles
these differently, using 11-8-2 and 12-8-2.

 BCD value 0 with no zone (blank) has no punches.

 BCD value 0 with zone A (cent) cannot be read from a card by the
1401 (since a 0 punch is interpreted as zero). The 029 keypunch
uses an 8-2 punch for this.

 BCD value 0 with zone B ('-') has an 11 punch.

 BCD value 0 with zone AB ('&') has a 12 punch.

See 1401 reference (page 170) for a summary of the IBM 1401's punch card code.

The pocket-guide http://ibm-1401.info/1401-CE_Pocket-Ref-Man-56-389-.pdf also gives a concise version
of the character set definition. Note that the definition of some characters depends on which Printer
Chain is installed.

from 1401-CE_Pocket-Ref-Man-56-
389-.pdf

http://ibm-1401.info/1401-CE_Pocket-Ref-Man-56-389-.pdf

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 11 of 93

3.1.3 Op Codes

Table 1 shows a summary of all the op-codes available to a 1401 programmer.

In each case, the op-code (underlined in this chart) is literally the character that would be punched on a
card to trigger the function.

Most instructions are followed by the three-digit addresses of one or two operands. Addressing is a bit
complicated (see Section 3.1.4) but for starters it’s best to think of the address as a three-character
decimal number.

So to move a number or string from location 100 to location 200, the instruction punched on the card
would be

M100200

Instruction Format Instruction Function

.,. III Halt, Halt and Branch

B(I), B(I)d,

B(I)(B)d
Branch Unconditional, Branch Conditional, Branch Char. ?

V III BBB d Branch on Word Mark or Zone

D AAA BBB Move Digit

Y AAA BBB Move Zone

, AAA BBB Set Word Marks

□ AAA BBB [Lozenge] Clear Word Marks

/ (A), / (I)(B) Clear Storage, Clear Storage and Branch

M AAA BBB Move

L AAA BBB Load

C AAA BBB Compare

Z AAA BBB Move Zero Suppress

P AAA BBB Move Record

A AAA BBB Add

S AAA BBB Subtract

Q AAA Store A-STAR

H AAA Store B-STAR

? AAA BBB Zero and Add

! AAA BBB Zero and Subtract

E AAA BBB Edit

1, 1 III Read Card, Read Card and Branch

4, 4 III Punch Card, Punch Card and Branch

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 12 of 93

2, 2 III Print, Print and Branch

3, 5, 6, 7 III Combined Read / Punch / Print Ops (ops 1, 2, 4 can be
combined into one instruction!)

K d Stacker Select

F d Forms Control

AAA BBB Modify Address (only in machines with a 1406 Memory Expansion)8

@ AAA BBB Multiply

% AAA BBB Divide

U % U X d Unit Select (729)

M % U X BBB d Move (729)

L % U X BBB d Load (729

Prog.Load Load programs from 1402

Table 1: Op Code Summary9

http://www.textfiles.com/bitsavers/pdf/ibm/140x/1401ReferenceCard.pdf

http://ibm-1401.info/1401-CE_Pocket-Ref-Man-56-389-.pdf

3.1.4 Using the Word Mark

Each character in memory has a bit called a Word Mark, used to delimit numbers and strings, and also
instructions.

For a number or character string, the Word Mark is set on the “leftmost” character of a field (lowest
address, i.e., most-significant digit) and cleared on all other characters of the string.

For an instruction, the Word Mark is set on the first character of the instruction – the opcode. There must
also be a Word Mark on the first character after the end of the instruction. Normally this will be the next
instruction, but there must also be a Word Mark after the last instruction.10

Full rules for Word Marks are given on page 15 of the Reference Manual [RefMan].

For some instructions, the second address field (“BBB”) can be omitted [by placing the Word Mark on the
character following the AAA field of the instruction?], using the existing contents of the B Address
Register (B-STAR) left over from the previous instruction.

8 See http://www.ibm-1401.info/IBM1401-225-6541-0_1401_Optional_Features_CE_Apr61.pdf pg 8

9 Cribbed from Ron Williams

10 This means that the execution unit fetches characters in an instruction until it hits a Word Mark, indicating the next instruction
(with a couple of exceptions that the first instruction on a card to run without a word-mark).

http://www.textfiles.com/bitsavers/pdf/ibm/140x/1401ReferenceCard.pdf
http://ibm-1401.info/1401-CE_Pocket-Ref-Man-56-389-.pdf
http://www.ibm-1401.info/IBM1401-225-6541-0_1401_Optional_Features_CE_Apr61.pdf

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 13 of 93

3.1.5 Addressing

Data objects (strings or numbers) are stored in memory as variable-length strings of characters or digits,
most significant digit in low address, least significant at high address

 So multi-character instructions (like “Add”) start at the high address and auto-decrement until a
Word Mark signals the end

Addresses less than 1000 are indicated simply by three decimal digits in the address field of an
instruction. For addresses in the range of 1,000-15,999, zone bits in the three address digits are used to
extend the range.

[the picture here is not yet approved]

See Address generation

http://ibm-1401.info/1401AddressingStanP.html

3.1.6 Reserved Memory Locations

There are a number of locations reserved for the card reader/punch, and line printer, as shown in Table 2.

Address Function

0 Loop counter used by Card Reader hardware

1-80 Card Reader Data

100 Loop counter used by Card Punch hardware

101-180 Card Punch Data

200 Loop counter used by Printer hardware

201-332 Line Printer Output

Table 2: Reserved Memory Locations

All the gaps between reserved locations are free to be used. When I/O operations are not in progress, all
locations can be used for other things.

See System Operations Reference Manual A-9. [Ken, what’s this ref?]

B A 8 4 2 1

Units

B A 8 4 2 1

Tens

B A 8 4 2 1

Hundreds

8 4 2 1 8 4 2 1 8 4 2 1

Units
(Decimal)

Tens
(Decimal)

Hundreds
(Decimal)

8 4 2 1

Thousands
(Binary)

Three-Character
software address

0-15,999 Hardware
Addresses

Figure 2: Extended Address Decoding

http://ibm-1401.info/1401AddressingStanP.html

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 14 of 93

4. Principles of Operation

4.1 Top-Level Block Diagrams

[Haven’t found one yet!]

4.2 Data Path

From [FMM] pdf pg 8

[the doc contains two other versions, one with more stuff for multiply and tape-drives, and another with a
few more blocks to add the Process Overlap feature]

There’s a similar block diagram in G24-1477 pdf pg 6

The ILD set contains a detailed data path block diagram which is critical to understanding many aspects
of the machine. It’s too big to fit in this doc, but the diagram looks like this:

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 15 of 93

The full-sized version can be seen at [ILD] pdf-pg 4, or [ILD2] pdf-pg 2.

4.3 Design Methodology

The 1401 is described by three independent sets of engineering drawings:

 Instructional Logic Diagrams (ILD’s) are summary drawings, designed to show how various
functional blocks in the machine work and how they’re interconnected. ILD’s have reference
points to link to detailed schematics, but omit many details of the underlying implementation to
allow more focus on overall function.

ILD drawing format is relatively familiar as a logic diagram, although some of the symbols are
different. Notes in the next section highlight a few aspects of the ILD format. The 1401 is
described by about 90 pages of ILDs, formatted on 11x17” pages.

Not all parts of the machine are described by ILD’s; the focus is on instruction execution logic and
data path, with not much coverage of I/O functions.

ILDs were created after the completion of the design as teaching aids.

 Automated Logic Diagrams (ALD’s) are the actual schematics that identify every gate, driver, pin,
connector and any other components involved. ALD format is rather different from modern logic
practice, so there’s a section below on how to read an ALD.

There are about 600 pages of ALDs for the full machine.

Although they’re a bit cumbersome, ALD’s should be considered as the primary reference source
for how the machine is wired.

 Standard Module System (SMS) plugin-card documents and schematics.

There are over a hundred of types of SMS cards, so understanding the details of a logic
schematic often requires recourse to the transistor-level schematic of SMS modules.

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 16 of 93

ALD’s break the design down to logic functions; gates, drivers, expanders, etc, where most functions are
implemented in transistors on SMS cards. SMS documents give transistor-level schematics for each logic
function on an SMS card.

In this document, there’s a section on the ILD description of the machine, and then a subsequent section
that outlines how some of the underlying modules work at a transistor level, and how to read the ALDs.11

4.3.1 Design Flow

See [SMS] pdf pg 12 for a block diagram of design flow.

Detailed designs for the machine would have been done with paper and pencil, and then coded on
punched cards.

An automation tool would print the ALDs, and also generate a netlist for wiring the backplanes.

Backplanes were initially wired by hand, but later transitioned to Gardner-Denver automated wire-
wrapping machines.

The design process did not involve any simulation or automated timing analysis.

There are IBM manuals describing aspects of the ALD preparation process at the following links:

http://www.textfiles.com/bitsavers/pdf/ibm/logic/Understanding_Design_Automation_Mar62.pdf

http://www.textfiles.com/bitsavers/pdf/ibm/logic/Mechanization_Of_Engineering_Design_Data_Jan62.pdf

http://www.textfiles.com/bitsavers/pdf/ibm/logic/TR00.770_Automation_Of_Logic_Page_Printing_Jan61.pdf

4.4 Reading the Instructional Logic Diagrams

ILD logic pages would look familiar to current designers, except the symbols are different. Here’s an
example:

11 Modularity and abstraction are fine things, but at some point, it may be necessary to follow a block all the way from the ‘abstract’
ILD representation down to ALD to transistors to figure out what the heck it really does…

http://www.textfiles.com/bitsavers/pdf/ibm/logic/Understanding_Design_Automation_Mar62.pdf
http://www.textfiles.com/bitsavers/pdf/ibm/logic/Mechanization_Of_Engineering_Design_Data_Jan62.pdf
http://www.textfiles.com/bitsavers/pdf/ibm/logic/TR00.770_Automation_Of_Logic_Page_Printing_Jan61.pdf

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 17 of 93

ILD’s describe logical function, not wiring, so logic levels are generally assumed to be “positive true”,
loading and fanout aren’t factored in, and exact devices aren’t represented. That said, the ILDs often
include page number references to the ALDs, where exact logic and implementation can be seen.

Some of the ILD symbols12 are summarized below.

Gates

OR gates look like AND gates, while AND gates look like op-amps… Here’s the decoder chart:

Latches

State such as machine registers is usually stored in level-sensitive latches. The ILD’s are rather informal
about exactly how each kind of latch works, but they’re generally cross-coupled gates, either
implemented with explicit gates in the ALD, or with special-purpose SMS latch cards.

But in either case, there will usually be Set and Reset inputs. In the data path, a latch will generally be
cleared (reset to zero) at a time safely before it’s about to be loaded. The data to be loaded into the latch
will typically be gated with a clock phase that happens when that data is valid, at which time, it will be
asserted onto the Set input of the latch.13

12 It’s been pointed out many times, but IBM was doing this stuff before there were commonly accepted definitions for logic symbols.

13 That pretty much guarantees a glitch on output of the latch, even if its value will not be changed. The moral is: Don’t pay attention
to the output of a latch except during the times when it’s expected to be stable!

Signal Names
(no page references)

ALD Page
numbers show

more detail
Figure 3: ILD Example

AND gate
OR gate

Inverter

Figure 4: ILD Symbols

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 18 of 93

Section 5.3.2 below gives more detail on the implementation of latches.

Triggers

The 1401 also uses edge-triggered flip-flops, often in timing generators.

These devices generally don’t have direct analogs in current logic design, but the versions found in the
1401 can be thought of as similar to a JK flip-flop, but with independent clock inputs for set and reset.

Figure 6 shows the definition of a trigger in the ILDs.

 DC Set and Reset act as normal level-sensitive inputs to the flop

 Also, assuming setup and hold times are met, if “On Gate” is active and there’s a rising edge on
“On AC Set”, the flop output will be ‘set’

 And if “Off Gate” is active and there’s a rising edge on “Off AC Set”, the flop output will be
‘cleared’

If AC Set and AC Reset are clocked at the same time, the trigger will act something like a JK flop, except
that the state is not defined if On Gate and Off Gate are asserted simultaneously and the device is
clocked.

Latch

Q

Not-Q

Set

Reset

Example from [from http://ibm-
1401.info/ALDs-
Australia/1_1%20Logic%20Diagrams
%201401_40-
28588%202151_788.pdf pdf pg 7]

Figure 5: ILD
Abstract Latch
Model

Figure 6: Trigger Definition

(Picture from [ILD] pdf pg 5,
clock generation)

http://ibm-1401.info/ALDs-Australia/1_1%20Logic%20Diagrams%201401_40-28588%202151_788.pdf
http://ibm-1401.info/ALDs-Australia/1_1%20Logic%20Diagrams%201401_40-28588%202151_788.pdf
http://ibm-1401.info/ALDs-Australia/1_1%20Logic%20Diagrams%201401_40-28588%202151_788.pdf
http://ibm-1401.info/ALDs-Australia/1_1%20Logic%20Diagrams%201401_40-28588%202151_788.pdf
http://ibm-1401.info/ALDs-Australia/1_1%20Logic%20Diagrams%201401_40-28588%202151_788.pdf

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 19 of 93

Delay Element

[Delay elements are used throughout the clock generation logic… add a note on what they do]

“Delay” box on ILD: Maybe http://files.righto.com/sms/AAF.html

4.5 Clocking and Cycle Timing in the 1401

The 1401 is a synchronous machine, clocked by a master clock source, but it doesn’t use the
conventional synchronous logic design popular in current logic design. Instead, the master clock
generates many clock phases during a single machine cycle; each phase or subphase is used to advance
signals through a series of level-sensitive latches.14

There are two aspects to timing in the machine:

 Within an 11.5 usec machine cycle, there are fixed times at which various things happen, e.g,
data read from Core, pass through the arithmetic unit, registers cleared or updated.

 Instructions execute through a series of machine cycles in which the instruction itself is fetched,
then operands are fetched and stored.

4.5.1 Clock Timing

Each 11.5 usec machine cycle is divided into 120 units15 by a master clock generator that creates a
plethora of timed pulses representing different sub-phases of the cycle clock. Throughput the design,
timing signals are represented by the time interval during which they are active; for example, the signal
“Time 014-030” is goes active around 1.4 usec after the start of the cycle, and stays active until about 3.0
usec into the cycle (and happens to be used to latch data from Core into the B register).

Clock Logic is summarized on a page in the ILDs. See [ILD] pdf-pg 5.

Figure 7 shows the basic timing generation for the machine, although there are many other sub-phases
generated for specific functions.

14 Like Mead and Conway “Two Phase Non Overlapping Clocking” in early Metal Oxide Semiconductor designs, only with a lot more
phases!

15 That means that a unit of time is approximately 0.1 usec

http://files.righto.com/sms/AAF.html

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 20 of 93

Core memory is destructive-read, so each 11.5 usec cycle will read a memory location, and either write
the same data back, or write an updated operand back to the location

During I/O ops, timing / clocking is switched to be controlled by the I/O device

That must mean that the machine runs 11.5 usec cycles whenever the I/O is ready, otherwise it waits in
the T.105-000 state.

That means there’s a “synchronizer” somewhere, not that it was recognized as such

The time intervals on clocking signals are approximately in units of 0.1 usec (i.e., 120 units in 11.5 usec…
is there some significance to the numbers I’m missing?

OSC

0
0
0

 0
1
5

0
3
0

0
4
5

0
6
0

0
7
5

0
9
0

1
0
5

0
0
0

Trigger 1

Trigger 2

Trigger 3

Trigger 4

Trigger 5

T.000-030

T.030-060

T.060-090

T.090-000

T.000-015

T.015-030

T.030-045

T.105-000

… and so on for the other four phases…

347.5 kHz

11.5 usec 1401 Machine Cycle
T

ri
g

g
e
r

S
ta

te

D
e
c
o
d
e
d
 3

 u
s
e
c

c
lo

c
k
s

D
e
c
o
d
e
d
 1

.5
 u

s
e
c

c
lo

c
k
s

Clock logic pauses in this
state during Single-Step
and I/O ops [Right??] Picture cribbed from Ron Willams

Figure 7: System Timing Definition

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 21 of 93

Time T000 is presented via a connection point on the operator’s panel to allow synchronization of an
oscilloscope during debug. (See Section 8.2)

It’s possible the actual clock source for the entire machine is on pdf pg 25, IBM’s pg 31.10.11.2

http://ibm-1401.info/ALDs-Australia/2_7%201401%2040-28588%202151_788%2021-32.pdf

[can someone confirm?]

The master oscillator is an SMS card named “RK”: Alloy-Oscillator 347.5KC Free Running (Crystal)
(http://files.righto.com/sms/RK.html)

That makes the machine cycle 1 / (347.5 / 4) = 11.51 usec. (why do some items on the 1401 web page
say 87.5 kHz and 11.4 usec?) The machine cycle rate is 86.8 kHz.

4.5.2 Instruction Cycle Timing

With no cache, no prefetch, no branch prediction or any of the other hardware features that make current
machines so fast, the 1401 execution rate is very predictable.

Each instruction consumes a number of machine cycles to complete:

 Fetching the instruction itself may take up to eight cycles, one to fetch the op code, plus up to
seven more for two operand addresses and an optional modifier

 Then execution of the instruction may take (possibly many) cycles, usually alternating between an
A operand fetch and a B operand fetch and store.

See G24-1477 and R25-1496 for cycle-by-cycle timing for each instruction type

See [ILD2] for cycle-by-cycle timing diagrams for many instruction types

5. Hardware Design

So you’re *sure* that your program is right and the hardware isn’t executing it properly… now what?

 Find the function in question in the ILDs or manuals

 Find the bit in question on the ALDs (schematics). Section 5.2 shows how to read the diagrams.

 Follow the packaging breakdown in Section 5.1 to find the pin

 Snoop the bit with a scope probe

 Find the bug in your code.

5.1 Physical Layout and Packaging

See http://ibm-1401.info/1401CPUPhysLayout.html for annotated photos of the machine showing the mjor
functions packaged in each card gate.

See http://ibm-1401.info/1401UnitPluggingChart.html for physical location and types of all SMS cards.

A low-end 1401 with few options could be packaged in a single frame (also called “two cubes”).

http://ibm-1401.info/ALDs-Australia/2_7%201401%2040-28588%202151_788%2021-32.pdf
http://files.righto.com/sms/RK.html
http://ibm-1401.info/1401CPUPhysLayout.html
http://ibm-1401.info/1401UnitPluggingChart.html

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 22 of 93

5.1.1 Locating Cards in a 1401

Components of the 1401 are organized as Card Gates which hold SMS card. Up to eight Card Gates can
fit together into a Module (aka ‘cube’), with two modules per frame.

Figure 8 shows how the Card Gates are identified in a 1401. (See Figure 13 for a breakdown of the
complete location identifier, including the Card Gate identification, as found on logic diagrams.)

Card gates are hinged on one edge, allowing them to swing open for maintenance. The gates in the
upper module swing downwards, those in the lower module swing upwards. Within a Card Gate, there
are up to 6*26=156 SMS card sockets, identified by row and column number.

Figure 9 shows a schematic of a 1401 frame with all the Card Gates open, giving column and row
identifiers for front and back. This is an elevation view, looking at the left end of the machine (the end
near the operator’s console), with dotted lines showing clearance required for opening and closing card
gates. Note that lower gates are hinged at the top, while upper gates are hinged at the bottom. Since
cables exit the gates at the hinge point, this arrangement minimizes the length of wires through the
chassis.

Frame 01

Operator’s Panel Module A (top)

Module B (bottom)

Frame 02

Card Gate 1 (front)
Card Gate 8 (rear)

 Gate 02
B5 (rear)

Card Gate hinge

Card Gate handle

Figure 8: Location of Card Gates

Gate 01 A8
(rear)

Gate 01 A5
(rear)

Gate 02 A8
(rear)

Gate 02 A5
(rear)

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 23 of 93

Figure 10 shows a photo of the Real Thing…

Figure 10: Upper and Lower Card Gates Opened for Service

5.1.2 Placement of Logic Functions

Figure 11 below, from the Field Maintenance Manual ([FMM] pdf pg 11), shows locations logic functions
in card gates and the corresponding ALD pages.

Figure 9: Column and Row
Numbers for All Card Gates

(From Transistor Component
Circuits Manual [TCC] pg 8)

 Card Gate hinge

Card Gate handle

Column Identifier – A-F

SMS Card Row 1-26

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 24 of 93

Figure 11: Card Gate Assignments

There’s a diagram of cabling between units in the Field Maintenance Manual [FMM]http://ibm-
1401.info/PPierce-ibm-225-6487-3.pdf pdf pg 19

5.2 Reading the ALD’s

Automated Logic Diagrams are a bit harder to read than the ILDs.

ALDs are printed on line printers, so everything is either a box or a line, i.e, all logic functions are
represented as boxes with notations showing the function, and wires are shown as horizontal and vertical

Frame 01 (left)
Module A (top)

Gate 4 (front right)

http://ibm-1401.info/PPierce-ibm-225-6487-3.pdf
http://ibm-1401.info/PPierce-ibm-225-6487-3.pdf

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 25 of 93

lines. Because ALDs were designed to be printed on line printers on 11x17 paper, the format is highly
structured, with a five-by-seven grid of locations for logic blocks and predetermined channels for routing
wiring. Figure 12 shows a sample from an ALD page.

ALD page numbers are always four groups of digits separated by dots (e.g. 31.10.11.2), allowing
grouping of functions and insertion of page numbers.16

Figure 13 gives the ALD Logic Block secret decoder ring. The standard notation in each block gives its
function, pin numbers, logic levels, circuit type and physical location in the machine.

16 “Like the Dewey Decimal System”, suggests Ignacio Menendez. See pg 13 of [SMS] for the official story on page numbers.

Figure 12: Sample ALD from Data Path

Logic Function

Signal Name and
page cross-ref

ALD Page Number

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 26 of 93

For most gates, outputs on the lower half of the box are “In Phase” (or “In Ø”), while outputs at the upper
half are Out of Phase (Out Ø). For example, for an AND gate, the in-phase output would provide AND,
while the out-of-phase output would provide NAND.

A decoder chart for the “Machine Feature Index” field in an ALD gate can be found at http://ibm-
1401.info/1401UnitPluggingChart.html. In this instance “BA” stands for “BAsic”, i.e., non-optional data
path.

There’s a chart of all the Logical Function symbols (e.g. +A, DE, C, etc) on pg 187 Appendix D of [SMS].
In this case, “+A” means that the gate produces an output when both inputs are high.

5.2.1 Page Cross-References

The 1401 schematics are divided into hundreds of pages, so signals routinely cross from one page to
another. On each schematic sheet, inputs to logic on the page are arranged along the left edge, while
outputs are placed on the right edge of the sheet.

Each signal that crosses from one page to another is given a name, and a page number for where to find
the matching signal.

The signals along the edge of the page show how to trace from one pin
on a logic block to another pin on a different logic block on a different
page. But that doesn’t show how the signal actually gets there…

The 1401 logic is divided into dozens of Card Gates (e.g., see Error!
Reference source not found.). Each card gate is an independent wire-
wrapped backplane, which could be replaced. Connections arrive and
depart the Card Gate via Edge Connectors,17 i.e., reserved SMS card
locations on the edge of the backplane that are populated by cable

17 Ok, so “most” signals arrive and depart via Edge Connectors. Engineering changes, field options and entropy in general result in
all kinds of ad-hoc wiring in the actual machine…

+A

BA

U T
01BA
7C06

01
CKWF

A

B

C

H

Pin on
backplane

Circuit Type / Logical

Function (See [SMS]

pg 187 for the list)

“Lozenge” indicates ‘No
Load’ (e.g. open collector)

Input voltage
level (See

Section 5.3)

Output
voltage level

SMS Card Type

Circuit Number on
this board 01BA

7C06

Frame 01

Module A/B

(not used)

Row 1-26

Column A-F

Gate 1-8

Physical Location

Figure 13: ALD Logic Block

(Cribbed from Ron Williams. See
[SMS] pg 14 for the official version)

Machine Feature
Index (i.e., the major
function of which this

gate is a part)

2B

Row and Column of the
block on the ALD page

Figure 14: Edge Connectors
(aka Paddle Cards)

http://ibm-1401.info/1401UnitPluggingChart.html
http://ibm-1401.info/1401UnitPluggingChart.html

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 27 of 93

connectors instead of logic gates. The edge connectors are cabled together with a giant wiring harness
to take signals from one logic gate, through an edge connector, to the wiring harness, to another edge
connector, to the destination logic gate.

The edge connector pins used to transit signals from one card gate to another are identified on the ALDs
in footnotes at the bottom of the page. Figure 15 shows an example.

Each entry in the footnote gives a pin identifier for the edge connector (or other types of connectors
sometimes). In the 1401, the pin is identified by an eight-digit string18 (almost) the same as the location
identifier in the logic block shown in Figure 13.

In this example, the signal “-T SENSE 1” is heading from page 35.11.11.2 to page 42.79.11.2. But the
page number is followed by “ *1”, indicating that it crosses from one card gate to another.

 Looking at the logic block, we see the signal terminates at a DE-type gate at location 01AA-3A02
(Frame 01, Module A, card gate 3, column A, row 02)

 At the bottom of the page, footnote *1 shows that the edge connector is in location 01A3 F26, and
the signal passes though Pin D.

18 Note that the string is numeric/alpha/numeric/alpha/numeric/alpha.

Figure 15: ALD Wiring Path Footnote

Signal Name and
page cross-ref

Footnote ref to
wire route

Current ALD Page
Number

Wire Route footnote
at page bottom

(For the full page image, see http://ibm-1401.info/ALDs-VSnyder-Australia/3_7/728724.pdf)

01 A 3 F 26 D
Pin D

Column 26

Row F

Gate 3

Module A

Frame 01

Pin Identifier

http://ibm-1401.info/ALDs-VSnyder-Australia/3_7/728724.pdf

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 28 of 93

 A cable then takes the signal to 06B7 A10D. [Frame 06, you say? Yes, Frame 06, Module B is
the 1406 memory expansion chassis(!)]

Connection points which are not part of conventional 1401 processor card gates are assigned locations
that don’t completely fit with the physical layout in Figure 8:

 Frame 06 is the 1406 expansion memory chassis

 Frame 02 “card gate” A0 is a connector panel used to route signals between frame 01 and 02,
simplifying assembly of the two-cube processor

[And are there others?]

See pages 13 & 14 of Standard Modular System manual [SMS] for the details on signal cross-references.

There’s also an internal memo dated Oct 27, 1959 outlining guidelines for documenting “feed through”

wire routing at http://ibm-1401.info/PokoskiJ-fdthru-Oct-59.pdf

5.3 CTDL Logic Family

While IBM developed a number of different transistorized logic families during the SMS (Standard Module
System) era, most of the 1401 processor is implemented with one logic family, CTDL (Complementary
Transistor Diode Logic),19 using NPN and PNP Germanium Alloy junction transistors. About 3,000 SMS
cards are used to implement an IBM 1401.

Considerable detail on CTDL can be found in two references; see [SMS] and [TCC] in the references.

The “complementary” part of CTDL refers to the practice of using two variants of logic gate, called P and
N gates, using PNP and NPN transistors, with two different sets of voltage levels. “T” levels swing
between +6v and -6v, “U” levels switch between 0.0v and -12v, Most gates have either T or U levels as
inputs, and the opposite levels as outputs, so a typical circuit would have chains of logic of alternating P
and N type gates.

The following section shows how CTDL gates are made.

5.3.1 Gates

There are two types of ordinary gates

19 Except for the tape controller (TAU), which was re-used from a 709 computer design [right? Which one?]. See Section 6.3.

“U” Logical
One

“T” Logical
One

Logical
Zero

Both U and T voltage levels
feature a nominal 12v swing
between zero and one, with a
switching point approximately
at the middle of their ranges,
offering considerable noise
margin

Figure 16: CTDL Voltage Levels

http://ibm-1401.info/PokoskiJ-fdthru-Oct-59.pdf
http://en.wikipedia.org/wiki/Micro_alloy_transistor#Micro_alloy_transistor

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 29 of 93

 An N-type20 logic block takes T-level inputs, uses PNP transistors, and produces U-level outputs.

 A P-type logic block takes U-level inputs, uses NPN transistors, and produces T-level outputs.

5.3.1.1 N-Type Gates

Figure 17 shows a sample N-type 2-input AND gate (which IBM would call a “-A”, or Minus AND, now
known as a NOR gate, one that generates a logical zero output when either inputs are at logical one.)
This gate accepts T levels on its inputs, and generates a U output level.

There are a zillion variations, but this particular gate type is identified as “JHVW”; this identifier is used on
the logic diagrams (see Reading an ALD), and is embossed on the PCB.

The photo below shows the physical card, made of phenolic PCB material, with copper traces on one side
and components on the other. Contacts to plug into the backplane are plated with gold to resist
corrosion.

The following image shows the IBM representation of the card:

20 The “gate type” corresponds to the doping of the base of the transistor; so an N-Type gate uses a PNP transistor.

It says
JHVW right

here!

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 30 of 93

From http://files.righto.com/sms/JGVW.html

Ignoring all the analog niceties, here’s the simplified version of this gate. The output of the gate is 0V
when input A and input B are both -6v.21

5.3.1.2 P-Type Gates

The N-Type gate takes T inputs and produces U outputs, and implements a NOR function. The P-Type
gate does the reverse: U-Type inputs, T-Type outputs and NAND functionality.

21 Put that 0v to +5v TTL stuff out of your mind; logic levels in the 1401 tend towards the negative voltages.

Logic diagram
and pinout as

shown in ALD’s

Schematic (note
PNP bipolar
transistor)

Voltage levels

“U”-type output
voltage

Figure 17: Sample N-Type Gate

A Input

B Input Output

-12V
-6V

680 Ω
12 kΩ

A B Out

-6v -6v 0v

-6v +6v -12v

+6v -6v -12v

+6v +6v -12v

Figure 18: Simplified N-Type Schematic “T” level
inputs

“U” level
output

http://files.righto.com/sms/JGVW.html

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 31 of 93

5.3.1.3 “Dot” Gates

Transistors don’t come cheap, so why not do logic with wire instead of transistors where possible…

The “dot” gate yields an implicit logic function by wiring output of compatible gates together.

The output of the gate below is 0V when inputs A and B are both -6v, or inputs C and D are both -6v.

“T” level
output

A Input

B Input

Output

-6V

+6V

680 Ω 15 kΩ
A B Out

-12v -12v +6v

-12v +0v +6v

+0v -12v +6v

+0v +0v -6v

+6V

“U” level
inputs Figure 19: Simplified P-Type Schematic

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 32 of 93

Gates which are suitable for wired-OR outputs have no internal load resistor, and may be indicated by a
“Lozenge” symbol on the output pin on the ALD’s.

It’s important to remember that in the 1401 ALD’s, wired-OR functions may extend across many pages…
For example, a bit in a data path may be wired as a ‘bus’, where any one of a number of sources can pull
the signal high.

5.3.1.4 About That Inductor

Astute readers may note that many of the logic gates have small inductors in
series with the load resistors that pull signals to their opposite state when the
switching transistor is turned off (i.e, pulling outputs low in a N-Type gate).
This inductor works to speed the transition from the On to Off state for the
gate (i.e., the falling edge for an N-Type gate) by providing a constant current
supply to charge any capacitance on the output of the gate. The IBM
Transistor Component Circuits manual ([TCC] pg 45) refers to this inductor as
a peaking coil.22

A simple Spice simulation shown in the next two figures illustrates the
function of the load inductor; the green trace with the load coil transits the
switching region more quickly than the blue trace, which relies on the resistor

alone to pull the output low.

22 As would any analog designer.

A Input

B Input

-6V

12 kΩ

C Input

D Input Output

-12V
-6V

680 Ω
12 kΩ

A
B
C
D

Output

Figure 20: Wired-Or Gate

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 33 of 93

Figure 21: Simulation Output

Figure 22: Simulation Schematic

5.3.2 Latches

Working state is stored in 1401 logic using Latches and Triggers, two variants of flip-flop circuits.23

[Carl, your note below traces the terms latch and trigger through the history of SMS and SLT; but in the
1401 is seems clear that latches are level-sensitive and triggers are edge sensitive… is that not the
case?]

Latches are level-sensitive, without a clock input, and may be implemented with individual gates wired
together, or with single-purpose SMS cards that implement the latch function. In current terms, these
would be seen as SR flip-flops.

Figure 23 shows the schematic of a dual latch SMS card used in the 1401 data path.

23 In the 1401, Latches are level-sensitive and Triggers are edge-sensitive; this simple naming was not always true in later IBM
machines, where the definitions started to blur. See Carl’s note, Section 10.1.

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 34 of 93

Figure 23: Level-Sensitive Latch

When looking at latches in the 1401 ALDs, remember that the outputs are not buffered, and a latch can
be driven to a new stable state by forcing the output. Put another way, latches can be set and reset by
their designated logic inputs, but also by (sometimes hard to see) wired-OR gates on their outputs.

As is pointed out in [FMM], debugging a latch that’s triggered by a wire-OR yanking its output to a new
state can be tough, as the new state of the latch back-drives the input that just set it to that state.

5.3.3 Triggers

Latches are level-sensitive and can be constructed with just cross-coupled latches. But edge-triggered
flops need a bit more care.

Figure 24 shows an edge-sensitive trigger circuit.

The trigger has normal Level-sensitive Set and Reset inputs called DC Set and DC Reset

But it also has AC-Set/Reset and Gate inputs on each side.

 If the Gate input is ‘high’ (that would be a zero-volt “U” level) when the AC-Set/Reset input
transitions from low-to-high, the flop will change state. 24

 If the Gate input is ‘low’ (-12V), a rising edge on the AC-Set/Reset input has no effect.

The detailed waveforms for this magic trick are shown in Figure 25.

24 Note the very long setup time – 3.75 usec according to the spec, though clock-to-q is under one usec.

Card Type CEH:
http://files.righto.com/sms/CEH.html

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 35 of 93

Figure 24: Edge-Sensitive Trigger

Card Type CW:
http://files.righto.com/sms/CW.html

Conditional
Edge Trigger;
see Figure 25

http://files.righto.com/sms/CW.html

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 36 of 93

And just to put this to use, Figure 26 shows the interconnect to make a Trigger into a Divide-by-Two (such
building blocks would be used in the master clock generator).25

5.3.4 Putting the Gates Together

Back uncounted pages ago, Figure 5 showed a tiny piece of the data path, encompassing one bit of the A
and B registers. Here’s the picture again, in Figure 27.

In the subsequent figure, we can see how that’s implemented in actual gates, both in conventional logic
symbols, and also as depicted in the ALD page (page 35.11.11.2 of [ALD]).

25 May we suggest the use of one of the most excellent analog circuit simulators floating around to see how this actually works…

Rising Edge of AC-Set
switches Q1 when On-

Gate is high

But when On-Gate is
Low, the AC-Set

transition does not cause
Q1 to switch

Figure 25:
Conditional Edge

Trigger Waveforms

T

CW-- C
D
A

B
H

E

Clock-In
Clock/2-Out

Figure 26: Divide-by-Two

This interconnect of a
CW Trigger yields a
divide-by-two function.

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 37 of 93

Figure 28 shows the corresponding automated logic diagram. Inputs come in on the left of the page,
outputs leave on the right side of the page.

It’s important to note that the registers are not clocked; each input is gated with a timing signal before
reaching the schematic page, so there are few clocks on this page.

Figure 27: Registers A & B in ILD Format

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 38 of 93

5.4 Major Blocks

5.4.1 Core Storage Memory in the IBM 1401

See generic overview of core-storage technology at http://ed-thelen.org/comp-hist/navy-core-memory-
desc.html

-Sense 1

+B Reg Not 1 + Not B Reg Reset

+ A Set Reg

+ Not A Reg Reset

+B Reg 1

-A Reg 1

(wire OR)
Register B, bit 1
Latch

Register A, bit 1
Latch

“DE” is a non-
inverting buffer

-T Sense 1 driven
from several pages

Other sources can
Set A-register bits.
(The implied Wire-
OR is not shown in
the logic above)

Figure 28: Registers A & B Data Path Slice Logic Diagram
2
1

s
t C

e
n
tu

ry

M
id

 2
0

th
 C

e
n
tu

ry

http://ed-thelen.org/comp-hist/navy-core-memory-desc.html
http://ed-thelen.org/comp-hist/navy-core-memory-desc.html

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 39 of 93

Some theory-of-operation plus timing waveforms for 1401 core storage can be found in [FMM] pdf-pg 119

(Contributed by Ken Shiriff, August 2015; edited by Guy)

The IBM 1401, like most computers of its era, uses ferrite core memory, which was the leading memory
technology from the mid-1950s until it was replaced by semiconductor memory in the early 1970s. For its
time, core memory provided relatively dense, reliable, and inexpensive storage.

The 1401's main core memory provides 4,000 characters of storage,
as well as special I/O storage. Each bit of data in memory is stored in
a tiny ferrite ring or core. These cores can be magnetized in one of
two directions, corresponding to a 0 or 1 bit. The cores are arranged
into a grid of 4000 cores, called a plane. Each plane stores one bit of
a character, so 8 planes are stacked up to store a character. (The
additional I/O planes will be discussed later.)

The diagram to the right, from the 1401 Reference Manual illustrates
how the character 'A' is stored in core memory. To select an address,
an X wire and a Y wire are activated, selecting the cores where those
two wires cross. The bits from the selected location each plane make
up the character. Since there are 4000 cores in each plane, the core
module provides 4000 characters of storage.

5.4.1.1 Properties of Ferrite Cores
The physical properties of ferrite cores are critical to the operation of the core memory, so it is important
to understand them. First, if a wire through a core carries a strong current, the core will be magnetized
according to the direction of the current (following the right-hand rule). Current in one direction will write a
1 to the core, while the opposite current will cause the opposite magnetization and write a 0 to the core.

Hysteresis is a key property of the cores: current must exceed a threshold to affect a core's
magnetization. A small current will have no effect on the core, but a current above a threshold will cause
the core to "snap" into the magnetized state aligned with the current.

http://bitsavers.trailing-edge.com/pdf/ibm/140x/A24-1403-5_1401_Reference_Apr62.pdf
https://en.wikipedia.org/wiki/Right-hand_rule
https://en.wikipedia.org/wiki/Magnetic_hysteresis
https://picasaweb.google.com/lh/photo/jtWV4OZLOXEsy2gQW78OBtMTjNZETYmyPJy0liipFm0

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 40 of 93

The hysteresis property makes it possible to select a particular core. A "half-write" current is sent through
the appropriate X select wire and a "half-write" current through the Y select wire. The single core with the
selected X and Y wires will have enough current to change state, but the other cores will not have enough
current, and will remain unchanged.

The final important property is that when a core switches its direction of magnetization, it induces a
current in a sense wire through the core (kind of like a transformer). If the core already has the target
state and doesn't change magnetization, no current is induced. This induced current is used to read the
state of a core. A consequence is that reading a core erases it, and the desired value must be written
back to the core.

5.4.1.2 Structure of a Core Plane
Each core plane has 4000 cores arranged as a 50x80 grid of cores. (The I/O planes are configured
differently, and will be explained later.) To reduce interference, the ferrite cores are arranged in a
"checkerboard" pattern with each core arranged diagonally in the opposite direction from its neighbors.
Four wires pass through each core. The horizontal wires are the X select line and the inhibit line (used for
writing). The vertical wires are the Y select line and the sense line (used for reading). The X and Y select
lines go through all the planes, so all planes are accessed in parallel.

To read a core, the X and Y select lines magnetize the selected cores to the "0" direction. If the core was
previously in the "1" state, the core's state change induces a current in the sense wire. If the core was
already in the "0" state, no current is induced. Thus, the sense wire allows the bit stored in the core is
determined. The read process destroys the previous value of the core, leaving it in the 0 state. Each
plane has a sense wire threaded through all the cores in the plane.

To write a core, current of the opposite polarity is sent through the X and Y select lines to magnetize the
core into the 1 state. To keep the core in the 0 state, a current is sent through the plane's inhibit line. The
inhibit wire runs through all the cores in a plane parallel to the X select lines. By running the reverse
current through the inhibit wire, the X line's current is canceled out, and the core remains unchanged. The
inhibit current is too low to flip a core by itself, so other cores are not zeroed out. Each plane has an
inhibit wire threaded through all the cores in the plane, so the appropriate value can be written to each
plane.

The diagram below shows the reverse-engineered wiring topology of a IBM 1401 core memory plane.
Most of the core has been cut out of the diagram, as indicated by the dotted gray lines. The sides of the
plane are labeled A through D, matching the 1401 documentation. The A and C sides have 56 pins, while
the B and D sides of the plane have 104 pins. Not all the pins are connected.

https://picasaweb.google.com/lh/photo/sWEjGvEL3t4Qn_9PdIy_p9MTjNZETYmyPJy0liipFm0

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 41 of 93

The X select lines are in green and the Y select lines are in red. The select lines are generated in a
complex way (described below), so cores are not arranged sequentially. To find the address of a core on
this diagram, add the labels on the X and Y select lines.

Each half of the core plane (0-1999 and 2000-3999) has a separate sense line loop, but they are usually
wired together. The two sense lines are in blue and run in the Y direction. The sense lines are carefully
arranged to avoid picking up interference. The lines cross over along the midpoint to cancel out noise
from the Y select lines - the sense line runs in the opposite direction along half of each Y select line, so
any induced signal will be canceled out. In addition, the sense lines are twisted as they exit the middle of
the plane, to avoid picking up interference. (Many other core memory systems avoid interference by
running the sense line diagonally, but the 1401 uses a rectangular layout.)

Each half of the plane has a separate inhibit line. The two inhibit lines are in brown and run next to the X
select lines, which they inhibit. The two lines are normally driven separately to reduce noise, but have the
same signal. Since the inhibit line switches direction each row, alternating X select lines are also driven in
opposite directions.

5.4.1.3 Address Decoding

The IBM 1401 uses a three-character address to access 4000 locations (addresses above 4000 will be
ignored for now.) The decimal parts of the three characters specify the address from 000 to 999. The two
zone bits of the hundreds character provide the thousands digit 0 to 3.

Address decoding for the core module is fairly complex. The tens digit is decoded into ten separate input
lines (0 through 9), as is the units digit. The hundreds digit is split into the three top bits (called "even
hundreds") and the low-order bit (called "odd hundreds"). The value of the even hundreds generates five
input lines: 0, 2, 4, 6, and 8. The odd hundreds generates two input lines: 0 or 1.

https://picasaweb.google.com/lh/photo/UH_fMLN73P2zZX1_RJ4qfdMTjNZETYmyPJy0liipFm0

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 42 of 93

The X and Y select lines is output by matrix switches.26 (See Section 5.4.1.10) Each matrix switch takes
two sets of input lines and activates an output line based on the input values. The X matrix switch has the
5 even hundreds lines as one input and 10 units digit lines as the second input. There are 50
combinations of inputs, so the X matrix switch has 50 outputs, which are used as the X select lines. For
the Y matrix switch, the thousands (4 values) and odd hundreds (2 values) are combined to yield 8 input
lines. The second Y input is 10 tens digit lines. The output from the Y matrix switch activates one of the
80 Y select lines. This addressing mechanism may seem overly complicated, but it minimizes the
hardware required for address decoding.

5.4.1.4 Physical layout of the core module
The core module consists of 16 frames - 14 core planes and two terminal planes. The first 8 frames hold
the character data planes. The next 8 frames are used for I/O. The frames are stacked to form the core
module. The following table shows the usage of each frame:

Frame Core Plane Function

1: Bit 8

2: Bit 4

3: Bit 2

4: Bit 1

5: Bit A

6: Bit B

7: Bit C (parity)

8: Write Mark

9: Terminals for frame 10

10: Read station 2 brushes (RD2), punch brushes (PCH)

11: Terminals for frame 12

12: Read station 1 brushes (RD1), print hammers (PRT)

13: XU 11

14: YU 12

15: XL 13

16: YL 14

The picture below shows one side of the core module, side D, showing the large amount of wiring
required. Frame 16 (YL) is at the left and frame 1 (bit 8) is at the right. The two matrix switches are on the
front of the module: the 8x10 switch for the Y select lines is at top, and the 5x10 switch for the X select
lines is at the bottom.

26 It would be good to reorganize the material on Matrix Switches; maybe it’s just me, but I think the operation of the matrix switch
transformers is not at all intuitive…

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 43 of 93

Figure 29: Core Memory Switching Matrix and Core Planes

Much of the wiring in this picture is for the Y select lines, which flow through all the planes. The yellow
wires at the left connect the Y select lines on frame 16 to the 8x10 matrix switch or termination resistors.
The horizontal Y select jumpers are barely visible; they connect pairs of planes, allowing the Y select
lines to flow through the whole module. At the far right, the Y select lines of frame 1 are connected to the
8x10 matrix switch and termination resistors.

Two bundles of wires connect to I/O planes near the middle of the module. One connects the brushes in
the card reader and the printer hammer drivers to terminals on frame 11, which are connected to the
cores in frame 12. The other bundle connects read brushes and punch check brushes to terminals on
frame 9, connected to the cores in frame 10. In between, short horizontal yellow wires in the middle
jumper the Y select lines across frame 11. The horizontal wire bundle across the middle of the planes
connects to the inhibit lines of each plane.

The photo below provides another view, focusing on the data plane wiring. At front is frame 1, the core
plane for data bit 8. The gray cores are visible on red wires. The other 15 frames are layered behind
frame 1. At top is side D of the module, with the two matrix switches on top. The 8x10 matrix switch is
connected to the Y select lines at the front and back of side D. These wires alternate with black wires that
connect the select lines to termination resistors. The 5x10 matrix switch is connected to the X select lines
at the front and back of side C, on the left. This side also has jumpers between planes to connect the X
select lines.

https://picasaweb.google.com/lh/photo/9tAKCi8vGR1ee5orxRsqwdMTjNZETYmyPJy0liipFm0

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 44 of 93

The photo below shows the other sides of the core module, focusing on the I/O wiring. On the right is
frame 16, one of the hole count frames. This frame only has 297 cores. At the top is side A, with wires
from the read brushes, punch check brushes, and print hammers wired directly to cores in frames 10 and
12. At the left is side B, which also has wires from the read brushes, punch check brushes, and print
hammers. The two wires connected to the middle of side B of each frame are the sense wire connections.

5.4.1.5 The I/O frames
One unusual feature of the core module is the eight special-purpose I/O frames: six core planes and two
terminal frames. These planes have multiple uses. They hold 80 positions of data when a row is read
during card reading or punch checking. They are used for validity checking during card reading, card
punching, and printing.

The I/O planes are addressed exactly the same as the data planes, and share the X/Y select wires.
However, the I/O planes are very sparse, with only 297 cores rather than 4000 cores, so most locations
have no storage, as can be seen in the photo below.

https://picasaweb.google.com/lh/photo/iMZI88OAZLfqVmyJiZbQw9MTjNZETYmyPJy0liipFm0
https://picasaweb.google.com/lh/photo/NVg7cLmnufnRXH8SwRlP7NMTjNZETYmyPJy0liipFm0

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 45 of 93

The planes have cores at addresses 1 to 80 for reading, 101 to 180 for punching, and 200 to 332 for
printing. Inexplicably, there are also cores at addresses 185, 335, 336, and 337. The diagram below
shows the layout of I/O cores. Reader cores are red, punch cores are green, print cores are blue, and
other cores are purple.

The I/O planes are not read and written like data planes. While they are addressed in parallel with the
data planes, data read from these planes goes to the appropriate I/O circuitry, rather than the regular data
path. Four of the planes have values written by the I/O circuitry. Two planes have individual cores wired
to read brushes27 or print hammers, so the cores are modified directly; they are not written using the
normal core addressing / inhibit circuitry. The other four planes are written by I/O circuitry in the 1401.

The first direct-wired plane is frame 10, which holds data from read station 2 brushes (RD2) and the
punch check brushes (PCH). The second direct-wired plane is frame 12, which holds data from read
station 1 brushes (RD1) and the print hammers (PRT). As a card passes through the card reader, 80
brushes check each position in a row. If there is a hole, the brush makes connection passing a current
through a wire connected directly from the card reader to the core module. Each wire from a brush is
wrapped around the corresponding core, so the core is set to 1 if a hole is present. Since there are three
read stations with 80 brushes each, there are 240 wires between the reader/punch and the core module.
Each of the 240 brushes is wired directly to a separate core. There is no buffering or driver between the

27 See Section 6.1.2.4 to learn about what drives these signals

https://picasaweb.google.com/lh/photo/LrBAyptQr3OLmCfOTM_e89MTjNZETYmyPJy0liipFm0
https://picasaweb.google.com/lh/photo/WhDCIHRpCqDKMgCVREAE29MTjNZETYmyPJy0liipFm0

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 46 of 93

brush and the core, just a direct wire that is wrapped five times around the core and connected to a -20V
common wire. (Field Engineering page 95 and (ALD 42.40.51.1.)

The print hammer cores are also wired individually. Each of the 132 hammer driver is connected directly
to a core to record the operation of the hammer. After passing through a core, each of these 132 wires is
connected to a -60V common wire. (Field engineering manual, page 107,ALD 42.40.52.1 and 36.38.61.2-
36.39.91.2.)

Because of the large number of I/O wires that must be connected and routed, separate terminal frames
are used above the core frames. Frame 9 provides the terminals for the cores in frame 10, and frame 11
provides the terminals in frame 12. That is, frames 10 and 12 have the cores along with select, sense,
and inhibit lines, while the brush and hammer wires are connected to frames 9 and 11, which then have
the wires wrapped around cores in frames 10 and 12. The -20V and -60V common wires are internal to
the frames.

The following diagram shows how the terminals in frame 9 are wired to cores in frame 10. Read indicates
read 2 brushes, green indicates punch check brushes, and purple indicates 1404 read brushes (unused).

The following diagram shows the wiring between frame 11 and the cores in frame 12. Red indicates read
1 brushes and blue indicates hammers.

The four remaining I/O planes are XU 11, YU 12, XL 13, and YL 14 (frames 13 to 16). These planes are
used for read/punch hole counting and for print validity checks.

http://ibm-1401.info/PPierce-ibm-225-6487-3.pdf
http://ibm-1401.info/ALDs-Australia/5_7-1401-40-28588-2151_788-42-44.pdf
http://ibm-1401.info/PPierce-ibm-225-6487-3.pdf
http://ibm-1401.info/ALDs-Australia/5_7-1401-40-28588-2151_788-42-44.pdf
http://ibm-1401.info/ALDs-Australia/4_7-1401-40-28588-2151_788-36-41.pdf
http://ibm-1401.info/ALDs-Australia/4_7-1401-40-28588-2151_788-36-41.pdf
https://picasaweb.google.com/lh/photo/0Hl5hEaC3Sa_fVW9wJDtRtMTjNZETYmyPJy0liipFm0
https://picasaweb.google.com/lh/photo/_i2VMYdEPdPDZv1kv8ZZhdMTjNZETYmyPJy0liipFm0

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 47 of 93

During the card read process, a pair of planes (XU/XL) or (YU/YL) counts the holes in each column at the
first read station. This count is verified at the second read station; if the counts don't match, the read fails.
For punches, the counts are verified against the expected number of holes. (It's not exactly a count; XU or
YU tracks the presence of any hole, and XL or YL maintains the parity of the count.) Because one card is
being read/punched while a second is being verified, two counts must be maintained. Alternate cards
switch between XU/XL and YU/YL. (ILD page 62).

Printing uses print-compare cores in the XU plane. These are set if a hammer should fire for the character
position. These are compared with the hammer-fire cores (set by the hammer drivers) to verify that the
correct hammers fired. Plane YL holds print-line complete cores that verify that every character position
either printed a character or holds a non-printable character. If a core is not set, something went wrong
with the printing logic. Finally, area YU has print-error storage cores. If a print error is detected, the
corresponding core is set, allowing the location of the fault to be dumped out. (ILD page 72 and Data
Flow pages 62-63.) When the optional Print Storage feature is installed, the Print Storage core module is
used instead of these planes.

5.4.1.6 Core Memory Timing

The IBM 1401 has an 11.5 microsecond machine cycle, which corresponds to one core read/write cycle.
When describing the circuitry, however, the machine cycle is rounded to 12 microseconds for
convenience. Timing is described in units of 0.1 microseconds, so each cycle has a time value from 000
to 120. Each cycle is broken into eight clock phases of 015 units (1.5 microseconds). For example, a time
interval can be denoted as 045-060. Note that these times are about 4% off from the real time values.
Some timing signals, including core timing controls, are not aligned on intervals of 015; they are
generated from a CEA delay card. (ILD page 1.) [merge and xref clock section]

The read operation starts with the input pulses to the matrix switches. The X matrix switch inputs are
gated by timing signals R1 (000-036) and R2 (008-075), and the matrix generates a read pulse for 007-
035. The Y matrix switch inputs are controlled by timing signals R1 (000-036) and R3 (015-075). The Y
matrix generates a read pulse for time 015-035. These read pulses select the desired cores in storage,
possibly triggering signals on the sense lines. The sense amplifiers are gated by Strobe A 014-030 to
read the value from the cores. The value is stored in the B register, which was cleared from 000-015.

The read operation is followed by the write operation. The write timing signals Z1 and Z2 (068-105)
activate the inhibit drivers. The write is triggered by the negative-phase select pulses from the matrix
switches, generated when the switch core resets from 070-000. Thus, the write finishes just at the end of
the machine cycle, in time for the next cycle.

5.4.1.7 The Core Module Circuitry
The detailed diagram below is the key to understanding the 1401's core memory system and is worth
close study. This diagram (ALD 42.41.11.2) shows the physical arrangement of the 16 frames in the core
memory module, along with the driver circuitry. The inhibit drivers are at the upper left, feeding each core
plane. The sense amplifiers are at the upper right. The 5x10 X matrix switch is in the lower left, and the
8x10 Y matrix switch is in the lower right. Note the read brushes, punch brushes, and print hammer
drivers are wired directly into the core module through the terminal frames. The "IS" and "ID" boxes
feeding the matrix switch are the current source (buffer cards) and current drain (switch cards) driving the
matrix switch, respectively. The diagram also shows the timing of the read and write pulses, and how they
have opposite polarity, writing 0 and 1 respectively.

http://ibm-1401.info/ILDs_Aug62-Enhanced-TOC.pdf
http://ibm-1401.info/ILDs_Aug62-Enhanced-TOC.pdf
http://ibm-1401.info/G24-1477-0_1401_dataFlow-3.pdf
http://ibm-1401.info/G24-1477-0_1401_dataFlow-3.pdf
http://files.righto.com/sms/CEA.html
http://ibm-1401.info/ILDs_Aug62-Enhanced-TOC.pdf
http://ibm-1401.info/ALDs-Australia/5_7-1401-40-28588-2151_788-42-44.pdf

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 48 of 93

The diagram below annotates the Switch Core Circuitry diagram. It shows in detail the circuitry used to
drive one of the 4000 cores in a plane. The notation in this diagram may be confusing. The rectangles

indicate SMS cards. The letter inside the rectangle indicates the function:A is an AND gate,DP is a

current driver, an D is a switched driver. The text above an SMS rectangle ("F 14") is the position of the

card in gate 01A1. The letters outside the box ("A", "B", "C") are pins on the card. The numbers

("42.57.11") indicate the relevant ALD. R1 and R2 are read time signals. Numbers ("014-030") indicate a

timing signal.

http://ibm-1401.info/1401MemoryOverview-b-.jpg
https://picasaweb.google.com/lh/photo/8CUL8pZ91HtjIZfF4UM_hdMTjNZETYmyPJy0liipFm0

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 49 of 93

Figure 30: Matrix Switch Cores28

The yellow line shows one of the inhibit drive circuits. The inhibit drive signals come from the processor
and are gated for the appropriate timing.

The brown line shows one of the sense line circuits, driving a sense pre-amp and amplifier, and then
feeding the B register.

28 We don’t know the source of this diagram; if anyone can identify the IBM doc from which the original black-and-white copy without
annotation would have come, please speak up. See http://ibm-1401.info/1401MemoryOverview-b-.jpg for the original page.

http://ibm-1401.info/1401MemoryOverview-b-.jpg
https://picasaweb.google.com/lh/photo/wDkA1wUGelMQPNUlJf_vCdMTjNZETYmyPJy0liipFm0

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 50 of 93

The red line shows the bias current which passes through all the matrix switch cores. The properties of
ferrite cores change with temperature, so the current is adjusted by a temperature compensation circuit
(an AKB thermal switch card and an AKC memory emitter resistor card). This current then splits four
ways, going to the X matrix decode drive lines (pink and purple) and the Y matrix decode drive lines
(green and cyan). Note that only one switch core from each switch matrix is shown.

The outputs from the matrix switches (blue and orange) are the select lines that go through the cores and
are terminated by chokes (inductors) and resistors. Only one of the 50 X select lines and one of the 80 Y
select lines are shown.

5.4.1.8 The Inhibit Drivers

As explained earlier, during the write phase, a 1 will be written to the selected core unless the inhibit line
is active. In that case, the inhibit line counteracts the X line; without enough current to flip the core, the
core remains at 0. However, the implementation in the 1401 is more complicated than this and there are
21 inhibit drivers in total (16 for data planes, 4 for hole check planes, and 1 for the row bit core planes).

To write a character back to storage, the 1401 generates 8 inhibit drive lines: bits 1, 2, 4, 8, A, B, check,
and write mark. These lines are generated by selecting from the A register, B register, manual console
entry, arithmetic value, or expanded edit (ILD page 10). However, these inhibit lines do not go directly to
the core planes. Instead the data planes are split in half and each half has separate inhibit drivers and
inhibit lines. The planes are split into addresses 0-1999 and 2000-3999, but both halves receive the same
inhibit value. The motivation of the split is to reduce sense noise. (See Optional Feature pages 6 and 7.)

The I/O planes have their own inhibit drives, and each plane has a single inhibit line. The XU, YU, XL,
and YL check planes have inhibit drives that are generated by the hole counting circuitry in the reader /
punch circuit (ILD page 62).

The RD1-PRT plane and RD2-PCH planes are not written under computer control, but by the individual
wires from the brushes or hammers to the cores. Thus, the inhibit signal for these planes is always
activated for writes, and a read/write cycle clears the cores to 0. A single inhibit driver provides the inhibit
signal for both planes; the inhibit lines for the planes are connected by a jumper between frame 10 and
frame 12 (ALD 42.40.43.2). The PRT cores do not have any inhibit, so they are set to 1 at the end of a
read/write cycle. When a hammer fires, the associated core is set to 0 by the direct wire.

The inhibit lines are driven by AQV driver cards, which provide the necessary current (ALD 42.50.11.2).

There are 13 termination resistors for the inhibit lines on a termination board. The split inhibit lines for the
data lines share termination resistors even though they have separate drivers (ALD 42.40.43.2).

5.4.1.9 The Core Sense Circuit

When a core switches state during a read, the sense circuit must pick up this signal and output the bit
value. A key challenge for the sense circuit is detecting this relatively small signal in the presence of large
switching signals. The sense line switches direction at the midpoint of each column to avoid picking up
interference. A consequence of this is the input signal may be a pulse of either polarity.

The sense line forms a loop through the cores in a plane, with both ends of the loop terminating at WX
differential pre-amplifier card. The pre-amplifier is somewhat different from a modern differential amplifier
in that it is symmetrical and gives a positive output for handles a pulse of either polarity. The pre-amp is
strobed at time 014-030, to read the sense line during the read pulse. The output of the pre-amplifier goes
to the AQX final amplifier and then to the logic circuit that uses this bit.

For the data planes, the sense lines in the two half-planes are wired together to make 4K planes. Each
I/O plane has a single sense line through the populated cores. An exception is frame 10, which has
separate sense lines for the RD2 cores and the PCH cores.

The sense circuitry is described in ALD 42.59.11.2 and ILD page 4.

http://files.righto.com/sms/AKB.html
http://files.righto.com/sms/AKC.html
http://ibm-1401.info/ILDs_Aug62-Enhanced-TOC.pdf
https://ia601603.us.archive.org/30/items/bitsavers_ibm140x225aturesCEApr61_10729447/225-6541-0_1401_Optional_Features_CE_Apr61.pdf
http://ibm-1401.info/ILDs_Aug62-Enhanced-TOC.pdf
http://ibm-1401.info/ALDs-Australia/5_7-1401-40-28588-2151_788-42-44.pdf
http://files.righto.com/sms/AQV.html
http://ibm-1401.info/ALDs-Australia/5_7-1401-40-28588-2151_788-42-44.pdf
http://ibm-1401.info/ALDs-Australia/5_7-1401-40-28588-2151_788-42-44.pdf
http://files.righto.com/sms/WX.html
http://files.righto.com/sms/AQX.html
http://ibm-1401.info/ALDs-Australia/5_7-1401-40-28588-2151_788-42-44.pdf
http://ibm-1401.info/ILDs_Aug62-Enhanced-TOC.pdf

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 51 of 93

5.4.1.10 The Matrix Switches

Generating the X and Y select signals is a tricky problem. The drive signals must have a positive pulse of
the right current and duration for reading, followed by a negative pulse for writing. In addition, the number
of select lines is large (50 X and 80 Y), so hardware costs would be excessive if each line had its own
driver circuitry.

The 1401 uses an interesting solution to drive the select signals. Matrix switches generate the select
signals by using a set of ferrite cores. But instead of storage, these cores are used for their switching
properties. As with storage, the matrix switch depends on the "coincident current" property, where two
signals of sufficient current will cause a core to snap to the opposite magnetization. But instead of being
used for storage, the cores in the matrix switch generate a drive signal.

The photo above shows the X matrix switch, with 5 row inputs, 8 column inputs, and 40 outputs
(connected on the back). The switch consists of 50 cores in a 5 by 10 grid, with 5 lines driving the rows
and 10 lines driving the columns. Each core also has an output winding and a bias winding. When two
input lines are triggered, the corresponding core flips state, generating a pulse on the output winding.
When the input lines are released, the bias winding flips the core back to its original state, generating a
negative pulse on the output winding. Thus, the desired one of the 50 outputs has a positive pulse
followed by a negative pulse, which is just what the core module requires for read followed by write. (ILD
pages 2 and 3.)

The photo below shows the wiring of the matrix switch cores. The bias wire (black) is wound through pairs
of cores three times. Each horizontal input wire (red) is wound through pairs of cores about twelve times,
as are the vertical input wires. Since the bias current is four times the input current, the winding numbers
ensure that the bias cancels one input: two inputs will set the core, one input will have no effect, and no
inputs will reset the set core (due to the bias current). Each core has an output wire wound diagonally
about twelve times.

http://ibm-1401.info/ILDs_Aug62-Enhanced-TOC.pdf
https://picasaweb.google.com/lh/photo/XG_Qcxb7yMEaGNwQDxeZ1tMTjNZETYmyPJy0liipFm0

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 52 of 93

The address decoding circuitry that drives the matrix switch uses an interesting shortcut. You'd expect
that the circuit decoding a digit value would use all 4 bits of the digit, but the circuit manages to use a 3-
input AND gate for each value. For instance, 2 is detected as not 8 AND not 4 and not 1, ignoring the
value of the 2 bit entirely. The trick is that if 8, 4, and 1 bits are all clear, the value must be 2 (keeping in
mind that 0 is represented as 10). As another example, 3 is detected as 2 AND 1 AND parity, which is
only matched by the digit 3 (ILD page 3).

5.4.1.11 Physical Layout of Core Memory in the 1401
The following picture (courtesy of intaretro) shows the core memory module mounted in its gate 01A1,
along with the many SMS cards required for drivers and amplifiers. The gate has Column F at the left,
holding the DKA driver cards and AQW current source cards that drive the matrix switch boards, and the
AQV inhibit driver cards. Column E is next, holding the AQU address decode cards. The address lines
plug into the empty sockets at the bottom. Column D holds WX and AQX sense amplifiers, and a couple
other cards. The core module is mounted with the matrix switch cards on top. At the far right, the empty
Column G has connectors for the paddles with the hundreds of wires from the brushes and print
hammers.

The photo below shows the core module mounted inside the IBM 1401 mainframe, looking into the left
end of the computer. The core module is behind the bundle of black and yellow wires, mostly address
lines. The matrix switches are on the left. The colorful brush and hammer wires are connected via
paddles underneath the core module. The SMS driver cards are above the core module, mostly behind a
metal cover for airflow.

http://ibm-1401.info/ILDs_Aug62-Enhanced-TOC.pdf
http://members.optushome.com.au/intaretro/1401Core.htm
http://files.righto.com/sms/DKA.html
http://files.righto.com/sms/AQW.html
http://files.righto.com/sms/AQV.html
http://files.righto.com/sms/AQU.html
http://files.righto.com/sms/WX.html
http://files.righto.com/sms/AQX.html
https://picasaweb.google.com/lh/photo/PGx5mwvDGOkE4Wpm1_PPV9MTjNZETYmyPJy0liipFm0
https://picasaweb.google.com/lh/photo/ZGFVWHYrCLYHBp0m3dLVzNMTjNZETYmyPJy0liipFm0

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 53 of 93

The photo shows some other interesting features of the 1401. At the top of the computer is the time meter
used for billing, measuring the time the computer has been running; customer time is on the left and
unbilled maintenance time is on the right. In the upper right is the "convenience" outlet located inside the
computer. At the far right is the wiring on the back of the front console. Unlike most of the gates in the
IBM 1401, the core gate does not swing out, but is screwed into place. Other gates are visible behind the
core module, and to the left.

The back of the core module can be accessed by opening the computer's front panel, as seen below. The
console switches, lights, and wiring are on the left. The core module itself is in the center, mostly hidden
behind the brown termination resistor circuit board.

https://picasaweb.google.com/lh/photo/jK-1AquZ3_l5D67TjV3dINMTjNZETYmyPJy0liipFm0

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 54 of 93

5.4.1.12 Core System References
The IBM 1401 core module is documented in detail in ALD 42. For more information on core memory, see
Coincident Current Ferrite Core Memories and Magnetic Core Memory Systems.

5.4.2 Expansion Memory Systems

Expansion Memory

5.4.3 Qui-Binary Arithmetic Unit

(Contributed by Ken Shirriff, Aug, 2015)

The IBM 1401 stores digits in binary-coded decimal (BCD), but for arithmetic it uses a different, unusual
representation internally: qui-binary code. By using qui-binary code, the 1401 can perform arithmetic
quickly while ensuring the calculations are correct.

In qui-binary code, each decimal number is split into a qui part (0, 2, 4, 6, or 8) and a binary part (0 or 1).
For example, 3 is split into 2+1, and 8 is split into 8+0. Each digit has a unique qui-binary representation.

http://ibm-1401.info/ALDs-Australia/5_7-1401-40-28588-2151_788-42-44.pdf
http://ed-thelen.org/comp-hist/Byte/76jul.html
http://www.cs.ubc.ca/~hilpert/e/coremem/
https://picasaweb.google.com/lh/photo/Vm-MZDIHt695ZB9roT97stMTjNZETYmyPJy0liipFm0

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 55 of 93

In the 1401, the qui part is labeled Q0, Q2, Q4, Q6, Q8 and the binary (bi) part is B0 or B1. Thus, a digit
can be represented internally with 7 signals: Q0, Q2, Q4, Q6, Q8, B0, and B1, where exactly one qui
signal and one binary signal are active.

The following table summarizes the qui-binary representation.

Digit Qui Bi

0 Q0 B0

1 Q0 B1

2 Q2 B0

3 Q2 B1

4 Q4 B0

5 Q4 B1

6 Q6 B0

7 Q6 B1

8 Q8 B0

9 Q8 B1

The main advantage of qui-binary is error checking. A qui-binary number that has 0 or 2 qui signals, or 0
or 2 binary signals indicates an error. Checking for arithmetic errors is an important feature since the IBM
1401 is a business computer. Messing up a day's payroll checks would be catastrophic, so it is important
that errors are detected immediately and stop processing. Qui-binary arithmetic may also be faster than
binary arithmetic, since it avoids delays due to the carry propagating through four bits.

To add two digits, the 1401 first translates the digits to qui-binary. A special qui-binary adder adds these
two qui-binary digits (along with any carry). Finally, the result is translated back to BCD. While this seems
like a roundabout process, it provides error checking that would be hard if the digits were added directly.
While the 1401 has a parity bit for each character, it's hard to check parity while adding BCD numbers
directly.

The circuitry used for addition/subtraction uses many SMS cards, and consumes most of the logic in card
gate 01B3 (See Section 5.1).

The following block diagram from the 1401 ILD shows the data flow through the adder. The digit from the
A register enters on the left, and is translated to qui-binary by the translation circuit (labeled XLATOR).
This qui-binary value goes through a translate/complement circuit, which generates the 9's complement
value if needed for subtraction. The value in the B register enters on the right and is converted to qui-
binary, but without optional complementation. (The IBM 1401 performs operations on memory locations
and the A and B registers provide temporary storage for a character read from core. They are not
general-purpose registers as in most microprocessors.)

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 56 of 93

Figure 31: Overview of the arithmetic unit in the IBM 1401 mainframe.

The B0/B1 binary bits and an input carry are added by the binary adder at the bottom. The quinary bits
are added with a special quinary adder. The adder output circuit applies any carry from the binary add to
the quinary bits, generating the qui-binary result. Finally, a translation circuit converts the qui-binary result
to BCD, sending the BCD value to the front panel display and memory. The error checking circuit verifies
that the qui-binary has exactly one qui and one binary bit set.

BCD to qui-binary translation

To examine the addition/subtraction circuitry in more detail, we'll start with the logic to convert a BCD digit
to qui-binary, as seen below. This diagram is based on IBM page 25 of the [ILD] (pdf pg 21).

One surprising feature of the translator is that it accepts binary inputs from 0 to 15, not just "valid" inputs 0
to 9. Input 10 is treated as 0, since the 1401 stores the digit 0 as decimal 10 in core. Values 11 through
15 are treated as 3 through 7. Thus, every binary input results in a valid (but perhaps unexpected) qui-
binary value. As a result, the 1401 will perform addition on non-decimal characters.

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 57 of 93

The circuit in an IBM 1401 mainframe to translate a BCD digit into qui-binary code.

The logic is implemented by an AND-OR logic structure29 that is common in the 1401. Each bit of the
BCD digit, as well as each bit's complement, is provided as input. Each AND gate matches a specific bit
pattern, and then the results are combined with an OR gate to generate an output.

In qui-binary, the B0 and B1 bits are trivially generated from the low-order binary bit. If the input is even,
B0 is set, and if the input is odd, B1 is set.

The first AND gate above matches binary 1010 (decimal 10), and the second AND gate matches binary
000x (decimal 0 or 1). Thus, Q0 will be set for inputs 0, 1, or 10. Likewise, Q2 is set for inputs 2, 3, or 11.
The other Q outputs are simpler, computed with a single AND gate.

The translation circuits for the A and B registers are similar, although the A register path also has the
complement circuit, which will be described later.

9's complement circuit

The complement circuit is used for subtraction or negative numbers. The circuit generates the 9's
complement of a digit, i.e. 9 minus the digit. For example, the 9's complement of 3 is 6, and the
complement of 5 is 4. To subtract a number, the 9's complement of each digit is added (along with a
carry). For example, consider 432 - 145. The 9's complement of 145 is 854. 432 + 854 + 1 = 1287.
Discarding the top digit yields the desired result 287.

29 Remember that ILD logic symbols are different from modern ANSI symbols; See Figure 4.

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 58 of 93

To see how complementation works in qui-binary, consider 3 (Q2 B1). Its complement is 6 (Q6 B0). The
general pattern for complementation is B0 and B1 get swapped. Q0 and Q8 are swapped, and Q2 and
Q6 are swapped. Q4 is unchanged; for example, 4 (Q4 B0) is complemented to 5 (Q4 B1).

The ‘complement’ circuit below uses AND-OR logic configured as a multiplexer. For each output, one of
two inputs is selected, based on the complement input. (The box labeled I is an inverter.) If
complementation is not selected, each input passes through to the output unchanged. This circuit is from
page 25 of the ILD. If complementation is selected, the lines are swapped as described earlier. Output B1
comes from input B0, while output B0 comes from input B1. Q0 and Q8 are swapped, and so on.

Figure 32: IBM 1401 Complement Circuit

Quinary adder

The circuit below adds the quinary parts of the two numbers. The qui part of the A register is on the left,
the qui part of the B register is on the top, and the qui output is on the right. Each qui result has separate
outputs depending if there is a carry or not. An example is Q2 + Q4, shown in red. These two inputs
trigger the Q6 output. This circuit is from IBM page 25 of the ILD.

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 59 of 93

Figure 33: Quinary Addition Circuit, adding quinary parts of two qui-binary digits

The quinary adder is implemented with AND-OR logic, but it uses wired-OR logic. Instead of an explicit
gate, the AND outputs are wired together to produce the OR output. While the quinary adder looks
symmetrical and regular in the schematic, its implementation uses three different SMS cards: 3JMX and
4JMX AND/OR gates, and JGVW AND gates, depending on the number of AND gates feeding the output.

Qui-binary to BCD output

The diagram below shows the remainder of the qui-binary adder, based on page 26 of the ILD. The qui-
binary carry circuit, in the blue box, processes the carry signals from the adder circuit. Using simple OR
gates, it generates the qui signals and the qui carry signal. The next circuit, in the green box, applies any
carry from the B bits, incrementing the qui component if necessary. For instance, adding 3 + 5 is Q2 B1 +
Q4 B1. This generates Q6 + B0 + B carry. The B carry increments the qui component to Q8, yielding the
result Q8 B0 (i.e. 8).

http://files.righto.com/sms/3JMX.html
http://files.righto.com/sms/4JMX.html
http://files.righto.com/sms/JGVW.html

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 60 of 93

Figure 34: Conversion a Qui-Binary Sum to a BCD Result

The translation circuit, in red, converts the qui-binary result to BCD, using straightforward AND-OR logic.
Note that 0 is represented in the 1401 as binary 1010, so the 8 and 2 bits are set for Q0 B0.

The parity output is generate by combining the binary parity (even for B0; odd for B1) with the qui parity
value. The qui even parity signal is set for Q0 or Q6, while the qui odd parity signal is set for Q2, Q4, Q8.
Note that representing 0 as binary 1010 instead of 0000 doesn't affect the parity.

The final circuit, in purple, is the error detection circuit which verifies the qui-binary result is valid. The
AND-OR circuit detects a fault if no B bits are set or both B bits are set. Instead of testing every qui bit
combination, it implements a short cut from the qui parity circuit. If the even qui parity signal and the odd
qui parity signal are both set, this indicates multiple qui lines are set, triggering a fault. If neither qui parity
signal is set, then no qui lines are set, also triggering a fault. The parity check misses a few qui
combinations (such as Q0 and Q6 set), so these are tested separately. The result is that any invalid qui-
binary result triggers a fault.

Conclusion

Addition/subtraction on the 1401 is considerably more complex than the single-digit addition discussed
here. First, the signs must be checked to determine if the operation is a true-add or complement-add.
Multiple digits are processed until a word mark is encountered. Overflows are counted using the zone
adder. A negative result must be recomplemented. Arithmetic on the 1401 and the qui-binary adder are
discussed in detail in 1401 Instruction Logic [R25], pages 49-67

Qui-binary should be distinguished from the more common bi-quinary encoding, where the bi part is 0 or
5, and the quinary part is 0, 1, 2, 3, or 4. Bi-quinary is used in abacuses as well as the IBM 650 and
various Univac models. An article by Carl Claunch describes the history leading up to qui-binary
arithmetic in detail. A later IBM patent (#3308284) describes qui-binary arithmetic using tunnel diodes.

https://en.wikipedia.org/wiki/Bi-quinary_coded_decimal
http://ibm-1401.info/qui-binary.html
http://www.google.com/patents/US3308284

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 61 of 93

5.4.4 I/O Overlap

5.4.5 Multiplier

5.5 Power system

Power-up and Power-Down sequencing?

[Contributed by Ken Shirriff, edited by Guy, July 2015]

One unexpected feature of the 1401 system is that the 1402 Reader/Punch provides the power to the
1401 and the rest of the system. The external AC line power is not connected to the 1401, but only to the
1402, where the 1402 provides power to the 1401, which then powers all the other peripherals (printer,
tape drives, external memory).

The 1402 receives three-phase 208 (or 230) volt AC line power, which goes into circuit breakers (i.e.
overload-protection breakers), contactors (relays to switch power on and off) and then into power supplies
inside the 1402. The Power On, Power Off, and Emergency Off buttons on the 1401 are actually wired to
the 1402, since that's where the power is connected. The 1402 feeds power to the 1401 through two thick
power cables, providing -20V DC, -60V DC, +/- 3V DC marginal check, 115V AC, 130V AC, and three-
phase 208V AC to the 1401.

The 115V AC supply is simply used to power the convenience outlet and blower fans in the 1401 chassis.

The 130V AC delivered to the 1401 chassis is conditioned by a ferro-resonant transformer.30 This large,
passive device31 reduces voltage variations presented to the various AC-DC bulk power supplies in the
system.

The 1401 in turn feeds -12V DC, +30V DC, and +6V DC back to the 1402.
Each power cable splits in two at the 1402, so there are 4 power
connectors on the 1402: PWA, PWB, PWC, and PWD. The 1401, of
course, has additional power supplies.

The 1401 Model D system is an exception to all this. Since it doesn't
include a card reader, the 1401 receives AC line power directly, driving
power supplies in the 1401 chassis. Since several additional gates (01B4,
02A7, 02A8, 02B7, 02B8) are used for power supplies, the Model D does
not support multiplication/division.

For details on power wiring, see Installation Manual - Physical Planning.
IBM 1401 Data Processing System, page 24.

30 Ferro-resonant transformers provide some regulation by arranging that a portion of the iron core goes further into ‘saturation’ as
the input voltage increases. See http://www.electroncoil.com/ferroresonant_transformers.php. See also http://ibm-
1401.info/60cycleSMSPowerSupply.pdf for more on ferro-resonant transformers and IBM SMS power supply design in general. And
see http://ibm-1401.info/TricksFor50-60cycles.html#ferroresonant

31 Robert Garner says: “Btw, this is where the term "big iron" came from (the large iron-core transformers)” Got a citation?

Figure 35: Power and Signal
Cables in the 1402

http://ibm-1401.info/C24-1404-3-1401-Inst-Man.pdf
http://ibm-1401.info/C24-1404-3-1401-Inst-Man.pdf
http://www.electroncoil.com/ferroresonant_transformers.php
http://ibm-1401.info/60cycleSMSPowerSupply.pdf
http://ibm-1401.info/60cycleSMSPowerSupply.pdf
http://ibm-1401.info/TricksFor50-60cycles.html#ferroresonant

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 62 of 93

5.5.1 Marginal Power System

[The power supply manual http://ibm-1401.info/60cycleSMSPowerSupply.pdf implies that the marginal
voltage supply is actually wired temporarily in series with a main supply voltage to do marginal testing…
is that true??]

6. Peripherals

[make a block diagram;]

The key point to introduce this section is that so much of the I/O logic is in the 1401 itself.

 The 1402 reader/punch has relays for motion control, but no logic for reading or decoding cards;
signals from read brushes are wired one-by-one through giant cables to logic in the 1401 chassis.

 Similarly, solenoid drivers for the card punches are located in the 1401 and wired to the 80
individual solenoids.

 The 1401 chassis also contains 132 hammer drivers to activate solenoids in the 1403 printer.

6.1 1402 Card Reader/Punch

“About the Oily, Geary Things”

http://ibm-1401.info/IBM-229-4016-1-IBM1402FE-PP-150.pdf

Add a picture from the 1402 doc, pdf pg 56

6.1.1 Reader

The 1402 card reader design is said to have been be leveraged from 088 (or 188) Collator machine. In
this design, cards are carried past the read stations “9 Edge First” (See Section 3.1.2 for a review of
punched card coding) by a mechanical transport that picks one card at a time from the input hopper, then
pushes each one past two sets of electrical ‘read brushes’ -- sets of eighty tiny wire brushes, each
arranged to contact a ground point when there’s a hole in the card at its particular column, but not
conduct current when there’s no hole. The mechanical transport carries each card past the read stations
and then deposits it in one of three stacker pockets.

The transport carries each card past the Check station first, then the Read station.32 It’s important to note
that the transport has several cards in flight at once, so while the Read station is reading one card, the
Check station is reading the following card.

32 Aaargh!!! How can they Check it before they’ve Read it?? Push onwards, dear reader. The “Check” function actually
accumulates the parity of the number of holes that were found in each column. It does that first, then again at the read station. At
the end of the process, if the parity hasn’t returned to zero, then the Check and Read stations must have seen different numbers of
holes in the column, indicating an error of some sort.

http://ibm-1401.info/60cycleSMSPowerSupply.pdf
http://ibm-1401.info/IBM-229-4016-1-IBM1402FE-PP-150.pdf

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 63 of 93

There’s a second transport in the 1402 for the card-punch function; in that one, cards start from the
opposite end of the machine and flow left-to-right (instead of right-to-left as above). The punch system
goes “12 edge first” so that cards from the read path and the punch path land in the output hoppers the
same way around. More on the punch system in Section 6.1.3.

For the card reader, a mechanical transport that reads eighty columns at a time had two advantages:

 It’s what Collators and Sorters did, so the mechanical design could be easily leveraged

 It’s faster; for a given rate of card movement (around 6.5 feet per second, no?) it’s possible to
process more cards if they are read 80 columns at a time rather than 12 rows at a time.

The card reader reads each card twice to ensure that it’s error-free:

 The first set of brushes is the “Check” stage, where the “count”33 of the number of holes in each
column is accumulated in 80 sets of check-bits stored in core

 The second set of brushes also accumulates a count of the number of holes, but then causes the
read data to be written to Core.

The machine halts if the hole-count check doesn’t get the same answer at the Check and Read stations,
and the Reader Check Light [or is it the Validity Check Light?] is illuminated on the 1402.

The row-at-a-time reader mechanism did leave the 1401 designers a complex problem of storing 80
partial results in core memory as they arrived row-by-row. The actual mechanism to get card data
transferred to memory is rather complex, but is described in detail in the Instruction Logic manual [R25],
starting on Page 76.

In understanding this material, it’s helpful to remember a couple more points:

 The 1402 itself contains no SMS logic; as a result, 80 read-check wires, 80 read wires, 80 punch
wires and 80 punch-check wires are cabled from the 1402 to the 1401 in two thick 200-pin cables.

 The 1402 motion control is all done by relay logic in the 1402 chassis, although there’s an optical
sensor called the Solar Cell CB34 in the mechanical path that generates a 600 usec pulse each
time the card is positioned under the brushes ready to read a row.

33 The “count” is compressed to two bits per column; one bit to say there was at least one hole, another to accumulate the parity of
the count.

34 The optical sensor is called a Solar Cell Circuit Breaker in the IBM docs. In this context, a Circuit Breaker is any kind of switch

Input hopper
holds cards to
be read face
down, 9-edge to
the left

Cards are stacked in one of
several output hoppers

The first read-brush station
drives the Check function

The second read-brush station
does the actual store-to-memory
function

Figure 36: Card Reader Transport (picture from doc [IBM1402])

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 64 of 93

All of these partial results and hole-counts are stored in a special reserved segment of core memory,
shown in the logic diagrams at [ALD], page 42.41.11.2. This additional memory is addressed using the
same STAR mechanism as regular memory, but the read-write data is passed through a separate data
plane specialized for I/O operations (card read and punch, [and printer functions?]).

IBM-229-4016-1-IBM1402FE-PP-150-reader-punch-ce-manual.pdf

(From IBM-229-4016-1-IBM1402FE-PP-150 Reader-punch-ce-manual.pdf, doc pg 2-7)

While these additional planes can be accessed using normal 11.5 usec read-clear-write cycles, there is
also special wiring for reading cards. Each read brush (all 160 in the reader side of the 1402, plus 80
more to check the punch results) is connected directly to a wire that passes through exactly one core in
this Row-Bit Plane. Synchronized by the pulse from the Solar Cell CB, that allows all 80 bits from a
particular row to be stored into 80 cores simultaneously, called Row-Bit Cores, without the use of
multiplexers or sequencers.

activated by a cam or mechanical actuator.

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 65 of 93

(full sized image of ALD page 42.41.11.2 at http://ibm-1401.info/ALDs-VSnyder-Australia/5_7/722805.pdf)

The rest of the operations to the I/O core planes are conventional read/write cycles, where cores can be
read-and-cleared or written one core at a time.

Once the Row Bits have been written, a scan of the 80 locations (addressed as 1 to 80) is started to do
checks and move results to the main core memory.

The scan uses the B-STAR register to generate core plane addresses, which address both main memory,
the row-bit and check planes.

For the Check operation, there are two bits per column, stored in the Check Plane, which are used as
follows:

 One bit is set to indicate that at least one hole was found in the column

 A second bit is flipped each time a hole is found in the column, effectively keeping a running
parity of the number of holes.

When the card passes through the Read station, the contents are written to Row-Bit cores as above, and
the hole count is accumulated as above. But the scan also copies contents of the row into main memory:

 At the start of the scan, the A Register is loaded with the BCD value corresponding to the row just
read (e.g., on row 9, the A Register would contain 8 and 1 bits.)

 On Row 9 (the first row), the A register is written to the core memory location corresponding to
the column if a hole is present (i.e, column 1 goes to core location 135, column 10 goes to core
location 10, etc).

 For subsequent rows, for each column with a hole, the contents of the A Register are ‘combined’
[mostly “OR’d”, no?] with whatever was in the core memory location. This way, the numeric part
is accumulated and then the zone bits are added when the card gets to rows 0, 11 and 12. (See
Section 3.1.2 again to remember how Hollerith card encoding works)

35 Why location 1, not 0? Because “accounting machine people would never understand zero-base counting”. Don’t worry, location
zero is not wasted, it’s used for a row counter.

http://ibm-1401.info/ALDs-VSnyder-Australia/5_7/722805.pdf

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 66 of 93

As always, there are special cases for Zero (stored at 0b1010).

 At the end of the processing each row, core memory location zero is updated, acting as a row
counter

At the end of the 12-row (the last one), the Check planes can be compared to make sure Read and
Check stations saw the same number of holes in each column.

To read the many more details, see the following docs:

- Instruction Logic manual [R25] pdf pg 76; and
- IBM1401 Data Flow (Form G24-1477-0) [G24Flow] pg 49 (pdf pg 53)

- IBM1402 Reader Punch Customer Engineering Service Index [IBM1402] (Form 229-4016-1)

Notes

 Just in case this is sounding too straightforward, remember that different cards are present at the
Check and Read stations. So there are actually two sets of extra core planes for Row Bits and
Check bits, and they’re used alternately. Thus, the planes used for hole-counting are XU, XL,
YU, and YL, each consisting of 80 bits.

 There were two vacuum tubes hidden in the 1402 chassis, which are part of the assembly that is
used to set timing of the mechanical feed path. (See Section 6.1.5)

 Mechanical timing in the 1402 must be carefully maintained; the Service Manual [IBM1402]
describes how to adjust timing for the machine.36

6.1.2 Logic Implementation

[The following notes are from Ken Shirriff]

The diagram below shows data flow through the 1402 and 1401. The 1402 circuitry is in the upper-left
and all the rest is the 1401. This figure is from the 1402 Customer Engineering manual page 5-2.

36 The Expert Advice for the timing adjustment procedure is to start on the first page and progress to the last; trying to tweak starting
in the middle of the process is the path to grief.

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 67 of 93

The Reading Algorithm

The 1401 uses a surprisingly complex process to read a card into memory. You might expect that the
card reader reads each character of the card and sends the character to the 1401 as 6 bits. Or maybe the
card reader sends each character as 12 undecoded positions. But the real mechanism is totally different:
the card is read sideways, and all 80 positions in a row are sent to the 1401 in parallel. The card reader is
entirely electro-mechanical, and all the processing happens in the 1401.

The following is a simplified description of the card reading algorithm. The algorithm is described in detail
in 1401 Data Flow, pages 49-54.

The rows of the card, from 9 through 0, then 11 and 12, are processed one at a time.
After each row is read at read station 2, it is processed as follows:
First, the A register is set to the value of the row: 9 through 1, then zone A (for row 0), zone B (for row 11)
and zone AB (for row 12).
Next, the B address register steps through the columns 001 to 080. For each column, the current memory
value is read into B. If the associated row-bit core is set, the A register value is combined with the B
register value. The result is written back to memory to update the character according to the hole's value.
At the end of this process, locations 001 through 080 hold the characters from the card.

Thus, each position of the card is processed individually, from the lower left to the upper right.

6.1.2.1 The Read Circuitry
This section discusses some of the card reader circuitry, focusing on the punch card code processing and
how exceptions in the punch code are handled. The circuitry is housed in gate 01B4. The Intermediate
Level Diagrams (ILD) show the gate-level circuits for the reader/punch in diagrams 60 through 68.

The value of the A register corresponds to the current row (9 through 1, then zones A, B, and AB). The B
register holds the value currently stored in memory for that character. The signal RD2 at 60B1 indicates a
hole at the current row/column.

Reading a zero needs to be handled specially: it is punched in the zero row (i.e. zone value A), but is
stored in BCD as 10. This is handled by the gate at 60B1 (i.e. ILD #60 section B1), which causes BCD 10
(8+2) to be written to memory.

The IBM 1401 handles MLP (multiple-line printing) punches, a feature of the IBM 403 tabulating
machine (p113). A MLP card was indicated by a 9, 8, and another punch all in a single column. The 1401

http://ibm-1401.info/G24-1377-0_1401_dataFlow-3.pdf
http://ibm-1401.info/ILDs_Aug62-Enhanced-TOC.pdf
http://ibm-1401.info/ILDs_Aug62-Enhanced-TOC.pdf
http://bitsavers.trailing-edge.com/pdf/ibm/punchedCard/AccountingMachine/224-1614-13_402-403-419.pdf
http://bitsavers.trailing-edge.com/pdf/ibm/punchedCard/AccountingMachine/224-1614-13_402-403-419.pdf

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 68 of 93

ignores the 8-9 punches on an MLP card, reading the remaining value (1401 Reference manual, p170).
The gate to handle a 9-8 MLP punch is at 60C1. It causes the read value to be cleared when a 9-8 punch
is detected, so the remaining punch will be the value read.

The gates at 60C1 detect the first row (9 normally, but for column binary, row 3 restarts the process.)

At 60D3, two digit punches for the same character (excluding 8) triggers a validity check. The gate below
triggers a validity check for two zone punches. Note that 11-0 and 12-0 are okay because the 0 will be
converted to BCD 10 before the zone row is read. The gate below that triggers a validity check for 8-1.

The gate at 60B3 triggers a validity check for 8-2, unless it is 0-8-2.

At 60B4, the gate with puzzling inputs "A reg not 4, A reg 1, A reg not C" turns out to match the row 1. It is
used to switch processing from numeric rows to zone rows.

The data flow to the A and B registers is on ILD pages 10 and 11. The gates at 60D2 control the inhibit
lines for A and B, controlling updates to these registers.

6.1.2.2 Hole Counting for Validity Checks
When the card passes through the first read station, the holes in each column are counted. At the second
read station, the hole count is verified to check the validity of the read.

It turns out, though, that it's not exactly a count but a simpler two-bit value used in this process. The two
bits start off cleared. The first bit (denoted U) is set when a hole is encountered. The second bit (denoted
L) is toggled on each hole. Thus, three states are distinguished: no holes, odd number of holes, and even
number of holes.

For the second read, the transitions are reversed. The first bit is cleared when a hole is encountered, and
the second bit is toggled. If all goes well, both bits will be clear after the second read. Otherwise, there is
an error.

This will catch missing a single hole, or missing all the holes. There are some count errors it will miss,
such as reading 1 hole versus 3, since it doesn't store exact counts.

Hole counting requires two separate sets of storage, since while the first card is being validated, the
second card is being read. For each card, the 1401 toggles between two sets of row bit storage planes,
labeled X and Y. Thus, the planes used for hole counting are XU, XL, YU, and YL, each consisting of 80
bits.

6.1.2.3 The Hole Counting Circuitry
At ILD 62C1, a trigger switches between row bits X and row bits Y on each card. For state X GATE, row
bit X indicates a hole at read station 1 (RD 1) and row bit Y indicates a hole at RD 2. For Y GATE, the bits
are swapped. This selection is done by the gates at 62C3. (During punching, the bits come from either
Punch Check Decode or B Reg Punch.)

Latches at 62C3 hold the current state of the bits as read from the cores.

At 62C4, gates generate the new values for the hole counts. XU (or YU) is set when a hole is detected
during the count phase and is cleared when a hole is detected during the verify phase. This will trigger an
error if a hole was detected at RD 1 but not RD 2. It ignores the case where a hole was detected at RD 2
but not RD 1. XL (or YL) is generated from the XOR of the old value and the current row bit, so the value
is toggled on a hole.

The gates at 62B6 trigger an error if either hole count bit is set at the end of the process.

6.1.2.4 The Card Reader and Core Memory
Card reading uses special core planes separate from the regular memory planes. Six additional planes
are used: two for the row-bit cores, and four for the hole counting. These planes are not fully populated
since there are only 80 columns to store. These planes have separate outputs from the regular memory
planes, but use the same addresses (001 through 080).

http://ibm-1401.info/A24-1403-5_1401_Reference_Apr62--.pdf

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 69 of 93

Read station 1 is connected to cores in plane RD1 (frame 12) and read station 2 is connected to cores in
plane RD2 (frame 10). Surprisingly, each brush is wired directly to a particular core with a separate wire,
rather than using the inhibit line like the regular cores. Thus, the row can be written to the row-bit cores in
parallel, without addressing. Two separate frames (9 and 11) consisting just of terminals and wiring sit
above RD1 and RD2 to handle the connections to individual cores. Four planes are also used to count
the holes: XU 11, YU 12, XL 13, YL 14 (frames 13-16). Cores in these planes are written in the standard
way, using inhibit lines.

The sense lines for each plane are shown in ILD 4 and the inhibit lines are in ILD 3. The details of the
core memory are given in ALD 42 (page 13).

6.1.2.5 Conclusion
Card reading on the IBM 1401 is surprisingly complex. Massive cables connecting the brushes in the card
reader directly to individual cores in memory. The logic for this operation is all in the 1401 itself, with the
computer processing each of the 80 by 12 card positions individually to generate the card characters in
storage. Multiple validity checks ensure the accuracy of this process

6.1.3 1402 Card Punch

6.1.4 The 1402 Card Reader/Punch Mechanism

[contributed by Ken Shirriff, July 2015, edited by guy]

The IBM 1402 high-speed card reader/punch can read 800 cards a minute or punch 250 cards per
minute. Given that most 1401 installations (except the Model D) included a 1402 card reader/punch, it
was a key component of the 1401 system. The 1402 supported high-volume card processing, with a file
feed that could be loaded with 3000 cards at a time. A careful operator could add cards to the feeder as
the machine ran, allowing almost continuous operation. The card reader and punch provided high
accuracy by reading each card an additional time to verify the hole counts. It also provided misfeed, jam,
and invalid punch detection.

The following diagram shows the layout of the 1402. The punch takes cards from the left, they pass
through the punches and then the punch check brushes, and go into one of the stacker bins. The reader
takes cards from the right, they pass through the two sets of brushes, and are stacked.

Card feed schematic from Reference Manual. IBM 1401 Data Processing System, page 10.

If the PFR (Punch Feed Read) feature is installed, a second set of brushes is installed in the "blank
station" on the left. This allows a card to be read and then punched in a single pass. See Section 6.1.5.

http://ibm-1401.info/ALDs-Australia/5_7%201401%2040-28588%202151_788%2042-44.pdf
http://ibm-1401.info/A24-1403-5_1401_Reference_Apr62--.pdf

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 70 of 93

6.1.4.1 Principles

This section outlines some basic principles of the 1402.

 Cards are read and punched row-by-row, not column-by-column, operating on a row of 80
positions all at once.

 The read and punch sections are opposite. The reader moves cards right to left, 9 edge first. The
punch moves cards left to right, 12 edge first, ensuring that reader-unit and punch-unit cards
would end up stacked the same way in output hoppers. With a bit of care, skillful programmers
would be able to merge read and newly-punched cards in the same output hopper.

 The read and punch units are mostly independent: separate motors, separate clutches, separate
feed paths, separate brushes, and separate cables to the 1401.

 [guy] Ken, 'Mostly independent' begs the question of what wasn't independent... I assume power
and chassis were shared, but do you think there are other shared elements? Maybe there was
some kind of shared control over the stacker bins?

The reader runs at 800 cards per minute and the punch runs at 250 cards per minute. These are
the key timing numbers that everything depends on.

 The reader has an 800 RPM drive shaft. Everything is timed off the rotation angle of this drive
shaft: 0 to 360 degrees, and one rotation corresponds to one card. The mechanical components
are synchronized to this shaft via gears and belts. The electrical timing is synchronized to this
shaft via cams that open and close circuit breakers (switches). Likewise, the punch timing is
synchronized to the 250 RPM drive shaft.

 The reader feed mechanism has some parts that run whenever the reader motor runs, and some
parts that run only when a card is being fed. A clutch separates them, and the clutch is triggered
for each card. Likewise, the punch has a clutch separating the clutched and unclutched
mechanisms, and the clutch is triggered for each card to punch.

 The card reader is electro-mechanical, using relays to provide simple logic control. (Exceptions: a
few transistors to amplify the solar cell signal. Transistors on SMS cards for power supply
regulation. Two vacuum tubes (!) power the diagnostic dynamic timer.)

 The 1401 triggers the reading or punching of each card. Once triggered, the complex timing of
the read/punch is under control of the 1402.

 The card processing logic is all in the 1401. The 1401 converts hole patterns to characters and
performs error checking, as described in Section 6.1.2. The 1402 has brushes to read holes and
punch magnets to punch holes, but does not interpret the cards at all. The 1401 has the punch
drivers to drive the punch magnets in the 1402.

 The thick reader cable between the 1402 and the 1401 includes 160 wires to connect each brush
at the two read stations to the 1401. The thick punch cable includes 80 wires for the punch read
brushes and 80 wires to drive the punch magnets (see Figure 35). Each brush is connected
directly to a core in a special plane in the 1401's core memory, where current through each brush
directly writes the corresponding core, in parallel, without any addressing.

6.1.4.2 The Card Feed Mechanisms

The diagram below shows the reader feed mechanism. Cards pass right-to-left through the mechanism.
The feed rolls move the cards, while the contact rolls are used along with the brushes to read the holes.
The stack rolls feed cards into the appropriate stacker. The mechanical drives fall into two sections:
unclutched, which run whenever the motor is running; and clutched, which run only when the clutch is
engaged, as indicated in some of the figures below.

Card levers detect the passage of cards through the unit. The levers indicate when a card is in position to
be read. Levers are also used to detect jams.

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 71 of 93

Cards are read in three machine cycles. In the first cycle, the card moves from the hopper to the read
check station. (At this point, the card is still half-visible in the hopper.) In the second cycle, the holes are
counted at the read check station and the card proceeds to the read station. In the third cycle, the card is
read, the count is checked, the data is sent to the 1401, and the card proceeds into the hopper.

The diagram below shows the punch feed mechanism. Cards pass left-to-right through the mechanism.
The stepped feed rolls are eccentric, so they grip the card only during part of the revolution. The
intermittent feed rolls are driven by a geneva drive - the card is moved to each of the 12 punch rows and
held stationary while being punched.

A punch operation takes four machine cycles. In the first cycle, the card moves from the hopper to the
blank station. In the second cycle, the card is moved to the punch station. In the third cycle, the card is
punched and moves to the punch check station. In the fourth cycle, the hole count is verified at the check
station and the card continues into the stacker.

The punch timings are shown in the diagram below. In the first cycle, the card is selected by the picker
knife and picked up by the first feed roll. In the second cycle, it is fed by the stepped roll. In the third cycle
it is advanced through the punch station by the intermittent feed rolls. The intermittent rolls are driven by
the Geneva37 drive, which holds the card steady at the 12 punch positions. In the fourth cycle, the second
stepped roll feeds the card through the punch check station to the feed roll and stacker rolls. The
diagram is indexed by "machine time" - the angle from 0 to 360 degrees, with each cycle starting at 315
degrees when the clutch engages. This diagram is from the 1402 Customer Engineering manual, page 4-
5.

37 A Geneva Gear is a mechanism by which continuous rotary motion of a drive shaft is converted to a start-stop motion, which
happens to be perfect for punching cards… The Geneva drive automatically advances the card by one row, then holds it steady
while the punch mechanism is activated, driving punches through the card and removing them in time for the move to the next row.
There’s an animation of a Geneva Drive at http://ibm-1401.info/GenivaMechanism.gif. See also
https://en.wikipedia.org/wiki/Geneva_drive.

https://en.wikipedia.org/wiki/Geneva_drive

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 72 of 93

For each machine cycle, a new card enters the reader (or punch) as the previous cards advance to the
next station. There are two sets of check planes since the card in the check station is different from the
card in the read (or punch) station.

Does the 1401/1402 "automatically" prefetch the next card?

6.1.4.3 The Punch Mechanism

You might expect that holes are punched in the card by the 80 punch magnets, but the mechanism is a
bit more complex. It takes quite a bit of force to push a punch through card stock, so a mechanism is
used to control the punch indirectly.

A simplified version of the 1402 mechanism is shown in Figure 37, where the key idea is that a piece
called an Interposer is inserted at just the right moment between the head of the punch and a “Punch
Bail,” driven by a cam turned by a powerful motor. If the Interposer is in place, it transmits force from the
cam through the bail to the punch; if not, the cam spins without acting on the punch.

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 73 of 93

The 1402 uses a slightly more complex mechanism shown in Figure 38 to do the same thing… again, an
interposer pivots so it can be between the Punch Drive Bail and the punch, or out of the way. If the punch
magnet is energized, the interposer will pivot between the Punch Drive Bail and the punch. Otherwise, the
interposer is not in the path of the punch drive bail. The cam shaft moves the punch bail down, and if the
interposer is in the way, the punch bail pushes the interposer into the punch, punching a hole in the card
with very little force directly from the magnetic coil. If the interposer is out of the way, no hole is punched.

The punch mechanism is described in detail on page 4-14 (pdf pg 53) of the 1402 Customer Engineering
manual. [IBM1402]

From Carl Claunch

Figure 37: IBM 1442 Simplified Punch
Mechanism

“Restore” mechanism
pulls the punch back
out of the card

To punch a hole, push the Interposer
between the Punch Bail and the punch
itself.
When the Interposer is in place, the
Punch Cam will push the punch
through the card; if the Interposer
remains withdrawn, the Punch Bail
wont’ hit the punch, and no hole is
created.

A magnetic coil is activated
to push the interposer into
position to punch

Interposer intersects Punch Bail
and head of punch here

Figure 38: 1402 Punch Mechanism

The Stripper holds the
card stock in place
while the punch is
pulled back out

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 74 of 93

6.1.4.4 Drive Shafts and Timing Angles

The card reader is driven at 800 rpm, corresponding to 800 cards read per minute or 75 milliseconds per
cycle. The card reader clutch has six teeth, so it will take a maximum of 25 milliseconds to engage,38
providing the Early Read feature, which avoids waiting for a full 75 millisecond cycle if the 1401 spends
too much time processing the last card. (See System Operation Reference Manual. IBM 1401. IBM 1460,
page E-7 for detailed processor timings.)

The card punch operates at 250 cards per minute, so its main shaft is driven at 250 rpm, or 240
milliseconds / cycle. The card punch clutch has 4 teeth, so it will take a maximum of 60 milliseconds to
engage.

These two drive shafts are the key to the timing of the card reader and punch, taking the role that a clock
fills in an electronic circuit. One rotation of the shaft corresponds to one mechanical cycle - one card read
or punched. Everything is timed relative to the rotation angle of the shaft, from 0 to 360 degrees. The
mechanical components are synchronized to the driveshaft since they are connected via gears and
toothed belts. The electrical components are synchronized via cams that are driven from these shafts.

Remember that the card reader and the punch are independent mechanically: there are two separate
motors, two separate clutches, two separate timing angles, and so forth.

A visual representation of critical timing angles is provided for maintenance by the Dynamic Timers (See
Section 6.1.6).

6.1.4.5 Cams

The electrical timing signals in the 1402 come from circuit breakers (CB) that are driven by cams. The
shape of the cam controls the angle at which the circuit breaker turns on and off. (Note that a "circuit
breaker" is essentially a switch in this context, unrelated to a protective circuit breaker that trips under
current overload.)

The 1402 has several sets of cams and circuit breakers:

 RCCB: read continuous running circuit breakers

 RLCB: read clutched circuit breakers

 PLCB: punch clutched circuit breakers

 PCCB: punch continuous running circuit breakers

 PACB: punch continuous running circuit breakers (high speed)

 SCCB: solar cell circuit breaker (optical, not a cam)

The read cams are driven by the 800 RPM read shaft, so they trigger at the appropriate angle in the read
cycle. Each cam is shaped to close and open the circuit breaker at the right time.

The RCCB cams are three-lobed because the clutch can engage at three different points in the cycle.
(Section 6.1.4.4)

The PCCB punch cams are driven by the clutched 250 RPM write shaft and close and open circuit
breakers at the right angle in the punch cycle, defining the timing of the punch cycle.

The timing of the PLCB punch clutched cams is more complicated. Because the punch clutch has 4 teeth,
it can engage at 0 degrees, 90 degrees, 180 degrees, or 270 degrees. Thus, the unclutched punch
angles can differ from clutched punch angles by a multiple of 90 degrees. The unclutched cams are
generally 4-lobed, so the signals switch on and off four times in a 360 degree revolution and it doesn't
matter how the unclutched and clutched angles line up. In other words, the clutched cams have the true
angle of the cycle, while the unclutched cams are modulo 90 degrees. (The motivation behind this is to

38 Because the clutch turns 180 degrees during a read cycle, the 6 teeth correspond to three engagement points per cycle

http://www.textfiles.com/bitsavers/pdf/ibm/140x/A24-3067-2_1401_1460_System_Operation_Reference_Manual_Sep66.pdf

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 75 of 93

reduce the latency of a punch operation that would be caused by the slower punch shaft. You only need
to wait a maximum of 60 ms for the clutch to engage, rather than 240 ms for a full revolution.)

The high speed PACB circuit breakers produce a signal for each punch row through slightly complicated
timing. They are driven by a shaft rotating at 1333 1/3 RPM, compared to 250 RPM for the regular punch
drive, synchronized to the slower punch drive through gears. Punching each row takes 22.5 degrees (of
the 250 RPM punch shaft), or 1/16 of 360 degrees. That gives 12 time intervals to punch and 4 for card
movement. During the time the 250 RPM shaft spins 22.5 degrees, the high-speed 1333 1/3 RPM shaft
will spin 120 degrees. Thus, 120 degrees of the high speed shaft corresponds to one punch row. The
high-speed cams have three lobes separated by 120 degrees so they turn on and off three times in a
revolution, once for each row of the card.

The solar cell circuit breaker (SCCB) generates a signal as each row of a card passes under the read
brushes. It consists of a light-sensitive semiconductor (the solar cell), a light, and a rotating slotted disk,
and is triggered when light shines through a slot. On readers that predate the solar cell, six cams were
used in combination to generate the read signals.

6.1.4.6 Relays

The control logic inside the 1402 is implemented with relays,
rather than transistors.

The relays are described on pdf-page 33 (IBM 35-36) and pdf-
pg 35 (IBM 37-38) of the 1402 wiring diagram [Wiring1402].
Heavy duty relays switch power on and off for circuits in the
1042 and (strangely) the 1403 printer. Low-power, high-speed
“permissive make” (PM) wire-spring relays are used for logic.
These relays often have two winding: the "pick" (P) winding
activates the relay, and the "hold" (H) winding will hold the
relay in the activated state. Each relay has multiple sets of
normally-open and normally-closed contacts. Relays are used
for all kinds of logic functions, for example, to detect error
conditions from the “card lever” (CL) switches at various points

in the feed path. Other relays manage the run/stop state for the reader and punch and control the
motors.

See pages 2-3 and 4-1 in the Customer Engineering Service Index [IBM1402] for logic diagrams. Note
that although gate symbols are used, the logic is implemented with relays and diodes. The logic
implemented by the relays is shown on page 5-3.

See Commutation and control for information on the types of relays used by IBM.

[guy] It looks like there might be about 30 relays? Plus 14 more for the PFR feature? Or are there more
than shown in the Wiring Diagram gate (pdf page 33]

6.1.4.7 Connection to the 1401

Besides the power cables (See Section 5.5), there are two thick signal cables between the 1401 and the
1402: one for the reader and one for the punch. The reader cable has 80 wires for the read brushes from
the first station and 80 wires for the read brushes from the second station, all of which are wired directly
to cores in the 1401 (Section 6.1.1). There are also about two dozen control lines. The punch cable has
80 wires for the punch magnets and 80 wires for the punch brushes. There are also about 18 control
lines. (See wiring diagram page 29 (31/32)).

For a diagram of the row bit core wiring, see page 95 of Field Engineering Maintenance Manual. 1401

Data Processing System.

Figure 39: Duo Relay

http://ed-thelen.org/comp-hist/IBM-FU-05-CommutationControl.pdf
http://ibm-1401.info/PPierce-ibm-225-6487-3.pdf
http://ibm-1401.info/PPierce-ibm-225-6487-3.pdf

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 76 of 93

6.1.4.8 Reader-Punch Glossary

Chute blade: Lever to direct cards into the appropriate stacker.

Early read: An optional feature allowing the read clutch to engage at three points. This
reduces the maximum latency to start a read from 75 ms to 25 ms. The readers in
the CHM have this feature.

Intermittent feed: Card feed roller driven by Geneva gear so the card stops at each punch row
position.

Joggler: Mechanical shaker to jog cards into position at input feed or in the stacker.

PA emitter: Magnetic or mechanical signal triggered at each punch position.

Picker knives: Blades to push a card off the stack and feed it.

Solar cell: A semiconductor light sensor to detect each row position.

Stepped feed: Eccentric card feed roller.

6.1.4.9 Understanding the wiring diagram

The wiring diagram is somewhat difficult to understand. This section lists some abbreviations and
symbols used. Unless you're studying the wiring diagram, you may want to skip this section.

6.1.4.9.1 Relays

Relays are indicated by HDn (heavy duty), Dun (duo), or just n (permissive make). DU contacts are
labeled AU, BU, AL, and BL. Under a relay coil symbol is a P (pick) or H (hold). The relay contact symbol
is marked with the relay number; the contact symbols may be on different pages than the coils. See
wiring diagram page 35 (37-38) for a list of relays and the page sections for each relay.

6.1.4.9.2 Cams

PA, PC, PL, RC, RL: cams (described above). Cams are often marked with the make (M) and break (B)
angles. Cams are described on page 22 (23-24) onwards.

6.1.4.9.3 Connectors

PWA, PWB, PWC, PWD: the power connections. RC: the 200-pin read connector for the cable to the
1401. (Also reader cam.) PC: the 200-pin punch connector for the cable to the 1401.

6.1.4.9.4 Switches

Switches and lights are listed on page 19 (19-20). SW: switch. BS: brush selection switch. CS: CB
selection switch. CT: control transfer switch. DS: display switch.

6.1.4.9.5 Terminals

Terminals are listed on page 20 (21-22): CST: console terminals. DCT: DC terminals. GT: gate terminals.
PKT: pocket terminals. PMT: punch magnet terminals. RMT: read clutch magnet terminals

6.1.4.9.6 Other

CL: card lever - a switch triggered by the presence of a card. (Also sometimes clutch.)

RD: resistor/diode, listed on wiring diagram page 31 (33-34).

Thick lines on the schematic indicate wires modified as part of an Engineering Change. Sections of the
schematic are indicated as "Section 2A"; these correspond to the numbers at the top of each page and
the letters along the left, dividing each page into quadrants.

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 77 of 93

6.1.4.10 References

 Customer Engineering Service Index. IBM 1402 Reader Punch (Field Engineering manual).

 Parts Catalog. 1402 Card Read Punch.

 Customer Engineering Reference Manual. 1402 Card Read-Punch.

 Wiring Diagram. 1402 Card Read Punch.

6.1.5 Options and More Options

6.1.5.1 Read Punch Release

With the PFR feature, there is a second set of brushes in the punch unit, but not an additional set of 80
wires to the 1401, so you might wonder how this works. The #2 read and the punch read share the same
set of wires: a set of fourteen 6-position PFR relays switch the 80 wires between the two sets of brushes
as needed.

[Note that there are two interwoven features here, PFR and SRF:

 SRF lets instruction execution take place after a read or punch is started.

 PFR lets a card be read before being punched.
Needs a bit more disentangling…
-------- Forwarded Message --------

Subject: Re: 1402 description

Date: Wed, 15 Jul 2015 00:25:05 -0700

From: Ken Shirriff <ken.shirriff@gmail.com>

To: Ed Thelen <ed@ed-thelen.org>

I found some information on this in the 1402 manual: http://bitsavers.trailing-edge.com/pdf/ibm/140x/A24-
3072-2_1402_rdrPunch.pdf

Read Punch Release

The Read Punch Release special feature is available for those IBM data processing systems using the 1402
Models 1, 3,4, 5, and 6. With this feature, card movement in the read feed can be initiated by either the
normal read instruction or the start read feed (SRF) instruction. When the SRF instruction is used, 21
milliseconds of read start time is made available to the processing unit.

Card movement in the punch feed can be initiated by either the normal punch instruction or the SRF
instruction. Use of the SRF instruction makes 37 milliseconds of punch start time available to the
processing unit. The programmer should note that failure to give the read instruction within 21 milliseconds
after an SRF command will result in a reader check. Similarly, failure to issue the punch instruction within 37
milliseconds after an SRF command will cause a punch check.

From the instruction timing
document: https://ia601608.us.archive.org/20/items/bitsavers_ibm140xA24ctionandTimingSummary_94184
9/A24-6447-0_1401_1460_Instruction_and_Timing_Summary.pdf

SRF (start read feed) is opcode 8 and SPF (start punch feed) is opcode 9.

http://ibm-1401.info/IBM-229-4016-1-IBM1402FE-PP.pdf
http://ibm-1401.info/1402-PartsCatalog-S31-0149.pdf
http://ibm-1401.info/1402CardRead-PunchCEReferenceMan-S31-0150.pdf
http://ibm-1401.info/1402CardReadPunchWiringDiagramSerial-20611.pdf
http://bitsavers.trailing-edge.com/pdf/ibm/140x/A24-3072-2_1402_rdrPunch.pdf
http://bitsavers.trailing-edge.com/pdf/ibm/140x/A24-3072-2_1402_rdrPunch.pdf
https://ia601608.us.archive.org/20/items/bitsavers_ibm140xA24ctionandTimingSummary_941849/A24-6447-0_1401_1460_Instruction_and_Timing_Summary.pdf
https://ia601608.us.archive.org/20/items/bitsavers_ibm140xA24ctionandTimingSummary_941849/A24-6447-0_1401_1460_Instruction_and_Timing_Summary.pdf

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 78 of 93

Ken

 We note that PFR complicates the read-check after punch. The assumption is that columns to receive
punches have not already been punched, i.e, the programmer would read a part number in one field of
the card and punch a quantity (for example) in another field of the same card.

That reminds me that I never asked what it is that finishes checking that the brushes after the punch
station compare correctly with what was supposed to be punched...

6.1.5.2 Punch Feed Read

6.1.6 The Dynamic Timer and the Mysterious Vacuum Tube

T. J. Watson is said to have proclaimed “Solid State in ‘58”39, but that
didn’t percolate all the way down through the organization…

Cards go whizzing through the 1402 much faster than can be seen
and debugged by the unaided eye, so the 1402 Reader and Punch
both include a special diagnostic mechanism called a Dynamic Timer
to offer a visual representation of critical timing angles, allowing
customer engineers to adjust the many cams and card levers
properly.

Each dynamic timer consists of a rotating disk synchronized to the
machine cycle, so the disk spins 360 degrees for each machine
cycle. (i.e. the read timer spins at 800 RPM and the punch timer
spins at 250 RPM.) On the disk are two neon lights that spin with the

disk and are triggered by a selected circuit. The lights will illuminate
an arc of the circle corresponding to the time its input is active. This
visually indicates the angles during which the signal is active.

The dynamic timers are controlled by the CE Service Panel, which allows selection of the desired cam,
magnet, or brush to be displayed. Use of this panel is described in Section 4 “Service Aids” of the 1402
Customer Engineering Reference Manual [CE-Ref1402] [It is?? I’m not seeing it yet. Wrong xref?]

The dynamic timer circuit uses two vacuum tubes, one to develop a high voltage power
supply, the second to switch the neon bulbs on and off at the right instants. (See the 1402
Wiring Diagram [Wiring1402] pdf page 16 for the circuit diagram.)

The dynamic timer was carried forward from an IBM 088 (and 188?) Collator. [Got an
xref?]

Subject: Re: 1402 alignment/test circuit RE: How does that Card Reader Geneva Gear

work...

Date: Thu, 2 Jul 2015 13:04:29 -0700

From: William Flora <billflora@gmail.com>

To: Guy Fedorkow <guy.fedorkow@gmail.com>

CC: Ed Thelen <ed@ed-thelen.org>, Ken Shirriff <ken.shirriff@gmail.com>, Robert

Garner <robgarn@mac.com>, Claunch, Carl <Carl.Claunch@gartner.com>,

39 See http://ibm-1401.info/1401Origins.html#in58. It was Wallace McDowell who issued the policy in 1957, but the memo didn’t
contain the catchy phrase.

Figure 40: Dynamic Timer in
Operation

http://ibm-1401.info/1401Origins.html#in58

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 79 of 93

stpaddock@sbcglobal.net <stpaddock@sbcglobal.net>, BillFlora@comcast.net

<BillFlora@comcast.net>

There are 2 vacuum tubes in the 1402 for driving the dynamic timers. Both

reader and punch use the same 2 tubes. You will find these tubes in all 1402's.

The same type of dynamic timer exists in the 088 machines. I will be happy to

show you where these tubes are, but you can't see them very well without

removing stuff that is in the way.

Bill Flora

6.2 1403 Printer

[See Ken’s note below on how it converts 132 bytes of memory into hammer-firing timing…]

Is there anything that can be said about the mechanical aspect of the printer?

1403 Printer 600 132-character lines per minute - normal alphabetic printing.
Noise, with the cover closed, at about 2 feet in front is about 85 dbA. With
cover open, about 94 dbA. (for details)

Notes

 As with the card reader, the print buffer started at a “1” offset, not zero (Addresses: 201-332, with
address 200 reserved for something?)

6.2.1 The IBM 1403 printer

[Contributed by Ken Shiriff]

The IBM 1403 is a high-speed line printer capable of printing high-quality output at up to 1400 lines per
minute under specialized circumstances, or 800 lines per minute for common print jobs and character
sets. The printer's basic operation is the write instruction, which writes a line of 132 characters from the
print area (locations 200 through 332). The printer also provides low-speed and high speed carriage
control (i.e. paper feeding). Paper feeding can be controlled by a carriage tape in the printer; this provides
custom control for different types of forms.

The secret to the printer's performance is a chain with character that spins at high speed. The printer has
132 hammers, one for each print position. When a character on the chain passes a spot where it should
be printed, the hammer fires, printing the character. This process is more complex than it sounds, and is
described in detail below.

One interesting thing about the 1403 printer is that all the logic is in the 1401 computer. The printer is
electro-mechanical (with a hydraulic system for paper feed). The 1403 printer is connected to the 1401 by
two 160-pin signal cables and a 13-pin power cable. The 132 hammers in the printer are connected by
132 wires to the 1401, which contains the printer drivers. Another 66 wires provide -60V return for each
pair of hammers.

6.2.1.1 Character set

Many different IBM 1403 chains are available; the standard ones are the 'A' alphameric chain and the 'H'
Hollerith chain. The CHM has the A chain with character set (but with + in place of &):

1234567890#@/STUVWXYZ‡,%JKLMNOPQR-$*ABCDEFGHI+.

http://ibm-1401.info/1403-Noise.html

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 80 of 93

The H chain has a few different special symbols:

1234567890='/STUVWXYZ‡,(JKLMNOPQR-$*ABCDEFGHI+.)

For more information on different chains, see 1403 Fonts and Chains.

6.2.1.2 Instructions

Many instructions are associated with the printer. The main instruction is Write, but the printing can be
combined with reading and punching in various combinations. There are also multiple instructions to test
status, as well as carriage control instructions. For details, see the 1401 Reference Manual.W Write (also
write word marks and branch) WP Write and punch WR Write and read WRF Write and read punch feed
WRP Write read and punch BC9 Branch on carriage channel 9 BCV Branch on carriage overflow BPCB
Branch printer carriage busy (with print storage option) BPB Branch printer busy BIN Branch indicator
(including printer error) CC Carriage control CCB Carriage control and branch

6.2.1.3 Error checking

Printing includes extensive error checking, using additional core planes: hammer fire area, print compare
area, print-line complete, and print-error storage.

One validity check is "hammer fire - print compare". A hammer fire circuit tests for a hammer that fails to
fire when it is energized or a hammer that fires without being energized. Each hammer driver is wired
directly to a hammer-fire core, which records when a hammer fires. For each print position, the print-
compare core is when a hammer is supposed to fire, that is when the character in memory matches the
character on the chain. As each storage location is accessed in a print scan, the hammer-fire core and
print-compare core from the previous print scan are checked for a mismatch (character matched but
hammer didn't fire or character didn't match but hammer fired).

Another check is "print-line complete", which checks that all printable characters are printed. These cores
are cleared at the beginning of a print operation. A core is set if the corresponding storage does not have
a printable character, or if there is an opportunity to print the character. If the core is not set at the end of
the print operation, there was a printable character but no opportunity to print it. An error is also triggered
if the core is already set when a print-compare match is found, indicating an attempt to print a character
twice.

If there is an error, the corresponding core in the print-error storage plane is set to record which position
had the error. The storage scan feature will scan storage for errors. The scan will stop on the location of
any print errors, indicating the character position of the fault. (The mode switch is set to STORAGE SCAN
for this feature.) See 1401 Reference Manual for details.

Error checking uses positions 201 through 332 in four core planes. The hammer drivers are connected to
plane 11 (terminals) for the cores in plane 12 (RD1-PRT); each hammer driver is connected directly to a
specific core (without addressing). The print compare cores are in plane 13 (XU11). The print-error
storage cores are in plane 14 (YU12). The print line complete cores are in plane 15 (YL13).

Other error checking includes parity checks and synchronization checks between the chain and the 1401.

6.2.1.4 Print storage option

On the standard 1401, processing is blocked while the printer is in operation. The print storage feature
provides much more processing time by quickly copying the print line from main core to a print buffer. The
1401 can resume processing while the printer reads the characters from the print buffer.

The print storage feature greatly increases the processing time available while printing. Printing a line
takes 100 milliseconds. In a standard 1401, the processor is blocked for 84 milliseconds of this time,
leaving just 16 milliseconds of processing. With print storage, it takes just 2 milliseconds to copy the
characters to the buffer, leaving 98 milliseconds of processing time. (1401 Reference Manual, page 82.)

Print storage uses its own core module, which is smaller than the main core module. It consists of 12
planes in a 10x14 grid. In addition to 8 data planes, the module has a hammer fire plane, a print line

http://ibm-1401.info/1403Fonts.html
http://ibm-1401.info/A24-1403-5_1401_Reference_Apr62--.pdf
http://ibm-1401.info/A24-1403-5_1401_Reference_Apr62--.pdf
http://ibm-1401.info/A24-1403-5_1401_Reference_Apr62--.pdf

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 81 of 93

compare plane, an equal check plane, and a print error check plane. The hammer fire plane is written
directly by the hammer drivers; each hammer response line is wired individually to five turns around the
associated core.

The print storage feature filled gate 01A4 (which held the core), along with part of 01A5. The print storage
feature cost an extra $375 a month, more than multiply-divide (which was $325 a month).

The print storage feature includes two new branch codes: branch on printer busy and branch on carriage
busy, which can be used to avoid accessing the printer while it is in operation (which would block
processing). A print storage scan feature is also provided to scan the print storage for errors. This is
controlled by setting the auxiliary mode switch to "Print Storage Scan" setting on the auxiliary console and
then performing a storage scan.

See 1401 Data Processing System Optional Feature (page 117) for details on how print storage operates.

6.2.1.5 How the Hammers Interact with the Print Chain

Only one hammer is aligned with a chain element on the chain at a time, giving it an option to print the
character. As the print chain moves, the alignment shifts to another hammer and a different chain
element. After all 132 hammers have been aligned with the chain and had an option to print a character,
one print scan is completed. Since there are 48 different characters, each hammer must have the option
to print each character. Thus, 48 print scans are required for each line.

The key to understanding the printer is understanding the relationship between the moving print chain
and the fixed hammers. If the print chain needed to move a full character position to line up with the next
hammer, printing would be slow. Instead, the print chain spacing is very slightly wider than the hammer
spacing, so as the print chain moves a very small amount, successive hammers and characters are
aligned. (This is similar to the principle of a vernier scale or moiré pattern.)

The chain to hammer spacing is just slightly larger than a 3:2 ratio, so the alignment pattern is a bit tricky.
The alignment pattern is hammer 1 with chain element 1, then hammer 4 with chain element 3, then
hammer 7 with chain element 5, hammer 7 with chain element 10, and so forth. Finally, hammer 130 is
aligned with chain element 87. At the end of this process, every third hammer has aligned with every
second chain element. 44 different chain elements have lined up with 44 different hammers, giving 44
opportunities to print a character. This is called one print subscan.

The second subscan starts right after the first, when hammer 2 aligns with chain element 2. This is
followed by the alignment of hammer 5 with chain element 4, then hammer 8 with chain element 6, and
so forth. At the end of this subscan, 44 more hammers have had an option to print.

The third subscan starts right after the second, when hammer 3 aligns with chain element 3. The subscan
continues with hammer 6 aligning with chain element 5, and so forth, until 44 hammers have had an
option to print.

After the third subscan, all 132 hammers have had an option to print a character, completing a print scan.
As explained above, 48 print scans are required for a line, so each hammer has an option to print each of
the 48 different characters on the chain.

To see exactly how this alignment process works requires looking at the dimensions of the hammers and
chain elements. The hammers have a 0.100 inch spacing (all measurements in inches), while the chain
elements have a .1505 spacing. Starting from 0, hammers will be at positions 0, .1, .2, .3, .4, .5, .6, etc.
The chain elements will be at positions 0, .1505, .301, .4515, .602, etc. Note that hammer 1 is aligned
with element 1. If the chain shifts to the left 0.001, hammer 4 (.3) will be aligned with type 3. After another
shift of .001, hammer 7 (.6) will be aligned with element 5. As the chain moves, every third hammer will be
aligned with every second chain element until finally hammer 130 is aligned with chain element 87.

At the completion of the subscan, the chain has shifted by 0.043, which is less than half of a character
width. At this point, chain element 2 is almost lined up with hammer 2. After an additional shift of .0075,
element 2 is synchronized with hammer 2. As the chain moves, a second subscan takes place with
element 2 aligned with hammer 2, element 4 with hammer 5, element 6 with hammer 8, and so forth until
hammer 131 is aligned with chain element 88. This completes the second subscan. As before there were
44 opportunities to print a character.

https://ia601603.us.archive.org/30/items/bitsavers_ibm140x225aturesCEApr61_10729447/225-6541-0_1401_Optional_Features_CE_Apr61.pdf
https://en.wikipedia.org/wiki/Vernier_scale
https://en.wikipedia.org/wiki/Line_moir%C3%A9

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 82 of 93

After the second subscan, hammer 3 is almost aligned with chain element 3. A small additional shift of
0.0075 aligns them, and the third subscan takes place. Hammer 3 aligns with chain element 3, then
hammer 6 with chain element 5, hammer 9 with chain element 7, and so forth until hammer 132 is aligned
with chain element 89.

6.2.1.6 Timing

This section summarizes the timing of the printer. The chain moves at 90.3 inches per second, so each
movement of .001 takes 11.1 microseconds. Thus, a hammer is aligned every 11.1 microseconds. For the
44 hammers in one subscan to align takes takes 484 microseconds. It takes an additional 47
microseconds to align the chain for the next subscan, yielding a total time of 555 microseconds per
subscan and 1665 microseconds per scan. Multiplying by 48 characters yields about 80 milliseconds per
line. Adding about 20 milliseconds to advance the paper, the printer can print 600 lines per minute.
(These numbers are from the IBM 1403 Service Manual, which explains the printing process in detail. The
numbers don't exactly add up due to rounding. Unfortunately the Service Manual is not available online.)

The printer can also be configured with a numerical chain with 16 characters. Only 16 scans are required
per line, rather than 48, resulting in 26.7 microseconds print time per line, which yields 1285 lines per
minutes (after adding 20 milliseconds to advance the paper). The "preferred character set" feature
arranges characters on the chain so the most common characters are presented more often, and can get
up to 1400 lines per minute. (See IBM 1403 Printer Component Description.)

6.2.1.7 Summary

For more information on the printer, see IBM 1403 Printer Component Description.

The print instruction, print scan process, timing and circuitry are described in detail in IBM 1401
Instruction Logic (pages 88-94). The print instruction is described step by step in 1401 Data Flow (pages
59-63).

6.3 729 Tape Drive

The 1401 can be equipped with one tape controller in 1401 rack, consuming three card gates.

The tape controller (TAU) was leveraged from 709 computer (is true?) and use a different logic family
(check this please)

7. Software Environment

The ibm-1401.org web site has numerous resources for programming the machine, including links to a
simulator

 1401 Software Development

o ROPE (Ron's Own Programming Environment)

o Punching object decks from ROPE to a keypunch

 A Guide to IBM 1401 Programming by Daniel D. McCracken, 1962

 Programming the IBM 1401 computer by Emanuel Melichar

 IBM 1401: A Self-Instructional Programmed Manual by Saxon and Plette
http://ed-thelen.org/comp-hist/ProgrammingTheIBM1401.pdf

Can we describe software workflow?

See an example of code at Ken Shiriff’s blog:
 http://www.righto.com/2015/05/bitcoin-mining-on-55-year-old-ibm-1401.html

http://www.textfiles.com/bitsavers/pdf/ibm/140x/GA24-3073-8_1403_printer.pdf
http://www.textfiles.com/bitsavers/pdf/ibm/140x/GA24-3073-8_1403_printer.pdf
http://bitsavers.informatik.uni-stuttgart.de/pdf/ibm/140x/ce/R25-1496_1401_Instruction_Logic_Nov60.pdf
http://bitsavers.informatik.uni-stuttgart.de/pdf/ibm/140x/ce/R25-1496_1401_Instruction_Logic_Nov60.pdf
http://ibm-1401.info/G24-1377-0_1401_dataFlow-3.pdf
http://ibm-1401.info/1401SoftwDevel.html
http://ibm-1401.info/1401SoftwDevel.html#Intro
http://ibm-1401.info/PunchingObjectDecks.html
http://bitsavers.trailing-edge.com/pdf/ibm/140x/A_Guide_to_1401_Programming_1961.pdf
http://emelichar.com/Programming.html
http://ed-thelen.org/comp-hist/ProgrammingTheIBM1401.pdf
http://www.righto.com/2015/05/bitcoin-mining-on-55-year-old-ibm-1401.html

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 83 of 93

Do we have Python yet?40

8. Operational Environment

8.1 Operational Guide

Are there instructions for turning the machine on and starting it up?

8.2 Operator’s Panel – The 1401 Console

Modern programmers are accustomed to a wide array of software-based
debugging tools to see what’s going on inside their program. In the case
of the 1401, that’s done with the operator’s panel, which controls single-
step, shows register contents, can examine and change memory
locations, plus other functions required to start and stop programs or
control power.

[notes from Ken Shiriff, Sep 2015]

The IBM 1401 doesn't require much console interaction in normal use, but there are some useful things to
know about it. The console also provides debugging features.

8.2.1 Default settings

Several console switches must be in the correct positions or else the 1401 will not operate normally. The
I/O CHECK STOP toggle and A toggle should be up. The mode switch should be in the RUN position.
The TAPE SELECT dial should be in the N (normal) position. On the auxiliary console, the CHECK STOP
toggle should be up. The auxiliary mode switch should be set to OFF.

While these settings are useful defaults, the full description of all the console switches and lights can be
found in the Reference Manual [RefMan] at ibm-pg 109 (pdf-pg 121).

8.2.2 Useful buttons

The POWER ON and POWER OFF buttons turn the 1401 system on and off. The CHECK RESET button
lights if there is a fault, and is cleared by pushing the button. The START RESET button resets the
system (except for address registers and core).

8.2.3 Console layout

The upper part of the console gives a block diagram of the 1401's logical elements. The B, A, LOGIC,
STORAGE ADDRESS and OP blocks are illuminated to show the character value in that component. The

40 Actually, no. It would be possible to write a C-like cross-compiler that would generate a binary to run on a 1401 [someone’s doing
it, no?] but Python relies on a complex p-code interpreter that has to be resident on the target machine. Not likely to ever fit in the
small memory available in a 1401.

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 84 of 93

LOGIC block also shows comparison status. The INSTRUCTION LENGTH block shows the length of the
current instruction. The various labels light up in red if there is a fault in that component.

Each STAR register has an illuminated button. One of the buttons lights up to show which register is
being displayed in STORAGE ADDRESS. Below these buttons are MANUAL ADDRESS dials, which can
be used to enter an address.

To the right of the address dials is the Mode switch, which is very important since it controls the operating
mode of the 1401 (e.g. Run, Single Cycle, Stop-on-Address and other debug modes).

Figure 41: Diagram of the IBM 1401 Console.

The next line of switches consists of the START RESET button, which resets the system (except for
address registers and core); the I/O CHECK STOP toggle, which enables I/O validity checks; the sense
switches (switch A enables last card detection); and the tape mode dial.

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 85 of 93

At the bottom of the main console are the EMERGENCY OFF handle; the START button, which restarts
execution; the CHECK RESET button, which lights if there is a fault, and is pressed to reset the fault; the
STOP button, which stops execution; the POWER ON and POWER OFF buttons, which turn the entire
system on and off; the TAPE LOAD button, which loads a tape; and the BACKSPACE button, which
rewinds the tape one record.

Underneath the main console is the auxiliary console, which provides additional controls that are mostly
not used in normal operation.

Figure 42: Diagram of the IBM 1401 Auxiliary Console41

The auxiliary console has multiple sync points for connection to test equipment. [it’s always an
oscilloscope, no?]

 The CHECK STOP switch enables stopping on error conditions.

 The DISK WRITE switch enables and disables disk writes for testing.

 The I/O CHECK switch is for CE use and resets an I/O fault.

 The auxiliary mode switch selects print mode and controls overlap functions.

 The bit switches and ENTER switch are used to enter a character into memory. (Note that 0 is
stored as 8 2 C.)

 The STERLING dial selects the desired shillings/pence encoding. (This optional dial is not shown
but is above the auxiliary mode switch.)

 The TAPE DENSITY switch is used for tape I/O.

8.2.4 Debugging with the console

The console provides several operations that are useful for debugging. Registers and memory can be
viewed and modified. Memory can be dumped to the printer. The most common operations are described
below; the Reference Manual (pages 109-118) describes the console thoroughly.

41 From the 1401 Reference Manual [RefMan]

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 86 of 93

8.2.4.1 Viewing Registers or Memory

To view a STAR register, press the register's button and its contents will be displayed in STORAGE
ADDRESS.

To view a storage location, set the mode switch to CHARACTER DISPLAY. Set the desired address on
the dials. Press START. The character will be displayed in the B register.

8.2.4.2 Modifying Registers or Memory

To modify an address register, set the mode switch to ALTER. Set the address on the dials. Press the
desired register button. Press START.

To modify a memory location, set the mode switch to ALTER. Set the address on the dials. Set the
character using the bit switches on the auxiliary console. Toggle ENTER on the auxiliary console. Note:
make sure the parity is correct (odd), or the 1401 will check-stop when it uses the value.

To fill all memory with a character, set the mode switch to STORAGE SCAN. Enter the bit pattern on the
auxiliary console switches. While holding ENTER up, press and hold START. Then release ENTER.
Memory will be written until START is released. (This doesn’t seem to be documented.)

8.2.4.3 Single-stepping

To step through instructions, set the mode switch to I/EX. Press START to read one instruction from
storage, and press START again to execute the instruction.

To step through instructions one memory cycle at a time, set the mode switch to SINGLE CYCLE
PROCESS and press START to complete one cycle.

8.2.4.4 Printing storage

To dump out 100 characters of storage to the printer, set the mode switch to STORAGE PRINT OUT.
Enter the desired (thousands and hundreds) address on the dials. Press START.

To dump out all of storage to the printer, set the mode switch to STORAGE PRINT OUT. Set the auxiliary
mode switch to FULL STORAGE PRINT. Press START.

8.3 Bootstrapping a Program

8.4 Debug Techniques

Single-step
Stop-on-address, using the front-panel address switches
Trap-on-something by patching the binary
There are diags in the file drawer in the back room; what do they do?

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 87 of 93

9. Reference Material

9.1 Reference Documents

Many docs, both primary and secondary, have been collected at the CHM 1401 Restoration Team’s web
page, http://ibm-1401.info. Other docs have been scanned and collected at http://bitsavers.trailing-
edge.com/pdf/ibm/140x.
This section identifies some of the key documents required to understand the 1401 system.

9.1.1 IBM Docs about the 1401 System

[RefMan] IBM Reference Manual / IBM 1401 Data Processing System (Form A24-1403-5, aka The Brown
Book)

http://bitsavers.trailing-edge.com/pdf/ibm/140x/A24-1403-5_1401_Reference_Apr62.pdf
191 pages

Doc pg 164 shows how a program loader works

Doc pg 170 gives the punch-card code chart

[R25] IBM 1401 Data Processing System / Instruction Logic (Form R25-1496)
http://ibm-1401.info/1401InstructionLogic-R25-1496.pdf
106 pages
This doc gives detailed cycle-by-cycle descriptions of each of the instructions in the instruction set,
indicating Instruction vs Execution phases, how address registers are used, when Word Marks will
terminate an instruction, and what logical operations are performed.
The doc also contains detailed descriptions of the I/O instructions for the Card Reader/Punch and Printer.

http://ibm-1401.info/1401InstructionLogic1960.pdf gives what appears to be an earlier draft of the
same material, without an IBM doc number. Written in 1960 by T. Mierswa, 104 pages.

[G24Flow] IBM 1401 Data Processing System / IBM1401 Data Flow (Form G24-1477-0) Second Revision
http://www.textfiles.com/bitsavers/pdf/ibm/140x/G24-1477-0_1401_dataFlow.pdf
68 pages, Second Edition, published May 1967
This doc describes data flow through the 1401, with a simplified block diagram of the data path as a
starting point. It describes how instruction fetch cycles work, and cycle-by-cycle behavior for the various
instruction types. [How is this one different from [R25], aka R25-1496?]
[There’s an almost-identical copy at http://ibm-1401.info/G24-1477-0_1401_dataFlow-3.pdf; This looks
like the first edition of the same doc, without a formal cover page.]

IBM 1401 Data Processing System / IBM 1401 DATA PROCESSING SYSTEM BULLETIN (Form G24-
1477-0) (First Edition? Undated…)
There are Version 1 and Version 2 copies of this doc floating around

[ILD] IBM 1401 Data Processing System / Instructional Logic Diagrams (ILD) Volume 4 (Form 56-398)
http://ibm-1401.info/ILDs_Aug62-Enhanced-TOC.pdf
84 pages
These pages have many hand-written notes in German (presumably from the German machine)

[ILD2] An alternate copy of the ILD’s can be found at:

http://ibm-1401.info/
http://bitsavers.trailing-edge.com/pdf/ibm/140x
http://bitsavers.trailing-edge.com/pdf/ibm/140x
http://bitsavers.trailing-edge.com/pdf/ibm/140x/A24-1403-5_1401_Reference_Apr62.pdf
http://ibm-1401.info/1401InstructionLogic-R25-1496.pdf
http://ibm-1401.info/1401InstructionLogic1960.pdf
http://www.textfiles.com/bitsavers/pdf/ibm/140x/G24-1477-0_1401_dataFlow.pdf
http://ibm-1401.info/G24-1477-0_1401_dataFlow-3.pdf
http://ibm-1401.info/ILDs_Aug62-Enhanced-TOC.pdf

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 88 of 93

http://ibm-1401.info/ALDs-Australia/1_1%20Logic%20Diagrams%201401_40-
28588%202151_788.pdf
156 pages
This set contains numerous instruction-cycle timing diagrams, starting at PDF pg 93, and fewer
scribbles and annotations.

[ALD logic diagrams (i.e. schematics for the 1401) are at this web site, but need more categorization:
http://ibm-1401.info/ALDs-VSnyder-Australia/ALDs-fromAustralia.html]

[ALD] This page gives an index of each page of the ALDs, with a link to individual PDF files.
http://ibm-1401.info/ALDs-VSnyder-Australia/List_1_7-7_7-logic.html

IBM Form F20-0208 General Information Manual, IBM 1401 Data Processing System, From Control
Panel42 to Stored Program
http://bitsavers.informatik.uni-stuttgart.de/1401/docs/F20-0208.pdf
42 pages
This doc is an introductory manual for students new to store-program computing; it’s intended to
introduce the concepts in the 1401 in preparation for a training course, and to help students understand
how problems that had previously been solved on plug-board-controlled unit-record machines could be
implemented in the stored-program world.

IBM Form A24-1420-0 Reference Manual 1401 Data Processing System, Original Equipment
Manufacturers’ Information
1401OEM-Info.pdf
Description of cabling, installation, and operators panels with definition for all the buttons and lights.

[FMM] IBM Field Maintenance Manual (Doc number 225-6487-3)
http://ibm-1401.info/PPierce-ibm-225-6487-3.pdf
See page 21 (pdf pg 23) for info on margining power supplies and clocks for reliability checks.
See pdf pg 19 for cabling
This doc contains many timing waveforms, guidance for repair, instructions for Customer Engineer panels
and test points, as well as advice on how to keep your oscilloscope in good operating condition.
The doc contains detailed flow diagrams for various machine cycles.

Single-page map of logical function to physical card gates and ALD pages
http://ibm-1401.info/1401-Loc-ALD-.jpg
This single page shows the assignment of logical functions to the chassis locations that hold card gates
or functional units such as power supplies in a 1401 processor
[try to identify the source doc…]

Date: Thu, 04 Jun 2015 15:34:02 -0700

From: ed@ed-thelen.org

To: Guy Fedorkow <guy.fedorkow@gmail.com>, Robert Garner robgarn@mac.com

I have added a document called

 "Instruction Logic"

42 The “Control Panel” in the title refers to unit-record plug-boards, not the knobs and buttons on the front of a 1401!

http://ibm-1401.info/ALDs-Australia/1_1%20Logic%20Diagrams%201401_40-28588%202151_788.pdf
http://ibm-1401.info/ALDs-Australia/1_1%20Logic%20Diagrams%201401_40-28588%202151_788.pdf
http://ibm-1401.info/ALDs-VSnyder-Australia/ALDs-fromAustralia.html
http://ibm-1401.info/ALDs-VSnyder-Australia/List_1_7-7_7-logic.html
http://bitsavers.informatik.uni-stuttgart.de/1401/docs/F20-0208.pdf
http://ibm-1401.info/PPierce-ibm-225-6487-3.pdf
http://ibm-1401.info/1401-Loc-ALD-.jpg
mailto:robgarn@mac.com

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 89 of 93

 104 pages, written in 1960 by T. Mierswa

 which may be useful.

 http://ibm-1401.info/index.html#1401-Processor

http://ibm-1401.info/1401InstructionLogic1960.pdf

9.1.2 Programming the 1401

http://www.cap-lore.com/Hardware/1401Manual.html (a 1401 simulator? Where did this come from?)

There’s a short list of programming reference guides at the end.

9.1.3 Peripherals

Add the TAU document

[IBM1402] IBM Customer Service Index; IBM 1402 Reader Punch (Form 229-4016-1; aka Field
Engineering Manual)

http://ibm-1401.info/IBM-229-4016-1-IBM1402FE-PP-150.pdf [this copy is cleaner]

84 pages

http://ibm-1401.info/1402ReaderPunchServiceIndex-229-4016-1.pdf [this appears to be a duplicate]

82 pages

Copyright 1963, 1965

This doc contains everything about the Reader/Punch, including adjustments for timing, cabling, and
many mechanical details. The doc is the “ILD” of the 1402 – explanations of how the drive train, power
supplies, and control logic works, plus trouble-shooting guides and adjustments for various components.

Some of the relay logic is described in terms of And-Or logic diagrams in this doc.

[CE-Ref1402] Customer Engineering Instruction-Reference; 1402 Card Read-Punch

https://archive.org/details/bitsavers_ibm140xce2PunchCEManual1962_12788025

70 pages

Copyright 1960, 1961, 1962

This doc has been OCR’d, so the text is searchable

[Wiring1402] http://ibm-1401.info/1402CardReadPunchWiringDiagramSerial-20611.pdf

58 pages

Wiring diagrams and schematics

http://ibm-1401.info/index.html#1401-Processor
http://ibm-1401.info/1401InstructionLogic1960.pdf
http://www.cap-lore.com/Hardware/1401Manual.html
http://ibm-1401.info/IBM-229-4016-1-IBM1402FE-PP-150.pdf
http://ibm-1401.info/1402ReaderPunchServiceIndex-229-4016-1.pdf
https://archive.org/details/bitsavers_ibm140xce2PunchCEManual1962_12788025
http://ibm-1401.info/1402CardReadPunchWiringDiagramSerial-20611.pdf

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 90 of 93

9.1.4 Docs about 1401 Technology

[SMS] IBM Customer Engineering Manual of Instruction: Standard Modular System Component Circuits
(Form 223-6875-1)
http://ibm-1401.info/IBM-StandardModularSystem-Neff7.pdf
236 pages.
All about SMS cards: This doc describes the logic family used in the 1401, plus:

 Packaging conventions (e.g., types of card gates)

 Design Flow [pdf pg 12]

 How to Read an ALD

 Detailed descriptions of loading rules, “dot” gates (i.e. wire-and, wire-or)

 Detailed descriptions of many card types, arranged alphabetically by card type (e.g. “AR” or
“CW”)

 Index of card types and functions (in the middle of the doc; pdf pg 182)

 Instructions on repair of cards (hint: don’t heat the PCB too much with your soldering iron, lest
traces separate from the pcb material!)

 Power supply conventions

 Transistor types

 Glossary of terms
The doc is scanned, but not OCR’d, so it’s not searchable.

[TCC] IBM Customer Engineering Manual of Instruction: Transistor Component Circuits

Form 223-6889

http://ibm-1401.info/Form223-6889-TransistorComponentCircuits.pdf

151 pages

Document provided by Harlan C. Snyder

This doc covers theory of operation for many kinds of SMS circuits. Read here if you want to learn how
an edge-triggered flip-flop works…

PDF Pages 105 to 124 describe Complementary Diode Transistor Logic, the family used in the 1401.

The doc is scanned but not OCR’d

Ken Shirriff has compiled a database of many of the SMS cards used in the 1401 and other technology of
the era:
http://www.righto.com/2015/03/a-database-of-sms-cards-technology.html
http://files.righto.com/sms/

Single page on how to read gate symbols on an ALD
http://ibm-1401.info/JVG-ALDs-001.pdf
See also http://ibm-1401.info/RWilliams-Quiz-ALD-Hints-.jpg from Ron Williams

Page pointing to diagnostic manuals (some links don’t work)
http://www.piercefuller.com/oldibm-shadow/diagman.html

BitSavers Sites
This doc lists all the IBM docs that are available on BitSavers (as of xx?) : http://ibm-1401.info/docss.html
Paul Pierce’s collection: http://www.textfiles.com/bitsavers/1401/1401-docs.html
Al Kossow’s collection: http://www.textfiles.com/bitsavers/pdf/ibm/140x/

http://ibm-1401.info/IBM-StandardModularSystem-Neff7.pdf
http://ibm-1401.info/Form223-6889-TransistorComponentCircuits.pdf
http://www.righto.com/2015/03/a-database-of-sms-cards-technology.html
http://files.righto.com/sms/
http://ibm-1401.info/JVG-ALDs-001.pdf
http://ibm-1401.info/RWilliams-Quiz-ALD-Hints-.jpg
http://www.piercefuller.com/oldibm-shadow/diagman.html
http://ibm-1401.info/docss.html
http://www.textfiles.com/bitsavers/1401/1401-docs.html
http://www.textfiles.com/bitsavers/pdf/ibm/140x/

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 91 of 93

9.2 Glossary

ILD
ALD

10. Appendix

10.1 Carl’s summary of Logic Families

Describe basic logic gates / SMS technology

See "Standard modular system" (ref #xx)

From Carl Claunch’s logic family decoder doc: http://ibm-1401.info/Terminology.html

IBM'S OFTEN NONSTANDARD TERMINOLOGY AND PRACTISES FOR FLIPFLOP AND LATCH
CIRCUITs

by Carl Claunch < Carl . Claunch @ gartner . com >

This section will serve as a 'Rosetta Stone' for readers familiar with modern terminology and digital design practices,
helping them interpret the names and practices used by IBM, which can be confusing and thus tough to follow when
reading documentation. Many nearly universal design principles that are used today are missing in the 1401 and
other mainframes of the 1950s, 1960s and even into the 1970s.

One has to remember that the circuits, logic components and best practices for the entire industry were being pioneered back

when these machines were designed. Many times IBM employees were the inventors of a principle but even in those cases when

others first came up with an approach, industry terminology hadn't settled to a commonly accepted choice; the same idea would

be described different ways depending on the preference of each company or academic researcher. Today, however, many of

these terms are universally agreed, well defined concepts, albeit usually different from the original choices made by the inventors
and by IBM engineers.

As an example, an IBM engineer invented the logic circuit family now universally named ECL (Emitter Coupled Logic), but the

inventor called it current mode or current steering and that name continued to be used by IBM mainframe design engineers. The

components used widely as flipflops in the 1401 and throughout the later 360 and 370 systems, were mostly called a trigger by

IBM. The IBM trigger circuit does not correspond directly to any of the standard flipflop types that are covered in today's digital

logic books and courses. The trigger circuit is flexible, able to be used in more than one way, each usage has similarity to
common flipflop and latch types.

A flipflop or a latch is a memory device, used to hold some state or condition in a digital system. People often differentiate these

by whether they are edge or level sensitive, allowing input signal changes to pass though and change the output state either just at

the edge or during the entire time an enabling signal is active. A latch is level sensitive, in that modern usage, while a flip flop is

edge sensitive. IBM, on the other hand, uses the term latch to refer to a combination of AND and OR gate components that act as
a modern day latch, other times building a latch (as we would recognize one) using their trigger component.

Circuits that depend on a memory are generally called sequential logic, often implementing a 'state machine' which moves

between defined states based on the memory of its current state plus some input conditions that determine the next sequential

state. Modern designers consider it a best practice to control the change of state in a flip flop or other memory in sequential

circuits using the rising or falling edge of a special signal, a clock. This global clock is distributed to many gates simultaneously

such that they all change their state together, in synchronization, at the clock edge. Flipflop components you would find today

have a clock input that accepts this signal. The clocked flip flop holds its output state steady until the next clock edge, when it

switches to a new state based on the then current input values.

The input conditions that exist at the time of the clock edge determine which state the output will take on. Proper operation often

requires minimum periods of time that inputs must be stable at their intended values (setup time) prior to the clock edge and as

well minimum times may exist that the input values must remain steady (hold time) after the edge has occured. The mandated

http://ibm-1401.info/Terminology.html

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 92 of 93

duration to keep inputs steady is very short compared to the duration of a clock cycle, but if these minimum times are not met, the
logic gate can fail to operate as intended or enter pathological states (e.g. metastable states).

Today many would say that a latch is a level sensitive device rather than edge sensitive one. That is, changes in the input can

change the latch output state at any time the enabling signals attain an activating level. If a clock signal is hooked to a latch, it

allows the latch to transparently pass input signal changes to the output for one of the two clock levels. During half the clock

cycle, while the clock signal was in one of the two binary states, the latch would be changing its output continuously based on the

other input signals, while in the other half of a clock cycle the latch freezes the output state that existed just as the clock level was

reached. It acts as a memory for half a cycle and a bit of combinatorial logic changing in real time during the other half of a

cycle. Contrast this to a clocked flipflop whose output state is frozen at all times except at the instant of the chosen clock edge
(either when the clock is raising from 0 to 1 or the falling edge when it is dropping from 1 to 0).

If changes in input conditions can alter output states transparently, it has the same timing (race) hazards of combinatorial logic. If

a designer intended that both 'set' and 'reset' signals were to be inputs causing an appropriate latch to toggle to its opposite state,

but due to slight timing variations, one of the signals arrived first, the result could be the opposite state of what was intended

since the level sensitive gate would first act on the single input and then change again when the tardy signal arrived. A change in

the output state might make its way through other gates that affect input conditions, which could lead to unstable, glitchy or

unintended operation. The practice of changing sequential states at a clock edge goes a long way to eliminate these risks. This

practice of using a global clock to synchronously change states in sequential logic is essentially missing entirely in the IBM

mainframes. In the era in which these systems were designed, the practice was not well established as it is today. Further, the cost

of individual gates were very high, and the additional transistors and other parts needed to add clock synchronization would have
driven up the size, cost and power demands of the system.

Latch and flipflops are now referred to with names like D, SR and JK, plus variants and extensions of these. Each type can be a

level sensitive latch or, with additional components inside, operate as a clocked, edge sensitive flipflop. D (Data) type is the

simplest, it sets its output condition to the state of its single input signal. T type (Toggle) devices will alternate output states when

the T input is active. SR types (Set-Reset) (SR) have a set and a reset input, which operate as you would expect from the names

of the inputs, but the behavior may not be defined if both S and R inputs are simultaneously active. J-K types are like SR, the J

corresponding to a set and the K corresponding to reset but if both J and K are active at the same time, it toggles just like a T

type. During the vacuum tube era, flip flops and latches were called triggers, but that is relatively obsolete terminology today.

IBM engineers retained the name trigger for the circuit type even as it evolved to transistor and then integrated circuit designs.

The trigger is IBMs building block for flipflops and latches. Their trigger circuit can be used as a level-sensitive or an edge
sensitive device, and it is most analogous to a JK type.

IBM refers to the edge sensitive operation of the trigger as "AC" mode and used a capacitor signal on the input line to indicate

this on SLT era logic diagrams but not on the 1401 generation diagrams. The letter assigned to the input on the component on

1401 diagrams indicates its role - the G input is the DC mode that is level sensitive to set or reset the trigger. The A and C inputs

are the edge trigger and gate for AC mode operation. However, this AC mode use is not a clocked JK, because the J and the K

sides of the trigger are individually edge sensitive. In a clocked JK flipflop of today, one clock is used for the edge that activates

the function requested by the J and K inputs. If J is on, K is off, then the flipflop is set on the clock edge. If the J and K are both

on, the flipflop toggles. With the IBM trigger circuit, an edge on one line drives the output change based on the gating input

signal, but as there are two different edge inputs, there are essentially two independent sides for J and K.

The reset (K) gating input may be on but it would not reset the output of an AC mode trigger if the reset triggering input did not

present a rising edge. At that same instant, if the set (J) gating input is on and its set trigger input rising edge has arrived, that

would be setting the output state of the flipflop. With a single clock on a JK flipflop, having both J and K inputs on would cause a

toggle when the clock arrived. On the IBM AC mode trigger, if both sides are not triggered simultaneously, only the triggered

side would affect the gate, either setting it or resetting it, ignoring the untriggered input. This behavior is not one that would be
familiar to a modern digital designer and could lead you to misunderstand the behavior of a 1401 or 360 design.

When IBM was putting a latch into a circuit, the engineer could use either a pair of AND/OR gates or the trigger circuit in DC

mode. For the 1401, the engineers preferred to use the pair of combinatorial gates whereas in the 1130, the preference was more

to the use of the trigger component, and in 360 it varied by model and by the portion of the machine. Thus, these seemed to be

stylistic predilections of individual designers. There are very valid reasons to make the choice on a case by case basis, especially

with this higher circuit density of SLT where one may have spare AND/OR gates on a card already being used, while use of a

trigger could mean an incremental card is needed; obviously, the opposite situation could equally pertain. With SMS, this is less
likely to occur because the density is much closer to a one to one ratio of logic function and card than with SLT.

Engineering 1401 Restoration

September 20, 2015 g. fedorkow Page 93 of 93

The trigger circuits were not exactly the same across the various logic families in SMS nor between SMS and SLT, adding

another small complication when reading logic diagrams of those eras. The current mode families of SMS are more generally
operating as edge sensitive devices, than do the CTDL or SLT trigger components.

The term binary trigger is used with current mode trigger circuits for essentially an edge sensitive T latch. DC mode trigger was

used to mean a gate that sets if both inputs are on, resets if both inputs are off, but does not change state if the inputs are mixed.

This is not analogous to any standard flipflop type today, but would provide some protection from race hazards where one input

lagged the other; during the short interval where the inputs were mixed, the binary trigger would do nothing, but when the pair of

inputs were both present it would set or reset as selected. DC mode Slit P is a term used with current mode triggers for an SR

latch with a reset line added. Bipolar trigger is the term IBM used for a D latch, the where an edge on one input would cause the

latch to take on the state present on the other input at that instant. It does not transparently pass the input to the output at any time,
thus is not exactly like a D latch or flipflop.

CTDL family triggers are gates with individually 'clocked' J and K inputs, each side with an independent data input and a gating

(edge sensitive or AC) input. The CTDL trigger also has asynchronous reset and set lines (DC set and reset). When the IBM SLT

trigger is used with both its set and reset inputs tied together, it is acting like a T flipflop and would be referred to by IBM as a

binary trigger. If the DC mode set and reset lines are used, they operate like an SR flipflop and are level sensitive. They can also

be thought of as the asynchronous set and asynchronous reset that can be added to the basic flipflop/latch types. More often than

not, the trigger circuit is used as a level sensitive SR latch, using just the DC model (level sensitive) inputs. As you can see, IBM
tended to use DC and AC rather than level sensitive and edge sensitive terminology.

10.2 Revision History

Date Who Notes

Mar 2015 Guy Outline reviewed with Carl Claunch

May 27, 2015 First Draft posted to 1401 web site

May 31, 2015 Guy Corrections to First Draft

Jun 3, 2015 Guy Meeting at CHM with Carl Claunch, George Ahearn and other
members of the restoration team.

