
mesdk-feedback@sun.c
JavaTM Platform Micro Edition
Software Development Kit

Version 3.0
Part No. 040509
April 2009
Sun Microsystems, Inc.
www.sun.com
om

Copyright © 2009 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements. Use is subject to license terms.

This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo, Java, JavaFX, Java 2D, J2SE, Java SE, J2ME, Java ME, Javadoc, JavaTest, JAR, JDK, NetBeans, phoneME,
and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. or its subsidiaries in the U.S. and other countries.

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether
direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion
lists, including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2009 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, États-Unis. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plus des brevets américains listés à
l'adresse http://www.sun.com/patents et un ou les brevets supplémentaires ou les applications de brevet en attente aux États - Unis et dans
d'autres pays.

Utilisation est soumise aux termes du contrat de licence.

Cette distribution peut inclure des éléments développés par des tiers.

Sun, Sun Microsystems, le logo Sun, Java, JavaFX, J2SE, Java 2D, Java SE, J2ME, Java ME, Javadoc, JavaTest, JAR, JDK, NetBeans, phoneME, and
Solaris sont des marques de fabrique ou des marques déposées enregistrées de Sun Microsystems, Inc., ou ses filiales, aux États-Unis et dans
d'autres pays.

Les produits qui font l'objet de ce manuel d'entretien et les informations qu'il contient sont régis par la législation américaine en matière de
contrôle des exportations et peuvent être soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations
finales, ou utilisateurs finaux, pour des armes nucléaires, des missiles, des armes biologiques et chimiques ou du nucléaire maritime,
directement ou indirectement, sont strictement interdites. Les exportations ou réexportations vers des pays sous embargo des États-Unis, ou
vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de maniéré non exclusive, la liste de personnes qui
font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux exportations de des produits ou des services qui sont régi par la
législation américaine sur le contrôlé des exportations et la liste de ressortissants spécifiquement désignes, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ÉTAT" ET TOUTES AUTRES CONDITIONS, DÉCLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISÉE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE À LA QUALITÉ MARCHANDE, À L'APTITUDE À UNE UTILISATION PARTICULIÈRE OU À
L'ABSENCE DE CONTREFAÇON.
Please
Recycle

mes
Contents

1. Getting Started 1

Quick Start 1

Tips for Legacy Toolkit Users 2

2. Java ME Platform SDK Features 5

Emulation Platforms 5

CLDC and MIDP Stack 6

CDC Stack 6

BD-J Stack 7

JavaFX Platform 7

Managing Java Platforms 8

J2SE and CDC Platforms 9

J2ME Platforms (CLDC and MIDP) 9

Adding a Java Platform 9

Selecting a Platform Type 10

Choose Platform Folder and Name (Java SE and CDC) 10

Choose Location (JavaSE and CDC) 11

Create a Platform for Legacy CDC Projects 11

Choose Java ME MIDP Platform Folders 11

Choose Custom Java ME MIDP Platform Emulator 12

Support for Third-Party Emulators and Real Devices 13

Automatic Update 14

Using the Plugins Manager 14

Installing a Plugin Globally 16

3. Using Sample Projects 19

Running a Project 19
dk-feedback@sun.com

Troubleshooting 21

Sample Project Overview 21

Configuring the Web Browser and Proxy Settings 24

Resolving Reference Problems 24

Running MIDP and CLDC Sample Projects 25

Running the Demos Sample Project 26

Running FPDemo 32

Running Games 32

Running Network Demo 33

Running PhotoAlbum 34

Running UIDemo 34

4. Creating and Editing Projects 37

About Projects 38

CLDC Projects 38

CDC Projects 39

Creating a CLDC Project 40

Choose Project 40

Name and Location 41

Platform Selection 41

Specify WTK Project 42

Creating a CDC Project 42

Choose Project (CDC) 43

Platform Selection (CDC) 44

Specify CDC Toolkit Project 44

Working With Projects 44

Viewing Project Files 45

Creating a New MIDlet 46

Importing MIDP Projects 47

Importing CDC Projects 47

Adding Files to a Project 48

Find in Files 48

5. Viewing and Editing Project Properties 51

Viewing General Project Properties 52

Selecting a Platform 52

Editing Application Descriptor Properties 53

CDC Attributes 53

MIDP Attributes 53

MIDlets 54

Push Registry 56

API Permissions 57

Building a Project 57

Configuring Ant 58

Compiling 59

Adding Libraries and Resources 59

Creating JAR and JAD Files (Packaging) 60

Obfuscating 60

Signing 60

Exporting a Key 61

Running Settings 62

Running a MIDP Project 62

Running a CDC Project 62

6. Running Projects in the Emulator 65

Understanding the Emulator 65

Viewing Device Properties 66

Platform Properties 67

Device Information 67

Device Properties 67

Setting Device Properties 68

Running a Project from the Device Selector 68

Running Projects Simultaneously on a Single Device 69

Emulator Options 70

Adding a Device Instance 71

7. Searching the WURFL Device Database 73

Searching for Devices 73

Filtering the WURFL Search 75

8. Finding Files in the Multiple User Environment 77

Switching Users 77

Installation Directories 78

User Directories 79

/javame-sdk 79

/javame-sdk/3.0/work 80

/javame-sdk/toolbar/3.0 80

/JavaMESDKProjects 80

9. Profiling Applications 81

Saving Profiler Data 81

Loading Profiler Data 83

Viewing Profiler Data 83

Saving Customized Snapshots and Images 86

Loading a Customized Snapshot 86

10. Monitoring Network Traffic 87

Using the Network Monitor 87

Filtering Messages 89

Sorting Messages 89

Saving and Loading Network Monitor Information 90

Clearing the Message Tree 90

11. Lightweight UI Toolkit 91

Adding the LWUIT Library 91

Using the LWUIT Resource Manager 92

12. Security and MIDlet Signing 93

Security Domains 94

Setting Security Domains 95

Specifying the Security Domain for an Emulator 95

Specifying the Security Domain for a Project 95

Signing a Project 95

Managing Keystores and Key Pairs 96

Working With Keystores and Key Pairs 97

Managing Root Certificates 99

13. BD-J Support 101

Creating a Stubs for BD-J Platform Project 101

Compiling, Deploying, and Running a Stubs for BD-J Platform Project 103

14. CLDC Emulation on a Windows Mobile Device 105

CLDC Emulator Installation for a Device Running Windows Mobile 105

Testing On-device Debugging 115

15. Installing CLDC Emulation on a Windows Mobile Emulator 117

CLDC Installation for Windows Mobile 117

16. On-device Debugging 127

On-device Debugging Procedure 127

Attach a Command Line Debugger 128

Attach a Graphical Debugger 128

Sample CLDC Debugging Session 129

17. Command Line Reference 131

Launching the SDK 132

Running the Device Manager 132

Managing Device Addresses (device-address) 133

Running the Emulator From the Command Line 133

MIDlet Options 134

CDC Options 136

Debugging and Tracing Options 136

Building a Project from the Command Line 137

Checking Prerequisites 138

Compiling Class Files 138

Preverifying Class Files 138

Packaging a MIDLet Suite (JAR and JAD) 139

Command Line Security Features 140

Changing the Emulator’s Default Protection Domain 141

Signing MIDlet Suites (jadtool.exe) 141

Managing Certificates (MEKeyTool) 142

Generating Stubs (wscompile) 143

Running the Payment Console From the Command Line 145

Virtual Machine Memory Profiler (Java Heap Memory Observe Tool) 145

Running the Java Heap Memory Observe Tool 146

Viewing the Heap Snapshot 147

Running WMA Tool 147

smsreceive 148

cbsreceive 148

mmsreceive 148

smssend 150

cbssend 150

mmssend 150

18. Logs 153

Java ME Platform SDK GUI Logs 153

Device Manager Logs 153

Device Instance Logs 154

19. JSR Support 155

JCP APIs 156

20. JSR 75: PDA Optional Packages 159

FileConnection API 159

PIM API 161

Running PDAPDemo 161

Browsing Files 162

The PIM API 164

21. JSR 82: Bluetooth and OBEX Support 167

Bluetooth Simulation Environment 167

OBEX Over Infrared 168

Setting Bluetooth and OBEX Preferences 168

OBEX Preferences 168

Bluetooth Internal Properties 168

Bluetooth System Properties 169

Bluetooth BCC Properties 169

Running the Bluetooth Demo 170

22. JSR 135: Mobile Media API Support 171

Media Types 172

Adaptive Multi-Rate (AMR) Content 172

Media Capture 172

MMAPI MIDlet Behavior 173

Ring Tones 173

Download Ring Tones 173

Ring Tone Formats 173

Running the MMAPI Sample Project 175

Running AudioDemo 175

Running MMAPIDemos 176

Running the Multimedia Sample Project 180

23. JSR 172: Web Services Support 181

Generating Stub Files from WSDL Descriptors 181

Creating a New Mobile Web Service Client 182

Running JSR172Demo 183

24. JSR 177: Smart Card Security (SATSA) 185

Card Slots in the Emulator 186

Java Card Platform Simulator (cref) 186

Adjusting Access Control 187

Specifying PIN Properties 187

Specifying Application Permissions 188

Access Control File Example 190

Running SATSADemos 192

APDUMIDlet 193

SATMIDlet 193

CryptoMIDlet 194

MohairMIDlet 194

Running SATSAJCRMIDemo 195

25. JSR 179: Location API Support 197

Setting the Emulator’s Location at Runtime 197

Running the CityGuide Sample Project 199

26. JSRs 184, 226, and 239: Graphics Capabilities 203

Mobile 3D Graphics (JSR 184) 204

Choosing a Graphics Mode 204

Quality Versus Speed 205

Content for Mobile 3D Graphics 205

Running Demo3D Samples 206

Java Bindings for OpenGL ES (JSR 239) 207

Scalable 2D Vector Graphics (JSR 226) 207

Running SVGDemo 208

Running SVGContactList 213

27. JSR 205: Wireless Messaging API (WMA) Support 215

Using the WMA Console to Send and Receive Messages 215

Launching the WMA Console 215

WMA Console Interface 216

Emulator Phone Numbers 217

Sending a Text SMS Message 217

Sending a Binary SMS Message 217

Sending Text or Binary CBS Messages 217

Sending MMS Messages 217

Receiving Messages in the WMA Console 218

Running WMADemo 218

28. JSR 211: Content Handler API (CHAPI) 221

Using Content Handlers 221

Defining Content Handler Properties 222

Defining Content Handler Actions 224

Running the CHAPIDemo Content Browser 225

29. JSR 238: Mobile Internationalization API (MIA) 227

Setting the Emulator’s Locale 227

Using the Resource Manager 228

Working With Locales 228

Working With Resource Files 228

Running i18nDemo 229

30. JSR 229: Payment API Support 233

Running the Payment Console 233

Running JBricks 234

31. JSR 256: Mobile Sensor API Support 237

Creating a Mobile Sensor Project 237

Using a Mobile Sensor Project 238

Creating a Sensor Script File 239

Running the Sensors Sample Project 239

SensorBrowser 240

Marbles 240

Index 243

CHAPTER 1

Getting Started

The JavaΤΜ Platform Micro Edition Software Development Kit is a natural starting
point for learning and using Java ME technology. The focus of this user interface is
emulation and deployment. Using this simple yet powerful tool you can create, edit,
compile, package, and sign an application. After testing your application in the Java
ME Platform SDK emulation environment, you can move to deploying and
debugging on a real device.

This SDK provides supporting tools and sample implementations for the latest in
Java ME technology. The SDK provides support for Connected Limited Device
Configuration (CLDC) and Connected Device Configuration (CDC) platforms and
many optional packages (see the list of JCP APIs). In addition, it supplies
distribution support for BD-J projects and allows you to run JavaFX™ distributions
in the SDK framework.

See the Quick Start and Tips for Legacy Toolkit Users for a brief overview of
essential features and concepts.

Quick Start
The Java ME Platform SDK offers an intuitive user interface. The tips in offer some
hints for getting started as quickly as possible.

■ Access the documentation. The online help is the primary documentation for the
SDK. Many windows and dialogs feature a help button that opens
context-sensitive help in the help viewer.

Select Help > Help Contents to open the JavaHelp Online Help viewer. You can
also type F1. Remember to use the search capability and the index to help you
find topics.
1

Note – If you require a larger font size, the help topics are also available as a
printable PDF and a set of HTML files. You can also run the SDK with a different
size font, as described in Launching the SDK.

■ Run sample projects. Running sample projects is a good way to become familiar
with the SDK.

See Running a Project for a general overview of how to run a project.

■ See the Projects View and the Files view for a visual overview of the logical and
physical layout of a project. When viewing items in the tree, use the context menu
(right-click) to see the available actions. See Working With Projects.

■ A project has a default device platform property that is used if you run from the
toolbar (the green arrow), the Run menu, or the project’s context menu.

You can run an application on different devices without resetting the main project
or changing the default device in the project properties. See Running a Project
from the Device Selector.

■ The emulator is a remote process, and once it has started it is a separate process
from the build process running in the SDK. Stopping the build process or closing
a project does not affect the application running in the emulator. You must be sure
to terminate the application (the emulator can remain open). See Running a
Project.

The SDK provides two unique instances for most devices. For example,
DefaultCldcPhone1 and DefaultCldcPhone2 are the same except for the phone
number. This means you can perform tests that require two devices (messaging,
for example) without customization. If you want to run more than two emulators
you can easily make a copy that preserves the settings you require. See Adding a
Device Instance.

■ See Creating a CLDC Project and Creating a CDC Project.

See Working With Projects and Tips for Legacy Toolkit Users.

Tips for Legacy Toolkit Users
If you used the Sun Java Wireless Toolkit for CLDC or the CDC Toolkit in the past,
the advice in Quick Start still applies because although the user interface is quite
different, the project concept is similar. These tips apply legacy terms and ideas to
the SDK.

■ Runtime focus is less on the project and more on device capabilities and the
emulation process.
2 Java ME Platform SDK Help • April 2009

In legacy toolkits you had to be careful to match the platforms, the APIs, and the
capability of the output device. The SDK matches project requirements and device
capabilities for you, so mismatches do not occur.

As mentioned in the Quick Start, clicking the green arrow runs the main project.
You can right-click any project and select run.

In the device selector you can test many devices without changing the project
properties. Right-click any device and choose Run. Only projects that are
compatible with the device are show in the context menu.

■ Import applications from legacy toolkits to SDK projects. The installation of the
legacy toolkit must exist.

See Specify WTK Project and Specify CDC Toolkit Project.

■ Toolkit settings are Application Descriptors in the SDK. Right-click on a project
and select Properties. Choose the Application Descriptor category.

■ Toolkit utilities are generally accessible from the Tools menu in the SDK.

For example, the WMA console, profiling tools, monitoring tools and more can be
started from the SDK Tools menu.

■ The emulator is familiar, but there are some fundamental differences.

It’s important to realize that the emulator is now a remote process, and once it has
started it is independent of the build process running in the SDK. Stopping the
build process or closing a project does not affect the application running in the
emulator. You must be sure to terminate the application (the emulator can remain
open). For more on this, see Running a Project.

In the Wireless Toolkit you could simultaneously run multiple versions of a
device because the toolkit would increment the phone number automatically each
time you launched a project. Because the emulator is a remote process, the phone
number is a property that must be set explicitly for the device instance.

The SDK provides two unique instances for most devices. For example,
DefaultCldcPhone1 and DefaultCldcPhone2 are the same except for the phone
number. This means you can perform tests that require two devices (messaging,
for example) without customization. If you want to run more than two emulators
you can easily make a copy that preserves the settings you require. See Adding a
Device Instance.

The emulator has additional display functionality. See Emulator Options.

See also Quick Start and Working With Projects.
Chapter 1 Getting Started 3

4 Java ME Platform SDK Help • April 2009

CHAPTER 2

Java ME Platform SDK Features

The SDK supports three technology platforms, also called stacks. They are: CLDC
and MIDP Stack, CDC Stack, and BD-J Stack, as discussed in Emulation Platforms.
In addition, it supplies the JavaFX runtime, as discussed in JavaFX Platform.

A project runs on a particular emulation platform. The device manager determines
whether a device is appropriate for your project based on the platform, the APIs
your application uses, and a set of device properties. If you run an application and
an appropriate emulator or device is already running, the SDK automatically installs
and runs your application. You don’t have to launch the emulator over and over.

The SDK supports integration with devices running Windows Mobile and
third-party emulators. You can use the SDK to deploy to a real device and perform
on-device debugging.

See JCP APIs, Emulation Platforms, and Working With Projects.

Emulation Platforms
An emulator simulates the execution of an application on one or more target devices.
For example, the CLDC platform enables you to run applications on several sample
devices with different features, such as screen size, keyboard, runtime profile and
other characteristics.

An emulation platform allows you to understand the user experience for an
application and test basic portability.

Java ME Platform SDK provides two well-known emulation platforms: CLDC with
MIDP and CDC with AGUI. Both platforms include predefined devices with
different screen sizes, runtime profiles, and input methods.

The SDK also provides a way to prepare a CDC application for execution on a
Blu-ray disc player, as described in BD-J Stack.
5

The SDK includes the JavaFX runtime and includes two default phone skins for
JavaFX. You can use the SDK to run JavaFX project Java application descriptor (JAD)
files or Java archive (JAR™) files. See JavaFX Platform.

See CLDC and MIDP Stack, CDC Stack, BD-J Stack, and JavaFX Platform.

CLDC and MIDP Stack
CLDC/MIDP applications conform to both the Connected Limited Device
Configuration and Mobile Information Device Profile (MIDP). The CLDC/MIDP
stack is based on the open source phoneME™ Feature project at
https://phoneme.dev.java.net.

■ CLDC 1.1 and MIDP 2.1

■ Optimized Mobile Service Architecture (MSA) stack with extensions (JSR 248)

■ Java Technology for the Wireless Industry (JTWI) stack (JSR 185)

■ All the JSRs listed in TABLE 19-1

CLDC/MIDP applications are targeted for devices that typically have the following
capabilities:

■ A 16-bit or 32-bit processor with a clock speed of 16MHz or higher

■ At least 160 KB of non-volatile memory allocated for the CLDC libraries and
virtual machine

■ At least 192 KB of total memory available for the Java platform

■ Low power consumption, often operating on battery power

■ Connectivity to some kind of network, often with a wireless, intermittent
connection and limited bandwidth

Typical devices might be cellular phones, pagers, low-end personal organizers, and
machine-to-machine equipment. In addition, CLDC can also be deployed in home
appliances, TV set-top boxes, and point-of-sale terminals.

See Creating a CLDC Project.

CDC Stack
A Java ME Platform, Connected Device Configuration application is an application
targeted for network-connected consumer and embedded devices, including
high-end mobile phones, smart communicators, high-end PDAs, and set-top boxes.
6 Java ME Platform SDK Help • April 2009

Devices that support CDC typically include a 32-bit microprocessor or controller and
make about 2 MB of RAM and 2.5 MB of ROM available to the Java application
environment.

CDC is based upon the open source project phoneME™ Advanced, found at
https://phoneme.dev.java.net. A CDC application conforms to the Connected
Device Configuration with a set of profiles that include Personal Basis Profile and
AGUI:

■ CDC 1.1 with PBP 1.1

■ AGUI 1.0

See Creating a CDC Project.

BD-J Stack
The BD-J stack automates creating a BD-J project that is ready to be burned to a
Blu-ray disc or run in an emulator.

A project wizard simplifies tasks for compiling and bundling the project. The
bundled package can be run on an Blu-ray playback software that must be
downloaded and installed separately.

See Creating a Stubs for BD-J Platform Project.

JavaFX Platform
The SDK can run a JavaFX application in JAD or JAR form. The SDK does not
support creating or compiling JavaFX projects. The NetBeans™ IDE, combined with
the JavaFX SDK, supports JavaFX application development with full editor support,
draggable components, and more. Download the development environment from
http://www.javafx.com/.

When your application is complete, you can use the Java ME SDK to run its JAD or
JAR file on an emulator or device. In the Device Selector, right-click on a device and
select Run JAR or JAD... from the context menu, then browse to select the file.
Chapter 2 Java ME Platform SDK Features 7

See also: http://www.javafx.com/

Managing Java Platforms
To view the Java Platform Manager, select Tools > Java Platforms. Alternatively,
right-click on a project, choose Properties from the context menu, select Platform,
and select the Manage Emulators button.

The Java Platform Manager is a tool for managing different versions of the Java
Development Kit (JDK) and customizing Java platforms that your applications
depend on. You can register new platforms or add source files and Javadoc™
documents to the existing platforms. For Java ME purposes, the platforms are
emulators or SDK platforms for mobile devices.

The Java ME Platform SDK pre-registers CDC, J2ME™ (CLDC and MIDP) and
J2SE™ (the JDK serves as the default platform).

The J2SE platform includes the Java SE SDK. The CDC platform includes the CDC
and BD-J stacks.

See J2SE and CDC Platforms and J2ME Platforms (CLDC and MIDP).
8 Java ME Platform SDK Help • April 2009

J2SE and CDC Platforms
To view the Java Platform Manager, select Tools > Java Platforms. The J2SE platform
supports the Java ME Platform SDK. The CDC platform supports the CDC Stack,
which also supports the BD-J Stack. In the standard Java ME Platform SDK
installation the J2SE and CDC platforms have the same options:

Classes. View the platform’s classpaths. Add a JAR or folder containing additional
classes, moving the classes up and down in the list determines their place in the
classpath.

Sources. Add JAR files or source files to the Sources tab to register source code.

Javadoc. Add Javadoc documentation to support any new classes or sources files
you have added.

See Managing Java Platforms and Adding a Java Platform.

J2ME Platforms (CLDC and MIDP)
To view the Java Platform Manager, select Tools > Java Platforms. The J2ME
platform supports CLDC projects. This platform also serves to run JavaFX projects
(see JavaFX Platform):

Devices. View all the CLDC devices (including JavaFX devices) that the Device
Manager has discovered. Click Refresh to reconfigure the platform and refresh the
list.

Sources. Add JAR files or source files to the Sources tab to register source code.

Javadoc. Add Javadoc documentation to support any new classes or sources files
you have added.

Tools & Extensions. View the tools and extensions for this platform.

See Managing Java Platforms, and Adding a Java Platform.

Adding a Java Platform
To view the Add Java Platform wizard, select Tools > Java Platforms, and click the
Add Platform button. You can add platforms that are installed on the SDK’s host
machine. This wizard sports adding several platforms, however,
Chapter 2 Java ME Platform SDK Features 9

The wizard is described in the following topics: Selecting a Platform Type, Choose
Platform Folder and Name (Java SE and CDC), Choose Java ME MIDP Platform
Folders, and Choose Custom Java ME MIDP Platform Emulator.

See Create a Platform for Legacy CDC Projects.

Selecting a Platform Type
To see this page, select Tools > Java Platforms, and click the Add Platform button.
Select platform type is the first page of this wizard. The platform types are as
follows:

Java Standard Edition. The standard Java SDK. There is no need to add SDKs, the
Java ME Platform SDK uses only the JDK you specified at installation time.

Java ME MIDP Platform Emulator. One or more CLDC emulators that are
compliant with the Universal Emulator Interface Specification (UEI) and use
technology based on the phoneME™ Feature project (see
https://uei.dev.java.net and https://phoneme.dev.java.net).

Custom Java ME Platform Emulator. A platform emulator that is not compliant
with the UEI standard.

Java ME CDC Platform Emulator. One or more CDC emulators that are compliant
with the UEI and use technology based on phoneME™ Advanced (see
https://phoneme.dev.java.net). The CDC platform includes the CDC and
BD-J stacks.

See Selecting a Platform.

Choose Platform Folder and Name (Java SE and
CDC)
To see this page, select Tools > Java Platforms, and click the Add Platform button.
Select Java Standard Edition or Java ME CDC Platform Emulator, and click Next.

In the “Look in” field, browse to select a Platform folder. Select a directory and click
Next. On the Platform Name page, perform these steps:

1. Specify a platform name.

2. Browse to select the platform sources (typically a zip or JAR file).

3. Browse to choose Javadoc documentation (optional).

Continue to Choose Location (JavaSE and CDC).
10 Java ME Platform SDK Help • April 2009

Choose Location (JavaSE and CDC)
This is the final page in the Add Java Platform wizard. If you have chosen a
platform, the Platform Name field is populated for you. You might have to wait a
second for this to happen. This wizard page also displays the Sources and Javadoc
tabs. Click the Add... button to add files to this project. Click Next when you are
finished.

See Adding a Java Platform.

Create a Platform for Legacy CDC Projects
The Java ME Platform SDK version 3.0 platform name for CDC does not match the
name in the legacy CDC toolkit and the CDC Mobility Pack. The legacy name is
“Sun Java Toolkit 1.0 for Connected Device Configuration” while the SDK name is
“CDC Java(TM) Platform Micro Edition SDK 3.0”. To ensure a successful import, you
can create a new platform and give it the legacy name.

The following procedure allows you to import legacy CDC projects without
Reference errors (see Resolving Reference Problems).

1. Select Tools > Java Platforms. Select “CDC Java(TM) Platform Micro Edition
SDK 3.0”, and in the Classes tab, note the libraries required for the platform.

2. Click Add Platform... and click Next.

3. Select Java ME CDC Platform Emulator and click Next.

4. On the Choose Platform page, select the SDK installation directory. Click Next.

5. On the Platform Name page, type “Sun Java Toolkit 1.0 for Connected Device
Configuration” in the Name field. In the Sources tab, add the following libraries:
agui.jar, cdc_1.1.jar, fp_1.0.jar, fp_1.1.jar, pbp_1.1.jar, and
secop_1.0.jar.

Click Finish, and Close.

See: Importing CDC Projects and Resolving Reference Problems.

Choose Java ME MIDP Platform Folders
To see this page, select Tools > Java Platforms, and click the Add Platform button.
Choose Java ME MIDP Platform Emulator and click Next. In the Platform Folders
panel you see the installation directory for the Java ME Platform SDK is detected. If
other platforms are installed on your system they can be detected and added to Java
ME Platform SDK.
Chapter 2 Java ME Platform SDK Features 11

1. To discover additional platforms, click Find More Java ME Platform Folders... The
window “Choose directory to search for platforms” opens.

2. This utility finds Java ME platforms and emulators in the scope you specify, and
displays them in the Platform Folders window. Choose a folder, or type in a
location (for example, C:\).

3. If you detected the platform you want, click the box in front of the platform. You
see a green check indicating the platform is to be installed. Uncheck any
platforms you do not want to install and click Next.

Detected Platforms

When the platform is discovered and installed, you see three tabs that display
information on the platform: Description, Javadocs, and Sources. The Descriptions
tab displays platform details, such as supported devices, profiles, configurations,
and optional packages.

Click Finish.

Some emulators might fail to install. If this happens you can try to perform a custom
installation as described in Choose Custom Java ME MIDP Platform Emulator.

Choose Custom Java ME MIDP Platform
Emulator
You can use the Add Java Platform wizard to install an emulator that is not UEI
compliant. To see this page, select Tools > Java Platforms, and click the Add Platform
button. Choose Custom Java ME MIDP Platform Emulator and click Next.

See General Information, Bootstrap Libraries, and Sources & Javadoc.

General Information
This wizard page defines the general parameters for an emulator that is not UEI
compliant. You must supply this information:

Platform Home. The path to the directory where the emulator platform is installed.
You can enter a path, or use the Browse button to navigate to the directory.

Platform Name. A name for the emulator platform.

Device Name. A name for the specific device the platform emulates.
12 Java ME Platform SDK Help • April 2009

Preverify Command. The command line syntax that invokes the preverify
application to preverify a MIDlet. MIDlet class files must be preverified before they
can be run on a device or emulator. The toolkit silently handles preverification
during the build process. See the CLDC specification for more information on
preverification.

Execution Command. The command line syntax that invokes the emulator to
execute a MIDlet.

Debugger Command. The command line syntax that invokes the emulator to debug
a MIDlet.

To see descriptions of the command line syntax parameters, click in the appropriate
field. The description is displayed in the area below the debugger command. Click
Next when you are finished.

See Running the Emulator From the Command Line.

Bootstrap Libraries
Based on the General Information you entered, the wizard detects the libraries and
APIs the platform or emulator uses. To add libraries, click the Browse button and
choose a library file. Click Next when you are finished.

Sources & Javadoc
Given the files and libraries you have chosen to this point, the wizard detects
libraries and APIs. To add additional source files or Javadoc files, click the browse
button and choose the files you want to add.

Click Finish to register the emulator platform.

Support for Third-Party Emulators and
Real Devices
Having an emulator does not eliminate the need to test your application on actual
target devices. An emulator can only approximate a device’s user interface,
functionality, and performance. For example, an emulator may not accurately
simulate processing speed, so an application may run faster or slower on a target
device than it does on an emulator.
Chapter 2 Java ME Platform SDK Features 13

Java ME SDK simplifies deployment to and debugging on real devices running the
Sun Java runtime. This version supports Windows Mobile platform based devices,
and includes a bundled Java runtime for Windows Mobile devices.

The Microsoft Device Emulator is an example of third-party emulator integration. It
means you can deploy applications to Microsoft Device Emulator as easily as you
can run on our built-in emulators. See the following topics: CLDC Emulator
Installation for a Device Running Windows Mobile and CLDC Installation for
Windows Mobile.

Automatic Update
The Java ME SDK supports automatic updating of individual plugins. The same
mechanism can be used to update the entire SDK.

If you have an active Internet connection, the Plugins Manager checks to see
whether new plugins or new versions of existing plugins are available. When
updates are found you see a notification from the update indicator at the lower right
corner of the user interface.

You do not have to wait for a notification. You can select Tools > Plugins and select
the Available Plugins tab to see the most current results.

See Using the Plugins Manager and Installing a Plugin Globally.

Using the Plugins Manager
When you install or update a plugin using the Plugins Manager, the SDK places the
plugin .jar file and documents in your user directory. See User Directories.

1. Choose Tools > Plugins from the main menu to open the Plugins Manager.

2. Click the Available Plugins tab to display plugins that are available but not
installed.

3. In the left pane, select the plugins you want to add and click Install.
14 Java ME Platform SDK Help • April 2009

4. Complete the pages in the installer to download and install the plugin.

See Available Plugins, Downloaded, Installed Plugins and Plugin Settings.

Available Plugins
To access this tab, select Tools > Plugins to open the Plugins Manager, then select the
Available Plugins tab. To check the update center and refresh the list of available
plugins, click Reload Catalog.

Downloaded
To access this tab, select Tools > Plugins to open the Plugins Manager, then select the
Downloaded tab. The left pane displays the manually downloaded plugins that you
can install. The right pane displays a description of the selected plugin.

Click Add Plugins to use the file browser to add any plugins that you downloaded
to your local system. To install the plugin, select the Install checkbox for the plugin
and click Install.

Installed Plugins
To access this tab, select Tools > Plugins to open the Plugins Manager, then select the
Installed tab. The left pane displays a list of the installed plugins. The active column
displays the state of the selected plugin.

When you select a plugin in the left pane, the description of the plugin is displayed
in the right pane. You can activate and deactivate installed plugins in the right pane.
A deactivated plugin is not loaded on SDK startup. If a plugin is deactivated, it still
exists on your local system and you can reactivate the plugin without downloading
it again.

The plugin is installed and activated.

The plugin is installed but deactivated.

The SDK needs to be restarted to fully deactivate the plugin.
Chapter 2 Java ME Platform SDK Features 15

An installed plugin can be active or inactive. If a listed plugin is inactive, you might
need to install additional plugins to use the plugin.

If you want to completely remove a plugin from your local system, select the
checkbox for the plugin in the left pane and then click Uninstall.

Plugin Settings
To access this tab, select Tools > Plugins to open the Plugins Manager, then select the
Settings tab. This tab displays the default update center for the SDK - the Java ME
SDK Toolbar Update Center.

By default the Plugins Manager checks for updates once per week, as determined by
the Check Interval selection. You can select a different interval from the dropdown
list.

Click the Add button to Add an update center URL.

Click the Proxy Settings button to edit the proxy settings to allow access to update
centers.

Force install into shared directories determines whether the plugin is installed for
an individual user or all users in the multiple user environment. If the box is
unchecked (default) the plugin is only installed for the user. If it is checked, the
installation is global, as described in Installing a Plugin Globally.

Installing a Plugin Globally
By default the SDK installation is a multiple user environment, as described in User
Directories. The typical plugin installation described in Using the Plugins Manager
affects only your user directory. To install a plugin globally you must have write
access to the SDK installation directory.

1. Choose Tools > Plugins to open the Plugins Manager.

2. Click the Settings tab and then select Force install into shared directories.

3. Click the Available Plugins tab, select the Install checkbox for the plugin and click
Install. You can also install manually downloaded plugins in the Downloaded tab.

4. Follow the wizard instructions to complete the installation of the plugin.

5. Restart the SDK to activate the new plugin, if necessary.

The SDK places .jar files and docs for globally installed plugins in the SDK
installation directory instead of in an individual user directory.
16 Java ME Platform SDK Help • April 2009

See Using the Plugins Manager.
Chapter 2 Java ME Platform SDK Features 17

18 Java ME Platform SDK Help • April 2009

CHAPTER 3

Using Sample Projects

The Java ME Platform SDK sample projects introduce you to the emulator’s API
features and the SDK features, tools, and utilities that support the various APIs.
These features can help you customize the sample projects or create applications of
your own.

The source code for every demonstration application is available in the
installdir/apps directory. Subdirectories contain projects, and each project has a src
directory that contains Java programming language source code.

For example, if the SDK is installed in
C:\Java_ME_Platform_SDK_3.0, the source code for the SMS sender MIDlet
(example.sms.SMSSend) in WMADemo resides in:
installdir\apps\WMADemo\src\example\sms\SMSSend.java.

For an explanation of the directory structure, see Installation Directories and User
Directories. See also: Sample Project Overview, Running a Project, and Running
MIDP and CLDC Sample Projects.

Running a Project
To run a sample project, go to the Start Page tab and single-click a sample project
name. The project opens in the Project window and starts running in the emulator.

Note – If you can’t see the Project window choose Window > Projects. To see
console output, select Window > Output > Output.
19

Follow these steps to run a your own projects.

1. Select File > Open Project, and browse to select a project.

The project is added to the Projects window.

2. To run a project, right-click the project and select Run from the context menu.

To run the main project (which is shown in bold text in the Projects window),
click the green Run button. To set a project as main, right-click the project name
and select Set as Main Project.

To run the project on a different device, choose the device in the Device Selector
window. Right-click on a device and select Run Project from the context menu.
Pull right to see a listing of suitable open projects. If the project you want is not
listed, select a different device.

The device emulator window opens with the demo application running.

3. As the sample project runs, you might need to press one of the soft keys below
the screen on the left or right side.

You use soft keys to install or launch an application, open a menu, exit, or
perform some other action. Some demos include these instructions in the
application. For instructions on running samples, see TABLE 3-1 or TABLE 3-2.

4. When you are finished viewing the application, go to the emulator’s Application
menu and select Exit to close the emulator and stop the execution of the project’s
build script.

Note – Once the emulator is launched, it is an independent process. Pressing the red
stop button in the Output window terminates the build script, but it does not close
the emulator. Likewise, closing the SDK user interface does not affect the emulator.
In the emulator, select Application > Exit to ensure that both the emulator process
and the project build process close.
20 Java ME Platform SDK Help • April 2009

Troubleshooting
Sometimes even a “known good“ application, such as a sample project, does not run
successfully. The problem is usually your environment.

■ Some demonstrations require specific setup and instructions. For example, if a
sample uses web services and you are behind a firewall, you must configure the
emulator’s proxy server settings or web access will fail. See Configuring the Web
Browser and Proxy Settings.

■ If an application must run over the air (OTA), the SDK automatically installs it in
the device instance.

To perform the installation, MIDlet Suites use
installdir/runtimes/cldc-hi-javafx/bin/runMidlet.exe.

CDC applications use installdir/runtimes/cdc-hi/bin/cvm.exe.

Because these programs are launched remotely, virus checking software can
prevent them from running. If this happens, the project compiles, but the
emulator never opens. In the console you see warnings that the emulator cannot
connect.

Consider configuring your antivirus software to exclude runMidlet.exe and
cvm.exe from checking.

See also Troubleshooting.

Sample Project Overview
The Java ME Platform SDK includes demonstration applications that highlight some
of the technologies and APIs that are supported by the emulator.

Most demonstration applications are simple to run. Running a Project contains
instructions for running most demonstrations. Sample projects usually have some
additional operation instructions.
Chapter 3 Using Sample Projects 21

TABLE 3-1 lists all the MIDP/CLDC demonstration applications that are included in
this release.

TABLE 3-1 MIDP/CLDC Sample Projects

Sample Optional Package Description Instructions

AudioDemo MMAPI 1.1 Demonstrates audio capabilities, including
mixing and playing audio with an
animation.

Running AudioDemo

BluetoothDemo JSR 82 Demonstrates device discovery and data
exchange using Bluetooth.

Running the Bluetooth
Demo

CHAPIDemo JSR 211 A content viewer that also uses
MediaHandler.

Running the CHAPIDemo
Content Browser

CityGuide JSR 179 A city map that displays landmarks based
on the current location.

Running the CityGuide
Sample Project

Demo3D JSR 184 Contains MIDlets that demonstrate how to
use 3D graphics, both immediate mode and
retained mode.

Running Demo3D Samples

Demos MIDP 2.0 Includes various examples: animation, color,
networking, finance, and others.

Running the Demos
Sample Project

FPDemo CLDC 1.1 Simple floating point calculator. Running FPDemo

Games MIDP 2.0 Includes TilePuzzle, WormGame, and
PushPuzzle.

Running Games.

I18nDemo JSR 238 Includes string sorting, number formatting,
and a phrase translator.

Running i18nDemo

JBricks JSR 229 A game that uses the Payment API for
buying extra lives or levels.

Running JBricks

JSR172Demo JSR 172 Demonstrates how to use the JSR 172 API to
connect to a web service from a MIDlet.

Running JSR172Demo

LWUITDemo N/A Demonstrates LWUIT features. http://lwuit.dev.jav
a.net/

MMAPIDemos MMAPI Demonstrates MMAPI features, including
tone sequences, MIDI playback, sampled
audio playback, and video.

Running the MMAPI
Sample Project

Multimedia MMAPI Demonstrates different video playback
formats.

Running the Multimedia
Sample Project

NetworkDemo MIDP 2.0 Demonstrates how to use datagrams and
serial connections.

Running Network Demo

PDAPDemo JSR 75 Demonstrates how to manipulate contacts,
calendar items, and to-do items.
Demonstrates accessing local files.

Running PDAPDemo
22 Java ME Platform SDK Help • April 2009

TABLE 3-2 lists the CDC sample projects available in this release.

PhotoAlbum MIDP 2.0 Demonstrates a variety of image formats. Running PhotoAlbum

SATSADemos JSR 177 Demonstrates communication with a smart
card and other features of SATSA.

Running SATSADemos

SATSAJCRMIDemo JSR 177 Shows how to use the SATSA-Java Card
Remote Invocation method.

Running
SATSAJCRMIDemo

Sensors JSR 256 The SensorBrowser and Marbles game
demonstrate sensor input.

Running the Sensors
Sample Project

SIPDemo JSR 180 Simple message exchange using SIP. Running SIPDemo

SVGContactList JSR 226 Uses SVG to create a contact list displayed
with different skins.

Running SVGContactList

SVGDemo JSR 226 Uses different SVG rendering techniques. Running SVGDemo

UIDemo MIDP 2.0 Showcases the breadth of MIDP 2.0’s user
interface capabilities.

Running UIDemo

WMADemo WMA 2.0 Shows how to send and receive SMS, CBS,
and MMS messages.

Running WMADemo

XMLAPIDemo JSR 280 Uses DOM and STAX APIs to create an XML
sample and SAX, DOM and StAX APIs to
parse the sample.

Follow the instructions the
application provides.

TABLE 3-2 CDC Sample Projects

Sample Optional Package Description Instructions

AGUIJava2DDemo JSR 209 This stand-alone application is a Java
SE application adapted for the CDC
environment. It demonstrates the
graphical and animation capabilities
of the Java 2D™ API.

Click the blue arrows to page
through the various images and
animations. The applications
focus on curves. Click the AA
icon to see how antialiasing
affects appearance.

AGUISwingSet2 JSR 209 Functional tools such as buttons,
sliders, and menus implemented with
Swing.

Click through the tabs to view the
controls and animations.

BdjGunBunny N/A A shooting game. Must be run on an external BD-J
platform. See: Compiling,
Deploying, and Running a Stubs
for BD-J Platform Project.

TABLE 3-1 MIDP/CLDC Sample Projects (Continued)

Sample Optional Package Description Instructions
Chapter 3 Using Sample Projects 23

Configuring the Web Browser and Proxy
Settings
If you are behind a firewall you might need to configure the proxy server so that
MIDP applications using web services can succeed.

Note – CDC emulators do not work through a proxy. Communications such as
downloading images from the Internet fail on CDC emulators.

The settings are typically the same as those you are using in your web browser.

1. Select Tools > Options.

2. Select the General options icon.

3. In the Web Browser field, choose the browser that will be affected by these proxy
settings. Click Edit to add or remove a browser from the dropdown list.

4. Choose a Proxy Setting:

■ No Proxy

■ Use System Proxy Settings

■ Manual Proxy Settings

To set the HTTP Proxy, fill in the proxy server address field and the port
number.

The HTTP Proxy is the host name or numeric IP address of the proxy server to
use to connect to HTTP and FTP sites. The Proxy Port is the port number of the
proxy server.

To set the HTTPS or Socks proxy, click More and fill out the Advanced Proxy
Options form.

Resolving Reference Problems
Sometimes when you open a project you can see it has a reference warning. In the
Projects tab the project name is red, and the icon shows a warning symbol, as seen
below:
24 Java ME Platform SDK Help • April 2009

Usually this warning means the project refers to a file or library that cannot be
found. Right-click on the project and choose Resolve Reference Problems.

The window displays the missing file, the problem, and a possible solution. In this
case the project probably used a literal path to the file keystore.ks. Clicking the
Resolve... button opens a file browser so you can find the missing file.

Typically the file keystore.ks is stored in installdir\runtimes\
cldc-hi-javafx\lib. Locate and select the file. You receive confirmation that the
problem is resolved, and you can now click Close.

Running MIDP and CLDC Sample
Projects
This topic gathers MIDP and CLDC samples that aren’t discussed with specific JSRs.

■ Running the Demos Sample Project

■ Running FPDemo

■ Running Games

■ Running Network Demo

■ Running PhotoAlbum

■ Running UIDemo
Chapter 3 Using Sample Projects 25

For other CLDC demos, see TABLE 3-1.

Running the Demos Sample Project
This demo contains several MIDlets that highlight different MIDP features.

■ Colors

■ Properties

■ Http

■ FontTestlet

■ Stock

■ Tickets

■ ManyBalls

■ MiniColor

■ Chooser

■ HttpExample

■ HttpView

■ PushExample

Colors
This application displays a large horizontal rectangle that runs the width of the
screen. Below, ten small vertical rectangles span the screen. Finally, three horizontal
color bars indicate values for blue, green, and red (RGB). Values are expressed as
decimal (0-255) or hexadecimal (00-ff) based on the first menu selection.

■ To select a vertical bar to change, use the up navigation arrow to move to the
color bars. Use the right navigation arrow to highlight a color bar. The large
rectangle becomes the color of the selected bar.

■ Use the up or down selection arrows to choose the value to change (red, green, or
blue). Use the left or right arrow keys to increase or decrease the selected value.
The second menu item allows you to jump in increments of 4 (Fine) or 32 (coarse).

■ You can change the color on any or all of the vertical bars.
26 Java ME Platform SDK Help • April 2009

Properties
This MIDlet displays your system property values. The output is similar to the
following values:

Http
This test application uses an HTTP connection to request a web page. The request is
issued with HTTP protocol GET or POST methods. If the HEAD method is used, the
head properties are read from the request.

Preparing to Run the Demo

Before beginning, examine your settings as follows.

■ Right-click on Demos and select Properties.

■ Select the Running category.

■ Select Regular Execution.

Check Specify the Security Domain and select Maximum.

■ Click OK.

■ If you are using a proxy server, you must configure the emulator’s proxy server
settings as described in Configuring the Web Browser and Proxy Settings. The
HTTP version must be 1.1.

■ If you are running antivirus software, you might need to create a rule that allows
this MIDlet to allow connections to and from a specific web site. See
Troubleshooting.

Running the Demo

Launch the Http MIDlet. To test, choose the Menu soft key and choose Get, Post, or
Head to test the selected URL.

Http Test returns the information it is able to obtain. If the information fills the
screen use the down arrow to scroll to the end. The amount of information depends
on the type of request and on the amount of META information the page provides. To
provide body information or content, the page must declare CONTENT-LENGTH as
described in RFC 2616.

Free Memory = 2333444
Total Memory = 4194304
microedition.configuration = “CLDC-1.1“
microedition.profiles = “MIDP-2.1“
microedition.platform = “j2me“
microedition.platform = “en-US“
microedition.platform = “IS08859_1“
Chapter 3 Using Sample Projects 27

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.4

Using Menu Options

Use the Menu soft key for the following actions.

■ Choose 2 to GET information from the selected page.

■ Choose 3 to obtain the POST information from the selected page.

■ Choose 4 to display the HEAD attributes for the page.

■ Choose 5 to bring up the current list of web pages. You can chose a new page or
add your own page to the list. To specify a new URL, choose the Add soft button,
then select the Menu soft button and choose OK. The screen displays http://.
Type in the rest of the URL, making sure to end with a slash (/). For example
http://www.internetnews.com/. Press the OK soft button. The Http Test
screen shows your new URL and prompts for an action.

FontTestlet
This MIDlet shows the various fonts available: Proportional, Regular, Regular Italic,
Bold Plain, and Bold Italic. Choose 1 or 2 from the menu to toggle between the
system font (sans serif) and the monospace font.

Stock
Like the Http demonstration, This sample uses an HTTP connection to obtain
information. Use the same preparation steps as Http.

Run the Demos project and launch the Stock MIDlet.

By default, the screen displays an empty ticker bar at the top. Below the ticker, the
menu list shows four applications: Stock Tracker, What If? Alerts, and Settings. You
must add stock symbols before you can use the first three applications.

Add Stock Symbols to the Ticker

To add a stock symbol to the ticker, use the navigation arrows to select Settings.

Select Add Stock.

The display prompts you to enter a stock symbol. Type JAVA and select the Done
soft key. The stock you added and its current value is now displayed in the ticker.
Add a few more stock symbols, such as IBM and HPQ.
28 Java ME Platform SDK Help • April 2009

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.4

Change the Update Interval

By default the update interval is 15 minutes. Select Updates to change the interval.
Use the navigation arrows to select one of Continuous, 15 minutes, 30 minutes,
1 hour, or 3 hours. Select the Done soft key.

Remove a Stock

Select Remove a Stock. You see a list of the stocks you have added. Use the
navigation keys to select one or more stocks to remove. Choose the Done soft key.

Stock Tracker

Stock Tracker displays a list of the stocks you added and their current values. Stock
tracker displays additional information about the selected stock, for example, the
last trade and the high and low values.

Choose a stock and press Select.

What If?

What If? is an application that asks for the original purchase price and the number of
shares you own. It calculates your profit or loss based on the current price.

Select a stock symbol.

Enter the purchase price and the number of shares, then press Calc.

Alerts

This application sends you a notification when the price changes to a value you
specify.

From the main menu, select Alerts.

Select Add.

Choose a Stock. The screen prompts, “Alert me when a stock reaches”.
Enter an integer.

The alert is placed on the Current Alerts list. To remove an alert, press Remove and
select the alert. Choose the Done soft key.
Chapter 3 Using Sample Projects 29

When the value is reached you will hear a ring and receive a message. For example,
Symbol has reached your price point of $value and is currently trading at
$current_value. Once the alert is triggered it disappears from the Current Alerts list.

Tickets
This demonstrates how an online ticket auction application might behave. The home
screen displays a ticket ticker across the top. The Choose a Band field displays
Alanis Morrisette by default.

To select a band, highlight the band name and press Select. Use the down arrow to
highlight a different band, moby, for example, then press Select. The available
auction appears.

To make a bid, select the Menu soft key and choose 2. Use the arrow keys to move
from field to field. Fill out each field. Select the Next soft key. The application asks
you to confirm your bid. Use the arrow keys to highlight Submit then press Select.
You receive a Confirmation number. Click Bands to return to the welcome page.

To set an alert, select the Menu soft key and choose 3. Use the navigation arrows to
move to the field and type in a value higher than the current bid. Select the Save soft
key. You are returned to the welcome page. You can trigger the alert by making a bid
that exceeds your alert value. Your settings determine how often the application
checks for changes, so the alert may not sound for a few minutes.

To add a band, select the Menu soft key and choose 4. Type in a band name or a
comma-separated list of names. Choose the Save soft key. After confirmation you are
returned to the welcome page. The added band(s) are displayed in the Choose a
Band drop-down menu.

Note – This is only a demonstration. To fully describe the band you must edit the
file workdir\apps\Demos\src\example\auction\NewTicketAuction.java.

To remove a band, select the Menu soft key and choose 5. Navigate to a band then
choose Select to mark the check box. You can select multiple bands. Choose the Save
soft key.

To display the current settings for ticker display, updates, alert volume, and date,
select the Menu soft key and choose 6. If desired, use the arrow keys and the select
key to change these values. Choose the Save soft key.
30 Java ME Platform SDK Help • April 2009

ManyBalls
This MIDlet starts with one ball traveling the screen. Use the up and down arrows to
accelerate or decelerate the ball speed (fps). Use the right or left arrows to increase
or decrease the number of balls.

MiniColor
This MIDlet sets an RGB value. It has two modes, a version in which you use
navigation keys to change color values, and a virtual version where you press
navigation keys to control a virtual keypad.

Keyboard controls work as you would expect. First cursor up or down to highlight a
color, and then use left and right keys to lower and raise the value of the selected
color.

The virtual keyboard requires an extra step to select each control before you can
change its value. In virtual mode, use the navigation keys to highlight a virtual
control, then press select to activate the control.

1. Click the Virtual soft key.

The application displays a 4-way control.

The up and down keys select a color. The left and right keys lower and raise the
value of the selected color.

Use keyboard navigation keys to choose a control on the display, then press
Select.

2. Select the first bar (blue).

A white box surrounds the selected color.

Blue and has a value of 0 so you don’t see any blue yet.

3. Choose the right control and press select.

Each click raises the value by 32.

Chooser
The Chooser application uses a variety of controls to change text color, background
color, and fonts.

■ Choose Menu > Text Color. Change the color as described for MiniColor and
select the OK soft button.

■ Choose Menu > Background Color. Change the color as described for MiniColor
and select the OK soft button.
Chapter 3 Using Sample Projects 31

■ Choose Menu > Fonts. You can change the font Face, Style, and Size.

Cursor up and down to highlight a property, then select. The left and right keys
jump between lists. Up and down keys move item by item.

Click OK to continue.

HttpExample
This sample makes an HTTP communication. A popup confirms the transaction was
successful.

HttpView
This application displays a predefined URL. You can also enter a new URL.

■ Launch the HttpView application.

■ Select Menu > 2 to get the contents of the URL.

■ Select Menu > 6 to view application instructions.

PushExample
This application simulates a feed. As soon as you connect, you receive and display a
graphic. Select Done to continue.

Running FPDemo
FPDemo is a simple floating point calculator.

1. Enter a number in the first field.

2. To choose an operator, highlight the drop-down list and click to select. Cursor
down to highlight an operator, then click to make a selection.

3. Enter a second value.

4. Press the Calc soft button to calculate the result.

Running Games
This application features three games: TilePuzzle, WormGame, and PushPuzzle.
32 Java ME Platform SDK Help • April 2009

TilePuzzle. The desired result, “Rate your mind pal“ is shown first. From the soft
Menu, select 1, Start. The scrambled puzzle is displayed. The arrow keys move the
empty space, displacing tiles accordingly. From the menu you can Reset, or change
options.

WormGame. From the soft Menu, select 1, Launch. Use the arrow keys to move the
worm to the green box without touching the edge of the window. Once the game is
launched, use the soft menu to change game options.

PushPuzzle. Use the blue ball to push the orange boxes into the red squares in the
fewest number of moves.

Running Network Demo
This demo has two MIDlets: Socket Demo and Datagram Demo. Each demo requires
you to run two emulator instances so that you can emulate the server and client
relationship. For example, run the demo on DefaultCldcMsaPhone1 and
DefaultCldcMsaPhone2.

Socket Demo
In this application one emulator acts as the socket server, and the other as the socket
client.

1. In the first emulator, launch the application, then select the Server peer. Choose
Start. The emulator explains that the demo wants to send and receive data over
the network and asks, “Is it OK to use network?” Choose Yes. The Socket Server
displays a screen that indicates it is waiting for a connection.

2. In the second emulator, launch the application, select the Client peer, then choose
Start. The emulator explains that the demo wants to send and receive data over
the network and asks, “Is it OK to use network?” Choose Yes. The Socket Client
displays a screen that indicates it is connected to the server. Use the down
navigation arrow to highlight the Send box. Type a message in the Send box, then
choose the Send soft key.

For example, in the client, type Hello Server In the Send box. Choose the Send
soft key. The emulator activates a blue light during the transmission.

3. On the emulator running the Socket Server, the Status reads: Message received
- Hello Server. You can use the down arrow to move to the Send box and
type a reply. For example, Hello Client, I heard you. Select Send.

4. Back in the Socket Client, the status shows the message received from the server.
Until you send a new message, the Send box contains the previous message you
sent.
Chapter 3 Using Sample Projects 33

Datagram Demo
This demo is similar to Socket Demo. Run two instances of the emulator. One acts as
the datagram server, and the other as the datagram client.

1. In the first emulator, launch Datagram Demo, then select the Server peer. Choose
Start. The emulator explains that the demo wants to send and receive data over
the network and asks, “Is it OK to use network?“ Choose Yes. Initially, the
Datagram Server status is Waiting for connection, and the Send box is
empty.

2. In the second emulator, launch Datagram Demo, select the Client peer, then
choose Start. The emulator explains that the demo wants to send and receive data
over the network and asks, “Is it OK to use network?“ Choose Yes. The Datagram
Client status is: Connected to server. Use the down navigation arrow to
highlight the Send box. Type a message in the Send box, then choose the Send soft
key. For example, type Hello datagram server.

3. On the emulator running the Datagram Server, the Status displays: Message
received - Hello datagram server. You can use the down arrow to move
to the Send box and type a reply to the client.

4. In the Datagram Client, the status field displays the message received from the
server. The Send box contains the last message you sent.

Running PhotoAlbum
The PhotoAlbum demo displays both static and animated images or videos. When
you are displaying an image, you can use the Options soft menu to change the
borders. If the images is animated, you can change the speed of the playback.

Running UIDemo
UIDemo showcases a variety of MIDP user interface element implementations. Most
elements have some interactive capability (navigate and select) and some allow
keypad or keyboard input.

Input interaction is similar across demos. You can choose items from lists or type in
data.

This demo implements three list selection methods:

■ Exclusive (radio buttons)

■ Multiple (check boxes)

■ Pop-Up (a drop list).
34 Java ME Platform SDK Help • April 2009

When entering data, you can use the soft menu to apply one of the following input
types to text boxes and fields (note, some elements do not use all input types). When
a field is selected, the soft Menu label displays Qwerty. Open the menu and you see
the input types numbered 1 through 5.

1. Qwerty. Any character on the keyboard

2. 123. Any numeral

3. ABC. Any letter

4. Predict. Predicts next character based on prior input

5. Symbols. Any symbol

With the exception of Predict, these categories act as filters. For example, if you
assign 123 to a field and you type “abc”, nothing is entered in the field.

CustomItem. This demo features text fields, and text fields in table form. To type in
the table, select a cell, then click to open a text entry panel and type your input.
From the menu, select OK.

StringItem. Displays labels, a hyperlink, and a button. The soft menu action varies
depending on the selected element.

Gauge. Interactive, non-interactive, indefinite and incremental gauges.

Alert. Uses pop-ups to display alerts. Set the alarm type and the length of the
timeout from drop lists. Select the alert type and select the Show soft button.

ChoiceGroup. Radio buttons, check boxes, and pop-ups on one screen.

List. Select exclusive, implicit, or multiple to display the list type on a subsequent
screen.

TextBox. Use text fields, radio buttons, check boxes, and pop-ups. Select a text box
type and press the Show button.

TextField. Text fields with the five input types

DateField. Set date and time using drop lists.

Ticker. A scrolling ticker.
Chapter 3 Using Sample Projects 35

36 Java ME Platform SDK Help • April 2009

CHAPTER 4

Creating and Editing Projects

A project is a group of files comprising a single application. Files include source
files, resource files, XML configuration files, automatically generated Apache Ant
build files, and a properties file.

The Java ME Platform SDK creates its project infrastructure directly on top of
Apache Ant. With this infrastructure in place, you can build and run your projects
within the SDK or from the command line. The build process is controlled by project
properties, as described in Building a Project.

■ About Projects

■ CLDC Projects

■ CDC Projects

■ Creating a CLDC Project

■ Choose Project

■ Name and Location

■ Platform Selection

■ Specify WTK Project

■ Creating a CDC Project

■ Choose Project (CDC)

■ Platform Selection (CDC)

■ Specify CDC Toolkit Project

■ Working With Projects

■ Viewing Project Files

■ Creating a New MIDlet

■ Importing MIDP Projects

■ Importing CDC Projects

■ Adding Files to a Project

■ Find in Files
37

About Projects
A project contains all the supporting files for one application. When a project is
created, the SDK performs these tasks:

■ Creates a source tree you can examine in the Working With Projects or Viewing
Project Files views.

■ Sets the emulator platform for the project.

■ Sets the project run and compile-time classpaths.

■ Creates a build script that contains actions for running, compiling, debugging,
and building Javadoc. The build process is controlled by project properties, as
described in Building a Project.

The SDK provides two views of the project:

■ The Working With Projects window provides a logical view of the project.

■ The Viewing Project Files window displays a physical view of the project.

Project settings are controlled in the project Properties window. Typically, you
right-click on an item or subitem in a tree (a project, a file, or a device) and select
Properties.

View these topics to learn about project properties: Creating a CLDC Project,
Creating a CDC Project, Working With Projects, Viewing Project Files and Adding
Files to a Project.

See also: Building a Project, Building a Project from the Command Line.

CLDC Projects
The CLDC/MIDP platform is based on the Mobile Information Device Profile and Connected
Limited Device Configuration (JSRs 118 and 139).

A MIDP application (a MIDlet), is deployed as a MIDlet suite. A MIDlet suite is
distributed as a Java archive (JAR) file and a Java Application Descriptor (JAD) file.

The JAR file includes the Java classes for each MIDlet in the suite, Java classes
shared between MIDlets, resource files, and other supporting files. The JAR file also
includes a manifest describing the JAR contents and specifying attributes the
application management software (AMS) uses to identify and install the MIDlet
suite.
38 Java ME Platform SDK Help • April 2009

The JAD file contains attributes that allow the AMS to identify, retrieve, and install
the MIDlets in a project. The SDK automatically creates JAD and JAR files when you
build the project.

When the application is run, the name of the main application class is passed to the
Java virtual machine. This class must include a method named main() that handles
the application’s class loading, object creation, and method execution. The project
manages its own life cycle and system resource needs. When the main() method
exits, the application terminates.

See Creating a CLDC Project, Working With Projects, and Viewing Project Files.

CDC Projects
The CDC platform is implemented to support Advanced Graphics and User Interface
Optional Package for the J2ME Platform, Personal Basis Profile 1.1, and the Connected Device
Configuration (JSRs 209, 217 and 218). The AGUI API combines the PBP API and a
subset of Java Platform, Standard Edition (Java SE) Swing capabilities.

Java ME Platform SDK version 3.0 supports CDC projects running as standalone
applications. This means the CDC project structure and behavior are much the same
as that of CLDC projects.

Note – An Xlet cannot be run standalone. It depends upon an application manager
to manage its life cycle (its state) and system services. Xlets are not supported in this
release.

Like MIDP projects, a standalone CDC project requires a main application class that
includes a method named main() that handles class loading, object creation, and
method execution. The application interacts directly with the Java runtime
environment to manage its own life cycle and system resource needs. When the
main() method exits, the standalone application terminates.

See Creating a CDC Project, Creating a Stubs for BD-J Platform Project, Working
With Projects, and Viewing Project Files.
Chapter 4 Creating and Editing Projects 39

Creating a CLDC Project
A CLDC project uses the MIDP application template and preselects devices that
support MIDP and CLDC. The SDK provides a wizard for creating new projects
quickly and easily. Most project properties can be edited later by changing the
project properties.

The project provides a basic infrastructure for CLDC development. You provide
source files, resource files, and project settings as needed.

1. Select File > New Project.

The New Project wizard opens. Java ME SDK is the only category.

2. Follow the prompts in the New Project wizard, consulting Help if necessary. See
Choose Project, Name and Location, Platform Selection, and Specify WTK Project.

3. To run the new project, follow the steps in Running a Project, except select your
new project instead of a sample project.

4. Be sure to exit or close the application when you are finished.

Once the emulator is launched, it runs as an independent process. Pressing the
red stop button in the SDK user interface or closing the SDK does not stop the
application running in the emulator.

Applications usually provide a way to terminate. For example, most of the
samples offer an Exit soft key, or an option in the soft menu. You can close the
application and leave the emulator running (so you do not have to wait for the
emulator to open the next time you run the project).

If you want to close the emulator and stop the project build process, select
Application > Exit.

Now that the project has been created, you can modify its properties as described in
the following topics: Viewing General Project Properties, Selecting a Platform,
Editing Application Descriptor Properties, Building a Project, Running a MIDP
Project.

Choose Project
This is the first page in the New Project wizard. For MIDP the project options are as
follows:

MIDP Application. Create a new MIDP application in a CLDC/MIDP project.
40 Java ME Platform SDK Help • April 2009

Import Wireless Toolkit Project. Create a project by importing a Sun Java Wireless
Toolkit project from an existing toolkit installation.

For CDC the project options are as follows:

CDC Application. Create a new CDC application in a CLDC project.

Import CDC Toolkit Project. Create a project by importing a CDC Toolkit project
from an existing toolkit installation.

Name and Location
This is the second page in the New Project wizard.

Project Name. Enter a project name. If you are importing an existing project this
field is prepopulated with the old filename prefixed.

Project Location. The default location is C:\Documents and Settings\user\My
Documents\JavaMESDKProjects.

Project Folder.The Project Folder value is extrapolated from Project Name and
Project Location.

Set as Main Project. Check this box to make the project the Main Project when it is
first opened. The Main project is automatically the focus of all actions initiated from
the user interface (for example, the actions on the Run menu, which provide the
same functionality as clicking icons on the main tool bar).

Create Hello MIDlet. This check box is only visible for a new MIDP project. It
inserts sample MIDlet code as a template for your development. You can compile
and run the MIDlet immediately.

Create Main Class. This check box is only visible for a new CDC project. Enter the
fully qualified name of the main class without the .java extension. For example:
com.me.MyClass.

Platform Selection
You can view this form in the New Project wizard, or, in the Projects view.
Right-click a project, select Properties, and select Platform.

These settings help you test how your project runs on devices with different
capabilities. Your choice of device limits your choice of Device Configuration, Device
Profile, and Optional Packages (if applicable).

Emulator Platform. In the New Project wizard this field is predetermined.
Chapter 4 Creating and Editing Projects 41

Device. Select a device. Only devices appropriate for the platform appear in the
Device drop-down menu. The device selection determines the remaining options.

Device Configuration. Select a CLDC version.

Device Profile. Select a MIDP version. The available selections are determined by
the Device Configuration.

Optional Packages. This pane is visible when you are viewing an existing project.
You can check or uncheck optional packages to approximate device capabilities.

Specify WTK Project
To see this form, start the New Project wizard and select Import Wireless Toolkit
Project.

WTK Location. Browse to select the location of your Sun Java Wireless Toolkit
installation. Choose the installation directory.

Detected Applications. When the WTK Location is selected the Detected
Applications window displays the available projects. Highlight a project, and click
Next.

See Importing MIDP Projects.

Creating a CDC Project
The SDK provides a wizard for creating new projects quickly and easily. Most
project properties can be edited later on. CDC core, FP, and PBP APIs are
automatically included in every CDC project.

1. Select File > New Project.

The New Project wizard opens.

2. Follow the prompts in the New Project wizard, consulting help if necessary. See
Choose Project (CDC), Name and Location, Platform Selection (CDC), and Specify
CDC Toolkit Project.

3. The Name and Location page has the following fields:

Project Name. The name you supply is the default name for the Main class, if you
use one.

Project Location. Browse to the project location. The default is
/JavaMESDKProjects.
42 Java ME Platform SDK Help • April 2009

Project Folder. This value is extrapolated from the Name and Location entries.

4. Set as Main Project. Check this box to set this project as main. Toolbar actions,
such as Build and Run, operate on the main project. The main project is displayed
in bold font in the project tree.

5. Create Main Class. If you want to create a sample Main class in the project, check
the box and supply a project name. If the box is not checked, the project will not
have a Main class.

6. Select platform.

Select the platform, a device, and the profile. Click Finish.

If an AGUI device is selected, the AGUI API is added to the project.

7. To run the new project follow the steps in Running a Project, except you can select
your new project instead of a sample project.

When you are finished viewing the application, go to the emulator’s Application
menu and select Exit to close the emulator and stop the execution of the project’s
build script.

Note – Once the emulator is launched, it runs as an independent process. Pressing
the red stop button in the Output window terminates the build script, but it does not
close the emulator. Likewise, closing the SDK does not affect the emulator. In the
emulator, select Application > Exit to ensure that both the emulator and the project
build process close.

To modify the project, right-click on the project node and select Properties.

See the following topics: Viewing General Project Properties, Selecting a Platform,
Editing Application Descriptor Properties, Building a Project, and Running a CDC
Project

Choose Project (CDC)
You can view this page in the New Project wizard. The CDC project options are as
follows:

CDC Application. Create a new CDC application in a CLDC project.

Import CDC Toolkit Project. Create a project by importing a CDC Toolkit project
from an existing toolkit installation.
Chapter 4 Creating and Editing Projects 43

Platform Selection (CDC)
You can view this form in the New Project wizard, or, in the Projects view, right-click
a project, select Properties, and select Platform.

These settings help you test how your project runs on devices with different
capabilities. Your choice of device limits your choice of Device Configuration and
Device Profile.

Java Platform. A choice of CDC or Stubs for BD-J Platform. Stubs for BD-J Platform
is a special type of CDC platform.

Device. Select a device. Only devices appropriate for the platform appear in the
Device drop-down menu. The device selection determines the remaining options.

Profile. PBP-1.1 is the only option.

See Creating a CDC Project and Creating a Stubs for BD-J Platform Project.

Specify CDC Toolkit Project
To see this form, start the New Project wizard and select Import CDC Toolkit Project.

Project Location. Browse to select the location of your legacy CDC Toolkit project.

See Importing CDC Projects.

Working With Projects
The logical view of the project, shown in the Projects window, provides a hierarchy
of sources and resources. Right-click on the project node to see actions related to the
project:

New. Opens a form to build a new object for the current project. The new object is
placed in the project’s file structure by default, but you can control the file name and
location. The possible objects are dependent on the currently selected project. For
example, if the project is CLDC, the options are MIDlet, Java class, Java package, or
Java interface. Selecting New > Other allows you to add different types of files to the
project. For a sample procedure, see Generating Stub Files from WSDL Descriptors.

Build. Builds a distribution Java archive (JAR) file. The build process is controlled by
project properties, as described in Building a Project.

Clean & Build. Cleans, then builds a distribution JAR file.
44 Java ME Platform SDK Help • April 2009

Clean. Cleans the build files.

Run. Runs the project with the default device, as specified on the Selecting a
Platform property page.

Set as Main Project. Toolbar actions, such as clicking the green Run button, act upon
the main project.

Close. Close the current project. Be sure that any processes are stopped, as closing a
project might not stop the emulator.

The Source Packages node encapsulates all the Java packages in the project.
Right-click on the Source Packages node and choose New to add a new MIDlet to
your application.

The Resources node encapsulates all resources and libraries of the active
configuration. Right-click the Resources node to add Projects, JARs, folders, and
libraries as resources for your application. You cannot add or remove inherited
resources.

See also: Viewing Project Files, Creating a CLDC Project, Creating a CDC Project,
Creating a Stubs for BD-J Platform Project, About Projects, and Importing CDC
Projects.

Viewing Project Files
The Files window displays a physical view of all project files. Right-click to view
project properties or choose an action related to the project.

build. The output directory for the compiled classes listed below. This directory also
contains manifest.mf, the manifest file that will be added to the JAR file.

■ compiled. Contains all compiled classes.

■ obfuscated. Holds the obfuscated versions of the class files.

■ preprocessed. Holds the source files after they are preprocessed. The files will
differ from the original source files if you are using project configurations.

■ preverified. Holds the preverified versions of the class files. These files are
packaged into your project’s distribution JAR.

■ preverifysrc. Versions of the source files before they are preverified.

dist. The output directory of packaged build outputs (JAR files and JAD files). The
dist directory also contains generated Javadoc documentation.

lib. Contains libraries you have added to the project. See Adding Libraries and
Resources.
Chapter 4 Creating and Editing Projects 45

nbproject. The directory that contains the project Ant script and other metadata.This
directory contains the following files:

■ build-impl.xml. The IDE-generated Ant script. Do not edit build-impl.xml
directly. Always override its targets in build.xml.

■ private/private.properties. Properties that are defined for you alone. If
you are sharing the project, any properties you define in this file are not checked
in with other project metadata and are only applied to your SDK installation.

■ project.properties. Ant properties used to configure the Ant script. This file
is automatically updated when you configure the project’s properties. Manual
editing is possible, but it is not recommended.

■ project.xml and genfiles.properties. Generated metadata files. It is
possible to edit project.xml manually, it is not recommended. Do not edit
genfiles.properties.

res.Resource files you have added to the project. See Adding Libraries and
Resources.

src.The project source files.

build.xml. The build script. This build script only contains an import statement that
imports targets from nbproject/build-impl.xml. Use the build.xml to
override targets from build-impl.xml or to create new targets.

See also: Creating a CLDC Project, Creating a CDC Project, Creating a Stubs for BD-J
Platform Project, and Importing CDC Projects.

Creating a New MIDlet
To create a new MIDlet from the Files view, right-click a project and select New >
MIDlet. With this form you can specify the name of the MIDlet and its location
within the selected project.

MIDlet Name. The name of the new MIDP class.

Midlet Class Name. The name that users see when the application runs on a device.

MIDlet Icon. The path to an icon associated with the MIDlet. Users see the icon
when the application runs on a device.

Project. Displays the name of the project.

Package. Specifies the location of the MIDlet class. You can select an existing
package from the drop down menu, or type in the name of a new package. The new
package is created along with the class.
46 Java ME Platform SDK Help • April 2009

Created File. Displays the name and location of the MIDlet.

When the new MIDlet is created the SDK automatically adds it to the project’s
Application Descriptor File.

Importing MIDP Projects
If you created a project using the Sun Java Wireless Toolkit for CLDC you can import
your MIDlets into Java ME SDK projects. You can also use this procedure to create a
project based upon a legacy sample project.

1. Select File > New Project.

2. In the Projects area select Import Wireless Toolkit project. Click Next.

3. Specify the toolkit installation home. Use browse to open the top-level installation
directory.

4. The wizard detects any applications in the legacy installation and displays their
locations on disk. Select a project and click Next.

5. Supply the Project Name, Location, and Folder for the new project (see
/JavaMESDKProjects). Note that the default name project name and folder
name are based on the name of the project you are importing. Click Next.

6. Select the Platform type, the default device, and the configuration and profile, if
applicable. Click Finish. Your new project opens in the Projects window.

7. If the legacy project used signing, you must configure the signing properties. as
described in Managing Keystores and Key Pairs.

Importing CDC Projects
If you created a project using the CDC Toolkit, you can import your applications into
Java ME SDK projects. You can also use import to create a project based upon a
sample project.

Note – Standalone projects created in the CDC Toolkit can be imported. Xlets cannot
be imported.
Chapter 4 Creating and Editing Projects 47

1. The CDC platform name for the Java ME Platform SDK version 3.0 does not
match the legacy platform name in the CDC Toolkit 1.0 and the CDC Mobility
Pack. Consequently, you get a reference error when you import a legacy CDC
project. To avoid this error, create a platform with the legacy name, as described
in Create a Platform for Legacy CDC Projects.

You only need to do this once.

2. Select File > New Project.

3. In the Projects area select the import action for CDC Toolkit. Click Next.

4. Browse to select the project location.

The wizard detects any applications in the legacy installation and displays their
locations on disk. Select a project and click Next.

5. Supply the Project Name, Location, and Folder for the new project. Note, the
default name project name and folder name are based on the name of the project
you are importing. Click Finish.

The imported project opens in the Projects window.

See also: Create a Platform for Legacy CDC Projects, Viewing Project Files

Adding Files to a Project
For all projects, right-click to use the context menu to add files to a project. Using
this method places files in the proper location in project source or resources.

To add a MIDlet, Java class, Java package, Java interface or Other files, right-click the
project name or the Source Packages node, choose New, and select the file type.

To add files by format (Project, JAR, Folder, Library) right-click the Resources node
and select a format. See Adding Libraries and Resources.

Find in Files
To search a project’s files, right-click on the project and select Find...

The Find in Files utility supports searching a project’s file contents or file names. The
search input fields supports simple text matching and regular expressions.
48 Java ME Platform SDK Help • April 2009

Containing Text. The string you are looking for. If File Name Patterns is empty, all
files are searched.

File Name Patterns. The files you are searching in. If the Containing Text field is
empty you get a listing of files that match the pattern.

The Options Whole Words, Match Case, and Regular Expression further restrict the
search. Regular Expression Constructs are fully explained in:

http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html#sum
Chapter 4 Creating and Editing Projects 49

50 Java ME Platform SDK Help • April 2009

CHAPTER 5

Viewing and Editing Project
Properties

To view project properties, right-click the project node and select Properties. This
tool allows you to customize the following project properties:

■ Viewing General Project Properties

■ Selecting a Platform

■ Editing Application Descriptor Properties

■ MIDP Attributes

■ MIDlets

■ Push Registry

■ API Permissions

■ See also Using Content Handlers

■ Building a Project

■ Compiling

■ Adding Libraries and Resources

■ Creating JAR and JAD Files (Packaging)

■ Obfuscating

■ Signing

■ Running Settings
51

Viewing General Project Properties
To view this property page, right-click on a project and choose Properties and select
the General category. The general properties page displays basic project properties.
You can set application versioning here, but all other values cannot be edited.

The project name, folder, and source location are set when the project is created. The
Application Version Number field displays the version number of the current build.

Application Versioning

The Application Version Counter field displays the next version number to be used.
The default advance is 0.0.1. To advance the number beyond this, use the dropdown
menu to select a new digit, or enter the value into the field. For example, changing
the value to 3 results in a build number of 0.0.3. Changing the value to 100 results in
the version number 0.1.0.

Required Projects

This area displays projects you have added to this project. It might be a dependent
project or an external library. See Adding Libraries and Resources.

Selecting a Platform
An emulator platform simulates the execution of an application on one or more
target devices. To view this property page, right-click on a project and choose
Properties and select the Platform category.

CDC and CLDC/MIDP platform types are listed in the Select Platform Type
dropdown. The emulator platform is supplied based on the platform type. The Stubs
for BD-J Platform is a type of CDC platform. See Creating a Stubs for BD-J Platform
Project.

Select a platform type from the dropdown menu.

By default, the devices in the device menu are also suitable for the platform type and
emulator platform. The device you select is the default device for this project. It is
used whenever you use the Run command. Your device selection influences the
Device Configuration and Device Profile options, and the available optional
packages.

For CLDC, select the optional packages you want to include in this project. The
selected APIs are automatically added to the project’s classpath.
52 Java ME Platform SDK Help • April 2009

See: Creating a CLDC Project, Creating a CDC Project, and Creating a Stubs for BD-J
Platform Project

Editing Application Descriptor
Properties
To view this property page, right-click on a project, choose Properties, and select the
Application Descriptor category. The Application Descriptor properties page enables
adding, editing, or deleting project attributes, as discussed in the following topics:

CDC Attributes and MIDP Attributes, MIDlets, Push Registry, API Permissions, and
Using Content Handlers

CDC Attributes
To view this property page, right-click on a CDC project and choose Properties.
Select the Application Descriptor category.

Application Name. Enter the display name of the application on the target device.

ApplicationVendor. The company name or author name for the application.

Description. A concise description of the application.

Detail Description. A detailed descriptionof the application.

MIDP Attributes
To view this property page, right-click on a MIDP project and choose Properties.
Select the Application Descriptor category, and select the Attributes tab.

The General Attributes table lists the attributes currently contained in the JAD and
JAR manifest files:

Type. Lists whether the attribute is required or optional.

Name. The name of the attribute.

Value. The values for each attribute.

To avoid errors in verification:
Chapter 5 Viewing and Editing Project Properties 53

■ Make sure all required attributes have a defined value.

■ Do not begin user-defined attribute keys with MIDlet- or MicroEdition-.

See: Editing an Attribute, and Adding an Attribute

Adding an Attribute
Follow these steps to add an attribute.

1. Click Add... to open the Add Attribute window.

2. Choose an attribute from the Name combo box, or delete the current entry and
add your own custom entry. Do not begin a user-defined attribute name with
MIDlet- or MicroEdition-.

3. Enter a value for the attribute.

4. Click OK.

Editing an Attribute
Follow these steps to edit an attribute.

1. Select an attribute.

2. Click Edit... to open the Edit Attribute window.

3. Enter a value for the attribute.

4. Click OK.

API permissions, Push Registry Entries, and API Permissions have their own
property pages. See: MIDlets, Push Registry, and Signing.

Removing an Attribute
Select an Attribute and click Remove to delete it from the list.

MIDlets
To view this page, right-click on a project and choose Properties. Select the
Application Descriptor category, and select the MIDlets tab.
54 Java ME Platform SDK Help • April 2009

The MIDlets table lists the MIDlets contained in the suite and the following
properties:

Name. The displayable name of the MIDlet that the user sees when the MIDlet is run
on a mobile device.

Class. The Java class for the MIDlet.

Icon. An icon (a .png file), representing the MIDlet that the user sees when the
MIDlet is run on a mobile device.

Adding a MIDlet
Follow these steps to add a MIDlet.

1. Click Add... to open the Add MIDlet window. It lists the MIDLets available in the
project.

2. Enter a name, then select a MIDlet class from the dropdown menu. You can also
choose an icon for the MIDlet from the MIDlet icon dropdown menu.

3. Click OK.

Editing a MIDlet
Follow these steps to edit a MIDlet.

1. Select a MIDlet.

2. Click Edit... to open the Edit MIDlet window.

3. Enter a value for the attribute.

4. Click OK. The revised values are listed in the table.

Removing a MIDLet
Select a MIDlet and click Remove to delete it from the list.

Changing MIDlet Display Order
The list order determines the order in which the MIDlets are displayed. Select a
MIDLet and select Move Up or Move Down to change its position.
Chapter 5 Viewing and Editing Project Properties 55

Push Registry
To view this page, right-click on a project and choose Properties. Select the
Application Descriptor category, and select the Push Registry tab.

Adding a Push Registry Entry
Follow these steps to edit a Push Registry entry.

1. Click Edit... to open the Edit Push Registry window.

2. Enter Class Name, Sender IP, and Connection String values.

■ Class Name. The MIDlet's class name.

■ Sender IP. A valid sender that can launch the associated MIDlet. If the value is
the wildcard (*), connections from any source are accepted. If datagram or
socket connections are used, the value of Allowed Sender can be a numeric IP
address.

■ Connection String. A connection string that identifies the connection protocol
and port number.

3. Click OK.

The new values are listed in the table. A push registration key is automatically
generated and shown as an attribute in the MIDlet suite's Java Application
Descriptor (JAD) file. To view the JAD file, choose the Application Descriptor
Property settings from the left pane.

To make use of the Push Registry, you must also have permission to access the Push
Registry API, javax.microedition.io.PushRegistry. API Permissions are
handled in the API Permissions property page.

Remove a Push Registry Entry
Select an entry and click Remove to delete it from the list.

Change Push Registry Display Order
The list order determines the order in which the MIDlets are displayed. Select an
entry and select Move Up or Move Down to change its position.
56 Java ME Platform SDK Help • April 2009

API Permissions
These properties set permission attributes for protected APIs called by the MIDlet
suite. To view this property page, right-click on a project and choose API
Permissions. Select the Application Descriptor category, and select the Attributes
tab.

The Requested Permissions table in this page has two fields:

■ API. The API permissions requested by the MIDlet.

■ Required. If checked, the permission is required. At installation, if the required
permission can not be granted by the application management software, the
application will not be installed. If the box is not checked, the permission is
optional. If an optional permission is denied, the application might continue to
function, although its functionality can be limited.

Adding Permission Requests

1. Click the Add Button. The API Permission for API dialog opens.

2. Choose an API from the dropdown list or enter an API into the combo box and
click OK.

3. In the Requested Permissions table, check the Required box if you want
installation to fail in the event that permission cannot be granted.

For more information, see "Security for MIDP Applications" in the MIDP 2.0
(JSR 118) specification, available at:
http://developers.sun.com/techtopics/mobility/midp/articles/pushreg/.

Building a Project
When you build a project, the SDK compiles the source files and generates the
packaged build output (a JAR file) for your project. You can build the main project
and all of its required projects, or build any project individually.

In general you do not need to build the project or compile individual classes to run
the project. By default, the SDK automatically compiles classes when you save them.
You can use properties to modify the following build tasks:

■ Compiling

■ Adding Libraries and Resources

■ Obfuscating

■ Creating JAR and JAD Files (Packaging)
Chapter 5 Viewing and Editing Project Properties 57

■ Signing

Configuring Ant
To view this form, select Tools > Options, select Miscellaneous, and click the Ant tab.

Ant Home. The installation directory of the Ant executable the SDK uses. To change
Ant versions, type the full path to a new Ant installation directory in this field or
click Browse to find the location. You can only switch between versions 1.5.3 and
higher of Ant.

The Ant installation directory must contain a lib/ subdirectory which contains the
ant.jar binary. For example, for the standard Ant 1.7.1 release, the Ant installation
directory is ant/lib/apache-ant-1.7.1. If you enter a directory that does not
match this structure, the SDK gives you an error.

You can also specify the following options:

Save All Modified Files Before Running Ant. If selected, saves all unsaved files in
the SDK before running Ant. It is recommended to leave this property selected
because modifications to files in the SDK are not recognized by Ant unless they are
first saved to disk.

Reuse Output Tabs from Finished Processes. If selected, writes Ant output to a
single Output window tab, deleting the output from the previous process. If not
selected, opens a new tab for each Ant process.

Always Show Output. If selected, raises the Output window tab if the Ant output
requires user input or contains a hyperlink. Output that contains hyperlinks usually
denotes an error or warning. If not selected, the SDK displays the Output window
for all Ant processes.

Verbosity Level. Sets the amount of compilation output. Set the verbosity lower to
suppress informational messages or higher to get more detailed information.

Classpath. Contains binaries and libraries that are added to Ant’s classpath. Click
Add Directory or Add JAR/ZIP to open the Classpath Editor.

Properties. Configures custom properties to pass to an Ant script each time you call
Ant. Click Manage Properties to edit the properties in the property editor. This
property is similar to the Ant command-line option, -Dkey=value. The following
default properties are available:

${build.compiler.emacs}. If you are compiling using Jikes (build.compiler=
jikes), setting this property to true enables Emacs-compatible error messages. It is
recommended that you leave this property set to true even if you are not using Jikes,
since the SDK prefers Emacs-compatible error messages.
58 Java ME Platform SDK Help • April 2009

Compiling
To view this property page, right-click on a project and choose Properties. In the
Properties window Build category, choose Compiling.

This page enables you to set the following options:

Generate Debugging Info. If checked, the compiler generates line numbers and
source files information. This is the -g option in javac. If unchecked, no debugging
information is generated (the -g:none option in javac).

Compile with Optimization. If checked, the compiled application is optimized for
execution. This is the -O option in javac. Optimizing can slow down compilation,
produce larger class files, and make the program difficult to debug.

Report Uses of Deprecated APIs. If checked, the compiler lists each use or override
of a deprecated member or class. This is the -deprecated option in javac. If
unchecked, the compiler shows only the names of source files that use or override
deprecated members or classes.

Encoding. Overrides default encoding used by preprocessor and compiler. The
default value is the default encoding used by your VM.

Adding Libraries and Resources
To view this property page, right-click on a project and choose Properties. In the
Properties window Build category, choose Libraries and Resources.

This page allows you to add a dependent project, libraries, and other supporting
files to the current project.

Add Project. The JAR file produced by another project, as well as the associated
source files and Javadoc documentation. Adding this item to a classpath sets up a
dependency between the current project and the selected JAR file.

Add Library. A Library is a collection of JAR files or folders with compiled classes,
which can optionally have associated source files and Javadoc documentation. If the
Package checkbox is checked the library is included in the application’s JAR file. If it
is not checked, the library is copied into the \lib directory.

Add JAR file. A JAR file created by another project.

Add Folder. The root of a package or directory containing files.

Once a library or resource is added, it is visible in the Libraries and Resources table,
which reflects the order of the libraries and resources in the classpath. To change the
order in the classpath, select the listing and click Move Up or Move Down. You can
also remove libraries and resources from this page.
Chapter 5 Viewing and Editing Project Properties 59

Each row in the table has a Package check box. If Package is checked, the library or
resource is bundled and added to the project JAR file. If Package is not checked, the
library or resource is copied to the /lib subdirectory at build time.

Creating JAR and JAD Files (Packaging)
To view this property page, right-click on a project and choose Properties. In the
Properties window Build category, choose Creating JAR.

You can set the following options:

JAD File Name. Name of the JAD file created by the project sources. The file name
must have a .jad extension. Does not apply to CDC projects.

JAR File Name. Name of the JAR file created by the project sources. The file name
must have a .jar extension.

Compress JAR. If checked, the JAR file is compressed.

Obfuscating
To view this property page, right-click on a project and choose Properties. In the
Properties window Build category, choose Obfuscating.

Use the Obfuscation properties page to set the level of obfuscation for project files.

Move the Obfuscation slider to set the level. The Level Description window
describes the impact each level has.

You can add more obfuscation parameters in the Additional Obfuscation Settings
window. The default obfuscator included with the SDK is ProGuard. You can find
more details about command parameters for this obfuscator at:
http://proguard.sourceforge.net.

Signing
To view this property page, right-click on a project and choose Properties. In the
Properties window Build category, choose Signing. These properties allow you to
enable signing and assign key pairs to a CLDC project. See Security Domains.

Sign Distribution. Check this box to enable signing for the MIDlet suite. If it is
unchecked, this page is disabled.
60 Java ME Platform SDK Help • April 2009

Keystore. A file that stores one or more key pairs as a keystore (.ks) file. The
dropdown menu lists all available keystores. Click the Unlock button to unlock a
keystore for use.

Alias. A name assigned to a key pair within a keystore. The dropdown menu lists
the aliases available for the selected keystore. Click the Unlock button to unlock a
key pair for use.

The Certificate Details window provides information about the certificate assigned
to the key pair.

Click Open Keystores Manager to manage keystores and key pairs. See Managing
Keystores and Key Pairs and Exporting a Key.

Note – CDC projects cannot be signed with this tool. To sign a CDC project use the
JDK jarsigner command from the command line. For example:
jarsigner.exe -keystore keystore.ks -storepass keystorepwd
MyCdcApp.jar dummyCA

Exporting a Key
To view this dialog, right-click on a project and choose Properties. In the Properties
window Build category, choose Signing and click Export key into Java ME
SDK/Platform/Emulator. Or, Select Tools > Keystores, then select a keystore and a
key, and click Export.

The Export window has the following components:

Keystore File. Displays the name of the keystore file to which the key pair belongs.
This field cannot be edited.

Key Pair Alias. The name given to the key pair within the keystore. This field cannot
be edited.

Certificate Details. Displays the details of the certificate of the key to be exported.

Emulator. The drop-down menu lists all the device emulators available. See Security
Domains.

Security Domain. Enables you to select a security domain for the key pair. The
menu lists all domains supported by the selected emulator platform.

Keys Registered in the Platform. Lists all keys that have been registered in the
selected platform. Click to select the key you want to export.

Delete Key. Deletes a selected key from the Keys Registered in the Emulator
window.
Chapter 5 Viewing and Editing Project Properties 61

Export. Exports the selected key to the selected emulator. The export button is
enabled if it is possible to export the key. If a specific key is installed it cannot be
installed again.

Running Settings
To view this property page, right-click on a project and choose Properties. In the
Properties window, choose Running. The options shown depend on the platform.
See Running a MIDP Project and Running a CDC Project.

Running a MIDP Project
To set emulator command line options for a MIDP project, type in the command line
switches. See Running the Emulator From the Command Line.

For CLDC projects, the Regular execution button is enabled by default. This means
the setting for “Specify the Security Domain“ applies when the project is run on an
emulator. It does not apply for OTA provisioning or an external emulator platform.

If you do not check Specify the Security Domain the project runs with the default
that was assigned when the project was created. If you check the box, you can select
a domain from the dropdown list. See Security Domains and Specifying the Security
Domain for a Project.

Running a CDC Project
For CDC projects you must enter the name of the entry point Java file in the Main
Class field. The Main Class Browse button only shows executable classes in the
project’s source folders. For a CDC project this means all classes with a static main
method, or classes extending the Applet or Xlet classes.
62 Java ME Platform SDK Help • April 2009

Arguments are passed only to the main class, not to individual files. If an Xlet is
executed, all arguments are passed to all the Xlets you specify.

For VM options, see Running Settings and CDC Options.
Chapter 5 Viewing and Editing Project Properties 63

64 Java ME Platform SDK Help • April 2009

CHAPTER 6

Running Projects in the Emulator

The Java ME Platform SDK emulator simulates a MIDP device on your desktop
computer. The emulator does not represent a specific device, but it provides correct
implementations of its supported APIs. The SDK uses the device manager to detect
devices and displays the available devices in the Device Selector window. See
Running the Device Manager.

The Java ME Platform SDK provides default devices with Sun skins. A skin is a thin
layer on top of the emulator implementation that defines the appearance, screen
characteristics, and input controls.

If the Device Selector window is not visible, select Window > Device Selector.

See also:

■ Viewing Device Properties

■ Setting Device Properties

■ Running a Project from the Device Selector

Understanding the Emulator
When the Java ME Platform SDK is launched the Device Manager is
automatically launched to detect devices. The Device Manager is a service and you
can see it running in your Windows system tray. In the task manager, the process is
labeled device-manager.exe.

The Device Manager icon looks like this:

You can right-click on the icon to exit the service.
65

See also: Platform Properties, Device Information, Device Properties, Running the
Emulator From the Command Line, and Running the Device Manager

Viewing Device Properties
The Device Selector window lists all available devices grouped by platform. If this
window is not visible, select Windows > Device Selector.

If no Java ME platform is registered in the toolbar, the Device Selector displays a
node labeled No Device Found. If you see this message at startup, it typically means
device discovery is incomplete and you just need to wait a few seconds.

Each sub node represents an emulator skin for a device. Two instances are provided
for some CLDC devices, for example, DefaultCldcPhone1 and DefaultCldcPhone2.
These devices have the same capabilities but unique phone numbers, making it easy
for you to test communication between two devices.

The properties for each device skin are stored in XML files in your user work
directory. See “/javame-sdk/3.0/work” on page 80, and TABLE 8-1.
66 Java ME Platform SDK Help • April 2009

See also: Platform Properties, Device Information, and Device Properties

Platform Properties
To view platform properties from the device selector, right-click on the platform
node (for example, CDC) and select Properties. The platform properties display in a
separate window.

If you have selected Window > Properties, the Properties window is, by default,
docked in the upper right portion of the user interface. Selecting a node in the
Project or Files trees causes any available properties to be displayed.

Device Information
In the Device Selector window, right-click on a device node and select Device
Information. The Device Information tab in the Main window displays a picture of
the device and displays details, supported hardware capabilities, keyboard support,
supported media formats, and the supported runtimes.

Device Properties
In the Device Selector window, right-click on the platform node and select
Properties. The device properties display in a separate window.

If you have selected Window > Properties, the Properties window is docked in the
SDK. Selecting any node causes its properties to be displayed.

See Setting Device Properties.

Setting Device Properties
In the Device Selector Window, right-click on a device and select Properties. Any
properties shown in gray font cannot be changed. You can adjust the device
properties shown in black.

Debug Port. The debugging port number. A default is supplied but it can be
changed.
Chapter 6 Running Projects in the Emulator 67

Enable Profiler. Check this box to enable profiling. This is a CPU snapshot collected
during emulation. See Saving Profiler Data.

If you want a profile of the Java Heap contents during the virtual machine execution,
see Virtual Machine Memory Profiler (Java Heap Memory Observe Tool).

Enable Network Monitor. Check this box to enable the network monitor.

Phone Number. You can set the phone number to any appropriate sequence,
considering country codes, area codes, and so forth. If you reset this value, the
setting applies to future instances.

The number is a base value for the selected device. If the emulator is running and
another emulator is opened, the phone number for the second instance is
incremented by one.

Heapsize. The heap is the memory allocated on a device to store your applications’s
objects. The Heapsize property is the maximum heap size for the emulator. You can
choose a new maximum size from the dropdown menu.

Security Domain. Select a security setting from the dropdown menu. See Security
Domains. Applies to CLDC and JavaFX platforms.

Locale. Type in the locale as defined in the MIDP 2.0 specification:
http://jcp.org/en/jsr/detail?id=118

Running a Project from the Device
Selector
The SDK determines which open projects are suitable for a device. Right-click on the
device and select a project from the context menu. If projects are not suitable they
are displayed in gray font.
68 Java ME Platform SDK Help • April 2009

You can also launch the emulator to run a project from the command line, as
explained in Running the Emulator From the Command Line.

Running Projects Simultaneously on a
Single Device
MSA-compliant devices are capable of running multiple virtual machines.You can
test this behavior in the emulator. Be sure the output window is visible in the SDK
(select Window > Output > Output). To test this feature, follow these steps:

1. Open the sample projects Games and AudioDemo.

2. In the device selector, choose an MSA-compliant device and run Games. When
the emulator launches run AudioDemo on the same device.

As each MIDlet loads, the AMS automatically launches it.

3. In AudioDemo, launch the Audio Player, and play the JavaOne theme.

Select AudioPlayer, then from the soft menu, select 1, Launch. Select JavaOne
Theme and press the Play soft button.

4. In the emulator, choose Application > AMS Home, or press F4.

Select SunSamples - Games. From the soft menu, select 1, Open. The music
continues to play while you are able to simultaneously launch and play games.

5. Select Application > AMS Home, or press F4. Highlight AudioSamples, and from
the soft menu, select 2, Bring to foreground. Press the Pause soft key. The music
stops playing.
Chapter 6 Running Projects in the Emulator 69

6. Select Application > AMS Home, or press F4. Highlight AudioSamples and from
the soft menu, select 1, Open. Select Bouncing Ball from the list and from the soft
menu, select 1, Launch. Select MIDI background and press the Play soft button.

7. Select Application > AMS Home, or press F4. Select Application > Switch
Running MIDlet. Select Audio Player and select Switch to. You can press the Play
soft button to resume the Audio Player.

Emulator Options
The emulator has Application, View, and Help menus.

The Application menu is only populated for CLDC and JavaFX platforms. The
Application options are as follows:

Option Accelerator Description

AMS Home F4 Exit the current application and return to the
Application Management Software home.

Change Locale This option only works with localized MIDlets.
Enter a locale identifier. The format is similar to that
of the Supported Locales for Java SE 6, as follows:
2-letter-lang-code separator 2-letter-country-code
For example, en-US, cs-CZ, zh-CN, ja-JP. The
separator can be a dash or an underscore.

Resume F6 Resume a suspended application.

Suspend F5 Pause a running application.

Switch Running MIDlet F7 When you have multiple MIDlets running, toggle
between them. You see a list of running MIDlets and
you can chose the one you want to view.

Exit Close the emulator process and stop the build
process (or processes).
70 Java ME Platform SDK Help • April 2009

The View menu is available in full to CLDC and JavaFX platforms. For CDC
platforms, the only View option available is Always On Top.

Adding a Device Instance
As described in Viewing Device Properties, a particular device emulator can have
more than one instance, and each instance is differentiated by a number appended to
the emulator name, as seen in TABLE 8-1. Each device instance is stored in a
numbered directory in /javame-sdk/3.0/work.

To create your own instance, follow these steps:

1. Close the Java ME Platform SDK.

2. In /javame-sdk/3.0/work, copy a numbered directory and rename it with the
next number in the sequence.

3. In the new directory, open the properties.xml file and change the name
property string to a unique name.

You can also change the values in device.properties.

4. In the system tray, right-click on the Device Manager icon and select Exit from the
context menu.

Option Description

Always On Top Keeps the emulator in the foreground. This is especially useful
when you are running multiple emulator instances and you
want to see them all and send messages between devices.

External Events Generator The external events generator is a utility for simulating
external file systems or applications communicating with the
application running on the emulator. Inputs can come from a
script file on your PC or they can be injected based on your
interaction with a user interface.
The external events generator provides a tab to support JSR
implementations that require external event emulation: File
Connection (75), Location (179), Payment (229), and Sensors
(256). See FileConnection API, Running the CityGuide Sample
Project, Running JBricks, Using a Mobile Sensor Project.

Orientation Choose a degree of rotation (0, 90, 180, or 270 degrees
clockwise from the 0 position) or, rotate clockwise by 90
degrees from the last position (F8) or counterclockwise by 90
degrees (F9).
Chapter 6 Running Projects in the Emulator 71

5. Start the Java ME Platform SDK.

In the Device Selector you see a new node named Other. All your custom devices are
listed here. To assign this device to a project, right-click the project, select Properties,
and choose Platform. Your instance appears in the Device drop list.

You can also edit the device adaptor to create a new instance. For example, to create
a second instance of the ClamshellCldcPhone, follow these steps:

1. Go to installdir\toolkit-lib\process\device-manager\device-adapter\
ClamshellCldcPhone.

2. Make a copy of 1.bean, and name it 2.bean.

3. Edit 2.bean to change the device number to 2. For example,
ClamshellCldcPhone2.

4. Exit the SDK and exit the Device Manager.

5. Start the SDK. ClamshellCldcPhone2 is listed in the Other category.
72 Java ME Platform SDK Help • April 2009

CHAPTER 7

Searching the WURFL Device
Database

The Wireless Universal Resource File (WURFL) is an XML file that acts as a global
database of mobile device capabilities. WURFL is an open source project at
http://wurfl.sourceforge.net/. The WURFL DB
(http://www.wurflpro.com/) is a web-based interface that allows WURFL
contributors to add or change device information in the WURFL.

The SDK uses a WURFL module to discover devices based on API support or on
physical characteristics such as physical memory size or display size.

See: Searching for Devices, Filtering the WURFL Search

Searching for Devices
Follow these steps to search the WURFL database:

1. Select Tools > Device Database Search.

The WURFL Device Search tab opens in the main window.

2. Check Use Filter to see search options.

If you do not check Use Filter, all devices in the database are listed. See Filtering
the WURFL Search.

3. Make a selection from the dropdown menu on the left.

If applicable, the center dropdown displays a list of conditions. The menu on the
right displays a value.

4. To add another search criteria, click the + button.

Click the - button to remove a search setting.
73

5. Click the Search button.

The search returns devices that match all the chosen criteria. The results are not
case sensitive.

6. Click on a device to view its properties on the right, as shown below.

See Filtering the WURFL Search.
74 Java ME Platform SDK Help • April 2009

Filtering the WURFL Search
As discussed in Searching for Devices, you can use the filter to set search constraints.
You should set at least one constraint.

Supported Properties

This utility searches on a predefined list of constraints that have corresponding
properties in the Java ME Platform SDK.

■ Supported APIs

You can check the APIs you want. Note, checking an API does not exclude APIs
that are not checked.

■ MIDP 1.0, MIDP 2.0

■ CLDC 1.0, CLDC 1.1

■ MMAPI 1.0, MMAPI 1.1

■ WMAPI 1.0, WMAPI 1.1, WMAPI 2.0

■ Bluetooth API

■ 3D API

■ Localization API

■ Vendor

■ Device

■ Resolution Width/Height

The device resolution.

■ Maximum Image Width/Height

The maximum image size that the device can display.

■ Physical Memory Size

The built-in memory size.

■ Heap Size

Memory limit in bytes at runtime.

■ Number of Colors

The number or colors the device’s display supports.

■ Supports Wi-Fi

■ Supported Image Formats

Check the image type. Unchecked types might still be supported.

■ bmp
Chapter 7 Searching the WURFL Device Database 75

■ jpeg

■ gif

To see the full list of WURFL contstraints, go to:
http://wurfl.sourceforge.net/help_doc.php.

See also Searching for Devices.
76 Java ME Platform SDK Help • April 2009

CHAPTER 8

Finding Files in the Multiple User
Environment

The Java ME Platform SDK can be installed on a system running a supported
version of Windows. All users with an account on the host machine can access the
SDK. This feature is called the Multiple User Environment.

Note – The Multiple User Environment supports access from several accounts. It
does not support multiple users accessing the SDK simultaneously. See Switching
Users.

To support multiple users the SDK creates an installation directory that is used as a
source for copying. This document uses the variable work to represent the SDK
working directory and installdir to represent the installation directory. Each user’s
personal files are maintained in a separate working directory named /javame-sdk
that has a subdirectory for each version installed. See User Directories.

■ Installation Directories

■ User Directories

To locate logs, see Java ME Platform SDK GUI Logs, Device Manager Logs, and
Device Instance Logs.

Switching Users
Multiple users cannot run the SDK simultaneously, but, you can run the SDK from
different user accounts on the SDK host machine. When you switch users, you must
close the SDK and exit the Device Manager, as described in Understanding the
Emulator. A different user can then launch the SDK and own all processes.
77

Installation Directories
The Java ME SDK installation directory structure conforms to the Universal
Emulator Interface Specification, version 1.0.2. This structure is recognized by all
IDEs and other tools that work with the UEI. The installation directory has the
following structure:

■ apps. Contains examples for supported platforms:

■ BD-J: BdjGunBunny

■ CDC and AGUI: AGUIJava2DDemo and AGUISwingSet2 as described in
TABLE 3-2.

■ CLDC and MIDP: all others, as shown in TABLE 3-1.

■ bin. Contains the following command line tools.

– cref.Java Card simulator for working with SATSA JSR 177. See Java Card
Platform Simulator (cref).

– device-manager. The device manager is a component that must be running
when you work with Java ME Platform SDK. After installation it starts as a
service, and it will automatically restart every time your computer restarts.
When it is running, it appears in the Windows system tray as an icon.
Right-click on the icon to view its controls.

– device-address. device-address.exe is a tool for viewing, adding, and
removing devices that the SDK is not able to discover automatically. See
Managing Device Addresses (device-address).

– emulator. UEI compliant emulator. See Running the Emulator From the
Command Line.

– jadtool. Tool for signing MIDlets. See Signing MIDlet Suites (jadtool.exe).

– mekeytool. Management of ME keystores. See Signing MIDlet Suites
(jadtool.exe).

– payment-console. Minimalistic console for viewing payment transactions.
An equivalent tool exists in the Java ME SDK user interface.

– preverify. The Java ME preverifier.

– resourcesmanager. A tool for managing JSR 238 resource bundles. An
equivalent tool exists in the Java ME Platform SDK user interface.

– runBDJ. Run a BD-J project in a player.

– wma-tool. A command line tool for sending and receiving SMS, CBS, and
MMS messages. See Running WMA Tool.

– wscompile. Compiles of stubs and skeletons for JSR 172. See Generating Stubs
(wscompile).
78 Java ME Platform SDK Help • April 2009

■ docs. Release documentation.

■ lib. JSR JAR files for compilation.

■ on-device. Windows Mobile Java Runtime for ARM.

■ toolbar. A simple development environment.

User Directories
At installation time you are prompted to specify a location for user files. The default
location is:

C:\Documents and Settings\user\javame-sdk

If you do not remember the location you specified, select Help > About in the main
window. This documentation sometimes uses users.home to represent this path.

You cannot choose another location after the installation. If you desire a different
directory, you must reinstall.

The user directories are: /javame-sdk, /javame-sdk/3.0/work, and
/javame-sdk/toolbar/3.0.

/javame-sdk

This directory contains device instances and session information. If you delete this
directory, it will be recreated automatically when the device manager is restarted.
Chapter 8 Finding Files in the Multiple User Environment 79

/javame-sdk/3.0/work

The work directory contains device instances in directories 0-11. Each instance has,
at a minimum, its own log file and a device.properties file. The directory
number is also the ID number assigned to the emulator skin. It is displayed in the
emulator’s title bar.

Profiling creates the following data file in a device instance directory:

/javame-sdk/3.0/work/device/data.prof.

/javame-sdk/toolbar/3.0

Contains property files and configuration files for the GUI development
environment.

/JavaMESDKProjects

The default project directory is C:\Documents and Settings\User\My
Documents\JavaMESDKProjects.

TABLE 8-1 Device Names

Directory Device

0 ClamshellCldcPhone1

1 DefaultCdcPbpPhone1

2 DefaultCldcJtwiPhone1

3 DefaultCldcJtwiPhone2

4 DefaultCldcMsaPhone1

5 DefaultCldcMsaPhone2

6 DefaultCldcPhone1

7 DefaultCldcPhone2

8 DefaultFxPhone1

9 DefaultCdcPbpPhone

10 SunVgaAGUIPhone1

11 SunVgaCdcPhone1
80 Java ME Platform SDK Help • April 2009

CHAPTER 9

Profiling Applications

The profiler keeps track of every method in your application. For a particular
emulation session, it figures out how much time was spent in each method and how
many times each method was called.

The SDK supports offline profiling. Data is collected during the emulation session.
After you close the emulator a profiler data snapshot is written to a .prof you can
load and view in the SDK. As you view the snapshot you can investigate particular
methods or classes and save a customized snapshot (a .nps file).

Note – This feature might slow the execution of your application.

Continue to:

■ Saving Profiler Data

■ Loading Profiler Data

■ Viewing Profiler Data

■ Saving Customized Snapshots and Images

■ Loading a Customized Snapshot

Saving Profiler Data
Follow these steps to enable data collection:

1. In the Device Selector window, right-click on a device and choose Properties.

2. Check the Enable Profiler option, and note the location of the profiler output file.
81

You can also edit the device.properties file to set profiler.enabled to
true. The properties file is located in the device instance directory, as described
in /javame-sdk/3.0/work. The device number corresponds to a device in the
device selector, as discussed in TABLE 8-1.

Note – It’s helpful to display the output window. If it’s not open, select Window >
Output > Output.

3. Start your application.

Interact with your application as you normally would.

4. In the emulator, select Application > Exit.

The profile data snapshot is saved, and the SDK reports the location of the profile
data in the Output window. The profile data is displayed in a tab labeled
CPU:time, where time is the time the snapshot was saved.
82 Java ME Platform SDK Help • April 2009

See Loading Profiler Data.

Loading Profiler Data
This procedure views data collected with the Profiler, as described in Saving Profiler
Data.

Follow these steps to retrieve profile data:

1. In the main window toolbar, select Tools >Import Java ME SDK Snapshot...

2. Choose the data.prof file.

The default location is: C:\Documents and Settings\user\javame-sdk\
3.0\work\device-number\data.prof.

The Profiler opens in its own tab in the main window labeled CPU:time.

See Saving Profiler Data and Viewing Profiler Data.

Viewing Profiler Data
This procedure views data collected with the Profiler. See Saving Profiler Data. The
data can be seen immediately after it is collected, as described in Saving Profiler
Data, or when it is imported, as described in Loading Profiler Data.

Note – The profiling values obtained from the emulator do not reflect actual values
on a real device.
Chapter 9 Profiling Applications 83

You can change the granularity of the results. In the toolbar at the top of the tab,
make a selection from the View menu.

Method Level View (default). Results are displayed according to the fully-qualified
method names.

Class Level View. Results for all methods of the same class are aggregated in a
single entry.

Package Level View. All methods of classes that belong to the same package are
aggregated.

Click any column label to sort based on its values. To remove a column from the
display, click the table icon above the scroll bar and uncheck the column name.

The above screenshot shows a view that combines the Call Tree and Hot Spots. Click
the tabs along the bottom to see different views:
84 Java ME Platform SDK Help • April 2009

Call Tree. This tab displays a call tree showing the method call chain and the
time/number of invocations for executing threads and methods in each context. (A
context is a unique chain of method calls leading to the method’s invocation.)

Hot Spots. This tab shows the total execution time and number of invocations for
each method, irrespective of the context. It also includes the Method Name Filter
Field, which filters based on the first column. To select the filtering parameters, click
the filter icon and choose from the menu.

Enter a search string in the filter field. You can enter multiple values separated by
spaces. To apply the filter, click the green check. To restore the unfiltered data, clear
the filter field by clicking the red symbol.

Combined.This tab displays the Call Tree information in the upper part of the
window and the Hot Spot data in the lower part.

Info. This tab displays the time the snapshot was taken, where it is saved, and the
configuration of the profiling session.

You can right-click a profiling result to access additional utilities. The actions you see
depend upon the currently selected view.

■ Show Subtree. Displays the subtree for the selected method.

■ Show Back Traces. Displays the back traces for the selected method.

■ Find in Hot Spots. Displays the selected class or method in the Hot Spots tab.

See Saving Profiler Data, Loading Profiler Data and Saving Customized Snapshots
and Images.

Saving Customized Snapshots and
Images
As you are Viewing Profiler Data you might isolate portions of the data you want to
inspect later. You can take a snapshot of your current view at any time and import
the snapshot later on.
Chapter 9 Profiling Applications 85

Click the Save Snapshot to Custom File icon and specify a location for the snapshot
file. The snapshot extension is .nps and the default location is C:\Documents and
Settings\user\My Documents.

To create a bitmap image of the profile data, click the Save current view to image
icon. The default format is .png (portable networks graphic file).

Loading a Customized Snapshot
Follow these steps to load a customized profiler snapshot:

1. In the main window toolbar, select Tools >Load Profiler Snapshot...

2. Choose a customized snapshot (.nps file).

The default location is: C:\Documents and Settings\user\My Documents.

The snapshot opens in its own tab in the main window labeled CPU:time.
86 Java ME Platform SDK Help • April 2009

CHAPTER 10

Monitoring Network Traffic

MIDP applications, at a minimum, are capable of HTTP network connections, but
many other types of network connections are also possible. The network monitor
provides a convenient way to see the information your application is sending and
receiving on the network. This is helpful if you are debugging network interactions
or looking for ways to optimize network traffic.

Networking monitoring works for emulators only (it is not supported for real
devices).

■ Using the Network Monitor

■ Filtering Messages

■ Sorting Messages

■ Saving and Loading Network Monitor Information

■ Clearing the Message Tree

Using the Network Monitor
Follow these steps to monitor network traffic:

1. In the Device Selector window, right-click on a device and choose Properties.

2. Check the Enable Network Monitor option. When you next run an application on
the device, the network monitor opens.

You can also edit the device.properties file to set netmon.enabled to true.
The properties file is located in the device instance directory, as described in
/javame-sdk/3.0/work.

3. Start your application.
87

When the application makes any type of network connection, information about
the connection is captured and displayed.

The top frame displays a list of messages. Click a message to display its details in
the bottom frame.

In the Hex View, message bodies are shown as raw hexadecimal values with the
equivalent text.
88 Java ME Platform SDK Help • April 2009

Note – You can examine messages that are still in the process of being sent.
Incomplete messages are indicated by bold highlighting in the message tree.

See also: Filtering Messages, Sorting Messages, Saving and Loading Network
Monitor Information, Clearing the Message Tree

Filtering Messages
Filters are useful for examining some subset of the total network traffic.

■ In the [Select Devices] list check only the devices you want to view.

■ In the [Select Protocols] list check only the protocols you want to view. The
supported protocols are datagram, socket, http, and https.

■ Click the magnifying glass in the Network Monitor toolbar to search for a specific
string in the data in the Phone or URL columns.

See also: Using the Network Monitor, Sorting Messages, Saving and Loading
Network Monitor Information, Clearing the Message Tree

Sorting Messages
To arrange the message tree in a particular order, click on the Sort By combo box and
choose a criteria.

Time. Messages are sorted in chronological order of time sent or received.

URL. Messages are sorted by URL address. Multiple messages with the same
address are sorted by time.

Connection. Messages are sorted by communication connection. Messages using the
same connection are sorted by time. This sort type enables you to see messages
grouped by requests and their associated responses.

Note – Sorting parameters are dependent on the message protocol you choose. For
instance, sorting by time is not relevant for socket messages.

See also: Using the Network Monitor, Filtering Messages, Saving and Loading
Network Monitor Information, Clearing the Message Tree
Chapter 10 Monitoring Network Traffic 89

Saving and Loading Network Monitor
Information
To save your network monitor session, click the disk icon in the Network Monitor
toolbar.

Choose a file name. This file name will be used for all the network monitor saves
you make in this Java ME SDK session. The default directory is C:\Documents and
Settings\User\My Documents\ and the default file extension is
.nmd (network monitor data).

To load a network monitor session, choose Tools > Load Network Monitor
Snapshot... and browse to the data you saved.

See also: Using the Network Monitor, Filtering Messages, Sorting Messages,
Clearing the Message Tree

Clearing the Message Tree
To remove all messages from the network monitor choose the clear icon (the broom
icon on the right of the Network Monitor tool bar).

See also: Using the Network Monitor, Filtering Messages, Sorting Messages, Saving
and Loading Network Monitor Information
90 Java ME Platform SDK Help • April 2009

CHAPTER 11

Lightweight UI Toolkit

The Lightweight UI Toolkit (LWUIT) is a lightweight widget library inspired by
Swing but designed for constrained devices such as mobile phones and set-top
boxes. Lightweight UI Toolkit supports pluggable theme-ability, a component and
container hierarchy, and abstraction of the underlying GUI toolkit. The term
lightweight indicates that the widgets in the library draw their state in Java source
without native peer rendering.

LWUIT is an open source project at https://lwuit.dev.java.net/. For more
information see the Lightweight UI Toolkit Developer’s Guide.

LWUIT supports the following resource elements: images, animation, bitmap fonts,
localization bundles, and themes. Resources are delivered as a bundle - a binary file
that can be loaded and used on the device. Java ME Platform SDK supports LWUIT
with an integrated Resource Manager for creating and maintaining resource bundles.

■ Adding the LWUIT Library

■ Using the LWUIT Resource Manager

Adding the LWUIT Library
The LWUIT library can be added to any MIDP project.

1. Right-click on a project and select Properties.

2. In the Build category, select Libraries & Resources, and click the Add Library...
button.

3. In the Add Libraries window, select LWUIT and click Add Library.

You can see the package under Libraries and Resources.
91

Using the LWUIT Resource Manager
The Resource Manager is a graphical tool for creating resource bundles and adding
them to the build process.

1. Select a project that contains the LWUIT libraries.

2. Select Tools > LWUIT Resources.

The Resource Manager opens.

3. To add a bundle, right-click anywhere within the Resource Manager window and
select Add Bundle from the context menu.

4. Enter a bundle name and click OK.

You are ready to add resources to the new bundle.

5. Select a resource, and select Windows > Properties to view and edit the resource.

Experiment with adding resources. Resources are fully described in the Lightweight
UI Toolkit Developer’s Guide. Here is a brief summary of the resource types:

JPG and PNG files. The file name can be changed and you can choose to pack the
file to save space.

Animations. GIF files. You just supply a name.

Font. There are two font types:

System (Create New).

Created from a system font. You can choose the system font in properties.
Available fonts are: Dialog, DialogInput, Monospaced, Serif, and SansSerif.

■ From File (Create from File).

Choose the file from which the font resource will be created. You can edit the
font’s name, boldness, the size of the font, and whether or not antialiasing is used.

Localization. Choose the main localization bundle, for example,
foobar.properties. This main bundle is then added with a "default" ID. Other
locales are added with their proper ID. For example, foobar_en_GB.properties
is added with the ID en_GB. Unfortunately this resource must be recreated in the
resource manager when more locales are added (or removed).

Theme. Adds the .conf theme file. See the Lightweight UI Toolkit Developer’s
Guide.
92 Java ME Platform SDK Help • April 2009

CHAPTER 12

Security and MIDlet Signing

The Java ME Platform SDK supports the security policies and domains defined by
both JSR 185 (Java Technology for the Wireless Industry or JTWI) and JSR 248
(Mobile Service Architecture or MSA). The SDK provides tools to sign MIDlet suites,
manage keys, and manage root certificates. The security domains are further
described in Security Domains.

MIDP 2.0 (JSR 118) includes a comprehensive security model based on protection
domains. MIDlet suites are installed into a protection domain that determines access
to protected functions. The MIDP 2.0 specification also includes a recommended
practice for using public key cryptography to verify and authenticate MIDlet suites.

The general process to create a cryptographically signed MIDlet suite is as follows:

1. The MIDlet author, probably a software company, buys a signing key pair from a
certificate authority (the CA).

2. The author signs the MIDlet suite with the signing key pair and distributes their
certificate with the MIDlet suite.

3. When the MIDlet suite is installed on the emulator or on a device, the
implementation verifies the author’s certificate using its own copy of the CA’s
root certificate. Then it uses the author’s certificate to verify the signature on the
MIDlet suite.

4. After verification, the device or emulator installs the MIDlet suite into the
security domain that is associated with the CA’s root certificate.

For definitive information, consult the MIDP 2.0 specification. For an overview of
MIDlet signing using the Java ME Platform SDK, read the article Understanding
MIDP 2.0's Security Architecture, which is available at
http://developers.sun.com/techtopics/mobility/midp/articles/perm
issions/
93

If you need more background on public key cryptography, try the article MIDP
Application Security 1: Design Concerns and Cryptography, which is available at
http://developers.sun.com/techtopics/mobility/midp/articles/secu
rity1/. See the following topics:

■ Security Domains

■ Setting Security Domains

■ Signing a Project

■ Managing Keystores and Key Pairs

■ Managing Root Certificates

Security Domains
The SDK supports five security domains for MSA:

unidentified_third_party. Provides a high level of security for applications
whose origins and authenticity cannot be determined. The user is prompted
frequently when the application attempts a sensitive operation.

identified_third_party. Intended for MIDlets whose origins were determined
using cryptographic certificates. Permissions are not granted automatically, but the
user is prompted less often than for the unidentified_third_party domain.

manufacturer. Intended for MIDlet suites whose credentials originate from the
manufacturer’s root certificate.

minimum. All permissions are denied to MIDlets in this domain.

maximum. All permissions are granted to MIDlets in this domain. Maximum is the
default setting.

The SDK includes four JTWI security domains:

untrusted - Provides a high level of security for applications whose origins and
authenticity cannot be determined. The user is prompted frequently when the
application attempts a sensitive operation.

trusted - All permissions are granted to MIDlets in this domain.

minimum - All permissions are denied to MIDlets in this domain.

maximum - All permissions are granted to MIDlets in this domain (equivalent to
trusted.) Maximum is the default value.
94 Java ME Platform SDK Help • April 2009

Setting Security Domains
In the SDK, when you use Run via OTA your packaged MIDlet suite is installed
directly into the emulator where it is placed in a security domain. The emulator uses
public key cryptography to determine the appropriate security domain.

■ If the MIDlet suite is not signed, it is placed in the default security domain.

■ If the MIDlet is signed, it is placed in the protection domain that is associated
with the root certificate of the signing key’s certificate chain. See “Signing a
Project” on page 95.

Specifying the Security Domain for an Emulator
To choose the security domain you want the emulator to use, right-click on the
device in the Device Selection window and select a security domain. The SDK knows
the runtimes the device can support and supplies only possible domains. The default
for both MSA and JTWI is Maximum. See Setting Device Properties.

Specifying the Security Domain for a Project
You can set a security domain in a project. Follow these steps to specify the project
security domain:

1. Right-click on a project and select Properties.

2. In the Category area, select Running (the green triangle).

3. Select Regular Execution and check the Security domain box. In this context
regular execution means you are running in the emulator, as opposed to running
OTA.

4. Select the domain from the drop-down menu.

Signing a Project
Devices use signing information to check an application's source and validity before
allowing it to access protected APIs. For test purposes, you can create a signing key
pair to sign an application. The key pair consists of two keys:
Chapter 12 Security and MIDlet Signing 95

■ A private key that is used to create a digital signature, or certificate.

■ A public key that anyone can use to verify the authenticity of the digital
signature.

You can create a key pair with the Keystores Manager as described in Managing
Keystores and Key Pairs.

Follow these steps to sign a project with a signing key pair.

1. Right-click on a project and select Properties.

2. From the Build hierarchy, select Signing.

3. Check the Sign Distribution checkbox.

4. Choose a keystore from the Keystores drop-down menu, or click Open Keystores
Manager to create a new keystore.

The Certificate Details area displays the Alias, Subject, Issuer, and validity dates
for the selected keystore.

5. Choose a key pair alias from the drop-down menu.

A keystore might be accessed by several key pairs, each with a different alias. If
you prefer to use a unique key pair, select Open Keystores Manager and create a
new key pair. See Creating a Keystore.

6. Click OK.

Note – CDC projects cannot be signed with this tool. To sign a CDC project use the
JDK jarsigner command from the command line. For example:
jarsigner.exe -keystore keystore.ks -storepass keystorepwd
MyCdcApp.jar dummyCA

See Signing.

Managing Keystores and Key Pairs
For test purposes, you can create a signing key pair to sign a MIDLet. The Keystores
Manager administers this task, as described in the remainder of this topic.The key
pair consists of two keys:

■ A private key that is used to create a digital signature, or certificate.

■ A public key that can be used by anyone to verify the authenticity of the
signature.
96 Java ME Platform SDK Help • April 2009

To deploy on a device, you must obtain a signing key pair from a certificate
authority recognized by the device. You can also import keys from an existing Java
SE platform keystore.

The following topics describe the user interface:

■ Security Domains

■ Creating a New Key Pair

■ Removing a Key Pair

■ Importing an Existing Key Pair

You can also use the command line tools described in Command Line Security
Features.

Working With Keystores and Key Pairs
The Keystores Manager handles creating and using keystores. The keystores known
to the Keystores Manager are listed when you sign a project, as described in Signing.

Keystores contain key pairs, which you can also manage from this dialog. You must
select a keystore to access the key pair tools.

See Creating a Keystore, Adding an Existing Keystore, Creating a New Key Pair,
Removing a Key Pair and Importing an Existing Key Pair

Creating a Keystore
Follow these steps to create a new keystore.

1. Select Tools > Keystores.

The Keystores Manager opens.

2. Click Add Keystore.

The Add Keystores window opens.

3. Choose Create Keystore.

4. Supply a name, location, and password.

The default location is C:\Documents and Settings\User.

5. Click OK.

The new keystore appears in the Keystores list.
Chapter 12 Security and MIDlet Signing 97

Adding an Existing Keystore
You can make an existing keystore available to Java ME Platform SDK.

1. Select Tools > Keystores.

The Keystores Manager opens.

2. Click Add Keystore.

The Add Keystores window opens.

3. Choose Add Existing Keystore.

4. Browse to the location of the keystore and select the keystore file. Click OK.

The default location is C:\Documents and Settings\User.

5. Click OK.

The new keystore appears in the Keystores list.

Creating a New Key Pair
1. Select Tools > Keystores.

The Keystores Manager opens.

2. Select a Keystore in the Keystores area on the left.

If you prefer a different keystore, select Add Keystore to create a new keystore or
add an existing keystore.

3. Click the New button.

4. Fill in the Create Key Pair dialog.

You must provide an alias to refer to this key pair.

The six Certificate Details fields are provisionally optional. You must complete at
least one field.

Key Pair Alias. The name used to refer to this key pair.

Common Name. Common name of a person, such as "Jane Smith"

Organization Unit. Department or division name, such as "Development"

Organization Name. Large organization name, such as "Sun Microsystems Inc."

Locality Name. Locality (city) name, such as "Santa Clara"

State Name. State or province name, such as "California"

Country. Two-letter country code, such as "US"
98 Java ME Platform SDK Help • April 2009

The password is optional. If you do provide a password, it must have at least six
characters.

5. Click OK.

The new key is displayed in the Keys area under its alias. You can now select this
keypair when you sign a project. See “Signing a Project” on page 95.

Removing a Key Pair
1. Select Tools > Keystores.

2. In the Keys area, click on a Key Pair.

3. Select Delete.

Importing an Existing Key Pair
If you have keys in a Java SE platform keystore that you would like to use for
MIDlet signing, you can import the signing keys to the Java ME SDK.

1. Select Tools > Keystores.

2. Click Add Keystores.

The Add Keystores window opens.

3. Click Add Existing Keystore.

4. Browse to the keystore location.

5. Click OK.

Managing Root Certificates
The Java ME Platform SDK command line tools described in Managing Certificates
(MEKeyTool) manage the emulator’s list of root certificates.

Real devices have similar lists of root certificates, although you typically cannot
modify them. When you deploy your application on a real device, you must use
signing keys issued by a certificate authority whose root certificate is present on the
device. This makes it possible for the device to verify your application.

Each emulator instance has its own _main.ks file located in
users.home/javme-sdk/3.0/work/emulator-instance/appdb.
Chapter 12 Security and MIDlet Signing 99

The micro keystore, _main.mks resides in the following directory.

installdir\runtimes\cldc-hi\appdb_main.mks

This directory also contains keystore.ks and serverkeystore.ks. You can use
the -import option to import certificates from these keystores as described in
Managing Certificates (MEKeyTool).
100 Java ME Platform SDK Help • April 2009

CHAPTER 13

BD-J Support

The Java ME Platform SDK ships with a JAR file containing stubs for the BD-J
platform. The stubs allow you to compile a CDC project as a Blu-ray Disc Java (BD-J)
application. Once built, the application can be burned to a Blu-ray disc and played
on a Blu-ray disc player, or, it can be played online with a full-featured player such
as TotalMedia Theatre, WinDVD, or PowerDVD.

The SDK supports TotalMedia Theatre. If it is installed, running a BD-J project
launches your application in the TotalMedia Theatre Player.

To obtain source and Javdocs for the stubs, contact the Blu-ray Disc Association
(http://www.blu-raydisc.com). You can email license requests to
License@bdamail.com.

See the following topics:

■ Creating a Stubs for BD-J Platform Project

■ Compiling, Deploying, and Running a Stubs for BD-J Platform Project

Creating a Stubs for BD-J Platform
Project
Follow these steps to create a BD-J Project.

1. Select File > New Project, and choose CDC Application. Click Next.

2. Set the project name, location, and Main class name and click Next.

3. Select Platform. From the Java Platform menu, choose Stubs for BD-J Platform
and click Finish.

A simple BD-J hello World project is created.
101

4. To set BD-J preferences and permissions, right-click on the project and choose
Properties. In the Category area select Application Descriptor. Click the BD-J tab
on the right.

The properties in this window are used to create a Permission Request File (PRF).
This is an XML file and its format is controlled by Blu-ray disc specifications.
Typically permissions apply to signed applications. Unsigned applications are not
allowed access.

■ Application ID is a required value. The default is generally acceptable. This
value is a 16-bit hexadecimal string. The recommended range is 0x0000 to
0x3FFF for unsigned applications, and 0x4000 to 0x7FFF for signed
applications.

■ Organization ID is a required value. The default is generally acceptable, but it
can be changed. This value is a 32-bit hexadecimal string. The recommended
range is 0x7FFF0001 to 0x7FFFFFFF.

■ The SDK uses the Service Access, User Settings and Preferences, and Network
Permissions values to create a permissions file.

■ File Access - Allows a signed application to access persistent storage.

■ Lifecycle Control - Allows an application to control the lifecycle (stop, pause,
or resume) of any application that it has launched. It cannot affect applications
it has not launched.

■ Service Selection - Allows a signed application to select a new service
(assuming other permissions also permit the selection).

■ User Settings and Preferences - Checking Read or Write requests permission
for all preferences. The user preferences are: User Language, Parental Rating,
DefaultFontSize, and Country Code. For example, check Read to enable Read
permission for all preferences.

■ Network Permissions - Allows a signed application to specify the hosts and
actions that receive the permissions.

For example, enter connect = * to request permission for all hosts to
connect. To open all permissions for all hosts, enter:
connect, listen, resolve, accept = *

■ By default the deployment directory ${build.dir}/deploy is created in:

C:\Documents and Settings\User\My Documents\
JavaMESDKProjects\Application\build\deploy

The deployment directory contains the JAR file.
102 Java ME Platform SDK Help • April 2009

The PRF is stored in the JAR file in the same location as the Main class. It is given
the name bluray.Main.perm, where Main is the name of the Main class. A PRF
file might look like this:

The contents of the deployment directory can be run automatically if you specified a
valid player when you created the External BD-J Platform.

See Compiling, Deploying, and Running a Stubs for BD-J Platform Project.

Compiling, Deploying, and Running a
Stubs for BD-J Platform Project
To deploy a project (see Creating a Stubs for BD-J Platform Project), right-click the
project and select Compile or Deploy. The default deployment location is:

C:\Documents and Settings\User\My Documents\JavaMESDKProjects\
Application\build\deploy.

To run the project, right-click on the project name and select Run. If you have
ArcSoft TotalMedia Theatre installed, running the project launches the application in
TotalMediaTheatre. If you specified an alternate player when you created the
External BD-J platform, the SDK will attempt to open the deployment directory with
that executable.

When the directory is populated, use a player that supports BDMV to open the
deployment directory (for example, WinDVD, PowerDVD or TotalMedia Theatre).

To create a valid playable disc, burn the deployment directory on a Blu-ray disc. The
disc should play on a Blu-ray player.

<?xml version="1.0" encoding="UTF-8"?>
<n:permissionrequestfile xmlns:n="urn:BDA:bdmv;PRF" orgid=
"56789abc" appid="00004001">

<file value="true"></file>
<applifecyclecontrol value="false"></applifecyclecontrol>
<servicesel value="true"></servicesel>
<userpreferences read="true" write="false"></userpreferences>
<network>

<host action="connect, listen, resolve, accept"> * </host>
</n:permissionrequestfile>

</network>
Chapter 13 BD-J Support 103

104 Java ME Platform SDK Help • April 2009

CHAPTER 14

CLDC Emulation on a Windows
Mobile Device

This procedure describes how to install Sun Java CLDC Emulation software on a real
device and make it available to the Java ME Platform SDK software on the host
computer. It also provides a procedure for testing on-device debugging.

■ CLDC Emulator Installation for a Device Running Windows Mobile

■ Testing On-device Debugging

CLDC Emulator Installation for a Device
Running Windows Mobile
1. Connect the device to your host computer and register it with ActiveSync.

2. Copy the Sun Java CLDC Emulation Installation CAB file onto the clipboard
using Windows Explorer.

a. Browse to JavaMESdkHome\emulator-dev-install.

b. Right-click on sun-java-cldc-emu.cab.

c. Select Copy from the context menu.

3. Paste the CAB file into the device root directory.

a. In Windows Explorer, open Mobile Device.
105

b. Open My Windows Mobile-Based Device.

c. Open the Edit menu.
106 Java ME Platform SDK Help • April 2009

d. Click Paste to insert the CAB file.

4. Run the File Explorer on your device.

a. Open the Start menu.

b. Click Programs.
Chapter 14 CLDC Emulation on a Windows Mobile Device 107

c. Click File Explorer.
108 Java ME Platform SDK Help • April 2009

5. Start the CAB installation on the device.

a. Open the Show menu.

b. Select My Device.
Chapter 14 CLDC Emulation on a Windows Mobile Device 109

c. Click on the sun-java-cldc-emu.cab file.

6. If asked during the installation, install the application on the device.

7. Wait for the installation to finish.

8. You can delete the CAB file after the installation is complete.

a. Press on sun-java-cldc-emu.cab label until the context menu opens.

b. Click Delete.
110 Java ME Platform SDK Help • April 2009

9. Run the Sun Java CLDC Emulation on the device.

a. Open Start menu.

b. Click Programs.
Chapter 14 CLDC Emulation on a Windows Mobile Device 111

c. Click Sun Java CLDC EMU.
112 Java ME Platform SDK Help • April 2009

10. Wait for the Sun Java CLDC Emulation to start.
Chapter 14 CLDC Emulation on a Windows Mobile Device 113

11. Allow up to 30 seconds (the default value) for Java ME SDK to recognize the
connected device and the Sun Java CLDC emulation software.

When the device is recognized a new device, CldcWinceEmunumber (for example,
CldcWinceEmu1) should appear in the Device Selector window, and the output
from the command emulator.exe -Xquery should also be displayed.

You can select this device as a target device in the user interface, or if you run the
emulator from the command line it can be used as an argument. For example:

emulator -Xdevice:CldcWinceEmu1 ...

See Testing On-device Debugging.
114 Java ME Platform SDK Help • April 2009

Testing On-device Debugging
This procedure provides instructions for running the FPDemo sample project on a
device running Windows Mobile.

Before starting this procedure:

■ Integrate the device as described in CLDC Emulator Installation for a Device
Running Windows Mobile.

■ Confirm the device is connected and that it appears in the Device Selector
window.

■ If the output console is not visible, select Window > Output > Output to open it.

This procedure features command line debugging, but you can use a graphical
debugger in a similar fashion.

1. In the Java ME Platform SDK, select File > Open Sample Project > FPDemo.

2. In the Projects window, right-click on FPDemo and select Properties.

3. Choose the Platform category. From the Device drop-down menu, select the name
of the connected device. Click OK.

4. Select FPDemo and select Run > Run in Debug Mode, or click the corresponding
icon on the toolbar.

The application is now deployed and started on the connected device.

Note the Port number displayed in the Output console.

5. Open a Windows shell.

6. Start jdb with the following command:

db -sourcepath installdir\apps\FPDemo\src -connect
com.sun.jdi.SocketAttach:hostname=127.0.0.1,port=port-number

7. Set the breakpoint at the place where the demo handles its menu commands:

stop in calculator.CalculatorMIDlet.commandAction

8. In the FPDemo application, enter two numbers, choose an operation, and invoke
the Calc command.

The debugger displays the place where the execution stops.

9. To step through the source past the point where the result is calculated, use the
next command until you get past the following line:

res = n1 <op> n2;
Chapter 14 CLDC Emulation on a Windows Mobile Device 115

10. Check that the input and the calculated values are correct:

eval n1, eval n2, eval res

11. Override the calculated value as follows:

set res = new-value

12. Clear the breakpoint as follows:

clear calculator.CalculatorMIDlet.commandAction

13. Let the application continue:

cont

You can see that the application displays the overridden result.

14. Exit the debugger:

exit

15. Exit FPDemo.
116 Java ME Platform SDK Help • April 2009

CHAPTER 15

Installing CLDC Emulation on a
Windows Mobile Emulator

This procedure describes how to install the Sun Java CLDC platform binary for the
ARM processor into the Windows Mobile Emulator.

CLDC Installation for Windows Mobile
1. Download and install Microsoft Device Emulator with device images for

Windows Mobile 6.

2. Download and install Microsoft Virtual PC.

Note – Installs virtual switch driver required for emulated network adapters.

3. Run Windows Mobile 6 Professional Emulator and bind its emulated NE2000
Network Adapter to a desktop network card.
117

■ Consult the Microsoft device emulator documentation for instructions.

■ Don’t use ActiveSync for networking (cradling the emulator).

4. Write down the IP address of the emulator.

Open the Start menu on the emulator, click Settings, click Connections, click
Network Cards, Click NE2000 Compatible Ethernet Driver.
118 Java ME Platform SDK Help • April 2009

5. Open Emulator Properties

a. Open the File menu.

b. Click Configure.
Chapter 15 Installing CLDC Emulation on a Windows Mobile Emulator 119

6. Set JavaMESdkHome\on-device\winmobile-arm as a shared folder.

a. Browse to JavaMESdkHome\on-device\winmobile-arm.

b. Click OK.
120 Java ME Platform SDK Help • April 2009

7. Run File Explorer on the emulator.

a. Open Start menu.

b. Click Programs.
Chapter 15 Installing CLDC Emulation on a Windows Mobile Emulator 121

c. Click File Explorer.
122 Java ME Platform SDK Help • April 2009

8. Start the Sun Java CLDC Emulation CAB file installation.

a. Open Show menu.

b. Select Storage Card.
Chapter 15 Installing CLDC Emulation on a Windows Mobile Emulator 123

c. Click on the sun-java-cldc-emu.cab file.
124 Java ME Platform SDK Help • April 2009

9. Finish the installation and run the Sun Java CLDC Emulation.

Note – See CLDC Emulator Installation for a Device Running Windows Mobile
Chapter 15 Installing CLDC Emulation on a Windows Mobile Emulator 125

10. Use the installdir/bin/device-address tool to register the emulator IP address
in the SDK. See Managing Device Addresses (device-address).

a. Execute the following command to ensure the SDK registers the emulator:

device-address.exe add ip address

address should be the IP address written down in step 4.

b. After the device registers the emulator the device selector window should
display the device as CldcWinceEmunumber and it should also appear in the
output when you issue the emulator.exe -Xquery command.
126 Java ME Platform SDK Help • April 2009

CHAPTER 16

On-device Debugging

This section discusses the on-device debugging process for CLDC and CDC.When a
project is run in debug mode, a graphical debugger or a command line debugger can
be attached so that you can set and remove breakpoints.

See On-device Debugging Procedure and Sample CLDC Debugging Session.

On-device Debugging Procedure
Before starting this procedure ensure your environment is properly configured:

■ Integrate the device as described in CLDC Emulator Installation for a Device
Running Windows Mobile.

■ Confirm the device is connected and that it appears in the Device Selector
window.

■ If the output console is not visible, select Window > Output > Output to open it.

■ If the project you want to debug is not main, right-click and select Set as Main
Project.

■ Only one debug process can run on a port. In the device selector, right-click on a
device and look for the Debug Port property. By default the port number is 51307.
If you are debugging on 51307 and you wish to debug an additional project, you
must run on a different device and change its port number property.

This procedure features command line debugging, but you can use a graphical
debugger in a similar fashion.

1. Select the project you want to debug and select Run > Run Project in Debug Mode
or click the Run Main Project in Debug mode icon on the toolbar.

The first time you debug you see this dialog.
127

2. Make note of the debugging port for the device, and click OK. If you suppress
this dialog you can still get the port number from the Output window. Look for
the message “Starting emulator with port number port-number”.

The application is now deployed and started on the connected device. You are
ready to attach a debugger.

See Attach a Command Line Debugger, Attach a Graphical Debugger and Sample
CLDC Debugging Session

Attach a Command Line Debugger
Start the application on the connected device as described in On-device Debugging
Procedure. Attach the Java debugger (jdb) from the command line as follows:

jdb -connect com.sun.jdi.SocketAttach:port=51307

The above command assumes the host is 127.0.0.1 (localhost), and the debugging
port is still set to the default of 51307. If you changed the device’s port number
property, enter that value.

See Attach a Graphical Debugger and Sample CLDC Debugging Session.

Attach a Graphical Debugger
This procedure describes how to attach the NetBeans graphical Java debugger
(JPDA).

1. If you want to set line breakpoints, open the project you deployed on the
connected device in NetBeans.

2. Select Debug > Attach Debugger.
128 Java ME Platform SDK Help • April 2009

3. In the Attach window, choose Java Debugger (JPDA) and click OK. You are
prompted for connection settings

■ Connector: SocketAttach

■ Host: localhost, or leave as is

■ Port: the port number of the device running in debug mode.

The debugger attaches to the device.

Sample CLDC Debugging Session
This procedure provides instructions for running the FPDemo sample project on a
device running Windows Mobile. You can use this procedure with any project.

1. In the Java ME Platform SDK, select File > Open Sample Project > FPDemo.

2. In the Projects window, right-click on FPDemo and select Properties.

3. Choose the Platform category. From the Device drop-down menu, select the name
of the connected device. Click OK.

4. Select FPDemo and select Run > Run Project in Debug Mode, or click the Run
Main Project in Debug mode icon on the toolbar.

5. Open a Windows shell.

6. Start jdb with the following command:

db -sourcepath installdir\apps\FPDemo\src -connect
com.sun.jdi.SocketAttach:hostname=127.0.0.1,port=port-number

In this case the port number is 51307 to match the default debugging port
number.

7. Set the breakpoint at the place where the demo handles its menu commands:

stop in calculator.CalculatorMIDlet.commandAction

8. In the FPDemo application, enter two numbers, choose an operation, and invoke
the Calc command.

The debugger displays the place where the execution stops.

9. To step through the source past the point where the result is calculated, use the
next command until you get past the following line:

res = n1 <op> n2;

10. Check that the input and the calculated values are correct:
Chapter 16 On-device Debugging 129

eval n1, eval n2, eval res

11. Override the calculated value as follows:

set res = new-value

12. Clear the breakpoint as follows:

clear calculator.CalculatorMIDlet.commandAction

13. Let the application continue:

cont

You can see that the application displays the overridden result.

14. Exit the debugger:

exit

15. Exit FPDemo.
130 Java ME Platform SDK Help • April 2009

CHAPTER 17

Command Line Reference

This topic describes how to operate the Java ME Platform SDK from the command
line and details the command line tools required to build and run an application.

■ Launching the SDK

■ Running the Device Manager

■ Managing Device Addresses (device-address)

■ Running the Emulator From the Command Line

■ MIDlet Options

■ CDC Options

■ Debugging and Tracing Options

■ Building a Project from the Command Line

■ Checking Prerequisites

■ Compiling Class Files

■ Preverifying Class Files

■ Packaging a MIDLet Suite (JAR and JAD)

■ Command Line Security Features

■ Changing the Emulator’s Default Protection Domain

■ Signing MIDlet Suites (jadtool.exe)

■ Managing Certificates (MEKeyTool)

■ Generating Stubs (wscompile)

■ Running the Payment Console From the Command Line

■ Virtual Machine Memory Profiler (Java Heap Memory Observe Tool)

■ Running the Java Heap Memory Observe Tool

■ Viewing the Heap Snapshot

■ Running WMA Tool

■ smsreceive
131

■ cbsreceive

■ mmsreceive

■ smssend

■ cbssend

■ mmssend

Launching the SDK
The SDK can be launched from the command line as follows:

installdir/toolbar/bin/Java_platform_ME_SDK.exe

You can use the --fontsize argument to change the user interface fonts. For
example:

installdir/toolbar/bin/Java_platform_ME_SDK.exe --fontsize 18

This setting does not affect the font size of the JavaHelp contents.

Running the Device Manager
The device manager is a component that runs as a service. It detects devices (real or
emulated) that conform to the Universal Emulator Interface Specification, version
1.0.2. The Device Manager automatically restarts every time your computer restarts.

You can manually launch installdir/bin/device-manager.exe from a script or the
command line.

Right-click on the device manager icon in the system tray and you see the Show
Output option. When it is selected the log is displayed in a console window.
132 Java ME Platform SDK Help • April 2009

Managing Device Addresses
(device-address)
installdir/bin/device-address.exe is a tool for viewing, adding, and removing
devices that the SDK is not able to discover automatically. The Microsoft device
emulator is an example of such a device. The syntax is:

device-address command arguments...

Possible commands are as follows. Note, ip is currently the only supported address
type.

For example, the following command adds a device:

installdir/bin/device-address.exe add ip 192.168.1.2

Running the Emulator From the
Command Line
You can launch the emulator independent of the GUI using bin/emulator.exe.
The syntax is as follows:

emulator options

The syntax for the emulator command is as follows:

add address_type address Add the specified address.

del address_type address Delete the specified address.

list List all address types.

list address_type List the specified address type.
Chapter 17 Command Line Reference 133

The general options are as follows:

■ -classpath path

-cp path

Specifies a search path for application classes. The path consists of directories, ZIP
files, and JAR files separated by colons.

■ -Dproperty=value

Sets a system property value.

■ -help

Display a list of valid options.

■ -version

Display version information about the emulator.

■ -Xdevice:skin-name

Run an application on the emulator using the given device instance name. See
TABLE 8-1.

■ -Xmain:main-class-name

Run the main method of a Java class, as in Java SE.

■ -Xquery

Print emulator skin information on the standard output stream and exit
immediately. The information includes the skin name, screen size, and other
capabilities.

This is a simple example of running the emulator from the command line:

emulator.exe -Xdescriptor:C:\Java_ME_platform_SDK_3.0\apps\Games\dist\Games.jad

emulator.exe also supports MIDlet Options, CDC Options, and Debugging and
Tracing Options.

MIDlet Options
Options for running MIDlets in the emulator are as follows:

■ -Xautotest:JAD-file-URL

Run in autotest mode. This option installs a MIDlet suite from a URL, runs it,
removes it, and repeats the process. The purpose is to run test compatibility kits
(TCKs) with the emulator, using a test harness such as JT Harness, JavaTest™ or
Java Device Test Suite (JDTS). For example:

emulator -Xautotest:http://localhost:8080/test/getNextApp.jad
134 Java ME Platform SDK Help • April 2009

Given the above command, -Xautotest causes the emulator to repeatedly
install, run, and remove the first MIDlet from the MIDlet suite provided through
the HTTP URL. Once the emulator starts, it queries the test harness, which then
downloads and installs the TCK MIDletAgent.

■ -Xdescriptor:jad-file

Run an application locally using the given JAD file.

■ -Xdomain:domain-name

Set the MIDlet suite’s security domain.

■ -Xjam:command=application

Run an application remotely using the Application Management Software (AMS)
to run using OTA provisioning. If no application is specified with the argument,
the graphical AMS is run. The commands are as follows:

install=jad-file-url | force | list | storageNames|

Install the application with the specified JAD file onto a device.

■ force. If an existing application has the same storage name as the application
to be installed, force removes the existing application before installing the
new application.

■ list. List all the applications installed on the device and exit. The list is
written to standard output before the emulator exits.

■ storageNames. List all applications installed on the device. The list is written
to standard output before the emulator exits. Each line contains one storage
name in numerical order. The list contains only the name so the order is
important. For example the first storage name must be storage number 1.

Also:

run=[storage-name | storage-number]

Run a previously installed application. The application is specified by its valid
storage name or storage number.

remove=[storage-name | storage-number | all]

Remove a previously installed application. The application is identified by its
valid storage name or storage number. If all is supplied, all previously installed
applications are removed.

■ transient=jad-file-url

Install, run, and remove the application with the specified JAD file. Specifying
transient causes the application to be installed and run and then removed
three times.

This example includes OTA installation:

emulator.exe -Xjam:install=http://www.myserver.com/apps/MyApp.jad
-Xdevice:DefaultCldcMsaPhone2
Chapter 17 Command Line Reference 135

The above command returns the ID of the installed application. Once you obtain the
ID you can run it with: emulator.exe=Xjam:run=ID

See also Running the Emulator From the Command Line, CDC Options, and
Debugging and Tracing Options.

CDC Options
The following options apply to CDC projects.

■ -Xmsn

Specifies the initial size n, in bytes, of the memory allocation pool, or heap size.
This value must be a multiple of 1024 greater than 1 megabyte. Append the letter
k or K to indicate Kilobytes or m or M to indicate megabytes. The default value is
64 megabytes (64M).

■ -Xmxn

Specifies the maximum size n, in bytes, of the memory allocation pool, or heap
size. This value must be a multiple of 1024 greater than 1 megabyte. Append the
letter k or K to indicate Kilobytes or m or M to indicate megabytes. The default
value is 64 megabytes (64M).

■ -Xssn

Sets thread stack size to n.

■ -Xxlet:classpath=class-path, class=fully-qualified-name,[arg=argument]*

Run an Xlet application.

See also Running the Emulator From the Command Line and Debugging and
Tracing Options.

Debugging and Tracing Options
You can use the following options with the emulator for debugging and tracing both
CLDC and CDC projects.

■ -Xdebug

Enable runtime debugging. The -Xrunjdwp option must be called to support
-Xdebug.

■ -Xrunjdwp:debug-settings

Start a Java debug wire protocol session, as specified by a list of comma-separated
debug settings. Both -Xrunjdwp and -Xdebug must be called.

Valid debug settings include the following:
136 Java ME Platform SDK Help • April 2009

■ transport=transport-mechanism - Transport mechanism used to communicate
with the debugger. The only transport mechanism supported is dt_socket.

■ address=host:port - Transport address for the debugger connection. If host is
omitted, localhost is assumed to be the host machine.

■ server={y|n} - Starts the debug agent as a server. The debugger must connect
to the port specified. The possible values are y and n. Currently, only y is
supported (the emulator must act as a server).

■ suspend={y|n} - The possible values are y and n.

When suspend is set to n, the application starts immediately and the debugger
can be attached at any time during its run.

When suspend is set to y, the application does not start until a debugger
attaches to the debugging port and sends a resume command. This means that
an application can be debugged from the very beginning.

■ -Xverbose:trace-options

Display trace output, as specified by a list of comma-separated options, as
follows:

■ gc - Trace garbage collection

■ class - Trace class loading

■ all - Use all tracing options

This example shows debugging:

emulator.exe -Xdevice:DefaultCldcMsaPhone2 -Xdebug
-Xrunjdwp:transport=dt_socket, suspend=y,server=y,address=51307
-Xdescriptor:C:\Java_ME_platfrom_SDK_3.0\appps\Games\dist\Games.jad

See also MIDlet Options, CDC Options, and Running the Emulator From the
Command Line.

Building a Project from the Command
Line
In the user interface, building a project is a single step. Behind the scenes, however,
there are two steps. First, Java source files are compiled into Java class files. Next,
the class files are preverified, which means they are prepared for the CLDC VM. See
the following topics:

■ Checking Prerequisites

■ Compiling Class Files
Chapter 17 Command Line Reference 137

■ Preverifying Class Files

Checking Prerequisites
Before building and running an application from the command line, verify that you
have a version no earlier than 1.6 of the Java SE software development kit. Make
sure the jar command is in your path. To find the version of the development kit,
run the jar command and then run java -version at the command line.

Compiling Class Files
Use the javac compiler from the Java SE development kit to compile Java source
files. You can use the existing Java ME Platform SDK project directory structure. Use
the -bootclasspath option to tell the compiler to use the MIDP APIs, and use the
-d option to tell the compiler where to put the compiled class files.

The following example demonstrates how you might compile a MIDP 2.0
application, taking source files from the src directory and placing the class files in
the tmpclasses directory. Newlines have been added for clarity.

For more information on javac, consult the Java SE documentation.

Preverifying Class Files
The next step is to preverify the class files. The bin directory of the Java ME
Platform SDK includes the preverify utility. The syntax for the preverify
command is as follows:

preverify files | directories

javac -target 1.3 -source 1.3
-bootclasspath ..\..\lib\cldcapi10.jar;..\..\lib\midpapi20.jar
-d tmpclasses
src*.java
138 Java ME Platform SDK Help • April 2009

Some of the options are as follows:

Following the example for compiling, use the following command to verify the
compiled class files. As before, newlines are added for clarity.

preverify
-classpath ..\..\lib\cldcapi10.jar;..\..\lib\midpapi20.jar
-d classes
tmpclasses

As a result of this command, preverified class files are placed in the classes
directory. If your application uses WMA, MMAPI, or other versions of CLDC or
MIDP, be sure to include the relevant .jar files in the classpath.

Packaging a MIDLet Suite (JAR and JAD)
To package a MIDlet suite manually you must create a manifest file, an application
JAR file, and finally, a MIDlet descriptor (also known as a Java Application
Descriptor or JAD).

Create a manifest file containing the appropriate attributes as specified in the MIDP
specification. You can use any text editor to create the manifest file. For example, a
manifest might have the following contents:

Create a JAR file containing the manifest as well as the suite’s class and resource
files. To create the JAR file, use the jar tool that comes with the Java SE software
development kit. The syntax is as follows:

jar cfm file manifest -C class-directory . -C resource-directory .

The arguments are as follows:

-classpath classpath Specify the directories or JAR files (given as a semicolon-delimited
list) from which classes are loaded.

-d output-directory Specify the target directory for the output classes. This directory
must exist before preverifying. If this option is not used, the
preverifier places the classes in a directory called output.

MIDlet-1: My MIDlet, MyMIDlet.png, MyMIDlet
MIDlet-Name: MyMIDlet
MIDlet-Vendor: My Organization
MIDlet-Version: 1.0
MicroEdition-Configuration: CLDC-1.1
MicroEdition-Profile: MIDP-2.1
Chapter 17 Command Line Reference 139

■ file - JAR file to create.

■ manifest - Manifest file for the MIDlets.

■ class-directory - Directory containing the application’s classes.

■ resource-directory - Directory containing the application’s resources.

For example, to create a JAR file named MyApp.jar whose classes are in the
classes directory and resources are in the res directory, use the following
command:

jar cfm MyApp.jar MANIFEST.MF -C classes . -C res .

Create a JAD file containing the appropriate attributes as specified in the MIDP
specification. You can use any text editor to create the JAD file. This file must have
the extension .jad.

Note – You must set the MIDlet-Jar-Size entry to the size of the JAR file created
in the previous step.

For example, a JAD file might have the following contents:

Command Line Security Features
The full spectrum of the Java ME Platform SDK’s security features are also available
from the command line. You can adjust the emulator’s default protection domain,
sign MIDlet suites, and manage certificates.

■ Changing the Emulator’s Default Protection Domain

■ Signing MIDlet Suites (jadtool.exe)

■ Managing Certificates (MEKeyTool)

MIDlet-Name: MyMIDlet
MIDlet-Vendor: My Organization
MIDlet-Version: 1.0
MIDlet-Jar-URL: MyApp.jar
MIDlet-Jar-Size: 24601
140 Java ME Platform SDK Help • April 2009

Changing the Emulator’s Default Protection
Domain
To adjust the emulator’s default protection domain, use the following option with
the emulator command:

-Xdomain:domain-type

Assigns a security domain to the MIDlet suite. Enter an appropriate security domain
as described in Security Domains. For example, -Xdomain:maximum.

Signing MIDlet Suites (jadtool.exe)
jadtool.exe is a command-line interface for signing MIDlet suites using public
key cryptography according to the MIDP 2.0 specification. Signing a MIDlet suite is
the process of adding the signer certificates and the digital signature of the JAR file
to a JAD file. jadtool.exe is also capable of signing payment update (JPP) files.

jadtool.exe only uses certificates and keys from Java SE platform keystores. Java
SE software provides keytool, the command-line tool to manage Java SE platform
keystores.

jadtool.exe is packaged in a JAR file. To run it, open a command prompt, change
the current directory to installdir\bin, and enter the following command:

jadtool.exe command

The commands are as follows:

■ -help

Prints the usage instructions for jadtool.exe.

■ -addcert -alias alias [-keystore keystore]
[-storepass password] [-storetype PKCS11]
[-certnum number] [-chainnum number] [-encoding encoding]
-inputjad | inputjpp input-file
-outputjad | outputjpp output-file

Adds the certificate of the key pair from the given keystore to the JAD file or JPP
file.

■ -addjarsig [-jarfile jarfile] [-keystore keystore] [-alias alias]
[-storepass password] [-storetype PKCS11]
[-keypass password] [encoding encoding]
[-inputjad input-jadfile] [-outputjad output-jadfile]

Adds the digital signature of the given JAR file to the specified JAD file. The
default value for -jarfile is the MIDlet-Jar-URL property in the JAD file.
Chapter 17 Command Line Reference 141

■ -showcert [([-certnum number] [-chainnum number]) | -all
[-encoding encoding]
-inputjad filename | -inputjpp filename

Displays information about certificates in JAD and JPP files.

■ -addjppsig -keypass password -alias alias [-keystore keystore]
[-storepass password]
[-keystore none|keystore]
[-storetype PKCS11] [-encoding encoding]
-inputjpp filename -outputjpp filename

Adds a digital signature of the input JPP file to the specified output JPP file.

The default values are as follows:

■ -encoding - UTF-8

■ -jarfile - MIDlet-Jar-URL property in the JAD file

■ -keystore - %HOMEPATH%\.keystore

■ -certnum - 1

■ -chainnum - 1

Managing Certificates (MEKeyTool)
MEKeyTool manages the public keys of certificate authorities (CAs), making it
functionally similar to the keytool utility that comes with the Java SE SDK. The keys
can be used to facilitate secure HTTP communication over SSL (HTTPS).

Before using MEKeyTool, you must first have access to a Java Cryptography
Extension keystore. You can create one using the Java SE keytool utility.

See http://java.sun.com/javase/6/docs/technotes/tools/windows/keytool.html.

To run MEKeyTool, open a command prompt, change the current directory to
installdir\bin, and enter the following command:

mekeytool.exe -command

The command keywords follow.

The Java ME Platform SDK contains a default ME keystore called _main.ks, which
is located in the installdir\runtimes\cldc-hi-javafx\appdb. This keystore
includes all the certificates that exist in the default Java SE platform keystore that
comes with the Java SE installation.
142 Java ME Platform SDK Help • April 2009

Also, each emulator instance has its own _main.ks file located in
userhome/javme-sdk/3.0/work/emulator-instance/appdb.If you do not specify a
value for MEKeystore, a new key is added to the default ME key for this emulator
instance.

If you do not specify a value for -keystore, the default keystore is used:
C:\Documents and Settings\user\.keystore.ks

■ -help

Prints the usage instructions for MEKeyTool.

■ -import -alias alias [-keystore JCEkeystore][-MEKeystore filename]
[-storepass storepass]
-domain domain-name

Imports a public key into the ME keystore from the given JCE keystore using the
given Java Cryptography Extension keystore password. and the default Java
Cryptography Extension keystore is user.home\.keystore.

■ -list [-MEKeystore filename]

Lists the keys in the ME keystore, including the owner and validity period for
each.

■ -delete (-owner owner | -number key-number)[-MEKeystore filename]

Deletes a key from the given ME keystore with the given owner.

Generating Stubs (wscompile)
Mobile clients can use the Stub Generator to access web services. The wscompile tool
generates stubs, ties, serializers, and WSDL files used in Java API for XML (JAX)
RPC clients and services. The tool reads a configuration file, that specifies either a
WSDL file, a model file, or a compiled service endpoint interface. The syntax for the
stub generator command is as follows:

wscompile [options] configuration-files

TABLE 17-1 lists the wscompile options:

TABLE 17-1 wscompile Options

Option Description

-d output directory Specifies where to place generated output files

-f:features Enables the given features

-features:features Same as -f:features
Chapter 17 Command Line Reference 143

Note – Exactly one -gen option must be specified. The -f option requires a
comma-separated list of features.

TABLE 17-2 lists the features (delimited by commas) that can follow the -f option.
The wscompile tool reads a WSDL file, compiled service endpoint interface (SEI), or
model file as input. The Type of File column indicates which of these files can be
used with a particular feature.

-g Generates debugging info

-gen Same as -gen:client

-gen:client Generates client artifacts (stubs, etc.)

-httpproxy:host:port Specifies a HTTP proxy server (port defaults to 8080)

-import Generates interfaces and value types only

-model file Writes the internal model to the given file

-O Optimizes generated code

-s directory Specifies where to place generated source files

-verbose Outputs messages about what the compiler is doing

-version Prints version information

-cldc1.0 Sets the CLDC version to 1.0 (default). Float and double
become String.

-cldc1.1 Sets the CLDC version to 1.1 (float and double are OK)

-cldc1.0info Shows all CLDC 1.0 information and warning messages.

TABLE 17-2 Command Supported Features (-f) for wscompile

Option Description Type of File

explicitcontext Turns on explicit service context mapping WSDL

nodatabinding Turns off data binding for literal encoding WSDL

noencodedtypes Turns off encoding type information WSDL, SEI, model

nomultirefs Turns off support for multiple references WSDL, SEI, model

novalidation Turns off full validation of imported WSDL
documents

WSDL

searchschema Searches schema aggressively for subtypes WSDL

TABLE 17-1 wscompile Options (Continued)

Option Description
144 Java ME Platform SDK Help • April 2009

Examples

Running the Payment Console From the
Command Line
The Payment Console displays payment related transactions sent from a mobile
application that implements Payment API (JSR 229) features. This console monitors
Payment Update File requests and Premium Priced SMS payments. It is a command
line version of the console discussed in Running the Payment Console.

The Device Manager must be running before you launch the Payment Console.

To launch the Payment Console from the command line, use
installdir/bin/payment-console.exe.

Virtual Machine Memory Profiler (Java
Heap Memory Observe Tool)
The Java Heap Memory Observe Tool (also known as the Heap Walker) records
detailed information about the Java heap at a specific point in the virtual machine
execution. It collects and displays:

■ global pointers

■ data for all objects (classes, sizes, addresses and references)

■ addresses for all roots

serializeinterfaces Turns on direct serialization of interface
types

WSDL, SEI, model

wsi Enables WSI-Basic Profile features (default) WSDL

resolveidref Resolves xsd:IDREF WSDL

nounwrap No unwrap. WSDL

wscompile -gen -d generated config.xml
wscompile -gen -f:nounwrap -O -cldc1.1 -d generated config.xml

TABLE 17-2 Command Supported Features (-f) for wscompile (Continued)

Option Description Type of File
Chapter 17 Command Line Reference 145

■ names of all classes

Please note the following:

■ The memory profiler uses the same connection technology as the debugger (see
On-device Debugging Procedure). Because they use the same transport layer, the
memory profiler and Java debugger cannot be used simultaneously.

Note – For the memory profiler, the Xrunjdwp -suspend option must be set to n.

■ The memory monitor slows down your application startup because every object
created is recorded.

■ The memory usage you observe with the emulator is not exactly the same as
memory usage on a real device. Remember, the emulator does not represent a real
device, it is just one possible implementation of its supported APIs.

See also: Running the Java Heap Memory Observe Tool

Running the Java Heap Memory Observe Tool
The Java Heap Memory Observe tool is launched from the command line as follows:

1. The following command starts the emulator from the \bin directory and opens a
sample application:

emulator.exe -Xdevice:DefaultCldcMsaPhone1 -Xdebug
-Xrunjdwp:transport=dt_socket,suspend=n,server=y,address=51307
-Xdescriptor:C:\Java_ME_platform_SDK_3.0\apps\Games\dist\
Games.jad -Xdomain:maximum

2. In a separate command window, start the memory profiler from the \bin
directory. The port number must match the address in the Xrunjdwp call:

memory-profiler.exe -host 127.0.0.1 -port 51307

The profiler window opens.

3. Click the Connect button and wait for the profiler to attach to the process. It may
take several seconds. After the connection, press Resume.

4. To take a snapshot of the heap, click the Pause button on the bottom right. The
virtual machine is suspended while the profiler collects the snapshot information.
The memory panel is then repopulated and the Resume button becomes active.

See Viewing the Heap Snapshot
146 Java ME Platform SDK Help • April 2009

Viewing the Heap Snapshot
The memory monitor elements are as follows:

memory panel - At the top of the window you see a grid of rectangles representing
memory blocks. This is the memory panel. The key on the top right indicates the
meaning of each graphical image. For example, blocks that are completely black are
at 100% utilization. Clicking a single block opens a dialog showing all the objects in
that block.

loaded classes - A list of loaded classes is displayed in the lower-left corner.
Choosing a class from the list causes the location of all objects in the class to be
displayed in class objects list immediately to the right.

class objects - The class objects list is populated when you select a class from the list
of loaded classes. Select an object to see the class details. These include the address
of the object, its type, and all references to and from the object. If the object is live,
the “Show path from the root” button is enabled. Clicking this button opens the Path
from the Root window, which displays dependencies that prevent this object from
being garbage collected.

statistics - At the bottom right of the Memory Observer window, click the Statistics
button to see a table showing the information for each class. Some objects are
internal to the virtual machine. For each class, you see the Object number, size of all
objects in the heap, the average size of the object, the percentage of the heap used by
the selected class, the percentage of objects live in the selected class, and the
percentage of objects that are in the old generation.

See Virtual Machine Memory Profiler (Java Heap Memory Observe Tool) and
Running the Java Heap Memory Observe Tool

Running WMA Tool
To send and receive SMS, CBS, and MMS messages from the command line, use
installdir/bin/wma-tool.exe.

The device manager must be running before you launch wma-tool.

When the tool is started, it outputs the phone number it is using.

Each protocol has send and receive commands. The requested command is passed to
the tool as a first argument. Possibilities are:

■ smsreceive - receives SMS messages

■ cbsreceive - receives CBS messages
Chapter 17 Command Line Reference 147

■ mmsreceive - receives MMS messages

■ smssend - sends SMS message

■ cbssend - sends CBS message

■ mmssend - sends MMS message

The sending commands send the specified message and exit. The receiving
commands print incoming messages until they are explicitly stopped.

Each command has its own arguments.

smsreceive
smsreceive [-o outputDir] [-t timeout] [-q]

-o outputDir. Store binary contents to outputDir.

-t timeout. Non-interactive mode, waits only timeout seconds for messages.

-f. Store text contents as files instead of printing them.

-q Quiet mode.

cbsreceive
cbsreceive [-o outputDir] [-t timeout] [-q]

-o outputDir. Store binary contents to outputDir.

-t timeout. Non-interactive mode, waits only timeout seconds for messages.

-f. Store text contents as files instead of printing them.

-q Quiet mode.

mmsreceive
mmsreceive [-o outputDir] [-t timeout] [-q]

-o outputDir. Store binary contents to outputDir.

-t timeout. Non-interactive mode, waits only timeout seconds for messages.

-f. Store text contents as files instead of printing them.
148 Java ME Platform SDK Help • April 2009

-q Quiet mode.
Chapter 17 Command Line Reference 149

smssend
smssend target_phone target_port message_content

target_phone

Phone number of the target phone. Mandatory first argument.

target_port

Port of the target phone. Mandatory second argument.

message_content

Mandatory third argument. Can have one of these two forms:

■ text: text of the text message

■ -f file: sends content of the specified file as a binary message.

cbssend
cbssend target_port message_content

target_port

Port of the target phones to send the message to. Mandatory first argument.

message_content

Mandatory second argument. Can have one of these two forms:

■ text: text of the text message

■ -f file: sends content of the specified file as a binary message.

mmssend
mmssend -application_id message_subject options

-application_id

Application ID of the message. Mandatory first argument.

-message_subject

Subject of the message. Mandatory second argument.

Options

-to target_phone

“to” target phone number. Any number of these options can be used.
150 Java ME Platform SDK Help • April 2009

-cc target_phone

“cc” target phone number. Any number of these options can be used.

-bcc target_phone

“bcc” target phone number. Any number of these options can be used.

-part contentId=content ID;encoding=encoding;text=text

Appends text part to the message. Any number of these options can be used.
Contains:

■ content ID: content ID of this message part

■ encoding: text encoding

■ text: text of the message

-part mimeType=mime type;contentId=content ID;file=file name

Appends binary part to the message with content loaded from the given file. Any
number of these options can be used. Contains:

■ content id: content ID of this message part

■ mime type: mime type of this message part

■ file name: file with content of this message part
Chapter 17 Command Line Reference 151

152 Java ME Platform SDK Help • April 2009

CHAPTER 18

Logs

Java ME Platform SDK uses the log4j logging facility to manage three types of logs:

■ Java ME Platform SDK GUI Logs

■ Device Manager Logs

■ Device Instance Logs

Java ME Platform SDK GUI Logs
The default location for the messages log is: C:\Documents and Settings\
USER_HOME\javame-sdk\toolbar\3.0\var\log.

See also: Device Manager Logs and Device Instance Logs

Device Manager Logs
The device manager log is placed into
toolkit-lib/process/device-manager/log. Logging levels can be configured
in the following XML file:
toolkit-lib/process/device-manager/conf/log4j.xml. Priority value for
category com.sun or VM can be set to levels: ERROR, WARN, INFO, DEBUG,
TRACE. (ordered from least to most verbose).

<category name="com.sun">
<priority value="DEBUG"/>
<appender-ref ref="CONSOLE-ALL"/>
<appender-ref ref="FILE"/>

</category>
153

See also: Java ME Platform SDK GUI Logs and Device Instance Logs

Device Instance Logs
Each device (or emulator) instance writes its own log into its directory under
USER_HOME/javame-sdk/3.0/work/emulator-instance. See
/javame-sdk/3.0/work.

Like a device manager log it can be configured. Edit
installdir/toolkit-lib/modules/emulator-cldc/conf/log4j.xml as
described for Device Manager logs.

See also: Java ME Platform SDK GUI Logs and Device Manager Logs

<category name="VM">
<priority value="INFO"/>
<appender-ref ref="CONSOLE-ALL"/>
<appender-ref ref="FILE"/>

</category>
154 Java ME Platform SDK Help • April 2009

CHAPTER 19

JSR Support

The Java ME Platform SDK supports many standard Application Programming
Interfaces (APIs) defined through the Java Community Process (JCP) program. JCP
APIs are often referred to as JSRs, named after the Java Specification Request
process.

See TABLE 19-1 for a full list of supported APIs. The Java ME SDK provides
documentation describing how certain APIs are implemented in the SDK. Many
supported APIs do not require special implementation considerations, so they are
not discussed in this help set.

The CLDC/MIDP platform is based on the Mobile Information Device Profile and Connected
Limited Device Configuration (JSRs 118 and 139).

The CDC platform is implemented to support Advanced Graphics and User Interface
Optional Package for the J2ME Platform, Personal Basis Profile 1.1, and the Connected Device
Configuration (JSRs 209, 217 and 218).

JSRs that are not part of the platform are referred to as “optional packages.“ All
optional packages are supported onthe CLDC/MIDP Platform.

In Java ME SDK version 3.0 the CDC platform does not support JSR 239 (Java
Binding for OpenGL ES API, and JSR 280 (XML API for Java ME).

See also TABLE 19-1.
155

JCP APIs
TABLE 19-1 Supported JCP APIs

JSR, API Name, URL

JSR 75, PIM and File PDA Optional Packages for the J2ME Platform
http://jcp.org/en/jsr/detail?id=75

JSR 82, Bluetooth and OBEX Java APIs for Bluetooth
http://jcp.org/en/jsr/detail?id=82

JSR 118, MIDP 2.0 Mobile Information Device Profile
http://jcp.org/en/jsr/detail?id=118

JSR 135, MMAPI 1.1 Mobile Media API
http://jcp.org/en/jsr/detail?id=135

JSR 139, CLDC 1.1 Connected Limited Device Configuration
http://jcp.org/en/jsr/detail?id=139

JSR 172, Web Services J2ME Web Services Specification
http://jcp.org/en/jsr/detail?id=172

JSR 177, SATSA Security and Trust Services API for Java ME
http://jcp.org/en/jsr/detail?id=177

JSR 179, Location Location API for Java ME
http://jcp.org/en/jsr/detail?id=179

JSR 180, SIP SIP API for Java ME
http://jcp.org/en/jsr/detail?id=180

JSR 184, 3D Graphics Mobile 3D Graphics API for J2ME
http://jcp.org/en/jsr/detail?id=184

JSR 185, JTWI 1.0 Java Technology for the Wireless Industry
http://jcp.org/en/jsr/detail?id=185

JSR 205, WMA 2.0 Wireless Messaging API
http://jcp.org/en/jsr/detail?id=205

JSR 209, AGUI 1.0 Advanced Graphics and User Interface Optional Package for the
J2ME Platform
http://www.jcp.org/en/jsr/detail?id=209

JSR 211, CHAPI Content Handler API
http://jcp.org/en/jsr/detail?id=211

JSR 217, PBP 1.1 Personal Basis Profile 1.1
http://www.jcp.org/en/jsr/detail?id=218
156 Java ME Platform SDK Help • April 2009

http://jcp.org/en/jsr/detail?id=75
http://jcp.org/en/jsr/detail?id=82
http://jcp.org/en/jsr/detail?id=118
http://jcp.org/en/jsr/detail?id=135
http://jcp.org/en/jsr/detail?id=139
http://jcp.org/en/jsr/detail?id=172
http://jcp.org/en/jsr/detail?id=177
http://jcp.org/en/jsr/detail?id=179
http://jcp.org/en/jsr/detail?id=180
http://jcp.org/en/jsr/detail?id=184
http://jcp.org/en/jsr/detail?id=185
http://jcp.org/en/jsr/detail?id=205
http://jcp.org/en/jsr/detail?id=211

JSR 218, CDC Connected Device Configuration
http://jcp.org/en/jsr/detail?id=218

JSR 226, SVG Scalable 2D Vector Graphics API for J2ME
http://jcp.org/en/jsr/detail?id=226

JSR 229, Payment Payment API
http://jcp.org/en/jsr/detail?id=229

JSR 234, AMMS Advanced Multimedia Supplements
http://jcp.org/en/jsr/detail?id=234

JSR 238, MIA Mobile Internationalization API
http://jcp.org/en/jsr/detail?id=238

JSR 239 Java Binding for OpenGL ES API
http://jcp.org/en/jsr/detail?id=239

JSR 248, MSA 1.0 Mobile Service Architecture
http://jcp.org/en/jsr/detail?id=248

JSR 256 Mobile Sensor API
http://jcp.org/en/jsr/detail?id=256

JSR 280, XML API XML API for Java ME
http://jcp.org/en/jsr/detail?id=280

TABLE 19-1 Supported JCP APIs (Continued)

JSR, API Name, URL
Chapter 19 JSR Support 157

http://jcp.org/en/jsr/detail?id=226
http://jcp.org/en/jsr/detail?id=229
http://jcp.org/en/jsr/detail?id=234
http://jcp.org/en/jsr/detail?id=238
http://jcp.org/en/jsr/detail?id=239
http://jcp.org/en/jsr/detail?id=248
http://jcp.org/en/jsr/detail?id=248
http://jcp.org/en/jsr/detail?id=248

158 Java ME Platform SDK Help • April 2009

CHAPTER 20

JSR 75: PDA Optional Packages

The Java ME Platform SDK supports JSR 75, the PDA Optional Packages (PDAP) for
the J2ME Platform. JSR 75 includes two independent APIs:

■ The FileConnection optional package allows MIDlets access to a local device file
system.

■ The Personal Information Management (PIM) optional package includes APIs for
manipulating contact lists (address book), calendars, and to-do lists.

This chapter describes how the Java ME Platform SDK implements the
FileConnection and PIM APIs.

FileConnection API
On a real device, the FileConnection API typically provides access to files stored in
the device’s memory or on a memory card.

In the Java ME Platform SDK emulator, the FileConnection API enables MIDlets to
access files stored on your computer’s hard disk.

The files that can be accessed using FileConnection are stored in subdirectories of
USER_HOME/javame-sdk/3.0/work/emulator-instance/appdb/filesystem. For
example, the DefaultCldcPhone1 emulator skin comes with a root directory
installed called root1, which contains a Readme file and an empty directory named
photos. The full path of the file is:
USER_HOME/javame-sdk/3.0/work/emulator-instance/appdb/filesystem\
root1\photos.
159

Note – If multiple instances of the same emulator skin run simultaneously, the Java
ME Platform SDK generates unique file paths for each one. For instance, the first
directory is named DefaultCldcPhone1 and the second instance is named
DefaultCldcPhone2.

Each subdirectory of filesystem is called a root. The Java ME Platform SDK
provides a mechanism for managing roots. While the emulator is running, choose
View > External Events Generator from the emulator window’s menu. A utility
window opens. Click the File Connection tab.

In the File Connection panel you can mount, unmount, or delete filesystem roots.
Mounted roots are displayed in the top list, and unmounted roots are moved to the
bottom list. Mounted root directories and their subdirectories are available to
applications using the FileConnection API. Unmounted roots can be remounted in
the future.

■ To add a new empty filesystem root directory, click Mount Empty and fill in a
name for the directory.
160 Java ME Platform SDK Help • April 2009

■ To mount a copy of an existing directory, click Mount Copy, and browse to choose
a directory you want to copy. When the File System Root Entry dialog opens,
enter the name for this root. A deep copy of the selected directory is placed into
the emulator’s filesystem with the specified root name.

■ To make a directory inaccessible to the FileConnection API, select it in the list and
click Unmount. A dialog opens asking for the name of this root. The selected root
is unmounted and moved to the Unmounted roots list.

■ To completely remove a mounted directory, select it and click Unmount & Delete.

■ To remount an unmounted directory, select it and click Remount. The root is
moved to the mounted roots list.

■ To delete an unmounted directory, select it and click Delete. The selected root is
removed from the list.

PIM API
The Java ME Platform SDK emulator stores contact, calendar, and to-do information
in standard files on your desktop computer’s hard disk. All information is stored in:

USER_HOME/javame-sdk/3.0/work/emulator-instance/appdb/filesystem/skin/pim.

This directory is shared by all running emulators. Lists are stored in subdirectories
of the contacts, events, and todo directories. For example, a contact list called
Contacts is contained in
USER_HOME/javame-sdk/3.0/work/emulator-instance/appdb/filesystem/ski
n/Contacts:

Inside the list directory, items are stored in vCard (.vcs) or vCalendar (.vcf)
format (see http://www.imc.org/pdi/). Contacts are stored in vCard format,
while calendar and to-do items are both stored in vCalendar format.

Running PDAPDemo
PDAPDemo shows how to use the PIM and FileConnection APIs that are part of the
JSR 75 specification.
Chapter 20 JSR 75: PDA Optional Packages 161

Browsing Files
To run the file browser, you’ll need to give the MIDlet appropriate security
authorization, if you have not already done so. Right-click on your project, choose
Properties, and select Specify the Security Domain. If necessary, select the maximum
domain and press OK.

Now open and run the PDAPDemo project. Launch the FileBrowser MIDlet. You
see a directory listing, and you can browse through the available directories and
files. By default there is one directory, root1. This directory is located at
USER_HOME/javame-sdk/3.0/work/emulator-instance/appdb/filesystem/ro
ot1.

Select the directory and press the View soft button to enter it.

The directories photos and private are empty by default. You can add files and
root directories and they will be visible to the JSR 75 File API. See Chapter 20 for
more information. (This demo shows a README and some JPEGs that were added
to the local photos directory.)
162 Java ME Platform SDK Help • April 2009

Using the Menu commands you can view a file or see its properties. Try selecting the
file and choosing Properties or View from the menu. Here we view README.txt:
Chapter 20 JSR 75: PDA Optional Packages 163

The PIM API
The JSR75 PIM APIs example demonstrates how to access personal information, like
contact lists, calendars, and to-do lists. After you launch the example, choose a type
of list from the main menu.

In this example application, each type of list works the same way and each list type
contains a single list. For example, if you choose Contact Lists, there is a single
contact list called Contacts. Event Lists contains a single list called Events, and To Do
Lists contains a single list named To Do.

Once you've selected a list type and chosen the specific list, you can view all the
items in the list. If this is the first time you've run the example, the list is probably
empty.

To add an item, choose New from the menu. The application prompts you for a
Formatted Name for the item. You can add more data fields to this item using option
3, Add Field, in the menu. You see a list of field names. Pick as many as you like.
You can fill in the field at any time.
164 Java ME Platform SDK Help • April 2009

To save the list item, choose Commit (option 5) from the menu.

To return to the list, choose the Back command. You'll see the item you just created
in the list.

The items that you create are stored in standard vCard or vCalendar format in the
USER_HOME/javame-sdk/3.0/work/emulator-instance/appdb/filesystem/ski
n/pim directory. See Chapter 20 for more information.

The PIM API allows for exporting contact, calender, and to-do items in a standard
format. The exact format depends on the list type. When you are viewing an item in
any list, the menu contains a command for viewing the exported item.

For example, when you are viewing a contact list item, the menu contains Show
vCard. When you choose this command, the exported item is shown on the screen.
Calendar items and to-do items both get exported as vCalendar.
Chapter 20 JSR 75: PDA Optional Packages 165

166 Java ME Platform SDK Help • April 2009

CHAPTER 21

JSR 82: Bluetooth and OBEX
Support

The Java ME Platform SDK emulator supports JSR 82, the Java APIs for Bluetooth.
The emulator is fully compliant with version 1.1 of the specification, which describes
integration with the push registry. JSR 82 includes two independent APIs:

■ The Bluetooth API provides an interface to Bluetooth wireless networking,
including device discovery and data exchange.

■ The OBEX API allows applications to use the Object Exchange (OBEX) protocol
over Bluetooth or other communication channels.

This chapter describes how the Java ME Platform SDK implements the Bluetooth
and OBEX APIs.

Bluetooth Simulation Environment
The Java ME Platform SDK emulator enables you to develop and test applications
that use Bluetooth without having actual Bluetooth hardware. The SDK simulates a
Bluetooth environment for running emulators. Multiple emulator instances can
discover each other and exchange data using the Bluetooth API.

For an example, see Running the Bluetooth Demo.
167

OBEX Over Infrared
The Java ME Platform SDK implements OBEX transfer over simulated Bluetooth and
infrared connections. The simulated infrared connection follows the IrDA standard
(see http://www.irda.org/). Simulated infrared transfers can take place between
multiple running emulators.

Setting Bluetooth and OBEX Preferences
The Java ME Platform SDK enables you to configure the Bluetooth and OBEX
simulation environment. Choose Edit > Preferences and select Bluetooth/OBEX to
display the following window.

OBEX Preferences
Devices using IrDA in the real world discover other devices by listening. You can
configure how long the Java ME Platform SDK emulator waits to discover another
device using the Discovery timeout field in the IrDA OBEX section of the preferences
window. Enter a value in milliseconds.

At the API level, the discovery timeout value determines how long a call to
Connector.open("irdaobex://discover...") blocks before it returns or
throws an exception.

The maximum packet length affects how much data is sent in each packet between
emulators. Shorter packet values result in more packets and more packet overhead.

Bluetooth Internal Properties
In the Bluetooth section of the preferences window, the Device discovery timeout is
the amount of time, in milliseconds, the emulator waits while attempting to locate
other devices in the simulated Bluetooth environment.

Bluetooth Address of Next Emulator is the Bluetooth address to be assigned to the
first emulator instance. Subsequent instances of the emulator receive an
automatically generated address.
168 Java ME Platform SDK Help • April 2009

Bluetooth System Properties
The System Properties tab in the Bluetooth section of the preferences contains
properties that can be retrieved in an application using the getProperty() method
in javax.bluetooth.LocalDevice.

The Bluetooth properties are fully described in the JSR 82 specification.

Bluetooth BCC Properties
The Bluetooth Control Center (BCC) controls Bluetooth settings. Some devices might
provide a GUI to customize Bluetooth settings. In the Java ME Platform SDK, the
BCC is configured using the BCC Properties tab of the Bluetooth preferences. The
properties are as follows.

TABLE 21-1 BCC Properties

Property Description

Enable Bluetooth
support

If this property is disabled, LocalDevice.getLocalDevice()
throws a BluetoothStateException and no connections can be
created. This is useful to test the behavior of your application on
devices that support JSR 82 but might have the Bluetooth feature
turned off.

Device is
discoverable

Indicates whether or not this emulator can be discovered by other
emulators.

Friendly name A human-readable name for the emulator in the simulated Bluetooth
environment. If the name is left blank, the emulator does not support
the friendly name feature.

Encryption Determines whether connection encryption is supported (on) or not
(off). In addition, the force settings means all connections must be
encrypted. See the documentation for RemoteDevice’s encrypt()
method for details.

Authorization Similar to the Encryption property. See RemoteDevice’s
authorize() method.

Authentication Similar to Encryption and Authorization. See RemoteDevice’s
authenticate() method.
Chapter 21 JSR 82: Bluetooth and OBEX Support 169

Running the Bluetooth Demo
This application contains MIDlets that demonstrate the use of JSR 82’s Bluetooth
API. It shows how images can be transferred between devices using Bluetooth.

You must run two emulator instances to see this process, and each device must have
a different phone number.

For example, use DefaultCldcMsaPhone1 to launch Bluetooth Demo, then choose
Server. The emulator asks you if you want to allow a Bluetooth connection. Choose
Yes. The server starts and displays a list of images. At the beginning, none of the
images are available on the Bluetooth network

Select the images you want to make available.

From the menu choose Publish image (or type or click 1). The icon color changes
from purple to green, indicating it is published.

Use DefaultCldcMsaPhone2 to launch Bluetooth Demo, then select Client. The
MIDlet tells you it’s ready to search for images. Click the Find soft button. The
MIDlet finds the other emulator and get a list of images from it. Select one from the
list and choose Load.

■ If you are running the demonstration in a trusted protection domain, the image is
transferred using simulated Bluetooth and is shown on the client emulator.

■ If you are not running in a trusted protection domain, the first emulator (the
server) displays a prompt asking if you want to authorize the connection from the
client. Choose Yes. The image is displayed in the client emulator.
170 Java ME Platform SDK Help • April 2009

CHAPTER 22

JSR 135: Mobile Media API Support

JSR 135, the Mobile Media API (MMAPI), provides a standard API for rendering and
capturing time-based media, like audio or video. The API is designed to be flexible
with respect to the media formats, protocols, and features supported by various
devices. See the following topics:

■ Media Types

■ Adaptive Multi-Rate (AMR) Content

■ Media Capture

■ MMAPI MIDlet Behavior

■ Ring Tones

■ Download Ring Tones

■ Ring Tone Formats

■ Running the MMAPI Sample Project

■ Running AudioDemo

■ Running MMAPIDemos

■ Running the Multimedia Sample Project

For information on programming with MMAPI, see the following articles:

Mobile Media API Overview:
http://developers.sun.com/techtopics/mobility/apis/articles/mmap
i_overview/

The J2ME Mobile Media API: http://jcp.org/en/jsr/detail?id=135
171

http://jcp.org/en/jsr/detail?id=135

Media Types
The emulator’s MMAPI implementation supports the following media types.

Adaptive Multi-Rate (AMR) Content
The Java ME Platform SDK simulates support for Adaptive Multi-Rate (AMR)
content (http://www.ietf.org/rfc/rfc3267.txt). Although the Java ME
Platform SDK cannot decode AMR content, the implementation returns a player for
AMR content when requested.

On Windows, AMR files are converted to regular WAVE files and passed to Qsound.
Because the Windows version interfaces with the 3GPP implementation, you do not
have to do anything to get AMR files to play.

Media Capture
The Java ME Platform SDK emulator supports audio and video capture. Audio
capture is supported by using the capture capabilities of the system upon which the
emulator runs.

Video capture is supported by simulating a camera input.

Consult the MobileMediaAPI example application for details and source code that
demonstrates how to capture audio and video.

MIME Type Description

audio/amr Adaptive Multi-Rate

audio/midi MIDI files

audio/sp-midi Scalable Polyphony MIDI

audio/x-tone-seq MIDP 2.0 tone sequence

audio/x-wav WAV PCM sampled audio

image/gif GIF 89a (animated GIF)

video/mpeg MPEG video

video/vnd.sun.rgb565 Video capture
172 Java ME Platform SDK Help • April 2009

MMAPI MIDlet Behavior
MIDlets have a lifecycle that is defined in the MIDP specification. MIDlets can be
paused by events such as incoming phone calls. A well-behaved MIDlet releases
important device resources when it is paused and reallocates or restarts those
resources when the MIDlet is resumed. In the MMAPI arena, stop any Players that
are rendering content when a MIDlet is paused.

The Java ME Platform SDK prints a message to the console if you pause a MIDlet
and it does not stop its running Players. You can test this feature using the Pausing
Audio Test MIDlet in the MobileMediaAPI demonstration application.

The warning message is printed only once for each running emulator.

Ring Tones
MMAPI can be used to play ring tones, as demonstrated in Simple Tones and Simple
Player. The ring tone formats mentioned here are in common use. You can download
ring tones or create your own.

Download Ring Tones
Ring tone files can be downloaded from many internet sites, including the following:

■ http://www.surgeryofsound.co.uk/

■ http://www.convertyourtone.com/

■ http://www.filmfind.tv/ringtones/

Ring Tone Formats
This section provides samples of several formats

■ RTTTL, the Ringing Tones text transfer language format, is explained at

http://www.convertyourtone.com/rtttl.html

■ Nokia Composer

This is a rendition of Beethoven’s 9th symphony in Nokia Composer format:
Chapter 22 JSR 135: Mobile Media API Support 173

http://www.filmfind.tv/ringtones/

16g1,16g1,16g1,4#d1,16f1,16f1,16f1,4d1,16g1,16g1,16g1,16#d1,

16#g1,16#g1,16#g1,16g1,16#d2,16#d2,16#d2,4c2,16g1,16g1,16g1,

16d1,16#g1,16#g1,16#g1, 16g1,16f2,16f2,16f2,4d2

■ Ericsson Composer

Beethoven’s Minuet in G:

a b + c b + c b + c b + C p + d a B p + c g A

p f g a g a g a g A p b f G p a e F

Beethoven’s 9th symphony theme:

f f f # C # d # d # d C p f f f # c # f #f # f f +# c + #
c + # c # A ff f c # f # f # f f + # d + # d + # d

■ Siemens Composer Format

Inspector Gadget theme:

C2(1/8) D2(1/16) Dis2(1/8) F2(1/16) G2(1/8)

P(1/16) Dis2(1/8) P(1/16) Fis2(1/8) P(1/16)

D2(1/8) P(1/16) F2(1/8) P(1/16) Dis2(1/8)

P(1/16) C2(1/8) D2(1/16) Dis2(1/8) F2(1/16)

G2(1/8) P(1/16) C3(1/8) P(1/16) B2(1/2) P(1/4)

C2(1/8) D2(1/16) Dis2(1/8) F2(1/16) G2(1/8) P(1/16)

Dis2(1/8) P(1/16) Fis2(1/8) P(1/16) D2(1/8) P(1/16)

F2(1/8) P(1/16) Dis2(1/8) P(1/16) C3(1/8) B2(1/16)

Ais2(1/8) A2(1/16) Gis2(1/2) G2(1/8) P(1/16) C3(1/2)

■ Motorola Composer

Beethoven’s 9th symphony:

4 F2 F2 F2 C#4 D#2 D#2 D#2 C4 R2 F2 F2 F2 C#2 F#2 F#2

F#2 F2 C#+2 C#+2 C#+2 A#4 F2 F2 F2 C2 F#2 F#2 F#2 F2

D#+2 D#+2 D#+2

■ Panasonic Composer

Beethoven’s 9th symphony:

444** 444** 444** 1111* 4444** 4444** 4444** 111*

0** 444** 444** 444** 1111** 4444** 4444** 4444**

444** 11** 11** 11** 6666* 444** 444** 444** 111**

4444** 4444** 4444** 444** 22** 22** 22**

■ Sony Composer
174 Java ME Platform SDK Help • April 2009

Beethoven’s 9th sympony:

444****444****444****111#*****444#****444#****444#****

111*****(JD)0000444****444****444****111#****444#****

444#****444#****444****11#****11#****11#****666#*****

444****444****444****111****444#****444#****

444#****444****22#****22#****22#****

Running the MMAPI Sample Project
The following projects demonstrate ways to implement MMAPI 1.1. See Running
AudioDemo, Running MMAPIDemos.

Running AudioDemo
Demonstrates audio capabilities, including mixing and playing audio with an
animation. Select a MIDlet from the list, and from the menu, select 1, Launch.

■ Audio Player.

Select a sound clip and press the Play soft button. Click Back to return to the list
of clips.

■ Bouncing Ball. Select No Background and press the Play soft button. Two balls
randomly bounce in the screen, emitting a tone whenever they contact a wall.

Wave background, tone seq background, and MIDI background play the same
two-ball audio visual sequence with the additional audio background.

■ Mix Demo shows that different audio formats can play simultaneously. Select a
MIDlet and press the Play soft button.

Tone+Wav - The audio clip starts playing and the Tone soft button is displayed.
Press the Tone button to hear a tone playing over the original audio clip.

Tone+ToneSeq - The audio clip starts playing and the Tone soft button is
displayed. Press the Tone button to hear a tone playing over the original audio
clip.

ToneSeq+Wav - The tone sequence and the wav sequence play simultaneously.
Press the Pause soft button to interrupt, and press Play to resume.
Chapter 22 JSR 135: Mobile Media API Support 175

Running MMAPIDemos
The MMAPIDemos application contains four MIDlets that showcase the SDK’s
multimedia capabilities:

■ Simple Tones

■ Simple Player

■ Video

■ Pausing Audio Test

Simple Tones
Simple Tones demonstrates how to use interactive synthetic tones. Select a sample,
then click Play on the lower right.

■ Short Single Tone and Long Single Tone use Manager.playTone() to play tones
with different pitch.

■ Short MIDI event plays a chord on the interactive MIDI device (locator
"device://midi"). The shortMidiEvent() method of MIDIControl is used
to trigger the notes of the chord.

■ To run the MMAPI Drummer demo, click or type number keys (0-9). Each
number plays a different sound.

Simple Player
The Simple Player application demonstrates the range of audio and video
capabilities of the emulator. It includes sample files in a variety of formats and can
play files from the emulator's persistent storage or from HTTP URLs.

The player portion uses a generic javax.microedition.media.Player interface.
The player displays duration, media time, and controls for running the media file. If
metadata is available in a file, the player enables you to view the information, such
as author and title. In the case of MIDI files, if karaoke text is present in the file, it
displays on the screen during play. Graphical user interface controls can be viewed
on the display screen if applicable. You can access these controls by selecting one of
the media samples in Simple Player, then pressing the Menu button to view and
select the desired command.

Select Simple Player then click Launch. The demo includes the following media
samples:
176 Java ME Platform SDK Help • April 2009

■ Bong plays a short WAV file. You can adjust certain playback features, as
described later in this document. The display shows the duration of the sound in
minutes:seconds:tenths of a second, for example 00:17:5. This audio sample is a
resource file in the MIDlet suite JAR file.

■ MIDI Scale plays a sample musical scale. The display shows the title of the
selected music file, the duration of the song, the elapsed time during playback,
and the current tempo in beats per minute (bpm). This MIDI file is stored in the
MIDlet suite JAR file.

■ Simple Ring Tone plays a short sequence of Beethoven's Fifth Symphony. The
display shows the title of the selected music file, the duration of the song, the
elapsed time in seconds and tenths of a second during playback, and the current
tempo in beats per minute (bpm). This ringtone file (.jts format) is stored in the
MIDlet suite JAR file.

■ WAV Music plays a brief audio file. The display shows the title of the audio file,
the duration of the audio the elapsed time during playback, and the playback rate
in percent. This WAV file is retrieved from an HTTP server.

■ MIDI Scale plays a MIDI file that is retrieved from an HTTP server.

■ The Animated GIF example shows an animated GIF that counts from 1 to 5. The
file is stored in the MIDlet suite JAR file.

■ Audio Capture from a default device lets you capture audio from a microphone
or connected device. The sound is captured and played back on the speaker. To
avoid feedback, use a headset.

■ Video Capture Simulation simulates viewing input video such as might be
possible on a device equipped with a camera.

■ MPEG1 Video [http]. Plays an MPEG video found at
http://java.sun.com/products/java-media/mma/media/test-mpeg.mp
g.

■ [enter URL] allows you to play back media files from arbitrary HTTP servers.
Type a valid URL (for example,
http://java.sun.com/products/java-media/mma/media/test-wav.mpg
) at the insertion point and click OK to play a file. If you want to open an HTTP
directory from which to select media, be sure to add a slash to the end of the URL.

In addition, Simple Player parses ring tones in Ringing Tones text transfer language
(RTTTL). See http://www.convertyourtone.com/rtttl.html for information
on RTTTL.

The Simple Player includes a common set of commands that control media playback.
The commands are available from the Simple Player menu, and some have
associated keypad buttons. TABLE 22-1 describes these commands.
Chapter 22 JSR 135: Mobile Media API Support 177

The commands may or may not be available depending on the media type that
Simple Player is playing. In addition, some commands can be invoked using the
keypad buttons. The following table describes the availability of commands and
their keypad equivalents.

Note that a short list of commands and the corresponding keypad buttons is
available in the Simple Player application itself. Just choose the Quick Help
command from the menu.

Video
The Video application illustrates how the emulator is capable of playing animated
GIF files and capturing video. On a real device with a camera, video capture can be
used to show the user what the camera sees.

TABLE 22-1 Simple Player Commands

Command
Menu
Item Description

Mute/Unmute 1 Turns off sound but the file continues to play. This command
toggles to Unmute.

Play 2

Volume 3 Increases or decreases loudness.

META Data 4 Displays information provided by the media file such as
copyright information, title, and track list.

Stop in 5
seconds

5 Pauses the audio play in five seconds when set during playback.

Loopmode 6

Rate 7 Alters the rate of speed of playback.

Tempo 8 Increases or decreases the tempo of the tone sequence or MIDI
file.

Pitch 9 Lowers or raises the notes in a MIDI file.

Skip Forward Skips forward five percent of the duration of the media file. The
sound track syncs to the video

Skip Backward Skips backward five percent of the duration of the media file.
The sound track syncs to the video.

Rewind Returns to the start time of the audio playback.

Quick Help Displays a list of commands and keypad buttons.
178 Java ME Platform SDK Help • April 2009

Animated GIFs and video capture can be implemented using either a Form Item or
a Canvas. The Video demonstration includes all the possibilities. Animated GIF -
Form [jar] shows an animated GIF as a Form Item. The form also includes some
information about the playback, including the current time. Choose the Snapshot
command to take a snapshot of the running animation. The snapshot will be placed
in the form following the animated GIF.

■ Animated GIF - Canvas [jar] shows an animated GIF in a Canvas. A simple
indicator shows the progress through the animation. Choose Snapshot to get a
still image of the current appearance. The snapshot is shown briefly, then the
display goes back to the animation.

■ Video Capture - Form simulates capturing video from a camera or other source
and showing it as an Item in a Form. Choose the Snapshot command to take a
snapshot of the captured video. The snapshot will be placed in the form following
the video capture.

■ Video Capture - Canvas simulates capturing video from a camera or other source
and showing it in a Canvas. Choose Snapshot to get a still image of the current
appearance. The snapshot is shown briefly, then the display goes back to the
video capture.

■ MPEG1 Video - Form, MPEG1 Video - Canvas

The MPEG1 applications obtain MPEGs from the web, so if you are behind a
firewall, you must configure the emulator’s proxy server settings, as described in
Configuring the Web Browser and Proxy Settings.

When you play the demo, expect to wait a few seconds while the demo obtains
the data. The MPEG1 demos have the same behavior as Video Capture - Form
and Video Capture - Canvas, respectively.

Attributes for MobileMediaAPI
The MobileMediaAPI applications have the following editable attributes.
Right-click on the project and select Properties. Select Application Descriptor and
view the Attributes tab.

TABLE 22-2 Descriptions of MMAPI-specific MIDlet attributes

Attribute Description

PlayerTitle-n Name of the nth media title to be played back by the Simple Player
MIDlet.
Chapter 22 JSR 135: Mobile Media API Support 179

Running the Multimedia Sample Project
This MIDlet simply plays different multimedia samples. The sample formats are:
AMR narrow band, MIDI audio, Wave audio, MPEG video, and animated GIF.

PlayerURL-n Location of the nth media title, PlayerTitle-n, to be played back
by the Simple Player MIDlet.

VideoTest-n The name of the nth media title to be played back by the Video
application.

VideoTest-URLn Location of the nth media title, VideoTest-n, to be played back
by the Video application.

TABLE 22-2 Descriptions of MMAPI-specific MIDlet attributes (Continued)

Attribute Description
180 Java ME Platform SDK Help • April 2009

CHAPTER 23

JSR 172: Web Services Support

The Java ME Platform SDK emulator supports JSR 172, the J2ME Web Services
Specification. JSR 172 provides APIs for accessing web services from mobile
applications. It also includes an API for parsing XML documents.

Generating Stub Files from WSDL
Descriptors
The Java ME Platform SDK provides a stub generator that automates creating source
code for accessing web services that conform to the J2ME Web Services Specification.
You can add stubs to any MIDP application. The following is a general procedure for
adding stubs:

1. In the Projects window, expand the tree for a project.

2. Right-click on the Source Packages node and select New > Other.

3. In the Categories pane select Other, and in the File Types area choose Mobile
Webservice Client.

4. In the Generate J2ME Webservice Stub page, you can either:

■ Click Running Web Service and enter the URL for the WSDL

■ Click Specify the Local filename for the retrieved WSDL and browse to a file on
your system.

In either case, you must enter a Package name, then click Finish. The new
package appears in the project and includes an interface file and a stub file.

5. You can now edit your source files to call the content the stub provides, then
build and run.
181

See Creating a New Mobile Web Service Client for a step by step process, or see
Running JSR172Demo and view the demo source files.

Creating a New Mobile Web Service
Client
This sample procedure creates a new project and adds a web service client.
However, you can add a web service client to any MIDP project, it does not have to
be new.

1. Select File > New Project, choose MIDP application, and click Next. Name your
project and ensure Create Hello MIDlet is checked. Click Finish.

2. Right-click on the new project’s Source Packages node and select New > Other.

3. In the Categories pane select Other, and in the File Types area choose Mobile
Webservice Client.

4. In the Generate J2ME Webservice Stub page:

■ Click Running Web Service and in the WSDL URL field, enter:

http://www.xmlme.com/WSShakespeare.asmx?WSDL

■ In the Package field, enter testws. This is the package name.

Click Finish. The new package appears in Source Packages and includes
Shakespeare.java and Shakespeare_Stub.java.

5. Edit HelloMIDlet.java as follows:

■ At the beginning, add the following import declaration:

import testws.*

■ Locate the startApp() method and replace its contents with the following
code:

String text;
Shakespeare s = new Shakespeare_Stub();
try
{

text = s.GetSpeech("Romeo");
}catch(java.rmi.RemoteException rex)
{

text = "error";
System.out.println(rex.getMessage());

}
TextBox t = new TextBox("Hello", text, 2048, 0);
182 Java ME Platform SDK Help • April 2009

6. Build and run the project. You see a quote from Shakespeare’s Romeo and Juliet
on the device screen.

You can vary the above procedure to use a local WSDL file. Open the following web
page in a browser:

http://www.xmlme.com/WSShakespeare.asmx?WSDL

Save it to a local file. For example, c:\ws\WSShakespeare.wsdl. Follow the
procedure above, except at Step 4, specify the local file name.

Running JSR172Demo
JSR172Demo shows how to access a web service from a MIDlet. The web service is
already running on an Internet server, and it conforms to the J2ME Web Services
Specification.

If you are using a proxy server, you must configure the emulator’s proxy server
settings as described in Configuring the Web Browser and Proxy Settings. Build and
run the example.

JSR172Demo contains a single MIDlet named Server Script. Launch it and follow the
prompts. You can browse through simulated news headlines, all of which are
retrieved from the web service.

t.addCommand(exitCommand);
t.setCommandListener(this);
display.setCurrent(t);
Chapter 23 JSR 172: Web Services Support 183

184 Java ME Platform SDK Help • April 2009

CHAPTER 24

JSR 177: Smart Card Security
(SATSA)

The Security and Trust Services APIs (SATSA) provide smart card access and
cryptographic capabilities to applications running on small devices. JSR 177 (the
SATSA specification) defines four distinct APIs as optional packages:

■ SATSA-APDU - Enables applications to communicate with smart card
applications using a low-level protocol.

■ SATSA-JCRMI - Provides an alternate method for communicating with smart
card applications using a remote object protocol.

■ SATSA-PKI -Enables applications to use a smart card to digitally sign data and
manage user certificates.

■ SATSA-CRYPTO - A general-purpose cryptographic API that supports message
digests, digital signatures, and ciphers.

The Java ME Platform SDK emulator fully supports SATSA. This topic describes
how you can use the Java ME Platform SDK to work with SATSA in your own
applications.

For a more general introduction to SATSA and using smart cards with small devices,
see the SATSA Developer’s Guide, which is available at
http://java.sun.com/j2me/docs/satsa-dg/.

If you need to develop your own Java Card applications, download the Java Card
Development Kit, available at http://java.sun.com/products/javacard/.
185

Card Slots in the Emulator
Real SATSA devices are likely to have one or more slots that house smart cards.
Applications that use SATSA to communicate with smart cards need to specify a slot
and a card application.

The Java ME Platform SDK emulator is not a real device and, therefore, does not
have physical slots for smart cards. Instead, it communicates with a smart card
application using a socket protocol. The other end of the socket might be a smart
card simulator or it might be a proxy that talks with real smart card hardware.

The Java ME Platform SDK emulator includes two simulated smart card slots. Each
slot has an associated socket that represents one end of the protocol that is used to
communicate with smart card applications.

The default ports are 9025 for slot 0 and 9026 for slot 1. These port defaults are a
property of the device. To alter the defaults, go to the device directory:

C:\Documents and Settings\user\javame-sdk\ 3.0\directory-number

Edit the device.properties file and modify this line:

runtime.internal.com.sun.io.j2me.apdu.hostsandports =
localhost:9025,localhost:9026

Java Card Platform Simulator (cref)
The Java ME Platform SDK includes the Java Card Platform Simulator, which you
can use to simulate smart cards in the Java ME Platform SDK emulator’s slots. The
Java Card Platform Simulator is found in the following location:

installdir\bin\cref.exe.

Hereafter we refer to it as simply cref. The basic procedure for testing SATSA
applications with the Java ME Platform SDK is as follows:

1. Start cref with a Java Card platform application.

2. Start the emulator.

When a SATSA application attempts to communicate with a smart card, it uses a
socket connection to communicate with cref.
186 Java ME Platform SDK Help • April 2009

For example, to run cref on port 9025 with a prebuilt memory image, use a
command line similar to this:

start cref -p 9025 -i memory_image.eeprom

The Java ME Platform SDK includes a demonstration application, Mohair,
which illustrates how to use SATSA. For detailed instructions on running Mohair,
see MohairMIDlet.

Adjusting Access Control
Access control permissions and PIN properties can be specified in text files. When
the first APDU or Java Card RMI connection is established, the implementation
reads the ACL and PIN data from the acl_slot-number in the workdir\
emulator-instance\appdb directory. For example, an access control file for slot 0
might be:

C:\Documents and Settings\User\javame-sdk\3.0\work\emulator_instance\
appdb\acl_0

If the file is absent or contains errors, the access control verification for this slot is
disabled.

The file can contain information about PIN properties and application permissions.

Specifying PIN Properties
PIN properties are represented by a pin_data record in the access control file.

pin_data {
id number
label string
type bcd | ascii | utf | half-nibble | iso
min minLength
max maxLength
stored storedLength
reference byte
pad byte - optional
flag case-sensitive | change-disabled | unblock-disabled

needs-padding | disable-allowed | unblockingPIN
}

Chapter 24 JSR 177: Smart Card Security (SATSA) 187

Specifying Application Permissions
Application permissions are defined in access control file (acf) records. The record
format is as follows:

The acf record is an Access Control File. The AID after acf identifies the
application. A missing AID indicates that the entry applies to all applications. The
acf record can contain ace records. If there are no ace records, access to an
application is restricted by this acf.

acf AID fnumbers separated by blanks {
ace {

root CA name
...
apdu {

eight numbers separated by blanks
...

}
...
jcrmi {

classes {
classname
...
}
hashModifier string
methods {
method name and signatiure
...

}
}
...
pin_apdu {

id number
verify | change | disable | enable | unblock
four hexadecimal numbers

...
}
...
pin_jcrmi {

id number
verify | change | disable | enable | unblock
method name and signature

...
}

...
}

...
}

188 Java ME Platform SDK Help • April 2009

The ace record is an Access Control Entry. It can contain root, apdu, jcrmi,
pin_apdu, and pin_jcrmi records.

The root record contains one CA name. If the MIDlet suite was authorized using a
certificate issued by this CA, this ace grants access to this MIDlet. A missing root
field indicates that the ace applies to all identified parties. One principal is
described by one line. This line must contain only the word root and the principal
name, for example:

root CN=thehost;OU=JCT;O=dummy CA;L=Santa Clara;ST=CA;C=US

The apdu or jcrmi record describes an APDU or Java Card RMI permission. A
missing permission record indicates that all operations are allowed.

An APDU permission contains one or more sequences of eight hexadecimal values,
separated by blanks. The first four bytes describe the APDU command and the other
four bytes are the mask, for example:

The Java Card RMI permission contains information about the hash modifier
(optional), class list, and method list (optional). If the list of methods is empty, an
application is allowed to invoke all the remote methods of interfaces in the list of
classes, for example:

All the numbers are hexadecimal. Tabulation, blank, CR, and LF symbols are used as
separators. Separators can be omitted before and after symbols { and }.

The pin_apdu and pin_jcrmi records contain information necessary for PIN entry
methods, which is the PIN identifier and APDU command headers, or remote
method names.

apdu {
0 20 0 82 0 20 0 82
80 20 0 0 ff ff 0 0

}

jcrmi {
classes {

com.sun.javacard.samples.RMIDemo.Purse
}
hashModifier zzz
methods {

debit(S)V
setAccountNumber([B)V
getAccountNumber()[B

}
}

Chapter 24 JSR 177: Smart Card Security (SATSA) 189

Access Control File Example

pin_data {
label Unblock pin
id 44
type utf
min 4
stored 8
max 8
reference 33
pad ff
flag needs-padding
yflag unblockingPIN

}
pin_data {

label Main pin
id 55
type half-nibble
min 4
stored 8
max 8
reference 12
pad ff
flag disable-allowed
flag needs-padding

}

acf a0 0 0 0 62 ff 1 {
ace {

root CN=thehost;OU=JCT;O=dummy CA;L=Santa Clara;ST=CA;C=US

pin_jcrmi {
id 55
verify enterPIN([B)S
change changePIN([B[B)S
disable disablePIN([B)S
enable enablePIN([B)S
unblock unblockPIN([B[B)S
}

}
}

acf a0 0 0 0 62 ee 1 {
ace {

root CN=thehost;OU=JCT;O=dummy CA;L=Santa Clara;ST=CA;C=US

pin_apdu {
id 55
190 Java ME Platform SDK Help • April 2009

verify 1 2 3 1
change 4 3 2 2
disable 1 1 1 3
enable 5 5 5 4
unblock 7 7 7 5

}
}

}

acf a0 0 0 0 62 3 1 c 8 1 {
ace {

root CN=thehost;OU=JCT;O=dummy CA;L=Santa Clara;ST=CA;C=US

jcrmi {
classes {

com.sun.javacard.samples.RMIDemo.Purse
}

hashModifier xxx
methods {

setAccountNumber([B)V
getBalance()S
credit(S)V

}
}

}
ace {

jcrmi {
classes {

com.sun.javacard.samples.RMIDemo.Purse
}

debit(S)V
getAccountNumber()[B

}
}

}
}

acf a0 00 00 00 62 03 01 0c 02 01 {
ace {

root CN=thehost;OU=JCT;O=dummy CA;L=Santa Clara;ST=CA;C=US
apdu {

0 20 0 82 0 20 0 82
80 20 0 0 ff ff 0 0

}
apdu {

80 22 0 0 ff ff 0 0
}

}

Chapter 24 JSR 177: Smart Card Security (SATSA) 191

Running SATSADemos
SATSADemos includes demonstrations of SATSA, the Security and Trust Services
APIs. Most of the demonstrations show how to communicate with a smart card. The
emulator can communicate with a simulated smart card using a socket protocol. The
smart card simulator, cref, is included with the SDK, as discussed in Java Card
Platform Simulator (cref).

The following sections contain instructions for each menu choice for this demo. For
each demo, follow this sequence:

1. Start the instance(s) of cref from the command line.

2. Be sure to set the project security domain to maximum.

Right-click on the project, select Properties and choose Running. Enable Regular
execution and check Specify the Security Domain. Choose maximum from the list.

3. Run the project.

}
acf a0 00 00 00 62 03 01 0c 02 01 {

ace {
apdu {

0 20 0 82 ff ff ff ff
}

}
}

acf a0 00 00 00 62 03 01 0c 06 01 {

ace {
apdu {

0 20 0 82 ff ff ff ff
}

}
}

192 Java ME Platform SDK Help • April 2009

APDUMIDlet
This MIDlet demonstrates communication with a smart card using Application
Protocol Data Units (APDUs), small packets of data. APDUMIDlet expects to find
two simulated smart cards. You can run the smart card simulator using cref, which
is part of the Java Card Development Kit.

The Mohair application includes pre-built memory images that you can use with
cref. The memory images contain Java Card applications with which Mohair
interacts. The memory images are in the root directory of the Mohair project.

1. Right-click on the project, select Properties, and choose Running. Enable Regular
execution and check Specify the Security Domain. Choose maximum from the list.

2. Start up two instances of cref, one for each simulated card slot (assuming the
current directory is the SDK installation directory):

start bin\cref -p 9025 -i apps\SATSADemos\demo2.eeprom

start bin\cref -p 9026 -i apps\SATSADemos\demo2.eeprom

Note that the port number arguments (9025 and 9026 in this example) must match
the SATSA port numbers. Also, make sure you use the correct path to
demo2.eeprom.

3. Once you have the two smart card simulators running, run SATSADemos. Select
APDUMIDlet, select the Menu soft key and select Launch (1). Press Go when
prompted.

SATMIDlet
SATMIDlet demonstrates smart card communication with a slight variation on
APDU communication.

To set up the simulated smart card, use cref, very much like you did for
APDUMIDlet. This time you don’t have to specify a port number, and the memory
image is different:

1. Right-click on the project, select Properties, and choose Running. Enable Regular
execution and check Specify the Security Domain. Choose maximum from the list.

2. Start cref as follows:

start bin\cref -i apps\SATSADemos\sat.eeprom

Note that the port number arguments (9025 and 9026 in this example) must match
the SATSA port numbers. Also, make sure you use the correct path to
sat.eeprom.
Chapter 24 JSR 177: Smart Card Security (SATSA) 193

3. Once you have the smart card simulator running, run SATSADemos. Select
SATMIDlet, select the Menu soft key and select Launch (1). Press Go when
prompted.

CryptoMIDlet
CryptoMIDlet demonstrates the general cryptographic features of SATSA. It does
not interact with a smart card in any way. Choose the MIDLet and launch it to see
the cryptography results. Use the up and down navigation keys to scroll the display.

MohairMIDlet
MohairMIDlet has two functions. The first, “Find slots”, displays all the available
card slots. Each slot has a number followed by ‘C’ or ‘H’ indicating whether the slot
is cold-swappable or hot-swappable. After viewing the slots select Back to return to
the first screen.

The second part of MohairMIDlet, SATSA-PKI Sign test, uses a smart card to
generate a digital signature. As with the earlier demonstrations, you need to run
cref with the right memory image to prepare for the connection from
MohairMIDlet.

1. Right-click on the project, select Properties, and choose Running. Enable Regular
execution and check Specify the Security Domain. Choose maximum from the list.

2. Type the following from the SDK installation directory:

start bin\cref -i apps\SATSADemos\sat.eeprom

3. In the emulator, select SATSA-PKI Sign test. The following confirmation message
appears:

This certificate will be used: MohairAuth

Select the OK soft key.

4. For PIN 1, type: 1234

Select the OK soft key. The following confirmation message appears:

This string will be signed: JSR 177 Approved

5. Select the OK soft key. The following confirmation message appears:

This certificate will be used: MohairAuth

Select the OK soft key.

6. For non repudiation key 1 PIN, type: 2345
194 Java ME Platform SDK Help • April 2009

Select the soft menu and choose OK (option 2).

Running SATSAJCRMIDemo
This application contains a single MIDlet, JCRMIMIDlet, which shows how to
communicate with a card application using Java Card RMI, a card-friendly remote
object protocol. As with some of the MIDlets in SATSADemos, you need to start up
cref with an appropriate memory image.

1. Right-click on the project, select Properties, and choose Running. Enable Regular
execution and check Specify the Security Domain. Choose maximum from the list.

2. Start cref from the SDK installation directory as follows:

start bin\cref -p 9025 -i apps\SATSADemos\demo2.eeprom

3. Now run JCRMIMIDlet to see how your application can communicate with a
distributed object on the card.
Chapter 24 JSR 177: Smart Card Security (SATSA) 195

196 Java ME Platform SDK Help • April 2009

CHAPTER 25

JSR 179: Location API Support

The JSR 179 Location API gives applications the opportunity to use a device’s
location capabilities. For example, some devices include Global Positioning System
(GPS) hardware. Other devices might be able to receive location information from
the wireless network. The Location API provides a standard interface to location
information, regardless of the underlying technique.

In the Location API, a location provider encapsulates a positioning method and
supplies information about the device’s location. The application requests a provider
by specifying required criteria, such as the desired accuracy and response time. If an
appropriate implementation is available, the application can use it to obtain
information about the device’s physical location.

The Java ME Platform SDK includes a simulated location provider. You can use the
emulator’s External Events Generator to specify where the emulator should think it
is located. In addition, you can configure the properties of the provider itself, and
you can manage a database of landmarks.

Setting the Emulator’s Location at
Runtime
You can specify the simulated location of the emulator while it is running. To do
this, choose View > External Events Generator from the emulator window’s menu.
Click the Location tab.
197

198 Java ME Platform SDK Help • April 2009

In the Location area of the tab, you can fill in values for the latitude, longitude,
altitude, speed, and course. Applications that use the Location API can retrieve these
values as the location of the emulator.

For more elaborate testing, you can set up a location script that describes motion
over time. Location scripts are XML files consisting of a list of locations, called
waypoints, and associated times. The Java ME Platform SDK determines the current
location of the emulator by interpolating between the points in the location script.
Here, for example, is a simple location script that specifies a starting point (time=
"0") and moves to a new point in ten seconds:

The altitude measurement is in meters, and the time values are in milliseconds.

Use a text editor to create your location script. You can load it into the external event
window by pressing the Browse button next to the Script field. Immediately below
are controls for playing, pausing, stopping, and moving to the beginning and end of
the location script. You can also drag the time slider to a particular point.

Some devices are also capable of measuring their orientation. To make this kind of
information available to your application, change the State field in the Orientation
box to Supported and fill in values for azimuth, pitch, and roll. The Magnetic
Orientation checkbox indicates whether the azimuth and pitch measurements are
relative to the Earth’s magnetic field or relative to true north and gravity.

To test how your application handles unexpected conditions, try changing the State
field in the Location Provider box to Temporarily Unavailable or Out of Service.
When your application attempts to retrieve the emulator’s location, an exception is
thrown and you can see how your application responds.

Running the CityGuide Sample Project
CityGuide demonstrates how to use the Location API (JSR 179). It shows a walker’s
current position superimposed on a city map. The walker moves around the city and
landmarks are highlighted and identified as the walker approaches. In this demo we
get the walker’s location from an XML script named citywalk.xml (the event file)
that submits the device location information.

<waypoints>
<waypoint time="0"

latitude="14" longitude="50" altitude="310" />
<waypoint time="10000"

latitude="14.5" longitude="50.1" altitude="215" />
</waypoints>
Chapter 25 JSR 179: Location API Support 199

Because location prompts occur frequently, it is best to run this demonstration in
manufacturer (trusted) mode, as explained in Security Domains. In the user
interface, right-click on your project and select the Running category. Select Specify
the Security Domain, and select manufacturer or maximum.

Open and run the CityGuide project. In the emulator, launch the CityGuide MIDlet.
Click Next to view the map page.

Choose View > External Events Generator from the emulator window menu. On the
Location tab click the browse button. Select the following event file in
installdir\apps\CityGuide\citywalk.xml.

The player buttons at the bottom of the window are now active. Press the green play
button (right-pointing triangle) to run the script.

The display shows four types of landmarks: restaurants, museums, shops, and
theaters. To adjust the landmark display, open the soft menu and choose the Settings
command.

Use the navigation keys to highlight a category, then use Select to check or uncheck
an item.

When you are near a landmark (shown highlighted on the map), open the soft menu
and choose the Detail command to see more information. See Chapter 25 for more
details on location scripts.
200 Java ME Platform SDK Help • April 2009

Chapter 25 JSR 179: Location API Support 201

202 Java ME Platform SDK Help • April 2009

CHAPTER 26

JSRs 184, 226, and 239: Graphics
Capabilities

The Java ME Platform SDK offers three APIs that provide comprehensive
capabilities for interactive 2D and 3D graphics:

The Mobile 3D Graphics (JSR 184) API for J2ME, JSR 184, provides 3D graphics
capabilities with a low-level API and a high-level scene graph API. This chapter
provides a brief overview and general guidelines for working with JSR 184.

The Scalable 2D Vector Graphics (JSR 226) for J2ME, JSR 226, supports rendering
sophisticated and interactive 2D content.

Java Bindings for OpenGL ES (JSR 239), JSR 239, provides a Java language interface
to the open standard OpenGL ES graphics API.

■ Mobile 3D Graphics (JSR 184)

■ Choosing a Graphics Mode

■ Quality Versus Speed

■ Content for Mobile 3D Graphics

■ Running Demo3D Samples

■ Java Bindings for OpenGL ES (JSR 239)

■ Scalable 2D Vector Graphics (JSR 226)

■ Running SVGDemo

■ Running SVGContactList
203

Mobile 3D Graphics (JSR 184)
JSR 184 is a specification that defines the Mobile 3D Graphics (M3G) API for the
J2ME. This API provides 3D functionality in a compact package that’s appropriate
for CLDC/MIDP devices. The API provides two methods for displaying 3D graphics
content:

The immediate mode API makes it possible for applications to directly create and
manipulate 3D elements.

Layered on top of this is a scene graph API, also called retained mode, that makes it
possible to load and display entire 3D scenes that are designed ahead of time.

For more information, consult the JSR 184 specification at
http://jcp.org/en/jsr/detail?id=184.

Choosing a Graphics Mode
Applications are free to use whichever approach is most appropriate or to use a

combination of the retained mode and immediate mode APIs.

JSR 184 provides a standard API for CLDC/MIDP devices, enabling a new
generation of 3D applications. The immediate mode API, in turn, is compatible with
OpenGL ES, a standard lightweight API for 3D graphics. See
http://khronos.org/ for more information on OpenGL ES.

Immediate Mode
Immediate mode is appropriate for applications that generate 3D graphics content
algorithmically, such as scientific visualizations or statistical graphs. The application
creates 3D objects and manipulates them directly.

For an example of immediate mode, see the Life3D MIDlet in the Demo3D example
application.
204 Java ME Platform SDK Help • April 2009

Retained Mode
Most applications, particularly games, use the retained mode or scene graph API. In
this approach, a graphic designer or artist uses 3D modeling software to create a
scene graph. The scene graph is saved in the JSR 184 file format. The scene graph file
is bundled with the application. At runtime, the application uses the scene graph
API to load and display the file.

Applications can manipulate parts of a loaded scene graph to animate characters or
create other effects. The basic strategy is to do as much work as possible in the
modeling software. At runtime, the application can grab and manipulate parts of the
scene graph, which can also include paths for animation or other effects.

For an example of retained mode, see the retainedmode MIDlet in the Demo3D
example application.

Quality Versus Speed
One of the challenges of MIDP development is the constrained environment of
typical devices. Compared to desktop computers, MIDP devices have slow
processors and little memory. These challenges extend into the arena of 3D graphics.
To accommodate a wide variety of implementations, the JSR 184 specification
provides various mechanisms to make the display of a 3D scene as efficient as
possible.

One approach is scoping, a technique where you tell the 3D graphics implementation
when objects are not going to interact with each other. For example, if you defined a
scene graph for a house, you could use scoping to specify that the light in the
basement doesn’t affect the appearance of the bedroom on the second floor. Scoping
simplifies the implementation’s task because it reduces the number of calculations
required to show a scene.

In general, the best way to improve the rendering speed of 3D scenes is to make
some compromises in quality. The Mobile 3D Graphics API includes rendering hints
so that applications can suggest how the implementation can compromise quality to
improve rendering speed.

Content for Mobile 3D Graphics
Most mobile 3D applications use scene graphs in resource files to describe objects,
scenes, and characters. Usually it is not programmers but graphic designers or artists
who create the scene graphs, using standard 3D modeling tools.
Chapter 26 JSRs 184, 226, and 239: Graphics Capabilities 205

Several vendors offer tools for authoring content and converting files to the JSR 184
format. Superscape (http://superscape.com/) is one such vendor.

Because it is relatively difficult to create and manipulate 3D graphics content in an
application using the immediate mode API, most applications rely as much as
possible on a scene graph file. By putting as much as possible into the scene graph
file at design time, the application’s job at runtime is considerably simplified.

Running Demo3D Samples
Demo3D contains three MIDlets that demonstrate JSR 184 features.

Life3D
Life3D implements the popular Game of Life in three dimensions. Live cells are
represented by cubes. Each cell has 26 possible neighbors (including diagonals). For
each step of the animation, cells with fewer than four neighbors die of loneliness,
while cells with more than five neighbors die of overcrowding. An empty cell with
exactly four neighbors becomes a new live cell.

The view of the playing board rotates slowly so you can view the board from all
angles.

The keypad buttons in TABLE 26-1 provide control over the game.

See the source code for this example is at installdir\apps\Demo3D\src\com\
superscape\m3g\wtksamples\life3d\Life3D.java.

TABLE 26-1 Controls for Life3D

Button Description

0 Pause the animation.

1 Resume the animation at its default speed.

2 Speed up the animation.

3 Slow down the animation.

4 Choose the previous preset configuration from an arbitrary list. The name of the
configuration is shown at the top of the screen.

5 Choose the next preset configuration from the list.

* Generate a random configuration and animate until it stabilizes or dies. If it dies,
generate a new random configuration.
206 Java ME Platform SDK Help • April 2009

retainedmode

The retainedmode MIDlet plays a scene file that shows a skateboarder in an
endless loop.

PogoRoo
PogoRoo displays a kangaroo bouncing up and down on a pogo stick. To steer the
kangaroo, use the arrow keys. Press up to go forward, down to go backward, and
left and right to change direction. You might need to hold down the key to see an
effect.

Java Bindings for OpenGL ES (JSR 239)
JSR 239 defines the Java programming language bindings for two APIs, OpenGL for
Embedded Systems (OpenGL ES) and EGL. OpenGL ES is a standard API for 3D
graphics, a subset of OpenGL, which is pervasive on desktop computers. EGL is a
standard platform interface layer. Both OpenGL ES and EGL are developed by the
Khronos Group (http://khronos.org/opengles/).

While JSR 184 (which is object oriented) requires high level functionality, OpenGL is
a low level graphics library that is suited for accessing hardware accelerated 3D
graphics. Explore the OpenGLESDemo sample project code.

Scalable 2D Vector Graphics (JSR 226)
The Java ME Platform SDK emulator supports JSR 226, the Scalable 2D Vector
Graphics API for J2ME. Scalable Vector Graphics (SVG) is a standard defined by the
World Wide Web Consortium. It is an XML grammar for describing rich, interactive
2D graphics.

The Scalable Vector Graphics (SVG) 1.1 specification (available at
http://www.w3.org/TR/SVG11/) defines a language for describing
two-dimensional graphics in XML.

SVG Tiny (SVGT) is a subset of SVG that is appropriate for small devices such as
mobile phones. See http://www.w3.org/TR/SVGMobile/. SVGT is a compact,
yet powerful, XML format for describing rich, interactive, and animated 2D content.
Graphical elements can be logically grouped and identified by the SVG markup.
Chapter 26 JSRs 184, 226, and 239: Graphics Capabilities 207

Java ME applications using SVG content can create graphical effects that adapt to the
display resolution and form factor of the user's display.

SVG images can be animated in two ways. One is to use declarative animation, as
illustrated in Play SVG Animation. The other is to repeatedly modify the SVG image
parameters (such as color or position), through API calls.

While it is possible to produce SVG content with a text editor, most people prefer to
use an authoring tool. Here are two possibilities:

■ Ikivo Animator - http://www.ikivo.com/animator/

■ Adobe Illustrator -
http://www.adobe.com/products/illustrator/main.html

Running SVGDemo
This project contains MIDlets that demonstrate different ways to load manipulate,
render, and play SVG content.

SVG Browser
The SVGBrowser MIDlet displays SVG files residing in the phone file system. Before
running this demo, place an SVG file in your device skin’s file structure at:

device\appdb\filesystem\root1

For your device location, see “/javame-sdk/3.0/work” on page 80. Launch the
demo. The application displays the contents of root1. Select your SVG file and
choose the Open soft key.

Render SVG Image
Render SVG Image loads an SVG image from a file and renders it. Looking at the
demo code you can see that the image is sized on the fly to exactly fit the display
area. The output is clear and sharp.

Play SVG Animation
This application plays an SVG animation depicting a Halloween greeting card. Press
8 to play, 5 to start, and 0 to stop. If you press 8, pressing 5 resumes the animation.
If you press 0, pressing 5 starts the animation from the beginning.
208 Java ME Platform SDK Help • April 2009

The SVG file contains a description of how the various image elements evolve over
time to provide this short animation.

In the following code sample, the JSR 226 javax.microedition.m2g.SVGImage
class is used to load the SVG resource. Then, the
javax.microedition.m2g.SVGAnimator class can take all the complexity of
SVG animations and provides a java.awt.Component or
javax.swing.JComponent which plays the animation. The SVGAnimator class
provides methods to play, pause and stop the animation.

Create SVG Image from Scratch
This demo builds an image using API calls. It creates an empty SVGImage,
populates it with a graphical content, and then displays that content.

Bouncing Balls
Bouncing Balls plays an SVG animation. Press 8 to play, 5 to start, and 0 to stop. If
you press 8, pressing 5 resumes the animation. If you press 0, pressing 5 starts the
animation from the beginning.

import javax.microedition.m2g.ScalableGraphics;
import javax.microedition.m2g.SVGImage;

...
String svgURI = ...;
SVGImage svgImage = (SVGImage) SVGImage.createImage(svgURI, null);
SVGAnimator svgAnimator = SVGAnimator.createAnimator(svgImage);

// If running a JSE applet, the target component is a JComponent.
JComponent svgAnimationComponent = (JComponent)
svgAnimator.getTargetComponent();
...

svgAnimator.play();
...
svgAnimator.pause();
...
svgAnimator.stop();
Chapter 26 JSRs 184, 226, and 239: Graphics Capabilities 209

Optimized Menu
In this demo, selected icons have a yellow border. As you move to a new icon, it
becomes selected and the previous icon flips to the unselected state. If you navigate
off the icon grid, selection loops around. That is, if the last icon in a row is selected,
moving right selects the first icon in the same row.

This demo illustrates the flexibility that combining UI markup and Java offers: a rich
set of functionality (graphics, animations, high-end 2D rendering) and flexibility in
graphic manipulation, pre-rendering or playing.

In this example, a graphic artist delivered an SVG animation defining the transition
state for the menu icons, from the unselected state to the selected state. The program
renders each icon's animation sequence separately into off-screen buffers (for faster
rendering later on), using the JSR 226 API.

With buffering, the MIDlet is able to adapt to the device display resolution (because
the graphics are defined in SVG format) and still retain the speed of bitmap
rendering. In addition, the MIDlet is still leveraging the SVG animation capabilities.

The task of defining the look of the menu items and their animation effect (the job of
the graphic artist and designer) is cleanly separated from the task of displaying the
menu and starting actions based on menu selection (the job of the developer). The
two can vary independently as long as both the artist and the developer observe the
SVG document structure conventions.

Picture Decorator
In this sample you use the phone keys to add decorations to a photograph. The key
values are:

1 key shrink

2 key next picture

3 key grow

4 key help

5 key horizontal flip

6 ley vertical flip

7 key rotate counter-clockwise

8 key previous picture

9 key rotate clockwise

display picker options
210 Java ME Platform SDK Help • April 2009

This demo provides 16 pictures for you to decorate.

Use the 2 and 8 keys to page forward and back through the photos.

To decorate, press # to display the picker. Use the arrow keys to highlight a graphic
object. The highlighted object is enlarged. Press Select to choose the current graphic
or press the arrow keys to highlight a different graphic. Press Select again to add the
graphic to the photo. When the decoration is added you see a red + on the graphic.
This means it is selected and can be moved, resized, and manipulated.

Use the navigation arrows to move the graphic. Use 1 to shrink the graphic, and 3 to
enlarge the graphic. Use 5 or 6 to flip, and 7 or 9 to rotate. When you are satisfied
with the position, press Select. Note that a green triangle appears. This is a cursor.
Use the navigation keys to move the green triangle around the picture. When the
cursor is over an object it is highlighted with a red box. Press Select. The red +
indicates the object is selected.
Chapter 26 JSRs 184, 226, and 239: Graphics Capabilities 211

To remove a decoration (a property), select an object, then click the Menu soft key.
Press 2 to remove a property.

Location Based Service
Launch the application. A splash screen (also used as the help) appears. The initial
view is a map of your itinerary - a walk through San Francisco. The bay (in blue) is
on the right of your screen. Press 1 to start following the itinerary. The application
zooms in on your location on the map. Turn-by-turn directions appear in white
boxes on the horizontal axis. While the itinerary is running, Press 7 to rotate the map
counter-clockwise. Note, the map rotates and the text now appears on the vertical
axis. Press 7 again to restore the default orientation. Press 4 to display the help
screen.

PlaySVGImageDemo
Displays a Duke image. Select the Virtual soft key to display a virtual navigation
pad.
212 Java ME Platform SDK Help • April 2009

Running SVGContactList
This application uses different skins to display the same contact list information and
a news banner. The skins have different colors and fonts.

Select SVGContactlist(skin 1) or SVGContactlist(skin 2), then click Launch.

Use the up and down arrows to navigate the list of contacts. The highlighted name
is marked with a special character (a > or a dot) and is displayed in a larger font.

Press the select button to see more information for the highlighted name.
Chapter 26 JSRs 184, 226, and 239: Graphics Capabilities 213

Press select again to return to the contact list.
214 Java ME Platform SDK Help • April 2009

CHAPTER 27

JSR 205: Wireless Messaging API
(WMA) Support

The Java ME Platform SDK supports the Wireless Messaging API (WMA) with a
sophisticated simulation environment. WMA 1.1 (JSR 120) enables MIDlets to send
and receive Short Message Service (SMS) or Cell Broadcast Service (CBS) messages.
WMA 2.0 (JSR 205) includes support for MMS messages as well.

This chapter describes the tools you can use to develop WMA applications. It begins
by showing how to configure the emulator’s support of WMA. Next, it describes the
WMA console, a tool for testing WMA applications.

Many of the tasks in this topic can also be accomplished from the command line. See
Running WMA Tool.

Using the WMA Console to Send and
Receive Messages
The WMA console is a tool that enables you to send messages to and receive
messages from applications that use JSRs 120 or 205. You can, for example, use the
WMA console to send SMS messages to a MIDlet running on the emulator.

See Launching the WMA Console and WMA Console Interface

Launching the WMA Console
To launch the WMA console, select Tools > WMA Console. If the WMA Output
window is not visible, select Window > Output > WMA Console Output.
215

Note, WMA console operations can also be performed from the command line. See
Running WMA Tool.

WMA Console Interface
To view this interface, select Tools > WMA Console. If the WMA Output window is
not visible, select Window > Output > WMA Console Output.

The WMA Console user interface has a tab for sending messages and an output
window that displays incoming messages.

As shown here, the console has a phone number, and it is displayed as part of the
WMA console tab label.

To set the phone number, select Tools > Options > Miscellaneous. On the WMA
Console tab, edit the Assigned Phone Number field and click OK. If the number is
available it is assigned to the console immediately. If the number is in use it is
assigned to the console the next time you restart the SDK.
216 Java ME Platform SDK Help • April 2009

Emulator Phone Numbers
Each running instance of the emulator has a simulated phone number that is shown
in the emulator window. The phone numbers are important because they are used as
addresses for WMA messages. By default, the first emulator instance has a phone
number of 123456789. Subsequent instances of the emulator have unique numbers in
ascending order.

Sending a Text SMS Message
To send a text SMS message, click Send SMS. The send window appears.

The window automatically lists the phone numbers of all running emulator
instances. Select one or more destinations and enter a port number if you wish. Type
your message and click Send.

Sending a Binary SMS Message
To send the contents of a file as a binary message, click Send SMS to bring up the
send window. Click the Binary SMS tab.

Selecting recipients is the same as for sending text SMS messages. You can type in
the path of a file directly, or click Browse to open a file chooser.

Sending Text or Binary CBS Messages
Sending CBS messages is similar to sending SMS messages except that you don’t
need to choose recipients. To send a text or binary CBS message, click Send CBS in
the WMA console. Specify a message identifier and enter the content of your
message.

Sending MMS Messages
MMS messages consist of one or more files, usually images or sounds. An MMS
message can be sent to multiple recipients. To send an MMS message from the WMA
console, click the Send MMS button.

The window for composing MMS messages has two tabs, one for recipients and one
for content. On the Header tab, begin by filling in a subject and recipient.
Chapter 27 JSR 205: Wireless Messaging API (WMA) Support 217

To add more recipients, click the Add button. For example, to send a message to a
running emulator whose number is 5550001, type 5550001 in the To field.

To remove a recipient, first select its line, then click Remove.

To add optional media files (Parts) to the message, click the Parts tab and click Add.
Most media files will have information to fill the Content Location, Content ID,
Mime-Type (text/plain for simple MMS), and Encoding fields, but you can edit these
fields as well.

To remove a part, select it and press Remove.

Receiving Messages in the WMA Console
The WMA console window has its own phone number displayed on the WMA
Console tab. You can send messages from your applications running on the emulator
to the WMA console.

Received messages are displayed in the WMA output window.

Running WMADemo
The WMADemo sample project shows how to send and receive SMS, CBS, and MMS
messages.

The Java ME Platform SDK offers a flexible emulation environment to support
messaging. Messages can be exchanged between emulator instances and can be
generated or received using the WMA console utility.

Because this sample makes use of the push registry, you can't see all of its features
just by using the Run button. Use the Run via OTA feature to install the application
into the emulator in a process that mirrors how applications are installed on real
devices.

In this demo you send messages between the demo application running on the
emulator and the WMA console. Using the WMA console to send messages to the
emulator exercises the push registry.

1. To launch the console choose Tools > WMA Console.
218 Java ME Platform SDK Help • April 2009

2. Click on the Send SMS button in the WMA console window. Choose the number
that corresponds to the emulator, probably 123456789. If you're not sure what
number the emulator is using, look for a number above the emulator screen.
Choose the number in the SMS message window, then fill in a port number of
50000. Type your text message in the Message field and click on Send.

3. The emulator asks if it can launch the WMADemo application. You might receive
several permission requests based on your firewall settings.

Choose Yes. The SMSReceive MIDlet is launched and immediately displays the
incoming SMS message.

You can also use the WMA console to send and receive CBS and MMS messages.

If you are attempting to send text messages to WMADemo using the WMA console
specify the following port numbers:

■ For SMS specify the port number 50000.

■ Use port 50001 for CBS messages.

■ For MMS messages, use example.mms.MMSDemo as the application ID. This
information is part of the Application Descriptor. To view it, right-click on the
WMA Demo project and select properties. In the properties window, select the
Application Description category and view the Push Registry tab.

For example, to send an MMS message from the WMA console to the emulator,
make sure that WMADemo has been installed using Run via OTA.

1. Launch the demo and choose MMS Receive.

2. In the WMA console, click on Send MMS to open the MMS composition window.
Fill in a message subject, the application ID example.mms.MMSDemo, and the
telephone number of the running emulator.

3. Click on the Parts tab. The WMA console allows you to select files from your hard
disk to send as parts of the MMS message. Click Add to add a file to the message.
Use the file browser to find the file you want to send and click OK.

4. Click on Send to send the message.

The image and its information are displayed.
Chapter 27 JSR 205: Wireless Messaging API (WMA) Support 219

220 Java ME Platform SDK Help • April 2009

CHAPTER 28

JSR 211: Content Handler API
(CHAPI)

JSR 211 defines the Content Handler API (CHAPI). The basic concept idea is that
MIDlets can be launched in response to incoming content (files). Modern mobile
phones can receive content using SMS, infrared, Bluetooth, e-mail, and other
methods. Most content has an associated content type. CHAPI specifies a system by
which MIDlets can be launched in response to specific types of content.

In the Java ME Platform SDK Content Handlers are integrated in a project as
application descriptors. Content Handlers you define are packaged with the
application.

See Using Content Handlers and Running the CHAPIDemo Content Browser.

Using Content Handlers
Follow these steps to work with content handlers.

1. In the Projects window, right-click a project name and choose Properties from the
context menu.

2. In the Category pane, select Application Descriptor, and click the Content
Handler tab.

3. In the Content Handlers table, each line in the list represents the settings for a
content handler.

As shown below, two content handlers have been configured, one for TextViewer
and one for ImageViewer.
221

■ To create a new content handler, press Add, or to edit an existing content
handler, press Edit. Both actions open the Content Handler Properties window.
See Defining Content Handler Properties.

■ To adjust the order of the content handlers, select one and using the Move Up
and Move Down buttons. To remove a content handler from the list, select it
and press Remove.

See also Defining Content Handler Properties, Defining Content Handler Actions,
and Running the CHAPIDemo Content Browser.

Defining Content Handler Properties
In the Projects window, right-click on a project and choose Properties from the
context menu. In the Category pane, select Application Descriptor, and click the
Content Handler tab. Pressing Add or Edit opens the Content Handler Properties
window, as shown here.
222 Java ME Platform SDK Help • April 2009

■ In the Class field, choose a class name from the dropdown menu.

■ ID is an identification string that can be used to invoke a content handler and
control access.

■ In Content types, list the content types for which this content handler is
responsible. Use Add Type and Remove to manage the list.

■ In Suffixes, provide a list of URL suffixes that act as a substitute for an explicit
content type.

■ In Access allowed to, list IDs for content handlers that are allowed access to this
content handler. If the list is empty, access to this content handler is granted to
every content handler.
Chapter 28 JSR 211: Content Handler API (CHAPI) 223

Defining Content Handler Actions
Content handler actions give invoking applications a choice about how to handle
content. An Action is associated with an existing content handler. An image viewer
content handler, for example, might include an action for viewing the image at its
original size and another action that makes the image fill the available screen space.

In the Projects window, right-click on a project and choose Properties from the
context menu. In the Category pane, select Application Descriptor, and click the
Content Handler tab. Press Add or Edit to open the Content Handler Properties
window and click on the Actions tab, as shown here.

The Actions list contains the internal names of the actions for this content handler.
Locales is a list of all the locales for which human-readable action names will be
provided. Localized actions is a grid which contains the human-readable action
names for various locales. Each locale is represented by a row, while the actions are
listed as columns. You can see all the human-readable action names for a particular
locale by reading across a single row.
224 Java ME Platform SDK Help • April 2009

Running the CHAPIDemo Content
Browser
This demo is a content browser that takes advantage of the content handler registry.
It allows you to view different types of content from different sources.

■ In the user interface, select File > Open Sample Project > CHAPIDemo.

In the device selector, right-click on a device, select Run Project OTA, and choose
CHAPIDemo.

■ You are asked to enter the password for the keystore. Type: keystorepwd

■ You are asked to enter the password for the “dummyca“ key pair alias within
the keystore. Type: keypwd

■ On the Favorite Links page, choose CHAPI Demo. Press the menu soft button
and choose 1, Go.

The Text Viewer displays a Media Player URL and links to various media files.

■ Select Duke.png. Use the arrows to highlight the link, then select the file. Using
CHAPI, the ImageViewer MIDlet runs and displays the Duke image. Select the
Back soft key to return to the Text Viewer.

■ Install the Media Player to view media.

■ Select the URL http:handlers/MediaHandler.jad.

Select the Menu soft button and select item 1, Go.

■ The application asks, “Are you sure you want to install Media Handler?“ Select
the Install soft key. For the rest of this demo, click Install if you are asked for
confirmation.

The installation finishes and you return to the Text Viewer.

■ View different media files.

Select a URL from the list, select the Menu soft button and select item 1, Go.
Chapter 28 JSR 211: Content Handler API (CHAPI) 225

226 Java ME Platform SDK Help • April 2009

CHAPTER 29

JSR 238: Mobile Internationalization
API (MIA)

JSR 238, the Mobile Internationalization API, is designed for applications that are to
be displayed in multiple languages and used in multiple countries. The combination
of country (or region) and language is a locale.

The central concept of JSR 238 is a resource, which is a string, image, or other object
that is suitable for a particular locale. For example, an application that is to be
distributed in Europe might include resources for Italian-speaking people living in
Italy, Italian-speaking people living in Switzerland, Spanish-speaking people living
in Spain and so on.

Resources are stored in files in a format defined in JSR 238. The resource files are
bundled as part of the MIDlet suite JAR file. The Java ME Platform SDK provides a
resource manager that simplifies the job of creating and maintaining resource files.

Setting the Emulator’s Locale
You can change an emulator’s locale from the Device Selector.

1. Right-click on a device and choose Properties.

2. In the Properties window, find the Locale property and click ... to open the Locale
window.

3. Select the locale from the dropdown list.

Alternatively, while the emulator is running, select Application > Change Locale and
type in the locale you want to use.
227

Using the Resource Manager
To launch the resource manager, select a project, then choose Tools > i18n Resources
Manager.

All the resources for the selected project are displayed in the Resource Manager. See
the sample project i18nDemo described in “Running i18nDemo” on page 229.

See also: Working With Locales and Working With Resource Files.

Working With Locales
Locales are represented as folders under the top-level global node. The locale
directories contain resource files which, in turn, hold the actual resources that can be
used by the application.

Locales are represented by standard language and country codes as described in the
MIDP 2.0 specification. For example, pt-BR represents Portuguese-speaking people
living in Brazil.

■ To add a locale, right-click on the top-level global node and choose Add Locale.
Choose the locale from the combo box, or type it directly, and click OK.

■ To rename a locale, right-click the locale directory and choose Rename.

■ To remove a locale and all its contained resource files, right-click the locale
directory and choose Delete.

Working With Resource Files
Resource files can be global (at the top level) or specific to a locale.

■ To create a new global resource file, right-click the top-level global directory and
choose Add new resource file. Choose a name for the file.

■ To rename a resource file, right-click the file and choose Rename.

■ You can copy, cut, and paste entire resource files. Right-click a file and choose
Copy or Cut. Then right-click the locale directory (or the top-level global) and
choose Paste.

■ To remove a resource file, right-click the file and choose Delete.
228 Java ME Platform SDK Help • April 2009

Working With Resources
Click on a resource file to display its contents.

■ To add an image or another type of binary data, click the Add button.

■ In the Configure New Resource window, select Add string resource.

■ Browse to select the file you want to add.

■ The automatically supplied Identifier value can be changed.

■ Click OK to add the resource.

■ To edit a resource, double-click in the resource field.

■ For strings you can edit an existing value.

■ Double-clicking a binary file opens a file chooser.

Running i18nDemo
This MIDlet suite demonstrates the JSR 238 Mobile Internationalization API. The
MIDlets String Comparator and Formatter show how to sort strings and display
numbers appropriately for different locales. The third MIDlet, MicroLexicon, is a
small phrase translator that comes in handy if you need to ask for a beer in Prague,
Herzliya, Beijing, Milan, or several other locations.
Chapter 29 JSR 238: Mobile Internationalization API (MIA) 229

Note – The default fonts for the Java ME Platform SDK do not support Chinese and
Japanese. To use these languages, follow these steps before running this demo:

1. Install a True Type font that supports Chinese or Japanese.
2. Modify installdir\toolkit-lib\devices\skin-directory\conf\
skin.properties to specify that font.

To run a MIDlet, highlight the MIDlet, then use the Launch soft button to run the
MIDlet.

String Comparator

The String Comparator MIDlet demonstrates how strings (city names) are sorted
differently depending on locale. Launch the MIDlet. Use the Menu soft button to
view the menu. Click or Type 2 to select Sort - default, and the list is sorted
alphabetically. Click or Type 3 to select Sort - slovak. It’s easy to see the difference in
the cities that begin with the letter Z, with and without the mark on top. Click Exit
to return to the list of MIDlets.

Formatter

The second MIDlet, Formatter, simply displays times and numbers formatted for
different locales. Click next to view all four screens. Click Exit to return to the list of
MIDlets.

MicroLexicon

The final MIDlet, MicroLexicon, translates phrases from one language to another
language. To set the source language, follow the steps in Setting the Emulator’s
Locale.

To select the target language from the list, use the navigation arrows to highlight
Choose Language. Click the Select button to view the language drop down. Use the
navigation arrows to choose a language and then click Select. Click the Next soft
button.

MicroLexicon displays a list of phrases. Highlight one and press the Select button on
the emulator.

MicroLexicon displays the flag of the target language and the translated phrase.

MicroLexicon is powered by MIDlet resources. To understand how you can use the
Java ME Platform SDK to localize an application, choose Tools > i18n Resources
Manager. All the resources, both text and images, used by MicroLexicon, appear. You
can edit the resources and run MicroLexicon again to see what happens.
230 Java ME Platform SDK Help • April 2009

To practice creating and editing resources, see Working With Resource Files.

The resources are stored in the project’s JAR file.
Chapter 29 JSR 238: Mobile Internationalization API (MIA) 231

232 Java ME Platform SDK Help • April 2009

CHAPTER 30

JSR 229: Payment API Support

JSR 229, the Payment API, enables applications to make payments on behalf of their
users. The Payment API supports different payment mechanisms through payment
adapters. A device that implements the Payment API has one or more adapters.
MIDlet suites use descriptor attributes to specify what types of payment adapters
they can use.

The Java ME SDK implements the Payment API with a sample payment adapter that
simulates both Premium Priced SMS (PPSMS) and credit card payments. In addition,
the SDK makes it easy to set the necessary attributes in the MIDlet’s descriptor and
JAR file manifest. Finally, a payment console enables you to easily track payments
made or attempted by an application.

Because the Payment API is closely tied to provisioning and external device
payment mechanisms, and because payments can only succeed in a trusted
protection domain, always test and debug your Payment API applications using the
Run via OTA feature.

■ Running the Payment Console

■ Running JBricks

Running the Payment Console
The Payment Console is a simple monitoring tool that displays payment related
transactions sent from a mobile application using the Payment API (JSR 229). The
payment console monitors Payment Update File requests and Premium Priced SMS
payments.

The Payment Console is implemented as an Http server running within the Device
Manager process. The root for the Http server is installdir/apps.
233

Note – The Device Manager must be running before you launch the Payment
Console.

To launch the Payment Console, select Tools > Payment Console.

To close the Payment Console, right-click anywhere in the console and choose Close.

Running JBricks
JBricks is a game that demonstrates the use of the JSR 229 Payment API. The game
itself resembles Breakout or Arkanoid. In JBricks, you can buy another life or a new
game level. Behind the scenes, the Payment API handles the details.

To see how JBricks uses the Payment API, choose either Buy Life or Buy Level
from the game’s main menu. Next, choose whether you want to buy a single life or
three lives for a reduced price.

To view your transactions in the emulator, select View > External Events Generator
and click on the Payment Transactions tab. Transactions for this specific instance of
the emulator are displayed.
234 Java ME Platform SDK Help • April 2009

In addition, you can view all transactions passing through the SDK’s payment
system. Choose File > Utilities, then select Payment Console. A transaction in the
console looks something like the following:

PSP Console running, using phone number +5550001.
PSP Server running at https://localhost:-1
Received Payment Request from 127.0.0.1
 Credit card issued by: VISA
 Credit Card type: 0
 Credit Card Number: 4111111111111111
 Credit Card Holder: Jonathan Knudsen
 Feature ID: 3_lives
 Credit Card Verification Number (CCV): 123
 Payload: null
Response to 127.0.0.1
HTTP/1.1 200 OK
Content-Length: 0
Pay-Response: SUCCESSFUL
Pay-Timestamp: 1156282954734
Chapter 30 JSR 229: Payment API Support 235

236 Java ME Platform SDK Help • April 2009

CHAPTER 31

JSR 256: Mobile Sensor API Support

The JSR 256 Mobile Sensor API allows Java ME application developers to fetch data
from sensors. A sensor is any measurement data source. Sensors can vary from
physical sensors such as magnetometers and accelerometers to virtual sensors that
combine and manipulate the data they have received from various kinds of physical
sensors. An example of a virtual sensor might be a level sensor indicating the
remaining charge in a battery or a field intensity sensor that measures the reception
level of the mobile network signal in a mobile phone.

JSR 256 supports many different types of sensor connection (wired, wireless,
embedded and more) but this SDK release only provides preconfigured support for
sensors embedded in the device.

The SDK GUI provides sensor simulation. The emulator’s External Events Generator
Sensors tab allows you to run a script that simulates sensor data.

You can use the custom API available with the SDK to create a custom sensor
implementation with additional capabilities and support for different connection
types.

Creating a Mobile Sensor Project
To use this API, create a project with the target platform Custom. You must select
MIDP 2.0 or higher and CLDC 1.1 before you can select the Mobile Sensor API
optional package.

To set permissions, click the Settings button and choose the Permissions icon.

A sensor project freely detects sensors, but this does not imply you can get data from
the sensors you find. You might need to explicitly set permissions in your project so
you can interact with certain sensors.
237

The following permissions work with the preconfigured embedded sensors shipped
with the SDK:

■ javax.microedition.io.Connector.sensor

Required to open a sensor connection and start measuring data.

■ javax.microedition.sensor.ProtectedSensor

Required to access a protected sensor.

■ javax.microedition.sensor.PrivateSensor

Required to access a private sensor.

A sensor is private or protected if the sensor’s security property has the value
private or protected. The security property is an example of a sensor property you
might create for yourself in your own sensor configuration. You can create your own
optional properties using com.sun.javame.sensorN.proplist and
com.sun.javame.sensorN.prop.any_name, where N is the sensor number and
any_name is the name of your property. The security sensor property was created as
follows:

Using a Mobile Sensor Project
A Sensor project can be installed over the air. In the emulator window, select View >
External Events Generator, and select the Sensors tab. In this tab you can view all
sensors currently available in the emulator, with the sensor ID, name, and
availability. If the sensor supports change to availability you can click on the check
box to change it. As mentioned earlier, the provided implementation does not
support availability change, but a custom implementation you create might do so.

When you select a sensor row the bottom of the dialog displays any custom sensor
controls. For example, the acceleration sensor, has three channels: axis_x, axis_y, and
axis_z. Each channel has a slider that changes the current channel value, and an edit
box you can use to input a value. The channel unit label is displayed on the far right.

Under the channels there is script player control that allows you to play sensor value
events from a script file of the format discussed in Creating a Sensor Script File. See
Running the Sensors Sample Project for a description of how to use the Sensors
demo.

add security into proplist
com.sun.javame.sensor<N>.proplist: security
add security property value
com.sun.javame.sensor<N>.prop.security: private
238 Java ME Platform SDK Help • April 2009

Creating a Sensor Script File
To simulate sensor inputs, provide a sensor script. The file format is as follows:

The file installdir/apps/Sensors/marbles.xml is an example of a sensor script
file. The attributes are as follows:

■ The attribute time in the value tag is the delay from the previous command in
milliseconds.

■ The channel tag sets the value of the channel with the specified id value, to
value. The channel ignores the id if the value of id is not specified or if the value
is out of the channel range.

■ The sensor tag is a true or false value that makes the sensor available or
unavailable. The pre-configured sensors provided with this release are embedded,
so they cannot be deactivated. If you configure your own sensor that is not
embedded, it will be possible to deactivate it.

Running the Sensors Sample Project
The Sensors demonstration has two MIDlets, SensorBrowser and Marbles that
demonstrate the SDK’s implementation of the Mobile Sensor API.

Use the Run via OTA feature to install the application into the emulator.

<sensors>
<value time="0">

<channel id="0" value="0" />
<channel id="1" value="0" />

</value>
<value time="100">

<sensor active="false"/>
</value>
<value time="100">

<channel id="0" value="-50" />
<channel id="1" value="10" />
<sensor active="true"/>

</value>
</sensors>
Chapter 31 JSR 256: Mobile Sensor API Support 239

SensorBrowser
The SensorBrowser application displays the sensor detail information for each
channel defined for the demo.

1. In the emulator select SensorBrowser and use the soft key to select Launch the
application.

The emulator displays a list of sensors.

2. Use the navigation keys to highlight a sensor, then use the soft key to select
Detail.

For example, the following screen shows the details for the acceleration sensor.

Click Back, then click Exit to return to the application menu.

Marbles
This demonstration uses the Marbles game to provide visual feedback for sensor
inputs provided in a script.

1. From the application menu select Marbles and use the soft key to launch the
application.
240 Java ME Platform SDK Help • April 2009

2. In the emulator, select View > External Events Generator, and select the Sensors
tab.

The emulator displays a list of the sensors in this application.

3. Click the Browse button and choose the following file:
installdir/apps/Sensors/marbles.xml.

4. Observe the movement of the marbles on the emulator screen. On the external
events screen you can see the sliders move as the script runs. You can use the
familiar controls to play, pause, and stop the script.
Chapter 31 JSR 256: Mobile Sensor API Support 241

242 Java ME Platform SDK Help • April 2009

Index
A
adding a Java platform, 9
AMR, 172
AMS, 39
application versioning, 52
autoupdate, 14

B
BD-J stack, 7
Bluetooth, 167
building (command line), 137

C
CBS message, sending, 217
CDC stack, 6
certificate management, 99
-classpath option, 139
CLDC and MIDP stack, 6
command line operations, 131
command path, 138
Common Name, 98
content handler, 221

actions, 224
properties, 222

cref, 186

D
debug port, 68
debugging

from command line, 136

options, 136
demonstrations, 21
device

information, 67
search, 73

device manager, 5
device-address tool, 126, 133

E
emulator, 5, 65

default protection domain, 141
skins, 66

emulator command, 133
emulator phone number, 217

F
FileConnection API, 159
Files window, 45
font size, 2, 132

G
generating stub from command line, 143

H
heap size, 68, 75
-help option, 134

I
-import command, 143
IrDA, 168
243

J
J2ME Web Services Specification, 181
JAD file, 38

creating, 60
JadTool, 141
JAR file, 38

add, 59
creating and compressing, 60

Java Cryptography Extension (JCE) keystore, 142
JavaFX platform, 7
JCP, 155
JSR, 155
JSR 75, 159
JSR 82, 167, 170
JSR 118, 93
JSR 120, 215
JSR 135, 171
JSR 172, 181, 183
JSR 177, 185
JSR 179, 197, 199
JSR 184, 204, 206
JSR 185, 93
JSR 205, 215
JSR 211, 225
JSR 226, 207
JSR 229, 233, 234
JSR 238, 227, 229
JSR 239, 207
JSR 248, 93
JSR 256, 237
JSR 75, 161, 164
JTWI security domains, 94

K
key

exporting, 61
key management, 96
key pair

alias, 98
creating, 98
importing, 99

keystore, JCE, 142
keystore.ks, 25
keytool utility, 142

L
locale, 68
Location API, 197
logical view, 44

M
M3G, 204
managing certificates from command line, 142
manifest file, creating, 139
MEKeyTool, 142
messages tree sorting, 89
method profiling, 81
MIA, 227
MMAPI, 171, 176
Mobile 3D Graphics API, 203, 204
Mobile Internationalization API, 227
Mobile Media API, 171
Mobile Media API (MMAPI), 171

capture, 172
mobile sensor, 237
Mobile Sensors API, 237, 239
MSA security domains, 94
multiple user environment, 77

N
network monitor, 68

filtering, 89
sorting messages, 89

network monitoring, 87

O
OBEX, 167
OBEX preferences, 168
obfuscate project, 60
OpenGL ES, 207
Organization Name, 98
Organization Unit, 98

P
packaging, 60
packaging using command line, 140
Payment API, 233, 234
PDA Optional Packages, 159
PDAP, 159
244 Java ME Platform SDK Help • April 2009

permissions, 95
Personal Information Management (PIM) API, 159
phone number, 68
PhoneME Advanced, 6, 7, 10
physical view, 45
PIM API, 161
platform

adding, 9
port

debug, 68
preverifying, 137

example from command line, 139
profiler, 68, 81
ProGuard obfuscator, 60
project, 37, 38

add, 59
build, 44
clean, 45
clean and build, 44
close, 45
import, 47
new, 44
run, 45
set as main, 45
settings, 38

Projects window, 44
properties

device, 67, 68
enable profiler, 81
platform, 67
searchable in WURFL, 75

protection domains, 93
proxy server settings, 21

R
reference problem, 25
resolve reference problem, 25
resources, 45
ring tones, 173
roots in the FileConnection API, 160
run options, 134
Run via OTA, 95

S
SATSA, 185

SATSA demos, 192
SDK, running from command line, 131
sensor, 237
sensor security, 237
settings, 38
signed MIDlet suites, 93
signing MIDlet suites, 95, 141
SMS binary message, sending, 217
SMS text message, sending, 217
source packages, 45
State Name, 98
stub generator for web services, 181
SVG, 207
SVGDemo, 208
SVGT, 207
switch users, 77

T
toolbar, running from the command line, 131
tracing options, 137

U
UEI, 78
user switching, 77

V
-version option, 134
versioning applications, 52

W
Web Services specification, 181
web services, stub generator, 181
Wireless Messaging API, 215
WMA, 215
WMA console, 215, 219
wscompile, 143
WURFL, 73

X
-Xdebug option, 136
-Xquery option, 137
-Xrunjdwp option, 136

-Xverbose option, 137
Index 245

246 Java ME Platform SDK Help • April 2009

	Contents
	Getting Started
	Quick Start
	Tips for Legacy Toolkit Users

	Java ME Platform SDK Features
	Emulation Platforms
	CLDC and MIDP Stack
	CDC Stack
	BD-J Stack
	JavaFX Platform

	Managing Java Platforms
	J2SE and CDC Platforms
	J2ME Platforms (CLDC and MIDP)

	Adding a Java Platform
	Selecting a Platform Type
	Choose Platform Folder and Name (Java SE and CDC)
	Choose Location (JavaSE and CDC)
	Create a Platform for Legacy CDC Projects
	Choose Java ME MIDP Platform Folders
	Choose Custom Java ME MIDP Platform Emulator
	General Information
	Bootstrap Libraries
	Sources & Javadoc

	Support for Third-Party Emulators and Real Devices
	Automatic Update
	Using the Plugins Manager
	Available Plugins
	Downloaded
	Installed Plugins
	Plugin Settings

	Installing a Plugin Globally

	Using Sample Projects
	Running a Project
	Troubleshooting
	Sample Project Overview
	Configuring the Web Browser and Proxy Settings
	Resolving Reference Problems
	Running MIDP and CLDC Sample Projects
	Running the Demos Sample Project
	Colors
	Properties
	Http
	FontTestlet
	Stock
	Add Stock Symbols to the Ticker
	Change the Update Interval
	Remove a Stock
	Stock Tracker
	What If?
	Alerts

	Tickets
	ManyBalls
	MiniColor
	Chooser
	HttpExample
	HttpView
	PushExample

	Running FPDemo
	Running Games
	Running Network Demo
	Socket Demo
	Datagram Demo

	Running PhotoAlbum
	Running UIDemo

	Creating and Editing Projects
	About Projects
	CLDC Projects
	CDC Projects

	Creating a CLDC Project
	Choose Project
	Name and Location
	Platform Selection
	Specify WTK Project

	Creating a CDC Project
	Choose Project (CDC)
	Platform Selection (CDC)
	Specify CDC Toolkit Project

	Working With Projects
	Viewing Project Files
	Creating a New MIDlet
	Importing MIDP Projects
	Importing CDC Projects
	Adding Files to a Project
	Find in Files

	Viewing and Editing Project Properties
	Viewing General Project Properties
	Selecting a Platform
	Editing Application Descriptor Properties
	CDC Attributes
	MIDP Attributes
	Adding an Attribute
	Editing an Attribute
	Removing an Attribute

	MIDlets
	Adding a MIDlet
	Editing a MIDlet
	Removing a MIDLet
	Changing MIDlet Display Order

	Push Registry
	Adding a Push Registry Entry
	Remove a Push Registry Entry
	Change Push Registry Display Order

	API Permissions

	Building a Project
	Configuring Ant
	Compiling
	Adding Libraries and Resources
	Creating JAR and JAD Files (Packaging)
	Obfuscating
	Signing
	Exporting a Key

	Running Settings
	Running a MIDP Project
	Running a CDC Project

	Running Projects in the Emulator
	Understanding the Emulator
	Viewing Device Properties
	Platform Properties
	Device Information
	Device Properties

	Setting Device Properties
	Running a Project from the Device Selector
	Running Projects Simultaneously on a Single Device
	Emulator Options
	Adding a Device Instance

	Searching the WURFL Device Database
	Searching for Devices
	Filtering the WURFL Search

	Finding Files in the Multiple User Environment
	Switching Users
	Installation Directories
	User Directories
	/javame-sdk
	/javame-sdk/3.0/work
	/javame-sdk/toolbar/3.0
	/JavaMESDKProjects

	Profiling Applications
	Saving Profiler Data
	Loading Profiler Data
	Viewing Profiler Data
	Saving Customized Snapshots and Images
	Loading a Customized Snapshot

	Monitoring Network Traffic
	Using the Network Monitor
	Filtering Messages
	Sorting Messages
	Saving and Loading Network Monitor Information
	Clearing the Message Tree

	Lightweight UI Toolkit
	Adding the LWUIT Library
	Using the LWUIT Resource Manager

	Security and MIDlet Signing
	Security Domains
	Setting Security Domains
	Specifying the Security Domain for an Emulator
	Specifying the Security Domain for a Project

	Signing a Project
	Managing Keystores and Key Pairs
	Working With Keystores and Key Pairs
	Creating a Keystore
	Adding an Existing Keystore
	Creating a New Key Pair
	Removing a Key Pair
	Importing an Existing Key Pair

	Managing Root Certificates

	BD-J Support
	Creating a Stubs for BD-J Platform Project
	Compiling, Deploying, and Running a Stubs for BD-J Platform Project

	CLDC Emulation on a Windows Mobile Device
	CLDC Emulator Installation for a Device Running Windows Mobile
	Testing On-device Debugging

	Installing CLDC Emulation on a Windows Mobile Emulator
	CLDC Installation for Windows Mobile

	On-device Debugging
	On-device Debugging Procedure
	Attach a Command Line Debugger
	Attach a Graphical Debugger

	Sample CLDC Debugging Session

	Command Line Reference
	Launching the SDK
	Running the Device Manager
	Managing Device Addresses (device-address)
	Running the Emulator From the Command Line
	MIDlet Options
	CDC Options
	Debugging and Tracing Options

	Building a Project from the Command Line
	Checking Prerequisites
	Compiling Class Files
	Preverifying Class Files

	Packaging a MIDLet Suite (JAR and JAD)
	Command Line Security Features
	Changing the Emulator’s Default Protection Domain
	Signing MIDlet Suites (jadtool.exe)
	Managing Certificates (MEKeyTool)

	Generating Stubs (wscompile)
	Running the Payment Console From the Command Line
	Virtual Machine Memory Profiler (Java Heap Memory Observe Tool)
	Running the Java Heap Memory Observe Tool
	Viewing the Heap Snapshot

	Running WMA Tool
	smsreceive
	cbsreceive
	mmsreceive
	smssend
	cbssend
	mmssend

	Logs
	Java ME Platform SDK GUI Logs
	Device Manager Logs
	Device Instance Logs

	JSR Support
	JCP APIs

	JSR 75: PDA Optional Packages
	FileConnection API
	PIM API
	Running PDAPDemo
	Browsing Files
	The PIM API

	JSR 82: Bluetooth and OBEX Support
	Bluetooth Simulation Environment
	OBEX Over Infrared
	Setting Bluetooth and OBEX Preferences
	OBEX Preferences
	Bluetooth Internal Properties
	Bluetooth System Properties
	Bluetooth BCC Properties

	Running the Bluetooth Demo

	JSR 135: Mobile Media API Support
	Media Types
	Adaptive Multi-Rate (AMR) Content
	Media Capture

	MMAPI MIDlet Behavior
	Ring Tones
	Download Ring Tones
	Ring Tone Formats

	Running the MMAPI Sample Project
	Running AudioDemo
	Running MMAPIDemos
	Simple Tones
	Simple Player
	Video
	Attributes for MobileMediaAPI

	Running the Multimedia Sample Project

	JSR 172: Web Services Support
	Generating Stub Files from WSDL Descriptors
	Creating a New Mobile Web Service Client
	Running JSR172Demo

	JSR 177: Smart Card Security (SATSA)
	Card Slots in the Emulator
	Java Card Platform Simulator (cref)
	Adjusting Access Control
	Specifying PIN Properties
	Specifying Application Permissions
	Access Control File Example

	Running SATSADemos
	APDUMIDlet
	SATMIDlet
	CryptoMIDlet
	MohairMIDlet

	Running SATSAJCRMIDemo

	JSR 179: Location API Support
	Setting the Emulator’s Location at Runtime
	Running the CityGuide Sample Project

	JSRs 184, 226, and 239: Graphics Capabilities
	Mobile 3D Graphics (JSR 184)
	Choosing a Graphics Mode
	Immediate Mode
	Retained Mode

	Quality Versus Speed
	Content for Mobile 3D Graphics
	Running Demo3D Samples
	Life3D
	retainedmode
	PogoRoo

	Java Bindings for OpenGL ES (JSR 239)
	Scalable 2D Vector Graphics (JSR 226)
	Running SVGDemo
	SVG Browser
	Render SVG Image
	Play SVG Animation
	Create SVG Image from Scratch
	Bouncing Balls
	Optimized Menu
	Picture Decorator
	Location Based Service
	PlaySVGImageDemo

	Running SVGContactList

	JSR 205: Wireless Messaging API (WMA) Support
	Using the WMA Console to Send and Receive Messages
	Launching the WMA Console
	WMA Console Interface
	Emulator Phone Numbers
	Sending a Text SMS Message
	Sending a Binary SMS Message
	Sending Text or Binary CBS Messages
	Sending MMS Messages
	Receiving Messages in the WMA Console

	Running WMADemo

	JSR 211: Content Handler API (CHAPI)
	Using Content Handlers
	Defining Content Handler Properties
	Defining Content Handler Actions

	Running the CHAPIDemo Content Browser

	JSR 238: Mobile Internationalization API (MIA)
	Setting the Emulator’s Locale
	Using the Resource Manager
	Working With Locales
	Working With Resource Files
	Working With Resources

	Running i18nDemo

	JSR 229: Payment API Support
	Running the Payment Console
	Running JBricks

	JSR 256: Mobile Sensor API Support
	Creating a Mobile Sensor Project
	Using a Mobile Sensor Project
	Creating a Sensor Script File
	Running the Sensors Sample Project
	SensorBrowser
	Marbles

	Index

