

Agilent 1290 Infinity Binary Pump

Agilent Technologies

User Manual

Notices

© Agilent Technologies, Inc. 2010-2014, 2015

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies, Inc. as governed by United States and international copyright laws.

Manual Part Number

G4220-90006 Rev. E

Edition

02/2015

Printed in Germany

Agilent Technologies Hewlett-Packard-Strasse 8 76337 Waldbronn

Warranty

The material contained in this document is provided "as is," and is subiect to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express or implied, with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.

Technology Licenses

The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

Restricted Rights Legend

If software is for use in the performance of a U.S. Government prime contract or subcontract, Software is delivered and licensed as "Commercial computer software" as defined in DFAR 252.227-7014 (June 1995), or as a "commercial item" as defined in FAR 2.101(a) or as "Restricted computer software" as defined in FAR 52.227-19 (June 1987) or any equivalent agency regulation or contract clause. Use, duplication or disclosure of Software is subject to Agilent Technologies' standard commercial license terms, and non-DOD Departments and Agencies of the U.S. Government will receive no greater than Restricted Rights as defined in FAR 52.227-19(c)(1-2) (June 1987). U.S. Government users will receive no greater than Limited Rights as defined in FAR 52.227-14 (June 1987) or DFAR 252.227-7015 (b)(2) (November 1995), as applicable in any technical data.

Safety Notices

CAUTION

A **CAUTION** notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a **CAUTION** notice until the indicated conditions are fully understood and met.

WARNING

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

In This Guide...

This manual covers the Agilent 1290 Infinity Binary Pump (G4220A).

1 Introduction

This chapter gives an introduction to the pump, instrument overview and internal connectors.

2 Site Requirements and Specifications

This chapter provides information on environmental requirements, physical and performance specifications.

3 Installing the Module

This chapter gives information about the preferred stack setup for your system and the installation of your Agilent 1290 Infinity Binary Pump.

4 Using the Pump

This chapter explains the operational parameters of the Agilent 1290 Infinity Binary Pump.

5 Optimizing Performance

This chapter gives hints on how to optimize the performance or use additional devices.

6 Troubleshooting and Diagnostics

Overview about the troubleshooting and diagnostic features.

7 Error Information

This chapter describes the meaning of error messages, and provides information on probable causes and suggested actions how to recover from error conditions.

8 Test Functions and Calibrations

This chapter describes the tests for the module.

9 Maintenance

This chapter describes the maintenance of the Agilent 1290 Infinity Binary Pump.

10 Parts and Materials for Maintenance

This chapter provides information on parts for maintenance.

11 Identifying Cables

This chapter provides information on cables used with the Agilent 1200 Infinity Series modules.

12 Hardware Information

This chapter describes the pump in more detail on hardware and electronics.

13 LAN Configuration

This chapter provides information on connecting the detector to the Agilent ChemStation PC.

14 Appendix

This chapter provides addition information on safety, legal and web.

Contents

1 Introduction 9

Features 10 Overview of the Binary Pump 11 Pump Principle 12 System Overview 15

2 Site Requirements and Specifications 19

Site Requirements 20 Physical Specifications 23 Specifications 24

3 Installing the Module 27

Unpacking the Module 28 Optimizing the Stack Configuration 30 Installation Information on Leak and Waste Handling 35 Removing the Transport Foam 39 Installing the Pump 40 Flow connections to the pump 43 Installation of Seal Wash Option 47

4 Using the Pump 49

Leak and Waste Handling 50 Preparing the Binary Pump 51 Algae Growth in HPLC Systems 52 Setting up the Pump with the Instrument Control Interface 54 Priming the Pump 64 Solvent Information 66 Normal Phase Applications 74

Contents

5 Optimizing Performance 77

Delay Volume and Extra-Column Volume 78 How to Configure the Optimum Delay Volume 79 How to Achieve Higher Resolution 81 Using Solvent Calibration Tables 84

6 Troubleshooting and Diagnostics 85

Overview of the Module's Indicators and Test Functions 86 Status indicators 87 Available Tests vs User Interfaces 89 Agilent Lab Advisor Software 90

7 Error Information 91

What Are Error Messages93General Error Messages94Pump Error Messages102

8 Test Functions and Calibrations 119

Introduction 120 System Pressure Test 121 Pump Head Leak Test 124

9 Maintenance 127

Introduction to Maintenance 129 Warnings and Cautions 131 Overview of Maintenance 133 Cleaning the Module 134 Installing Fittings and Capillaries 135 Replacing the Shutoff Valve Panel 136 Replacing the Pressure Sensor 138 **Overview of Torques for Pump Head Procedures** 141 Replacing the Inlet valve 142 Replacing the Outlet Valve 144 Replacing the Solvent Selection Valve (SSV) 147 Changing configuration or replacing the Jet Weaver 149 Replacing the Seal Wash Pump 152

Releasing a Stuck Inlet Valve 153 Replacing the Pump Heads 156 Disassembling the Pump Head 162 **Disassembling the Primary Pump Head** 163 Disassembling the Secondary Pump Head 167 Replacing the Heat Exchanger 171 Replacing Wash Seal and Gasket 174 Assembling the Pump Head 176 Replacing the Purge Valve Head 188 Replacing Parts of the High Pressure Filter Assembly 191 Installing the Valve Rail Kit 193 194 **Replacing the Main Power Fuses** Replacing Module Firmware 196 Preparing the Pump Module for Transport 197

10 Parts and Materials for Maintenance 201

Overview of Maintenance Parts 202 Flow Connections 204 Solvent Cabinet Kit 206 Seal Wash Option 207 Pump Head Assemblies 208 **Pump Head Assembly Parts** 210 Primary Pump Head Parts 212 Secondary Pump Head Parts 216 Purge Valve 220 Cover Parts 222 Leak Parts 224 Fuses 224 Accessory Kit 225 Tools 226 HPLC System Tool Kit 228

11 Identifying Cables 229

Cable Overview 230 Analog cables 232 Remote Cables 234 BCD Cables 237 CAN/LAN Cable 239 RS-232 Cable Kit 240 Agilent 1200 Module to Printer 241

12 Hardware Information 243

Firmware Description 244 Electrical Connections 247 Interfaces 249 Setting the 8-bit Configuration Switch 256 Instrument Layout 259 Early Maintenance Feedback 260

13 LAN Configuration 261

What You Have to Do First 262 TCP/IP parameter configuration 264 Configuration Switch 265 Initialization mode selection 266 Dynamic Host Configuration Protocol (DHCP) 270 Link configuration selection 273 Automatic configuration with Bootp 274 Manual Configuration 284 PC and User Interface Software Setup Setup 290

14 Appendix 293

General Safety Information 294 The Waste Electrical and Electronic Equipment (WEEE) Directive (2002-96-EC) 297 Radio Interference 298 Sound Emission 298 Agilent Technologies on Internet 298

Introduction

1

Features 10 Overview of the Binary Pump 11 Pump Principle 12 System Overview 15 Leak and Waste Handling 15

This chapter gives an introduction to the pump, instrument overview and internal connectors.

Features

The Binary pump is designed for highest performance, GLP compliance and easy maintenance. It includes the following features:

- Seal wash for continued high lifetime of pump seals for buffer applications.
- · Solvent selection valve for method flexibility.
- Jet Weaver for optimum mixing performance with a minimum of delay volume.
- Automatic purge function for ease of use and unattended preparation of the system.
- Auto tuning of the delivery cycle for compensation of elasticity and solvent volume change effects (compressibility, thermal expansion, mixing contraction).
- · Solvent selection for optimum flow and composition accuracy.
- · Fast defill function for improved intake and delivery performance.
- Two pistons in series design for increased reliability.
- High resolution piston movement control for smooth and reliable motion.

For specifications, see Table 2 on page 24.

NOTE This Binary pump has been introduced together with the Agilent 1290 Infinity Liquid Chromatograph.

1

Overview of the Binary Pump

The Agilent 1290 Infinity Binary Pump comprises two identical pumps integrated into one housing. Binary gradients are created by high-pressure mixing. A degassing unit is included for applications that require best flow stability, especially at low flow rates, for maximum detector sensitivity. The flow path of the pump has been optimized for minimal delay of gradients. Typical applications are high throughput methods with fast gradients on high resolution 2.1 mm columns. The pump is capable of delivering flow in the range of 0.05-5 mL/min against up to 1200 bar. A solvent selection valve allows forming binary mixtures (isocratic or gradient) from one of two solvents per channel. Active seal wash (optional) is available for use with concentrated buffer solutions. 1 Introduction Pump Principle

Pump Principle

The Binary Pump is based on a two-channel, dual-piston in-series design which comprises all essential functions that a solvent delivery system has to fulfill. Metering of solvent and delivery to the high-pressure side are performed by two pump assemblies which can generate pressure up to 1200 bar.

Each channel comprises a pump assembly including independent pump drive for each piston, pump head, inlet valve, outlet valve, solvent heat exchanger and an outlet filter. The two channels are fed into a low-volume mixing groove in an automatic purge valve and a Jet Weaver mixer, with 35 or $100 \ \mu$ l volume can be added downstream for optimum mixing performance.

A system pressure sensor, for monitoring the pump pressure, is attached to the purge valve, normally connected in the B-channel of the pump, before the mixing groove, in order to minimize delay volumes.

Figure 1 The hydraulic path

In the user interface the solvent in use for each channel can be selected in order to get optimum flow and composition accuracy. Although selecting the right solvent is not required for low ripple, especially for composition accuracy across pressure it is vital for the compensation algorithm to use the right solvent properties. The density of the solvents is increased under the influence of pressure and a certain displaced solvent will expand again when the pressure is released, for example across the column. In order to achieve the correct volumetric flow while sample passes through the detector it is necessary to correct for density related flow inaccuracies in the pump module.

In order to always deliver the best possible pressure stability, the pump constantly tunes the delivery cycle for elasticity and dead volume effects. With this feature the pump is able to deliver a stable and accurate flow without requiring individual calibration settings. A further feature of the control and compensation algorithm is leak correction. With this it is even possible to compensate for minor leaks in primary pump chamber (inlet valve and seal), without the performance of the pump being affected.

To increase the robustness of the pump it uses a fast defill function which reduces the delivery time of the primary piston, thereby reducing the net effects of leaks considerably. Furthermore each pump channel has only two valves on its two pump heads which also reduce the potential of failures. In order to reduce stresses on the pump hardware, it uses a smooth motion control, which slowly increases or decreases the speed of the pistons to prevent shock movements. In order to be able to control these movements a high resolution encoder unit is attached to the pump drives which resolves a revolution into 65000 steps, and each step translates to a volume of about 300 pl.

System Overview

Leak and Waste Handling

The 1200 Infinity Series has been designed for safe leak and waste handling. It is important that all security concepts are understood and instructions are carefully followed.

1 Introduction

System Overview

Figure 2 Leak and waste handling concept (overview - typical stack configuration as an example)

The solvent cabinet (1) is designed to store a maximum volume of 6 L solvent. The maximum volume for an individual bottle stored in the solvent cabinet should not exceed 2.5 L. For details, see the usage guideline for the Agilent 1200 Infinity Series Solvent Cabinets (a printed copy of the guideline has been shipped with the solvent cabinet, electronic copies are available on the Internet).

The leak pan (2) (individually designed in each module) guides solvents to the front of the module. The concept covers also leakages on internal parts (e.g. the detector's flow cell). The leak sensor in the leak pan stops the running system as soon as the leak detection level is reached.

The leak pan's outlet port (3, A) guides excessive overfill from one module to the next, as the solvent flows into the next module's leak funnel (3, B) and the connected corrugated waste tube (3, C). The corrugated waste tube guides the solvent to the next lower positioned module's leak tray and sensor.

The waste tube of the sampler's needle wash port (4) guides solvents to waste.

The condense drain outlet of the autosampler cooler (5) guides condensate to waste.

The waste tube of the purge valve (6) guides solvents to waste.

The waste tube connected to the leak pan outlet on each of the bottom instruments (7) guides the solvent to a suitable waste container.

Introduction System Overview

1

2 Site Requirements and Specifications

Site Requirements20Physical Specifications23Specifications24

This chapter provides information on environmental requirements, physical and performance specifications.

2 Site Requirements and Specifications Site Requirements

Site Requirements

A suitable environment is important to ensure optimal performance of the instrument.

Power Consideration

The module power supply has wide ranging capabilities and accepts any line voltage in the range mentioned in Table 1 on page 23. Consequently, there is no voltage selector in the rear of the module. There are also no externally accessible fuses, because automatic electronic fuses are implemented in the power supply.

WARNING

Module is partially energized when switched off, as long as the power cord is plugged in.

Repair work at the module can lead to personal injuries, e.g. shock hazard, when the cover is opened and the module is connected to power.

- → Make sure that it is always possible to access the power plug.
- → Remove the power cable from the instrument before opening the cover.
- → Do not connect the power cable to the Instrument while the covers are removed.

WARNING Incorrect line voltage at the module

Shock hazard or damage of your instrument can result if the devices are connected to line voltage higher than specified.

→ Connect your module to the specified line voltage.

CAUTION Inaccessible power plug.

In case of emergency it must be possible to disconnect the instrument from the power line at any time.

- → Make sure the power connector of the instrument can be easily reached and unplugged.
- Provide sufficient space behind the power socket of the instrument to unplug the cable.

Power Cords

Different power cords are offered as options with the module. The female end of all power cords is identical. It plugs into the power-input socket at the rear. The male end of each power cord is different and designed to match the wall socket of a particular country or region.

WARNING

Absence of ground connection or use of unspecified power cord

The absence of ground connection or the use of unspecified power cord can lead to electric shock or short circuit.

- Never operate your instrumentation from a power outlet that has no ground connection.
- Never use a power cord other than the Agilent Technologies power cord designed for your region.

WARNING

Use of unsupplied cables

Using cables not supplied by Agilent Technologies can lead to damage of the electronic components or personal injury.

→ Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.

WARNING

Unintended use of supplied power cords

Using power cords for unintended purposes can lead to personal injury or damage of electronic equipment.

→ Never use the power cords that Agilent Technologies supplies with this instrument for any other equipment.

Bench Space

The module dimensions and weight (see Table 1 on page 23) allow you to place the module on almost any desk or laboratory bench. It needs an additional 2.5 cm (1.0 inches) of space on either side and approximately 8 cm (3.1 inches) in the rear for air circulation and electric connections.

If the bench shall carry a complete HPLC system, make sure that the bench is designed to bear the weight of all modules.

The module should be operated in a horizontal position.

Condensation

CAUTION

Condensation within the module

Condensation can damage the system electronics.

- → Do not store, ship or use your module under conditions where temperature fluctuations could cause condensation within the module.
- → If your module was shipped in cold weather, leave it in its box and allow it to warm slowly to room temperature to avoid condensation.

Physical Specifications

Туре	Specification	Comments
Weight	21.8 kg (48 lbs)	
Dimensions (height × width × depth)	240 x 345 x 435 mm (9.3 x 13.5 x 17 inches)	
Line voltage	100 – 240 V~, ± 10 %	Wide-ranging capability
Line frequency	50 or 60 Hz, ± 5 %	
Power consumption	350 VA / 270 W / 922 BTU	Maximum
Ambient operating temperature	4–55 °C (39–131 °F)	
Ambient non-operating temperature	-40 - 70 °C (-40 - 158 °F)	
Humidity	< 95 % r.h. at 40 °C (104 °F)	Non-condensing
Operating altitude	Up to 2000 m (6562 ft)	
Non-operating altitude	Up to 4600 m (15092 ft)	For storing the module
Safety standards: IEC, CSA, UL	Installation category II, Pollution degree 2	For indoor use only.

Table 1 Physical Specifications

Specifications

Туре	Specification	Comments
Hydraulic system	Two dual pistons in series pumps with proprietary servo-controlled variable stroke design, power transmission by ball screws, smooth motion control of pistons for active damping.	
Settable flow range	Setpoints 0.001—5 ml/min, in 0.001 ml/min increments.	Executed in 300 pl/step increments
Flow precision	≤0.07 % RSD or 0.005 min SD, whatever is greater (0.2—5.0 ml/min).	Based on retention time at constant room temperature.
Flow accuracy	± 1 % or 10 $\mu l/min,$ whatever is greater.	Pumping degassed H ₂ O at 10 MPa (100 bar)
Pressure operating range	Operating range up to 120 MPa (1200 bar), up to 2 mI/min, 80 MPa (800 bar) at 5 mI/min.	
Pressure pulsation	<1 % amplitude or < 0.5 MPa (5 bar), whatever is greater.	At 1 ml/min water
Compressibility compensation	Automatic, pre-defined, based on mobile phase selection.	
Gradient formation	High pressure binary mixing.	
Delay volume	Jet Weaver V35: <45 µI Jet Weaver V100: <75 µI	JetWeaver generally recommended. For applications requiring lowest delay volumes, JetWeaver can be removed out of the flow path. Delay volume is then solely determined by the volume of the connection capillary.
Composition range	Settable range: 0 – 100 %	Recommended range: 1 – 99 % or 5 µl/min per channel, whatever is greater.
Composition precision	<0.15 % RSD, or 0.01 min SD, whatever is greater.	0.2—5.0 ml/min; based on retention time at constant room temperature
Composition accuracy	±0.35 % absolute (5 – 95 %, 0.2 – 5.0 ml/min)	Water/caffeine tracer

Table 2 Performance specifications

Туре	Specification	Comments
Solvent selection valve	Default	Standard part of the pump
Integrated degassing unit	Number of channels: 2 Internal volume per channel: 1.5 mL	
Control	Agilent ChemStation for LC (B.04.02 or above) EZChrom Elite (3.3.2 SP1 or above) OpenLAB (3.3.2 SP3) Masshunter (B.02.01 SP1 or above)	
Local control	Agilent Instant Pilot (G4208A) (B.02.08 or above)	
Communications	Controller-area network (CAN), RS232C, APG remote: ready, start, stop and shutdown signals, LAN	
Safety and maintenance	Extensive diagnostics, error detection and display (through Agilent Lab Advisor), leak detection, safe leak handling, leak output signal for shutdown of the pumping system. Low voltage in major maintenance areas.	
GLP features	Early maintenance feedback (EMF) for continuos tracking of instrument usage in terms of purge valve switches and volume of pumped mobile phase with pre-defined and user settable limits and feedback messages. Electronic records of maintenance and errors.	
Housing	All materials recyclable.	

Table 2 Performance specifications

2 Site Requirements and Specifications Specifications

Installing the Module

3

Unpacking the Module 28 Optimizing the Stack Configuration 30 **One Stack Configuration** 30 **Two Stack Configuration** 33 Installation Information on Leak and Waste Handling 35 Removing the Transport Foam 39 Installing the Pump 40 Flow connections to the pump 43 Installation of Seal Wash Option 47

This chapter gives information about the preferred stack setup for your system and the installation of your Agilent 1290 Infinity Binary Pump.

Unpacking the Module

Damaged Packaging

If the delivery packaging shows signs of external damage, please call your Agilent Technologies sales and service office immediately. Inform your service representative that the instrument may have been damaged during shipment.

CAUTION

"Defective on arrival" problems

If there are signs of damage, please do not attempt to install the module. Inspection by Agilent is required to evaluate if the instrument is in good condition or damaged.

- → Notify your Agilent sales and service office about the damage.
- → An Agilent service representative will inspect the instrument at your site and initiate appropriate actions.

Delivery Checklist

Ensure that all parts and materials have been delivered with your module. The delivery checklist is shown below. For parts identification please check the illustrated part lists in "Parts and Materials for Maintenance" on page 201. Please report any missing or damaged parts to your local Agilent Technologies sales and service office.

Description	Quantity	
1290 Infinity Bin Pump User Manual	1	
1290 Infinity System Manual	1	
Agilent Lab Advisor	1	
<i>User Manual</i> on Documentation CD (part of the shipment - not module specific)	1 per order	
Power Cord	1	
Solvent Cabinet Kit with 4 bottles	1	
Accessory Kit (see "Accessory Kit" on page 225)	1	
RRHD Eclipse Plus C18, 2.1x50 mm, 1.8 u	1	

 Table 3
 Binary Pump Checklist

Optimizing the Stack Configuration

If your module is part of a complete Agilent 1290 Infinity Liquid Chromatograph, you can ensure optimum performance by installing the following configurations. These configurations optimize the system flow path, ensuring minimum delay volume.

For other possible configurations, please refer to the Agilent 1290 Infinity System Manual.

One Stack Configuration

Ensure optimum performance by installing the modules of the Agilent 1290 Infinity Binary LC System in the following configuration (See Figure 3 on page 31 and Figure 4 on page 32). This configuration optimizes the flow path for minimum delay volume and minimizes the bench space required.

The Agilent 1290 Infinity Binary Pump should always be installed at the bottom of the stack.

Installing the Module 3

Optimizing the Stack Configuration

3 Installing the Module

Optimizing the Stack Configuration

Two Stack Configuration

In case the autosampler thermostat is added to the system, a two-stack configuration is recommended, which places both heavy modules (1290 Infinity pump and thermostat) at the bottom of each stack and avoids high stacks. Some users prefer the lower height of this arrangement even without the autosampler thermostat. A slightly longer capillary is required between the pump and autosampler. (See Figure 5 on page 33 and Figure 6 on page 34).

Thermostat for the ALS (optional)

3 Installing the Module

Optimizing the Stack Configuration

AC Power

Installation Information on Leak and Waste Handling

The Agilent 1200 Infinity Series has been designed for safe leak and waste handling. It is important that all security concepts are understood and instructions are carefully followed.

WARNING

Toxic, flammable and hazardous solvents, samples and reagents

The handling of solvents, samples and reagents can hold health and safety risks.

- → When working with these substances observe appropriate safety procedures (for example by wearing goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the vendor, and follow good laboratory practice.
- The volume of substances should be reduced to the minimum required for the analysis.
- Never exceed the maximal permissible volume of solvents (6 L) in the solvent cabinet.
- → Do not use bottles that exceed the maximum permissible volume as specified in the usage guideline for the Agilent 1200 Infinity Series Solvent Cabinets.
- → Arrange the bottles as specified in the usage guideline for the solvent cabinet.
- → A printed copy of the guideline has been shipped with the solvent cabinet, electronic copies are available on the Internet.

NOTE

Recommendations for Solvent Cabinet

For details, see the usage guideline for the Agilent 1200 Infinity Series Solvent Cabinets.

3 Installing the Module

Installation Information on Leak and Waste Handling

Figure 7 Leak and waste handling (overview - typical stack configuration as an example)
Installing the Module **3**

Installation Information on Leak and Waste Handling

1	Solvent cabinet
2	Leak pan
3	Leak pan's outlet port (A), leak funnel (B) and corrugated waste tube (C)
4	Waste tube of the sampler's needle wash
5	Condense drain outlet of the autosampler cooler
6	Waste tube of the purge valve
7	Waste tube

1 Stack the modules according to the adequate stack configuration.

The leak pan outlet of the upper module must be vertically positioned above the leak tray of the lower module, see Figure 7 on page 36.

- **2** Connect data and power cables to the modules, see section *Installing the Module* below.
- **3** Connect capillaries and tubes to the modules, see section *Flow Connections to the module* below or the relevant system manual.

Toxic, flammable and hazardous solvents, samples and reagents

- → Keep solvent path free from blockages.
- Keep the flow path closed (in case the pump in the system is equipped with a passive inlet valve, solvent may leak out due to hydrostatic pressure, even if your instrument is off).
- → Avoid loops.

WARNING

- → Tubes must not sag.
- Do not bend tubes.
- → Do not immerse tube end in waste liquid.
- → Do not intubate tubes in other tubes.
- → For correct tubing follow instructions on label attached to the module.

3 Installing the Module

Installation Information on Leak and Waste Handling

Figure 8 Warning label (illustration for correct waste tubing)

Removing the Transport Foam

Installing the Pump

Parts required	#	Description
	1	Pump
	1	Power cord
	1	Agilent Control Software and/or Instant Pilot G4208
Preparations	Locate	bench space
	Provide	e power connections
	Unpacl	k the pump
	1 Pla	ce the module on the bench in a horizontal position.
		sure the power switch on the front of the module is OFF (switch nds out).

Status indicator			
	L	 	
Power switch		 Ø.	
	<u> </u>		
Serial number			

- **3** Connect the power cable to the power connector at the back of the 1290 Infinity Binary Pump.
- **4** Connect the required interface cables to the rear of the 1290 Infinity Binary Pump.

Power plug

NOTE

In an Agilent 1290 Infinity System, the individual modules are connected by CAN cables. An Agilent 1200 Series Instant Pilot can be connected to the CAN bus of any module. Connection to an Agilent data system is established through the built-in LAN port of the detector. The LAN port of the detector must be used as the detector generates the highest data rate of all modules. For more information about connecting the Instant Pilot or Agilent Data System, please refer to the respective user manual. For setting up the LAN access, see "LAN Configuration" on page 261.

5 Turn on the power by pushing the button at the lower left hand side of the module.

The power button stays pressed in and the status LED should be green.

NOTE

When the line power button stands out and the green light is off, the module is turned off.

NOTE

The module was shipped with default configuration settings. For changing these settings, refer to section *Setting the 8-bit configuration switch*.

Flow connections to the pump

The pump is shipped with tubing and capillary connections installed between solvent selection valve, degassing unit, pump heads, pressure sensor, purge valve and Jet Weaver. This section describes the installation of additional flow connections.

3 Installing the Module

Flow connections to the pump

Parts required	#	p/n	Description
	1		Other modules
	1	G4220-68705	Accessory kit
	1	G5067-1531	Solvent Cabinet Kit
Preparations	Pump	is installed in the LC	system.
WARNING	Toxic,	flammable and h	azardous solvents, samples and reagents
	The handling of solvents, samples and reagents can hold health and safety risks.		
	exa the	ample by wearing	these substances observe appropriate safety procedures (for goggles, safety gloves and protective clothing) as described in g and safety data sheet supplied by the vendor, and follow good
	The volume of substances should be reduced to the minimum required for the analysis.		
	→ Do	not operate the in	nstrument in an explosive atmosphere.

1 Remove the front cover by pressing the snap fasteners on both sides.

Figure 11 Removing the Front Cover

- **2** Place the solvent cabinet on top of the module stack that includes the 1290 Infinity Binary Pump.
- **3** Put the four bottles into the solvent cabinet and screw a bottle head assembly onto each bottle.
- 4 Install the shutoff valve panel at the top left corner of the instrument.

5 Connect the solvent tubes from the bottle head assemblies to the inlet connectors A1, A2, B1 and B2 of the solvent selection valves. Use the brown bottle for the aqueous solvent (usually channel A1).

Flow connections to the pump

- **6** Label the tubes accordingly using the supplied stickers and fix the tubes in the clips of solvent cabinet and 1290 Infinity Binary Pump.
- 7 Connect the outlet of the Jet Weaver to the autosampler.
- **8** Connect Waste tubes (G4220-67000) to the purge valve outlets at ports 5 and 6.
- 9 Connect the corrugated waste tube to the outlet of the leak panel.
- 10 Route the corrugated waste tube to a waste container.
- **11** Route drain tubes coming from modules on top of the pump through the pump.
- **12** Purge your system prior to the first use (see "Priming the Pump" on page 64).

Installation of Seal Wash Option

To waste container

Figure 12 Binary Pump with Seal Wash Function

The 1290 Infinity Binary Pump is optionally available with a seal wash function. This option is recommended when using buffers or other non-volatile solvents or additives that could deposit on pistons and seals. It is used for regularly cleaning these parts automatically.

- 1 Place a wash solvent reservoir into the solvent cabinet. A mixture of distilled water and isopropanol (90/10) is a good choice for many applications.
- **2** Put the solvent inlet tube into the solvent reservoir, close it and connect the tube to the seal wash pump.
- 3 Route the outlet of the wash tube into a waste container.

3 Installing the Module

Installation of Seal Wash Option

4

Leak and Waste Handling 50 Preparing the Binary Pump 51 Algae Growth in HPLC Systems 52 How to Prevent and-or Reduce the Algae Problem 53 Setting up the Pump with the Instrument Control Interface 54 Overview 54 Instrument Configuration 54 The Pump User Interface (Dashboard Panel) 56 Control Settings 58 Method Parameter Settings 60 Priming the Pump 64 Solvent Information 66 **Normal Phase Applications** 74

This chapter explains the operational parameters of the Agilent 1290 Infinity Binary Pump.

Leak and Waste Handling

Leak and Waste Handling

WARNING

Toxic, flammable and hazardous solvents, samples and reagents

The handling of solvents, samples and reagents can hold health and safety risks.

- → When working with these substances observe appropriate safety procedures (for example by wearing goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the vendor, and follow good laboratory practice.
- The volume of substances should be reduced to the minimum required for the analysis.
- → Do not operate the instrument in an explosive atmosphere.
- → Never exceed the maximal permissible volume of solvents (6 L) in the solvent cabinet.
- → Do not use bottles that exceed the maximum permissible volume as specified in the usage guideline for the Agilent 1200 Infinity Series Solvent Cabinets.
- → Arrange the bottles as specified in the usage guideline for the solvent cabinet.
- → A printed copy of the guideline has been shipped with the solvent cabinet, electronic copies are available on the Internet.
- → Ground the waste container.
- → The residual free volume in the appropriate waste container must be large enough to collect the waste liquid.
- → Check the filling level of the waste container regularly.
- → To achieve maximal safety, check the correct installation regularly.
- → Do not use solvents with an auto-ignition temperature below 200 °C (392 °F).

NOTE	Recommendations for Solvent Cabinet
	For details, see the usage guideline for the Agilent 1200 Infinity Series Solvent Cabinets.

For details on correct installation, see section *Installation Information on Leak and Waste Handling* in the service manual.

Preparing the Binary Pump

For best performance of the pump:

- Place solvent cabinet with the solvent bottles always on top (or at a higher level) of the pump.
- For optimum performance, use the built-in degasser. This is mandatory for flow rates below 0.5 mL/min and for configurations without Jet Weaver.
- When using the pump with vacuum degassing unit, flush the degassing unit with at least 5 mL per channel before operating the pump, especially when the pumping system had been turned off for a certain length of time (for example, overnight) and volatile solvent mixtures are used in the channels.
- Prevent blocking of solvent inlet filters (never use the pump without solvent inlet filters). Growth of algae should be avoided, see "Algae Growth in HPLC Systems" on page 52.
- Check pump outlet filters and column frit in regular time intervals. A blocked pump outlet filter can be identified by black, yellow or greenish layers on its surface.
- Whenever possible use a minimum flow rate of 5 $\mu L/min$ per solvent channel to avoid crossflow of solvent into the unused pump channel.
- When using buffer solutions, flush the system with water before switching it off.
- The optional seal wash function should be used when buffer solutions with concentrations of 0.1 M or higher are being pumped for long periods of time.
- Never leave an unused pump with water in a channel for an extended period of time (2-3 days). Always flush with organic solvent or add 10 % isopropanol to water.

Algae Growth in HPLC Systems

Algae Growth in HPLC Systems

The presence of algae in HPLC systems can cause a variety of problems that may be incorrectly diagnosed as instrument or application problems. Algae grow in aqueous media, preferably in a pH range of 4-8. Their growth is accelerated by buffers, for example phosphate or acetate. Since algae grow through photosynthesis, light will also stimulate their growth. Even in distilled water small-sized algae grow after some time.

Instrumental Problems Associated With Algae

Algae deposit and grow everywhere within the HPLC system causing:

- Blocked solvent filters or deposits on inlet or outlet valves resulting in unstable flow, composition or gradient problems or a complete failure of the pump.
- Small pore high pressure solvent filters, usually placed before the injector to plug resulting in high system pressure.
- PTFE frits blockage leading to increased system pressure.
- Column filters to plug giving high system pressure.
- Flow cell windows of detectors to become dirty resulting in higher noise levels (since the detector is the last module in the flow path, this problem is less common).

How to Prevent and-or Reduce the Algae Problem

- Always use freshly prepared solvents, especially use demineralized water which was filtered through about 0.2 μ m filters.
- Never leave mobile phase in the instrument for several days without flow.
- Always discard old mobile phase.
- Use the amber solvent bottle (Solvent bottle, amber (9301-1450)) supplied with the instrument for your aqueous mobile phase.
- If possible add a few mg/l sodium azide or a few percent organic solvent to the aqueous mobile phase.

Using the Pump Setting up the Pump with the Instrument Control Interface

Setting up the Pump with the Instrument Control Interface

Overview

4

Parameters described in following sections is offered by the instrument control interface and can usually be accessed through Agilent instrument control software. For details, please refer to manuals and online help of respective user interfaces.

Instrument Configuration

Use the **Instrument Configuration** dialog box to examine and, if necessary, modify your instrument configuration. The **Configurable Modules** panel contains a list of all modules available for configuration. The **Selected Modules** panel contains the list of configured modules.

Auto Configuration: Under Communication settings, select either the Host Name option or the **IP address** option and enter the appropriate value for the host computer to enable automatic detection of the hardware configuration. The system configures the instrument automatically with no further manual configuration necessary.

The Binary Pump configuration parameters are in two sections:

- Communication
- Options

Communication: The parameters in this dialog box are detected automatically during autoconfiguration.

- Device name,
- Type ID,
- Serial number,
- · Firmware revision,
- Button Connection settings

Options:

Pressure Unit:

select the pressure units from the drop-down list (bar, psi or MPa).

· Seal wash installed:

This check box is marked to indicate that an optional seal wash has been detected during autoconfiguration.

• ISET installed:

This check box is marked to indicate that ISET is installed. Click **ISET Configurations** to open the **ISET Configuration** dialog box, which allows you to configure a sampler for the ISET emulation.

Configure Solvent Type Catalogs: Displays the **Solvent Type Catalogs** dialog box, which allows you to import and export solvent calibration data. See "Importing Solvent Calibration Tables" on page 84.

Please refer to the online help of your user interface for more detailed information.

4

Setting up the Pump with the Instrument Control Interface

The Pump User Interface (Dashboard Panel)

Module Graphic

The items in the pump graphic have the following meaning and function:

Indicates that an External Contacts board is installed.

The level of solvent in the bottle is denoted by the green area; when the solvent level falls below the specified volume, the area turns yellow; when the bottle is empty, the area turns red. Clicking on the solvent bottle displays the **Bottle Fillings** dialog box. The tooltip for the bottle shows the solvent name.

Indicates that the ISET option is installed but with no active method (gray) or installed and active (orange). (G4220A only)

Indicates the presence of a solvent selection valve. Click the graphic to switch the valve; the animation shows when the valve is switched.

The pressure setpoints. The red line shows the current maximum pressure limit; the green area shows the current pressure (also shown as text).

The current solvent flow rate (in mL/min) is displayed above the pressure display.

Setting up the Pump with the Instrument Control Interface

Instrument Signals

The following pump signals are displayed:

Flow	The current solvent flow rate (in mL/min).
Pressure	The current pump ressure (in bar, psi or MPa, see "Instrument Configuration" on page 54).
Pressure Limit	The current maximum pressure limit.
Composition A:B	The current solvent composition. When a solvent selection valve is fitted, the channels are shown in the graphic.

Context Menu

The context menu of the dashboard panel contains the following commands:

	Control	Displays the pump's Control dialog box.
	Method	Displays the pump's Method Setup dialog box.
	Set Error Method	Sets the method that is loaded if an error occurs to the method that is currently available in the hardware.
	Identify Device	Causes the LED on the front of the module to blink for a few seconds.
- (Switch Pump On/Off	Toggles the status of the pump, on or off.
	Bottle Fillings	Displays the Bottle Fillings dialog box.
	Purge On/Off	Allows you to control the purging of the system.
	Prime On/Off	Allows you to prime the pump heads for initially drawing solvent.
	Conditioning On/Off	Allows you to switch pump conditioning on and off. The conditioning function is useful for removing small air bubbles inside the pump flow path.

Setting up the Pump with the Instrument Control Interface

Control Settings

The Binary Pump control parameters are in six sections:

- Pump
- Seal Wash
- Automatic Turn On
- Purge
- Prime
- Conditioning

Table 4Pump control parameters

Parameter	Limits	Description
Pump		Enables you to switch the pump On , Off or to a Standby condition. In the Standby condition, the pump motor is still active, and when the pump is switched on again, does not need to be re-initialized.
Seal Wash		 The seal wash can be set up to be run once (Single wash) or periodically (Periodic). Off: no seal wash is used. Single wash: the seal will be purged for a specified time. Periodic: a periodic wash will be applied for a defined period in minutes. The option is available only when the pump has seal wash capability. The seal wash capability is detected by the module itself. If seal wash is installed, it is recommended to use it in order to increase the primary seal lifetime.
Seal Wash Run Mode		 Allows you to define when to use the seal wash: Off: The seal wash is inactive. On when pump is on: The seal wash is active only when the pump is on. On all the time: The seal wash is active when the pump is on or in standby mode.
Automatic Turn On		Module can be turned on at a specified date/time. This feature can only be used if the module power switch is turned on.

Setting up the Pump with the Instrument Control Interface

Parameter	Limits	Description
Purge	Time: 0 – 100.00 min in steps of 0.01 . Flow: 0.000 – 5.000 mL/min for each channel, in steps of 0.001 (10.000 mL/min maximum).	 Setup and activation of Purge parameters. The automatic purge valve can be used for purging the system. The process has been automated for ease of use. Off: Turns off the purge. On: The device is purged. Purge Flow, Time and Composition during purge have to be defined. As soon as the duration time of the purge ends, the module automatically switches to analytical conditions again.
Prime		Select On to start priming, Off to turn priming off. The Prime function is helpful for filling empty solvent lines or if air has entered the pump heads. The module draws solvent, at high speed with all four pump drives simultaneously, and dispenses it against the waste position of the automatic purge valve. This is done 20 times, before the process comes to an end.
Conditioning	at least 200 bar (> 500 bar is better).	Use this function if you see excessive pressure or composition ripple, and you are sure that the solvent type (aqueous/organic or specific solvent/solvent mix) is correctly set, and there is no evidence of leakage in the pump. Conditioning may be necessary if the pump may contain air, for example after running out of solvent, after a long period of standby or after service or repair.

Table 4Pump control parameters

Setting up the Pump with the Instrument Control Interface

Method Parameter Settings

The Binary Pump method setup parameters are in eight sections:

- Flow
- Solvents A and B
- Stoptime
- Posttime
- Pressure Limits
- Timetable
- Advanced
- External Contacts

Table 5Method parameters

Parameter	Limits	Description
Flow	0.00 – 5.00 mL/min in steps of 0.001 . Recommended flow range: 0.05 – 5.00 mL/min .	The flow is the rate of movement of eluent along the column. It is important that the flow rate is kept constant to ensure precise retention time, and peak measurements. Variations in flow rate can occur as a result of the partial failure of the pumping system, air in the pumping system, a change in the mobile phase viscosity or a temperature change.
Solvents A and B		For each channel, you can select which of the two solvents to deliver. You can set the percentage of solvent B to any value from 0 through 100 % . Solvent A always delivers the remaining volume: 100 - %B. The solvent B check boxes allow you to turn the solvent B channels on (checked) or off (cleared). When the Use solvent types check box in the Compressibility section is checked (see "Advanced Settings" on page 62), you click the down arrow and select either a Generic solvent or a calibrated Solvent .
Stoptime	0.01 – 99999 min or As Injector/No Limit (an infinite run time).	The stoptime sets a time limit for your analysis. After the stoptime, all gradients are stopped and the pump parameters return to their initial values. The pump can be used as a stoptime master for the complete analytical system. The pump also stops the detectors if they have a No Limit stoptime setting. If no limit is given, a method will have to be stopped manually.
Posttime	0.01 — 99999 min or Off (0.0 min).	Your instrument remains in a not ready state during the posttime to delay the start of the next analysis. You can use the Posttime to allow your column to equilibrate after changes in solvent composition (for example after gradient elution).

Parameter	Limits	Description
Pressure Limits	Max : 1200 bar (17400 psi) for flow rates up to 2 mL/min . For flow rates between 2 mL/min and 5 mL/min , the maximum pressure ramps down to 800 bar (11600 psi). Min : any value between 0 and the upper pressure limit setting.	 Sets the maximum and minimum pressure limits for the pump. Max is the maximum pressure limit at which the pump will switch itself off, protecting the analytical system against over-pressure. Min is the minimum limit at which the pump will switch itself off, for example, if any solvent reservoir is empty, this prevents system damage by pumping air.
Timetable		See "Timetable Settings" on page 63
Advanced		See "Advanced Settings" on page 62
External Contacts		The External Contacts section enables you to set up the switching of the external contacts. NOTE The External Contacts section is present only when a BCD/external contacts board is installed.

Table 5Method parameters

4

Setting up the Pump with the Instrument Control Interface

Advanced Settings

The Binary Pump advanced method setup parameters are in three sections:

- Minimum Stroke
- Compressibility
- Maximum Flow Gradient

Table 6Advanced method parameters

Parameter	Limits	Description
Minimum Stroke	20 – 100 µL	The Stroke Volume is used for optimizing between performance of the module and seal life time. For performance a low stroke volume is beneficial, as it divides disturbances into smaller packages, but a larger volume is extending the life time of the pump seals. If Automatic is activated, the pump tries to achieve an optimized stroke volume for the Jet Weaver geometry. Synchronized : Select this option to synchronize the strokes for both channels; the values for Channel B are set to the same as those for Channel A. This is done to avoid floating disturbances affecting instrument performance.
Compressibility		The compressibility of the mobile phase has an effect on the performance of the pump. For best flow accuracy and mixing performance, you can set the parameter according to the mobile phase being used.
		 Use solvent types: Clear this check box to display the compressibility fields, which allow you to enter compressibility values. When the check box is selected, the compressibility fields are not displayed, and the enhanced compressibility calibration is enabled. Select the required calibrated solvents from the drop-down lists using the combo boxes in the Solvents section.
Maximum Flow Gradient	1.000 – 1000.000 mL/min/mi n in steps of 0.001 mL/min/min Default value: 100.000 mL/min/min	You can set a limit on the rate of change of the solvent flow to protect your analytical column. You can set individual values for Flow ramp up and Flow ramp down .

Timetable Settings

Use the **Timetable** to program changes in the pump parameters during the analysis by entering a time in the **Time** field and appropriate values in the following fields of the timetable. Changes in flow rate occur linearly from either time zero or the time of the last defined change; other parameters change instantaneously at the time defined in the timetable.

Show **Advanced Timetable** toggles the timetable display between standard mode and advanced mode.

The following parameters can be changed:

- Change Contacts
- Change Flow
- Change Max. Pressure Limit
- **Change Solvent Composition** You can only use solvents, which have been enabled in the solvents section.
- Function centric view This checkbox allows you displaying parameter changes instead of a time table.

4

Priming the Pump

When the solvents have been exchanged or the pumping system has been turned off for a certain time (for example, overnight) oxygen will re-diffuse into the solvent channel between the solvent reservoir, vacuum degassing unit (when available in the system) and the pump. Solvents containing volatile ingredients will slightly lose these. Therefore priming of the pumping system is required before starting an application.

- 1 Initiate a purge in the controlling software with a Purge flow set to 3 5 ml/min per channel.
- 2 Flush all tubes with at least 30 ml of solvent.

Activity	Solvent	Comments
After an installation	lsopropanol	Best solvent to flush air out of the system
When switching between reverse phase and normal phase (both times)	Isopropanol	Isopropanol is miscible with both normal phase and reverse phase solvents.
After an installation	Ethanol or Methanol	Alternative to Isopropanol (second choice) if no Isopropanol is available
To clean the system when using buffers	Bidistilled water	Best solvent to re-dissolve buffer cristals
After a solvent change	Bidistilled water	Best solvent to re-dissolve buffer cristals
Before turning off system for an extended period of time	Organic or 10 % isopropanol in water	

Table 7	Choice of Priming Solvents for Different Purposes
---------	---

NOTE

The pump should never be used for priming empty tubings (never let the pump run dry). Use a syringe to draw enough solvent for completely filling the tubings to the pump inlet before continuing to prime with the pump.

If the system has been run dry or air has diffused into the pump it might require additional steps to get rid of the air again. Following the procedure below will give the best and fastest results.

- 1 Change solvent to isopropanol on both channels.
- **2** Turn on the Prime function.
- **3** Purge the system with 10 ml, composition 50/50 and for 10 min.
- **4** Attach a column suitable for isopropanol and set the Max. pressure limit to the limit of the column.
- **5** Run the system at composition 50/50 and a flow rate that gives a pressure close to the limit of the column.
- **6** Observe the pressure fluctuations. The system is air free as soon as the pressure is stable.
- **7** Change solvents and column according to the analytical conditions and purge the system to change solvents.

Solvent Information

Introduction

Observe the following recommendations on the use of solvents.

- Follow recommendations for avoiding the growth of algae, see "Algae Growth in HPLC Systems" on page 52.
- Small particles can permanently block capillaries and valves. Therefore, always filter solvents through 0.4 μm filters.
- Avoid or minimize the use of solvents that may corrode parts in the flow path. Consider specifications for the pH range given for different materials like flow cells, valve materials etc. and recommendations in subsequent sections.

Materials in Flow Path

Following materials are used in the flow path of this module:

Part	Materials	
Degasser chamber	TFE/PDD copolymer, PFA (internal tubings); PEEK (inlets); FEP (tubings); ETFE (fittings)	
Ultra clean tubings ¹	PFA (tubings), PEEK (fittings)	
Microfluidic structures ²	SST	
SSV	PEEK, FEP, PFA, AI_2O_3 -based ceramic, ruby, sapphire, SST	
Passive inlet valve	SST, gold, ruby, ZrO_2 -based ceramic, tantalum	
Outlet valve	SST, gold, ruby, ZrO_2 -based ceramic, tantalum	
Pump head	SST	
Pistons	ZrO ₂ -based ceramic	
Piston/wash seals	UHMW-PE, SST	
Pressure sensor	SST	
Automatic purge valve	Polyimide, SST, DLC	

¹ Ultra clean tubings are available for the use with high-end MS detectors. They are also compatible to THF.

² Jet Weaver, Heat Exchanger

Material Information

Materials in the flow path are carefully selected based on Agilent's experiences in developing highest quality instruments for HPLC analysis over several decades. These materials exhibit excellent robustness under typical HPLC conditions. For any special conditions, please consult the material information section or contact Agilent.

Disclaimer

Subsequent data were collected from external resources and are meant as a reference. Agilent cannot guarantee the correctness and completeness of such information. Data is based on compatibility libraries, which are not specific for estimating the long-term life time under specific but highly variable conditions of UHPLC systems, solvents, solvent mixtures and samples. Information can also not be generalized due to catalytic effects of impurities like metal ions, complexing agents, oxygen etc. Apart from pure chemical corrosion, other effects like electro corrosion, electrostatic charging (especially for non-conductive organic solvents), swelling of polymer parts etc. need to be considered. Most data available refers to room temperature (typically 20 – 25 °C, 68 – 77 °F). If corrosion is possible, it usually accelerates at higher temperatures. If in doubt, please consult technical literature on chemical compatibility of materials.

PEEK

PEEK (Polyether-Ether Ketones) combines excellent properties regarding biocompatibility, chemical resistance, mechanical and thermal stability. PEEK is therefore the material of choice for UHPLC and biochemical instrumentation.

It is stable in a pH range between 1 - 12, and inert to many common solvents.

There is still a number of known incompatibilities with chemicals such as chloroform, methylene chloride, THF, DMSO, strong acids (nitric acid > 10 %, sulphuric acid >

Polyimide

Agilent uses semi-crystalline polyimide for rotor seals in valves and needle seats in autosamplers. One supplier of polyimide is DuPont, which brands polyimide as Vespel, which is also used by Agilent.

Polyimide is stable in a pH range between 1 and 10 and in most organic solvents. It is incompatible with concentrated mineral acids (e.g. sulphuric acid), glacial acetic acid, DMSO and THF. It is also degraded by nucleophilic substances like ammonia (e.g. ammonium salts in basic conditions) or acetates.

Polyethylene (PE)

Agilent uses UHMW (ultra-high molecular weight)-PE/PTFE blends for yellow piston and wash seals, which are used in 1290 Infinity pumps and for normal phase applications in 1260 Infinity pumps.

Polyethylene has a good stability for most common inorganic solvents including acids and bases in a pH range of 1 to 12.5. It is compatible to many organic solvents used in chromatographic systems like methanol, acetonitrile and isopropanol. It has limited stability with aliphatic, aromatic and halogenated hydrocarbons, THF, phenol and derivatives, concentrated acids and bases. For normal phase applications, the maximum pressure should be limited to 200 bar.

Tantalum (Ta)

Tantalum is inert to most common HPLC solvents and almost all acids except fluoric acid and acids with free sulfur trioxide. It can be corroded by strong bases (e.g. hydroxide solutions > 10 %, diethylamine). It is not recommended for the use with fluoric acid and fluorides.

Stainless Steel (ST)

Stainless steel is inert against many common solvents. It is stable in the presence of acids and bases in a pH range of 1 to 12.5. It can be corroded by acids below pH 2.3. It can also corrode in following solvents:

• Solutions of alkali halides, their respective acids (for example, lithium iodide, potassium chloride, and so on) and aqueous solutions of halogens.

- High concentrations of inorganic acids like nitric acid, sulfuric acid and organic solvents especially at higher temperatures (replace, if your chromatography method allows, by phosphoric acid or phosphate buffer which are less corrosive against stainless steel).
- Halogenated solvents or mixtures which form radicals and/or acids, for example:

2 CHCl₃ + $O_2 \rightarrow$ 2 COCl₂ + 2 HCl

This reaction, in which stainless steel probably acts as a catalyst, occurs quickly with dried chloroform if the drying process removes the stabilizing alcohol.

- Chromatographic grade ethers, which can contain peroxides (for example, THF, dioxane, di-isopropylether). Such ethers should be filtered through dry aluminium oxide which adsorbs the peroxides.
- Solutions of organic acids (acetic acid, formic acid, and so on) in organic solvents. For example, a 1 % solution of acetic acid in methanol will attack steel.
- Solutions containing strong complexing agents (for example, EDTA, ethylene diamine tetra-acetic acid).
- · Mixtures of carbon tetrachloride with 2-propanol or THF.

Diamond-Like Carbon (DLC)

Diamond-Like Carbon is inert to almost all common acids, bases and solvents. There are no documented incompatibilities for HPLC applications.

Fused silica and Quartz (SiO₂)

Fused silica is used in 1290 Infinity Flow Cells and capillaries. Quartz is used for classical flow cell windows. It is inert against all common solvents and acids except hydrofluoric acid and acidic solvents containing fluorides. It is corroded by strong bases and should not be used above pH 12 at room temperature. The corrosion of flow cell windows can negatively affect measurement results. For a pH greater than 12, the use of flow cells with sapphire windows is recommended.

Gold

Gold is inert to all common HPLC solvents, acids and bases within the specified pH range. It can be corroded by complexing cyanides and concentrated acids like aqua regia.

Zirconium Oxide (ZrO₂)

Zirconium Oxide is inert to almost all common acids, bases and solvents. There are no documented incompatibilities for HPLC applications.

Platinum/Iridium

Platinum/Iridium is inert to almost all common acids, bases and solvents. There are no documented incompatibilities for HPLC applications.

Fluorinated polymers (PTFE, PFA, FEP, FFKM)

Fluorinated polymers like PTFE (polytetrafluorethylene), PFA (perfluoroalkoxy) and FEP (fluorinated ethylene propylene) are inert to almost all common acids, bases, and solvents. FFKM is perfluorinated rubber, which is also resistant to most chemicals. As an elastomer, it may swell in some organic solvents like halogenated hydrocarbons.

TFE/PDD copolymer tubings, which are used in all Agilent degassers except G1322A, are not compatible with fluorinated solvents like Freon, Fluorinert, or Vertrel. They have limited life time in the presence of Hexafluoroisopropanol (HFIP). To ensure the longest possible life with HFIP, it is best to dedicate a particular chamber to this solvent, not to switch solvents, and not to let dry out the chamber. For optimizing the life of the pressure sensor, do not leave HFIP in the chamber when the unit is off.

Sapphire, Ruby and Al₂O₃-based ceramics

Sapphire, ruby and ceramics based on aluminum oxide Al_2O_3 are inert to almost all common acids, bases and solvents. There are no documented incompatibilities for HPLC applications.

Solvent Handling

Handling of Buffers

The following recommendations should be observed when using buffer solutions:

- Buffers and aqueous solutions are possible sources of algae contamination, for avoiding related problems, please read "Algae Growth in HPLC Systems" on page 52.
- For buffer concentrations of 0.1 M or higher using the seal wash option is strongly recommended.
- Filter buffer solutions to avoid increased wear or blockages that are caused by undissolved crystals. Always use solvent inlet filters.
- Avoid conditions where mixing of buffers and organic solvents may cause precipitation, as this impairs the reproducibility of chromatographic experiments and may also reduce the system life time. For example in reversed phase chromatography, avoid buffers (especially phosphate buffers) with a concentration higher than 20 mmol/L. For phosphate buffers, avoid compositions containing more than 65 % acetonitrile or other organic solvents.
- Use a minimum flow rate of 5 μ L/min or 1 % composition per solvent channel (whatever is greater) to avoid cross-flow. Cross-flow can be caused by micro leaks in pump heads and can result in buffer precipitation in pump heads, channel blocking, or reduced pump head life time through wear of seals and pistons.
- Consider using an inline filter, for example Inline filter (G1311-60006).
- Never leave buffers in a system without flow. Before shutting down a system, flush it extensively with warm water to avoid clogging of valves, capillaries, or flow cells or reducing the life time of your column. If the system is not used for some time, for example more than a day depending on lab temperature, fill all solvent lines with organic solvent or water with at least 10 % isopropanol.
- Regularly maintain the LC system.
Handling of Acetonitrile

Acetonitrile is a solvent that is frequently used in reversed-phase chromatography. Despite of its common use, it can be a source of issues if not handled correctly. Acetonitrile degrades through polymerization and such polymers can stick to surfaces in LC systems and e.g. cause issues with valve performance and therefore affect retention time precision. Polymers can also show up as background noise in MS detectors.

When using acetonitrile:

- Use high-quality solvents from renowned suppliers.
- · Use fresh solvents and filter them.
- · Minimize exposure to light and air/oxygen.
- · Choose a bottle size which fits to your application and usage.
- Acids accelerate polymerization. If possible avoid such additives or refresh solvents more frequently.
- Pure acetonitrile polymerizes faster. If your application allows, add about 5 % water and adjust gradient compositions.
- Do not leave acetonitrile in unused systems to avoid aging. If not in use, flush all solvent lines with a mixture of water and 10 % isopropanol.
- In case of blocked valves, flush the system with hot water. Knock at valves, flush them (see "Releasing a Stuck Inlet Valve" on page 153) or ultrasonicate them, e.g. in methanol.

Handling of Acids

Acids can corrode stainless steel and other materials in the flow path of LC systems. For stainless steel, the minimum pH is 2.3 for corrosive acids and pH 1 for non-corrosive acids.

Please note that for non-volatile acids like phosphoric acid or perchloric acid concentrations increase after evaporation of water. This means that originally diluted acids can damage parts over time, e.g. because of liquid, which has left the solvent path through micro leaks. Such systems should be flushed regularly with pure water and may require shorter maintenance cycles. Using a seal wash option should be considered for protecting pump heads.

Normal Phase Applications

Current valves used with 1260 and 1290 Infinity pumps do not work well with applications using non-polar solvents as for normal phase applications (e.g. hexane and heptane). With such applications, pressure drops could be observed. They are a result of particles electrostatically charging up in insulating solvents and sticking to the balls inside the valves, such that the valves do not close properly any more after some time of use (can be hours).

For normal phase applications, a second type of valves is available, which has a design based on the existing one for 1260 and 1290 Infinity valves. These valves use a new material for valve balls, which is a conductive ceramic and replaces non-conductive ruby balls. The balls do not charge up electrostatically and show good performance in normal phase.

The valves are marked with N for non-polar or normal phase.

Agilent recommends using these valves for (and only for) normal phase applications.

CAUTION Corrosion of valves

Normal phase balls/valves corrode quickly in aqueous solutions and acids (at or below pH 7).

→ Do not use normal phase valves in applications running with aqueous solutions.

The N-Valves have been tested successfully in using hexane at pressures below 100 bar; heptane can be used as a substitute for neurotoxic hexane.

Seals for Normal Phase Applications

For running normal phase on 1200 Infinity Series pumps, yellow PE seals are required, which exist as piston seals and wash seals. Seal wash is very uncommon for normal phase applications (no buffers needed), but wash seals are needed for seal wash pump heads.

1290 Infinity pumps use PE seals by default. In combination with ceramic pistons, PE seals are used for both reversed phase (1200 bar) and normal phase applications.

1260 Infinity pumps use sapphire pistons and black PTFE piston and wash seals by default (600 bar). Such PTFE seals create small wear particles in normal phase applications, which can clog valves and other parts in the flow path.

PE seals have a limited life time when used with normal phase solvents and sapphire pistons. Agilent recommends a maximum pressure of 200 bar for this combination, which shall also be applied for pressure tests.

Tetrahydrofuran (THF) is not compatible with PE seals. Black PTFE seals should be used with THF, even in 1290 Infinity pumps. In this case, use a maximum pressure of about 400 bar.

Solvent libraries for G4220A/B are available at http://www.chem.agilent.com/_layouts/agilent/downloadFirmware.aspx?whid=62265.

Choice of Normal Phase Valves and Seals

	1260 Infinity	1290 Infinity
Inlet valves	1260 Infinity Inlet Valve Type N (G1312-60166)	1290 Infinity Inlet Valve Type N (G4220-60122)
Outlet valves	1260 Infinity Outlet Valve Type N/SFC (G1312-60167)	1290 Infinity Outlet Valve Type N (G4220-60128)
Seals	PE seals (pack of 2) (0905-1420) Wash Seal PE (0905-1718)	

 Table 8
 Recommended valves and seals for normal phase applications

NOTE

4

Using the Pump Normal Phase Applications

5

Optimizing Performance

Delay Volume and Extra-Column Volume 78
Delay Volume 78
How to Configure the Optimum Delay Volume 79
How to Achieve Higher Resolution 81
Using Solvent Calibration Tables 84

This chapter gives hints on how to optimize the performance or use additional devices.

Delay Volume and Extra-Column Volume

The *delay volume* is defined as the system volume between the point of mixing in the pump and the top of the column.

The *extra-column volume* is defined as the volume between the injection point and the detection point, excluding the volume in the column.

Delay Volume

In gradient separations, this volume causes a delay between the mixture changing in the pump and that change reaching the column. The delay depends on the flow rate and the delay volume of the system. In effect, this means that in every HPLC system there is an additional isocratic segment in the gradient profile at the start of every run. Usually the gradient profile is reported in terms of the mixture settings at the pump and the delay volume is not quoted even though this will have an effect on the chromatography. This effect becomes more significant at low flow rates and small column volumes and can have a large impact on the transferability of gradient methods. It is important, therefore, for fast gradient separations to have small delay volumes, especially with narrow bore columns (e.g., 2.1 mm i.d.) as often used with mass spectrometric detection.

The delay volume in a system includes the volume in the pump from the point of mixing, connections between pump and autosampler, volume of the flow path through the autosampler and connections between autosampler and column.

How to Configure the Optimum Delay Volume

The physical delay volume of the pump depends primarily on the use of the Jet Weaver mixer. For UV detection the Jet Weaver should always be used but for mass spectrometric detection the user can decide to bypass the Jet Weaver in order to reduce the delay volume. This only makes sense for ultra-fast gradient operation (less than 0.5 min) or for use with very small volume columns. If the Jet Weaver is bypassed the connection tubing to the autosampler is routed directly from the purge valve.

NOTE

Before disconnecting a Jet Weaver from the flow path, flush it with organic solvent. Avoid leaving water or buffers inside the Jet Weaver, which may cause the growth of microorganisms like algae or bacteria.

Sometimes it may be advisable to increase the delay volume in the pump. Specifically this can be the case when UV detection is employed and a strongly UV-absorbing compound has been added to the mobile phase. This can have the effect of emphasizing any pump noise and the most common example is the use of trifluoroacetic acid (TFA) in the analysis of proteins and peptides. The effect can be mitigated by increasing the mixer volume.

The following different Jet Weaver configurations are available:

- The Jet Weaver 35 $\mu L/$ 100 μL (G4220-60006) has two alternative volumes in the same unit.

The switch from the lower volume, 35 μ l, to the higher volume, 100 μ l, is done by uninstalling it, turning it around from front to back and re-installing it, see "Changing configuration or replacing the Jet Weaver" on page 149. The mixing volume (and hence delay volume) is increased by 65 μ l and the baseline performance with additives like TFA will be improved.The configuration of the Jet Weaver is logged automatically by an attached RFID tag.

• The 380 μ L Jet Weaver high performance mixer is optionally available for demanding applications, which use solvents in different channels (for example A versus B), that differ strongly in their UV/Vis absorption, for example by using trifluoroacetic acid (TFA) as a modifier, which has a high absorbance.

5 Optimizing Performance

How to Configure the Optimum Delay Volume

Solvent packages created by the pump may persist until the solvent reaches the detector flow cell. Absorption fluctuations can then show up as baseline noise, also referred to as mixing noise. Applications like impurity quantitation or lowest level compound detection require minimizing this noise. The 380 μ L Jet Weaver strongly improves mixing and therefore reduces baseline noise and improves sensitivity in detection. Patented Agilent microfluidic technology offers high mixing performance at a low internal volume of 380 μ L.

How to Achieve Higher Resolution

Increased resolution in a separation will improve the qualitative and quantitative data analysis, allow more peaks to be separated or offer further scope for speeding up the separation. This section explains how resolution can be increased by examining the following points:

- Optimize selectivity
- Smaller particle-size packing
- Longer Columns
- · Shallower gradients, faster flow

Resolution between two peaks is described by the resolution equation:

$$Rs = \frac{1}{4}\sqrt{N}\frac{(\alpha - 1)}{\alpha}\frac{(k_2 + 1)}{k_2}$$

where

- R_s=resolution,
- N=plate count (measure of column efficiency),
- *α*=selectivity (between two peaks),
- k₂=retention factor of second peak (formerly called capacity factor).

The term that has the most significant effect on resolution is the selectivity, α , and practically varying this term involves changing the type of stationary phase (C18, C8, phenyl, nitrile etc.), the mobile phase and temperature to maximize the selectivity differences between the solutes to be separated. This is a substantial piece of work which is best done with an automated method development system which allows a wide range of conditions on different columns and mobile phases to be assessed in an ordered scouting protocol. This section considers how to get higher resolution with any chosen stationary and mobile phases. If an automated method development system was used in the decision on phases it is likely that short columns were used for fast analysis in each step of the scouting.

How to Achieve Higher Resolution

The resolution equation shows that the next most significant term is the plate count or efficiency, N, and this can be optimized in a number of ways. N is inversely proportional to the particle size and directly proportional to the length of a column and so smaller particle size and a longer column will give a higher plate number. The pressure rises with the inverse square of the particle size and proportionally with the length of the column. This is the reason that the 1290 Infinity LC system was designed to go to 1200 bar so that it can run sub-two-micron particles and column length can be increased to 100 mm or 150 mm. There are even examples of 100 mm and 150 mm columns linked to give 250 mm length. Resolution increases with the square root of N so doubling the length of the column will increase resolution by a factor of 1.4. What is achievable depends on the viscosity of the mobile phase as this relates directly to the pressure. Methanol mixtures will generate more back pressure than acetonitrile mixtures. Acetonitrile is often preferred because peak shapes are better and narrower in addition to the lower viscosity but methanol generally yields better selectivity (certainly for small molecules less than about 500 Da). The viscosity can be reduced by increasing the temperature but it should be remembered that this can change the selectivity of the separation. Experiment will show if this leads to increase or decrease in selectivity. As flow and pressure are increased it should be remembered that frictional heating inside the column will increase and that can lead to slightly increased dispersion and possibly a small selectivity change both of which could be seen as a reduction in resolution. The latter case might be offset by reducing the temperature of the thermostat by a few degrees and again experiment will reveal the answer.

The van Deemter curve shows that the optimum flow rate through an STM column is higher than for larger particles and is fairly flat as the flow rate increases. Typical, close to optimum, flow rates for STM columns are: 2 ml/min for 4.6 mm i.d.; and 0.4 ml/min for 2.1 mm i.d. columns.

In isocratic separations, increasing the retention factor, k, results in better resolution because the solute is retained longer. In gradient separations the retention is described by k^* in the following equation:

$$k^* = \frac{t_G}{\Delta\%B} \cdot \frac{F}{V_m} \cdot \frac{100}{S}$$

where:

- k^{*} = mean k value,
- t_G = time length of gradient (or segment of gradient) (min),
- F = flow (ml/min),
- V_m = column delay volume,
- Δ %B = change in fraction of solvent B during the gradient,
- S = constant (ca. 4-5 for small molecules).

This shows that k and hence resolution can be increased by having a shallower gradient (2 to 5 %/min change is a guideline), higher flow rate and a smaller volume column. This equation also shows how to speed up an existing gradient – if the flow is doubled but the gradient time is halved, k^* remains constant and the separation looks the same but happens in half the time. Recently published research has shown how a shorter STM column (at temperatures above 40 °C) can generate higher peak capacity than a longer STM column by virtue of running it faster. (Refer to Petersson et al., J.Sep.Sci, 31, 2346-2357, 2008, Maximizing peak capacity and separation speed in liquid chromatography).

Using Solvent Calibration Tables

Importing Solvent Calibration Tables

RC.NET based Agilent graphical user interfaces (ChemStation, EZChrom Elite, OpenLab etc.) include data for most commonly used solvents in HPLC. This data contains solvent properties and is used for optimum pump control in order to ensure best flow and composition accuracy.

If your solvent is not included to the software, please check the Agilent web site

http://www.chem.agilent.com/_layouts/agilent/downloadFirmware.aspx?whid=69761 for additional libraries (registration required), which also provides updates and optimized data.

If your solvent is neither available in the user interface nor in the library, please use generic solvents. "Generic aqueous" gives good results for most solvent mixtures with at least 50 % water, which have similar properties as pure water. For other solvents with high organic percentage, "Generic organic" gives a good approximation.

Importing Solvent Calibration in ChemStation

- **1** Go to menu **Instrument > Instrument configuration**.
- 2 In the Instrument Configuration screen choose your module and click Configure.
- **3** Click Configure Solvent Type Catalogs.
- 4 In Solvent Type Catalogs click Import.
- 5 Navigate to the location of the solvent calibration table and click Open.
- 6 The new solvent will now appear in the Solvent Type Catalogs.
- 7 The imported solvent is now available for selection as a solvent type, see Table 5 on page 60.

6

Troubleshooting and Diagnostics

Overview of the Module's Indicators and Test Functions 86 Status indicators 87 Power Supply Indicator 87 Module Status Indicator 88 Available Tests vs User Interfaces 89 Agilent Lab Advisor Software 90

Overview about the troubleshooting and diagnostic features.

Overview of the Module's Indicators and Test Functions

Status Indicators

6

The module is provided with two status indicators which indicate the operational state of the module. The status indicators provide a quick visual check of the operation of the module.

Error Messages

In the event of an electronic, mechanical or hydraulic failure, the module generates an error message in the user interface. For each message, a short description of the failure, a list of probable causes of the problem, and a list of suggested actions to fix the problem are provided (see chapter Error Information).

Test Functions

A series of test functions are available for troubleshooting and operational verification after exchanging internal components (see Tests and Calibrations).

Diagnostic Signals

The module has several signals (internal temperatures, voltages and currents of lamps) that can be used for diagnosing baseline problems. These can be added like normal signals in the Agilent ChemStation software.

Status indicators

Two status indicators are located on the front of the module. The lower left indicates the power supply status, the upper right indicates the module status.

Figure 13 Location of Status Indicators

Power Supply Indicator

The power supply indicator is integrated into the main power switch. When the indicator is illuminated (*green*) the power is *ON*.

Module Status Indicator

The module status indicator indicates one of six possible module conditions:

- When the status indicator is *OFF* (and power switch light is on), the module is in a *prerun* condition, and is ready to begin an analysis.
- A *green* status indicator, indicates the module is performing an analysis (*run* mode).
- A *yellow* indicator indicates a *not-ready* condition. The module is in a not-ready state when it is waiting for a specific condition to be reached or completed (for example, immediately after changing a set point), or while a self-test procedure is running.
- An *error* condition is indicated when the status indicator is *red*. An error condition indicates the module has detected an internal problem which affects correct operation of the module. Usually, an error condition requires attention (e.g. leak, defective internal components). An error condition always interrupts the analysis.

If the error occurs during analysis, it is propagated within the LC system, i.e. a red LED may indicate a problem of a different module. Use the status display of your user interface for finding the root cause/module of the error.

- A *blinking* indicator indicates that the module is in resident mode (e.g. during update of main firmware).
- A *fast blinking* indicator indicates that the module is in a low-level error mode. In such a case try to re-boot the module or try a cold-start (see "Special Settings" on page 258). Then try a firmware update (see "Replacing Module Firmware" on page 196). If this does not help, a main board replacement is required.

Available Tests vs User Interfaces

- Depending on the user interface, the available tests and the screens/reports may vary (see chapter "Test Functions and Calibrations").
- Preferred tool should be the Agilent Lab Advisor software, see "Agilent Lab Advisor Software" on page 90.
- The Agilent ChemStation B.04.02 and above may not include any maintenance/test functions.
- Screenshots used within these procedures are based on the Agilent Lab Advisor software.

6 Troubleshooting and Diagnostics Agilent Lab Advisor Software

Agilent Lab Advisor Software

The Agilent Lab Advisor Software is a standalone product that can be used with or without chromatographic data system. Agilent Lab Advisor helps to manage the lab for high-quality chromatographic results by providing a detailed system overview of all connected analytical instruments with instrument status, Early Maintenance Feedback counters (EMF), instrument configuration information, and diagnostic tests. By the push of a button, a detailed diagnostic report can be generated. Upon request, the user can send this report to Agilent for a significantly improved troubleshooting and repair process.

The Agilent Lab Advisor software is available in two versions:

- Lab Advisor Basic
- Lab Advisor Advanced

Lab Advisor Basic is included with every Agilent 1200 Infinity Series and Infinity II Series pump.

The Lab Advisor Advanced features can be unlocked by purchasing a license key, and include real-time monitoring of instrument actuals, all various instrument signals, and state machines. In addition, all diagnostic test results, calibration results, and acquired signal data can be uploaded to a shared network folder. The Review Client included in Lab Advisor Advanced allows to load and examine the uploaded data no matter on which instrument it was generated. This makes Data Sharing an ideal tool for internal support groups and users who want to track the instrument history of their analytical systems.

The optional Agilent Maintenance Wizard Add-on provides an easy-to-use, step-by-step multimedia guide for performing preventive maintenance on Agilent 1200 Infinity and Infinity II Series instruments.

The tests and diagnostic features that are provided by the Agilent Lab Advisor software may differ from the descriptions in this manual. For details, refer to the Agilent Lab Advisor software help files.

Error Information

7

What Are Error Messages 93 General Error Messages 94 Timeout 94 Shutdown 95 Remote Timeout 96 Lost CAN Partner 97 Leak Sensor Short 97 Leak Sensor Open 98 **Compensation Sensor Open** 98 **Compensation Sensor Short** 99 Fan Failed 99 Leak 100 Open Cover 100 Cover Violation 101 Pump Error Messages 102 Pressure of binary pump above upper limit 102 Pressure below lower limit 103 Target pressure not reached for binary pump degasser 103 Degasser's pressure limit violation 104 Solvent counter exceeded limit 104 Waste counter limit exceeded 105 Flow rate limit exceeded 105 Binary pump shutdown during analysis 106 106 Reading the pump encoder tag failed Writing the pump encoder tag failed 107 Pump drive blocked or encoder failed 107 Drive current too low 108 Drive Encoder failed 108

7 Error Information

Agilent Lab Advisor Software

Drive current too high 108 Drive timeout 109 Overcurrent of pump drive 109 Overcurrent of solvent selection valve (SSV) 109 Deliver underrun 110 Defect connection between main board and pump drive encoder 110 Pump drive encoder defect 110 Purge valve failed 111 Reading of purge valve tag failed 111 Pump drive encoder rollover 111 Drive position limit 112 Insufficient power of drive encoder LED 112 Drive encoder error 112 Writing the purge valve tag failed 113 Current of primary pump drive too high 113 Current of secondary pump drive too high 114 Unknown purge valve type 114 Pump drive encoder error 115 Pump drive error 115 Pump drive stroke blocked 116 Pump drive stop not found 116 Pressure sensor calibration wrong or missing 117 Seal wash pump was missing when tried to turn on 117

This chapter describes the meaning of error messages, and provides information on probable causes and suggested actions how to recover from error conditions.

What Are Error Messages

Error messages are displayed in the user interface when an electronic, mechanical, or hydraulic (flow path) failure occurs which requires attention before the analysis can be continued (for example, repair, or exchange of consumables is necessary). In the event of such a failure, the red status indicator at the front of the module is switched on, and an entry is written into the module logbook.

If an error occurs outside a method run, other modules will not be informed about this error. If it occurs within a method run, all connected modules will get a notification, all LEDs get red and the run will be stopped. Depending on the module type, this stop is implemented differently. For example, for a pump the flow will be stopped for safety reasons. For a detector, the lamp will stay on in order to avoid equilibration time. Depending on the error type, the next run can only be started, if the error has been resolved, for example liquid from a leak has been dried. Errors for presumably single time events can be recovered by switching on the system in the user interface.

Special handling is done in case of a leak. As a leak is a potential safety issue and may have occurred at a different module from where it has been observed, a leak always causes a shutdown of all modules, even outside a method run.

In all cases, error propagation is done via the CAN bus or via an APG remote cable (see documentation for the APG interface).

General Error Messages

General error messages are generic to all Agilent series HPLC modules and may show up on other modules as well.

Timeout

Error ID: 0062

The timeout threshold was exceeded.

Probable cause

- The analysis was completed successfully, and the timeout function switched off the module as requested.
- 2 A not-ready condition was present during a sequence or multiple-injection run for a period longer than the timeout threshold.

Suggested actions

Check the logbook for the occurrence and source of a not-ready condition. Restart the analysis where required.

Check the logbook for the occurrence and source of a not-ready condition. Restart the analysis where required.

Shutdown

Error ID: 0063

An external instrument has generated a shutdown signal on the remote line.

The module continually monitors the remote input connectors for status signals. A LOW signal input on pin 4 of the remote connector generates the error message.

Probable cause		Suggested actions
1	Leak detected in another module with a CAN connection to the system.	Fix the leak in the external instrument before restarting the module.
2	Leak detected in an external instrument with a remote connection to the system.	Fix the leak in the external instrument before restarting the module.
3	Shut-down in an external instrument with a remote connection to the system.	Check external instruments for a shut-down condition.

Agilent 1290 Infinity Binary Pump User Manual

Remote Timeout

Error ID: 0070

A not-ready condition is still present on the remote input. When an analysis is started, the system expects all not-ready conditions (for example, a not-ready condition during detector balance) to switch to run conditions within one minute of starting the analysis. If a not-ready condition is still present on the remote line after one minute the error message is generated.

Probable cause

Suggested actions

1	Not-ready condition in one of the instruments connected to the remote line.	Ensure the instrument showing the not-ready condition is installed correctly, and is set up correctly for analysis.
2	Defective remote cable.	Exchange the remote cable.
3	Defective components in the instrument	Check the instrument for defects (refer to the

3 Defective components in the instrument showing the not-ready condition. Check the instrument for defects (refer to the instrument's documentation).

Lost CAN Partner

Error ID: 0071

Duchahla aguag

During an analysis, the internal synchronization or communication between one or more of the modules in the system has failed.

The system processors continually monitor the system configuration. If one or more of the modules is no longer recognized as being connected to the system, the error message is generated.

Cummented entires

Probable cause	Suggested actions
1 CAN cable disconnected.	Ensure all the CAN cables are connected correctly.
	 Ensure all CAN cables are installed correctly.
2 Defective CAN cable.	Exchange the CAN cable.
3 Defective main board in another module.	Switch off the system. Restart the system, and determine which module or modules are not recognized by the system.

Leak Sensor Short

Error ID: 0082

The leak sensor in the module has failed (short circuit).

The current through the leak sensor is dependent on temperature. A leak is detected when solvent cools the leak sensor, causing the leak sensor current to change within defined limits. If the current increases above the upper limit, the error message is generated.

Probable cause		Suggested actions
1	Defective leak sensor.	Please contact your Agilent service representative.
2	Leak sensor incorrectly routed, being pinched by a metal component.	Please contact your Agilent service representative.

Leak Sensor Open

Error ID: 0083

The leak sensor in the module has failed (open circuit).

The current through the leak sensor is dependent on temperature. A leak is detected when solvent cools the leak sensor, causing the leak-sensor current to change within defined limits. If the current falls outside the lower limit, the error message is generated.

Probable cause		Suggested actions
1	Leak sensor not connected to the main board.	Please contact your Agilent service representative.
2	Defective leak sensor.	Please contact your Agilent service representative.
3	Leak sensor incorrectly routed, being pinched by a metal component.	Please contact your Agilent service representative.

Compensation Sensor Open

Error ID: 0081

The ambient-compensation sensor (NTC) on the power switch board in the module has failed (open circuit).

The resistance across the temperature compensation sensor (NTC) on the power switch board is dependent on ambient temperature. The change in resistance is used by the leak circuit to compensate for ambient temperature changes. If the resistance across the sensor increases above the upper limit, the error message is generated.

Probable cause		Suggested actions
1	Loose connection between the power switch board and the main board	Please contact your Agilent service representative.
2	Defective power switch board	Please contact your Agilent service representative.
3	Defective main board.	Please contact your Agilent service representative.

Compensation Sensor Short

Error ID: 0080

The ambient-compensation sensor (NTC) on the power switch board in the module has failed (open circuit).

The resistance across the temperature compensation sensor (NTC) on the power switch board is dependent on ambient temperature. The change in resistance is used by the leak circuit to compensate for ambient temperature changes. If the resistance across the sensor falls below the lower limit, the error message is generated.

Probable cause		Suggested actions
1	Defective power switch board	Please contact your Agilent service representative.
2	Loose connection between the power switch board and the main board	Please contact your Agilent service representative.
3	Defective main board.	Please contact your Agilent service representative.

Fan Failed

Error ID: 0068

The cooling fan in the module has failed.

The hall sensor on the fan shaft is used by the main board to monitor the fan speed. If the fan speed falls below a certain limit for a certain length of time, the error message is generated.

Depending on the module, assemblies (e.g. the lamp in the detector) are turned off to assure that the module does not overheat inside.

Probable cause		Suggested actions
1	Fan cable disconnected.	Please contact your Agilent service representative.
2	Defective fan.	Please contact your Agilent service representative.
3	Defective main board.	Please contact your Agilent service representative.

Leak

Error ID: 0064

A leak was detected in the module.

The signals from the two temperature sensors (leak sensor and board-mounted temperature-compensation sensor) are used by the leak algorithm to determine whether a leak is present. When a leak occurs, the leak sensor is cooled by the solvent. This changes the resistance of the leak sensor which is sensed by the leak-sensor circuit on the main board.

Probable cause	Suggested actions
1 Loose fittings.	Ensure all fittings are tight.
2 Broken capillary.	Exchange defective capillaries.

Open Cover

Error ID: 0205

The top foam has been removed.

Probable cause		Suggested actions
1	Foam not activating the sensor.	Please contact your Agilent service representative.
2	Defective sensor or main board.	Please contact your Agilent service representative.

Cover Violation

Error ID: 7461

The top foam has been removed.

The sensor on the main board detects when the top foam is in place. If the foam is removed while the lamps are on (or if an attempt is made to switch on for example the lamps with the foam removed), the lamps are switched off, and the error message is generated.

representative.

Probable cause		Suggested actions
1	The top foam was removed during operation.	Please contact your Agilent service representative.
2	Foam not activating the sensor.	Please contact your Agilent service

7 Error Information Pump Error Messages

Pump Error Messages

These errors are pump specific.

Pressure of binary pump above upper limit

Error ID: 22014

The pressure has exceeded the upper pressure limit.

• Parameter: Measured pressure

Probable cause		S	Suggested actions	
1	Blockage in flow path after the pressure sensor.	•	Check for blockages in the LC system, e.g. purge valve, Jet Weaver, degraded column, column frits, needle, needle seat, capillaries etc.	
		•	Check for particles in the solvent.	
2	Inappropriate settings (pressure limit, flow rate).	•	Decrease flow rate. Increase pressure limit.	

Pressure below lower limit

Error ID: 22015

The pressure has dropped below the lower limit.

· Parameter: None

Probable cause		Suggested actions	
1	Leak	Check for leaks.	
2	Bottle empty	Check bottle filling.	
3	Wrong solvent (viscosity)	Check solvent.	
4	Inappropriate setting	Check flow rate and lower pressure limit.	
5	Column degradation	Replace column.	

Target pressure not reached for binary pump degasser

Error ID: 22031

The target pressure of the binary pump degasser has not been reached within the expected time.

• Parameter: Pressure in mbar

Probable cause		Suggested actions
1	Condensation in degasser chamber due to temperature fluctuation.	Equilibrate and restart module.
2	Degasser is defect.	Please contact your Agilent service representative.

Degasser's pressure limit violation

Error ID: 22032

Pressure too far above the limit.

Probable cause		Suggested actions
1	Leak in degasser chamber or degasser tubing.	Please contact your Agilent service representative.
2	Defect vacuum pump.	Please contact your Agilent service representative.
3	Degasser chamber empty or connected to air.	Block unused degasser channels.

Solvent counter exceeded limit

Error ID: 22055

The counter for the solvent volume has exceeded the limit, which has been set in the user interface.

Parameter:

- Without Solvent Selection Valve: 0 for channel A, 1 for channel B
- With Solvent Selection Valve:
 - 2 for channel A1, 3 for channel B1, 4 for channel A2, 5 for channel B2

Probable cause

Suggested actions

- 1 No solvent present. Refill solvent bottle.
- 2 Inappropriate setting. Check solvent counter setting in user interface.

Waste counter limit exceeded

Error ID: 22056

The counter for the waste volume has exceeded the limit, which has been set in the user interface.

· Parameter: None

Probable cause		Sı	ggested actions
1	The waste container is full.	En	npty waste container.
2	Inappropriate setting for waste counter.	•	Reset waste counter.
		•	Adjust waste counter limit.

Flow rate limit exceeded

Error ID: 22064

The flow rate of the binary pump has exceeded the limit, while the pump runs in pressure controlled mode, e.g. during a pressure test.

· Parameter: None

Probable cause		Suggested actions	
1	Leak	Check for leaks in the pump and flow path.	
2	Bottle empty.	Fill solvent bottle.	
3	Shutoff valve closed.	Open shutoff valve.	
4	Drift of pressure sensor (unlikely for short tests taking some minutes).	Replace pressure sensor.	

Binary pump shutdown during analysis

Error ID: 22065

The binary pump has been shut down by the control software or control module during an analysis.

Restart pump.

representative.

• Parameter: 0 for off, 1 for standby.

Probable cause	Suggested actions
----------------	-------------------

1 Pump has been shut down.

Reading the pump encoder tag failed

between tag and encoder.

Error ID: 22402

Reading the pump encoder tag has failed.

• Parameter: 1 – 4 referring to pump drive

Probable cause		Suggested actions
1	Defect connection between encoder and main board.	Please contact your Agilent service representative.
2	Missing or defect tag Defect connection	Please contact your Agilent service

Writing the pump encoder tag failed

Error ID: 22405

Writing the pump encoder tag has failed.

• Parameter: 1 – 4 referring to pump drive

Probable cause		Suggested actions	
1	Defect connection between encoder and main board.	Please contact your Agilent service representative.	
2	Defect tag Defect connection between tag and encoder.	Please contact your Agilent service representative.	

Pump drive blocked or encoder failed

Error ID: 22406

Pump drive blocked or encoder failed.

· Parameter: None

Probable cause Suggested actions

1 Blockage of the pump drive Drive encoder failed. Please contact your Agilent service representative.

Drive current too low

Error ID: 22407

The current consumption of the pump drive is too low.

• Parameter: 1 – 4 referring to pump drive

Probable cause		Suggested actions
1	Drive motor defect.	Please contact your Agilent service representative.
2	Wrong/missing connection of pump drive to main board.	Please contact your Agilent service representative.

Drive Encoder failed

Error ID: 22408

Drive encoder failed during pump drive calibration.

Probable cause

Suggested actions

1 Internal error. Contact Agilent support.

Drive current too high

Error ID: 22409

The current consumption of the pump drive is too high.

• Parameter: 1 – 4 referring to pump drive

Probable cause		Suggested actions	
1	Blockage of system before pressure sensor.	Check for blockage of e.g. outlet valve filter frit, purge valve, heat exchanger.	
2	Drive motor defect.	Please contact your Agilent service representative.	
Drive timeout

Error ID: 22410

Drive is blocked mechanically, fails during initialization.

• Parameter: 1 – 4 referring to pump drive

Probable cause		Suggested actions
1	Blockage of pump drive Drive motor defect.	Please contact your Agilent service representative.

Overcurrent of pump drive

Error ID: 22411

The current consumption of the pump drive is too high.

• Parameter: 1 – 4 referring to pump drive

Pr	robable cause	Suggested actions
1	Blockage of system before pressure sensor.	Check for blockage of e.g. outlet valve filter frit, purge valve, heat exchanger.
2	Drive motor defect.	Please contact your Agilent service representative.

Overcurrent of solvent selection valve (SSV)

Error ID: 22412

Overcurrent of solvent selection valve (SSV).

Parameter: None

Probable cause

Suggested actions

1 Valve defect.

Replace the solvent selection valve.

Deliver underrun

Error ID: 22413

Internal error.

· Parameter: None

Probable cause

1 Internal error.

Suggested actions

Please contact your Agilent service representative.

Defect connection between main board and pump drive encoder

Error ID: 22414

Defect connection between main board and pump drive encoder.

• Parameter: 1 – 4 referring to pump drive

Pr	obable cause	Suggested actions
1	Defect connection between main board and pump drive encoder.	Please contact your Agilent service representative.
2	Defect encoder.	Please contact your Agilent service representative.

Pump drive encoder defect

Error ID: 22415

Defect pump drive encoder.

• Parameter: 1 – 4 referring to pump drive

Probable cause

Suggested actions

Please contact your Agilent service representative.

1 Defect encoder.

Agilent 1290 Infinity Binary Pump User Manual

Purge valve failed

Error ID: 22417

Lost steps of the purge valve encoder.

· Parameter: None

Probable cause

1 Purge valve drive mechanically blocked or defect.

Suggested actions

- Check installation of purge valve head.
- Please contact your Agilent service representative.

Reading of purge valve tag failed

Error ID: 22420

Reading the purge valve tag failed.

· Parameter: None

Probable causeSuggested actions1Reading of purge valve tag failed.Check cable connection.2Purge valve head tag defect or empty.Replace purge valve head.3Purge valve tag reader is defect.Please contact your Agilent service representative.

Pump drive encoder rollover

Error ID: 22424

Invalid pump drive encoder signals have been detected.

• Parameter: 1 – 4 referring to pump drive

Probable cause

Suggested actions

1 Pump drive encoder is defect. Please contact your Agilent service representative.

Drive position limit

Error ID: 22425

Internal error.

• Parameter: 1 – 4 referring to pump drive

Probable cause

Suggested actions

1 Internal error.

Please contact your Agilent service representative.

Insufficient power of drive encoder LED

Error ID: 22426

Insufficient power of drive encoder LED.

• Parameter: 1 – 4 referring to pump drive

Probable cause

Suggested actions

1 Pump drive encoder is defect. Please contact your Agilent service representative.

Drive encoder error

Error ID: 22427- 22430

An error has occurred for the pump drive encoder.

• Parameter: 1 – 4 referring to pump drive

Probable cause

Suggested actions

1 Pump drive encoder is defect. Please contact your Agilent service representative.

Writing the purge valve tag failed

Error ID: 22431

Writing the purge valve tag failed.

Parameter: None

Probable cause

Suggested actions

- 1 Purge valve head tag defect. Replace purge valve head.
- **2** Purge valve tag reader is defect.

Please contact your Agilent service representative.

Current of primary pump drive too high

Error ID: 22433

The current of the primary pump drive is too high.

• Parameter: 1 or 4 referring to pump drive.

Probable cause

- 1 Blockage of flow path between primary pump head and pressure sensor, e.g. of the heat exchanger.
- 2 Primary pump drive is defect.

Suggested actions

- · Check for blockages in flow path.
- Please contact your Agilent service representative.

Please contact your Agilent service representative.

Current of secondary pump drive too high

Error ID: 22434

The current of the secondary pump drive is too high.

• Parameter: 2 or 3 referring to pump drive

Probable cause		Suggested actions
1	Blockage of flow path between secondary pump head and pressure sensor, e.g. of the heat exchanger.	 Check for blockages in the flow path. Please contact your Agilent service representative.
2	Secondary pump drive is defect.	Please contact your Agilent service representative.

Unknown purge valve type

Error ID: 22435

The type information of the purge valve is invalid.

• Parameter: None

Pr	obable cause	Suggested actions
1	Wrong valve head installed.	Check or replace purge valve head.
2	Valve head has invalid RFID tag content.	Check or replace purge valve head.

Pump drive encoder error

Error ID: 22437

The pump drive encoder has generated no signal.

• Parameter: 1 – 4 referring to pump drive

Probable cause Suggested actions

1 Pump drive encoder is defect.

Please contact your Agilent service representative.

Pump drive error

Error ID: 22438, 22439

The pump drive failed during calibration.

• Parameter: 1 – 4 referring to pump drive

Probable cause

Suggested actions

1 Pump drive motor defect or mechanically blocked. Please contact your Agilent service representative.

Pump drive stroke blocked

Error ID: 22441

During initialization the pump defines the operation position of the pump drives and therefore the pistons. First the pump drive moves backwards to find a mechanical stop within the ball screw. Afterwards, pistons move forwards for finding the maximum available stroke volume. These values are expected within a pre-defined range. "Maximum stroke too short" means that the outer drive position is too close. This can be caused by a drive initialization without pump head or if the pump head has not been installed properly (screws are loose).

• Parameter: 1 – 4 referring to pump drive

Probable cause	Suggested actions
1 Wiper shifted	Please contact your Agilent service representative.
2 Pump head blocks piston movement	Replace, clean or repair pump head.
3 Pump drive motor is mechanically blocked.	Please contact your Agilent service representative.

Pump drive stop not found

Error ID: 22442

The maximum stroke is too long.

• Parameter: 1 – 4 referring to pump drive

Probable cause	Suggested actions
1 Wiper shifted	Please contact your Agilent service representative.
2 Pump drive spindle is defect.	Please contact your Agilent service

representative.

Pressure sensor calibration wrong or missing

Error ID: 22443

Pressure sensor calibration wrong or missing.

· Parameter: None

Probable cause

Suggested actions

- 1 Pressure sensor calibration wrong or missing.
- Replace pressure sensor.
- Please contact your Agilent service representative.

Seal wash pump was missing when tried to turn on

Error ID: 22499

The seal wash pump has not been detected (while being configured or detected before)

Pr	obable cause	Suggested actions
1	Defect cable connection to seal wash pump.	Check cable connection.
2	Defect seal wash pump motor.	Please contact your Agilent service representative.
3	Defective main board.	Please contact your Agilent service representative.

7 Error Information

Pump Error Messages

Test Functions and Calibrations

Introduction 120 System Pressure Test 121 System Pressure Test Evaluation 123 Pump Head Leak Test 124 Pump Head Leak Test Evaluation 126

This chapter describes the tests for the module.

8

Introduction

All tests are described based on the Agilent Lab Advisor Software B.01.04. Other user interfaces may not provide any test or just a few.

Interface	Comment	Available Function
Agilent Instrument Utilities	Maintenance tests available	System pressure test
Agilent Lab Advisor	All tests are available	System pressure testPump head leak test
Agilent ChemStation	No tests available Adding of pressure to chromatographic signals possible	 Pressure Pressure ripple Temperature main board
Agilent Instant Pilot	Some tests are available	 System pressure test Monitoring of values Pressure Pressure ripple Flow (in case of operating pressure)

 Table 9
 Interfaces and available test functions

For details on the use of the interface refer to the interface documentation.

System Pressure Test

The test determines the leak rate of the system between pump outlet valves and a blank nut. The blank nut can be positioned at different locations in the system before the flow cell, to determine and verify the leak rate of individual modules and components. The test allows for setting the pressure at which the test is performed. The leak rate of high pressure parts is not always a linear function and therefore it is recommended to perform the test at a pressure that corresponds to the normal operating pressure of the system.

When	In ca	se of a suspected lea	ak. To verify successful execution of maintenance tasks.
Parts required	#	p/n	Description
	1	01080-83202	Blank nut
Preparations	Solvents must be present in both channels.		

System Pressure Test

1 Run the **System Pressure Test** with the recommended user interface (for further information see Online-Help of user interface).

	stNa dule	me	System Pressure Test G4220A:LP00000005	Description No description	
Approx. Time 5 min		5 min			
Status Running		Running			
est	Proc	edure —		Result	Value
	1.	Prepare	pump pressure test	Name Maximum system pressure	1200 bar
	2.	Enter th	e test pressure	Channel A2	Done
	З.	Configu	re purge process and parameter	Remaining purge time	0 min 0 sec
/	4.	Insert bl	ank nut		
¢.	5.	System	checking leak rate of system		
	6.	Evaluat	e results		
	7.	Restore	system configuration		

Figure 14 System Pressure Test – Result

Figure 15 System Pressure Test – dynamic pressure input

System Pressure Test Evaluation

Test Failed

Pr	obable cause	Suggested actions	
1	Damaged blank nut (poorly shaped from over tightening)	Before investigating any other possible sources of failure make sure that the blank nut you are using is in a good condition and properly tightened.	
2	Pump leakages	Perform the Pump Head Leak test.	
3	Loose or leaky fittings	Tighten the fittings or replace capillaries.	
4	Autosampler leakages	Perform the Autosampler Leak test.	
5	Themostatted Column Compartment valve leakages	Replace the TCC valve rotor seal.	

NOTE

Notice the difference between *error* in the test and a *failed* result! An *error* is caused by an abnormal termination during the operation of the test, whereas a *failed* result indicates that the test result were not within the specified limits.

8 Test Functions and Calibrations Pump Head Leak Test

Pump Head Leak Test

The test determines the leakage of the individual pump heads, by blocking each pump head separately and pressurizing to a specified level. The flow is delivered by the secondary piston and thereby the parts between the outlet ball valve and the purge valve are tested for leak tightness. The test allows for setting the pressure at which the test is performed. The leak rate of high pressure parts is not always a linear function and therefore it is recommended to perform the test at a pressure that corresponds to the normal operating pressure of the system.

When Excessive pressure ripple or suspected pump performance problems.

Preparations Solvents must be present in both channels.

	al Li		gnals				
Test Name Module Approx. Time Status		me	Pump Head Leak Test	Description No descript	ion		
			G4220A:LP0000005				
		Time	5 min				
			Running				
Test	Proce	edure —		Result	Name	Value	
1	1	Chookin	a pro-roquisitos (pump op etc.)		Name		
	1.		g pre-requisites (pump on etc.)	Maximum system pro		1200 bar	
	1. 2.		ig pre-requisites (pump on etc.) e test pressure				
	1. 2. 3.	Enter th		Maximum system pro		1200 bar	
/		Enter th Configu	e test pressure	Maximum system pro Channel A2	essure	1200 bar Done	
	3.	Enter th Configu System	e test pressure re purge process and parameter	Maximum system pro Channel A2 Channel B2	essure	1200 bar Done Done	
/	3. 4.	Enter th Configu System	e test pressure re purge process and parameter checking leak tightness in channel A checking leak tightness in channel B	Maximum system pro Channel A2 Channel B2	essure	1200 bar Done Done	
/	3. 4. 5.	Enterth Configur System System Evaluate	e test pressure re purge process and parameter checking leak tightness in channel A checking leak tightness in channel B	Maximum system pro Channel A2 Channel B2	essure	1200 bar Done Done	

1 Run the **Pump Head Leak Test** with the recommended user interface (for further information see Online-Help of user interface).

Figure 16 Pump Head Leak Test – Results

Figure 17 Pump Head Leak Test - dynamic pressure input

Pump Head Leak Test Evaluation

Test Failed

Probable cause	Suggested actions		
1 Loose or leaky fittings	Tighten the fittings or replace capillaries.		
2 Leaky High Pressure Filter Assembly	 Tighten Filter housing and fitting. NOTE - Fittings should only be tightened in a system that is not pressurized, for better chance of success. Re-run test. 		
3 Damaged pump seals or pistons	 Exchange the pump head or pump seals. NOTE - A wrongly installed pump seal will reduce the life time of the pump seal considerably. 		
4 Leaky outlet ball valve	Exchange pump head or outlet ball valve.		
5 Leaky purge valve	Exchange Purge valve rotor seal.		

NOTE

Notice the difference between *error* in the test and a *failed* result! An *error* is caused by an abnormal termination during the operation of the test, whereas a *failed* result indicates that the test result were not within the specified limits.

9

Introduction to Maintenance 129 Warnings and Cautions 131 Overview of Maintenance 133 Cleaning the Module 134 Installing Fittings and Capillaries 135 Replacing the Shutoff Valve Panel 136 Replacing the Pressure Sensor 138 Overview of Torques for Pump Head Procedures 141 Replacing the Inlet valve 142 Replacing the Outlet Valve 144 Replacing the Solvent Selection Valve (SSV) 147 Changing configuration or replacing the Jet Weaver 149 Replacing the Seal Wash Pump 152 Releasing a Stuck Inlet Valve 153 Replacing the Pump Heads 156 Disassembling the Pump Head 162 Disassembling the Primary Pump Head 163 Disassembling the Secondary Pump Head 167 Replacing the Heat Exchanger 171 Replacing Wash Seal and Gasket 174 Assembling the Pump Head 176 Replacing the Purge Valve Head 188 Replacing Parts of the High Pressure Filter Assembly 191 Installing the Valve Rail Kit 193 Replacing the Main Power Fuses 194

Pump Head Leak Test

Replacing Module Firmware 196 Preparing the Pump Module for Transport 197

This chapter describes the maintenance of the Agilent 1290 Infinity Binary Pump.

9

Introduction to Maintenance

Figure 18 on page 129 shows the main user accessible assemblies of the Agilent 1290 Infinity Binary Pump. These parts can be accessed from the front (simple repairs) and don't require to remove the pump from the system stack.

Figure 19 on page 130 shows the flow connections between these main assemblies.

Introduction to Maintenance

Figure 19 Flow Connections

Warnings and Cautions

WARNING

Toxic, flammable and hazardous solvents, samples and reagents

The handling of solvents, samples and reagents can hold health and safety risks.

- → When working with these substances observe appropriate safety procedures (for example by wearing goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the vendor, and follow good laboratory practice.
- The volume of substances should be reduced to the minimum required for the analysis.
- → Do not operate the instrument in an explosive atmosphere.

WARNING

Electrical shock

Repair work at the module can lead to personal injuries, e.g. shock hazard, when the cover is opened.

- → Do not remove the cover of the module.
- → Only certified persons are authorized to carry out repairs inside the module.

WARNING

Personal injury or damage to the product

Agilent is not responsible for any damages caused, in whole or in part, by improper use of the products, unauthorized alterations, adjustments or modifications to the products, failure to comply with procedures in Agilent product user guides, or use of the products in violation of applicable laws, rules or regulations.

Use your Agilent products only in the manner described in the Agilent product user guides.

Warnings and Cautions

CAUTION

Safety standards for external equipment

→ If you connect external equipment to the instrument, make sure that you only use accessory units tested and approved according to the safety standards appropriate for the type of external equipment.

Overview of Maintenance

The following pages describe maintenance (simple repairs) of the module that can be carried out without opening the main cover.

Cleaning the Module

To keep the module case clean, use a soft cloth slightly dampened with water, or a solution of water and mild detergent.

WARNING Liquid dripping into the electronic compartment of your module can cause shock hazard and damage the module

- → Do not use an excessively damp cloth during cleaning.
- → Drain all solvent lines before opening any connections in the flow path.

9

Installing Fittings and Capillaries

WARNING	 Solvent can spray under high pressure. → Observe appropriate safety procedures (for example, goggles, safety gloves and protective clothing), when opening flow path.
CAUTION	Deformation of fittings and seals
	Liquid drops under high pressure up to 1200 bar act like solid parts. Tightening connections under high pressure can deform or destroy fittings and seals.
	→ Never tighten flow connections under pressure.
NOTE	The lifetime of a fitting depends on how firmly it has been tightened; firm tightening reduces the lifetime.
	If fitting has been overtightened, replace it.
	 Install fittings and capillaries. Tighten fittings and capillaries.

Replacing the Shutoff Valve Panel

Replacing the Shutoff Valve Panel

When

If a shutoff valve is damaged or the panel needs to be removed for other repair procedures.

#	p/n	Description
1	5067-4124	Shutoff valve
1	G4220-40004	Shutoff valve panel
2	G4220-60035	Tubing kit 140 mm, 2/pk SSV to shutoff valve or degassing unit

Preparations

Parts required

In order to avoid leaks, remove tubings from the solvent bottles.

Replacing the Shutoff Valve Panel

Replacing the Pressure Sensor

Replacing the Pressure Sensor

When	No or invalid pressure signal		
Tools required	p/n		escription
	8710-	2412 H	ex key 2.5 mm, 15 cm long, straight handle
	8710-	-0510 V	/rench open 1/4 — 5/16 inch
		S	crewdriver
Parts required	#	p/n	Description
	1	G4220-60001	Pressure sensor 1200 bar
Preparations	Turn off pump flow, switch off pump		
NOTE	This procedure describes how to replace the pressure sensor.		
	In case the cable to the sensor shall be replaced as well, please contact your Agilent service representative.		

Replacing the Pressure Sensor

Replacing the Pressure Sensor

9

Overview of Torques for Pump Head Procedures

Figure 20 on page 141 gives an overview of the torques that need to be set during maintenance of the pump heads.

Figure 20 Overview of torques for pump head procedures

NOTE

Replacing the Inlet valve

Replacing the Inlet valve

When	If Inlet valve is defective.	
Tools required	p/n	Description
		Wrench, 14 mm
	G4220-20012	Torque wrench 2 – 25 Nm
Parts required	p/n	Description
	G4220-60022	Inlet valve (primary pump head)

For best performance and life time and for avoiding leaks, use a torque wrench set to 10 Nm for fixing the inlet valve.

Replacing the Inlet valve

Replacing the Outlet Valve

Replacing the Outlet Valve

When	If Outlet valve is defective.		
Tools required	p/n	Description	
	8710-0510	Wrench open 1/4 — 5/16 inch	
	8710-2603	Spanner-double open ended 12X14 mm Chrome	
	G4220-20012	Torque wrench 2 – 25 Nm	
	G4220-20041	Bit Torx 10x25 mm	
Parts required	p/n	Description	
	G4220-60028	Outlet valve (primary pump head)	
	G4220-20020	Internal gold seal for Outlet Valve	

Replacing the Outlet Valve

Replacing the Solvent Selection Valve (SSV)

When

In case of problems with the solvent selection valve

Parts required

 #
 p/n

 1
 G4280-60029

 4
 G4220-60035

Description Solvent selection valve Tubing kit 140 mm, 2/pk SSV to shutoff valve or degassing unit

Replacing the Solvent Selection Valve (SSV)

Changing configuration or replacing the Jet Weaver

Changing configuration or replacing the Jet Weaver

When	For optimizing the pump configuration to mixing performance or low delay volumes/fast gradients, see chapter <i>Optimizing Performance</i> .		
Tools required	ed p/n		Description
	8710	-0510 ½	4 inch wrench
		3	8 mm hex key
Parts required	#	p/n	Description
	1	G4220-60006	Jet Weaver 35 μL/100 μL
	1	G4220-60012	Jet Weaver 380 μL (OPTIONAL)
	1	G4220-87000	Capillary ST 0.17 mm x 300 mm Valve to Jet Weaver

Changing configuration or replacing the Jet Weaver

Changing configuration or replacing the Jet Weaver

Replacing the Seal Wash Pump

Replacing the Seal Wash Pump

When	In case of wear of the seal wash pump	
Parts required	p/n	Description
	5042-8507	Peristaltic Pump for Seal Wash
Preparations	Remove the shutoff valve panel ("Replacing the Shutoff Valve Panel" on page 136) and flow connections from and to the seal wash pump	

9

Releasing a Stuck Inlet Valve

When

If inlet valve is stuck, or if pump is not generating pressure after being turned off for an extended period of time.

NOTE

Before the system is turned off for an extended period of time, it should be flushed with at least 10 % IPA to prevent inlet valves from getting stuck.

Releasing a Stuck Inlet Valve

Releasing a Stuck Inlet Valve

Replacing the Pump Heads

The Agilent 1290 Infinity Binary Pump has two pump assemblies for two solvent channels A and B which both consist of two pump drives and pump heads. The solvent enters each pump through the primary pump head, is transferred to the secondary pump head and leaves the outlet of the secondary pump head, which is connected to the pump valve.

Figure 21 Pump head assembly (left)

9

When	In case of problems with the pump performance.		
Tools required	p/n G4220-20012 G4220-20013 G4220-20015	Description Torque wrench 2 – 25 Nm 4 mm hex bit Adapter ¼ in square to hex	
Parts required	# p/n 1 G4220-602 1 G4220-602 1 G4220-602 1 G4220-602 1 G4220-602 1 G4220-602	Pump Head Assembly Channel B (right) with Seal Wash Option Pump Head Assembly Channel A (left) without Seal Wash Option	
Preparations	 Remove the from t		
CAUTION	assembly (solve	lections he flow connection between the both pump heads of one pump head nt channel) can damage the connection and cause leaks. nnect the flow connection between the pump heads.	
CAUTION		nal parts a strong force to the screws of the pump head. hex key for that purpose.	

9	Maintenance
3	wannenance

Replacing the Pump Heads

CAUTION	Damage of the pump piston
	Removing pump heads in a position other than the maintenance position can damage the pump piston.
	\rightarrow Before switching off the pump, bring it to the maintenance position.
CAUTION	Damage of pump drives
	The pump drive can be damaged if the pump initializes after switching it on without having the pump head installed properly.
	→ Use the Lab Advisor maintenance procedure for replacing pump heads.
	ightarrow Install the pump head correctly before switching on the pump.
NOTE	This procedure describes the replacement of the left pump head assembly. Similarly, the right pump head assembly can be replaced.
	One pump head assembly consists of two pump heads, which are both removed at the same time.

Replacing the Pump Heads

Replacing the Pump Heads

9

Disassembling the Pump Head

Disassembling the Pump Head

When	If parts inside the pump head need to be replaced		
Tools required	p/n	Description	
	G4220-20012	Torque wrench 2 – 25 Nm	
	G4220-20013	4 mm hex bit	
	G4220-20014	2.5 mm Hex Bit	
	G4220-20015	Adapter ¼ in square to hex	
	8710-0510	Wrench open 1/4 — 5/16 inch	
Proporationa	Pomovo the num	an bood accomply on departited in "Poplaying the Pump Hoode" or	

Preparations

Remove the pump head assembly as described in "Replacing the Pump Heads" on page 156, steps 1-4.

NOTE

This procedure describes replacements for the pump heads of channel A. Replacement for channel B can be done accordingly. The primary pump head does not have a heat exchanger. Seal wash parts are optional for both pump heads.

9

Disassembling the Primary Pump Head

CAUTION

Damage of pump piston

The pump piston is made of ZrO_2 -based ceramic, which is a very hard and resistant material, but it is sensitive to shearing forces from the side.

- → Do not try to remove the pump piston from the rear.
- → Do not use the piston for removing pump seals.

Disassembling the Primary Pump Head

Disassembling the Primary Pump Head

Disassembling the Primary Pump Head

9

Disassembling the Secondary Pump Head

CAUTION

Damage of pump piston

The pump piston is made of ZrO_2 -based ceramic, which is a very hard and resistant material, but it is sensitive to shearing forces from the side.

- → Do not try to remove the pump piston from the rear.
- → Do not use the piston for removing pump seals.

Disassembling the Secondary Pump Head

Disassembling the Secondary Pump Head

Disassembling the Secondary Pump Head

Maintenance Replacing the Heat Exchanger

9

Replacing the Heat Exchanger

Tools required	p/n	Description	
	5023-2501	Wrench, 19 mm Screwdriver Torx-T10	
B / · · ·	,		
Parts required	p/n	Description	
	G4220-81013	Heat Exchanger (secondary pump head only) Channel A	
	G4220-81012	Heat Exchanger (secondary pump head only) Channel B	
	G4220-20028	Headless screw for 1290 Infinity pump heads	
	G4220-20001	Spacer Fitting	
Preparations	•	mp head assembly from the pump condary pump head from the link plate	
CAUTION	Loss of small spa	acer fitting	
	Inside the secondary pump head is a small spacer fitting, which can be dropped easily when removing the heat exchanger.		
	→ The heat excl	nanger does not need to be removed for pump head maintenance.	

Replacing the Heat Exchanger

Replacing the Heat Exchanger

Replacing Wash Seal and Gasket

Replacing Wash Seal and Gasket

Replacing Wash Seal and Gasket

Assembling the Pump Head

Assembling the Pump Head

When	Before installing the pump head.		
Tools required	p/n	Description Pump head alignment tool	
	G4220-20012	Torque wrench 2 – 25 Nm	
	G4220-20013	4 mm hex bit	
	G4220-20041	Bit Torx 10x25 mm	
	G4220-20015	Adapter ¼ in square to hex	
	01018-23702	Insert tool	
Parts required	p/n	Description	
	0905-1420	PE seals (pack of 2)	
	See chapter "Par	ts" for details.	
CAUTION	Limited life time of the pump head		
CAUTION	Inserting the backup seal wrongly may limit the life time of the pump head.		
	→ Please note t	he correct orientation of the backup seal.	
CAUTION	Damage of the pump piston		
CAUTION	The pump piston is very sensitive to shearing forces from the side.		
	→ Use the alignment piston of the pump head alignment tool for the alignment procedure described below.		

CAUTION	 Wrong orientation of pins on support ring Assembling the pump head without paying attention to the correct orientation of the pins on the support ring can lead to leaks or damage of the piston and pump head. → Observe pins on the support ring, which help assembling the parts of the pump head in the correct orientation.
CAUTION	Damage of the pump head assembly When installing the pump head assembly, the pump drives need to be in maintenance position, where they are retracted. Using the pump drive in default position will damage the pump head assembly. → Bring the pump drive to the maintenance position.
NOTE	This procedure describes how to assemble the secondary pump head using the pump head alignment tool. Assembling the primary pump head can be done accordingly. The secondary pump head has the heat exchanger capillary, which must fit into the openings of the alignment tool, whereas the primary pump head does not have a heat exchanger.
CAUTION	 Damage to the pump head Using a wrong torque will damage the pump head. → For handling the torque wrench, setting and applying the right torque, consult the manual of your torque wrench.

Assembling the Pump Head

Assembling the Pump Head

Assembling the Pump Head

5 Insert the alignment piston of the pump head alignment CAUTION tool. Lubricate the alignment piston with isopropanol or another suitable solvent before insertion. Damage to the pump head. Using the alignment tool is mandatory. Alignment piston → Not using will break the pump head. **6** Insert the pump head to the pump head alignment tool, which is included to the 1290 Infinity Service Kit p/n 5067-4699. There are openings for the seal wash support ring and heat exchanger of the secondary pump head. Observe the correct orientation of all parts. Pump head alignment tool (rear) Pump head (secondary) Pump head alignment tool (front)

Assembling the Pump Head

10 Open the 3 screws which have closed the pump head CAUTION alignment tool and take out the aligned pump head. In Damage to the pump head case the pump head sticks inside the alignment tool, you Using a wrong torque will damage the pump head. can use the handle and insert it to the rear of the tool for pushing out the pump head. → For handling the torque wrench, setting and applying the right torque, consult the manual of your torque Heat exchanger capillary wrench. **9** Using a torque key, which is included to the 1290 Infinity Service Kit p/n 5067-4699, set 5 Nm and fix the 4 screws at the rear of the alignment tool. Tighten screws crosswise. 0 Tool handle (5 Nm NOTE This procedure will align pump head parts to their correct positions and close the pump head tightly.

Assembling the Pump Head

Assembling the Pump Head

Assembling the Pump Head

Assembling the Pump Head

17 Bring the pump drive to the maintenance position using the Lab Advisor user interface, see "Disassembling the Pump Head" on page 162. Both pump drives must be retracted.

CAUTION

Damage to the pump head Using a wrong torque will damage the pump head.

- For handling the torque wrench, setting and applying the right torque, consult the manual of your torque wrench.
- 18 Install the pump head assembly by fixing the 4 screws using a 4 mm hex key and a torque wrench, which are included to the 1290 Infinity Service Kit p/n 5067-4699 set to 5 Nm. Install screws step by step, not screw by screw.

9

Replacing the Purge Valve Head

Replacing the Purge Valve Head

When	In case of problems with the purge valve		
Parts required	#	p/n	Description
	1	5067-4119	Purge valve head
	2	5067-4655	Capillary ST, 0.25 mm x 235 mm to pump head assemblies channel A and B (2x)
	1	G4220-87000	Capillary ST 0.17 mm x 300 mm Valve to Jet Weaver
	2	5067-4656	Capillary ST, 0.25 mm x 80 mm to pressure sensor (2x)
Preparations	Remove all capillary connections to the purge valve		
CAUTION	Potential damage of valve head or malfunction of valve		
	When the pump is switched on, the valve tag is accessed (read/write) and used for correctly positioning the valve.		
	If the valve head is replaced while the pump is on, invalid information may be written to the valve head making it unusable, or positioning may be wrong resulting in wrong flow connections inside the valve potentially damaging parts.		
	ightarrow Switch off the pump before working on the purge valve.		
CAUTION	Bias	measurement res	sults
onorron	The valve drive contains sensitive optical parts. Pollution of these parts can impai accurate selection of valve ports and therefore bias measurement results.		

→ Protect the optical parts from dust and other pollutions.

Replacing the Purge Valve Head

- **3** Install all flow connections:
 - Port 1 is connected to the outlet of the secondary pump head of channel B
 - Port 2 is connected to the outlet of the pressure sensor
 - · Port 3 is connected to the inlet of the pressure sensor
 - Port 4 is connected the outlet of the secondary pump head of channel A
 - Ports 5 and 6 are connected to waste capillaries
 - The central port is connected to the Jet Weaver inlet

Replacing Parts of the High Pressure Filter Assembly

When	For removing blockages and leaks in the high pressure filter assembly. The filter frit in the outlet valve should be replaced regularly depending on the system usage. Other parts are covered by the Agilent Preventive Maintenance (PM) Service.		
Tools required	p/n G4220-20012	Description Torque wrench 2 – 25 Nm	
	G4220-20015	Adapter ¼ in square to hex 14 mm Hex bit	
Parts required	# p/n	Description	
	1 01018-227	707 PTFE frits (pack of 5)	
	1 5067-4728	B Seal cap	
CAUTION	Leakage or damaged connection Opening the outlet of the primary pump head may cause leaks or damage the connection between the pump heads.		
	→ Do not open the outlet of the primary pump head.		
NOTE	This procedure describes replacements for channel A (left pump head assembly) and can be applied accordingly to channel B. In both cases, maintenance is done only at the secondary pump head outlet, which hosts the filter frit.		
NOTE	When replacing a PTFE frit, consider replacing the seal cap as well in order to prevent leaks.		

9

Replacing Parts of the High Pressure Filter Assembly

9

Installing the Valve Rail Kit

When	This rail is needed for the installation of external valves		
Tools required	Description		
	Pozic	drive screwdriver #	1
Parts required	#	p/n	Description
	1	5067-4634	Valve Rail Kit
NOTE	The rail can be installed on the left or right side of the pump. This procedure describes the installation on the left side and applies similarly to the right side.		

1 The valve rail is fixed to the pump cover by 4 screws. The position of the lower screws is marked on the module cover. First tighten these screws, and then tighten the upper screws.

Replacing the Main Power Fuses

Replacing the Main Power Fuses

When	If the main power LED is off while the main power button is pressed (see "Status indicators" on page 87).		
Tools required	Description Flat head screwdriver		
Parts required	# p/n 1 2110-1004	Description Fuse 10 A t	
Preparations	Switch off the instrument	and unplug the main power cable.	
WARNING	Fire hazard Using wrong fuses can result in fire hazard.		
	→ For continued protection against fire hazard, replace line fuses only with the same type and ratings.		
	Only use the fuses specified for this instrument. The use of other fuses or materials is prohibited.		
NOTE	There are more fuses inside the instrument.		
	If replacing the main pov service representative.	wer fuse does not resolve the issue, please contact your Agilent	

Replacing the Main Power Fuses

Replacing Module Firmware

Replacing Module Firmware

When	 The installation of newer firmware might be necessary if a newer version solves problems of older versions or to keep all systems on the same (validated) revision. 			
	 The installation of older firmware might be necessary to keep all systems on the same (validated) revision or if a new module with newer firmware is added to a system or if third party control software requires a special version. 			
Tools required	Description			
	LAN/RS-232 Firmware Update Tool			
OR	Agilent Lab Advisor software			
OR	Instant Pilot G4208A (only if supported by module)			
Parts required	# Description			
	1 Firmware, tools and documentation from Agilent web site			
Preparations	Read update documentation provided with the Firmware Update Tool.			
	To upgrade/downgrade the module's firmware carry out the following steps:			
	1 Download the required module firmware, the latest LAN/RS-232 FW Update Tool and the documentation from the Agilent web.			
	$\ \ {\rm http://www.chem.agilent.com/_layouts/agilent/downloadFirmware.aspx?whid=69761} \\$			
	2 For loading the firmware into the module follow the instructions in the documentation.			
	Module Specific Information			
	There is no specific information for this module.			

9

Preparing the Pump Module for Transport

When	If the module shall be transported or shipped.		
Parts required	#	p/n	Description
	1	9301-0411	Syringe; Plastic
	1	9301-1337	Syringe adapter
	1	G4220-44000	Protective Foam
Preparations	Flush both solvent channels with isopropanol.		
CAUTION	Mechanical damage		
	→ For shipping the module, insert the Protective Foam to protected the module from mechanical damage.		
		e careful not to da the Protective Fo	amage tubing or capillary connections while inserting the module pam.

Preparing the Pump Module for Transport

1 Remove solvent inlets from solvent reservoirs. Disconnect the solvent tubing from the inlet of primary pump heads for both solvent channels. Use a syringe for removing liquid from the solvent tubings between solvent reservoir, shutoff valve panel, solvent selection valve, degassing unit and pump inlets. Switch the solvent selection valve if applicable.

Inlet primary pump head

2 Remove tubing and capillary connections to other modules and the solvent cabinet. Remove tubing plugs.

Outlet Active Seal Wash (optional)

9

3 Remove the shutoff valve panel by pulling it downwards

4 You may keep internal tubing and capillary connections.

5 Remove cable connections to other modules. Remove the module from the stack.

Preparing the Pump Module for Transport

6 Carefully insert the Protective Foam to the front part of the instrument. Do not damage any tubing or capillary connections.

7 Close the front cover.

8 For transport or shipment, put the module and accessory kit to the original shipment box.

10 Parts and Materials for Maintenance

Overview of Maintenance Parts 202 Flow Connections 204 Solvent Cabinet Kit 206 Seal Wash Option 207 Pump Head Assemblies 208 Pump Head Assembly Parts 210 Primary Pump Head Parts 212 Secondary Pump Head Parts 216 Purge Valve 220 Cover Parts 222 Leak Parts 224 Fuses 224 Accessory Kit 225 Tools 226 HPLC System Tool Kit 228

This chapter provides information on parts for maintenance.

10 Parts and Materials for Maintenance

Overview of Maintenance Parts

Overview of Maintenance Parts

Figure 22 Overview of main assemblies

Parts and Materials for Maintenance 10 Overview of Maintenance Parts

ltem	p/n	Description
1	G4220-60006	Jet Weaver 35 μL/100 μL
	G4220-60012	Jet Weaver 380 µL (OPTIONAL)
2	G4280-60029	Solvent selection valve
3	5042-8507	Peristaltic Pump for Seal Wash (OPTIONAL)
4	G4220-60001	Pressure sensor 1200 bar
5	5067-4119	Purge valve head
6	n.n.	Pump Head Assemblies for details on pump head assemblies refer to "Pump Head Assemblies" on page 208

10 Parts and Materials for Maintenance

Flow Connections

Flow Connections

Figure 23 Flow connections of the pump

Parts and Materials for Maintenance 10 Flow Connections

ltem	p/n	Description
1	5067-4661	Tubing kit 270 mm for connection of degassing unit to inlet valve (set of 2 tubes)
2	5067-4655 (2x)	Capillary ST, 0.25 mm x 235 mm purge valve to pump head assemblies channel A and B, 2x
3	5067-4656 (2x)	Capillary ST, 0.25 mm x 80 mm purge valve to pressure sensor, 2x
4	G4220-87000	Capillary ST 0.17 mm x 300 mm Valve to Jet Weaver
5	5042-8507	Seal wash pump cartridge
	5065-9978	Tubing, 1 mm i.d., 3 mm o.d., silicone, 5 m
6	G4220-40004	Shutoff valve panel
	5067-4124	Shutoff valve
	G4220-60035	Tubing kit 140 mm, 2/pk SSV to shutoff valve or degassing unit
	G4220-60007	Bottle Head Assembly
	G4220-68070	Ultra Clean Tubing Kit for G4220A (includes bottle head assemblies and tubing connections within the pump)
	G4220-60070	Tubing Kit 140 mm - Ultra Clean Tubing (tubes from SSV to shutoff valve or degassing unit to MCGV)
	G4220-60017	Bottle Head Assembly Ultra Clean Tubing (bottle heads and tubing to shutoff panel/degasser)

10 Parts and Materials for Maintenance Solvent Cabinet Kit

Solvent Cabinet Kit

ltem	p/n	Description
1	5067-4644	Solvent Cabinet Kit 1290 Infinity Pump includes the following parts:
2	5065-9981	Solvent cabinet 1200 Infinity, including all plastic parts
3	9301-1420 (3x)	Solvent bottle, transparent
4	9301-1450	Solvent bottle, amber
5	5067-4124 (4x)	Shutoff valve
6	G4220-60007 (4x)	Bottle Head Assembly
7	G4220-60035 (4x)	Tubing kit 140 mm, 2/pk SSV to shutoff valve or degassing unit
8	G4220-40004	Shutoff valve panel
9	5042-9967	Tubing clip (set of 5 clips)

Parts and Materials for Maintenance Seal Wash Option

Seal Wash Option

Figure 24 Seal wash pump

p/n	Description
5042-8507	Seal wash pump cartridge
5065-9978	Tubing, 1 mm i.d., 3 mm o.d., silicone, 5 m

10 Parts and Materials for Maintenance Pump Head Assemblies

Pump Head Assemblies

Figure 25 Pump head assembly (left) with seal wash option

Figure 25 on page 208 exemplarily shows the pump head with seal wash option for channel A of the pump. There are several pump heads available, see Table 10 on page 209.

New parts	Pump Head Assembly Channel A (left) with Seal Wash Option (G4220-60200)	. ,	
	Pump Head Assembly Channel A (left) without Seal Wash Option (G4220-60400)	Pump Head Assembly Channel B (right) without Seal Wash Option (G4220-60410)	

Table 10Pump head assemblies

All pump head assemblies are complete including valves and filter assemblies.

10 Parts and Materials for Maintenance Pump Head Assembly Parts

Pump Head Assembly Parts

Figure 26 Pump head assembly parts

Parts and Materials for Maintenance 10 Pump Head Assembly Parts

ltem	p/n	Description
1	G4280-60026	High Pressure Filter Assembly (secondary pump head)
2	G4220-60028	Outlet valve (primary pump head)
3	G4220-60022	Inlet valve (primary pump head)

10 Parts and Materials for Maintenance Primary Pump Head Parts

Primary Pump Head Parts

Primary Pump Head With Seal Wash (Binary Pump)

Figure 27 Primary pump head (Binary Pump) with seal wash

Parts and Materials for Maintenance 10 Primary Pump Head Parts

ltem	p/n	Description
1	0515-1218	Screw M5, 40 mm long
2		Pump Chamber Housing (order pump head)
3	0905-1719	PE Seal
4	G4220-60016	Seal holder including backup ring
5	5062-2484	Gasket, seal wash (pack of 6)
6	0905-1718	Wash Seal PE
7	G4220-63010	Support Ring (Seal Wash)
8		Pump Head Ferrules (order pump head)
9		Piston Housing (order pump head)
10	5067-5678	Piston 1290 Infinity Pumps, ceramic
11	G4220-60022	Inlet valve (primary pump head)
12	G4220-60028	Outlet valve (primary pump head)
13	G4220-20028	Headless screw for 1290 Infinity pump heads
14	G4220-20020	Internal gold seal for Outlet Valve

10 Parts and Materials for Maintenance Primary Pump Head Parts

Primary Pump Head Without Seal Wash (Binary Pump)

Figure 28 Primary pump head (Binary Pump) without seal wash

Parts and Materials for Maintenance 10 Primary Pump Head Parts

ltem	p/n	Description
1	0515-1218	Screw M5, 40 mm long
2		Pump Chamber Housing (order pump head)
3	0905-1719	PE Seal
4	G4220-60015	Support ring including backup ring
5		Pump Head Ferrules (order pump head)
6		Piston Housing (order pump head)
7	5067-5678	Piston 1290 Infinity Pumps, ceramic
8	G4220-60022	Inlet valve (primary pump head)
9	G4220-60028	Outlet valve (primary pump head)
10	G4220-20028	Headless screw for 1290 Infinity pump heads
11	G4220-20020	Internal gold seal for Outlet Valve

10 Parts and Materials for Maintenance Secondary Pump Head Parts

Secondary Pump Head Parts

Secondary Pump Head With Seal Wash (Binary Pump)

Parts and Materials for Maintenance Secondary Pump Head Parts

ltem	p/n	Description
1	0515-1218	Screw M5, 40 mm long
2	G4220-20003	Pump Head Screw
3		Pump Head Front Plate (order pump head)
4	G4220-81013	Heat Exchanger (secondary pump head only) Channel A
	G4220-81012	Heat Exchanger (secondary pump head only) Channel B
5	G4220-20028	Headless screw for 1290 Infinity pump heads
6	G4220-20001	Spacer Fitting
7		Pump Chamber Housing (order pump head)
8	0905-1719	PE Seal
9	G4220-60016	Seal holder including backup ring
10	5062-2484	Gasket, seal wash (pack of 6)
11	0905-1718	Wash Seal PE
12	G4220-63010	Support Ring (Seal Wash)
13	(2x)	Pump Head Ferrules (order pump head)
14		Piston Housing (order pump head)
15	5067-5678	Piston 1290 Infinity Pumps, ceramic
16	G4280-60026	High Pressure Filter Assembly (secondary pump head)
17	01018-22707	PTFE frits (pack of 5)
18	5067-4728	Seal cap

Secondary Pump Head Without Seal Wash (Binary Pump)

Figure 30 Secondary pump head (Binary Pump) without seal wash

Parts and Materials for Maintenance Secondary Pump Head Parts

ltem	p/n	Description
1	0515-1218	Screw M5, 40 mm long
2	G4220-20003	Pump Head Screw
3		Pump Head Front Plate (order pump head)
4	G4220-81013	Heat Exchanger (secondary pump head only) Channel A
	G4220-81012	Heat Exchanger (secondary pump head only) Channel B
5	G4220-20028	Headless screw for 1290 Infinity pump heads
6	G4220-20001	Spacer Fitting
7		Pump Chamber Housing (order pump head)
8	0905-1719	PE Seal
9	G4220-60015	Support ring including backup ring
10	(2x)	Pump Head Ferrules (order pump head)
11		Piston Housing (order pump head)
12	5067-5678	Piston 1290 Infinity Pumps, ceramic
13	G4280-60026	High Pressure Filter Assembly (secondary pump head)
14	01018-22707	PTFE frits (pack of 5)
15	5067-4728	Seal cap

10 Parts and Materials for Maintenance Purge Valve

Purge Valve

Figure 31 Purge valve parts

Parts and Materials for Maintenance 10 Purge Valve

ltem	p/n	Description
	5067-4119	Purge valve head
1	1535-4857	Stator screws
2	5068-0004	Purge Valve Stator
3	5068-0005	Purge Valve Rotor Seal, polyimide, 1200 bar
4	1535-4045	Bearing ring

10 Parts and Materials for Maintenance **Cover Parts**

Cover Parts

Figure 32 **Cover Parts**

Figure 33 Tubing plug and tubing grommet

ltem	p/n	Description
1	5067-4613	Cabinet Kit (Side Covers left/right, Top Cover, Tubing Plug, Base Cover and Leak Seal)
2	5042-9949	Tubing Plug, Plastic
	5042-9972	Tubing grommet
3	5067-4612	Front Cover 1290 Infinity Binary Pump
4	5067-4634	Valve Rail Kit

10 Parts and Materials for Maintenance Leak Parts

Leak Parts

p/n	Description
5041-8388	Leak funnel

Fuses

ltem	p/n	Description
1	2110-1004 (2x)	Fuse 10 A t

Accessory Kit

p/n	Description
G4220-68705	Accessory kit
5042-9974	Tubing Flex (1.5 m)
8710-0510	Wrench open 1/4 — 5/16 inch
8710-1924	Wrench open 14 mm
5023-0240	Hex driver, ¼", slitted
8710-2392	Hex key 4 mm15 cm long T-handle
9301-0411	Syringe; Plastic
9301-1337	Syringe adapter
5067-4657	Capillary ST, 0.17 mm x 300 mm Pump to Autosampler
5067-4658	SST Capillary 450 \times 0.17 mm, Pump to Thermostatted Autosampler
0100-1710	Mounting Tool for Tubing Connections
G4220-67000	Waste tubes
8710-1534	Wrench, 4 mm both ends, open end
5065-9978	Tubing, 1 mm i.d., 3 mm o.d., silicone, 5 m for seal wash option
5181-1519	CAN cable, Agilent module to module, 1 m
01018-22707	PTFE frits (pack of 5)
01018-23702	Insert tool
5042-9972	Tubing grommet

10 Parts and Materials for Maintenance

Tools

Tools

ltem	p/n	Description
	5067-4699	1290 Infinity pump service kit
1	G4220-20012	Torque wrench 2 – 25 Nm
2	G4220-20013	4 mm hex bit
3	G4220-20014	2.5 mm Hex Bit
4	G4220-20015	Adapter ¼ in square to hex
	5023-0285	Replacement kit for 1290 Infinity pump head alignment tool (piston/handle)
	G4220-44000	Protective Foam
	G6500-88888	Hexalobular Key Set
	8710-0803	Wrench 9/16 inch, 7/16 inch

The 1290 Infinity pump service kit (5067-4699) includes pump head alignment tool and items 1 – 4.

Figure 35 Pump head alignment tool

Figure 36 Replacement kit for 1290 Infinity pump head alignment tool (piston/handle)

Figure 37 HPLC System Tool Kit

10 Parts and Materials for Maintenance HPLC System Tool Kit

HPLC System Tool Kit

The HPLC System Tool Kit (G4203-68708) contains some accessories and tools needed for installation and repair of the module.

p/n	Description
0100-1681	Adapter syringe/seal wash tube
0100-1710	Mounting Tool for Tubing Connections
01018-23702	Insert tool
5023-0240	Hex driver, ¼", slitted
8710-0060	Hex-key wrench, 9/64 inch
8710-0510 (2x)	Wrench open 1/4 — 5/16 inch
8710-0641	Hex key set 1 – 5 mm
8710-0899	Pozidriv screwdriver
8710-1534	Wrench, 4 mm both ends, open end
8710-1924	Wrench open 14 mm
8710-2392	Hex key 4 mm15 cm long T-handle
8710-2393	Hex key 1.5 mm, straight handle 10 cm
8710-2394	Hex key 9/64 inch 15 cm long T-handle
8710-2409	Wrench open end, $5/16 - 3/8$ inch
8710-2411	Hex key 3 mm12 cm long
8710-2412	Hex key 2.5 mm, 15 cm long, straight handle
8710-2438	Hex key 2.0 mm
8710-2509	Screwdriver Torx TX8
8710-2594	Double open end wrench 4 mm x 5 mm
9301-0411	Syringe, Plastic
9301-1337	Adapter syringe/solvent tube with fitting

11 Identifying Cables

Cable Overview 230 Analog cables 232 Remote Cables 234 BCD Cables 237 CAN/LAN Cable 239 RS-232 Cable Kit 240 Agilent 1200 Module to Printer 241

This chapter provides information on cables used with the Agilent 1200 Infinity Series modules.

Cable Overview

NOTE

Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.

Analog cables

p/n	Description
35900-60750	Agilent module to 3394/6 integrators
35900-60750	Agilent 35900A A/D converter
01046-60105	Analog cable (BNC to general purpose, spade lugs)

Remote cables

p/n	Description
03394-60600	Agilent module to 3396A Series I integrators
	3396 Series II / 3395A integrator, see details in section "Remote Cables" on page 234 $$
03396-61010	Agilent module to 3396 Series III / 3395B integrators
5061-3378	Remote Cable
01046-60201	Agilent module to general purpose

BCD cables

p/n	Description
03396-60560	Agilent module to 3396 integrators
G1351-81600	Agilent module to general purpose

CAN cables

p/n	Description
5181-1516	CAN cable, Agilent module to module, 0.5 m
5181-1519	CAN cable, Agilent module to module, 1 m

LAN cables

p/n	Description
5023-0203	Cross-over network cable, shielded, 3 m (for point to point connection)
5023-0202	Twisted pair network cable, shielded, 7 m (for point to point connection)

RS-232 cables

p/n	Description
G1530-60600	RS-232 cable, 2 m
RS232-61601	RS-232 cable, 2.5 m Instrument to PC, 9-to-9 pin (female). This cable has special pin-out, and is not compatible with connecting printers and plotters. It's also called "Null Modem Cable" with full handshaking where the wiring is made between pins 1-1, 2-3, 3-2, 4-6, 5-5, 6-4, 7-8, 8-7, 9-9.
5181-1561	RS-232 cable, 8 m

Analog cables

One end of these cables provides a BNC connector to be connected to Agilent modules. The other end depends on the instrument to which connection is being made.

Agilent Module to 3394/6 Integrators

p/n 35900-60750	Pin 3394/6	Pin Agilent module	Signal Name
	1		Not connected
	2	Shield	Analog -
	3	Center	Analog +

Agilent Module to BNC Connector

p/n 8120-1840	Pin BNC	Pin Agilent module	Signal Name
	Shield	Shield	Analog -
	Center	Center	Analog +

Agilent Module to General Purpose

p/n 01046-60105	Pin	Pin Agilent module	Signal Name
	1		Not connected
5	2	Black	Analog -
- AL	3	Red	Analog +
	3		
	~		

Remote Cables

One end of these cables provides a Agilent Technologies APG (Analytical Products Group) remote connector to be connected to Agilent modules. The other end depends on the instrument to be connected to.

Agilent Module to 3396A Integrators

p/n 03394-60600	Pin 3396A	Pin Agilent module	Signal Name	Active (TTL)
	9	1 - White	Digital ground	
80 15	NC	2 - Brown	Prepare run	Low
	3	3 - Gray	Start	Low
	NC	4 - Blue	Shut down	Low
	NC	5 - Pink	Not connected	
	NC	6 - Yellow	Power on	High
	5,14	7 - Red	Ready	High
	1	8 - Green	Stop	Low
	NC	9 - Black	Start request	Low
	13, 15		Not connected	

Agilent Module to 3396 Series II / 3395A Integrators

Use the cable Agilent module to 3396A Series I integrators (03394-60600) and cut pin #5 on the integrator side. Otherwise the integrator prints START; not ready.

p/n 03396-61010	Pin 33XX	Pin Agilent module	Signal Name	Active (TTL)
	9	1 - White	Digital ground	
80,15	NC	2 - Brown	Prepare run	Low
	3	3 - Gray	Start	Low
	NC	4 - Blue	Shut down	Low
	NC	5 - Pink	Not connected	
\bigcirc	NC	6 - Yellow	Power on	High
	14	7 - Red	Ready	High
	4	8 - Green	Stop	Low
	NC	9 - Black	Start request	Low
	13, 15		Not connected	

Agilent Module to 3396 Series III / 3395B Integrators

Agilent Module to Agilent 35900 A/D Converters

'n 5061-3378	Pin 35900 A/D	Pin Agilent module	Signal Name	Active (TTL)
	1 - White	1 - White	Digital ground	
	2 - Brown	2 - Brown	Prepare run	Low
50	3 - Gray	3 - Gray	Start	Low
	4 - Blue	4 - Blue	Shut down	Low
	5 - Pink	5 - Pink	Not connected	
	6 - Yellow	6 - Yellow	Power on	High
	7 - Red	7 - Red	Ready	High
	8 - Green	8 - Green	Stop	Low
	9 - Black	9 - Black	Start request	Low

p/n 01046-60201	Wire Color	Pin Agilent module	Signal Name	Active (TTL)
	White	1	Digital ground	
	Brown	2	Prepare run	Low
	Gray	3	Start	Low
	Blue	4	Shut down	Low
	Pink	5	Not connected	
s 0 15	Yellow	6	Power on	High
	Red	7	Ready	High
	Green	8	Stop	Low
	Black	9	Start request	Low

Agilent Module to General Purpose

BCD Cables

One end of these cables provides a 15-pin BCD connector to be connected to the Agilent modules. The other end depends on the instrument to be connected to

Agilent Module to General Purpose

p/n G1351-81600	Wire Color	Pin Agilent module	Signal Name	BCD Digit
	Green	1	BCD 5	20
- Aller	Violet	2	BCD 7	80
	Blue	3	BCD 6	40
	Yellow	4	BCD 4	10
	Black	5	BCD 0	1
	Orange	6	BCD 3	8
	Red	7	BCD 2	4
	Brown	8	BCD 1	2
	Gray	9	Digital ground	Gray
	Gray/pink	10	BCD 11	800
	Red/blue	11	BCD 10	400
	White/green	12	BCD 9	200
	Brown/green	13	BCD 8	100
	not connected	14		
	not connected	15	+ 5 V	Low

Agilent Module to 3396 Integrators

p/n 03396-60560	Pin 3396	Pin Agilent module	Signal Name	BCD Digit
	1	1	BCD 5	20
	2	2	BCD 7	80
	3	3	BCD 6	40
	4	4	BCD 4	10
	5	5	BCD0	1
	6	6	BCD 3	8
	7	7	BCD 2	4
	8	8	BCD 1	2
	9	9	Digital ground	
	NC	15	+ 5 V	Low

CAN/LAN Cable

Both ends of this cable provide a modular plug to be connected to Agilent modules CAN or LAN connectors.

CAN Cables

p/n	Description
5181-1516	CAN cable, Agilent module to module, 0.5 m
5181-1519	CAN cable, Agilent module to module, 1 m

LAN Cables

p/n	Description
5023-0203	Cross-over network cable, shielded, 3 m (for point to point connection)
5023-0202	Twisted pair network cable, shielded, 7 m (for point to point connection)

RS-232 Cable Kit

p/n	Description
G1530-60600	RS-232 cable, 2 m
RS232-61601	RS-232 cable, 2.5 m Instrument to PC, 9-to-9 pin (female). This cable has special pin-out, and is not compatible with connecting printers and plotters. It's also called "Null Modem Cable" with full handshaking where the wiring is made between pins 1-1, 2-3, 3-2, 4-6, 5-5, 6-4, 7-8, 8-7, 9-9.
5181-1561	RS-232 cable, 8 m

Agilent 1200 Module to Printer

p/n	Description
5181-1529	Cable Printer Serial & Parallel, is a SUB-D 9 pin female vs. Centronics connector on the other end (NOT FOR FW UPDATE). For use with G1323 Control Module.

11 Identifying Cables

Agilent 1200 Module to Printer

12 Hardware Information

Firmware Description 244 Electrical Connections 247 Rear View of the Module 248 Interfaces 249 Overview Interfaces 252 Setting the 8-bit Configuration Switch 256 Special Settings 258 Instrument Layout 259 Early Maintenance Feedback 260

This chapter describes the pump in more detail on hardware and electronics.

Firmware Description

The firmware of the instrument consists of two independent sections:

- a non-instrument specific section, called resident system
- an instrument specific section, called main system

Resident System

This resident section of the firmware is identical for all Agilent 1100/1200/1220/1260/1290 series modules. Its properties are:

- the complete communication capabilities (CAN, LAN and RS-232C)
- memory management
- · ability to update the firmware of the 'main system'

Main System

Its properties are:

- the complete communication capabilities (CAN, LAN and RS-232C)
- memory management
- · ability to update the firmware of the 'resident system'

In addition the main system comprises the instrument functions that are divided into common functions like

- run synchronization through APG remote,
- error handling,
- diagnostic functions,
- · or module specific functions like
 - internal events such as lamp control, filter movements,
 - raw data collection and conversion to absorbance.

Firmware Updates

Firmware updates can be done using the following tools (latest version should be used):

- Agilent Lab Advisor software with files on the hard disk ^(*)
- Firmware Update Tool with local files on the hard disk ^(*)
- Instant Pilot (G4208A) with files on a USB Flash Disk

^(*) Required tools, firmware and documentation are available from the Agilent web:

 $http://www.chem.agilent.com/_layouts/agilent/downloadFirmware.aspx?whid=69761$

The file naming conventions are:

PPPP_RVVV_XXX.dlb, where

PPPP is the product number, for example, 1315B for the G1315B DAD,

R the firmware revision, for example, A for G1315B or B for the G1315C DAD,

VVV is the revision number, for example 650 is revision 6.50,

XXX is the build number of the firmware.

For instructions on firmware updates refer to section *Replacing Firmware* in chapter "Maintenance" or use the documentation provided with the *Firmware Update Tools*.

Update of main system can be done in the resident system only. Update of the resident system can be done in the main system only.

Main and resident firmware must be from the same set.

Figure 38 Firmware Update Mechanism

NOTE

12 Hardware Information

Firmware Description

NOTE

Some modules are limited in downgrading due to their main board version or their initial firmware revision. For example, a G1315C DAD SL cannot be downgraded below firmware revision B.01.02 or to a A.xx.xx.

Some modules can be re-branded (e.g. G1314C to G1314B) to allow operation in specific control software environments. In this case the feature set of the target type are use and the feature set of the original are lost. After re-branding (e.g. from G1314B to G1314C), the original feature set is available again.

All these specific informations are described in the documentation provided with the firmware update tools.

The firmware update tools, firmware and documentation are available from the Agilent web.

http://www.chem.agilent.com/_layouts/agilent/downloadFirmware.aspx?whid=69761

Electrical Connections

- The CAN bus is a serial bus with high speed data transfer. The two connectors for the CAN bus are used for internal module data transfer and synchronization.
- The REMOTE connector may be used in combination with other analytical instruments from Agilent Technologies if you want to use features such as start, stop, common shut down, prepare, and so on.
- With the appropriate software, the RS-232C connector may be used to control the module from a computer through a RS-232C connection. This connector is activated and can be configured with the configuration switch.
- The power input socket accepts a line voltage of 100 240 VAC ± 10 % with a line frequency of 50 or 60 Hz. Maximum power consumption varies by module. There is no voltage selector on your module because the power supply has wide-ranging capability. There are no externally accessible fuses, because automatic electronic fuses are implemented in the power supply.

NOTE

Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.

12 Hardware Information

Electrical Connections

Rear View of the Module

Figure 39 Rear of Binary Pump

Interfaces

The Agilent 1200 Infinity Series modules provide the following interfaces:

 Table 11
 Agilent 1200 Infinity Series Interfaces

Module	CAN	LAN/BCD (optional)	LAN (on-board)	RS-232	Analog	APG Remote	Special
Pumps							
G1310B Iso Pump G1311B Quat Pump G1311C Quat Pump VL G1312B Bin Pump K1312B Bin Pump Clinical Ed. G1312C Bin Pump VL 1376A Cap Pump G2226A Nano Pump G5611A Bio-inert Quat Pump	2	Yes	No	Yes	1	Yes	
G4220A/B Bin Pump G4204A Quat Pump	2	No	Yes	Yes	No	Yes	CAN-DC- OUT for CAN slaves
G1361A Prep Pump	2	Yes	No	Yes	No	Yes	CAN-DC- OUT for CAN slaves
Samplers							
G1329B ALS G2260A Prep ALS	2	Yes	No	Yes	No	Yes	THERMOSTAT for G1330B/K1330B
G1364B FC-PS G1364C FC-AS G1364D FC-μS G1367E HiP ALS K1367E HiP ALS Clinical Ed. G1377A HiP micro ALS G2258A DL ALS G5664A Bio-inert FC-AS G5667A Bio-inert Autosampler	2	Yes	No	Yes	No	Yes	THERMOSTAT for G1330B/K1330B CAN-DC- OUT for CAN slaves
G4226A ALS	2	Yes	No	Yes	No	Yes	

12 Hardware Information

Interfaces

Table 11 Agilent 1200 Infinity Series Interfaces

Module	CAN	LAN/BCD (optional)	LAN (on-board)	RS-232	Analog	APG Remote	Special
Detectors							
G1314B VWD VL G1314C VWD VL+	2	Yes	No	Yes	1	Yes	
G1314E/F VWD K1314F Clinical Ed.	2	No	Yes	Yes	1	Yes	
G4212A/B DAD K4212B DAD Clinical Ed.	2	No	Yes	Yes	1	Yes	
G1315C DAD VL+ G1365C MWD G1315D DAD VL G1365D MWD VL	2	No	Yes	Yes	2	Yes	
G1321B FLD K1321B FLD Clinical Ed. G1321C FLD	2	Yes	No	Yes	2	Yes	
G1362A RID	2	Yes	No	Yes	1	Yes	
G4280A ELSD	No	No	No	Yes	Yes	Yes	EXT Contact AUTOZERO
Others							
G1170A Valve Drive	2	No	No	No	No	No	1
G1316A/C TCC K1316C TCC Clinical Ed.	2	No	No	Yes	No	Yes	
G1322A DEG K1322A DEG Clinical Ed.	No	No	No	No	No	Yes	AUX
G1379B DEG	No	No	No	Yes	No	Yes	
G4225A DEG K4225A DEG Clinical Ed.	No	No	No	Yes	No	Yes	

Module	CAN	LAN/BCD (optional)	LAN (on-board)	RS-232	Analog	APG Remote	Special
G4227A Flex Cube	2	No	No	No	No	No	CAN-DC- OUT for CAN slaves 2
G4240A CHIP CUBE	2	Yes	No	Yes	No	Yes	CAN-DC- OUT for CAN slaves THERMOSTAT for G1330A/B (NOT USED), K1330B

Table 11 Agilent 1200 Infinity Series Interfaces

Requires a HOST module with on-board LAN (e.g. G4212A or G4220A with minimum firmware B.06.40 or C.06.40) or with additional G1369C LAN Card

NOTE

The detector (DAD/MWD/FLD/VWD/RID) is the preferred access point for control via LAN. The inter-module communication is done via CAN.

- CAN connectors as interface to other modules
- · LAN connector as interface to the control software
- RS-232C as interface to a computer
- REMOTE connector as interface to other Agilent products
- Analog output connector(s) for signal output

Overview Interfaces

CAN

The CAN is inter-module communication interface. It is a 2-wire serial bus system supporting high speed data communication and real-time requirement.

LAN

The modules have either an interface slot for an LAN card (e.g. Agilent G1369B/C LAN Interface) or they have an on-board LAN interface (e.g. detectors G1315C/D DAD and G1365C/D MWD). This interface allows the control of the module/system via a PC with the appropriate control software. Some modules have neither on-board LAN nor an interface slot for a LAN card (e.g. G1170A Valve Drive or G4227A Flex Cube). These are hosted modules and require a Host module with firmware B.06.40 or later or with additional G1369C LAN Card.

NOTE

If an Agilent detector (DAD/MWD/FLD/VWD/RID) is in the system, the LAN should be connected to the DAD/MWD/FLD/VWD/RID (due to higher data load). If no Agilent detector is part of the system, the LAN interface should be installed in the pump or autosampler.

RS-232C (Serial)

The RS-232C connector is used to control the module from a computer through RS-232C connection, using the appropriate software. This connector can be configured with the configuration switch module at the rear of the module. Refer to *Communication Settings for RS-232C*.

NOTE

There is no configuration possible on main boards with on-board LAN. These are pre-configured for

- 19200 baud,
- 8 data bit with no parity and
- one start bit and one stop bit are always used (not selectable).

The RS-232C is designed as DCE (data communication equipment) with a 9-pin male SUB-D type connector. The pins are defined as:
Pin	Direction	Function
1	In	DCD
2	In	RxD
3	Out	TxD
4	Out	DTR
5		Ground
6	In	DSR
7	Out	RTS
8	In	CTS
9	In	RI

 Table 12
 RS-232C Connection Table

Figure 40 RS-232 Cable

Analog Signal Output

The analog signal output can be distributed to a recording device. For details refer to the description of the module's main board.

APG Remote

The APG Remote connector may be used in combination with other analytical instruments from Agilent Technologies if you want to use features as common shut down, prepare, and so on.

Remote control allows easy connection between single instruments or systems to ensure coordinated analysis with simple coupling requirements.

The subminiature D connector is used. The module provides one remote connector which is inputs/outputs (wired- or technique).

To provide maximum safety within a distributed analysis system, one line is dedicated to **SHUT DOWN** the system's critical parts in case any module detects a serious problem. To detect whether all participating modules are switched on or properly powered, one line is defined to summarize the **POWER ON** state of all connected modules. Control of analysis is maintained by signal readiness **READY** for next analysis, followed by **START** of run and optional **STOP** of run triggered on the respective lines. In addition **PREPARE** and **START REQUEST** may be issued. The signal levels are defined as:

- standard TTL levels (0 V is logic true, + 5.0 V is false),
- fan-out is 10,
- input load is 2.2 kOhm against + 5.0 V, and
- output are open collector type, inputs/outputs (wired- or technique).

NOTE All common TTL circuits operate with a 5 V power supply. A TTL signal is defined as "low" or L when between 0 V and 0.8 V and "high" or H when between 2.0 V and 5.0 V (with respect to the ground terminal).

Pin	Signal	Description
1	DGND	Digital ground
2	PREPARE	(L) Request to prepare for analysis (for example, calibration, detector lamp on). Receiver is any module performing pre-analysis activities.
3	START	(L) Request to start run / timetable. Receiver is any module performing run-time controlled activities.
4	SHUT DOWN	(L) System has serious problem (for example, leak: stops pump). Receiver is any module capable to reduce safety risk.
5		Not used
6	POWER ON	(H) All modules connected to system are switched on. Receiver is any module relying on operation of others.
7	READY	(H) System is ready for next analysis. Receiver is any sequence controller.
8	STOP	(L) Request to reach system ready state as soon as possible (for example, stop run, abort or finish and stop injection). Receiver is any module performing run-time controlled activities.
9	START REQUEST	(L) Request to start injection cycle (for example, by start key on any module). Receiver is the autosampler.

Special Interfaces

The module includes a DC-Out (24 VDC) power line that is intended to be used with certain modules that operate as CAN slaves, for example external valves. The line has a limited output of 0.5 A (1.7 A as of August 2011) and is self resetting.

12 Hardware Information

Setting the 8-bit Configuration Switch

Setting the 8-bit Configuration Switch

The 8-bit configuration switch is located at the rear of the module. Switch settings provide configuration parameters for LAN, serial communication protocol and instrument specific initialization procedures.

All modules with on-board LAN:

- Default is ALL switches DOWN (best settings).
 - Bootp mode for LAN and
 - 19200 baud, 8 data bit / 1 stop bit with no parity for RS-232
- For specific LAN modes switches 3-8 must be set as required.
- For boot/test modes switches 1+2 must be UP plus required mode.

NOTE

For normal operation use the default (best) settings.

NOTE

To perform any LAN configuration, SW1 and SW2 must be set to OFF. For details on the LAN settings/configuration refer to chapter LAN Configuration.

	Mode		Function						
	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6	SW 7	SW 8	
LAN	0	0	Link Configuration			Init Mode Selection			
Auto-ne	gotiation		0	x	x	x	x	x	
10 MBit, h	nalf-duplex		1	0	0	x	x	x	
10 MBit, f	full-duplex		1	0	1	x	x	x	
100 MBit,	half-duplex		1	1	0	x	x	x	
100 MBit, full-duplex			1	1	1	x	x	x	
Во	otp		x	x	x	0	0	0	
Bootp	& Store		x	x	x	0	0	1	
Using	Stored		x	x	x	0	1	0	
DHCP		x	x	x	1	0	0		
Using	Default		x	x	x	0	1	1	
TEST	1	1	System					NVRAN	
Boot Resident System		1					x		
Revert to Default Data (Coldstart)			x	x	x			1	

Table 14 8-bit Configuration Switch (with on-board LAN)

Legend:

0 (switch down), 1 (switch up), x (any position)

NOTE

When selecting the mode TEST, the LAN settings are: Auto-Negotiation & Using Stored.

NOTE

For explanation of "Boot Resident System" and "Revert to Default Data (Coldstart)" refer to "Special Settings" on page 258.

12 Hardware Information

NOTE

Setting the 8-bit Configuration Switch

Special Settings

The special settings are required for specific actions (normally in a service case).

The tables include both settings for modules – with on-board LAN and without on-board LAN. They are identified as LAN and no LAN.

Boot-Resident

Firmware update procedures may require this mode in case of firmware loading errors (main firmware part).

If you use the following switch settings and power the instrument up again, the instrument firmware stays in the resident mode. It is not operable as a module. It only uses basic functions of the operating system for example, for communication. In this mode the main firmware can be loaded (using update utilities).

 Table 15
 Boot Resident Settings (On-board LAN)

Mode Select	SW1	SW2	SW3	SW4	SW5	SW6	SW7	SW8
TEST/BOOT	1	1	1	0	0	0	0	0

Forced Cold Start

A forced cold start can be used to bring the module into a defined mode with default parameter settings.

CAUTION

Loss of data

Forced cold start erases all methods and data stored in the non-volatile memory. Exceptions are calibration settings, diagnosis and repair log books which will not be erased.

Save your methods and data before executing a forced cold start.

If you use the following switch settings and power the instrument up again, a forced cold start has been completed.

Table 16 Forced Cold Start Settings (On-board LAN)

Mode Select	SW1	SW2	SW3	SW4	SW5	SW6	SW7	SW8
TEST/BOOT	1	1	0	0	0	0	0	1

Instrument Layout

The industrial design of the module incorporates several innovative features. It uses Agilent's E-PAC concept for the packaging of electronics and mechanical assemblies. This concept is based upon the use of expanded polypropylene (EPP) layers of foam plastic spacers in which the mechanical and electronic boards components of the module are placed. This pack is then housed in a metal inner cabinet which is enclosed by a plastic external cabinet. The advantages of this packaging technology are:

- virtual elimination of fixing screws, bolts or ties, reducing the number of components and increasing the speed of assembly/disassembly,
- the plastic layers have air channels molded into them so that cooling air can be guided exactly to the required locations,
- the plastic layers help cushion the electronic and mechanical parts from physical shock, and
- the metal inner cabinet shields the internal electronics from electromagnetic interference and also helps to reduce or eliminate radio frequency emissions from the instrument itself.

Early Maintenance Feedback

Early Maintenance Feedback

Maintenance requires the exchange of components which are subject to wear or stress. Ideally, the frequency at which components are exchanged should be based on the intensity of usage of the module and the analytical conditions, and not on a predefined time interval. The early maintenance feedback (**EMF**) feature monitors the usage of specific components in the instrument, and provides feedback when the user-selectable limits have been exceeded. The visual feedback in the user interface provides an indication that maintenance procedures should be scheduled.

EMF Counters

EMF counters increment with use and can be assigned a maximum limit which provides visual feedback in the user interface when the limit is exceeded. Some counters can be reset to zero after the required maintenance procedure.

Using the EMF Counters

The user-settable **EMF** limits for the **EMF Counters** enable the early maintenance feedback to be adapted to specific user requirements. The useful maintenance cycle is dependent on the requirements for use. Therefore, the definition of the maximum limits need to be determined based on the specific operating conditions of the instrument.

Setting the EMF Limits

The setting of the **EMF** limits must be optimized over one or two maintenance cycles. Initially the default **EMF** limits should be set. When instrument performance indicates maintenance is necessary, take note of the values displayed by the **EMF counters**. Enter these values (or values slightly less than the displayed values) as **EMF** limits, and then reset the **EMF counters** to zero. The next time the **EMF counters** exceed the new **EMF** limits, the **EMF** flag will be displayed, providing a reminder that maintenance needs to be scheduled.

What You Have to Do First 262 TCP/IP parameter configuration 264 Configuration Switch 265 Initialization mode selection 266 Dynamic Host Configuration Protocol (DHCP) 270 General Information (DHCP) 270 Setup (DHCP) 271 Link configuration selection 273 Automatic configuration with Bootp 274 About Agilent BootP Service 274 How BootP Service Works 275 Situation: Cannot Establish LAN Communication 275 Installation of BootP Service 276 Two Methods to Determine the MAC Address 278 Assigning IP Addresses Using the Agilent BootP Service 279 Changing the IP Address of an Instrument Using the Agilent BootP Service 282 Manual Configuration 284 With Telnet 285 With the Instant Pilot (G4208A) 289 PC and User Interface Software Setup Setup 290 PC Setup for Local Configuration 290 User Interface Software Setup 291

This chapter provides information on connecting the detector to the Agilent ChemStation PC.

What You Have to Do First

What You Have to Do First

The module has an on-board LAN communication interface.

1 Note the MAC (Media Access Control) address for further reference. The MAC or hardware address of the LAN interfaces is a world wide unique identifier. No other network device will have the same hardware address. The MAC address can be found on a label at the rear of the module (see Figure 43 on page 263).

Part number of the pump main board Revision Code, Vendor, Year and Week of assembly MAC address Country of Origin

Figure 42 MAC-Label

- 2 Connect the instrument's LAN interface (see Figure 43 on page 263) to
 - the PC network card using a crossover network cable (point-to-point) or
 - a hub or switch using a standard LAN cable.

Figure 43 Location of LAN interfaces and MAC label

TCP/IP parameter configuration

TCP/IP parameter configuration

To operate properly in a network environment, the LAN interface must be configured with valid TCP/IP network parameters. These parameters are:

- IP address
- Subnet Mask
- Default Gateway

The TCP/IP parameters can be configured by the following methods:

- by automatically requesting the parameters from a network-based BOOTP Server (using the so-called Bootstrap Protocol)
- by automatically requesting the parameters from a network-based DHCP Server (using the so-called Dynamic Host Configuration Protocol). This mode requires a LAN-onboard Module or a G1369C LAN Interface card, see "Setup (DHCP)" on page 271
- by manually setting the parameters using Telnet
- by manually setting the parameters using the Instant Pilot (G4208A)

The LAN interface differentiates between several initialization modes. The initialization mode (short form 'init mode') defines how to determine the active TCP/IP parameters after power-on. The parameters may be derived from a Bootp cycle, non-volatile memory or initialized with known default values. The initialization mode is selected by the configuration switch, see Table 18 on page 266.

Configuration Switch

The configuration switch can be accessed at the rear of the module.

Figure 44 Location of Configuration Switch

The module is shipped with all switches set to OFF, as shown above.

To perform any LAN configuration, SW1 and SW2 must be set to OFF.

Table 17	Factory Default Settings
	Tuotory Dorault Oottinge

Initialization ('Init') Mode	Bootp, all switches down. For details see "Initialization mode selection" on page 266
Link Configuration	speed and duplex mode determined by auto-negotiation, for details see "Link configuration selection" on page 273

NOTE

Initialization mode selection

Initialization mode selection

The following initialization (init) modes are selectable:

 Table 18
 Initialization Mode Switches

	SW 6	SW 7	SW 8	Init Mode
ON	OFF	OFF	OFF	Bootp
	OFF	OFF	ON	Bootp & Store
	OFF	ON	OFF	Using Stored
1 2 3 4 5 6 7 8	OFF	ON	ON	Using Default
	ON	OFF	OFF	DHCP ¹

¹ Requires firmware B.06.40 or above. Modules without LAN on board, see G1369C LAN Interface Card

Bootp

When the initialization mode **Bootp** is selected, the module tries to download the parameters from a **Bootp** Server. The parameters obtained become the active parameters immediately. They are not stored to the non-volatile memory of the module. Therefore, the parameters are lost with the next power cycle of the module.

Figure 45 Bootp (Principle)

Bootp & Store

When **Bootp & Store** is selected, the parameters obtained from a **Bootp** Server become the active parameters immediately. In addition, they are stored to the non-volatile memory of the module. Thus, after a power cycle they are still available. This enables a kind of bootp once configuration of the module.

Example: The user may not want to have a **Bootp** Server be active in his network all the time. But on the other side, he may not have any other configuration method than **Bootp**. In this case he starts the **Bootp** Server temporarily, powers on the module using the initialization mode **Bootp & Store**, waits for the **Bootp** cycle to be completed, closes the **Bootp** Server and powers off the module. Then he selects the initialization mode Using Stored and powers on the module again. From now on, he is able to establish the TCP/IP connection to the module with the parameters obtained in that single **Bootp** cycle.

Figure 46 Bootp & Store (Principle)

NOTE

Use the initialization mode **Bootp & Store** carefully, because writing to the non-volatile memory takes time. Therefore, when the module shall obtain its parameters from a **Bootp** Server every time it is powered on, the recommended initialization mode is **Bootp**!

Initialization mode selection

Using Stored

When initialization mode **Using Stored** is selected, the parameters are taken from the non-volatile memory of the module. The TCP/IP connection will be established using these parameters. The parameters were configured previously by one of the described methods.

Figure 47 Using Stored (Principle)

Using Default

When **Using Default** is selected, the factory default parameters are taken instead. These parameters enable a TCP/IP connection to the LAN interface without further configuration, see Table 19 on page 268.

Figure 48 Using Default (Principle)

NOTE

Using the default address in your local area network may result in network problems. Take care and change it to a valid address immediately.

Table 19 Using Default Parameters

IP address:	192.168.254.11
Subnet Mask:	255.255.255.0
Default Gateway	not specified

Since the default IP address is a so-called local address, it will not be routed by any network device. Thus, the PC and the module must reside in the same subnet.

The user may open a Telnet session using the default IP address and change the parameters stored in the non-volatile memory of the module. He may then close the session, select the initialization mode Using Stored, power-on again and establish the TCP/IP connection using the new parameters.

When the module is wired to the PC directly (e.g. using a cross-over cable or a local hub), separated from the local area network, the user may simply keep the default parameters to establish the TCP/IP connection.

NOTE

In the **Using Default** mode, the parameters stored in the memory of the module are not cleared automatically. If not changed by the user, they are still available, when switching back to the mode Using Stored.

Dynamic Host Configuration Protocol (DHCP)

Dynamic Host Configuration Protocol (DHCP)

General Information (DHCP)

The Dynamic Host Configuration Protocol (DHCP) is an auto configuration protocol used on IP networks. The DHCP functionality is available on all Agilent HPLC modules with on-board LAN Interface or LAN Interface Card, and "B"-firmware (B.06.40 or above).

When the initialization mode "DHCP" is selected, the card tries to download the parameters from a DHCP Server. The parameters obtained become the active parameters immediately. They are not stored to the non-volatile memory of the card.

Besides requesting the network parameters, the card also submits its hostname to the DHCP Server. The hostname equals the MAC address of the card, e.g. *0030d3177321*. It is the DHCP server's responsibility to forward the hostname/address information to the Domain Name Server. The card does not offer any services for hostname resolution (e.g. NetBIOS).

Figure 49 DHCP (Principle)

NOTE

- 1 It may take some time until the DHCP server has updated the DNS server with the hostname information.
- 2 It may be necessary to fully qualify the hostname with the DNS suffix, e.g. 0030d3177321.country.company.com.
- **3** The DHCP server may reject the hostname proposed by the card and assign a name following local naming conventions.

Setup (DHCP)

Software required The modules

The modules in the stack must have at least firmware from set A.06.34 and the above mentioned modules B.06.40 or above (must from the same firmware set).

1 Note the MAC address of the LAN interface (provided with G1369C LAN Interface Card or Main Board). This MAC address is on a label on the card or at the rear of the main board, e.g. 0030d3177321.

On the Instant Pilot the MAC address can be found under **Details** in the LAN section.

	System Info		
Property	Value		•
	oller : DE12345678 (G4208A)		Roload
Main Revision	B.02.12 [0001]		Reload
	D : DE64260019 (G1315D)		
Main Revision	B.06.41 [0002]		
Resident Revison	B.06.40 [0007]		Print
On-time	3d 01:33h		FILL
Installed Options	Dhcp		
LAN TCP/IP Mode	DHCP		
LAN TCP/IP Address	130.168.132.219		
LAN MAC Address	0030D314F89E		
Board ID	TYPE=G1315-66565, SER=MAC, REV=AC, MFG=		
Lamp	2140-0820 : 848728		
Cell	no info		
		•	Exit
Information on each m	odule.		10:08
I			

Figure 50 LAN Setting on Instant Pilot

2 Set the Configuration Switch to DHCP either on the G1369C LAN Interface Card or the main board of above mentioned modules.

 Table 20
 G1369C LAN Interface Card (configuration switch on the card)

SW 4	SW 5	SW 6	SW 7	SW 8	Initialization Mode
ON	OFF	OFF	OFF	OFF	DHCP

Dynamic Host Configuration Protocol (DHCP)

_	,		
SW 6	SW 7	SW 8	Initialization Mode
ON	OFF	OFF	DHCP

- Table 21
 LC Modules inclusive 1120/1220 (configuration switch at rear of the instrument)
- **3** Turn on the module that hosts the LAN interface.
- **4** Configure your Control Software (e.g. Agilent ChemStation, Lab Advisor, Firmware Update Tool) and use MAC address as host name, e.g. 0030d3177321.

The LC system should become visible in the control software (see Note in section "General Information (DHCP)" on page 270).

Link configuration selection

The LAN interface supports 10 or 100 Mbps operation in full- or half-duplex modes. In most cases, full-duplex is supported when the connecting network device - such as a network switch or hub - supports IEEE 802.3u auto-negotiation specifications.

When connecting to network devices that do not support auto-negotiation, the LAN interface will configure itself for 10- or 100-Mbps half-duplex operation.

For example, when connected to a non-negotiating 10-Mbps hub, the LAN interface will be automatically set to operate at 10-Mbps half-duplex.

If the module is not able to connect to the network through auto-negotiation, you can manually set the link operating mode using link configuration switches on the module.

	SW 3	SW 4	SW 5	Link Configuration
0N	OFF	-	-	speed and duplex mode determined by auto-negotiation
	ON	OFF	OFF	manually set to 10 Mbps, half-duplex
1 2 3 4 5 6 7 8	ON	OFF	ON	manually set to 10 Mbps, full-duplex
	ON	ON	OFF	manually set to 100 Mbps, half-duplex
	ON	ON	ON	manually set to 100 Mbps, full-duplex

 Table 22
 Link Configuration Switches

Automatic configuration with Bootp

Automatic configuration with Bootp

NOTE	All examples shown in this chapter will not work in your environment. You need your own IP-, Subnet-Mask- and Gateway addresses.
NOTE	Assure that the detector configuration switch is set properly. The setting should be either BootP or BootP & Store , see Table 18 on page 266.
NOTE	Assure that the detector connected to the network is powered off.
NOTE	If the Agilent BootP Service program is not already installed on your PC, then install it from your Agilent ChemStation DVD, located in folder BootP .

About Agilent BootP Service

The Agilent BootP Service is used to assign the LAN Interface with an IP address.

The Agilent BootP Service is provided on the ChemStation DVD. The Agilent BootP Service is installed on a server or PC on the LAN to provide central administration of IP addresses for Agilent instruments on a LAN. The BootP service must be running TCP/IP network protocol and cannot run a DHCP server.

How BootP Service Works

When an instrument is powered on, an LAN Interface in the instrument broadcasts a request for an IP address or host name and provides its hardware MAC address as an identifier. The Agilent BootP Service answers this request and passes a previously defined IP address and host name associated with the hardware MAC address to the requesting instrument.

The instrument receives its IP address and host name and maintains the IP address as long as it is powered on. Powering down the instrument causes it to lose its IP address, so the Agilent BootP Service must be running every time the instrument powers up. If the Agilent BootP Service runs in the background, the instrument will receive its IP address on power-up.

The Agilent LAN Interface can be set to store the IP address and will not lose the IP address if power cycled.

Situation: Cannot Establish LAN Communication

If a LAN communication with BootP service cannot be established, check the following on the PC:

- Is the BootP service started? During installation of BootP, the service is not started automatically.
- Does the Firewall block the BootP service? Add the BootP service as an exception.
- Is the LAN Interface using the BootP-mode instead of "Using Stored" or "Using Default" modes?

Installation of BootP Service

Before installing and configuring the Agilent BootP Service, be sure to have the IP addresses of the computer and instruments on hand.

- 1 Log on as Administrator or other user with Administrator privileges.
- **2** Close all Windows programs.
- **3** Insert the Agilent ChemStation software DVD into the drive. If the setup program starts automatically, click **Cancel** to stop it.
- 4 Open Windows Explorer.
- **5** Go to the BootP directory on the Agilent ChemStation DVD and double-click **BootPPackage.msi**.
- 6 If necessary, click the Agilent BootP Service... icon in the task bar.
- 7 The Welcome screen of the Agilent BootP Service Setup Wizard appears. Click Next.
- 8 The End-User License Agreement screen appears. Read the terms, indicate acceptance, then click Next.
- **9** The **Destination Folder** selection screen appears. Install BootP to the default folder or click **Browse** to choose another location. Click **Next**.

The default location for installation is:

C:\Program Files\Agilent\BootPService\

10 Click **Install** to begin installation.

BootP Settings	
BootP Tab File:	
C:\Documents and Setti	ings\All Users\Application Data\Agilent\BootP\TabFile
Create Tab File	Edit BootP Addresses
Logging Do you want to log BootP Log File: C:\Documents and Se	g bootP requests 3
Subnet mask:	0.0.0
Gateway:	0.0.0.0
	OK Cancel Help

11 Files load; when finished, the BootP Settings screen appears.

Figure 51 BootP Settings screen

12 In the **Default Settings** part of the screen, if known, you can enter the subnet mask and gateway.

Defaults can be used:

- The default subnet mask is 255.255.255.0
- The default gateway is 192.168.254.11
- **13** On the **BootP Settings** screen, click **OK**. The **Agilent BootP Service Setup** screen indicates completion.
- 14 Click Finish to exit the Agilent BootP Service Setup screen.
- 15 Remove the DVD from the drive.

This completes installation.

16 Start BootP Service in the Windows[®] services: On the Windows[®] desktop click right on Computer icon, select Manage > Services and Applications > Services. Select the Agilent BootP Service and click Start.

Two Methods to Determine the MAC Address

Enabling logging to discover the MAC address using BootP

If you want to see the MAC address, select the **Do you want to log BootP** requests? check box.

- 1 Open BootP Settings from Start > All Programs > Agilent BootP Service > EditBootPSettings.
- 2 In BootP Settings... check Do you want to log BootP requests? to enable logging.

Figure 52 Enable BootP logging

The log file is located in

C:\Documents and Settings\All Users\Application Data\Agilent\BootP\LogFile

It contains a MAC address entry for each device that requests configuration information from BootP.

- 3 Click **OK** to save the values or **Cancel** to discard them. The editing ends.
- **4** After each modification of the BootP settings (i.e. **EditBootPSettings**) a stop or start of the BootP service is required for the BootP service to accept changes. See "Stopping the Agilent BootP Service" on page 282 or "Restarting the Agilent BootP Service" on page 283.
- **5** Uncheck the **Do you want to log BootP requests?** box after configuring instruments; otherwise, the log file will quickly fill up disk space.

Determining the MAC address directly from the LAN Interface card label

- **1** Turn off the instrument.
- **2** Read the MAC address from the label and record it.

The MAC address is printed on a label on the rear of the module. See Figure 42 on page 262 and Figure 43 on page 263.

3 Turn on the instrument.

Assigning IP Addresses Using the Agilent BootP Service

The Agilent BootP Service assigns the Hardware MAC address of the instrument to an IP address.

Determining the MAC address of the instrument using BootP Service

- **1** Power cycle the Instrument.
- **2** After the instrument completes self-test, open the log file of the BootP Service using Notepad.
 - The default location for the logfile is C:\Documents and Settings\All Users\Application Data\Agilent\BootP\LogFile.
 - The logfile will not be updated if it is open.

The contents will be similar to the following:

02/25/10 15:30:49 PM

Status: BootP Request received at outermost layer

Status: BootP Request received from hardware address: 0010835675AC

Error: Hardware address not found in BootPTAB: 0010835675AC

Status: BootP Request finished processing at outermost layer

- **3** Record the hardware (MAC) address (for example, 0010835675AC).
- **4** The Error means the MAC address has not been assigned an IP address and the Tab File does not have this entry. The MAC address is saved to the Tab File when an IP address is assigned.
- 5 Close the log file before turning on another instrument.
- **6** Uncheck the **Do you want to log BootP requests?** box after configuring instruments to avoid having the logfile use up excessive disk space.

Adding each instrument to the network using BootP

- 1 Follow Start > All Programs > Agilent BootP Service and select Edit BootP Settings. The BootP Settings screen appears.
- **2** Uncheck the **Do you want to log BootP requests?** once all instruments have been added.

The **Do you want to log BootP requests?** box must be unchecked when you have finished configuring instruments; otherwise, the log file will quickly fill up disk space.

- **3** Click Edit BootP Addresses... The Edit BootP Addresses screen appears.
- 4 Click Add... The Add BootP Entry screen appears.

Mac Address Host Name				
IP Address		*		
Comment	_			
Subnet Mask	255	. 255	. 25	5.0
Gateway		-	•	•

Figure 53 Enable BootP logging

- **5** Make these entries for the instrument:
 - MAC address
 - Host name, Enter a Hostname of your choice.
 - The Host Name must begin with "alpha" characters (i.e. LC1260)
 - IP address
 - Comment (optional)
 - Subnet mask
 - Gateway address (optional)

The configuration information entered is saved in the Tab File.

- 6 Click OK.
- 7 Leave Edit BootP Addresses by pressing Close.
- 8 Exit BootP Settings by pressing OK.
- **9** After each modification of the BootP settings (i.e. EditBootPSettings) a stop or start of the BootP service is required for the BootP service to accept changes. See "Stopping the Agilent BootP Service" on page 282 or "Restarting the Agilent BootP Service" on page 283.
- 10 Power cycle the Instrument.

OR

If you changed the IP address, power cycle the instrument for the changes to take effect.

11 Use the PING utility to verify connectivity by opening a command window and typing:

Ping 192.168.254.11 for example.

The Tab File is located at

C:\Documents and Settings\All Users\Application Data\Agilent\BootP\TabFile

Changing the IP Address of an Instrument Using the Agilent BootP Service

Agilent BootP Service starts automatically when your PC reboots. To change Agilent BootP Service settings, you must stop the service, make the changes, and then restart the service.

Stopping the Agilent BootP Service

1 From the Windows control panel, select Administrative Tools > Services. The Services screen appears.

<u>b Services</u> Ele Action ⊻jew ← → I 📧 I 💽 🛙	Belp Belp				2)2
Services (Local)	치, Services (Local)				
	Select an item to view its description.	Name 🛆	Description	Status	II.
		Agilent Bootp Service			
		Application Layer G	Provides s		
		Application Manage	Provides s		- 8
		ASP.NET State Serv	Provides s		
		Automatic Updates	Enables th	Started	
		Background Intellig	Uses idle n		
		ClipBook.	Enables Cli		- 1
		COM+ Event System	Supports S	Started	
		COM+ System Appl	Manages t		- 1
		Computer Browser	Maintains a	Started	
		Cryptographic Servi	Provides th	Started	
		DefWatch		Started	- 1
		CHCP Client	Manages n	Started	
		Distributed Link Tra	Maintains II	Started	
		Distributed Transac	Coordinate		- 5
		1	A 1	~ · ·	нÎ
	Extended Standard				<u></u>
	(comore / somere /				-

Figure 54 Windows Services screen

- 2 Right-click Agilent BootP Service.
- 3 Select Stop.
- **4** Close the **Services and Administrative Tools** screen.

Editing the IP address and other parameters in EditBootPSettings

- 1 Select Start > All Programs > Agilent BootP Service and select Edit BootP Settings. The BootP Settings screen appears.
- **2** When the **BootP Settings** screen is first opened, it shows the default settings from installation.
- 3 Press Edit BootP Addresses... to edit the Tab File.

Hardware Address	Host Name	IP Address	Comment	Subnet Mask	Gateway
006000111999 005000222888	AgilentLC1 AgilentLC2	10.1.1.101 101.1.1.102	Agilent LC1 right Agilent LC2 left	255.255.255.0 255.255.255.0	0.0.0.0 0.0.0.0
d					

Figure 55 Edit BootP Adresses screen

4 In the **Edit BootP Addresses...** screen press **Add**... to create a new entry or select an existing line from the table and press **Modify...** or **Delete** to change the IP address, comment, subnet mask, for example, in the Tab File.

If you change the IP address, it will be necessary to power cycle the instrument for the changes to take effect.

- 5 Leave Edit BootP Addresses... by pressing Close.
- **6** Exit BootP Settings by pressing OK.

Restarting the Agilent BootP Service

- In the Windows control panel, select Administrative Tools > Services. The Services screen appears, see Figure 54 on page 282.
- 2 Right-click Agilent BootP Service and select Start.
- **3** Close the Services and Administrative Tools screens.

13 LAN Configuration Manual Configuration

Manual Configuration

Manual configuration only alters the set of parameters stored in the non-volatile memory of the module. It never affects the currently active parameters. Therefore, manual configuration can be done at any time. A power cycle is mandatory to make the stored parameters become the active parameters, given that the initialization mode selection switches are allowing it.

Figure 56 Manual Configuration (Principle)

With Telnet

Whenever a TCP/IP connection to the module is possible (TCP/IP parameters set by any method), the parameters may be altered by opening a Telnet session.

- 1 Open the system (DOS) prompt window by clicking on Windows **START** button and select "**Run...**". Type "cmd" and press OK.
- 2 Type the following at the system (DOS) prompt:

```
    c:\>telnet <IP address> or
    c:\>telnet <host name>
    C:\WINDOWS\system32\cmd.exe
    C:\>telnet 134.40.27.95
```

Figure 57 Telnet - Starting a session

where <IP address> may be the assigned address from a Bootp cycle, a configuration session with the Handheld Controller, or the default IP address (see "Configuration Switch" on page 265).

When the connection was established successfully, the module responds with the following:

Figure 58 A connection to the module is made

Manual Configuration

3 Type

? and press enter to see the available commands.

C:\WINDOWS\system32\cmd.exe - telnet 134.40.27.95					
Agilent Technologies ≻?	G1315C PP00000024				
command syntax	description				
? /p <x.x.x.x> sm <x.x.x.x> gw <x.x.x.x> exit ></x.x.x.x></x.x.x.x></x.x.x.x>	display help info display current LAN settings set IP Address set Subnet Mask set Default Gateway exit shell				

Table 23Telnet Commands

Value	Description
?	displays syntax and descriptions of commands
/	displays current LAN settings
ip <x.x.x.x></x.x.x.x>	sets new ip address
sm <x.x.x.x></x.x.x.x>	sets new subnet mask
gw <x.x.x.x></x.x.x.x>	sets new default gateway
exit	exits shell and saves all changes

- 4 To change a parameter follows the style:
 - parameter value, for example:
 ip 134.40.27.230

Then press [Enter], where parameter refers to the configuration parameter you are defining, and value refers to the definitions you are assigning to that parameter. Each parameter entry is followed by a carriage return. **5** Use the "/" and press Enter to list the current settings.

C:\WINDOWS\	system32\cmd.exe - teinet 134.40.27.95
>/ LAN Status Pag	re
MAC Address	: 0030D30A0838
Init Mode	: Using Stored
TCP/IP Propert - active -	ies
	: 134.40.27.95 : 255.255.248.0 : 134.40.24.1
TCP/IP Status	: Ready
Controllers	: no connections

Figure 60 Telnet - Current settings in "Using Stored" mode

information about the LAN interface MAC address, initialization mode Initialization mode is Using Stored active TCP/IP settings TCP/IP status - here ready connected to PC with controller software (e.g. Agilent ChemStation), here not connected

6 Change the IP address (in this example 134.40.27.99) and type "/" to list current settings.

15

>ip 134.40.27	\system32\cmd.exe - telnet .99	
>/ LAN Status Pa	ge	
MAC Address	: 0030D30A0838	
Init Mode	: Using Stored	
Subnet Mask Def. Gateway - stored - IP Address Subnet Mask	ties : 134.40.27.95 : 255.255.248.0 : 134.40.24.1 : 134.40.27.99 : 255.255.248.0 : 134.40.24.1	
TCP∕IP Status	: Ready	
Controllers >_	: no connections	

Figure 61 Telnet - Change IP settings

change of IP setting to Initialization mode is Using Stored active TCP/IP settings stored TCP/IP settings in non-volatile memory

connected to PC with controller software (e.g. Agilent ChemStation), here not connected

Manual Configuration

7 When you have finished typing the configuration parameters, type exit and press Enter to exit with storing parameters.

Figure 62 Closing the Telnet Session

NOTE

If the Initialization Mode Switch is changed now to "Using Stored" mode, the instrument will take the stored settings when the module is re-booted. In the example above it would be 134.40.27.99.
With the Instant Pilot (G4208A)

To configure the TCP/IP parameters before connecting the module to the network, the Instant Pilot (G4208A) can be used.

- 1 From the Welcome screen press the More button.
- 2 Select Configure.
- **3** Press the **DAD** button.
- 4 Scroll down to the LAN settings.

	Configure - DAD	
		Edit
Setting	Value	
Symbolic Name	<not set=""></not>	<u>⊳vw</u>
Temperature Control	ON	Bal.
UV-Lamp Tag	Use UV-lamp anyway	
Cell Tag	Use cell anyway	
Analog Out 1	0V - 1V output range	
Analog Out 2	0V - 1V output range	
UV lamp	Stays off at power on	
VIS lamp	Stays off at power on	
LAN IP	134.40.27.95	
LAN Subnet Mask	255.255.248.0	
LAN Def. Gateway	134.40.24.1	Exit
		\square
J		13:26
System Contro	iler DAD	

Figure 63 Instant Pilot - LAN Configuration

- **5** Press the **Edit** button (only visible if not in Edit mode), perform the required changes and press the **Done** button.
- 6 Leave the screen by clicking Exit.

PC and User Interface Software Setup Setup

PC and User Interface Software Setup Setup

PC Setup for Local Configuration

This procedure describes the change of the TCP/IP settings on your PC to match the module's default parameters in a local configuration (see also "Initialization mode selection" on page 266).

al Area Connection Properties 🔹 👔	Internet Protocol (TCP/IP) Properties
ieneral	General
Connect using:	You can get IP settings assigned automatically if your network supports
Xircom CreditCard Ethernet 10/100 + Modern 56	this capability. Otherwise, you need to ask your network administrator for the appropriate IP settings.
Configure Components checked are used by this connection: Components checked are used by this connection: File and Printer Sharing for Microsoft Networks File and Printer Sharing for Microsoft Networks File and Printer Sharing for Microsoft Networks Internet Protocol (TCP/IP) Install Description Transmission Control Protocol/Internet Protocol. The default wide area network protocol that provides communication across diverse interconnected networks. Show icon in taskbar when connected	Distainanti address automatically Uge the following IP address IP addres IP address IP add
OK Cancel	Obtain an IP address automatically Object the iconving iP address: IP address Subnet mask
OK Cancel tomatic IP address via DHCP quires special IT setup of the network)	C Use the topowing if address: IP address: Subnet mark Default gateway
tomatic IP address via DHCP	Use the topowing the address: Preddress: Subnet mask
tomatic IP address via DHCP	C Uge the following if address P address Subnet mark Default gateway C Oglain DNS server address automatically
tomatic IP address via DHCP	Use the following in address: Use the following in address Default gateway Obtain DNS server address automatically Use the following DNS server addresses:

Figure 64 Changing the TCP/IP settings of the PC

LAN Configuration 13

PC and User Interface Software Setup Setup

User Interface Software Setup

Install you user interface software according the provided *User Interface* Software Setup Guide.

13 LAN Configuration

PC and User Interface Software Setup Setup

14 Appendix

General Safety Information 294 The Waste Electrical and Electronic Equipment (WEEE) Directive (2002-96-EC) 297 Radio Interference 298 Sound Emission 298 Agilent Technologies on Internet 298

This chapter provides addition information on safety, legal and web.

General Safety Information

Safety Symbols

Table 24	afety Symbols
----------	---------------

Symbol	Description
\land	The apparatus is marked with this symbol when the user should refer to the instruction manual in order to protect risk of harm to the operator and to protect the apparatus against damage.
¥	Indicates dangerous voltages.
	Indicates a protected ground terminal.
	Indicates eye damage may result from directly viewing the light produced by the deuterium lamp used in this product.
<u>k</u>	The apparatus is marked with this symbol when hot surfaces are available and the user should not touch it when heated up.

WARNING

A WARNING

alerts you to situations that could cause physical injury or death.

→ Do not proceed beyond a warning until you have fully understood and met the indicated conditions.

CAUTION

A CAUTION

alerts you to situations that could cause loss of data, or damage of equipment.

→ Do not proceed beyond a caution until you have fully understood and met the indicated conditions.

General Safety Information

The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the instrument. Agilent Technologies assumes no liability for the customer's failure to comply with these requirements.

WARNING

Ensure the proper usage of the equipment.

The protection provided by the equipment may be impaired.

The operator of this instrument is advised to use the equipment in a manner as specified in this manual.

Safety Standards

This is a Safety Class I instrument (provided with terminal for protective earthing) and has been manufactured and tested according to international safety standards.

14 Appendix

General Safety Information

Operation

Before applying power, comply with the installation section. Additionally the following must be observed.

Do not remove instrument covers when operating. Before the instrument is switched on, all protective earth terminals, extension cords, auto-transformers, and devices connected to it must be connected to a protective earth via a ground socket. Any interruption of the protective earth grounding will cause a potential shock hazard that could result in serious personal injury. Whenever it is likely that the protection has been impaired, the instrument must be made inoperative and be secured against any intended operation.

Make sure that only fuses with the required rated current and of the specified type (normal blow, time delay, and so on) are used for replacement. The use of repaired fuses and the short-circuiting of fuse holders must be avoided.

Some adjustments described in the manual, are made with power supplied to the instrument, and protective covers removed. Energy available at many points may, if contacted, result in personal injury.

Any adjustment, maintenance, and repair of the opened instrument under voltage should be avoided whenever possible. When inevitable, this has to be carried out by a skilled person who is aware of the hazard involved. Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present. Do not replace components with power cable connected.

Do not operate the instrument in the presence of flammable gases or fumes. Operation of any electrical instrument in such an environment constitutes a definite safety hazard.

Do not install substitute parts or make any unauthorized modification to the instrument.

Capacitors inside the instrument may still be charged, even though the instrument has been disconnected from its source of supply. Dangerous voltages, capable of causing serious personal injury, are present in this instrument. Use extreme caution when handling, testing and adjusting.

When working with solvents, observe appropriate safety procedures (for example, goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet by the solvent vendor, especially when toxic or hazardous solvents are used.

Appendix 14

The Waste Electrical and Electronic Equipment (WEEE) Directive (2002-96-EC)

The Waste Electrical and Electronic Equipment (WEEE) Directive (2002-96-EC)

Abstract

The Waste Electrical and Electronic Equipment (WEEE) Directive (2002/96/EC), adopted by EU Commission on 13 February 2003, is introducing producer responsibility on all Electric and Electronic appliances from 13 August 2005.

NOTE

This product complies with the WEEE Directive (2002/96/EC) marking requirements. The affixed label indicates that you must not discard this electrical/electronic product in domestic household waste.

Product Category: With reference to the equipment types in the WEEE Directive Annex I, this product is classed as a "Monitoring and Control instrumentation" product.

Do not dispose off in domestic household waste

To return unwanted products, contact your local Agilent office, or see www.agilent.com for more information.

14 Appendix Radio Interference

Radio Interference

Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.

Test and Measurement

If test and measurement equipment is operated with equipment unscreened cables and/or used for measurements on open set-ups, the user has to assure that under operating conditions the radio interference limits are still met within the premises.

Sound Emission

Manufacturer's Declaration

This statement is provided to comply with the requirements of the German Sound Emission Directive of 18 January 1991.

This product has a sound pressure emission (at the operator position) < 70 dB.

- Sound Pressure Lp < 70 dB (A)
- At Operator Position
- · Normal Operation
- According to ISO 7779:1988/EN 27779/1991 (Type Test)

Agilent Technologies on Internet

For the latest information on products and services visit our worldwide web site on the Internet at:

http://www.agilent.com

8

8-bit configuration switch on-board LAN 256

A

Agilent Lab Advisor software 90 Agilent Lab Advisor 90 Agilent on internet 298 User Interface Software Setup 290 algae 51 ambient non-operating temperature 23 ambient operating temperature 23 analog signal 253 analog 232 cable apg remote 254 automatic configuration with Bootp 274

B

BCD cable 237 bench space 22 binary pump shutdown during analysis 106 BootP service installation 276 restart 283 settings 283 stop 282 Bootp & Store 267 automatic configuration 274 initialization modes 266

using default 268 using stored 268 buffer application 51

C

cable analog 232 BCD 237 CAN 239 239 IAN 234 remote RS-232 240 cables 230 analog BCD 230 231 CAN LAN 231 overview 230 remote 230 RS-232 231 CAN cable 239 capillaries 135 134 cleaning compensation sensor open 98 compensation sensor short 99 condensation 22 configuration switches 265 configuration low flow rates 51 one stack 30 two stack front 33 two stack rear 34 two stack - 33

current of primary pump drive too high 113 current of secondary pump drive too high 114

D

defect connection between main board and pump drive encoder 110 defect on arrival 28 degasser's pressure limit violation 104 delay volume description 78 deliver underrun 110 delivery checklist 29 DHCP general information 270 setup 271 dimensions 23 drive current too high 108 drive current too low 108 drive encoder error 112 drive Encoder failed 108 drive position limit 112 drive timeout 109

Ε

electrical connections descriptions of 247 EMF early maintenance feedback 260 error messages binary pump shutdown during analysis 106 compensation sensor open 98

compensation sensor short 99 cover violation 101 current of primary pump drive too high 113 current of secondary pump drive too high 114 defect connection between main board and pump drive encoder 110 degasser's pressure limit violation 104 deliver underrun 110 drive current too high 108 drive current too low 108 drive encoder error 112 drive Encoder failed 108 drive position limit 112 drive timeout 109 fan failed 99 flow rate limit exceeded 105 ignition without cover 100, 100 insufficient power of drive encoder LED 112 leak sensor open 98 leak sensor short 97 leak 100 lost CAN partner 97 overcurrent of pump drive 109 overcurrent of solvent selection valve (SSV) 109 pressure below lower limit 103 pressure exceeded upper pressure limit 102 pressure sensor calibration wrong or missing 117 pump drive blocked or encoder failed 107 pump drive encoder defect 110 pump drive encoder error 115 pump drive encoder rollover 111 pump drive error 115 pump drive stop not found 116 pump drive stroke blocked 116

pump error 102 pump head leak test 126 purge valve failed 111 reading of purge valve tag failed 111 reading the pump encoder tag failed 106 remote timeout 96 seal wash pump was missing when tried to turn on 117 shutdown 95 solvent counter exceeded limit 104 system pressure test 123 target pressure not reached for binary pump degasser 103 timeout 94 unknown purge valve type 114 waste counter limit exceeded 105 writing the pump encoder tag failed 107 writing the purge valve tag failed 113 extra-column volume 78

F

fan failed 99 filter solvent inlet 51 firmware description 244 main system 244 resident system 244 update tool 245 updates 245, 196 upgrade/downgrade 196 fittings 135 flow connections to pump 43 flow rate limit exceeded 105 flow rate minimum 51

frequency range 23

G

general error messages 94

Н

handling acetonitrile 73 handling acids 73 handling buffers 72 heat exchanger replace 171 humidity 23

initialization mode selection 266 installation bench space 22 power considerations 20 seal wash option 47 site requirements 19 instrument layout 259 insufficient power of drive encoder LED 112 interfaces 249 internet 298

J

Jet Weaver 149 remove capillary connections 150

L

Lab Advisor Software tests 120 LAN automatic configuration with Bootp 274 Bootp & Store 267 Bootp 266

cable 239 configuration switche 265 configuration 261 initialization mode selection 266 link configuration selection 273 manual configuration with telnet 285 manual configuration 284 PC and User Interface Software Setup 290 TCP/IP parameter configuration 264 using default 268 using stored 268 what you have to do first 262 98 leak sensor open leak sensor short 97 leak 100 line frequency 23 line voltage 23 link configuration selection 273 lost CAN partner 97

Μ

MAC address determine 279 MAC address 262 maintenance feedback 260 introduction 129 196 replacing firmware manual configuration of LAN 284 message cover violation 101 ignition without cover 100.100 remote timeout 96 minimum flow rate 51

Ν

non-operating altitude 23 non-operating temperature 23 normal phase 74 seals 74

0

operating Altitude 23 operating temperature 23 optimization achieving higher resolution 81 stack configuration 30 outlet valve 144 overcurrent of pump drive 109 overcurrent of solvent selection valve (SSV) 109

Ρ

packaging damaged 28 parts 29 damaged missing 29 system tool kit 228 PC and User Interface Software Setup 290 performance specifications 24 performance Optimization 77 physical specifications 23 power considerations 20 power consumption 23 power cords 21 power supply indicator 87 power switch 40 pressure below lower limit 103 pressure exceeded upper pressure limit 102

pressure sensor calibration wrong or missing 117 pressure sensor replace 138 pump drive blocked or encoder failed 107 pump drive encoder defect 110 pump drive encoder error 115 pump drive encoder rollover 111 pump drive error 115 pump drive stop not found 116 pump drive stroke blocked 116 pump error messages 102 Pump head leak test error message 126 pump features 10 flow connections 43 overview 11 preparing 51 principle 12 purge valve failed 111

R

reading of purge valve tag failed 111 reading the pump encoder tag failed 106 remote cable 234 repairs replacing firmware 196 resolution Optimization 81 RS-232C cable 240

S

safety class I 295 safety general information 295

standards 23 symbols 294 Seal wash option installation 47 seal wash pump was missing when tried to turn on 117 seal wash pump replacing 152 shutdown 95 shutoff valve panel replacing 136 shutoff valves replacing 136 site requirements 19 21 power cords solvent cabinet 45, 51 solvent counter exceeded limit 104 solvent handling 72 solvent inlet filter 51 special interfaces 255 special settings boot-resident 258 forced cold start 258 specification physical 23 specifications 19 performance 24 status indicator 88 System pressure test error message 123 system setup and installation optimizing stack configuration 30 system tool kit 228

T

target pressure not reached for binary pump degasser 103 TCP/IP parameter configuration 264 telnet configuration 285 temperature sensor 100 test functions 86 tests 120 timeout 94 troubleshooting error messages 86, 93 status indicators 86, 87

U

unknown purge valve type 114 unpacking 28 user interfaces 89

V

vacuum degassing unit 51 voltage range 23

W

waste counter limit exceeded 105 weight 23 writing the pump encoder tag failed 107 writing the purge valve tag failed 113

www.agilent.com

In This Book

This manual contains technical reference information about the Agilent 1290 Infinity Binary Pump G4220A:

- introduction and specifications,
- installation,
- using and optimizing,
- · troubleshooting and diagnose,
- maintenance,
- parts identification,
- hardware information,
- safety and related information.

 ${\ensuremath{\mathbb C}}$ Agilent Technologies 2010-2014, 2015

Printed in Germany 02/2015

G4220-90006 Rev. E

