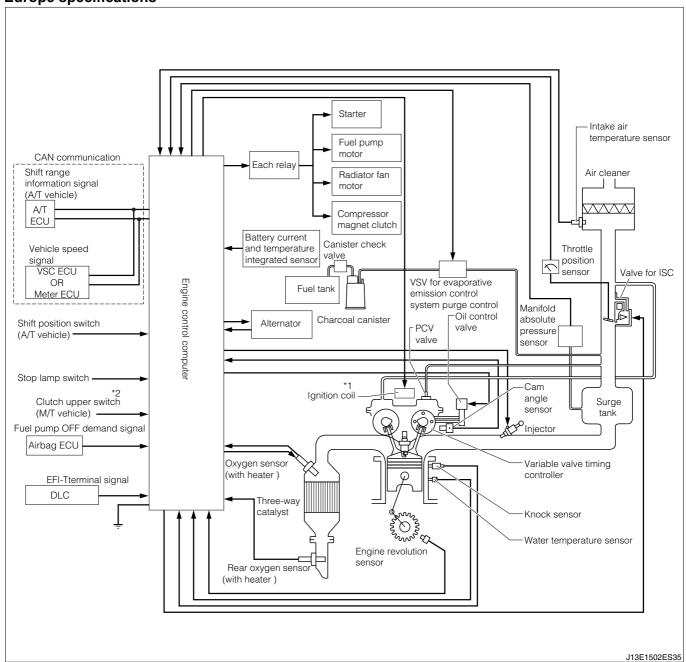
B8 ENGINE CONTROL SYSTEM

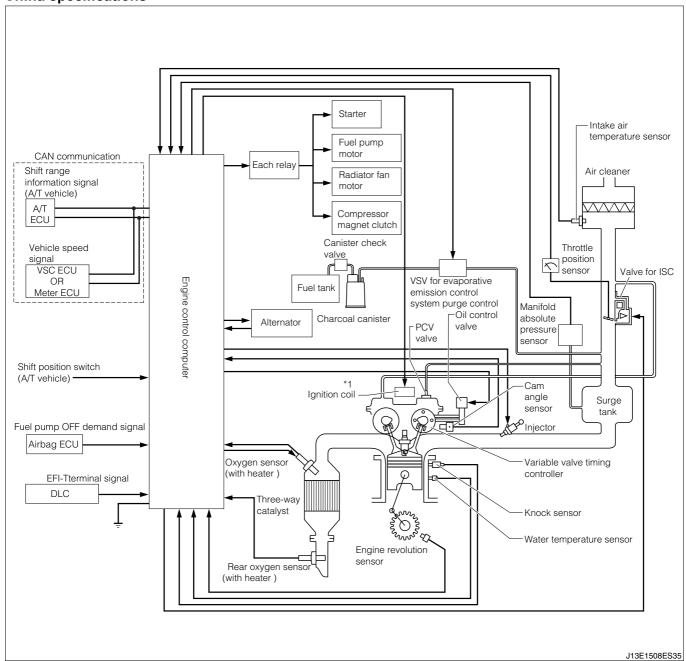
3SZ,K3B8-1 OUTLINEB8-1
SYSTEM DRAWINGB8-2
SYSTEM WIRING DIAGRAM B8-5
LOCATION OF COMPONENTSB8-8
CONTROLB8-9
IDLE-UP CONTROL AT MOMENT
WHEN VEHICLE STARTS MOV-
ING(EUROPE SPECIFICATIONS) B8-9
ALTERNATOR ELECTRICITY
GENERATION CONTROL(EUROPE
SPECIFICATIONS)B8-9
DIAGNOSIS (SELF-DIAGNOSIS)
FUNCTION B8-11
COMPONENTS B8-13
CLUTCH UPPER
SWITCH(EUROPEAN SPECIFICA-
TION M/T VEHICLES MOUNTED
WITH TYPE 3SZ ENGINES) B8-13
BATTERY CURRENT AND TEM-
PERATURE INTEGRATED SEN-
SOR(EUROPE SPECIFICATIONS)
B8-13


■ 3SZ,K3 1 OUTLINE

Refer to TERIOS TECHNICAL INFORMATION

- 1. With the adoption of idle-up control at the moment when the vehicle starts moving, the following changes have been made. (Europe specifications)
 - (1) A clutch upper switch has been added. (M/T vehicles mounted with type 3SZ engines)
- 2. With the adoption of alternator electricity generation control, the following changes have been made.(Europe specifications)
 - (1) An integrated battery current and temperature sensor has been added.
 - (2) Some diagnosis (self-diagnosis) function specifications have been added.
 - (3) Some fail-safe function specifications have been added.
- 3. With the adoption of cylinder identification in the primary ignition system, the following changes have been made. (General export specifications)
 - (1) Some diagnosis (self-diagnosis) function specifications have been added.

1-1 SYSTEM DRAWING

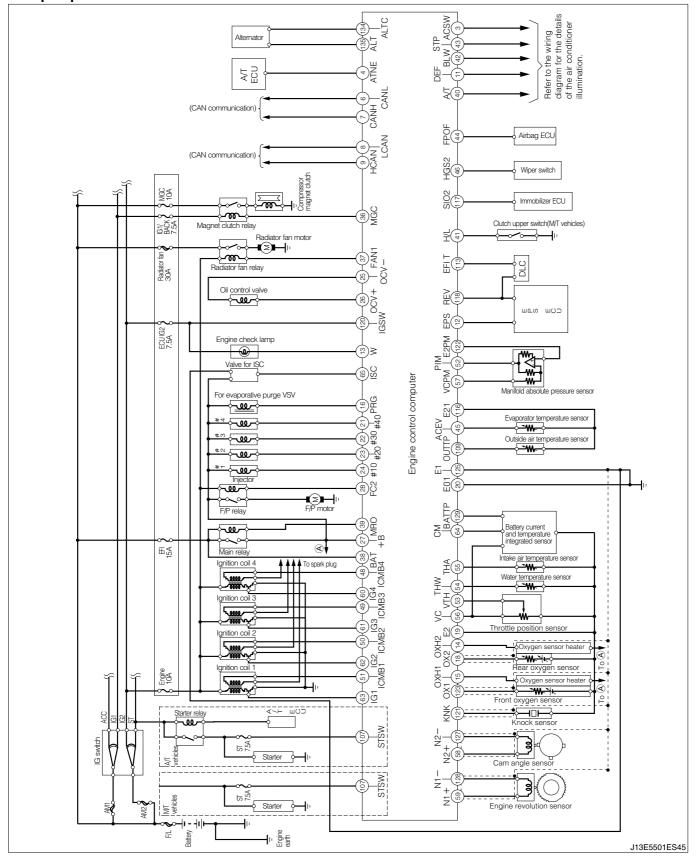

Europe specifications

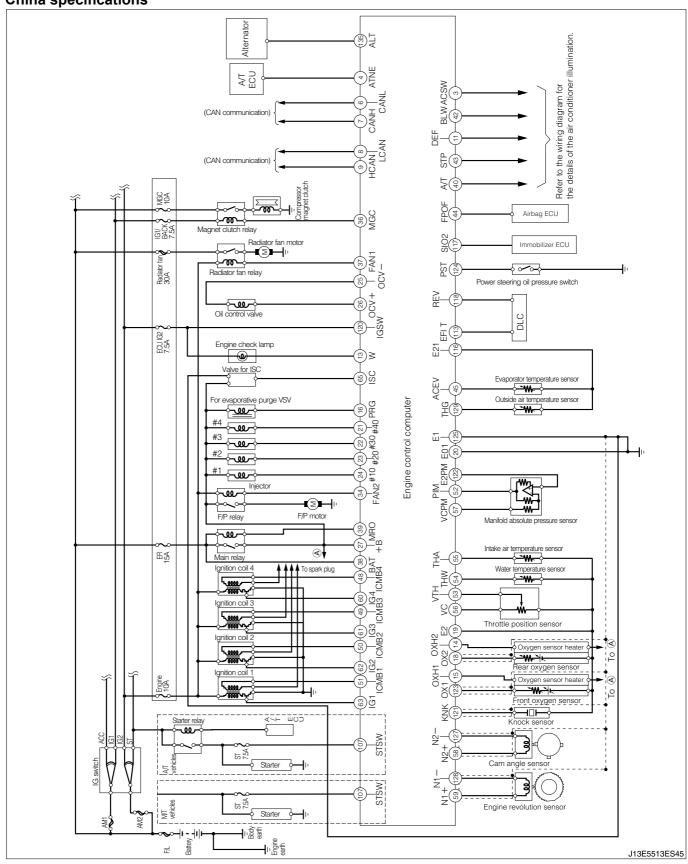
^{*1:} Ion current detection device built-in

^{*2:} M/T vehicles mounted with type 3SZ engines

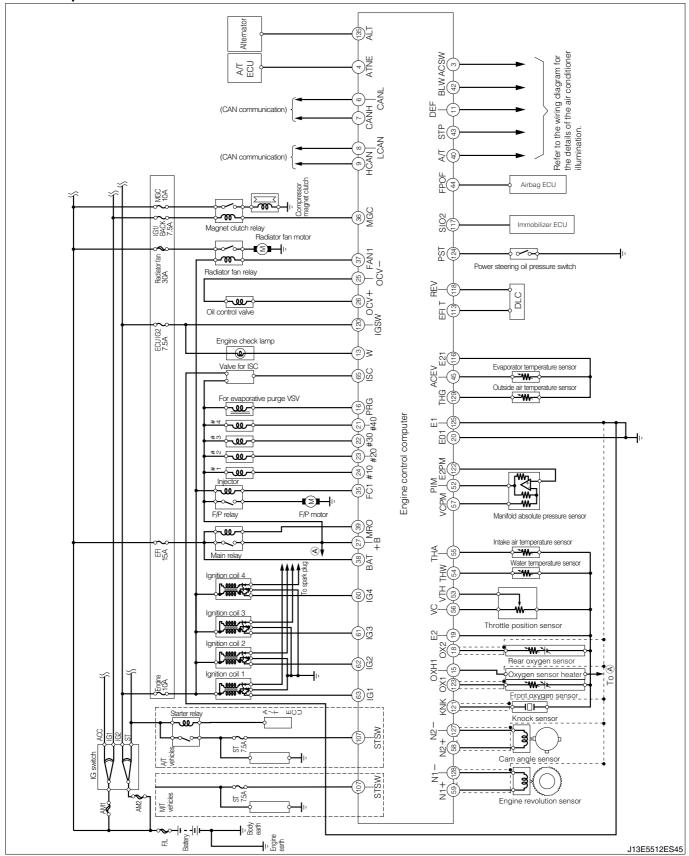
China specifications

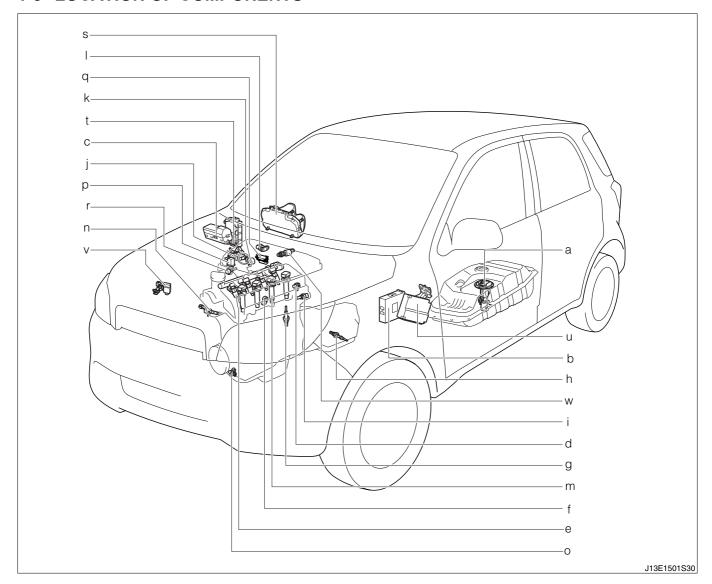
^{*1:} Ion current detection device built-in


General specifications


^{*1:}Rear oxygen sensor equipped vehicle

1-2 SYSTEM WIRING DIAGRAM


Europe specifications


China specifications

General specifications

1-3 LOCATION OF COMPONENTS

Code	Part name	Code	Part name
а	Fuel pump	m* ¹	Ignition coil
b	Engine control computer	n	Oil control valve
С	Relay block	0	Engine revolution speed sensor
d	Cam angle sensor	р	VSV control for evaporative purge
е	Injectors	q	DLC
f	Knock sensor	r	Intake air temperature sensor
g	Front oxygen sensor	S	Combination meter
h	Rear oxygen sensor	t	Fuse block
i	Engine coolant temperature sensor	u* ²	A/T ECU
j	Rotary ISC	v* ³	Battery current and temperature integrated sensor
k	Throttle position sensor	w* ⁴	Clutch upper switch
I	Manifold absolute pressure sensor	_	_

^{*1:}Ion current detection device built-in for Europe and China specifications

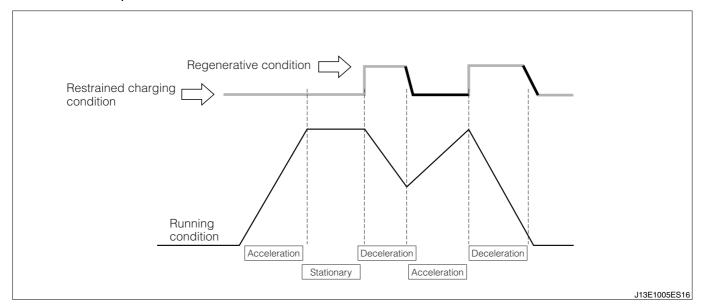
^{*2:}Automatic transaxle vehicles

^{*3:}Europe specifications

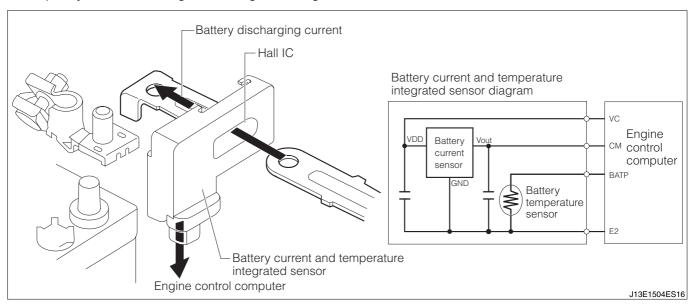
^{*4:}European specification (M/T vehicles mounted with type 3SZ engines)

2 CONTROL

2-1 IDLE-UP CONTROL AT MOMENT WHEN VEHICLE STARTS MOVING(EUROPE SPECIFICATIONS)


2-1-1 DESCRIPTION

- 1. When the vehicle starts moving with the shift lever in \square range, the engine control computer increases the idling speed of the engine to increase the creep power. (A/T vehicles)
- 2. When the clutch pedal is depressed, the engine control computer increases the idling speed of the engine, making it easier for the vehicle to start moving. (M/T vehicles mounted with type 3SZ engines)


2-2 ALTERNATOR ELECTRICITY GENERATION CONTROL(EUROPE SPECIFICATIONS)

2-2-1 DESCRIPTION

1. Through continuous monitoring of the battery status, the excessive electricity generation of the alternator can be prevented.

- 2. The battery temperature sensor determines the temperature of the battery fluid surrounding the battery and sends signals to the engine control computer to perform charging control. Accordingly, the battery is protected, and a drop in battery capacity can be prevented.
- 3. The Hall IC is used to detect the amount of current discharged. It converts the amount of change in the magnetic flux density, which is generated at the core by the current discharged from the battery, into voltage. The engine control computer receives this voltage as a signal, and calculates the battery capacity from the change in the signal voltage.

2-3 DIAGNOSIS (SELF-DIAGNOSIS) FUNCTION

2-3-1 OUTLINE

Refer to TERIOS TECHNICAL INFORMATION

- 1. With the addition of alternator electricity generation control, a diagnosis (self-diagnosis) function has also been added.
- 2. With the adoption of cylinder identification in the primary ignition system,a diagnosis (self-diagnosis) function has been added.

2-3-2 FAIL-SAFE FUNCTION

Refer to TERIOS TECHNICAL INFORMATION

1. When the malfunction is remedied to the normal condition after an abnormality was detected, the fail-safe control will be released. However, the diagnosis result remains.

Fail-safe specifications

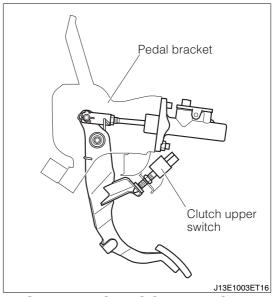
· ····· · · · · · · · · · · · · · · ·		
Item	Fail-safe execution conditions	Fail-safe specifications
Camshaft angle sensor system	When an abnormality occurs in the signal	· The signal from the camshaft angle sensor
	from the camshaft angle sensor	is set to a constant value.
Ignition primary system*1	When malfunction takes place in the ignition	· Fuel injection is stopped.
	signal	· The fuel to each cylinder is cut.
		· Air-to-fuel ratio feedback control is prohib-
		ited.
		· The target displacement angle is kept con-
		stant.
Knock sensor system	When abnormality takes place in the signal	·The ignition timing is retarded.
	from the knock sensor circuit	
Rear oxygen sensor system*2	When malfunction takes place in the signal	·The feedback control is turned to open con-
	from the rear oxygen sensor	trol.
Manifold absolute pressure sen-	When abnormality takes place in the signal	·The manifold absolute pressure is esti-
sor signal system	from the manifold absolute pressure sensor	mated by the throttle opening angle and the
		engine revolution speed.
		·When abnormality occurs in the signal from
		the throttle position sensor, the signal from
		the manifold absolute pressure sensor is set
		to the constant value.
		· If both the throttle opening angle and en-
		gine speed exceed their set values, the fuel
		is cut.
Throttle position sensor signal	When malfunction takes place in the signal	·The signal from the throttle position sensor
system	from the throttle position sensor	is set to a constant value.
Water temperature sensor signal	When malfunction takes place in the signal	·The signal from the water temperature sen-
system	from the water temperature sensor	sor is set to a constant value.
Intake air temperature sensor	When malfunction takes place in the signal	·The signal from the intake air temperature
signal system	from the intake air temperature sensor	sensor is set to a constant value.
Air conditioner evaporator tem-	When malfunction takes place in the signal	·The air conditioner will be cut.
perature sensor signal system	from the A/C evaporator temperature sensor	
Variable valve timing system	When an abnormality occurs in the valve tim-	· The variable valve timing is set to the most
	ing control twice in a row	retarded timing angle.
Rotary ISC system	When an abnormal signal occurs in the for	·Cut off the energizing control for ISC.
	ISC	
Oil control valve system	When malfunction takes place in the control	·Prohibit the oil control valve energizing con-
	voltage for the oil control valve	trol.

^{*1:}General specifications

^{*2:}Rear oxygen sensor equipped vehicles

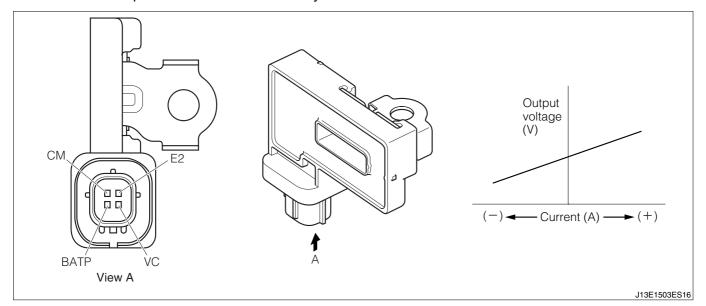
Item	Fail-safe execution conditions	Fail-safe specifications
Ion current control system*1*2	When an abnormality occurs in the ion current	· Ignition timing retarding control using ion
	detection signal	current control is prohibited.
Battery current sensor signal	When an abnormality occurs in the signal	· Alternator electricity generation control is
system*1	from the integrated battery current and tem-	prohibited.
	perature sensor	
Battery temperature sensor sig-	When an abnormality occurs in the signal	· Alternator electricity generation control is
nal system*1	from the integrated battery current and tem-	prohibited.
	perature sensor	
Starter relay drive output system	When an abnormality occurs in the starter	· Starter relay control is prohibited.
	relay output circuit or starter relay output	· Fuel cut control is implemented. (When the
	monitor circuit	engine revolution speed is 3500 rpm or
		more)
		· Prohibition of fuel injection at moment
		when vehicle starts moving
Immobilizer signal circuit mal-	When abnormality occurs in the writing and	· Prohibition of fuel injection and ignition.
function*3	reading-out of the rolling codes into/from the	
	immobilizer ECU during immobilizer commu-	
	nication.	
	When the rolling codes can not be exchanged	
	between the EFI ECU and immobilizer ECU	
	or rolling codes are not matched.	
CAN communication system	When an abnormality occurs in the CAN	· The values used for control are kept con-
	communication system	stant.

^{*1:}Europe specifications


^{*2:}China specifications

^{*3:}Immobilizer equipped vehicles

3 COMPONENTS


3-1 CLUTCH UPPER SWITCH(EUROPEAN SPECIFICATION M/T VEHICLES MOUNTED WITH TYPE 3SZ ENGINES)

The clutch upper switch is installed in the return stopper bolt of the pedal bracket, and inputs the "ON" and "OFF" signals of the clutch into the engine control computer.

3-2 BATTERY CURRENT AND TEMPERATURE INTEGRATED SENSOR(EUROPE SPECIFICATIONS)

The battery current and temperature integrated sensor is located on the side of the negative terminal of the battery, where it is less likely to be affected by the heat of the engine, and detects both the charging status and the temperature status of the battery.

