
41CL Calculator

Every effort has been made to ensure the accuracy of the information contained herein. If you find errors or
inconsistencies please bring them to our attention.

Copyright © 2013, 2014, 2015, Systemyde International Corporation. All rights reserved.

Notice:

“HP-41C”, “HP-41CV”, “HP-41CX” and “HP” are registered trademarks of Hewlett-Packard, Inc. All uses
of these terms in this document are to be construed as adjectives, whether or not the noun “calculator”,
“CPU” or “device” are actually present.

Acknowledgements:

This project never could have succeeded without Warren Furlow’s excellent Web site hp41.org. And even
more important was his SDK41R6 software suite, for code development, and his V41 program for code
debugging. Numerous people have answered my dumb questions on the Web site hpmuseum.org, and the
book “Inside the HP-41” by Jean-Daniel Dodin was invaluable for getting a foothold on understanding the
HP-41 operating system and register usage. Gene Wright was kind enough to be my voice at the HHC 2010
conference. ‘Angel Martin contributed valuable 41CL-specific software to the project. Eric Rechlin made
the labels for the front of the calculator. Nate Martin modified his Port cover 3-D model specially for use
with the serial port jack.

Table of Contents

1. Introduction ... 5
Can my calculator be upgraded? .. 7

2. Getting Started .. 9
Installing the 41CL Circuit Board .. 9
Initial Software Configuration .. 16

3. 41CL Extra Functions ... 19
Extra Functions Parameter Passing ... 20
MMU Functions ... 21

MMUCLR ... 21
MMUDIS .. 21
MMUEN ... 21
MMU? .. 22

Turbo Functions ... 22
TURBOX ... 22
TURBO2, TURBO5, TURBO10, TURBO20, TURBO50 23
TURBO? .. 23

Plug into Port/Unplug from Port Functions .. 23
PLUG1, PLUG2, PLUG3, PLUG4 ... 24
PLUG1L, PLUG2L, PLUG3L, PLUG4L, PLUGP 25
PLUG1U, PLUG2U, PLUG3U, PLUG4U, PLUGH 26
UPLUG1, UPLUG2, UPLUG3, UPLUG4 .. 27
UPLUG1L, UPLUG2L, UPLUG3L, UPLUG4L, UPLUGP 27
UPLUG1U, UPLUG2U, UPLUG3U, UPLUG4U, UPLUGH 28

Memory Block Functions .. 28
YMCLR .. 29
YMCPY .. 29

Memory/IO Read and Write Functions ... 30
YPOKE .. 30
YPEEK ... 31

Memory Buffer Functions ... 31
YBPNT ... 32

YBPNT? .. 33
YBUILD ... 33

Flash Memory Functions ... 34
YFERASE ... 34
YFWR ... 35

Serial Port Functions ... 35
SERINI ... 37
BAUD12, BAUD24, BAUD48, BAUD96 ... 37
YGETLB, YGETUB .. 37
YPUTLB, YPUTUB .. 38
YEXP .. 39
YIMP ... 39

Miscellaneous Functions .. 41
YFNS? ... 41
YCRC ... 41

Image Database Functions .. 42
IMDB? .. 42
IMDBF .. 43
IMDBR ... 43
IMDBF? ... 44
IMDBCPY .. 44
IMDBUPD .. 44
IMDBINS ... 45

Special MMU Functions .. 45
MAPDIS ... 46
MAPEN .. 46

4. Error Messgaes .. 49
5. Functions Summary .. 51
6. Image Identifiers ... 55
7. Memory Management ... 65

The MMU and program addresses ... 65
The MMU and data addresses .. 67

8. Programming the MMU ... 71
Library-4 ... 71
The FORTH ROM ... 71
The HP Service ROM .. 72
Enabling HEPAX Disassembly ... 79

9. Image Database ... 85
10. Patching Code .. 73

11. Using HEPAX .. 75
Patching HEPAX ... 78

12. Serial Connector Jack ... 93
13. Updating 41CL Hardware .. 95

CPLD Programming .. 96
FPGA Programming .. 97
Flash Programming ... 97

14. Revision History .. 101

5

Introduction

The 41CL takes advantage of modern technology to significantly add to the capabilities of
the 41C system. In particular, the 41CL provides the following features:

• All features of an HP-41CX except for the Time Module. CX Time functions (the soft-
ware) are included, but a Time module plugged into a Port is required for full timer
functionality.

• Full 600-register Extended Memory is built in.

• Over 180 plug-in module images are built in. Functions are included to allow these
images to be virtually plugged into a calculator Port and unplugged from a calculator
Port.

• Turbo mode, which allows the calculator to run at up to 50X normal speed. Actual val-
ues available are 2X, 5X, 10X, 20X and 50X.

• Over 190 empty pages (4K in length) of Flash memory are available for non-volatile
storage.

• 122 pages (4K in length) of RAM are available. All RAM is continuously powered.

• A sophisticated Memory Management Unit (MMU) allows full access to the large
physical memory.

• Full bus compatibility for the Ports, allowing the use of any peripheral designed for the
HP-41 system.

• A full-duplex serial port is available when the optional serial connector is used. This
optional connector uses a 2.5mm stereo jack mounted in a blank port cover.

6

With these features, however, come some drawbacks:

• Power consumption is higher, at least while the calculator is off or in light sleep
(between keystrokes). Where the original HP-41 required about 10uA while off, the
41CL requires about 110uA. This will lead to reduced battery life.

• The original HP-41 could retain memory contents for several minutes while the batter-
ies were changed. Because of the higher current consumption, the 41CL only retains
the memory contents for a few seconds while the batteries are out. For this reason, you
should probably have an extra battery holder ready to go when changing batteries.

• The advanced technology used in the 41CL is a double-edged sword. The Flash mem-
ory, as well as the programmable logic devices used to implement the NEWT micro-
processor, only guarantee data retention for 20 years.

The table below shows the typical current drain for the 41CL with and without the serial
port powered up.

State
Serial port

powered down
Serial port
powered up

Off 110uA 2.8mA

Light Sleep
(between key presses)

4.2mA 6.9mA

Running (1x) 7.9mA 10.6mA

Running (50x) 11.3mA 14.0mA

7

Can my calculator be upgraded?

The 41CL is an upgrade created by replacing the CPU circuit board in a 41C/CV/CX with
the 41CL circuit board. This replacement is only possible for calculators that actually have
a CPU circuit board. The easiest way to tell if this is the case is to look at the HP-41 dis-
play. If the light part of the display has square corners, like those shown below, the calcu-
lator is a candidate for replacing the CPU circuit board.

Hewlett-Packard changed the display driver circuitry in the 41 series during production,
and this change affected one component value on the CPU circuit board. The 41CL circuit
board implements the component value used in later production units. Units with the cor-
rect display driver can be identified as follows:

• If your 41C (not CV or CX) has a serial number starting with “1954” or larger it uses
the correct display driver.

• If your 41CV/CX has a serial number starting with “2003” or larger it uses the correct
display driver.

8

It is theoretically possible to use the 41CL circuit board with the older display driver, but
this requires soldering an extra capacitor to either the 41CL circuit board or to the calcula-
tor main board. If you really want to upgrade a calculator that uses the older display
driver, please contact us directly for details.

In addition to the display driver change, Hewlett-Packard also experimented with a differ-
ent method of connecting the CPU board to the main board. Unfortunately it is not possi-
ble to identify units that used this different connection method via the serial number.
Identifying such a calculator is a step in the installation process covered in the next sec-
tion.

9

Getting Started

The 41CL circuit board is designed to be a drop-in replacement for the original CPU cir-
cuit board, and the installation is not difficult. However, certain precautions must be taken
to prevent damage to both old and new circuitry.

All integrated circuits are susceptible to damage from electrostatic discharge (ESD). If
you have access to an electrostatically protected work area by all means use it. If not,
make sure that you ground yourself immediately before starting the installation process.
The best way to keep from generating a static charge is to not move around while working,
so make sure you have everything required before starting the process. Do not touch
exposed conductors, and handle both the original CPU circuit board and the 41CL
circuit board by the edges. The 41CL circuit board has a 2mm space around the edges
devoid of circuitry or components to facilitate handling in this manner.

Tools required for the installation are a small Phillips-head screwdriver, an Xacto knife or
similar, a pair of tweezers, and a small flashlight.

Installing the 41CL circuit board

Follow the steps below to perform the installation:

1. Read through all of these instructions before starting the installation process, to make
sure that you understand each step. We are not responsible if you damage or ruin
your calculator or the 41CL circuit board while attempting this installation.

2. Verify that your calculator is one that has a CPU circuit board. Only calculators with
“square corners” on the LCD display panel (refer to the Introduction section for a pic-
ture) have CPU circuit boards.

3. Remove the battery case, by first sliding the case towards the top of the calculator until
the bottom end of the battery case pops free. Install fresh batteries.

4. Carefully remove the four rubber feet, using a pointed knife to pry up one corner of a
foot and a pair of tweezers to lift the foot from the case. Be careful not to damage the

10

feet, as replacements are difficult to find. They are attached to the calculator body
using double-sided tape which can usually be reused.

5. Remove the four screws located in the recesses under the rubber feet. Be very careful
not to lose them, as they are essentially impossible to find unless you want to buy
10,000 of them. The screws are all #2-28 trilobular thread-forming types. Those at the
bottom of the case are 1/4” (they may be 3/8” if the calculator has been serviced),
while those at the top of the case are 3/4”.

6. Lift off the bottom case and the U-shaped center case section. Note the orientation
(front-to-back) of the center case section, because it not symmetric.

11

Don’t worry if your old CPU looks slightly different from that shown in the picture.
These boards went through several revisions during the life of the 41 series.

7. STOP! Before lifting the old CPU circuit board use a flashlight to look into the space
between the CPU circuit board and the base circuit board. You will be able to see
which type of connector is being used. The connector style in early production units
will look like styrofoam. If this is the case, attempting to replace the CPU circuit board
is not advised, as this type of connector material is not really reusable. Later produc-
tion units use conductors rolled around a flexible plastic tubular form, which will
appear shiny in the light from the flashlight. Being reusable, this type of conductor is
suitable for use with the 41CL circuit board.

8. Before removing the old CPU circuit board, carefully inspect all four screw posts on the
front case. If they are cracked or broken (a common problem) they will need to be
repaired before re-assembling the calculator. Instructions for this repair can be found
on the Museum of HP Calculators web site. Repair the screw posts before proceeding
any further.

9. Using only the edges of the board, carefully lift the old CPU circuit board off of the
base circuit board. The connectors will usually remain in place on the main circuit
board. If by chance they do not, restore them to their proper location. The two halves
of the connector are usually held together by a flexible piece of plastic that fits over
the two screw posts just like the CPU circuit board. Some connectors were held in
place by the black spacer hooking down around the ends of the connectors by about
1cm. This will interfere with several components on the bottom of the 41CL board.
The spacer and connectors should look like those in the photograph below for a proper
installation.

12

10. Using only the edges of the 41CL circuit board place this board on the main circuit
board, with the two lower screw posts going through the holes in the 41CL circuit
board just as they did with the original CPU circuit board. Use the antistatic bag con-
taining the 41CL circuit board to store the old CPU circuit board. Do not throw away
the old CPU circuit board, as it may still have utility in the future. If you don’t want to
store the old CPU circuit board, send it to us. If you are installing the optional serial
connector, proceed with the steps below. Otherwise skip ahead to step 15.

11. The 41CL circuit board contains a simple RS-232C serial port. The Receive Data,
Transmit Data and Ground signals for the serial port are present on the programming
connector for the CPLD on the board. The optional serial connector contains a plug for
this connector, connected through a cable to a 2.5mm stereo jack mounted in a blank
Port cover. The serial connector is designed to occupy Port 1 on the calculator only.
While it can be plugged into any other Port, doing so will interfere physically with the
remaining Ports because of the cable.

CAUTION! The tension holding a 2.5mm plug in the serial connector jack is higher
than the tension holding the blank port cover in the calculator body. This means that
trying to pull out the plug will tend to pull the blank port cover out of the calculator,
potentially damaging the internal connections to the serial connector jack. So always
remember to hold the blank port cover in place when attempting to remove the serial
port plug from the calculator.

13

12. Insert the connector end of the serial connector through Port 1 and in between the
space between the calculator body and the flexible Port connectors

13. Route the cable down the side of the calculator body, between the edge of the battery
compartment and the outside of the case. It is helpful to use double-sided tape to hold

14

the cable in place next to the battery compartment between the Port and the battery
charger Port.

Note how the cable turns sharply near the bottom of the Port to take advantage of the
space that will exist between the upper and lower halves of the case. It is easiest to
route the cable with the center section of the case in place on the lower case half.

14. Carefully plug the connector on the cable into the connector jack on the 41CL circuit
board with the “CP” label next to it. This is the programming connector for the CPLD.
The connector used is very fragile and was not really designed for multiple insertions,
so take your time, but make sure the plug is fully seated in the connector on the 41CL
circuit board.

The two connectors for programming the CPLD and the FPGA on the board are iden-
tical, and plugging the serial port connector into the wrong one will damage the board.
The 41CL circuit board is shipped with a blank plug in the FPGA connector to prevent
accidently inserting the serial connector in the wrong jack.

This step is where the double-sided tape holding the cable in place is useful, as it keeps
the cable from popping out of the channel on the side of the calculator where it resides.

15

15. Carefully fit the center case section (with the proper orientation) and bottom case back
together with the remainder of the calculator body. If you installed the serial connector
be very careful not to pinch the serial cable between the case halves.

16. Re-install the four screws. The proper way to do this is to slowly turn the screw back-
wards until you feel the screw threads “click” into the threads in the post. Carefully
tighten the screws. Do not over-tighten the screws as you risk cracking or shearing
off the screw posts. It is best to hold the case sections tightly together with one hand
while tightening the screws with the other hand, as this reduces the stress the screws
place on the screw posts and case pieces.

17. Re-install the battery case (with the new batteries) and turn the calculator on. If there is
no response the flexible connectors are not completely connecting the 41CL circuit
board to the main circuit board, and you will need to either tighten the screws a little or
reform the circular connector slightly. If garbage rather than the MEMORY LOST
message appears, try removing the battery pack for 30 seconds and re-inserting it
again. The display controller contains its own power-on-reset circuit, which some-
times does not properly synchronize with the CPU, leading to garbage in the display
on power-up. This occasionally occurs even in the original design. In some cases it
may be necessary to do this several times, with a longer time between battery pack
insertions.

18. Once the 41CL circuit board installation is verified working, reinstall the calculator
feet, and proceed to the initial configuration of the software.

16

Initial Software Configuration

The 41CL includes a set of functions that provide access to the new features of the NEWT
microprocessor. When power is first applied or when the calculator is reset, resulting in
the MEMORY LOST message, the 41CL Extra Functions are mapped to Page 7 to
allow you to do the initial configuration of the calculator. This Page 7 mapping is enforced
by the hardware for as long as the Memory Management Unit (MMU) is disabled.

During the initial configuration the 41CL Extra Functions must either be moved else-
where so that Page 7 can be used by HP-IL Peripherals or the Page 7 entries in the MMU
must be programmed to point to the 41CL Extra Functions after the MMU is enabled.
Until the 41CL Extra Functions are moved from Page 7 HP-IL will not be available, and
an HP-IL Module should not be inserted into the calculator because this will lead to bus
conflicts.

There are two images of the 41CL Extra Functions available, to prevent potential XROM
conflicts. The default (YFNZ mnemonic) version uses XROM #15, while the second
(YFNS mnemonic) version uses XROM #31. The two copies are identical except for the
XROM. Note that some third-party software (CL Utilities, for example) requires the use
of the XROM #15 version of the 41CL Extra Functions.

The copy of the 41CL Extra Functions that uses the YFNZ mnemonic resides in an area of
Flash memory that is protected from modification, while the copy that uses the YFNS
mnemonic does not. This was done to provide a way for users to patch the 41CL Extra
Functions in the field if necessary.

Only a few modules use XROM #15, so most users will not need to use the alternate
(YFNS) version. There is also a copy of the 41CL Extra Functions Plus (YFNP mne-
monic) available. The 41CL Extra Functions Plus replaces some of the little-used func-
tions with new functions that allow the user to work with the Image Database (see the
41CL Image Database chapter). As you become more familiar with the 41CL, you may
prefer to use the 41CL Extreme Functions (YFNX mnemonic), which provides a more
convenient user interface that prompts for user input.

The minimum sequence for the initial configuration uses three 41CL Extra Functions
(these functions are explained in the next section). If you don’t need to use the advanced
features of the 41CL this is sufficient for the initial configuration. This sequence is:

1. XEQ ALPHA MMUCLR ALPHA initializes all of the MMU entries in memory, mak-
ing it safe to enable the MMU in the third step.

2. ALPHA YFNZ ALPHA XEQ ALPHA PLUG1L ALPHA plugs the XROM #15 ver-
sion of 41CL Extra Functions into the lower half of Port 1 (which is Page 8). Since the
MMU is still disabled this has no effect yet. Note that any port can be used for the

17

41CL Extra Functions. Plugging the 41CL Extra Functions into a Port allows the use
of HP-IL.

Alternatively, ALPHA YFNP ALPHA XEQ ALPHA PLUG1L ALPHA plugs the
41CL Extra Functions Plus into Page 8.

Or you can use ALPHA YFNS ALPHA XEQ ALPHA PLUGH ALPHA to plug the
XROM #31 version of 41CL Extra Functions into Page 7. This saves half of a Port,
but means that HP-IL (including an HP-IL printer) will not be available. Since the
MMU is still disabled this has no effect yet.

3. Finally, XEQ ALPHA MMUEN ALPHA enables the MMU, which starts the redirec-
tion of either Page 8 or Page 7 to the 41CL Extra Functions. When using Page 8 any
ROM module plugged into Port 1 will not be seen by the 41CL. However, Port 1 can
still be used for modules with a fixed address such as the 82143A Printer, the 82160A
HP-IL Module, the 82182A Time Module or the 82242A IR Printer Module.

Enjoy your new 41CL calculator! The only thing to remember is that the 41CL Extra
Functions (or the 41CL Extra Functions Plus or the 41CL Extreme Functions) must
remain plugged into a Port for the new features to be available.

If you inadvertently plug another module image into the Port used by the 41CL Extra
Functions or 41CL Extra Functions Plus, taking the place of these functions as far as the
OS is concerned, the only way to recover is either via BACKSPACE-ON (causing a
MEMORY LOST condition) or by momentarily removing the battery pack.

The 41CL Extreme Functions allow the user to protect the MMU programming against
accidental modification, and automatically protects itself against accidental deletion.

18

19

41CL Extra Functions

The 41CL Extra Functions are required to provide access to the new features of the
NEWT microprocessor that powers the 41CL calculator. Depending on your level of
experience and how adventurous you are, you may not need all of these functions.

The majority of users will only need the MMU Functions, the Turbo Functions, and the
functions that allow you to Plug and Unplug module images to and from the calculator
Ports.

If you are a HEPAX user you will need the Memory Block Functions and the Memory/IO
Read and Write Functions. Refer to the Using HEPAX section for the details of how to do
the initial setup of HEPAX memory.

Users interested in MCODE programming or building a custom module image may find
the Memory Buffer Functions useful.

The Image Database functions allow users to customize the Image Database, by adding
new mnemonics or modifying existing mnemonics. The Image Database can also be
searched using these functions.

The Flash Memory Functions are included for those users wishing to program the Flash
memory on the 41CL circuit board beyond the initial programming. Flash memory is non-
volatile, so it provides a convenient way to store information permanently. Special areas
in Flash memory are reserved for user-programmed module images.

The Serial Port Functions allow users to control the serial port on the 41CL circuit board.
Using the serial port will require installation of the optional serial port connector.

Advanced users interested in modifying or replacing the Operating System will need to
use the Special MMU Functions. These functions control MMU operation for the pages of
memory that contain the Operating System.

The Memory Verification function can be used to verify the integrity of an image in Flash
memory or RAM.

20

Extra Functions Parameter Passing

Many 41CL Extra Functions require hexadecimal (hex) values as arguments, and the
ALPHA register is used to hold these arguments. Valid hex digits are the numerals 0 - 9
and the letters A - F. Any other character entered as a hex digit will result in a DATA
ERROR message when the function is executed. Any leading zeros must be present for
hex numbers.

Multiple hex arguments are separated by either the “-” character or the “>” character, and
these delimiters must be present in the proper location or a DATA ERROR message
will result.

The figure below shows the formatting required when both an address and data are
required by the function. All of the B, Dx, Lx, Px and R characters are hex digits, and
the number and position of the “-” characters indicate the type of address.

A physical address P5 - P0 is a direct physical memory address.

A logical address L3 - L0 is an address used in mcode, where L3 is the address of a Page,
and L2 - L0 is the offset within the Page. The bank identifier B allows the bank to be
directly specified (1, 2, 3 or 4), for those pages that support multiple banks. In addition,
for some functions, all banks (A) may be specified. For pages that do not support banks
any of these options may be specified, because the field will be ignored. This means that
only Bank 1 of a plug-in module can be accessed.

A port address R is the address of one of the I/O ports contained in the NEWT micropro-
cessor. Refer to the Newt Microprocessor Technical Manual for a list of I/O ports and how
to use them.

The data field D3 - D0 is a 16-bit data value.

ALPHA register

11 10 9 8 7 6 5 4 3 2 1

physical address P5 P4 P3 P2 P1 P0 - D3 D2 D1 D0

logical address L3 L2 L1 L0 - B - D3 D2 D1 D0

port address R - - - D3 D2 D1 D0

21

MMU Functions

The MMU Functions allow the user to initialize, enable, disable, and test the status of the
MMU.

Executing MMUCLR (MMU clear) clears the contents of all of the regular MMU regis-
ters (for Pages 4-F) in memory, by writing 0x0000 to these registers. This function should
only be executed while the MMU is disabled, to prevent unpredictable results. MMUCLR
will result in all pages (except for the Operating System, Extended Functions, Time Func-
tions and 41CL Extra Functions) being fetched from the Ports rather than fetched from
internal memory.

Executing MMUDIS (MMU disable) clears the global MMU enable bit inside the NEWT
microprocessor. This automatically reassigns the 41CL Extra Functions to Page 7, but
only after the code returns to executing in one of the Operating System pages. This
delayed switch allows the function to complete normally and return to the Operating Sys-
tem. This function does not affect the MMU register contents in memory.

Executing MMUEN (MMU enable) sets the global MMU enable bit inside the NEWT
microprocessor. This automatically disables mapping of the 41CL Extra Functions to Page
7, but only after the code returns to executing in one of the Operating System pages. This
delayed switch allows the function to complete normally and return to the Operating Sys-
tem. The 41CL Extra Functions must have been assigned to some other page prior to exe-
cuting MMUEN, or the 41CL Extra Functions will no longer be available to the user.

MMUCLR

MMUDIS

MMUEN

22

Executing MMU? (Test MMU enable) tests the state of the global MMU enable bit inside
the NEWT microprocessor, returning with NO in the display if the MMU is disabled and
YES in the display if the MMU is enabled. When used in a program, if the MMU is
enabled the next program line will be executed; if the MMU is disabled the next line in the
program is skipped.

Turbo Functions

The Turbo Functions give you control over the operating speed of the calculator. The per-
formance in Turbo mode is not linear, because some operations must always occur at nor-
mal speed. For example, scanning the keyboard (which is done once per program line)
always executes at normal speed. Similarly, accessing the display for any reason always
executes at normal speed. All accesses of a physical Port occur at normal speed, along
with a number of timing loops in the Operating System and Timer functions.

Turbo modes increase the current consumption during normal operation, but have no
effect during idle time (between keypress) or during the time when the calculator is off.
The current Turbo mode is preserved during idle time, as well as when the calculator is
turned off.

Like the Turbo mode performance, the current consumption as a result of Turbo mode is
not linear. This is because only a fraction of the circuitry actually runs at a different speed
during Turbo mode, in addition to the aforementioned special cases.

Executing TURBOX (Turbo mode disable) immediately disables any Turbo mode in
effect. Any Turbo mode increases power consumption somewhat, so the Turbo modes
should be used judiciously if battery life is very important.

MMU?

TURBOX

23

Executing TURBO2 (Turbo 2X mode) immediately enables the 2X Turbo mode.

Executing TURBO5 (Turbo 5X mode) immediately enables the 5X Turbo mode.

Executing TURBO10 (Turbo 10X mode) immediately enables the 10X Turbo mode.

Executing TURBO20 (Turbo 20X mode) immediately enables the 20X Turbo mode.

Executing TURBO50 (Turbo 50X mode) immediately enables the 50X Turbo mode.

Executing TURBO? (Test Turbo mode) queries the state of the Turbo control bits inside
the NEWT microprocessor. The current Turbo speed is returned in the X register. The
results returned will be one of 0, 2, 5, 10, 20 or 50. The stack is lifted before the result
is written to the X register.

Plug into Port/Unplug from Port Functions

These functions allow the user to virtually plug and unplug module images from the calcu-
lator ports. The functions use the Image Database in Flash memory to determine the type
and address of the desired module image. This provides an easy way for the user to control
the configuration of the calculator without having to remember specific memory
addresses. Refer to the Image Identifier Table section for the mnemonics for the different
module images. No attempt will be made here to explain what the different module images
do; it is assumed that the user has access to the documentation for any modules of interest.

Advanced users may enjoy exploring some of the poorly-documented images that are
included in the 41CL. Advanced users can even build a new module image in memory and
then virtually plug it into a port by specifying the relevant memory address for the Plug

TURBO2
TURBO5
TURBO10
TURBO20
TURBO50

TURBO?

24

function. Or an entry can be added to the Image Database to allow the use of a new mne-
monic.

Users should avoid XROM conflicts when using module functions in programs. Refer to
the original HP documentation for details. Users can circumvent conflicts by copying a
module image to RAM and then manually modifying the XROM number before plugging
this modified image into a Port.

Users must also avoid hardware conflicts with physical modules. When a module image is
virtually plugged into a Port no physical module that uses that Port address can be plugged
into the calculator. The only exceptions are those modules or peripherals that use dedi-
cated addressing, shown in the Table below. However, even these modules and peripher-
als must avoid an addressing conflict. The 82182A Time Module can be plugged into any
Port without conflict.

Note that some third-party modules can be addressed independently of their physical loca-
tion, but the User must still avoid address conflicts with these modules.

Executing PLUG1 (Plug into Port 1) inserts a module image into Port 1, which is Pages 8
and 9 of the logical address space. This function automatically programs the MMU regis-
ters for both Pages 8 and 9 (all banks) as appropriate for the selected module image. Mod-
ule images that are only one page long will be loaded into the lower page and the upper
page will be left empty.

The four-character module identifier must be properly formatted in the ALPHA register or
a BAD ID message will result.

If the module image cannot be used in Pages 8 and 9 a DATA ERROR message will
result.

41C Module or Peripheral Page Address

82104A Card Reader E

82143A Printer 6

82160A HP-IL Module 4 or 6, and 7

82242A IR Printer Module 6

PLUG1
PLUG2
PLUG3
PLUG4

(image identifier in ALPHA register)

25

If the Image Database cannot be found in Flash memory a NO IMDB message will
result. If the corresponding entry in the Image Database has not been programmed a NO
ENTRY message will be returned, and if the entry has been zeroed out (deleted) a NULL
ENTRY message will be returned.

The PLUG2 (Plug into Port 2) function operates on Port 2 (Pages A and B).

The PLUG3 (Plug into Port 3) function operates on Port 3 (Pages C and D).

The PLUG4 (Plug into Port 4) function operates on Port 4 (Pages E and F).

The PLUG1L (Plug into Port 1 lower half) function is identical to the PLUG1 function
except that it only operates on the lower half of Port 1 (Page 8 of the logical address
space). This function can only be used with module images that are one page long.

The PLUG2L (Plug into Port 2 lower half) function operates on the lower half of Port 2
(Page A).

The PLUG3L (Plug into Port 3 lower half) function operates on the lower half of Port 3
(Page C).

The PLUG4L (Plug into Port 4 lower half) function operates on the lower half of Port 4
(Page E).

The PLUGP (Plug into printer page) function operates on the page normally used for a
printer (Page 6). Do not plug a printer into the calculator if you have virtually plugged an
image into the Page 6. Page 6 is special in that the Operating System often calls printer
routines in this page. Normally, if no printer is plugged into the calculator the software
immediately returns to the Operating System, without ill effect. So any image plugged
into Page 6 with the PLUGP function must keep these printer subroutine entry points
clear so that the Operating System can function properly. Only these images are known to
be compatible with Page 6:

PLUG1L
PLUG2L
PLUG3L
PLUG4L
PLUGP

(image identifier in ALPHA register)

Page 6 compatible images Mnemonic

HEPAX HEPX or HPX2

Power CL Utilities PWRL

26

The PLUG1U (Plug into Port 1 upper half) function is also identical to the PLUG1 func-
tion except that it only operates on the upper half of Port 1 (Page 9 of the logical address
space). This function can only be used with module images that are one page long.

The PLUG2U (Plug into Port 2 upper half) function operates on the upper half of Port 2
(Page B).

The PLUG3U (Plug into Port 3 upper half) function operates on the upper half of Port 3
(Page D).

The PLUG4U (Plug into Port 4 upper half) function operates on the upper half of Port 4
(Page F).

The PLUGH (Plug into hp-il page) function operates on the page normally used for the
HP-IL module (Page 7). Do not plug an HP-IL module into the calculator if you have vir-
tually plugged an image into the page 7.

The various PLUG functions can also be used to assign pages in physical memory directly
to the Ports. The upper three nibbles of the physical memory address (so that it begins on a
4K boundary) are specified, and the PLUG function assigns either one page independent
of bank; two pages independent of bank; one page with all four banks; or two pages, each
with all four banks.

PLUG1U
PLUG2U
PLUG3U
PLUG4U
PLUGH

(image identifier in ALPHA register)

ALPHA register

7 6 5 4 3 2 1 image characteristics

format P5 P4 P3 - 1 6 K 16K (one page, four banks)

format P5 P4 P3 - D B L 8K (two pages)

format P5 P4 P3 - R A M 4K (one page)

format P5 P4 P3 - M A X 32K (two pages, each with four banks)

27

The -DBL, -RAM, -16K and -MAX mnemonics can be used with either RAM or Flash
memory addresses. These mnemonics are decoded independent of the Image Database, so
that they can be used even if the Image Database is not present in memory. The same is
true for the YFNP, YFNS and YFNZ mnemonics.

Executing UPLUG1 (Unplug from Port 1) removes the module image from Port 1, which
is Pages 8 and 9 of the logical address space. The function does this by clearing the MMU
entries for these pages.

The UPLUG2 (Unplug from Port 2) function operates on Port 2 (Pages A and B).

The UPLUG3 (Unplug from Port 3) function operates on Port 3 (Pages C and D).

The UPLUG4 (Unplug from Port 4) function operates on Port 4 (Pages E and F).

The UPLUG1L (Unplug from Port 1 lower half) function is identical to the UPLUG1
function except that it only operates on the lower half of Port 1 (Page 8 of the logical
address space). Be careful using this function if you are planning on plugging a physical
module into Port 1, because the upper half of the Port will still be fetched from internal
memory.

The UPLUG2L (Unplug from Port 2 lower half) function operates on the lower half of
Port 2 (Page A).

The UPLUG3L (Unplug from Port 3 lower half) function operates on the lower half of
Port 3 (Page C).

UPLUG1
UPLUG2
UPLUG3
UPLUG4

UPLUG1L
UPLUG2L
UPLUG3L
UPLUG4L
UPLUGP

28

The UPLUG4L (Unplug from Port 4 lower half) function operates on the lower half of
Port 4 (Page E).

The UPLUGP (Unplug from printer page) function operates on Page 6.

The UPLUG1U (Unplug from Port 1 upper half) function is identical to the UPLUG1
function except that it only operates on the upper half of Port 1 (Page 9 of the logical
address space). Be careful using this function if you are planning on plugging a physical
module into Port 1, because the lower half of the Port will still be fetched from internal
memory.

The UPLUG2U (Unplug from Port 2 upper half) function operates on the upper half of
Port 2 (Page B).

The UPLUG3U (Unplug from Port 3 upper half) function operates on the upper half of
Port 3 (Page D).

The UPLUG4U (Unplug from Port 4 upper half) function operates on the upper half of
Port 4 (Page F).

The UPLUGH (Unplug from hp-il page) function operates on Page 7.

Memory Block Functions

The memory block functions allow the user to manipulate pages (4K blocks) of memory.
In particular, a page can be initialized to a user-selected value or copied to another loca-
tion in memory. Neither of these functions check whether the blocks are in Flash memory
or RAM, and if you attempt to write to Flash memory the operation will appear to pro-
ceed, without any writes occurring.

Given that they are operating on 4096 memory locations, the 41CL is automatically
switched to the 50x Turbo mode during the transfer. The current Turbo mode is restored
after the transfer is complete.

UPLUG1U
UPLUG2U
UPLUG3U
UPLUG4U
UPLUGH

29

Executing YMCLR (Clear memory block) writes the contents of the data field to an entire
4K block of RAM memory starting at the address specified in the address field.

The address field is truncated to create an address that is on a 4K boundary before the
writes commence. Only memory addresses are valid for this function, and a DATA
ERROR message will result if an I/O address is specified. The YMCLR function cannot
be used to write to physical modules.

The figure below shows the formatting required for the address and data in the ALPHA
register for the YMCLR function.

Executing YMCPY (Copy memory block) copies the contents of one 4K block of memory
(Flash or RAM) to another 4K block of RAM memory. This function only allows copying
blocks of memory that start on 4K boundaries and are 4K in length. Only memory
addresses are valid for this function, and DATA ERROR will result if an I/O address is
specified.

When executed from the keyboard a COPYING message is written to the display during
the actual transfers. These transfers are executed in 50x Turbo mode.

If the MMU is not enabled for a source logical address specified with the YMCPY func-
tion, the data is fetched from a physical module and copied to internal memory. In this
case the bank identifier is ignored, because the physical module will be in control of the
bank select. This means that only Bank 1 of the module can be copied to memory.

YMCLR (address and data in ALPHA register)

ALPHA register

11 10 9 8 7 6 5 4 3 2 1

physical address P5 P4 P3 P2 P1 P0 - D3 D2 D1 D0

logical address L3 L2 L1 L0 - B - D3 D2 D1 D0

YMCPY (starting address pair in ALPHA register)

30

This function can be used to write to a physical Port. In this case the function uses the
WROM instruction, which only writes 10 bits.

The YMCPY function is ideal for creating backups of system information such as the 41C
register memory or the MMU contents. To backup the 41C register memory (including all
user programs) simply copy the contents of memory starting at address 0x800000 to an
available block of RAM. Use address 0x804000 to backup the MMU configuration.

The figure below shows the formatting required for the address and data in the ALPHA
register for the YMCPY function.

Memory/IO Read and Write Functions

The entire memory space is accessible using these functions, which means that you can
write directly to register memory, program the MMU, update the register address informa-
tion or modify (i.e. corrupt) Operating System variables.

Executing YPOKE (Write word to memory or i/o) writes directly to either RAM memory
or an internal NEWT I/O port. This function does not check the address except for proper
formatting, so attempting to write to Flash memory is allowed, although it will be ignored
because the function does not properly format the write for Flash memory.

The peripheral version of this function only writes 12 bits to the peripheral port. This is
okay because none of the NEWT peripheral write locations accept more than 12 bits.

ALPHA register

7 6 5 4 3 2 1

source destination

physical address to physical address P5 P4 P3 > P5 P4 P3

physical address to logical address P5 P4 P3 > L3 - B

logical address to physical address L3 - B > P5 P4 P3

logical address to logical address L3 - B > L3 - B

YPOKE (address and data in ALPHA register)

31

The figure below shows the formatting required for the address and data in the ALPHA
register for the YPOKE function. A bank identifier of A in the logical address case allows
writing the to all four banks simultaneously.

Executing YPEEK (Read word from memory or i/o) reads directly from either memory
(Flash or RAM) or an internal NEWT I/O port. The data field in the ALPHA register when
the function is called is ignored, but is replaced with the actual data read from either the
memory or the internal I/O port.

The figure below shows the formatting required for the address and data in the ALPHA
register for the YPEEK function. The placeholder data characters will be replaced by the
data read by the function.

ALPHA register

11 10 9 8 7 6 5 4 3 2 1

physical address P5 P4 P3 P2 P1 P0 - D3 D2 D1 D0

logical address L3 L2 L1 L0 - B - D3 D2 D1 D0

port address R - - - D3 D2 D1 D0

YPEEK (address and data in ALPHA register)

ALPHA register

11 10 9 8 7 6 5 4 3 2 1

physical address P5 P4 P3 P2 P1 P0 - D3 D2 D1 D0

logical address L3 L2 L1 L0 - B - D3 D2 D1 D0

port address R - - - D3 D2 D1 D0

32

Memory Buffer Functions

The 41CL reserves one 4K block (one page) of System memory to be used as a buffer for
assembling module images. The Extra Functions Buffer Area is located at physical
addresses 0x805000 - 0x805FFF, and has an associated Extra Functions Buffer Pointer
stored at address 0x804010. The memory buffer functions provide a convenient way to
move data to the buffer to assemble a module image without having to continuously spec-
ify the destination address. Instead, the lower twelve bits of the destination address are
held in the Buffer Pointer, which is automatically incremented by the YBUILD function
after use.

Thus, to assemble blocks of code the user merely initializes the Buffer Pointer to the start
of the block, with either 0x000 if assembling a FAT, or 0x084 if assembling functions, and
then copies blocks of memory, one after the other, to the buffer. The Buffer Pointer is
updated to point at the next buffer location after each copy. Once an image is assembled,
the FAT can be built using the regular YPOKE function and the entire image moved to
another location in memory using the YMCPY function for use.

Of course all of the normal memory functions may be used with the Buffer Area, and
indeed the region can also be used as normal memory when not being used as the buffer.

The Memory Buffer functions are not present in the 41CL Extra Functions Plus, having
been replace by the Image Database functions in that image.

Executing YBPNT (Write Extra Functions buffer pointer) writes data directly to the Extra
Function Buffer Pointer at address 0x804010.

The data must be a four-digit hex number but only the lower three digits of this value are
used. The most-significant digit is ignored and not changed by the buffer functions.

The function returns with the normal YPOKE formatted physical address of the Buffer
Pointer in the ALPHA register (but not the display):

YBPNT (data in ALPHA register)

ALPHA register

4 3 2 1

Buffer pointer value D3 D2 D1 D0

33

Executing YBPNT? (Read Extra Functions buffer pointer) reads directly from Extra
Function Buffer Pointer at address 0x804010. The function returns with the normal
YPEEK formatted physical address of the Buffer Pointer in the ALPHA register and the
display:

Executing YBUILD (Write to Extra Functions buffer) copies a block of data (up to 4096
words) from memory to the Extra Functions Buffer Area, starting at the location addressed
by the Extra Functions Buffer Pointer. The Buffer Pointer is updated to point at the next
Buffer Area location at the end of the transfer.

When executed from the keyboard a COPYING message is written to the display during
the actual transfers. The transfers are executed in 50x Turbo mode, and then the current
Turbo mode is restored.

Care must be exercised because this function will wrap around the end of the Buffer Area,
back to the beginning of the Buffer Area, if the transfer length specified so indicates.

The YBUILD function only supports physical addresses. This means that if you want to
transfer data from a physical module to the Buffer Area the data must first be transferred
to RAM memory so that a physical address can be specified.

ALPHA register

11 10 9 8 7 6 5 4 3 2 1

physical address 8 0 4 0 1 0 - D3 D2 D1 D0

YBPNT?

ALPHA register

11 10 9 8 7 6 5 4 3 2 1

physical address 8 0 4 0 1 0 - D3 D2 D1 D0

YBUILD (starting address and transfer length in ALPHA register)

34

The figure below shows the formatting required for the address and data for the YBUILD
function. The transfer length D2 - D0 is limited to 4096 words or less, and the number of
words transferred is the transfer length. 000 indicates a transfer length of 4096 words.

Flash Memory Functions

If you are not absolutely sure of what you are doing, do not attempt to use these func-
tions! While these functions do prevent you from corrupting the Operating System of the
calculator, they still allow you to erase or modify the rest of the Flash memory. You must
be familiar with how Flash memory operates before attempting to use these functions.

Flash memory has limited endurance, typically 100,000 write cycles, and is erased by sec-
tors, which are 64K bytes (32K words, or eight pages) in the case of the 41CL. An erased
Flash sector returns 0xFFFF in every location. Only 0’s can be written to any given loca-
tion in Flash, which means that writes to Flash can only change a “1” to a “0” and never
vice-versa.

During a Flash erase or write, no other accesses of the Flash memory are allowed. This
means that these functions must be running out of RAM to work. Both Flash Memory
functions check for this, and return with a CODE=ROM error message if this is not the
case. If you really want to use either of the Flash Memory functions you must copy the
entire 41CL Extra Functions image to RAM and then program the MMU to use this RAM
copy of these functions

These functions cannot be used to modify to the Operating System area (the first sector in
the Flash) and will return with the OS AREA error message if an address in the first sec-
tor of the Flash memory is specified as the destination.

Executing YFERASE (Erase Flash sector) erases an entire sector (usually 32K words, or
eight pages) of Flash memory. The address specified can lie anywhere within the sector.

ALPHA register

11 10 9 8 7 6 5 4 3 2 1

physical address P5 P4 P3 P2 P1 P0 - 0 D2 D1 D0

YFERASE (address in ALPHA register)

35

The YFERASE function automatically includes a 6 second delay, because the Flash erase
operation may require this much time to complete. The function will either return immedi-
ately with an error message, without executing, or send the ERASING message to the
display for the entire 6 seconds before returning.

The figure below shows the formatting required for the address and data in the ALPHA
register for the YFERASE function. An address that is in RAM (P5 is 8 or greater) will
return immediately with the DST=RAM error message.

Executing YFWR (Write Flash page) copies the contents of one 4K block (one page) of
RAM memory to a 4K block of Flash memory. This function only allows copying block of
memory that start on 4K boundaries and are 4K in length. Only physical memory
addresses are valid for this function.

The YFWR function automatically executes at 50x Turbo speed, but still requires approx-
imately 4 seconds to complete. The current Turbo mode is restored when the function
completes. The function will either return immediately with an error message, without
executing, or send the WRITING message to the display for the entire 4 seconds before
returning.

The figure below shows the formatting required for the address and data in the ALPHA
register for the YFWR function. A destination address that is in RAM (destination P5 is 8
or greater) will return with the DST=RAM error message, and a source address that is in
Flash (source P5 is 7 or less) will return with the SRC=ROM message.

ALPHA register

6 5 4 3 2 1

physical address P5 P4 P3 P2 P1 P0

YFWR (starting address pair in ALPHA register)

ALPHA register

7 6 5 4 3 2 1

source destination

physical address to physical address P5 P4 P3 > P5 P4 P3

36

Serial Port Functions

The 41CL contains an RS-232 serial port, but unless you have the special PCB connector
this functionality will not be available. However, these serial port functions are present on
all 41CL circuit boards.

The serial port hardware is initialized and the baud rate is set to 1200 whenever the calcu-
lator is turned on. The serial port uses 8N1 format (eight bits of data, no parity, and one
stop bit).

Depending on the baud rate, it may be advisable to run the 41CL in 50x Turbo mode when
performing serial operations to make sure that the CPU has sufficient speed to keep up
with the serial port. The serial port functions do not automatically increase the processor
speed to 50x.

Even using the 50x Turbo mode, at higher baud rates there will be gaps between transmit
characters and the receiver will need gaps between receive characters. This is because
some instructions still run at 1x speed independent of the Turbo mode. Keep this restric-
tion in mind when using the serial block transfer functions. If the source of serial data gen-
erates serial characters without any intervening idle time it will probably be necessary to
use 1200 baud to prevent receive overruns.

The serial functions only support physical addresses. This means that if you want to trans-
fer data between a physical module and the serial port the data must be buffered in RAM
memory before the final transfer to or from the physical module.

All of the serial data transfer functions contain a time-out feature to prevent locking up the
machine in the case of an unavailable serial port. This time-out period is dependent on the
Turbo mode, as shown in the table below:

In the absence of a valid RS-232 level on the serial receive input the RS-232 transceiver
automatically powers down. But whenever there is a valid RS-232 level on the receive
input the transceiver will be powered. This is a significant addition to the current drain on
the batteries, so the serial port should only be connected to a PC or other RS-232 equip-
ment when actually using the serial port.

The calculator should always be turned off while connecting or disconnecting the
serial port. The recommended way to connect the serial port is to first insert the 2.5mm

Speed Serial time-out period

1x ~15 seconds

2x ~12 seconds

all others ~7 seconds

37

plug into the calculator and then connect the other end to an active serial connection.
While the serial driver in the calculator is powering up the internal power supply may
droop low enough to trigger the power-on-reset, which automatically disables the MMU.
This droop is not sufficient to corrupt RAM contents, so the MMU programming will still
be valid. So, after turning on the calculator with the serial port connected for the first time,
it is advisable to make sure that the MMU is enabled before attempting to use the serial
functions.

The tension holding a 2.5mm plug in the serial connector jack is higher than the tension
holding the blank port cover in the calculator body. This means that trying to pull out the
plug will tend to pull the blank port cover out of the calculator, potentially damaging the
internal connections to the serial connector jack. Always remember to hold the blank
port cover in place when attempting to remove the serial port plug from the calcula-
tor.

Executing SERINI (Initialize serial port) initializes the serial port and sets the baud rate to
1200. Both the transmit and receive buffers are emptied and the receiver and transmitter
are both set to the idle state. This command has no effect on the RS-232 driver.

Executing BAUD12 (Select 1200 baud) sets the baud rate for the serial port to 1200. This
is the default selection for the serial port, and is automatically selected when the calculator
is turned on or when the SERINI function is executed.

Executing BAUD24 (Select 2400 baud) sets the baud rate for the serial port to 2400.

Executing BAUD48 (Select 4800 baud) sets the baud rate for the serial port to 4800.

Executing BAUD96 (Select 9600 baud) sets the baud rate for the serial port to 9600.

SERINI

BAUD12
BAUD24
BAUD48
BAUD96

38

Executing YGETLB (Write serial byte to lower memory byte) reads one byte from the
serial port and writes this byte to the lower byte of the memory location specified as the
address.

Executing YGETUB (Write serial byte to upper memory byte) reads one byte from the
serial port and writes this byte to the upper byte of the memory location specified as the
address.

These functions do not check the address except for proper formatting, so attempting to
write to Flash memory is allowed, although it will be ignored by the Flash memory.

The figure below shows the formatting required for the address and data in the ALPHA
register for the YGETLB and YGETUB functions. These functions put a RECEIVING
message in the display while waiting for a character, and will return with a TIMEOUT
error message after the time-out period if no receive byte is available. If the serial port
encounters an overrun condition the data in the receive buffer is discarded (since it is error
anyway) and is not written to memory. In this case the function will return with an
OVERRUN error message.

Executing YPUTLB (Write lower memory byte to serial port) reads the lower byte from
the specified address and attempts to write it to the serial port.

Executing YPUTUB (Write upper memory byte to serial port) reads the upper byte from
the specified address and attempts to write it to the serial port.

YGETLB
YGETUB

(address in the ALPHA register)

ALPHA register

6 5 4 3 2 1

physical address P5 P4 P3 P2 P1 P0

YPUTLB
YPUTUB

(address in the ALPHA register)

39

The figure below shows the formatting required for the address and data in the ALPHA
register for the YPUTLB and YPUTUB functions. These functions put a SENDING
message in the display while waiting to send a character, and will return with a TIME-
OUT error message after the time-out period if the transmitter cannot accept a byte.

Executing YEXP (Export memory block) transfers an entire block of data (up to 4096
words) from internal memory to the serial port. Both Flash and RAM addresses are valid
for this function.

The figure below shows the formatting required for the address and data in the ALPHA
register for the YEXP function. The transfer length is limited to 4096 (words) or less. The
number of words transferred is the transfer length plus one, allowing block transfers of
from 1 to 4096 words (2 to 8192 bytes).

This function puts a SENDING message in the display while waiting to send characters,
and will return with a TIMEOUT error message after the time-out period if the transmit-
ter cannot accept a byte at any point during the block transfer.

The YEXP function transfers words one byte at a time, in little-endian order (least signifi-
cant byte first), from the lowest memory address (the one specified in the ALPHA regis-
ter) to the highest memory address.

In case of an error the transfer length in the ALPHA register will be updated to show the
number of words remaining to be transferred. This allows the function to be started again
without modifying the contents of the ALPHA register. Only the transfer of both bytes of

ALPHA register

6 5 4 3 2 1

physical address P5 P4 P3 P2 P1 P0

YEXP (address and transfer length in the ALPHA register)

ALPHA register

11 10 9 8 7 6 5 4 3 2 1

physical address P5 P4 P3 P2 P1 P0 - 0 D2 D1 D0

40

a word counts as a successful transfer. If the transfer times out between the first and sec-
ond byte of a word transfer, the transfer is deemed unsuccessful.

Executing YIMP (Import memory block) transfers an entire block of data from the serial
port into internal memory. The address must be in RAM, because this function does not
properly format writes for the Flash memory. Transferring data to a physical Port is not
supported either.

The figure below shows the formatting required for the address and data in the ALPHA
register for the YIMP function. The transfer length is limited to 4096 (words) or less. The
number of words transferred is the transfer length plus one, allowing block transfers of
from 1 to 4096 words (2 to 8192 bytes).

This function puts a RECEIVING message in the display while waiting for a character,
and will return with a TIMEOUT error message after the time-out period if no receive
byte is available at any point during the block transfer. If the serial port encounters an
overrun condition the data in the receive buffer is discarded (since it is error anyway) and
is not written to memory. In this case the function will return with an OVERRUN error
message.

The YIMP function transfers words one byte at a time, in little-endian order (least signifi-
cant byte first), from the lowest memory address (the one specified in the ALPHA regis-
ter) to the highest memory address.

In case of an error the transfer length in the ALPHA register will be updated to show the
number of words remaining to be transferred. This allows the function to be started again
without modifying the contents of the ALPHA register. Only the transfer of both bytes of
a word counts as a successful transfer. If the transfer times out between the first and sec-
ond byte of a word transfer, or the receiver overflows on either byte of a word transfer the
transfer is deemed unsuccessful.

YIMP (address and transfer length in the ALPHA register)

ALPHA register

11 10 9 8 7 6 5 4 3 2 1

physical address P5 P4 P3 P2 P1 P0 - 0 D2 D1 D0

41

Miscellaneous Functions

Executing YFNS? (Read 41CL Extra Functions location) polls the logical memory for
the current location of the 41CL Extra Functions. The page where the 41CL Extra Func-
tions reside is returned in the X register as a decimal number in the range 6 through 15,
corresponding to Pages 6 through F. This information can be used to prevent accidentally
overwriting the 41CL Extras Functions when reprogramming the MMU.

Executing YCRC (Calculate CRC on page) calculates the 32-bit Cyclic Redundancy
Check (CRC) used for Ethernet over the 4K words of a memory page. The calculated CRC
will be unique for each page, and is capable of detecting all burst errors up to 32 bits in
length.

The YCRC function uses a three-digit address of a page in physical memory to select
which page to operate on.

The CRC result is returned in the ALPHA register (overwriting the page address) as well
as the display:

The YCRC function automatically executes in 50X Turbo mode, but still requires several
seconds to complete. The execution time is data-dependent, with a minimum execution

YFNS?

YCRC (Page address in ALPHA register)

ALPHA register

3 2 1

physical page address P5 P4 P3

ALPHA register

8 7 6 5 4 3 2 1

calculated CRC D7 D6 D5 D4 D3 D2 D1 D0

42

time of about 4.5 seconds and a maximum execution time of about 12 seconds. This func-
tion puts a WORKING message in the display while running.

Image Database Functions

The Image Database Functions allow the user to add to, modify, store, and search the
Image Database. Although the Image Database normally resides in Flash memory, it is
also possible to operate on a copy of the Image Database that has been stored in the Extra
Functions Buffer Area of RAM, located at physical address 0x805000. There is no default
selection of Flash or RAM, so either the IMDBF command or the IMDBR command must
be issued before using the Image Database.

Executing IMDB? (Search Image Database) searches the selected Image Database for a
match, using the either a module identifier or a page address, and returns the correspond-
ing database information.

This function tests that the Image Database is present, and returns with a NO IMDB
error message if this is not true.

The figure below shows the formatting for a module identifier and page address:

The Image Database information is returned in both the ALPHA register and the display,
in the format shown below. Since a module image may be up to 32K in length (8 pages),
more than one physical address can return with a match, but only the information in the
actual database entry is returned. If no address match is found the function will result in a
NO MATCH error message. Only the first match (the search proceeds from lowest data-
base address upwards) will ever be returned.

IMDB? (module identifier or Page address in ALPHA register)

ALPHA register

4 3 2 1

module identifier M4 M3 M2 M1

page address - P5 P4 P3

43

Searches with a valid module identifier always return the corresponding contents of the
Image Database, even if the entry is unprogrammed.

The type digit T specifies the type of image, according to the table below.

This function automatically executes the search in the 50X Turbo mode, but even so the
search may take several seconds when searching for an address match. A SEARCHING
message is written to the display while a search is in progress.

The normal 41CL Extra Functions includes the IMDB? function, but in this case the func-
tion always searches the Flash version of the Image Database.

Executing IMDBF (Image Database in Flash) sets an internal flag so that the IMDB? and
IMDBINS functions will use address 0x0DF000 in Flash memory as the location of the
Image Database.

There is no default selection of Flash or RAM, so this command (or the IMDBR com-
mand) must be issued before using either the IMDB? or IMDBINS functions. The selec-
tion information is stored in RAM at location 0x804014, in the least-significant digit.

This function is only present in the 41CL Extra Functions Plus.

ALPHA register

10 9 8 7 6 5 4 3 2 1

physical address M4 M3 M2 M1 - T - P5 P4 P3

T digit image type for this module identifier

0 4K image (one page)

1 8K image (two pages)

2 16K image (all four banks in one page)

3 16K (four pages)

4 32K (all four banks in two pages)

IMDBF

44

Executing IMDBR (Image Database in RAM) sets the internal flag so that the IMDB? and
IMDBINS functions will use the Extra Functions Buffer area as the location of the Image
Database. All other 41CL Extra Functions, including the PLUG functions, always use the
Image Database residing in the Flash memory.

This function is only present in the 41CL Extra Functions Plus.

Executing IMDBF? (Test Image Database location) tests the Image Database location
flag, returning with NO in the display if the RAM version of the Image Database is
selected and YES in the display if the Flash version of the Image Database is selected.

When IMDBF? is used in a program, if the Flash version of the Image Database is
selected the next program line will be executed; and if the RAM version of the Image
Database is selected the next line in the program is skipped.

This function is only present in the 41CL Extra Functions Plus.

Executing IMDBCPY (Copy Image Database to RAM) copies the Image Database at
address 0x0DF000 in Flash memory to the Extra Functions Buffer area at address
0x805000.

This function tests that the Image Database is present at address 0x0DF000, and returns
with a NO IMDB error message if this is not true. This function automatically executes
in 50x Turbo mode and is equivalent to YMCPY with 0DF>805 in the ALPHA regis-
ter.

This function is only present in the 41CL Extra Functions Plus.

IMDBR

IMDBF?

IMDBCPY

45

Executing IMDBUPD (Update Image Database in Flash) writes the contents of the Extra
Functions Buffer area at address 0x805000 to Flash memory starting at address
0x0DF000.

This function tests that the Image Database is present at address 0x805000, and returns
with a NO IMDB error message if this is not true. This function checks that it is execut-
ing from RAM, and returns with a CODE=ROM error message if this is not the case.
IMDBUPD is equivalent to YFWR with 805>0DF in the ALPHA register.

Executing IMDBINS (Insert Image Database entry) inserts a database entry at the appro-
priate location in the Image Database. This function tests that the Image Database is
present, and returns with a NO IMDB error message if this is not true.

The table below shows the formatting required for the module identifier, type, and address
for the IMDBINS function.

When using the copy of the Image Database in RAM the new entry is unconditionally
written to the appropriate location.

When using the copy of the Image Database in Flash memory the function first checks that
it is executing from RAM, and returns with a CODE=ROM error message if this is not
the case. When writing to the Image Database in Flash memory the existing database entry
should be unprogrammed, or the entry will likely be corrupted by the write. Writing 0 to
the type field, along with an address of 000 will always create a null entry.

IMDBUPD

IMDBINS (module identifier, type, and starting address in ALPHA register)

ALPHA register

10 9 8 7 6 5 4 3 2 1

physical address M4 M3 M2 M1 - T - P5 P4 P3

46

Special MMU Functions

The Special MMU Functions allow the user to enable and disable the MMU translation
circuitry for the Operating System pages (0-3 and 5). Normally these pages are never
mapped by the MMU, for obvious reasons. But users wanting to experiment with an alter-
native Operating System can use the MAPEN command to enable the special MMU trans-
lation circuitry.

If the new Operating System uses the same register assignments and calling conventions,
then the MAPDIS command can be used from the modified Operating System to revert to
the native Operating System.

Unlike the normal MMU enable bit, the enable bit for the special MMU operation is not
preserved when the calculator is turned off. This provides a fail-safe way to restore the
native Operating System.

The MMU storage locations for the Operating System pages (Pages 0-3) do not follow the
convention used for all other memory pages, and these pages do not support multiple
banks. The table below shows the MMU storage locations for Pages 0-3.

All of the MMU storage locations for Pages 0-3 must be initialized before executing the
MAPEN function, because these registers are not initialized by the MMUCLR function.
This will preserve the MMU mapping for the Operating System when the calculator is
turned off, so that only the global enable needs to be set to restore the mapping function.
The individual enable bits for each page still apply, making it easy to map just part of the
Operating System.

Executing MAPDIS (Disable special MMU mapping) clears the special MMU enable bit
inside the NEWT microprocessor, which automatically restores the native Operating Sys-
tem. Since this function will normally be executed from a modified Operating System, the

Physical Address Contents

0x80400C MMU register for Page 0

0x80401C MMU register for Page 1

0x80402C MMU register for Page 2

0x80403C MMU register for Page 3

MAPDIS

47

function automatically returns using the normal 41C function call/return convention, in
case the modified Operating System uses a different convention.

Executing MAPEN (Enable special MMU mapping) sets the special MMU enable bit
inside the NEWT microprocessor, but only if the correct passphrase (NEW OS) is
present in the ALPHA register.

An incorrect passphrase will result in a PASS ERR message.

This function automatically enables mapping of the Operating System pages, but only if
the MMU is globally enabled. The MAPEN and MMUEN commands may be issued in
either order. All of the normal MMU entries must be valid before the MMUEN command
is issued, and all of the special MMU entries (Pages 0-3 and 5) must be valid before the
MAPEN command is issued.

The MAPEN function uses the normal 41C call/return convention, which means that the
function will return through address 0x00F0. Any modified Operating System must take
this into account. If necessary, this function can be patched to return through address
0x0000. Contact the factory for the details of this patch.

MAPEN (passphrase in ALPHA register)

48

49

Error Messages

The table below lists all possible error messages returned by the 41CL Extra Functions,
along with the meaning of the error message.

Error Message Function Meaning

ADDR ERROR YFERASE
YFWR

Address is outside of Flash address range
(only in versions subsequent to -4D)

BAD ID IMDB?
Invalid module ID in ALPHAIMDBINS

PLUG
CODE=ROM IMDBINS

Trying to execute function from Flash
(only in versions prior to -4E)

IMDBUPD
YFERASE

YFWR
DATA ERROR IMDB?

Invalid hexadecimal in ALPHA

IMDBINS
PLUG

YBPNT
YBUILD
YCRC
YEXP

YFERASE
YFWR
YGET
YIMP

YMCLR
YMCPY
YPOKE
YPEEK
YPUT

50

DST=RAM YFERASE Attempting Flash operation on RAM
(only in versions prior to -4E)YFWR

NO ENTRY PLUG unprogrammed entry in Image Database

NO IMDB IMDB?

No Image Database found

IMDBF?
IMDBCPY
IMDBINS
IMDBUPD

PLUG
NO MATCH IMDB? No address match found in Image Database

NULL ENTRY PLUG empty (all zeros) entry in Image Database

OS AREA YFERASE
Attempting Flash operation on Operating System

YFWR
OVERRUN YGET

Receiver overrun detected
YIMP

PASS ERR MAPEN Incorrect passphrase in ALPHA

SRC=ROM YFWR Trying to transfer from Flash to Flash

TIMEOUT YEXP

Timeout during attempted transfer
YGET
YIMP
YPUT

TYPE ERR PLUG Unknown image type

51

Function Summary

The table below lists all of the 41CL Extra Functions (and 41CL Extra Functions Plus),
along with the arguments and return values.

Function
Arguments
(ALPHA)

Returns
(X)

Returns
(ALPHA)

Returns
(Display)

Def Plus Notes

BAUD12
BAUD24
BAUD48
BAUD96

x x

IMDB? module ID or
address

IMDB
entry

IMDB
entry

x x
Module ID query always

returns IMDB entry

IMDBF x

IMDBF? x

IMDBCPY x

IMDBINS IMDB entry x

IMDBR x

IMDBUPD x

MAPDIS x x

MAPEN passphrase x x

MMUCLR x x

MMUDIS x x

MMUEN x x

52

MMU? NO
YES x x

MMU is disabled
MMU is enabled

PLUG1
PLUG1L
PLUG1U
PLUG2

PLUG2L
PLUG2U
PLUG3

PLUG3L
PLUG3U
PLUG4

PLUG4L
PLUG4U
PLUGH
PLUGP

module ID x x

SERINI x x

TURBOX x x

TURBO2
TURBO5
TURBO10
TURBO20
TURBO50

x x

TURBO?

0
2
5

10
20
50

x x

Turbo mode disabled
2x Turbo mode
5x Turbo mode
10x Turbo mode
20x Turbo mode
50x Turbo mode

53

UPLUG1
UPLUG1L
UPLUG1U
UPLUG2

UPLUG2L
UPLUG2U
UPLUG3

UPLUG3L
UPLUG3U
UPLUG4

UPLUG4L
UPLUG4U
UPLUGH
UPLUGP

x x

YBPNT data x

YBPNT? address/
data

address/
data

x
Buffer Pointer value is in

the data field

YBUILD address/length x

YCRC address CRC CRC x

YEXP address/length x x

YFERASE address x x

YFNS? 6-15 x x
Logical address page where

YFNS currently resides

YFWR address x x

YGETLB
YGETUB

address x

YIMP address/length x x

YMCLR address/data x x

YMCPY address pair x x

YPOKE address/data x x

YPEEK address/data
address/

data
address/

data
x x

input data field is replaced
with actual data

YPUTLB
YPUTUB

address x

54

55

Image Identifiers

The table below shows the module images that are present in the Flash memory of the
41CL, along with the mnemonics for use with the PLUG and PPLUG functions, any
restrictions on module image placement, the group the image is in, and the XROM num-
bers used by the image. Four character mnemonics were chosen to allow easy-to-remem-
ber ALPHA contents, but only the first and last characters of the mnemonics are parsed by
the PLUG and PPLUG functions.

Mnemonic Description Restrictions Group XROM

AADV Advantage Applications ROM ENG 19

ADV1 Adventure ROM, part 1 4 pages GAM 12

ADV2 Adventure ROM, part 2 4 pages GAM 13

AEC3 AECROM III Module 2 pages GEN 18

AECR AECROM Module 2 pages GEN 18

AFDE AFDC1 ROM 2 pages GOV 16/17

AFDF AFDC2 ROM 2 pages GOV 18/19

AFIN Autofinance Module FIN 21

ALGG Algebra ROM 2 pages MAT 6/7

ALGY Astrology ROM AST 31

ALPH Alpha ROM UTL 6

ANGZ Angel’s ZEPROM 2 pages UTL 3, 12

ANTS HP-41 Antennas Solutions ENG 16

AOSX AMC-OSX ROM SYS 5

ASM4 Assembler 4 UTL 21

ASMB Assembler 3 UTL 21

ASTT Astro-2010 ROM and Astro-2010 UI ROM 4 pages AST 6/8

AUTO HP Autostart HIL 10

AV1Q Beechcraft ROM AVI 31

AVIA HP Aviation Pac 1A AVI 19

B52B Boeing-B52 Module 2 pages GOV 21/31

56

BASI BASIC ROM PRG 8

BBSC BBS ROM 4 pages FIN 11/12/13/14

BCMW BCMW ROM ENG 8

BESL Bessel Functions ROM 2 pages MAT 2/3

BJMX Blackjack MAX -2E GAM 6

BLDR BLD ROM UTL 17

BLJK Blackjack -1B GAM 7

BLND BufferLand ROM after Z41Z UTL 8

BSMS HP-41 Business Sales/Marketing/Stats Solutions FIN 18

BUD2 Buderus-2 Module 2 pages ENG 15/16

BUD3 Buderus-3 Module ENG 9

CCDA Advanced CCD ROM GEN 10

CCDP CCD Plus Module 2 pages UTL 9/11

CCDR CCD Module 1B 2 pages UTL 9/11

CCDX CCD OS/X SYS 5

CENG Chemical Engineering Solutions ENG 12

CHEM Chemistry User Module CHM 20

CHES Chess ROM 2 pages GAM 8

CIRC HP Circuit Analysis Pac 1A ENG 6

CIVI HP-41 Civil Engineering Solutions ENG 16

CIVU Civil Engineering Special Collection 2 pages ENG 20

CLIN HP Clinical Lab & Nuclear Medicine Pac 1A MED 19

CLND HP Calendar Solutions GEN 12

CLUT CL Utilities ROM UTL 12

CMT1 CMT-100 EPROM Test ROM 4 pages HWS 31

CMT2 CMT-200 Data Acquisition ROM HWS 4

CMT3 CMT-300 Multimeter ROM 2 pages HWS 9

CNTL HP-41 Control Systems Solutions ENG 14

COOQ CO-OP ROM 2 pages SVY 31

CRTO Cryptography Module MAT 10

CURV CurveFit ROM 2 pages MAT 4/5

CVPK CVPAK ROM 2 pages ENG 21/31

DA4C Disasm 4C UTL 15

DACQ HP Data Acquisition 1B 2 pages HWS 21/31

DASM Disasm 4D UTL 15

DAVA David Assembler 2C UTL 2

DEMO HP-41 System Demo Program 4 pages GEN 14

DEV2 HP-IL Development Pac 2 2 pages HIL 22/24

DEVI HP HP-IL Development Pac 1B 2 pages HIL 22/24

57

DIFF Differential Equations ROM 2 pages MAT 15

DIGT DigitPAC ROM ENG 24

DIIL HP HP-IL Diagnostic HIL 19

DMND Diamond ROM FIN 31

DST1 CalTrans Survey 4 pages SVY 8/9/10

DYRK Dyerka ROM UTL 31

E41S ES41 Module 2 pages HWS 4/6

EEFD EE Filter Design ROM 2 pages ENG 17/18

EENG HP-41 Electrical Engineering Solutions ENG 15

EILP Extended IL Plus ROM HIL 27

EPRH MLEPR -1H ROM UTL 4

EPRM MMEPROM ROM UTL 16

EPTN Trans-Neptunian Planets 2016-2025 AST 23

ESML ESMLDL 7B Module HWS 10

ETS3 ETSII3 ROM 2 pages ENG 12

ETS4 ETSII4 ROM 2 pages ENG 8/14

ETS5 ETSII5 ROM 2 pages ENG 10/20

ETS9 ETSII6 ROM ENG 16

EXIO HP Extended I/O 1A HIL 23

EXTI SKWID EXT-IL ROM HIL 27

FACC 300889 FACC ROM 2 pages GOV 10/11

FAIR Fairfield ROM 2 pages ENG 21/31

FCS2 Forecast 2 ROM FIN 10

FCST Forecast ROM FIN 10

FDYN Fluid Dynamics Solutions ENG 17

FFEE For Fee ROM ENG 14

FINA HP Financial Decisions Pac 1D FIN 4

FLDB 41CL Flash YCRC Database not pluggable OSL N/A

FRTH FORTH ROM Pages 4 & 7 PRG N/A

FSSY FOCAL Assembly/Disassembly ROM 2 pages PRG 14

FUNS Funstuff ROM 4 pages GAM 10

GAME HP Games Pac 1A GAM 10

GEOM HP-41 Geometry Solutions MAT 14

GMAS GMAC 2 Module FIN 31

GMAT GMAC 3 Module 2 pages FIN 21/31

GMTY Geometry-11 ROM MAT 16

GRAW Gene’s RAW files 2 pages GEN 18

GRVI Gravity & Time ROM 2 pages PHY 16

GSLV Geometric Solver ROM MAT 18

58

GTWN Ghost Town ROM GAM 12

HCMP Hydracomp ROM ENG 21

HCPL Hyper-Complex Math ROM 3 pages MAT 10/20/21

HDIS HEPAX Disassembler UTL 9

HEP2 Modified HEPAX (1E) ROM SYS 7

HEPR HEPAX RAM Template SYS N/A

HEPX HEPAX 1D Module SYS 7

HMAT HP-41 High-Level Math Solutions MAT 12

HOME HP Home Management Pac 1A FIN 9

HSRV HP Service Module Page 4 OSL N/A

HVAC HVAC Solutions ENG 16

IBOX ICEbox 1H UTL 4

ICOD ICODE ROM PRG 19

IDC1 IDC1 ROM MED 21

IDC2 IDC2 ROM 2 pages MED 21/22

IERR IERR ROM 2 pages MAT 1

ILBF IL Buffer ROM HIL 22

IMDB 41CL Image Database not pluggable OSL N/A

INDO Philips Indoor Lighting ROM ENG 10

INTG Integration ROM 2 pages MAT 16

ISEN ISENE ROM GEN 17

ISOL Interchangeable Solutions ULPE Program PRG 11

ITCP NutIP TCP/IP ROM HIL 4

JARR K. Jarrett XF/SP books 2 pages GEN 17/18

JMAT JMB-Math ROM 2 pages MAT 5/6

JMBC JMB-Calendar ROM GEN 17

JMTX JMB-Matrix ROM 2 pages MAT 8

K135 KC-135 Weight & Balance ROM 4 pages GOV 16/21/31

KRGM Kruse/Gosmann books 2 pages GEN 17/18

L119 AFDC-L119 ROM 2 pages GOV 21/31

LAIT Laitram XQ2 ROM Page 4 SYS N/A

LAND LandNav Module NAV 1

LBLS Labels ROM UTL
LENG Solar Engineering Solutions ENG 14

LNDL HP-41 Lend, Lease Savings Solutions FIN 19

LPLC Laplace Transform ROM 2 pages MAT 10

MADV Modified Advantage Pac 2 pages MAT 24/26

MASS Extended Mass Storage ROM HIL 16

MATH HP Math Pac 1D MAT 1

59

MBFR Memory Functions Buffer Area (RAM page 806) not pluggable OSL N/A

MCCK Alan McCornack book GEN 16

MCHN HP Machine Design Pac 1A ENG 12

MCMP Mountain Computer 1C HWS 15

MDP1 MDP1 ROM 2 pages ENG 15/16

MDP2 MDP2 ROM 2 pages ENG 17/18

MELB Melbourne ROM GEN 12

MENG HP-41 Mechanical Engineering Solutions ENG 16

MILE Military Engineering 2 pages GOV 21/31

MLBL David Assembler Labels ROM UTL
MLRM MLROM UTL 21

MLTI Multi-Precision Library ROM MAT 3

MONO Monopoly ROM 2 pages GAM 16

MTRA Advanced Matrix ROM 4 pages MAT 22/24

MTRX Matrix ROM MAT 7

MTST MCTEST ROM HWS 3

MUEC Muecke ROM 2 pages ENG 21/31

MWK3 MWK-3 Module ENG 10

MWK4 MWK-4 Module 2 pages ENG 21/31

NAVI HP Navigation Pac 1B 2 pages NAV 14

NCHP NOV CHAP ROM UTL 31

NEA1 SNEAP-1 and -2 ROM 2 pages ENG 21/31

NEA3 SNEAP-3 and -4 ROM 2 pages ENG 11/10

NEA5 SNEAP-5 and -6 ROM 2 pages ENG 13/14

NEXT NEXT ROM UTL 6

NFCR NFCROM 1B HWS 17

NONL Non-linear Systems Module MAT 16

NPAC Navpac ROM 2 pages NAV 14/15

NTHY Number Theory ROM MAT 16

NVCM NAVCOM 2 2 pages NAV 14/15

OBCZ OBCSYS ROM MED 31

OILW Oilwell ROM 2 pages ENG 21/31

OPTO HP-41 Optometry Solutions MED 16

OS41 HP-41 Operating System Page 0 OSL N/A

OSX3 Library-4 OS/X Bank-Switched ROM SYS 5

OTRP Oventrop Ventil Module 2 pages ENG 5/6

P3BC Aviation Pac for P3B/C 4 pages GOV 9/21/31

PANA Paname ROM 2 pages GEN 5/9

PARI ProtoPARIO ROM HWS 14

60

PCOD Pcoder 1A Module HWS 16

PETR HP Petroleum Fluids Pac 1A 2 pages ENG 15/16

PHYH HP-41 Physics Solutions PHY 15

PKP1 Poul Kaarup’s Alpha and Pointers ROM UTL 31

PKP2 Poul Kaarup’s Math and Physics ROM, pg 1 2 pages MAT 14/15

PKP3 Poul Kaarup’s Flags and Stack ROM UTL 3

PKP4 Poul Kaarup’s Program Utilities ROM UTL 5

PKP5 Poul Kaarup’s Timer and Utilities ROM UTL 18

PLOT HP Plotter Pac 1A 2 pages HIL 17/18

PMLB PPC-Melbourne ROM GEN 12

POLY Polynomial Functions ROM 2 pages MAT 6/9

PPCM PPC Module 2 pages GEN 10/20

PPCU PPC User Programs 2 pages GEN 17/18

PPOK Poker ROM GAM 10

PRFS Profiset ROM 2 pages HWS 27/31

PRIQ Pride ROM 2 pages ENG 21/31

PROG Program Generator ROM PRG 18

PRTW Ports ROM 2 pages NAV 11

PSOF PS0F ROM HWS 16

PSRV Printer Service ROM Page 4 OSL N/A

PWRL Power CL ROM UTL 12

PWRX Power CL Extreme ROM UTL 12

QUAT Quaternions ROM 2 pages MAT 15/16

RAMP RAMpage ROM UTL 15

REAL HP Real Estate Pac 1A 2 pages FIN 11

RM32 RAMbox-32 ROM HWS 31

RMPG RAMpage ROM UTL 15

ROAM ROAM-0A ROM GEN 5

ROMS ROMSV01 ROM UTL 9

ROSV RSU-OS ROM 2 pages HWS 4/6

RUBK Rubik’s Cube ROM GAM 8

SANA Sandmath-7 ROM (12K version) 4 pages MAT 2/3/6

SBOX Sandbox ROM 2 pages MAT 8/13

SEAK SeaKing ROM GOV 21

SECY HP Securities Pac 1A FIN 19

SGSG SGS GAS Module ENG 21

SHTZ Spreadsheet ROM FIN 8

SIHP SI ROM MAT 24

SIMM SIM Module 4 pages SVY 4/10/30/31

61

SKWD SKWID ROM HIL 8

SM33 Library-4 Sandmath 3x3 ROM 2 pages MAT 2/3

SM44 Library-4 Sandmath 4x4 ROM 2 pages MAT 2/3

SMCH Speed Machine II ROM 2 pages FIN 21/31

SMPL Simplex Module MAT 16

SMTS Sandmath-7 ROM (8K version) 2 pages MAT 2/3

SND2 Sandmath II ROM 2 pages MAT 2/3

SPEC Spectral Analysis ROM MAT 8

STAN HP Standard Applications Pac 1C GEN 5

STAT HP Statistics Pac 1B MAT 2

STEQ Steam Properties ROM STEQ 12

STRE HP Stress Analysis Pac 1A ENG 8

STRU HP Structural Analysis Pac 1B 2 pages ENG 7/19

SUD1 Sudoku ROM GAM 16

SUPR SUP-R-ROM 2 pages SVY 21/31

SURV HP Survey Pac 1B SVY 3

TAFB Tinker AFB ROM 2 pages GOV 21/31

TDSI TDS Instrument ROM 2 pages SVY 5,12

TDSM TDS Surveying ROM 4 pages SVY 4,10,31,30

TDSP TDS Plotter ROM 2 pages SVY 8,9

TEST HP-41 Test Statistics Solutions MAT 13

THER HP Thermal & Transport Science Pac 1A ENG 13

TIDW Tides and Ports ROM NAV 10

TIME HP-41 Timer Solutions GEN 6

TMAX Turbo-MAX -3A GAM 6

TMOD HP-41 Time Module page 5 OSL 26

TOMS TOMSROM SVY 6

TOOL Toolbox II ROM UTL 13

TREK Trekkies ROM GAM 11

TRIH 83trinh ROM GEN 9

TTRC Total Rekall ROM GEN 20

TVMY TVM ROM FIN 22

UCCD CCD Manual examples GEN 18

UCLN User Calendar ROM GEN 18

UNIT UnitConv ROM ENG 10

USPS USPS Module 2 pages GOV 21/31

VECT Vector Analysis ROM MAT 14

VEGS Vegas -1C GAM 6

VERM Vermpack ROM SVY 27

62

VONK Math Programs Collection MAT 16

WRAM W&W Rambox-64B ROM HWS 31

WWDB Wickes, Wlodek, Dearing Books GEN 17

XBFR Direct Stiffness Method: Beams & Frames 2 pages ENG 30

XFN3 HP-41 X-Functions (page 3) page 3 OSL 25

XFN5 HP-41 X-Functions (page 5, bank 2) page 5/bnk 2 OSL N/A

XPMM CL X-Memroy Functions OSL 20

XTAT XM Statistics MAT 6

XTRS Direct Stiffness Method: Trusses 2 pages ENG 30

XXXA 4K user image at address 0x0C8000 GEN
XXXB 4K user image at address 0x0D0000 GEN
XXXC 4K user image at address 0x0D8000 GEN
XXXD 8K user image at address 0x0E0000 2 pages GEN
XXXE 8K user image at address 0x0E2000 2 pages GEN
XXXF 16K user image (four banks) at address 0x0E4000 GEN
YACH Bobby Schenk’s Yacht Module 2 pages NAV 21/31

YBFR Extra Functions Buffer Area (RAM page 805) OSL N/A

YFNF 41CL Memory Functions OSL 16

YFNP 41CL Extra Functions Plus OSL 15

YFNS optional 41CL Extra Functions (XROM #31) OSL 31

YFNX 41CL Extreme Functions OSL 15

YFNZ default 41CL Extra Functions (XROM #15) OSL 15

YLIB 41CL Extreme Functions Library Page 4 OSL N/A

Z41Z HP41Z Complex Number ROM 2 pages MAT 1/4

ZENR ZENROM ROM UTL 5

ZEPM ZEPROM ROM HWS 9

16CS 16C Simulator ROM GEN 16

2SWP Misc routines from 412 Swap Disks 2 pages GEN 10

3SWP Swap Disk Math ROM 2 pages MAT 12/13

41AD HP Advantage Pac 1B 2 pages GEN 22/24

441Z Library-4 HP41Z Complex Number ROM 2 pages MAT 1/4

4ADV Library-4 Advanced Matrix ROM 2 pages MAT 22/24

4ALP Library-4 Alpha ROM UTL 6

4AOS Library-4 AMC OSX ROM SYS 5

4DIG Library-4 41Z Diagnostic ROM MAT 8

4LIB Library-4 ROM Page 4 PRG N/A

4MTI Library-4 Matrix/Polynomial ROM 2 pages MAT 22

4MTR Library-4 Matrix ROM MAT 7

4PLY Library-4 Polynomial ROM MAT 6

63

Group definitions are shown below:

4RAM Library-4 RampageX ROM UTL 17

4SM4 Sandmath44 2x2 ROM 2 pages MAT 2/3

4SMT Library-4 Sandmath ROM 2 pages MAT 2/3

4TBX Library-4 Toolbox ROM UTL 13

4UTL Library-4 CL Utilities ROM UTL 12

Identifiers highlighted in blue are obsolete, having been superceeded by newer
images. These images are not loaded onto V2 boards by default.

Identifiers highlighted in cyan are not loaded onto V2 boards by default because of
space constraints.

AST Astronomy

AVI Aviation

CHM Chemistry

ENG Engineering

FIN Financial

GAM Games

GEN General-purpose

GOV Government/Military

HIL HP-IL

HWS Hardware-specific

MAT Mathematics

MED Medicine

NAV Navigation

NUL Nulled Entry

OSL OS/CL

PHY Physics

PRG Programming

SVY Surveying

SYS System extensions

UTL Utilities

UNP Unprogrammed

64

65

Memory Management

The original 41C system used dedicated ROM and RAM chips to implement the memory
for the calculator, and the memory organization was mostly hidden from the user. The
41CL calculator replaces these custom memory chips with a pair of industry-standard
memory devices, and besides the normal 41C view of memory, provides built-in functions
that allow the user direct access to the physical memory.

The original ROM memories (including the plug-in ROMs in application pacs) are
replaced with a single Flash (non-volatile, but re-programmable) memory, while the RAM
chips are replaced with a single low-power RAM device. Given the advance of technology
since the design of the original 41C system, these new memory devices provide signifi-
cantly more storage than the original 41C system could even use. To take advantage of
this increased storage capacity, the 41CL design includes a Memory Management Unit
(MMU). Plug-in application pacs and peripherals are still supported, but separate applica-
tion pacs are no longer really necessary.

The MMU takes the memory address, in either the program (ROM) address space or the
data (RAM) address space, and translates this address into an address in either the Flash
memory or the static RAM. This translation is completely automatic and transparent to the
user.

Most users will never need to concern themselves with the operation of the MMU, as the
new 41CL Extra Functions take care of programming the MMU in most cases. However,
advanced users may need to understand how the MMU works and is programmed to take
full advantage of some features of the 41CL calculator.

The MMU and program addresses

The 41C system uses a 16-bit (64K) program address, which is divided into sixteen pages
of 4K each. For many of these pages, there can be up to four “banks”, which are selected
under software control during program operation. This natural division of 4K pages is
used by the MMU in the 41CL, so that each bank in each page can be mapped by the
MMU to a specific absolute address in the Flash memory or RAM on the 41CL circuit
board.

66

To accomplish this mapping, the MMU takes the upper four bits of the program address
(which selects the page), plus the two bits which select the bank, and forms a special
memory address. The contents of this memory location, if the MMU is enabled, replaces
the original upper four bits of the program address and forms a 24-bit address that is used
to access the memory devices on the 41CL circuit board (the lower twelve bits are not
modified by the MMU). Thus, in theory, any page can be mapped to any 4K page in the
physical memory on the 41CL circuit board.

The 41CL does not allow user control of the mapping of some of the pages, to protect the
Operating System (OS) of the calculator. So pages 0, 1, and 2 are normally never mapped
by the MMU, because this is where the basic OS is stored. In addition, pages 3 and 5 are
normally never mapped by the MMU, because this is where the X-Functions and Time
Module functions for the calculator are located. But every other page can be mapped using
the MMU.

The MMU entries are located in the 4K page of memory starting at address 0x804000,
which is located in RAM. The actual address for an MMU entry is formed using this base
address, with the page number replacing bits 7-4 and the bank number replacing bits 3-2.
Note that the order of the banks follows the encoding used by the original 41C hardware,
rather than conventional encoding. Since not all pages support banks only the following
MMU entries are valid:

Physical Address Contents

0x80400C MMU register for Page 0 (no banking supported)

0x80401C MMU register for Page 1 (no banking supported)

0x80402C MMU register for Page 2 (no banking supported)

0x80403C MMU register for Page 3 (no banking supported)

0x804040 MMU register for Page 4, Bank 1

0x804044 MMU register for Page 4, Bank 3

0x804048 MMU register for Page 4, Bank 2

0x80404C MMU register for Page 4, Bank 4

0x804050 MMU register for Page 5, Bank 1

0x804054 MMU register for Page 5, Bank 3

0x804058 MMU register for Page 5, Bank 2

0x80405C MMU register for Page 5, Bank 4

0x804060 MMU register for Page 6, Bank 1

0x804064 MMU register for Page 6, Bank 3

0x804068 MMU register for Page 6, Bank 2

0x80406C MMU register for Page 6, Bank 4

0x804070 MMU register for Page 7, Bank 1

0x804074 MMU register for Page 7, Bank 3

67

Pages 8-F correspond to the Ports on the calculator, with pages 8-9 being Port 1, pages A-
B being Port 2, and so on. The MMU entries for these pages are automatically handled by
41CL Extra Functions, so only the MMU entries for Page 4 needs to be manually pro-
grammed.

Page 4 is special to the OS, and only a few ROM images can be used in it. If you don’t
know what you are doing, don’t try to use Page 4. Page 6 is normally used by a printer and
Page 7 is used by HP-IL, so don’t try to use either of these pages unless you don’t need
access to a printer or HP-IL.

Pages 0-3 and 5 contain the OS for the machine, so the MMU entries for these pages are
normally not used.

The contents of an MMU memory location are used as follows:

Bit 15 is the Enable (EN) bit. If this bit is zero, the MMU entry is ignored and the corre-
sponding page and bank will be fetched from a Port.

Bit 14 is the Lock (LCK) bit, used only with the 41C Extreme Functions. If this bit is set to
one the entry cannot be changed, except with either the UNLOCK function or the
MMUCLR function.

Bits 13 and 12 are the Multi-page Image (MULTI) bits, used only with the 41CL Extreme
Functions. These bits are managed automatically by the PLUG and PPLUG functions,
with the following meanings:

0x804078 MMU register for Page 7, Bank 2

0x80407C MMU register for Page 7, Bank 4

0x804080 MMU register for Page 8, Bank 1

0x804084 MMU register for Page 8, Bank 3

0x804088 MMU register for Page 8, Bank 2

0x80408C MMU register for Page 8, Bank 4

.

.
.
.

0x8040F0 MMU register for Page F, Bank 1

0x8040F4 MMU register for Page F, Bank 3

0x8040F8 MMU register for Page F, Bank 2

0x8040FC MMU register for Page F, Bank 4

bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EN LCK MULTI A23 A22 A21 A20 A19 A18 A17 A16 A15 A14 A13 A12

68

Bits 11-0 hold the twelve address bits to be substituted for the Page address (bits 15-12)
portion of the logical address, to create the physical address.

The MMU and data addresses

Data addresses (“registers” in 41C parlance) are also translated by the MMU, but this
translation is not programmable. Instead, registers are mapped to specific locations in the
RAM on the 41CL board. This dedicated mapping is shown in the table below. Note that
the 41C OS is not capable of addressing registers above 0x3FF, but space is reserved in
the 41CL memory for register addresses up to 0xFFF in case there are future enhance-
ments to the OS code.

In the 41C system only the lower four bits of the register address can be specified by an
instruction, and all of the upper register address bits are held in a dedicated register called
(not surprisingly) the “register address”. In the 41CL this register address is stored in the
RAM in a special location, at address 0x804000.

Like the original 41C, the 41CL preserves the data in RAM as long as power is applied.
Unlike the original 41C, the 41CL allows RAM to be used to hold program data. All that
is required for this type of operation is that the MMU point to a 4K block of RAM rather
than a 4K block in the Flash portion of the address space. In the 41CL bit 23 of the physi-
cal memory address determines whether the address is in Flash (bit 23 is zero) or in RAM
(bit 23 is one).

A seven-byte 41C register is stored in four successive memory locations as shown below:

13 12 MULTI

0 0 Not part of a multi-page image

0 1 First page of a multi-page image

1 1 Middle page of a multi-page image

1 0 Last page of a multi-page image

bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

addr lsb

00 Byte 1 Byte 0

01 Byte 3 Byte 2

10 Byte 5 Byte 4

11 unused Byte 6

69

The table below shows the organization of the 41C register memory in the physical mem-
ory of the 41CL circuit board. Because the OS manages the data in these locations, users
are discouraged from attempting to modify any of these memory locations.

This table is a subset of the information presented in the mem_ref.pdf document. Refer to
that document for a full explanation of how information is organized in the physical mem-
ory of the 41CL.

Physical Address Contents Operating System (OS) use

0x800000 - 0x800003 Register 000 T register

0x800004 - 0x800007 Register 001 Z register

0x800008 - 0x80000B Register 002 Y register

0x80000C - 0x80000F Register 003 X register

0x800010 - 0x800013 Register 004 LAST X register

0x800014 - 0x800017 Register 005 ALPHA register 1-7

0x800018 - 0x80001B Register 006 ALPHA register 8-14

0x80001C - 0x80001F Register 007 ALPHA register 15-21

0x800020 - 0x800023 Register 008 ALPHA register 22-28

0x800024 - 0x800027 Register 009 Temp ALPHA Scratch

0x800028 - 0x80002B Register 00A Unshifted Key Assign, OS status

0x80002C - 0x80002F Register 00B Program Return Stack

0x800030 - 0x800033 Register 00C Program Return Stack, Program Pointer

0x800034 - 0x800037 Register 00D Address Pointers

0x800038 - 0x80003B Register 00E FLAG register

0x80003C - 0x80003F Register 00F Shifted Key Assign, Program Line Number

0x800040 - 0x8000FF Registers 10 - 3F not visible to OS

0x800100 - 0x800103 Register 040

X memory

0x800104 - 0x800107 Register 041

.

.
.
.

0x8002F8 - 0x8002FB Register 0BE

0x8002FC - 0x8002FF Register 0BF

0x800300 - 0x800303 Register 0C0

Main memory

0x800304 - 0x800307 Register 0C1

.

.
.
.

0x8007F8 - 0x8007FB Register 1FE

0x8007FC - 0x8007FF Register 1FF

0x800800 - 0x800803 Register 200 not visible to OS

70

0x800804 - 0x800807 Register 201

X memory

0x800808 - 0x80080B Register 202

.

.
.
.

0x800BB8 - 0x800BBB Register 2EE

0x800BBC - 0x800BBF Register 2EF

0x800BC0 - 0x800C03 Registers 2F0 - 300 not visible to OS

0x800C04 - 0x800C07 Register 301

X memory

0x800C08 - 0x800C0B Register 302

.

.
.
.

0x800FB8 - 0x800FBB Register 3EE

0x800FBC - 0x800FBF Register 3EF

0x800FC0 - 0x800FFF Registers 3F0 - 3FF not visible to OS

0x801000 - 0x801FFF Registers 400 - 7FF

not currently utilized by OS0x802000 - 0x802FFF Registers 800 - BFF

0x803000 - 0x803FFF Registers C00 - FFF

0x804000 OS Register Address buffer

71

Programming the MMU

The PLUG functions allow the user to insert module images into nearly every open Page
on the 41CL. The one exception is Page 4. This was done intentionally, because Page 4 is
special as far as the Operating System (OS) is concerned, and can take over the machine in
certain circumstances. But there are a number of images present in Flash memory that can
only be loaded into Page 4, and this section will show you how to do this for three of them.

Library-4

The Library-4 ROM was written by ‘Angel Martin specifically for use with several other
images that he contributed to the 41CL. The Library-4 ROM contains common subrou-
tines that are called from these other ROMs. Having a fixed address for subroutines allows
for much quicker access and more efficient code because the subroutine entry addresses
can be hard-coded in the calling programs.

The Library-4 ROM image is located at address 0x120000, and has an associated IMDB
entry so that it can be used with the IMDB? function. Once installed, it is completely
invisible as far as the OS is concerned, even when not in use.

The Library-4 ROM is installed by simply writing to the Page 4 MMU entry, using the
YPOKE command:

ALPHA 804040-8120 ALPHA
XEQ ALPHA YPOKE ALPHA

The FORTH ROM

The regular PLUG functions cannot be used to insert the FORTH ROM into the 41CL
logical memory because this ROM is hard-coded to use Page 4 and Page 7. Instead, you
will need to program the MMU entries for Pages 4 and 7 directly.

72

It’s a little more complicated than just programming the two MMU entries though. The
problem is that between programming the two MMU entries the OS is going to check cer-
tain locations in program memory, including the start of Page 4 and places near the end of
Pages 5 through F. This means that the OS will get confused with only half of the FORTH
ROM visible. The way around this problem is to disable the MMU during programming.
The sequence of commands shown below will enable FORTH ROM.

First, the MMU is disabled. This has no effect on the contents of the MMU:

XEQ ALPHA MMUDIS ALPHA

Next, the MMU for pages 4 and 7 are programmed to point at the FORTH ROM image:

ALPHA 804040-809A ALPHA
XEQ ALPHA YPOKE ALPHA

ALPHA 804070-809B ALPHA
XEQ ALPHA YPOKE ALPHA

Finally, the MMU is re-enabled:

XEQ ALPHA MMUEN ALPHA

Disabling the FORTH ROM is only possible by turning off the calculator and momen-
tarily removing the batteries, because once the FORTH module is active the 41CL Extra
Functions are no longer available.

The HP Service ROM

The HP Service ROM was used by HP to test returned calculators, and is hard-coded to
use Page 4. This ROM is intended to take over the calculator, so installation is as simple as
programming the MMU for Page 4. Refer to the HP 41C Service Manual for instructions
on using the test facilities in this ROM.

ALPHA 804040-8004 ALPHA
XEQ ALPHA YPOKE ALPHA

Disabling the HP service ROM is only possible by turning off the calculator and momen-
tarily removing the batteries, which disables the MMU.

73

Image Database

An entry in the Image Database consists of four words, and the format of the database is
set up to make adding new entries very easy. An unprogrammed Image Database entry
contains 0xFFFF in all four words. This is the default contents of Flash memory, where
the database is stored, which means that new entries can simply be added to the Image
Database without first needing to erase the Flash sector where the database is stored.

The PLUG functions will return a NO ENTRY error message if the user attempts to use
a module identifier corresponding to an unprogrammed database entry. An Image Data-
base entry can be “erased” by writing 0x0000 to the first two words. In this case the
PLUG functions will return a NULL ENTRY error message for the corresponding mod-
ule identifier.

To preserve backwards-compatibility with previous versions of the 41CL Extra Functions,
the Image Database entries are addressed as a function of the first and fourth characters of
the module identifier only.

In order to limit the size of the database to 4K words only the characters A - Z, 1 - 5 and
9 (32 possibilities) are allowed for the first and fourth character of a module identifier. In
addition, when the first character of the module identifier is 9 and only the characters A -
Z are allowed for the fourth character of the module identifier, to provide some space for
housekeeping in the database. Any character is allowed for the second and third characters
of the module identifier.

The contents of each database entry are shown in the table below.

Image Data base
entry word

Address
LSBs

digit 3
meaning

digit 2
meaning

digit 1
meaning

digit 0
meaning

1 00 image group image type address<5>

2 01 page restriction type modifier address<4> address<3>

3 10 always 0 always 0 character 3 of module identifier

4 11 always 0 always 2 character 2 of module identifier

74

Digits 3 and 2 of the first word in a database entry are used only by the 41CL Extreme
Functions, to search the database by group. The table below shows the groups available
and their encoding in these two digits. Note that these two digits are always written as 00
when using the IMDBINS function, so if you want to add a custom identifier to a group,
you will need to write directly to the correct memory location (in the RAM copy of the
Image Database) with one of these values included.

Digit 1 in the first word of a database entry specifies the type of image, according to the
table below. Only these values are currently valid as far as the PLUG functions are con-
cerned.

word 1
digits 3:2

Group meaning

00 NUL none (or Null Entry)

10 GEN General-Purpose

20 MAT Mathematics

30 ENG Engineering

40 FIN Financial

50 GAM Games

60 UTL Utilities

70 SYS System Extensions

80 HIL HP-IL

90 HWS Hardware-Specific

A0 OSL OS/CL

C0 AST Astronomy

C1 AVI Aviation

C2 CHM Chemistry

C3 MED Medicine

C4 GOV Covernment/Military

C5 NAV Navigation

C6 PHY Physics

C7 PRG Programming

C8 SVY Surveying

Fx UNP Unprogrammed database entry

word 1
digit 1

image type for this module identifier

0 4K image (one page)

1 8K image (two pages)

2 16K image (all four banks in one page)

3 16K (four pages)

4 32K (all four banks in two pages)

75

A type digit of 4 is a slightly special case. The PLUG functions treat this image type as
32K words, consisting of four banks to be loaded into two adjacent pages. However, the
images that use this type identifier really only use the first two or three banks in the second
page. This leaves one or more 4K-word sections of memory available to store other
images, and the 41CL takes advantage of this space. So the database search functions treat
a type digit of 4 as 24K words in length, and return search results accordingly.

Digit 0 of the first word and digits 1 and 0 of the second word of a database entry hold the
starting memory address for the image referenced by the module identifier. This is a phys-
ical address that can be in either Flash memory or RAM. Note that if the starting address is
000, along with a type digit of 0, the entry is considered a null entry.

Digit 3 of the second word of a database entry is used only by the 41CL Extreme Func-
tions if there are restrictions on where the image can be placed, according to the table
below:

Digit 2 of the second word of a database entry is used only by the 41CL Extreme Func-
tions to modify the type field, according to the table below:

Digits 1 and 0 of the third and fourth words of a database entry hold the middle two char-
acters of the module identifier. This allows an address-based search of the database to
return the full module identifier. It would also allow the PLUG functions to check for the
full module identifier, but this feature was not implemented to preserve backwards-com-
patibility. These two words can use either the “display” encoding, where A - Z are
encoded as 0x41-0x5A, or the “assembly language” encoding, where A - Z are encoded as
0x01-0x1A. All of the original entries in the Image Database use the “assembly language”
encoding, while any user-added entries will always use the “display” encoding.

As mentioned previously, entries in the Image Database are addressed using the first and
fourth characters of a module identifier. Each of these characters must be translated to a 5-

word2
digit 3

Page Restriction

0 No Restriction

1 Not Pluggable

2 Page 0 only

3-F Page 3-F only

word2
digit 2

Type Modification

0 No Modification

1 Modify type 3 to 12K (3 pages)

76

bit field to create an address to index the database. The table below shows the translation
algorithm.

The address for an Image Database entry is formed as shown below:

character 41 code address field

A 41 00000

B 42 00001

C 43 00010

D 44 00011

E 45 00100

F 46 00101

G 47 00110

H 48 00111

I 49 01000

J 4A 01001

K 4B 01010

L 4C 01011

M 4D 01100

N 4E 01101

O 4F 01110

P 50 01111

Q 51 10000

R 52 10001

S 53 10010

T 54 10011

U 55 10100

V 56 10101

W 57 10110

X 58 10111

Y 59 11000

Z 5A 11001

1 31 11010

2 32 11011

3 33 11100

4 34 11101

5 35 11110

9 39 11111

Image Database
address nibble 2

Image Database
address nibble 1

Image Database
address nibble 0

3 2 1 0 3 2 1 0 3 2 1 0

First character module identifier
address field

Fourth character module identifier
address field

word
identifier

77

All versions of the PLUG functions (in the 41CL Extra Functions, the 41CL Extra Func-
tions Plus, and the 41CL Extreme Functions) parse only the first and last characters of an
image identifier. The tables below present all of the image identifiers organized in col-
umns based on the first character, and rows based on the last character.

78

A B C D E F G H I
A AVIA CCDA DAVA FINA
B ASMB B52B FLDB IMDB
C BBSC CIRC DA4C FACC HVAC
D BLND CLND DMND EEFD ICOD
E AFDE FFEE GAME HOME
F AFDF DIFF ILBF
G ALGG CENG EENG INTG
H ALPH EPRH FRTH
I BASI CIVI DEVI EXTI GRVI
J
K BLJK CVPK DYRK
L BESL CNTL DIIL ESML HCPL ISOL
M CHEM DASM EPRM GEOM
N AFIN CLIN EPTN FDYN GTWN ISEN
O AUTO CRTO DEMO EXIO INDO
P A41P CCDP EILP HCMP ITCP
Q AV1Q COOQ DACQ
R AECR BLDR CCDR FAIR HEPR IERR
S ANTS BSMS CHES E41S FUNS GMAS HDIS
T ASTT CLUT DIGT FCST GMAT HMAT
U CIVU
V AADV CURV GSLV HSRV
W BCMW GRAW
X AOSX BJMX CCDX HEPX IBOX
Y ALGY FSSY GMTY
Z ANGZ
1 ADV1 CMT1 DST1 IDC1
2 ADV2 BUD2 CMT2 DEV2 FCS2 HEP2 IDC2
3 AEC3 BUD3 CMT3 ETS3
4 ASM4 ETS4
5 ETS5
9 ETS9

79

J K L M N O P Q R
A MTRA PANA
B MELB PMLB
C JMBC LPLC MUEC NPAC P3BC
D LAND PCOD
E MILE
F PSOF
G LENG MENG PROG RMPG
H MATH PHYH
I MLTI NAVI PARI
J
K MCCK PPOK RUBK
L LNDL MLBL NONL PWRL REAL
M KRGM MLRM NVCM PPCM ROAM
N MCHN
O MONO OPTO
P MCMP NCHP OTRP RAMP
Q PRIQ
R JARR MBFR NFCR PETR
S LBLS MASS PRFS ROMS
T JMAT LAIT MTST NEXT PLOT QUAT
U PPCU
V MADV PSRV ROSV
W OILW PRTW
X JMTX MTRX
Y NTHY POLY
Z OBCZ
1 MDP1 NEA1 OS41 PKP1
2 MDP2 PKP2 RM32
3 MWK3 NEA3 OSX3 PKP3
4 MWK4 PKP4
5 K135 NEA5 PKP5
9 L119

80

S T U V W X Y Z -
A SANA XXXA
B TAFB WWDB XXXB YLIB
C SPEC TTRC XXXC
D SKWD TMOD UCCD XXXD
E STRE TIME XXXE
F XXXF YFNF
G SGSG
H SMCH TRIH YACH
I TDSI
J
K SEAK TREK VONK -16K
L SMPL TOOL -DBL
M SIMM TDSM VERM WRAM XPMM ZEPM -RAM
N STAN UCLN
O
P SIHP TDSP YFNP
Q STEQ
R SUPR THER XBFR YBFR ZENR
S SMTS TOMS USPS VEGS XTRS YFNS
T STAT TEST UNIT VECT XTAT
U STRU
V SURV
W TIDW
X SBOX TMAX YFNX -MAX
Y SECY TVMY
Z SHTZ YFNZ Z41Z
1 SUD1
2 SND2
3 SM33 XFN3
4 SM44
5 XFN5
9

81

1 2 3 4 5 9
A
B 4LIB
C
D
E
F
G 4DIG
H
I 4MTI
J
K
L 4UTL
M 4RAM
N
O
P 2SWP 3SWP 4ALP
Q
R 4MTR
S 16CS 4AOS
T 4SMT
U
V 4ADV
W
X 4TBX
Y 4PLY
Z 441Z
1 9MM1
2 9DD2
3 9YY3
4 4SM4
5
9

Identifiers highlighted in blue are obsolete, having been superceeded by newer
images. These images are not loaded onto V2 boards by default, and may be
removed from the standard Flash memory map inthe future.

Identifiers highlighted in cyan are not loaded onto V2 boards by default because of
space constraints.

82

Identifiers highlighted in red are deprecated.

Idenifiers 9MM1, 9DD2 and 9YY3 are not really identifiers. Rather, the MM/DD/
YY are replaced with the issue date of the Image Database.

83

Patching Code

The 41CL Extra Functions make it simple to patch software pre-loaded into the 41CL.
Most of the software pre-loaded into the Flash memory can be copied to the RAM mem-
ory, patched, and then the MMU can be used to reference this patched code. Only pages
that cannot be relocated by the MMU cannot be patched. This is pages 0-3 and 5 (which
hold the Operating System, the Extended Functions and the Time Functions.) As men-
tioned previously, these pages are protected from modification to prevent users from inad-
vertently turning the 41CL into a brick.

To illustrate what is required to patch code, go through the steps below to modify the
ROM ID of the 41CL Extra Functions to avoid a conflict with other modules.

To patch code the ROM image must first be copied to an available page in RAM using the
YMCPY function. The YMCPY function automatically executes in 50x Turbo mode and
requires about 8 seconds to complete.

ALPHA 007>80C ALPHA
XEQ ALPHA YMCPY ALPHA

In this example just one location needs to be modified for proper operation. Note that
whenever patches are specified only the 4K relative address will be given. Use the upper
nibbles of the RAM address chosen to hold the patched code for the remainder of the
address.

0x000 should be 0x0010 to change the ROM ID to 16 (which is 10 in hexadecimal)

Use the YPOKE function to write directly to the desired location in RAM memory. Since
we are using the page starting at address 0x80C000 to hold the patched ROM image the
following keystrokes are required to apply this patch:

ALPHA 80C000-0010 ALPHA
XEQ ALPHA YPOKE ALPHA

84

Then we can use the PLUG1L function to insert the patched image into the lower half of
Port 1 (or wherever the 41CL Extra Functions are, or will be, located):

ALPHA 80C-RAM ALPHA
XEQ ALPHA PLUG1L ALPHA

It’s that simple! The MMU in the 41CL, along with the ability to peek and poke memory,
makes this machine a hacker’s delight.

85

Using HEPAX

The HEPAX module was one of the most complex third-party 41C modules ever created.
It had hardware and software that automatically relocated the module to the lowest unused
page of memory, and provided RAM that resided in program memory for file storage. Not
all of the features of the HEPAX module are supported by the 41CL calculator, and this
section will discuss the details of how to use the HEPAX image included in the 41CL
Flash memory.

The HEPAX module implemented write-protection for pages of HEPAX RAM, using an
opcode that was ignored by the processor in the 41C. This opcode is also ignored by the
NEWT processor in the 41CL, but the write-protect feature is not supported by the 41CL
hardware. Keep this in mind if you attempt to write-protect pages of HEPAX memory.

The 41CL Extra Functions make it easy to create a backup copy of RAM pages, using the
YMPCY function to copy an entire page of memory to another location in physical mem-
ory. If you are doing work that might inadvertently corrupt HEPAX RAM, which is what
the write-protect feature was for, try creating a copy of the HEPAX RAM page first. Since
the HEPAX code does not “know” about physical memory, the copy will effectively be
write-protected.

The main issue for HEPAX users is that the 41CL hardware does not support the auto-
matic relocation of the HEPAX image. The MMU makes this function unnecessary, so the
HEPAX image in the 41CL has been modified to eliminate the automatic relocation fea-
ture. Unfortunately a by-product of this modification is that the HEPAX RAM will not be
automatically initialized at start-up. Instead, you will need to initialize any HEPAX RAM
when the HEPAX image is first plugged into a port.

The 41CL provides a template for initializing HEPAX RAM pages, which simplifies the
process considerably, but you will still need to initialize one or two locations in each RAM
page if you are using multiple pages of HEPAX RAM. If you want to use just one page of
HEPAX RAM, no extra initialization is required.

The 41C code listing below shows the template for initializing HEPAX RAM. This tem-
plate, which is stored at address 0x0B9000 in the 41CL Flash, should be copied to each
4K block of RAM that is going to be used for HEPAX RAM. The “fixed value” locations

86

are checked by the HEPAX software, and values not matching those shown in the listing
template will cause an error when the HEPAX code attempts to use the RAM.

Two locations in each HEPAX RAM page contain address pointers. These address point-
ers hold four-bit page numbers in the least-significant digit. The pointer at address 0xFE7
points to the previous page of HEPAX RAM, and a value of 0x000 here marks a page of
HEPAX RAM as the first in the chain. The pointer at address 0xFE8 points to the next
page of HEPAX RAM, and a value of 0x000 here marks a page of HEPAX RAM as the
last in the chain.

;***
 .TITLE "HEPAX RAM"

 .HP

 XROM 13

 .FILLTO 0FE6

 #000 ; FE7 Previous page identifier
 #000 ; FE8 Next page identifier
 #091 ; FE9 fixed value
 #000 ; FEA
 #000 ; FEB
 #000 ; FEC
 #090 ; FED fixed value
 #000 ; FEE
 #091 ; FEF fixed value
 #000 ; FF0
 #0E5 ; FF1 fixed value
 #00F ; FF2 fixed value
 #200 ; FF3 fixed value

 .FILLTO 0FFE

As an example, the sequence of commands listed below uses four pages of 41CL RAM (at
addresses 0x808000, 0x809000, 0x80A000 and 0x80B000) as HEPAX RAM assigned to
pages C through F (Ports 3 and 4).

First, the RAM is initialized by copying the HEPAX RAM template to these four pages of
RAM memory:

ALPHA 0B9>808 ALPHA
XEQ ALPHA YMCPY ALPHA

ALPHA 0B9>809 ALPHA

87

XEQ ALPHA YMCPY ALPHA

ALPHA 0B9>80A ALPHA
XEQ ALPHA YMCPY ALPHA

ALPHA 0B9>80B ALPHA
XEQ ALPHA YMCPY ALPHA

Next, the HEPAX RAM pointers in these pages must be initialized. The template loads
0x0000 into all of the pointers to start with, so only the non-zero pointers are written:

ALPHA 808FE8-000D ALPHA
XEQ ALPHA YPOKE ALPHA

ALPHA 809FE7-000C ALPHA
XEQ ALPHA YPOKE ALPHA

ALPHA 809FE8-000E ALPHA
XEQ ALPHA YPOKE ALPHA

ALPHA 80AFE7-000D ALPHA
XEQ ALPHA YPOKE ALPHA

ALPHA 80AFE8-000F ALPHA
XEQ ALPHA YPOKE ALPHA

ALPHA 80BFE7-000E ALPHA
XEQ ALPHA YPOKE ALPHA

Finally the RAM pages are plugged into the Ports:

ALPHA 808-RAM ALPHA
XEQ ALPHA PLUG3L ALPHA

ALPHA 809-RAM ALPHA
XEQ ALPHA PLUG3U ALPHA

ALPHA 80A-RAM ALPHA
XEQ ALPHA PLUG4L ALPHA

ALPHA 80B-RAM ALPHA
XEQ ALPHA PLUG4U ALPHA

88

At this point the HEPAX RAM is initialized to a point where the HEPAX code can recog-
nize and use it. Next PLUG the HEPAX image into a Port. To verify that you’ve done
everything correctly, try executing a HEPDIR command. The display should return
H:DIR EMPTY, and clearing this from the display should show 2610, which is the
size of four pages of HEPAX RAM.

Patching HEPAX

The HEPAX DISASM function scans the keyboard during the disassembly process, but it
appears that to save space this scanning function was not implemented properly. (The
code does not look at the keyboard valid flag.)

In addition, early versions of the 41CL keyboard scanner did not output the same scan
code as the original 41C when no key is being pressed. (The idle state code was not speci-
fied in the HP documentation.)

As a result of these two issues the HEPAX DISASM code thinks that the ON key has
been pressed immediately after the last address digit has been entered, turning the calcula-
tor off.

The way around this issue is to remove the test for a press of the ON key during the
HEPAX DISASM function. This requires copying one page of the HEPAX code to RAM
so that one location can be patched, and then pointing the MMU at the patched code.

The example below assumes that the HEPAX module has been loaded into the lower half
of Port 2, which is page A, and that the uppermost page of RAM (starting address
0x83F000) will be used for the patched HEPAX page.

First, the Bank 4 HEPAX image is copied to RAM:

ALPHA 030>83F ALPHA
XEQ ALPHA YMCPY ALPHA

Next, the instruction that tests for a press of the ON key is replaced with a NOP instruc-
tion:

ALPHA 83F08D-0000 ALPHA
XEQ ALPHA YPOKE ALPHA

89

Finally, this RAM page is substituted for bank 4 of the HEPAX image in Flash by directly
programming the MMU register. The MMU register must be programmed directly
because we are only substituting one bank of the HEPAX code.

ALPHA 8040AC-883F ALPHA
XEQ ALPHA YPOKE ALPHA

Enabling HEPAX Disassembly

The HEPAX DISASM function does not allow the disassembly of the HEPAX code itself.
If you want to remove this restriction, four locations in Bank 1 of the HEPAX code need
to be modified. The code is in Bank 1 of the HEPAX code, and we will use the RAM at
address 0x83E000 to hold the patched code.

First, the Bank 1 HEPAX image is copied to RAM:

ALPHA 02D>83E ALPHA
XEQ ALPHA YMCPY ALPHA

Next, the instructions that branch to an error routine are replaced with NOP instructions:

ALPHA 83E131-0000 ALPHA
XEQ ALPHA YPOKE ALPHA

ALPHA 83E132-0000 ALPHA
XEQ ALPHA YPOKE ALPHA

ALPHA 83E133-0000 ALPHA
XEQ ALPHA YPOKE ALPHA

ALPHA 83E134-0000 ALPHA
XEQ ALPHA YPOKE ALPHA

Finally, this RAM page is substituted for bank 1 of the HEPAX image in Flash by directly
programming the MMU register:

ALPHA 8040A0-883E ALPHA
XEQ ALPHA YPOKE ALPHA

90

91

Serial Connector

The serial connector jack signals are assigned as follows:

• Tip: Transmit Data from the point of view of the 41CL calculator. This should connect
to pin 2 of a female DB9 connector for use with a PC.

• Mid: Ground. This should connect to pin 5 of a female DB9 connector for use with a
PC.

• Ring: Receive Data from the point of view of the 41CL calculator. This should con-
nect to pin 3 of a female DB9 connector for use with a PC.

The type of cable required to connect the 41CL calculator to a PC is also used for older
digital cameras and cell phones, so it can still be found. However, be aware that two dif-
ferent signal arrangements were used for these types of cables, depending on the manufac-
turer. Part number BC20213-6 from www.cableclub.com is compatible with the 41CL
calculator.

The RS-232 driver on the 41CL board normally only powers up when a vaild level is
detected on the Receive Data input. This can make 41CL-to-41CL serial transfers compli-
cated. Starting with Version 4, the 41CL board supports a way for software to force the
RS-232 driver on unconditionally. So if one of the 41CL calculators involved in a 41CL-
to-41CL transfer supports this feature the transfer is simple. All that is required is a null-
modem adapter connecting the two serial cables. Part number 1202 from www.mono-
price.com is a suitable adapter.

Tip

Mid

Ring

92

If you want to try to construct an internal serial connector yourself the part numbers are
listed below. Note that the cable comes with 10 conductors, so you will have to trim it
down to three conductors. Refer to the 41CL schematic for the signal connections on the
circuit board connector.

Plug for circuit board connector: 455-2189-ND from Digi-Key

Multi-conductor cable: MB20G-10-ND from Digi-Key

2.5mm Stereo Jack: 161-7000-EX from Mouser

93

Updating 41CL Hardware

The 41CL board uses programmable logic. This means that with the right equipment the
hardware can be updated to correct errors. The same facilities that allow hardware pro-
gramming can also be used to update the Flash memory on the board. This section will
describe the connections necessary to perform hardware programming. The figure below
shows the top side of the 41CL board.

VIN

TX
3.3V

TDO
RX

TMS
TCK

GND
TDI

TCK
3.3V (sw)

VPUMP
TDI

TRST
TDO

GND
TMS

GND

RST

POR

CPLD

FPGA

94

All programming operations require that the board be powered. Using the normal HP41
connector on the bottom of the board is not an appropriate way to power the board for pro-
gramming. Instead, there are three solder pads in the corner opposite the programming
connectors that need to have wires soldered to them.

Solder short (20-30cm should be sufficient) wires to the solder pads labelled VIN, GND
and POR. The RST solder pad is not required for programming.

Battery power is not appropriate from programming. Instead use a benchtop power sup-
ply. The 41CL board requires 5V (4.0v minimum / 6.0V maximum) for programming.

• Make sure the power supply is OFF before connecting it to the 41CL board.
• Connect the GND wire to the ground of a benchtop power supply.
• Connect the VIN wire to the positive output from the power supply.
• Connect the POR wire to the ground of the power supply to program the FPGA or the

Flash. Leave this wire unconnected to program the CPLD. Grounding the POR signal
turns on the switched power supplies on the board.

Do not turn on the power supply until the programming cable is connected. Be aware that
some variable power supplies overshoot quite a bit on start-up. If you are using a variable
supply it is probably better to manually ramp up the supply voltage from zero to the final
value rather than turning on the supply with the full supply voltage selected.

CPLD Programming

The CPLD is programmed using the connector labelled CP on the board. This is the same
connector used for the serial port signals. The CPLD is programmed using a Xilinx pro-
gramming cable. The figure below shows the wiring required between the CPLD connec-
tor on the board and the standard Xilinx programming cable.

TX
3.3V

TDO
RX

TMS
TCK

GND
TDI

1

9

7

5

3

13

11

2

10

8

6

4

14

12

95

FPGA Programming

The FPGA is programmed using the connector labelled FP on the board, using an Actel
programming cable. The figure below shows the wiring required between the FPGA con-
nector on the board and the standard Actel programming cable.

Flash Programming

The Flash memory is also programmed using the connector labelled FP on the board. The
exact connection will depend on the JTAG programming hardware that you use. The
important thing to remember is that the TRST signal must be grounded to enable the
JTAG controller, and the VPUMP signal must be left floating.

TCK
3.3V (sw)

VPUMP
TDI

TRST
TDO

GND
TMS

1

9

7

5

3

10

8

6

2

4

96

97

Revision History

Date Changes Pages

01/14/2011 Initial release

01/15/2011 Misc. typos

01/19/2011 Added chapter on FORTH41, added rampage image

01/23/2011 more typos

01/25/2011 more typos

02/10/2011 more typos, added pictures, serial connector section

02/22/2011 more typos

04/04/2011
Added paragraph on backing up 41C register memory
Added “Patching Code” section

23
59 on

04/22/2011

Removed “current bank” as logical address option.
Added clarification to serial functions.
Miscellaneous clarifications to text.
Added some new module images and mnemonics.
Modified the “Patching Code” section for a different example.

04/29/2011 Updates to Flash functions, color changes

04/30/2011
Fixed some error messages (PLUGxx and YFERASE)
Function Summary, Error Messages sections added

various
93 on

05/01/2011 Deleted ASTU module mnemonic. Included in ASTT. 18

05/03/2011 Spectral Analysis ROM added

05/17/2011 Added Algebra, Sandmath II and Modified Advantage modules

06/06/2011
Corrected XROM number for BCMW ROM.
Added cautionary note about serial port connector.

18
59

06/11/2011 Added part list for serial connector 59-60

06/14/2011 Typo in register byte layout 38

06/16/2011
Added info on current drain
Added info on Operating System usage of register address space

31
38-39

06/24/2011 Updated recover procedure for lost Y-functions. 12

07/16/2011 Updated Chapters 3, 4 and 5 for YFNS-1C 13-50

08/25/2011 Complete revision

09/11/2011 typos

09/16/2011 New modules, flash memory map

01/10/2012 Added new module images on second batch of boards 43-55

02/02/2012 Clarifications in “Introduction” and “Getting Started” chapters 5-14

02/19/2012 Added new images for Version 3 hardware 18-58

08/13/2012 Updated for YFNS-4A

09/03/2012 Added Library-4 Sandmath information

98

09/28/2012 Added notes about connecting to the serial port. 35

10/05/2012 Revised YFNS/Z to -4B, YFNP to -1B

12/13/2012 Added new module images and mnemonics

12/14/2012 Added one more module image

12/15/2012 Added more Library-4 images

12/25/2012 Added YCRC values for all images Ch. 10

12/31/2012 mistake in number of available RAM pages 58

01/01/2013 added note to Printer Service ROM: page 4 takeover ROM 54

01/07/2012 a number of typos (thank you Dan Grelinger for your review)

01/08/2013 Clarified the differences between YFNZ, YFNS and YFNP Ch. 2

01/28/2013

PLUGP warning
Module Table
Memory Buffer Functions explanation
Special MMU Functions explanation
Added new images, new image versions

19
20-26
31
40
Ch.5, Ch. 10

02/07/2013 Note about MMUCLR not affecting MMU registers for Pages 0-3 16, 41

02/16/2013 Updated YCRC value for new images Ch. 10

02/22/2013 Added two new images Ch. 10

02/26/2013 Typos and clarifications throughout

03/05/2013 More new images...

04/24/2013
More new images... also, had to move ROSU image because it’s
actually an 8K image

05/10/2013 Complete reformat

05/12/2013 forgot Number Theory ROM in tables

05/14/2013 serial connector clarification

05/22/2103 added missing YCRC values 109, 110

05/25/2013 new images

05/27/2013 new images

06/10/2013 typos 120

06/19/2013 updated YCRC values for latest images Ch. 16

07/03/2013 new images, updated YCRC values for new & latest images Chs. 7, 13, memref

08/19/2013 updated images Chs. 7, 13, memref

08/27/2013 new/revised images Chs. 7, 13, memref

09/09/2013 updated YCRC values for new/updated images memref

11/29/2013 updated YCRC values for new/updated images memref

12/04/2013 updated YCRC values for updated images memref

12/05/2013 Expanded descriptions for 41CL Extreme Functions Ch. 12, 17

12/11/2013 Expanded descriptions for 41CL Extreme Functions Ch. 6, 7

01/04/2014 updated YCRC values for updated images memref

02/24/2014 corrected bank numbering in memory reference memref

03/14/2014 updated YCRC values for updated images, aesthetics memref

04/01/2014 new images memref

04/08/2014 new versions: PWRL, PWRX, YFNX memref

04/28/2014 new versions: YFNX, 4RAM memref

05/04/2014 added NutIP ROM image memref, etc.

99

05/23/2014 new images memref, etc.

05/28/2014 new versions: TVMY, SM33 memref

06/03/2014 new versions: SM33, YFNX, YLIB memref

07/10/2014 new images: BASI, FCST, FCS2, COOQ memref, etc.

07/18/2014 new image: FSSY memref, etc.

07/27/2014 new images: FFEE, ETS9 memref, etc.

07/31/2014 new images: CIVI, CIVU, VONK memref, etc.

08/04/2014 new image: NONL memref, etc.

08/06/2014 new versions: ETS9, NONL memref

08/12/2014 updated memory reference memref

08/16/2014 typo (thank you, Gene) 28

08/17/2014
another typo (does it ever end?)
new versions: CIVU, ETS5

75
memref

08/23/2014
new versions: PWRX
new image: XPMM

75
memref, etc.

08/26/2014 new versions: 4LIB, PWRX memref

10/06/2014 new versions: PWRX, YFNX memref

10/16/2014 new version: XPMM memref

10/17/2014 new version: XPMM memref

11/22/2014 updated 41CL functions

11/24/2014 reformat

12/04/2014 new versions: 4LIB, PWRX, CLUT; updated memref

12/17/2014 typos, removed memref it’s now a stand-alone document only

01/18/2015 new images: SM44, ANGZ, TMAX, BLJK, BJMX, VEGS

02/03/2015 mark obsolete/superceeded images in identifier table 55-62

02/11/2015 new image: PPCU 59, 89

02/17/2015 new identifier: MBFR; clarification for IMDB operation 59, 89, 42

02/22/2015 user feedback (thank you, Bob) various

02/23/2015 new images: WWDB, JARR, GRAW, MCCK, KRGM, UCCD various

02/24/2015 new images: PKP1, PKP2, PKP3, PKP5, PKP7 various

02/26/2015 updated identifer information for V2 boards various

03/01/2015 UCCD XROM number 61

03/28/2015 new image: GTWN, minor changes to V2 image selection various

04/29/2015 new images: TTRC, 16CS various

06/01/2015 new images: TDSI, TDSM, TDSP, HCPL various

09/08/2015 new images: STEQ, 2SWP various

09/10/2015 updated acknowledgement section inside cover

09/12/2015 new images: PPOK, TIDW various

09/15/2015 cleaned up Image Identifer section

09/05/2015 new image: PRTW various

10/05/2015 new image: CLND various

10/26/2015 new images: GRVI, RUBK, TAFB, JBMC, UCLN, EEFD various

11/16/2015 new images: 3SWP, XBFR, XTRS, CRTO various

12/07/2015 new/updated images: XTAT, 3SWP, EPTN various

100

