Falk™ TRUE HOLD® Low Speed Backstops # The Greater the Torque, the Tighter the Hold (English-Inch/Metric) ### Falk™ TRUE HOLD® Low Speed Backstops Never Let Safety Slip Anytime you're moving materials upgrade, you have the potential for trouble. Should the electric power fail, a motor fail or someone trip the emergency cable, the results can be disastrous. . . for employees and for equipment. That's why operations the world over, rely on Falk™ TRUE HOLD® Backstops and their instant-response, no-slip mechanism to help put a stop to trouble before it can start. Size-for-size TRUE HOLD Backstops provide more system holding power than any other backstop. Plus, Long-life designs and our ability to engineer and manufacture complete, integrated drive packages, assure that you get the ideal system for your needs, whether it's a single, tandem, or multiple backstop configuration. Now, that's confidence. . . that's TRUE HOLD. # Benefits/Features Falk TRUE HOLD - NRT Style ### **Long Lasting** Our unique double lip, dual seal system assures long life, includes splash oil circulation, factory packed grease cavity, contamination proof oil sight glass, and Airmax® breather. #### **Rexnord Drives System Expertise** Assistance with proper selection for your specific application whether single, tandem, or multiple drives For virtually any application where materials need to be moved up steep grades, including inclined conveyors, high angle conveyors, bucket elevators used in mining, grain, power generation, cement and aggregates. TRUE HOLD NRT backstops with torque rating to 747,000 ft-lb (1,012,185 Nm). #### **Increased Life** Their oversized, heavy duty cylindrical rollers have a wide contact area and the rolling action minimizes wear and increases performance, life, and reliability. #### No Slip The instant response, fail safe roller/ramp stopping mechanism prevents reverse rotation and eliminates the potential for slippage protecting man, machine, and your entire investment. #### **Available** Stock bore sizes available in 1 week or less with our premium breakdown service. (See Page 4.) The Falk NRT backstops are furnished with the best available lubrication and lubrication sealing system in the industry. Two double-lip seals on both sides of the backstop assure positive lube retention. The external seal grease purge feature combined with the Airmax breather prevent contamination of the generous oil supply from particulate matter and from moisture laden air. Factory Warranty*— We're so confident in the performance and reliability of these backstops that we're backing the fully featured NRT series with the best standard warranty in the business. Our full, 3-year Heavy-Duty Warranty provides "shaft-to-shaft" protection on all Falk components – including bearings and seals (warranty extends for years from date of shipment). It's an industry first... and one more powerful reason why Rexnord is your ultimate bottom-line value. ★ NRTH series are provided with one year warranty. 2 (561-110) © Rexnord Industries, LLC, 2009 # Our Falk TRUE HOLD Backstop line consists of two configurations to suit your backstopping needs! Falk TRUE HOLD NRT utilizes the field-proven, roller-ramp principle. Where Used — High Torques, Large Bores, Fully Featured How it Works — **Backstopping:** The inner cam, which is keyed to the shaft, is stopped by a spring activated wedging action, forcing rollers into an angular opening between the inner cam ramps and outer race. **Over-Running:** While in the over-running mode, the robust, precision ground cylindrical rollers are centrifugally pushed against the stationary outer race of the NRT backstop. This centrifugal force causes the rollers to roll (versus skid or slide) against the forged steel, outer race extending the service life. Falk TRUE HOLD NRTH utilizes a sprag design for preventing reverse rotation. Where Used — Lower Torques, Smaller Bores, Higher **Speeds** How it Works — Backstopping: The inner race, which is keyed to the shaft, utilizes spring positioning sprags into a wedged position between the inner and outer race, preventing the load from rotating backwards. **Over-Running:** Sprags are held in place by a cage providing equal separation to ensure no binding occurs while the backstop is in an over-running condition. # The graph below illustrates the maximum speed and torque for both the NRT and NRTH style backstops. © Rexnord Industries, LLC, 2009 (561-110) 3 ### **How to Order** The following information along with selection information from USABLE CW DIA LENGTH CCW Pages 6 thru 8 is required to order a backstop: - Type of torque used to select (Motor, Brake, or Lift) - Torque arm mounting position (see Pages 10-13) - Overrunning rotation - Number of retaining collars System Characteristics — Supply any information about the system to which the Falk NRT or NRTH backstop is being applied that would affect the selection of the backstop (or holdback); for example, "Are there any torque limiting devices with the motors? Is material feed restricted in any way to prevent overload of the material handling system? Will the system produce overloads that could exceed the motor's stall torque capacity?" ### NRT / NRTH Backstop Order Information Required (or previous Falk M.O. Number) | previous r un | Nin.e. Namber) | |---------------|---| | | Size | | | Quantity | | | Backstop Rotation (CW or CCW) | | | Shaft Diameter and Tolerance (mm or inches) | | | Available Shaft Length (mm or inches) | | | Kwyx(mm or inches) | | | Torque Arm Position in Degrees (See illustrations on Pages 10 - 13) | | | If Non-Std Torque Arm, advise 'N' dim. Pages 12 & 13 (inches or mm) | | | Power (Indicate kW or Hp, Lift, Demand, or Motor) | | | RPM of Shaft that Backstop is Mounted upon | | | % Motor Stall Torque or Max Overload Torque | | | % Stall Torque | | | Number of Retaining Collars | | | | **NOTE:** Provide information above, plus a drive layout schematic for multiple pulley applications. #### Stock Bore Size | Stock Bore | 1 | | |------------|---------|--------| | NRT SIZE | Inch | Metric | | 1075 | 3.4375 | 100 | | 1075 | 3.9375 | | | 1085 | 4.4375 | 130 | | 1085 | 4.9375 | | | 1095 | 4.9375 | 150 | | 1095 | 5.4375 | | | 1105 | 5.9375 | 200 | | 1105 | 6.9375 | | | 1115 | 6.9375 | 220 | | 1115 | 7.4375 | | | 1115 | 7.9375 | | | 1115 | 8.000 | | | 1115 | 8.4375 | | | 1125 | 8.5000 | 240 | | 1125 | 8.9375 | | | 1125 | 9.0000 | | | 1135 | 10.5000 | 260 | | 1145 | | 300 | | 1155 | | 350 | The bore sizes listed above can ship from stock in one week. **Metric Backstops** — supplied with E7 bore and D10 keyway assuming m6 shaft diameter and h9 keyway (ISO tolerance specification). Inch Backstops — supplied with H7 bore assuming h6 shaft (ANSI tolerance specification). Backstop key and keyway tolerance per FDN 430-152 assuming shaft keyway per ANSI B17.1. ## Selection Guide 561-110, February 2009 ### **Table of Contents** | Comparison of NRT & NRTH | 3 | |--|---------| | Stock Bore Sizes | 4 | | How to Order | | | Basic Information | 5 | | How to Select Falk NRT & NRTH Backstops | . 6 – 7 | | Common Drive Arrangements | | | Load Sharing | | | Dimensions | | | Backstop Operation | 14 - 15 | | Service Parts | | | Engineering Recommendations | 17 - 21 | | Competitive Interchangeability Chart | . 22-23 | | Backstop Selection Procedure Definitions | 24 | | NRT Test Protocol | | | Typical Applications | | | Accessories | | ### **Basic Information** ### Safety Notes Install and operate Rexnord products in conformance with applicable local and national safety codes and per Rexnord installation manuals which are available upon request. Suitable guards for rotating members may be purchased from Rexnord as optional accessories. Refer to your local Rexnord District Office for complete details. **WARNING:** Lock out power source and remove all external loads from gear drive before servicing drive or accessories. Locking out the power source and removing the load will reduce the possibility of an unexpected motion or reaction in the system. **People Conveying Equipment** — Selection of Rexnord products for applications whose primary purpose is the transportation of people is not approved. This includes such applications as freight or passenger elevators, escalators, man lifts, work lift platforms, and ski tows and ski lifts. If the primary purpose of the application is material conveyance and occasionally people are transported, the Rexnord warranty may remain in effect provided the design load conditions are not exceeded and certification to the appropriate safety codes and load conditions has been obtained by the system designer or end user from the appropriate enforcement authorities. **Lubricants** — Refer to Manuals 568-101, 568-102, 568-104, and 568-110 for a listing of transmission fluids, oils, and greases that meet Rexnord specifications. **Stored or Inactive Backstops** — Backstops, Sizes 1075-1185NRT are shipped without lubricant, with one ounce of Motorstor* vapor phase rust inhibitor in the backstop that protects the internal parts against rust for a period of six months. If the backstop (Sizes 1075-1185) is to be stored or inactive for more than six months, add lubricant and Motorstor * as recommended in the service manual for every additional six month period. Indoor storage or a suitable covering is recommended. Backstop, Size 1045NRTH, Style B, is shipped with grease. If stored, once every two months, inner race should be rotated by hand to lubricate rotating elements. Backstops, Sizes 1055NRTH, 1065NRTH, and 1085NRTH, Style B, are shipped from the factory filled to the proper level with oil. If stored, rotate inner hub every two months to lubricate rotating elements Backstops, Sizes 1055 and 1065NRTH, Style C, are prelubicated and require no further maintenance of the working mechanism. If the backstop is to
remain inoperative for extended periods of time, remove the load before shutting down. Refer to service manual for complete instructions. * Product of the Daubert Chemical Company, Chicago, IL Copyright 1979, 2009, Rexnord Industries, LLC. All Rights Reserved. Litho in U.S.A. Airmax, Rexnord, and TRUE HOLD are registered trademarks. Falk and Magnum Seal are trademarks of Rexnord. Viton is a registered trademark of the DuPont Co. The contents of this selection guide are subject to change without notice or obligation. Information contained herein should be confirmed before placing orders. ## How to Select Falk TRUE HOLD NRT & NRTH **Backstops** — Imperial (Refer to Page 24 for explanation of terms and Page 4 for How to Order) - 1. Determine Drive Arrangements from Page 8. - 2. Determine System Torque. **Fig. 1** — Single motor, Single backstop arrangements. **Fig. 2** — Tandem motor, single backstop arrangements. Fig. 3 — Tandem motor, tandem backstop arrangements. Figs. 4 and 5 — Refer these arrangements to Factory for selection. Combine the horsepower from both motors for Fig. 2 and Fig. 3. System Torque = 5250 (MHP or BHP or LHP) rpm (rev/min) MHP — Motor Nameplate HP BHP — Brake HP (Calculated Load). Use only if more than 75% of motor rating. LHP * — Lift HP (Calculated Power to Lift the Load Vertically. Use only if more than 75% of motor rating.) * LHP can be calculated as follows: Short Tons Per Hour (TPH) x Lift in Feet - Determine Required Backstop Torque. - * Required Backstop Torque = System Torque x Motor Maximum Torque (Stall or Breakdown Torque% A) 150% - * For Figure 3 Tandem motor, tandem backstop arrangements, select each backstop to hold 60% of the total Required Backstop Torque. - Use whichever is greater. - A. From Pages 10 thru 12, select backstop with a torque rating equal to or greater than the required torque rating determined above. - B. Check the maximum bore, Pages 10 thru 12. If a larger bore is required, select the next larger size or turn the headshaft down. - C. Check the maximum overrunning speed from Pages 10 thru 12. Refer to the Factory for higher speeds. - D. Check backstop reaction force at torque arm stirrup, Table 4, Page 20. - E. Backstop and torque arm dimensions are listed on Pages 10 thru 12; allow space for installation. - F. Only use keys furnished by the Factory. If the backstop is mounted on the double ended extension of the drive shaft, check shaft stresses and use dual path (safety lock) couplings or a minimum 2.0 service factor on the combined horsepower for the coupling on the NRT side. Indexing requirements must be referred to the Factory for selection. 4. NRTH Style B and NRTH Style C backstops are rated for more than 1,000,000 cycles of backstopping. NRT Backstops are rated for 100,000 backstopping cycles. If your application needs more than 100,000 load cycles, refer application to the Factory for selection. Engineered Selection Method for Inclined Conveyors — It is possible to fine tune the selection and possibly consider the selection of a smaller size backstop, if detailed loading and conveyor profile information is furnished. ### The following data is necessary: - Power to lift the load (vertical) - Power to move empty belt (friction) - Power to move loaded belt horizontally (friction) #### We can calculate these values if the following data is provided: - Conveyor length (L) feet - Belt speed fpm - Short tons per hour tph - Total lift (H) feet - Belt width inches - Material weight lb/ft - Pulley rpm (rev/min) or diameter — feet ### Selection Example The selection example, below, show the benefits gained from obtaining the required information to select by brake or lift torque vs motor torque. - Figure 1 Single motor, single backstop arrangements - Figure 2 Tandem motor, single backstop arrangements Select backstop to hold the entire system torque. Figure 1 —Single motor, single backstop arrangements. ### Steep Slope Conveyor 200 Motor HP 180 Brake HP 150 Lift HP 200% Stall 68 rpm (rev/min) 4.9375 Dia Motor HP and Stall % Known 200 MHP x 5250 20,588 lb-ft Motor Torque Size 1095 NRT | Brake HP K | nown | |----------------|---------------| | 180 BHP x 5250 | 200% | | 68RPM | $x {150\%} =$ | 18,529 lb-ft Brake Torque Size 1095 NRT | Lift HP Kn | own | |----------------|-----------------| | 150 LHP x 5250 | 200% | | 68RPM | x = | 15,441 lb-ft Lift Torque Size 1085 NRT ### How to Select Falk TRUE HOLD NRT & NRTH **Backstops** — Metric ### (Refer to Page 24 for explanation of terms and Page 4 for How to Order) - 1. Determine Drive Arrangements from Page 8. - 2. Determine System Torque. - Fig. 1 Single motor, Single backstop arrangements. - Fig. 2 Tandem motor, single backstop arrangements. - Fig. 3 Tandem motor, tandem backstop arrangements. Figs. 4 and 5 — Refer these arrangements to Factory for Combine the kilowatts from both motors for Fig. 2 and Fig. 3. System Torque = 9550 MkW or BkW or LkW rpm (rev/min) MkW — Motor(s) Nameplate kW BkW — Brake kW (Calculated Load). Use only if more than 75% of motor rating. LkW * — Lift kW (Calculated Power to Lift the Load Vertically. Use only if more than 75% of motor rating.) * LkW can be calculated as follows: Metric Tons per Hour (TPH) x Lift in Meters 5150 #### 3. Determine Required Backstop Torque. * Required Backstop Torque = #### System Torque x Motor Maximum Torque (Stall or Breakdown Torque% A) 150% - * For Figure 3 Tandem motor, tandem backstop arrangements, select each backstop to hold 60% of the total Required Backstop Torque. - ▲ Use whichever is greater. - A. From Page 10,11 or 13 select backstop with a torque rating equal to or greater than the required torque rating determined above. - B. Check the maximum bore, Page 10,11 or 13. If a larger bore is required, select the next larger size or turn the headshaft down. - C. Check the maximum overrunning speed from Page 10,11 or 13. Refer to the Factory for higher speeds. - D. Check backstop reaction force at torque arm stirrup, Table 4, Page 20. - E. Backstop and torque arm dimensions are listed on Page 10,11 or 13; allow space for installation. - F. Only use keys furnished by the Factory. If the backstop is mounted on the double ended extension of the drive shaft, check shaft stresses and use dual path (safety lock) couplings or a minimum 2.0 service factor on the combined horsepower for the coupling on the NRT side. Indexing requirements must be referred to the Factory for selection. 4. NRTH Style B and NRTH Style C backstops are rated for more than 1,000,000 cycles of backstopping. NRT Backstops are rated for 100,000 backstopping cycles. If your application needs more than 100,000 load cycles, refer application to the Factory for selection. Engineered Selection Method for Inclined Conveyors — It is possible to fine tune the selection and possibly consider the selection of a smaller size backstop, if detailed loading and conveyor profile information is furnished. ### The following data is necessary: • Power to lift the load (vertical) - Power to move empty belt (friction) - Power to move loaded belt horizontally (friction) ### We can calculate these values if the following data is provided: - Conveyor length (L) meters - Belt speed (mpm) - Metric tons per hour TPH - Total lift (H) meters - Belt width millimeters - Material weight Kg/M - Pulley rpm (rev/min) or diameter — meters ### Selection Example The selection examples below show the benefits gained from obtaining the required information to select by brake or lift torque vs motor torque. | Steen | Slone | Conveyor | |-------|-------|----------| | этеер | Siope | Conveyor | 150 Motor kW 135 Brake kW 115 Lift kW 200% Stall 68 rpm (rev/min) 125 mm Dia ### Motor kW and Stall % Known 150 MkW x 9550 68 RPM 28,088 Nm Motor Torque Size 1095 NRT Brake kW Known 135 BkW x9550 150% 68RPM 25 279 Nm Brake Torque Size 1095 NRT Lift kW Known 115 LkWx 9550 150% 68 RPM 21,534 Nm Lift Torque Size 1085 NRT ## **Common Drive Arrangements** Figure 1 — Single motor, single backstop arrangements Figure 2 — Tandem motor, single backstop arrangements – Select backstop to hold the entire system torque. Figure 3 — Tandem motor, tandem backstop, single pulley arrangements - Select each backstop to hold 60% of total system backstop torque. For drive arrangements shown in Figures 4 & 5, Engineered Selections, Indexing applications, Vertical applications or for drive arrangements not shown, refer to Factory for selection. We will select a backstop for you if you furnish the following information: - Drive arrangement - Motor nameplate hp (kW) - Motor maximum torque as % of nameplate - Headshaft rpm (rev/min), diameter, diameter tolerance, length and key dimensions - Duty cycle If available, the following information when furnished may make it possible to select a smaller size backstop: • Brake (BkW) - Lift hp (LkW) Figure 4 — Tandem motor, tandem backstop, dual pulley arrangement - Refer to the Factory for selection. Figure 5 — Dual motor, dual backstop, dual pulley arrangement - Refer to the Factory for selection. ## **Load Sharing** ### HYDRAULIC LOAD SHARING SYSTEMS FOR LOW SPEED BACKSTOPS ON HIGH CAPACITY MATERIAL HANDLING SYSTEMS. Hydraulic Load Sharing Systems have been used successfully on high capacity, multi-drive material handling systems to assure a balanced load on each backstop. A simple hydraulic power unit (with accumulator, pressure switch, and pressure gauges) maintains system pressure in a pre-determined range to meet the backstopping requirements of the material handling system. Typical installations are dual pulley/quad drive installations employing motors of 1000 HP (750 kW) or larger. The Hydraulic Load Sharing System not only balances the load on each backstop, it also extends the capability of the NRT Backstop range by eliminating the need to assume 'unbalanced load distribution' in the selection process due to variances in system backlash and component stiffness. The design of the Hydraulic Load
Sharing Backstopping Systems utilizes NRTs of equal capacity mounted on pulleys of equal diameter. Hydraulic cylinders of equal cylinder area are placed at equal distances from the centerline of each pulley under their respective NRT torque arms. A hydraulic charge pump delivers system oil pressure to hydraulic piping that is interconnected. The oil pressure in the interconnected hydraulic piping is equal so the pistons are subjected to equal pressure. Equal pressure applied to hydraulic cylinders with equal cylinder area, creates an equal amount of force to each torque arm. Equal force on the torque arms at equal distances from the centerline of the pulleys produces equal backstopping torque at each pulley. Therefore, you achieve balanced loading. Rexnord Geared Products Group also has the experience and expertise to select and apply Gear Drive Systems with mechanical load sharing backstops. Contact Rexnord for assistance. © Rexnord Industries, LLC, 1979, 2009 ### Type NRTH - Style B (L.S. Applications) - Dimensions - Inches & Millimeters #### **Dimensions** — Inches | Backstop | Torque
Ratina | Max
rpm | | e * | A | В | C= | D+ | E | F | G | н | J | K | L | w | x | Y | 0 | P● | Torque Arm | Wt ‡ | |----------|------------------|------------|------|------|-------|------|------|-------|------|-------|-------|-------|------|-------|------|------|------|------|-------|------|------------------------|------| | Size | lb-ft | | Min | Max | | | | | | | | | | | | | | | | | Fasteners † | ID | | 1045* | 2,100 | 1,800 | 1.75 | 2.50 | 6.50 | 4.19 | 3.50 | 0.656 | 1.25 | 7.00 | 5.75 | 0.375 | 2.50 | 1.50 | 0.78 | 0.72 | 3.38 | 0.06 | 11.50 | 2.62 | (8) 3/8-24 X 1.0" LG | 29 | | 1055 🕏 | 10,000 | 500 | 1.75 | 3.75 | 9.75 | 8.14 | 7.50 | 1.125 | 2.00 | 36.00 | 8.50 | 0.625 | 4.00 | 4.00 | 1.25 | 0.63 | 6.53 | 0.48 | 42.88 | 5.50 | (8) 1/2-20 X 2.0" LG | 157 | | 1065 | 13,000 | 400 | 2.50 | 4.50 | 10.50 | 8.64 | 8.00 | 1.125 | 2.00 | 36.00 | 9.25 | 0.625 | 4.00 | 4.00 | 1.25 | 0.63 | 7.03 | 0.48 | 43.25 | 5.88 | (8) 1/2-20 X 2.0" LG | 190 | | 1085 | 18 000 | 350 | 3 94 | 5 44 | 12 00 | 8.52 | 7.63 | 1 250 | 3.00 | 51 00 | 10 00 | 0.750 | 6.00 | 10.00 | N/A | N/A | 6.63 | 0.50 | 60.00 | 5.88 | (10) 5/8-18 X 1.75" IG | 260 | #### **Dimensions — Millimeters** | Backstop
Size | Torque
Rating
Nm | Max
rpm | Bor
Min | e ★
Max | A | В | (= | D+ | E | F | G | н | J | K | L | w | X | Y | 0 | P● | Torque Arm
Fasteners t | Wt‡
kg | |------------------|------------------------|------------|------------|------------|-----|-----|-----|----|----|------|-----|----|-----|-----|-----|-----|-----|----|------|-----|---------------------------|-----------| | 1045* | 2,847 | 1,800 | 44 | 64 | 165 | 106 | 89 | 17 | 32 | 178 | 146 | 10 | 64 | 38 | 20 | 18 | 86 | 2 | 292 | 67 | (8) 3/8-24 X 1.0" LG | 13.2 | | 1055* | 13,557 | 500 | 44 | 95 | 248 | 207 | 191 | 29 | 51 | 914 | 216 | 16 | 102 | 102 | 32 | 16 | 166 | 12 | 1089 | 140 | (8) 1/2-20 X 2.0" LG | 71.2 | | 1065* | 17,625 | 400 | 64 | 114 | 267 | 219 | 203 | 29 | 51 | 914 | 235 | 16 | 102 | 102 | 32 | 16 | 179 | 12 | 1099 | 149 | (8) 1/2-20 X 2.0" LG | 86.1 | | 1085* | 24,403 | 350 | 100 | 140 | 305 | 216 | 194 | 32 | 76 | 1295 | 254 | 19 | 152 | 254 | N/A | N/A | 168 | 13 | 1524 | 149 | (10) 5/8-18 X 1.75" LG | 118.2 | - ★ Key is furnished by the Factory. - † Fasteners are Hex Socket Head Cap Screws, Grade 8 - ‡ Weight shown is for backstop with minimum bore. - Minimum shaft engagement for backstop support. - Length through hub. - ◆ 1085NRTH Hole for lifting purposes only. - * 1045NRTH backstops are shipped with lubriplate AERO NLGI#1/Grease Lubricant. 1045NRTH backstops require a keeper plate or retaining collars for axial retention. - 1055, 1065, and 1085NRTH backstops are shipped with lubricant (DEXRON). 1055, 1065, and 1085NRTH backstops are furnished with four(4) radial holes and setscrews in the inner cam for axial retention on the shaft. Mounting Positions — The backstop rotational axis must be horizontal within 5° . The backstop and torque arm may be mounted at any desired angle. Horizontal or near horizontal mounting of the torque arm provides maximum bearing life. **Purchaser** — The purchaser is responsible for assembling the backstop, air vent, and torque arm. A 125 micro inch (3.2 micro meters), or finer, shaft finish is recommended. NOTE: Electronic drawings are available from our Website: http://pt.rexnord.com/customer support/drawings ### Type NRTH - Style C (H.S. Applications) - Dimensions — Inches & Millimeters ### **Dimensions** — Inches | Bac | kstop | Torque | Speed | Range | Boi | re ★ | | ь | . - | | | | _ | ш | | , | | w | , | v | | Pe | Torque Arm | Wt ‡ | |-----|--------------|----------------|------------|----------------|--------------|--------------|---------------|--------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|--------------|--------------|--------------|--------------|--------------|----------------|----|--|------------| | S | ize | lb-ft | Min | Max | Min | Max | A | В | ι- | ע | E | Г | G | п | , | | L | VV | ^ | ĭ | U | P | Fasteners t | lb | | 10 |)55*
)65* | 4,400
8,400 | 320
250 | 2,100
1,800 | 1.75
2.50 | 3.75
4.50 | 9.75
10.50 | 8.14
8.64 | 7.50
8.00 | 1.125
1.125 | 2.00
2.00 | 36.00
36.00 | 8.50
9.25 | 0.625
0.625 | 4.00
4.00 | 4.00
4.00 | 1.25
1.25 | 0.63
0.63 | 6.53
7.03 | 0.48
0.48 | 42.88
43.25 | | (8) 1/2-20 X 2.0" LG
(8) 1/2-20 X 2.0" LG | 157
190 | ### **Dimensions** — Millimeters | В | ackstop | Torque | Speed | Range | Во | re ★ | | , n | _ _ | _ | _ | _ | | | ١. | v | | w | v | v | _ | Pe | Torque Arm | Wt ‡ | |---|----------------|-----------------|------------|----------------|----------|-----------|------------|------------|------------|----------|----------|------------|------------|----------|------------|------------|----------|----------|------------|----------|----------------|------------|--|--------------| | | Size | Nm | Min | Max | Min | Max | A | В | (= | U | | Г | G | п | , | N | L | VV | ^ | T | U | r• | Fasteners † | kg | | | 1055*
1065* | 5 965
11 388 | 320
250 | 2 100
1 800 | 44
64 | 98
115 | 248
267 | 207
219 | 191
203 | 29
29 | 51
51 | 914
914 | 216
235 | 16
16 | 102
102 | 102
102 | 32
32 | 16
16 | 166
179 | 12
12 | 1 089
1 099 | 140
149 | (8) 1/2-20 X 2.0" LG
(8) 1/2-20 X 2.0" LG | 71.2
86.1 | - ★ Key is furnished by the Factory. - † Fasteners are Hex Socket Head Cap Screws, Grade 8. - ‡ Weight shown is for backstop with minimum bore. - Minimum shaft engagement for backstop support. - Length through hub. - * Style C size 1055 and 1065NRTH backstops are shipped permanently lubricated, no additional lubrication or re-lubrication is required. Grease fittings for optonal purging of seals are provided. **Mounting Positions** — The backstop rotational axis must be horizontal within 5°. The backstop and torque arm may be mounted at any desired angle. Horizontal or near horizontal mounting of the torque arm provides maximum bearing life. **Purchaser** — The purchaser is responsible for assembling the backstop, air vent, and torque arm. A 125 micro inch (3.2 micro meters), or finer, shaft finish is recommended. NOTE: Electronic drawings are available from our Website: http://pt.rexnord.com/customer_support/drawings # Type NRT Dimensions — Inches ### For Bore and Keyway Sizes and Tolerances, Refer to Pages 18 thru 20 | | <u> </u> | Max t | Во | re ‡ | | | | | | | | | | | | | | | | | |--------------------|-----------------------------|------------------------------------|-------|-------|------|------|------|----------------|-----|-------|---------------|----------|-----|------|------|-------|-------|------|-----------|---------| | BACKSTOP
SIZE ★ | Torque
Rating
(lb-ft) | Over-
running
Speed
(rpm) | Min | Max | A | В | c | D | E | F□ | G = | J
Max | К | L | M | N | 0 | P■ | TA
Max | Wt-lb ● | | 1075NRT | 10,000 | 450 | 1.94 | 3.94 | 11.6 | 8.4 | 7.6 | 5.00 ◆ | .40 | 3.96 | .70 | 2.40 | 2.8 | 2.8 | 4.0 | 36.0 | 41.8 | 6.2 | 15.87 | 155 | | 1085NRT | 16,000 | 350 | 2.94 | 5.19 | 14.1 | 8.4 | 7.6 | 6.50 * | .40 | 5.21 | .70 * | 3.62 | 2.6 | 3.0 | 5.0 | 48.0 | 55.1 | 6.2 | 24.62 | 270 | | 1095NRT | 28,000 | 300 | 3.44 | 5.50 | 15.4 | 10.6 | 9.8 | 7.20 | .40 | 5.91 | .80 ∀ | 3.20 | 3.5 | 3.6 | 6.0 | 54.0 | 61.7 | 8.1 | 25.70 | 390 | | 1105NRT | 45,000 | 180 | 4.94 | 7.44 | 19.3 | 10.6 | 9.8 | 9.20 ▲ | .40 | 8.50 | 1.00 ▲ | 2.70 | 3.2 | 4.1 | 8.0 | 66.0 | 75.7 | 8.1 | 25.40 | 620 | | 1115NRT | 75,000 | 150 | 5.94 | 8.44 | 21.5 | 11.6 | 10.6 | 10.50 4 | .50 | 9.25 | 1.24 | 3.00 | 3.5 | 4.6 | 10.0 | 72.0 | 82.8 | 9.0 | 27.39 | 870 | | 1125NRT | 105,000 | 135 | 7.25 | 9.00 | 24.5 | 12.2 | 11.2 | 12.12 | .50 | 11.00 | 1.24 | 3.16 | 3.6 | 5.0 | 12.0 | 78.0 | 90.3 | 9.6 | 29.60 | 1130 | | 1135NRT | 150,000 | 125 | 8.50 | 10.50 | 27.0 | 14.0 | 13.0 | 13.60 | .50 | 10.52 | 1.24 | 2.60 | 4.3 | 5.5 | 12.0 | 82.0 | 95.5 | 11.4 | 32.59 | 1460 | | 1145NRT | 212,000 | 115 | 9.00 | 12.00 | 31.0 | 14.0 | 13.0 | 14.94 | .50 | 12.02 | 1.24 | 1.62 | 4.2 | 5.6 | 15.0 | 88.0 | 103.5 | 11.4 | 36.90 | 1880 | | 1155NRT | 249,000 | 100 | 10.50 | 13.25 | 35.0 | 14.3 | 13.3 | 17.40 | .50 | 13.27 | 1.50 | 1.94 | 4.1 | 6.0 | 18.0 | 94.0 | 111.5 | 11.5 | 42.15 | 2670 | | 1165NRT | 346,000 | 85 | 12.50 | 15.50 | 37.2 | 16.6 | 15.6 | 19.80 | .50 | 15.52 | 2.00 | 2.54 | 4.8 | 6.3 | 20.0 | 100.0 | 118.6 | 13.8 | 60.85 | 3120 | | 1175NRT | 519,000 | 80 | 13.50 | 17.50 | 43.6 | 17.4 | 16.4 | 23.00 | .50 | 17.52 | 2.00 | 2.60 | 5.1 | 7.3 | 24.0 | 120.0 | 141.8 | 14.3 | 51.08 | 4800 | | 1185NRT | 747,000 | 70 | 15.50 | 20.00 | 50.0 | 18.0 | 17.0 | 24.90 | .50 |
20.02 | 2.00 | 2.44 | 4.0 | 10.1 | 27.2 | 120.0 | 145.0 | 14.7 | 52.15 | 6625 | - ★ Dimensions are for reference only and are subject to change without notice unless certified. - † Refer to the Factory for higher maximum overrunning speeds. - ‡ Key is furnished by the Factory. - Weight shown is for backstop with minimum bore and without oil. - Dimension P is minimum required shaft engagement; see Table 1 for minimum key engagement (Shaft and key stresses). Dimension G is the retaining collar thickness for one collar. Size 1075 bores over 3.50", Size 1085 bores over 4.75", and Size 1115 bores over 8.00" requite two collars (one on each side)or one collar with a step in the shaft. Check usable shaft length if two (2) collars are used. **Mounting Positions** — The backstop rotational axis must be horizontal within 5° . The backstop and torque arm may be mounted at any desired angle, but the position must be specified to permit furnishing of oil lines to suit the mounting. Horizontal or near horizontal mounting of the torque arm provides maximum bearing life. - ♦ Size 1075 with bores over 3.4375", D = 6.50". - * Size 1085 with bores over 4.75", D = 7.20", G = .80". - ▲ Size 1105 with bores over 6.9375", D = 10.50", G = 1.24". - ♣ Size 1115 with bores over 8.00", D = 12.12". - □ Counterbore is for manufacturing. **Purchaser** — The purchaser is responsible for assembling the backstop retaining collar (when furnished), oil line, oil level sight gauge, air vent, and for furnishing the oil and the torque arm stirrup per the Rexnord service manual. A 125 micro inch, or finer, shaft finish is recommended. NOTE: Electronic drawings are available from our Website: http://pt.rexnord.com/customer_support/drawings ### Type NRT Dimensions — Millimeters For Bore and Keyway Sizes and Tolerances, Refer to Pages 18 thru 20 | | | Max t | Во | re ‡ | | | | | | | | | | | | | | | | | |--|--|------------------------------------|--------------------------|--------------------------|----------------------------|--------------------------|--------------------------|--|----------------------|--------------------------|---|----------------------|--------------------------|--------------------------|--------------------------|------------------------------|------------------------------|--------------------------|------------------------------|------------------------------| | BACKSTOP
SIZE ★ | Torque
Rating
(Nm) | Over-
running
Speed
(rpm) | Min | Max | A | В | c | D | E | F□ | G ■ | J
Max | K | L | M | N | 0 | P■ | TA
Max | Wt-kg● | | 1075NRT
1085NRT
1095NRT
1105NRT | 13 550
21 680
37 940
60 975 | 450
350
300
180 | 50
75
85
125 | 100
130
150
200 | 295
358
391
490 | 213
213
269
269 | 193
193
249
249 | 127 ◆
165 *
183 ♥
234 ▲ | 10
10
10
10 | 101
132
150
216 | 18
18 *
20 ♥
25 ▲ | 61
92
81
69 | 71
66
89
81 | 71
76
91
104 | 102
127
152
203 | 914
1219
1372
1676 | 1062
1400
1567
1923 | 158
158
206
206 | 403
625
653
645 | 70
122
177
281 | | 1115NRT
1125NRT
1135NRT
1145NRT | 101 625
142 275
203 250
287 260 | 150
135
125
115 | 150
185
215
225 | 225
240
270
300 | 546
622
686
787 | 295
310
356
356 | 269
284
330
330 | 267 ★
308 Φ
345
379 | 13
13
13
13 | 235
279
267
305 | 32
32
32
32
32 | 76
80
66
41 | 89
91
109
107 | 117
127
140
142 | 254
305
305
381 | 1829
1981
2083
2235 | 2103
2294
2426
2629 | 229
244
290
290 | 696
752
828
937 | 395
513
662
853 | | 1155NRT
1165NRT
1175NRT
1185NRT | 337 395
468 830
703 245
1 012 185 | 100
85
80
70 | 265
320
345
390 | 350
405
465
510 | 889
945
1107
1270 | 363
422
442
457 | 338
396
417
432 | 442
503
584
632 | 13
13
13
13 | 337
394
445
509 | 38
51
51
51 | 49
65
66
62 | 104
122
130
102 | 152
160
185
257 | 457
508
610
691 | 2388
2540
3048
3048 | 2832
3012
3602
3683 | 292
351
363
373 | 1071
1546
1297
1325 | 1211
1415
2177
3005 | - igstar Dimensions are for reference only and are subject to change without notice unless certified. - Refer to the Factory for higher maximum overrunning speeds. - Backstops are provided with standard metric keys and keyways per ISO 773 and DIN 6885-1 Standard D10 clearance fit. - Weight shown is for backstop with minimum bore and without oil. - Dimension P is minimum required shaft engagement; see Table 1 for minimum key engagement (Shaft and key stresses). Dimension G is the retaining collar thickness for one collar. Size 1075 bores over 90 mm, Size 1085 bores over 121 mm, Size 1095 over 140 mm, Size 1105 bores over 180 mm, Size 1115 Mounting Positions — The backstop rotational axis must be horizontal within 5° The backstop and torque arm may be mounted at any desired angle, but the position must be specified to permit furnishing of oil lines to suit the mounting. Horizontal or near horizontal mounting of the torque arm provides maximum bearing life. Purchaser — The purchaser is responsible for assembling the backstop retaining collar (when furnished), oil line, oil level sight gauge, air vent, and for furnishing the oil and the torque arm stirrup per the Rexnord service manual. A 3.2 micro meter, or finer, shaft finish is recommended. bores over 205 mm, and Size 1125 bores over 230 mm" require two collars (one on each side) or one collar with a step in the shaft. Check usable shaft length if two (2) collars are used. - ◆ Size 1075 with bores over 90 mm, D = 165 mm. ★ Size 1085 with bores over 120 mm, D = 183 mm, G = 20 mm. - ♥ Size 1095 with bores over 135 mm, D= 234 mm, G=25 mm. - \triangle Size 1105 with bores over 175 mm, D = 267 mm, G = 32 mm. - ♣ Size 1115 with bores over 200 mm D = 308 mm. • Size 1125 with bores over 230 mm, D = 345 mm. □ Counterbore is for manufacturing. NOTE: Electronic drawings are available from our Website: http://pt.rexnord.com/customer support/drawings © Rexnord Industries, LLC, 1979, 2009 ## **Backstop Operation** — NRT ### Overrunning **Figure 6** — For most of its operating life a backstop is in the overrunning mode of operation. The rollers, roller cage, and stop lugs rotate with the inner cam as a unit since they are connected by the energizing springs. The outer race does not rotate since it is bolted to the end covers, which are held by the backstop torque arm. While overrunning, the rollers roll on the outer race and slide on the inner cam ramps. Friction and centrifugal force tend to lift the rollers off the cam, minimizing contact and wear (Figure 7). Figure 6 Figure 8 The energizing springs stretch during overrunning to provide tension to the roller cage assembly (Figure 6). This tension keeps the rollers ready for instantaneous backstopping engagement and minimizes the relative rotation of the roller cage to the inner cam. The stop lugs axially position the roller cage assembly on the inner cam. They also prevent the roller cage from rotating too far which would cause the rollers to strike the upright side of the adjacent ramp. Maximum relative rotation of the roller cage assembly and inner cam during overrunning is between .040" (1,02 mm) and .100" (2,04 mm), depending on size, as limited by the stop lugs. ### **Backstopping** **Figure 8** — As the rotating shaft stops and attempts to reverse, the inner cam is instantly stopped by the wedging action of the rollers in the annular openings between the cam ramps and outer race. From the outer race the backstopping torque is carried through the end covers to the torque arm and the adjoining superstructure. **Figure 9** — All rollers are engaged simultaneously since they are positioned by the spring loaded roller cage. Load division between the rollers is assured by machining accuracy of the inner cam ramps, rollers, roller cage, and outer race. Figure 7 Figure 9 As additional backstopping torque is applied to the inner cam, the rollers will tend to move deeper into the wedging position, thereby increasing the resistance to slippage. Relative rotational movement between initial backstopping engagement at no load to backstopping at full catalog rating is approximately $1^{1}/_{2^{\circ}}$ to 3° . The torque capacity of the backstop is based on the tangential friction resistance force at the outer race developed by the compressive force between the inner cam ramps, rollers, and outer race. The maximum torque capacity of the backstop is limited by the Hertzian contact stress at inner cam/roller and roller/outer race contact points, bending strength of torque arm, and hoop stress of outer race. # Backstop Operation — NRTH Styles B and C The NRTH styles B and C backstops are a new addition to the Rexnord line of backstops. These backstops operate on the proven principal of sprag technology, which has been around since the mid 1950's. The sprag technology has advanced over the years with improvements in materials and heat treatment processes. ### **NRTH Style B** The NRTH Style B backstops are designed for lower operating speed applications. The design features three primary components: a cylindrical inner race, a cylindrical outer race, and a sprag cage consisting of a full complement of individually tensioned sprags. The proprietary geometry of the sprags allows for the one-way operation of the backstop (see illustration). During normal operation of the backstop, the inner race rotates in the free
direction while the outer race remains stationary. During an attempted reversal of the backstop, torque is instantly transmitted from the inner race, through the sprags, to the outer race, which is held stationary with a torque arm. The features of the backstops are zero backlash, large bore capacity, large torque capacity and grease purge cavities on sizes 1055, 1065, and 1085. NOTE: If all the upgraded features of the NRT style backstop are not required, then consider the 1055, 1065, and 1085 NRTH Style B backstops as a less expensive alternative to the NRT backstop design. (1055, 1065, and 1085 ONLY) ### NRTH Style C The NRTH Style C backstops are offered in sizes 1055 and 1065, and are designed for a higher operating speed than the Style B. The centrifugal lift-off sprag is a feature exclusive to the NRTH Style C design in the NRT tamily of Rexnord backstops. This feature incorporates a special sprag design with an offset center of gravity. During overrunning, centrifugal force_{Fc} causes the individually tensioned sprags to lift off the outer race, thereby allowing the Figure 11 OVERRUNNING (LIFT OFF) sprags to operate without wear (Figure 11). When the overrunning speed of the backstop has reduced sufficiently so that the centrifugal force is less than the spring force, the sprags will return to their contact positions and stand ready to transmit torque without backlash (Figure 12). Special features are increased service life, reduced heat generated, high overrunning speeds, and sealed for life design (minimum maintenance). Figure 12 BACKSTOPPING © Rexnord Industries, LLC, 1979, 2009 (561-110) 15 # Service Parts (Type NRT Backstops) **INTRODUCTION** — Give complete data shown on the backstop nameplate and name of parts required. Complete data will assure receipt of the correct parts. COVER GASKETS — When end covers are removed to replace oil seals, order new cover gaskets to prevent oil leakage. ### Type NRT — Backstop Parts #### **Part Description** **Lubrication Assembly** Air Vent Assembly Oil Level Gauge **Torque Arm** Bearing (each) Oil Seal (each) Cover Fasteners (set) † - Cover Gasket (each) ★ Assembly shown includes sight gauge, air vent and all piping, tees, and elbows required. - † Cover fastener; two sets are required per backstop. #### PART DESCRIPTIONS - End Cover - 2. Gasket - 3. Bearing - 4. Outer Seal 5. Inner Seal - 6. Rollers - 7. Roller Cage End Rings (2) 8. Inner Cam - 9. Outer Race - 10. Labyrinth Shroud (Not available on all sizes) - 11. Optional Axial Retaining Collar 12. Stop Lug - 13. Roller Cage Fasteners14. Rotation Direction Plate - 15. End Cover Fasteners - 16. Torque Arm 17. Torque Arm Pin ### Dismantling, Repair, & Parts Replacement WARNING: DO NOT attempt to service or remove backstop before removing load. An important part of the Falk NRT backstop manufacturing process is the full load and overrunning testing with specially instrumented equipment. Consequently, return NRT backstops to Rexnord for repair and full load testing. Except for replacement of oil seals (Service Manual 568-130), NRT backstops should not be dismantled or repaired in the field. If seals are to be replaced, it is important that the cam and roller assemblies not be removed from the outer race. Removal will void applicable warranties. When writing to Rexnord Service Parts Department concerning required service, state nature of problem and give complete data from backstop nameplate, M. O. number, size, date, etc. Contact: Gear.ServiceParts@rexnord.com **Backstop Applications** — Falk NRT and NRTH backstops are designed to prevent reverse rotation in applications such as inclined conveyors, bucket elevators, fans, rotary pumps, and kilns. If local safety codes permit, the backstop may be used as a backup for a brake on those applications, but NOT in people conveying systems such as elevators, manlifts, ski tows or ski lifts, Also DO NOT use the backstop as a substitute for a brake. **Indexing** — Falk NRT and NRTH Backstops can be used for indexing service, provided there is one complete revolution of the backstop between backstopping cycles. Refer application data to the Factory for selection. Safety Standards — The backstop and normal associated equipment (shaft, pulleys, etc.) involve moving parts; therefore, consult local, state, OSHA, and ANSI safety codes for proper guarding of revolving parts and possible pinch points. (A pinch point occurs at the contact point between the backstop torque arm and support, and between the torque arm and stirrup.) **Chemical Atmospheres** — The backstop may be damaged if exposed to certain types of chemicals or vapors; for example, potash dust, chlorine gas, carbon tetrachloride, etc. These materials may cause deterioration of the seals or aluminum roller cage rings. Operating Temperature — Enclosure of the backstop may cause overheating. Provide adequate ventilation. Backstop operating temperatures, at maximum overrunning speed, may reach 200°F (93°C). Determine the effect of this temperature on the driven equipment and provide cooling if necessary. If a backstop operates in the sun at ambient temperatures over 100°F (38°C), then special measures should be taken to protect the backstop from solar energy. This protection can consist of a canopy over the backstop or reflective paint on the backstop. If neither is possible, a cooling device such as a fan may be required to prevent the sump temperature from exceeding the allowable maximum of 200°F (93°C). **Keys & Keyways** — Keys used with NRT and NRTH backstops are furnished by the Factory. Keys are either mild steel, cold drawn 1045 steel or heat treated alloy steel (310-350 HB). Use only those keys provided by the Factory (see Table 1). Do not use sled runner type keyway. It may induce undue forces on backstop. Table 1 — Shaft and Keyway Dimensions — Inches ★ | BACKSTOP | Nominal Shaft | Shaft I | (eyway | Backstop K | eyway | | | Key | | |----------|--|---|--|---|--|--|--|--|---------------------------------| | SIZE | Diameter
(Over—Thru) | Width | Depth | Width | Depth | Width x Height | Key Length
Furnished | Minimum Key
Engagement | Key ★
Material : | | 1045NRTH | 1.3750 -2.2500 | 0.500 | 0.250 | 0.500 | 0.250 | 0.500 X 0.500 | 3.500 | 2.625 | 3 | | | 2.2500 -2.5000 | 0.625 | 0.313 | 0.625 | 0.125 | 0.625 X 0.438 | 3.500 | 2.625 | 3 | | 1055NRTH | 1.7500 -2.2500 | 0.500 | 0.250 | 0.500 | 0.250 | 0.500 X 0.500 | 7.500 | 5.500 | 3 | | | 2.2500 -2.7500 | 0.625 | 0.313 | 0.625 | 0.313 | 0.625 X 0.625 | 7.500 | 5.500 | 3 | | | 2.7500 -3.2500 | 0.750 | 0.375 | 0.750 | 0.375 | 0.750 X 0.750 | 7.500 | 5.500 | 3 | | | 3.2500 -3.3750 | 0.875 | 0.438 | 0.875 | 0.438 | 0.875 X 0.875 | 7.500 | 5.500 | 3 | | 1065NRTH | 2.5000 -2.7500
2.7500 -3.2500
3.2500 -3.7500
3.7500 -4.0000
4.0000 -4.5000 | 0.625
0.750
0.875
1.000
1.000 | 0313
0.375
0.438
0.500
0.500 | 0.625
0.750
0.875
1.000
1.000 | 0.313
0.375
0.438
0.500
0.250 | 0.625 X 0.625
0.750 X 0.750
0.875 X 0.875
1.000 X 1.000
1.000 X 0.750 | 8.000
8.000
8.000
8.000
8.000 | 5.875
5.875
5.875
5.875
5.875 | 3
3
3
3 | | 1085NRTH | 3.9375 -4.5000 | 1.000 | 0.500 | 1.000 | 0.500 | 1.000 X 1.000 | 7.625 | 5.875 | 3 | | | 4.5000 -4.7500 | 1.250 | 0.625 | 1.250 | 0.625 | 1.250 X 1.250 | 7.625 | 5.875 | 3 | | | 4.7500 -5.4375 | 1.250 | 0.625 | 1.250 | 0.313 | 1.250 X 0.938 | 7.625 | 5.875 | 3 | | 1075NRT | 1.9375
1.9375 -2.2500
2.2500 -2.7500
2.7500 -3.2500
3.2500 -3.5625
3.5625 -3.7500
3.7500 -3.9375 | .500
.500
.625
.750
.875
.875 | .250
.250
.313
.375
.438
.313 | .500
.500
.625
.750
.875
.875 | .250
.250
.313
.375
.438
.323
.250 | .500 x .500
.500 x .500
.625 x .625
.750 x .750
.875 x .875
.875 x .625
1.000 x .750 | 7.25
7.25
6.00
7.00
5.50
7.25
7.00 | 7.25
7.25
6.00
5.50
4.00
5.00
5.00 | 2
2
2
1
1
1
1 | | 1085NRT | 2.9375
2.9375 -3.2500
3.2500 -3.7500
3.7500 -4.5000
4.5000 -4.7500
4.7500 -5.1875 | .750
.750
.875
1.000
1.250
1.250 | .375
.375
.438
.500
.625 | .750
.750
.875
1.000
1.250
1.250 | .375
.375
.438
.500
.625
.250 | .750 x .750
.750 x .750
.875 x .875
1.000 x 1.000
1.250 x 1.250
1.250 x .8750 | 7.00
7.00
5.50
7.00
7.00
7.00 | 6.50
6.50
5.00
5.00
3.50
7.00 | 2
2
2
1
1
1 | | 1095NRT | 3.4375 | .875 | .438 | .875 | .438 | .875 x .875 | 9.00 | 8.00 | 2 | | | 3.4375 -3.7500 | .875 | .438 | .875 | .438 | .875 x .875 | 9.00 | 8.00 | 2 | | | 3.7500 -4.5000 | 1.000 | .500 | 1.000 | .500 | 1.000 x 1.000 | 9.00 | 8.50 | 1 | | | 4.5000 -5.0000 | 1.250 | .625 | 1.250 | .625 | 1.250 x 1.250 | 7.00 | 6.00 | 1 | | | 5.0000 -5.5000 | 1.250 | .625 | 1.250 | .500 | 1.250 x 1.125 | 7.00 | 6.50 | 1 | | 1105NRT | 4.9375 | 1.250 | .625 | 1.250 | .625 | 1.250 x 1.250 | 7.00 | 6.50 | 2 | | | 4.9375 -5.5000 | 1.250 | .625 | 1.250 | .625 | 1.250 x 1.250 | 7.00 | 6.50 | 2 | | | 5.5000 -6.5000 | 1.500 | .750 | 1.500 | .750 | 1.500 x 1.500 | 8.00 | 6.50 | 1 | | | 6.5000 -7.4375 | 1.750 | .750 | 1.750 | .750 | 1.750 x 1.500 | 9.00 | 5.50 | 1 | | 1115NRT | 5.9375 | 1.500 | .750 | 1.500 | .750 | 1.500 x 1.500 | 8.00 | 7.50 | 2 | | | 5.9375 -6.5000 | 1.500 | .750 | 1.500 | .750 | 1.500 x 1.500 | 8.00 | 7.50 | 2 |
| | 6.500 -7.5000 | 1.750 | .750 | 1.750 | .750 | 1.750 x 1.500 | 9.00 | 9.00 | 1 | | | 7.500 -8.0000 | 2.000 | .750 | 2.000 | .750 | 2.000 x 1.500 | 9.00 | 8.00 | 1 | | | 8.000 -8.4375 | 2.000 | .750 | 2.000 | .750 | 2.000 x 1.250 | 10.50 | 10.50 | 1 | | 1125NRT | 7.2500 | 1.750 | .750 | 1.750 | .750 | 1.750 x 1.500 | 11.00 | 11.00 | 1 | | | 7.250 -7.5000 | 1.750 | .750 | 1.750 | .750 | 1.750 x 1.500 | 11.00 | 11.00 | 1 | | | 7.500 -9.0000 | 2.000 | .750 | 2.000 | .750 | 2.000 x 1.500 | 11.00 | 10.50 | 1 | | 1135NRT | 8.5000 | 2.000 | .750 | 2.000 | .750 | 2.000 x 1.500 | 11.00 | 10.00 | 2 | | | 8.500 -9.0000 | 2.000 | .750 | 2.000 | .750 | 2.000 x 1.500 | 11.00 | 10.00 | 2 | | | 9.000 -10.5000 | 2.500 | .875 | 2.500 | .875 | 2.500 x 1.750 | 12.00 | 9.50 | 1 | | 1145NRT | 9.0000 | 2.000 | .750 | 2.000 | .750 | 2.000 x 1.500 | 13.00 | 13.00 | 2 | | | 9.0000 -11.0000 | 2.500 | .875 | 2.500 | .875 | 2.500 x 1.750 | 12.00 | 11.50 | 2 | | | 11.0000 -12.0000 | 3.000 | 1.000 | 3.000 | 1.000 | 3.000 x 2.000 | 13.00 | 11.00 | 1 | | 1155NRT | 10.5000 | 2.500 | 1.250 | 2.500 | 1.250 | 2.500 x 2.500 | 12.00 | 11.00 | 2 | | | 10.500 -11.0000 | 2.500 | 1.250 | 2.500 | 1.250 | 2.500 x 2.500 | 12.00 | 11.00 | 2 | | | 11.000 -13.0000 | 3.000 | 1.000 | 3.000 | 1.000 | 3.000 x 2.000 | 13.00 | 13.00 | 2 | | | 13.000 -13.2500 | 3.500 | 1.250 | 3.500 | 1.250 | 3.500 x 2.500 | 12.00 | 9.00 | 2 | | 1165NRT | 12.5000 | 3.000 | 1.000 | 3.000 | 1.000 | 3.000 x 2.000 | 15.50 | 12.00 | 2 | | | 12.500 -13.0000 | 3.000 | 1.000 | 3.000 | 1.000 | 3.000 x 2.000 | 15.50 | 12.00 | 2 | | | 13.000 -15.0000 | 3.500 | 1.250 | 3.500 | 1.250 | 3.500 x 2.500 | 12.00 | 12.00 | 2 | | | 15.000 -15.5000 | 4.000 | 1.500 | 4.000 | 1.500 | 4.000 x 3.000 | 13.00 | 9.00 | 2 | | 1175NRT | 13.5000 | 3.500 | 1.250 | 3.500 | 1.250 | 3.500 x 2.500 | 16.00 | 15.50 | 2 | | | 13.500 -15.0000 | 3.500 | 1.250 | 3.500 | 1.250 | 3.500 x 2.500 | 16.00 | 15.50 | 2 | | | 15.000 -17.5000 | 4.000 | 1.500 | 4.000 | 1.500 | 4.000 x 3.000 | 13.00 | 13.00 | 2 | | 1185NRT | 15.5000 | 4.000 | 1.500 | 4.000 | 1.500 | 4.000 x 3.000 | 17.00 | 13.50 | 2 | | | 15.500 -18.0000 | 4.000 | 1.500 | 4.000 | 1.500 | 4.000 x 3.000 | 17.00 | 13.50 | 2 | | | 18.000 -20.0000 | 5.000 | 1.750 | 5.000 | 1.750 | 5.000 x 3.500 | 14.00 | 13.50 | 2 | [★] Keys are furnished by the Factory to suit shaft and backstop keyways. Keys are either cold drawn 1045 or heat treated alloy steel (310 - 350 HB). Only use keys furnished by the Factory. Shaft keyway depth tolerance of -.000" -.010" is recommended. ‡ Number 1 keys are cold drawn 1045 steel, Number 2 keys are heat treated alloy steel (310 - 350 HB), and Number 3 keys are Mild Steel. ‡ Backstop supplied with H7 bore assuming h6 shaft (ANSI tolerance specification). Backstop key and keyway tolerance per FDN 430-152 assuming shaft keyway per ANSI B17.1. 18 (561-110) Table 1A — Shaft and Keyway Dimensions — Millimeters ★ | BACKSTOP | Nominal Shaft | Shaft K | Backstop Ke | yway | Кеу | | | | | |----------|---|--|--|--|---|--|--|--|---| | SIZE | Diameter
(Over—Thru) | Width | Depth | Width | Depth | Width x Height | Key Length
Furnished | Minimum Key
Engagement | Key ★
Material ‡ | | 1045NRTH | 45 -50
50 -58
58 -60 | 14.0
16.0
18.0 | 5.5
6.0
7.0 | 14.0
16.0
18.0 | 3.8
4.3
2.3 | 14 X 9
16 X 10
18 X 9 | 88.9
88.9
88.9 | 66.7
66.7
66.7 | 3
3
3 | | 1055NRTH | 45 -50
50 -58
58 -65
65 -75
75 -85
85 -95
95 -98 | 14.0
16.0
18.0
20.0
22.0
25.0
28.0 | 5.5
6.0
7.0
7.5
9.0
9.0
10.0 | 14.0
16.0
18.0
20.0
22.0
25.0
28.0 | 3.8
4.3
4.4
4.9
5.4
5.4
3.2 | 14 X 9
16 X 10
18 X 11
20 X 12
22 X 14
25 X 14
28 X 13 | 190.5
190.5
190.5
190.5
190.5
190.5 | 139.7
139.7
139.7
139.7
139.7
139.7 | 3
3
3
3
3
3
3 | | 1065NRTH | 65 - 75
75 - 85
85 - 95
95 - 110
110 - 115 | 20.0
22.0
25.0
28.0
32.0 | 7.5
9.0
9.0
10.0
11.0 | 20.0
22.0
25.0
28.0
32.0 | 4.9
5.4
5.4
6.4
3.5 | 20 X 12
22 X 14
25 X 14
28 X 16
32 X 14 | 203.2
203.2
203.2
203.2
203.2 | 149.2
149.2
149.2
149.2
149.2 | 3
3
3
3
3 | | 1085NRTH | 100 -110
110 -130
130 -140 | 28.0
32.0
36.0 | 10.0
11.0
12.0 | 28.0
32.0
36.0 | 6.4
7.4
3.8 | 28 X 16
32 X 18
36 X 15 | 193.7
193.7
193.7 | 149.2
149.2
149.2 | 3
3
3 | | 1075NRT | 50
50 - 58
58 - 65
65 - 75
75 - 85
85 - 95
95 - 100 | 14.0
16.0
18.0
20.0
22.0
25.0
28.0 | 5.5
6.0
7.0
7.5
9.0
9.0 | 14.0
16.0
18.0
20.0
22.0
25.0
28.0 | 3.8
4.3
4.4
4.9
5.4
5.4
3.2 | 14 X 9
16 X 10
18 X 11
20 X 12
22 X 14
25 X 14
28 X 13 | 210
210
210
200
180
150
180 | 210
210
210
185
160
140
140 | 2
2
2
2
2
2
2
2
2 | | 1085NRT | 75
75 - 85
85 - 95
95 - 110
110 - 130 | 20.0
22.0
25.0
28.0
32.0 | 7.5
9.0
9.0
10.0
11.0 | 20.0
22.0
25.0
28.0
32.0 | 4.9
5.4
5.4
6.4
7.4 | 20 X 12
22 X 14
25 X 14
28 X 16
32 X 18 | 210
210
210
180
150 | 210
210
210
210
170
120 | 2
2
2
2
2
2 | | 1095NRT | 85
85 - 95
95 - 110
110 - 130
130 - 150 | 22.0
25.0
28.0
32.0
36.0 | 9.0
9.0
10.0
11.0
12.0 | 22.0
25.0
28.0
32.0
36.0 | 5.4
5.4
6.4
7.4
7.4 | 22 X 14
25 X 14
28 X 16
32 X 18
36 X 19 | 265
265
265
230
180 | 265
265
265
225
160 | 2
2
2
2
2
2 | | 1105NRT | 120 - 130
130 - 150
150 - 170
170 - 200 | 32.0
36.0
40.0
45.0 | 11.0
12.0
13.0
15.0 | 32.0
36.0
40.0
45.0 | 7.4
8.4
9.4
10.4 | 32 X 18
36 X 20
40 X 22
45 X 25 | 265
265
220
170 | 265
265
210
165 | 2
2
2
2
2 | | 1115NRT | 150
150 - 170
170 - 200
200 - 225 | 36.0
40.0
45.0
50.0 | 12.0
13.0
15.0
17.0 | 36.0
40.0
45.0
50.0 | 8.4
9.4
10.4
11.4 | 36 X 20
40 X 22
45 X 25
50 X 28 | 290
290
290
220 | 290
290
280
220 | 2
2
2
2 | | 1125NRT | 180 - 200
200 - 230
230 - 240 | 45.0
50.0
56.0 | 15.0
17.0
20.0 | 45.0
50.0
56.0 | 10.4
11.4
12.4 | 45 X 25
50 X 28
56 X 32 | 305
305
280 | 305
305
250 | 2
2
2 | | 1135NRT | 210 - 230
230 - 260
260 - 280 | 50.0
56.0
63.0 | 17.0
20.0
20.0 | 50.0
56.0
63.0 | 11.4
12.4
12.4 | 50 X 28
56 X 32
63 X 32 | 350
350
330 | 350
350
315 | 2
2
2 | | 1145NRT | 220 - 230
230 - 260
260 - 290
290 - 300 | 50.0
56.0
63.0
70.0 | 17.0
20.0
20.0
20.0
22.0 | 50.0
56.0
63.0
70.0 | 11.4
12.4
12.4
14.4 | 50 X 28
56 X 32
63 X 32
70 X 36 | 350
350
350
350 | 350
350
350
340 | 2
2
2
2 | | 1155NRT | 260 - 290
290 - 330
330 - 350 | 63.0
70.0
80.0 | 20.0
22.0
25.0 | 63.0
70.0
80.0 | 12.4
14.4
15.4 | 63 X 32
70 X 36
80 X 40 | 360
360
360 | 360
360
330 | 2
2
2 | ^{*} Keys are furnished by the Factory to suit shaft and backstop keyways. Keys are either cold drawn 1045 or heat treated alloy steel (310 - 350 HB). Only use keys furnished by the Factory. Shaft keyway depth tolerance of -.000 -.025mm is recommended. † Number 1 keys are cold drawn 1045 steel, Number 2 keys are heat treated alloy steel (310 - 350 HB), and Number 3 keys are Mild Steel. * Backstops supplied with E7 bore and D10 keyway assuming m6 shaft diameter and h9 keyway (ISO tolerance specification). Table 2 — Backstop-Shaft Fits — Inch | Nominal Diameter | Nominal Shaft | Nominal Bore | Bore-Shaft | |-------------------|---------------|--------------------|-------------| | (From-Incl.) | Tolerance | Diameter Tolerance | Clearance ★ | | 1.2500 - 1.5000 | + .0000,0005 | +.0005, +.0015 | .00050020 | | 1.5000 - 2.9375 | + .0000,0010 | +.0005, +.0015 | .00050025 | | 3.0000 - 7.9375 | + .0000,0010 | +.0010, +.0025 | .00100035 | | 8.0000 - 11.9375 | + .0000,0010 | +.0015, +.0035 | .00150045 | | 12.0000 - 14.9375 | + .0000,0010 | +.0020, +.0045 | .00200055 | | 15.0000 - 20.0000 | + .0000,0020 | +.0020, +.0045 | .00200065 | [★] A 125 micro inch (or finer) shaft finish and clearance fit specified above are recommended. Table 3 — Metric Bores for Backstops | Nominal Diameter | Nominal Shaft | Nominal Bore | Bore-Shaft | |---|---|---|---| | over — to | Tolerance | Tolerance | Clearance | | (mm) | (mm)• | (mm) † | Min-Max (mm) | | 30 – 50 k6
50 – 80 m6
80 – 120 m6
120 – 180 m6
180 – 250 m6
250 – 315 m6
315 – 400 m6
400 – 500 m6 | .002 / .018
.011 / .030
.013 / .035
.015 / .040
.017 / .046
.020 / .052
.021 / .057 | .025 / .050
.060 / .090
.072 / .107
.085 / .125
.100 / .146
.110 /
.162
.125 / .182 | .007048
.030079
.037094
.045110
.054129
.058142
.068161 | Shaft diameters from 30 – 50 mm are k6 tolerance and shaft diameters over 50 – 500 mm are m6 tolerance. Table 4 — Backstop Reaction Force at Torque Arm Stirrup (Inch & Metric) | | • | | | l | | | | | | |--|--|--|--|--|--|---|---|--|--| | BACKSTOP
SIZE | Catalog To | rque Rating | N Torque A
(See drawing o | | .9N +/5" (1 | 2.7 mm) | Torque Arm Reaction Force ‡ | | | | 3121 | lb-ft | Nm | in | mm | in | mm | lb | N | | | 1045NRTH-B
1055NRTH-B
1055NRTH-C
1065NRTH-B
1065NRTH-C
1085NRTH-B | 2,100
10,000
4,400
13,000
8,400
18,000 | 2 847
13 557
5 965
17 625
11,388
24,403 | 7.00
36.00
36.00
36.00
36.00
51.00 | 178
914
914
914
914
1295 | 6.30
32.40
32.40
32.40
32.40
45.90 | 160 6,000
823 5,556
823 2,444
823 7,222
823 4,667
1166 7,059 | | 26 688
24 711
10 873
32 124
20 757
31 398 | | | 1075NRT
1085NRT
1095NRT
1105NRT
1115NRT
1125NRT | 10,000
16,000
28,000
45,000
75,000
105,000 | 13 600
21 700
38 000
61 000
102 000
142 000 | 36.00
48.00
54.00
66.00
72.00
78.00 | 914
1 219
1 372
1 676
1 829
1 981 | 32.50
43.00
48.50
59.50
65.00
70.00 | 825
1 095
1 235
1 510
1 645
1 785 | 5,550
6,700
10,500
13,600
20,800
27,000 | 24 700
29 800
46 700
60 500
92 550
120 100 | | | 1135NRT
1145NRT
1155NRT
1165NRT
1175NRT
1185NRT | 150,000
212,000
249,000
346,000
519,000
747,000 | 203 000
287 000
338 000
469 000
704 000 | 82.00
88.00
94.00
100.00
120.00 | 2 083
2 235
2 386
2 540
3 048
3 048 | 74.00
79.00
84.50
90.00
108.00
108.00 | 1 875
2 010
2 150
2 285
2 745
2 745 | 36,500
48,300
53,300
69,200
86,500
124,500 | 162 400
214 850
237 100
307 850
384 850
553 800 | | [‡] Reaction force is based on .9N torque arm length and 1.5 catalog rating: Force (lb) = $1.50 \times \text{Catalog Torque Rating (lb-ft)} \times 12 \text{ (in per ft)}$.9N (in) Force((N) = $1.50 \times \text{Catalog Torque Rating} \times 1000 \text{ (mm per m)}$.9N (mm) For reduced length torque arms substitute actual N dimension in formula. [†] Bore diameters from 30 – 50 mm are F7 tolerance and bore diameters over 50 mm to 500 mm are E7 tolerance A 3.2 micro meter (or finer) shaft finish is recommended. For shaft tolerances other than those listed in the table, consult Factory for bore tolerance. (Specify your shaft tolerance.) **Backstop Mounting Positions** — The supporting shaft must be horizontal within 5° for NRTH and NRT backstops. The backstop torque arm assembly may be rotated to any angular position, but the position must be specified by the purchaser to permit Rexnord to turnish oil lines to suit the mounting for Type NRT. The symmetrical backstop design permits turning the backstop end for end to provide either direction of shaft rotation. The backstop overrunning (or free rotation) direction is indicated by a rotation arrow on each side of the backstop. For NRT backstops, the purchaser is responsible for mounting the backstop retaining collar, oil line, oil level sight gauge, and air vent, and for furnishing the oil and the torque arm stirrup per the Rexnord service manual. **Torque Arm Stirrups** — Locate torque arm stirrup at .9N as illustrated at right. Design the stirrup to withstand the Torque Arm Reaction Force listed in Table 4. If the stirrup must be located closer, design the stirrup to withstand the force developed by the actual torque applied to the backstop. Use the following formula to determine the force. $$Actual\,Reaction\,Force\,=\,\frac{Drive\,Pulley\,Peak\,Torque}{Actual\,Application\,\,Dimension\,\,N}$$ The torque arm must be free to move within the stirrup. Provide clearance on three sides as shown at right. DO NOT restrict torque arm movement by welding or securing to any supporting structure. Locate the torque arm support surface parallel $(\pm 1/2)$ to the axis of the shaft on which the backstop is mounted. A boot or hood is recommended for all positions of the torque arm to prevent accumulation of material around the torque arm stirrup. This also provides a guard against a possible pinch point. DO NOT restrict movement of the torque arm. Grease Purged Seals — The option of adding grease is the purchaser's. Adding grease to the outer cavity seal is NOT RECOMMENDED it grease could contaminate the material being processed as in the food and drug industries. The company adds grease between the inner and outer seals for NRT backstops. DO NOT purge this inner cavity in the field. **END VIEW** ### Falk Type NRT & NRTH Backstop Interchangeability Chart | Torque | | REXNOR | D/FALK | ™★ NRT | H & NRT | | ALTRAINDUSTI | ALTRAINDUSTRIAL MOTION® (formerly MARLAND®) TYPE BC, BC-M, & BC-MA | | | | | | ALTRA INDUSTRIAL MOTION®
(formerly FORMSPRAG®)
TYPE LLH-S & LLH-R | | | | | |--------------------|-----------|--------|--------|----------------|------------------------|---------|---------------------|--|-------|----------------|------------------------|----------|----------------|---|------------|----------------|----------------------------|----------| | Rating
Ib-ft | | Bore R | lange | | Width | | | Bore I | Range | | Width | | | | Range | | Width | | | 16-11 | SIZE | Min | Max | Outside
Dia | w/o Axial
Retention | Wt
b | SIZE | Min | Max | Outside
Dia | w/o Axial
Retention | Wt
Ib | SIZE | Min | Max | Outside
Dia | w/o Axial
Retentio
n | Wt
lb | | 1,808 | 1045NDTUD | | | | | | | | | | | | | | | | | | | 2,100
2,250 | 1045NRTHB | 1.75 | 2.50 | 6.50 | 4.19 | 29 | ••• | | | | | | | | | | | | | 3,000 | | | | | | | 3MA/2M/200 | 2.44 | 2.94 | 8.2 | 5.3 | 100 | | | | | | | | 3,333
4,000 | ••• | | | | | | ••• | | | | | | 700S | 1.88 | 3.25 | 7.1 | 6.4 | 16 | | 4,342 | | | 2.75 |
0.7E | | | ••• | | | | | | ••• | | | | | | | 4,400
5,000 | 1055NRTHC | 1.75 | 3.75 | 9.75 | 8.02 | 157 | ••• | | | | | | | | | | | | | 5,788 | | | | | | | 4MA/AM/07E | | 2.0 | | | 150 | ••• | | | | | | | 6,000
6,500 | ••• | | | | | | 6MA/4M/275 | 2.94 | 3.69 | 9.8 | 6.3 | 150 | ••• | | | | | | | 6,666 | ••• | | | | | | ••• | | | | | | • • • • | | | | | | | 6,800
7,960 | ••• | | | | | | ••• | | | | | | 750S | 2.25 | 3.44 | 8.0 | 7.4 | 21 | | 8,400 | 1065NRTHC | 2.50 | 4.50 | 10.50 | 8.52 | 190 | ••• | | | | | | • • • • | | | | | | | 10,000 | 1055NRTHB | 1.75 | 3.75 | 9.75 | 8.02 | 157 | ••• | | | | | | ••• | | | | | | | 11,500 | 1075NRT | 1.94 | 3.94 | 11.6 | 8.4 | 155 | | | | | | | 800S | 2.63 | 4.44 | 10.0 | 7.6 | 32 | | 11,577 | ••• | | | | | | ••• | | | | | | | 2.03 | | 10.0 | 1.0 | | | 11,667 | | | | | | |
12MA/8M/350 | 2.04 | 4.50 | 11.5 | | | ••• | | | | | | | 12,000
13,000 | 1065NRTHB | 2.50 | 4.50 | 10.50 | 8.64 | 190 | 12MA/0M/33U | 3.94 | 4.50 | 11.5 | 6.5 | 220 | • • • • | | | | | | | 16,000 | 1085NRT | 2.94 | 5.19 | 14.1 | 8.4 | 270 | | | | 10.5 | | | | | | | | | | 18,000
18,100 | 1085NRTHB | 3.94 | 5.44 | 12.00 | 8.52 | 260 | 18MA/12M/425 | 4.44 | 5.44 | 13.5 | 7.1 | 330 | 9008 | 3.63 | 5.44 | 10.0 | 8.0 | 57 | | 19,000 | | | | | | | ••• | | | | | | | | | | | | | 20,833
27,000 | ••• | | | | | | 27MA/18M/500 | 5.68 | 6.50 | 15.0 | 8.4 | 450 | 10275 | 4.94 | 7.00 | 15.0 | 8.2 |
75 | | 27,083 | 27,485 | | ::: | | 45.7 | | | ••• | | | | | | ••• | | | | | | | 28,000
30,000 | 1095NRT | 3.44 | 5.50 | 15.4 | 10.6 | 390 | ••• | | | | | | | | | | | | | 36,165 | | | | | | | | | | | | | | | | | 9.5 | | | 45,000 | 1105NRT | 4.94 | 7.44 | 19.3 | 10.6 | 620 | 45MA/30M/550 | 5.94 | 7.00 | 17.5 | 8.8 | 600 | 10515 | 4.94 | 7.00 | 15.0 | 9.5 | . 80 | | 45,833
63,000 | ••• | | | | | | 63MA/42M/600 | 6.94 | 8.00 | 19.6 | 9.3 | 830 | 1250R | 5.25 | 8.00 | 19.6 | 9.3 | 830 | | 65,000 | ••• | | | | | | ••• | | | | | | 1250S | 6.75 | 9.00 | 20.0 | 9.8 | 1,400 | | 65,100
66,667 | ••• | | | | | | ••• | | | | | | | | | | | | | 75,000 | 1115NRT | 5.94 | 8.44 | 21.5 | 11.6 | 870 | | | | | | | | | | | | | | 90,000
90,410 | ••• | | | | | | 90MA/60M/700 | 8.00 | 9.00 | 23.0 | 10.5 | 1,130 | 1300S/1300R | 7.94/5.75 | 10.0/9.00 | 21.5/23.0 | 9.8/10.5 | 1,700/1, | | 92,500 | ••• | | | | | | ••• | | | | | | • • • | | | | | | | 05,000 | 1125NRT | 7.25 | 9.00 | 24.5 | 12.2 | 1,130 | ••• | | | | | | ••• | | | | | | | 30,190
35,000 | | | | | | | 135MA/90M/800 | 6.75 | 10.00 | 25.8 | 11.8 | 1 500 | 1375S/1375R | 8 94/6 75 | 11 0/10 50 | 24 5/2 5 7 | 9 8/11 75 | 2 200/1 | | 45,833 | l | | | | | | ••• | | | | | | • • • | | | | | | | 50,000
80,000 | 1135NRT | 8.50 | 10.50 | 27.0 | 14.0 | 1,460 | 180MA/120M/900 | 7.25 | 11.75 | 30.3 | 12.6 | 2,100 | 2000R | 7.25 | 11.75 | 30.3 | 12.6 | 2,100 | | 95,290 | | | | | | | | | | | | | | | | | | 2,100 | | 00,000 | | | | | | | ••• | | | | | | 2000\$ | 10.94 | 13.25 | 30.0 | 10.4 | 3,200 | | 08,333
12,000 | 1145NRT | 9.00 | 12.00 | 31.0 | 14.0 | 1,880 | ••• | | | | | | • • • • | | | | | | | 31,460 | | | | | | | 240MA/160M/1000 | 8.25 | | 34.5 | | | | 8.75 | 14.0 | 34.5 | 16.0 | 2700 | | 40,000 |
1155NRT | 10.50 | 13.25 | 35.0 | 14.3 | 2,670 | Z4UNIA/ TOUNI/ TUUU | | 14.00 | | 16.0 | 2,700 | 2400R | | | | | | | 49,000
50,000 | | 10.50 | 13.23 | | | 2,070 | ••• | | | | | | | | | | | | | 65,000 | | | | | | | ••• | | | | | | 2400S | 13.00 | 15.50 | 36.0 | 10.6 | 4,200 | | 300,000
316,667 | | | | | | | 300MA | 8.25 | 14.0 | 34.5 | 17.0 | 3,800 | | | | | | | | 46,000 | 1165NRT | 12.50 | 15.50 | 37.2 | 16.6 | 3,120 | ••• | | | | | | | | | | | | | 75,000 | | | | | | | 375MA/250MA/1150 | | 18.00 | 41.0 | 18.7 | | 3500S/3500R | | I | | 14.0/18.75 | | | 76,100
16,667 | ••• | | | | | | ••• | | | | | | • • • | | | | | | | 06,300 | | | | | | | ••• | | | | | | ••• | | | | | | | 19,000 | 1175NRT | 13.50 | 17.50 | 43.6 | 17.4 | 4,800 |
540MA | 15.25 | 21.00 | 47.0 | 22.5 | 9,000 |
E000D | 15.25 | 21.00 | 47.0 | 22.5 | 9,00 | | 40,000
00,000 | | | | | | | 540MA
 | 13.23 | 21.00 | 47.0 | | 1,000 | 5000R
5000S | 13.44 | 20.00 | 38.0 | 14.8 | 5,93 | | | | | 1 1 1 | | | 1 | 720MA | 15.25 | 21.00 | 47.0 | 23.5 | 10,000 | | 15.25 | 21.00 | 47.00 | 23.5 | 10,00 | $[\]bigstar$ All have Nitrile Seals up to 225°. ### Falk Type NRT & NRTH Backstop Interchangeability Chart | | EME | RSON/ M | ORSE® A | AG & CB | | EMERSON/TSUBAKI BS & BS-HS | | | | | STEPHENS ADAMSON® HD | | | | | Torque | | | |------------------|--------------|--------------|--------------|------------------------|------------|----------------------------|--------------|-------|----------------|------------------------|----------------------|---------|-------|-------|---------|------------------------|-------|------------------| | | Bore | Range | Outside | Width | 18/4 | | Bore | Range | Outside | Width | Wt | | Bore | Range | Outside | Width | Wt | Ratina | | SIZE | Min | Max | Dia | w/o Axial
Retention | Wt
lb | SIZE | Min | Max | Dia | w/o Axial
Retention | lb | SIZE | Min | Max | Dia | w/o Axial
Retention | lb | lb-ft | | MG 600 | | 2.00 | 5.4 | 3.8 | | ••• | | | | | | | | | | | | 2,100
2,250 | | | | | | | | ••• | | | | | | | | | | | | 3,00 | | • • • | | | | | | | | | | | | HD215 | 1.94 | 2.94 | 9.9 | 8.1 | 125 | 3,33
4,00 | | ••• | | | | | | • • • • | | | | | | • • • | | | | | | | | MG 700 | | 3.25 | 7.1 | 5 | 43 | | | | | | | | | | | | | 4,40
5,00 | | • • • | | | | | | BS-95 | 2.94 | 3.74 | 9.06 | 4.53 | 65 | | | | | | | 5,78
6,00 | | CB-7C
MG-750 | 2.25
2.44 | 4.00 | 10.6
8.75 | 5.2
6.0 | 80
84 | | | | | | | HD315 | 2.94 | 3.94 | 12.4 | 8.1 | 180 | 6,50
6,66 | | ••• | | | | | | BS-110 | 3.94 | 4.33 | 10.63 | 4.53 | 75 | ••• | | | | | | 7,00
7,96 | | • • • • | | | | | | | 3.74 | | 10.03 | | | • • • • | | | | | | 8,40 | | ••• | | | | | | ••• | | | | | | ••• | | | | | | 10,00 | | • • • | | | | | | BS-135 | 3.54 | 5.31 | 12.60 | 5.31 | 152 | | | | | | | 11,50
11,57 | | | | | | | | • • • | | | | | | HD415 | 3.94 | 4.94 | 15.6 | 8.7 | 290 | 11,66 | | CB-12C
MG-800 | 3.25 | 5.25
4.44 | 12.6
10.0 | 5.7
6.0 | 160
105 | | | | | | | | | | | | | 12,00
13,00 | | ••• | | | | | | ••• | | | | | | ••• | | | | | | 16,00 | | MG-900 | 4.00 | 5.44 | 12.0 | 6.4 | 158 | BS-160 | 3.94 | 6.30 | 14.17 | 5.31 | 192 | • • • • | | | | | | 18,00
18,10 | | CB-19C | 3.75 | 6.25 | 14.2 | 5.7 | 195 | | 3.74 | 0.30 | | | 172 | | | | | 111 | | 19,00 | | MG-1000 | 5.00 | 6.44 | 15.0 | 7.0 | 253 | | | | | | | HD600 | 4.44 | 6.00 | 17.0 | 11.7 | 520 | 20,83
25,00 | | | | | | | | | | | | | | HD700 | 4.94 | 7.00 | 18.6 | 12.5 | 660 | 27,08 | | ••• | | | | | | BS-200 | 3.94 | 7.87 | 16.93 | 5.91 | 314 | | | | | | | 27,48 | | CB-30C | 3.75 | 7.75 | 17.0 | 6.3 | 330 | BS-160-HS | 3.94 | 6.30 | 14.17 | 7.08 | 269 | | | | | | | 28,91
30,00 | | CB-45C | 5.50 | 8.50 | 19.6 | 9.6 | 625 | BS-220 | 5.91 | 8.66 | 19.69 | 9.25 | 590 | ••• | | | | | | 36,16
45,00 | | | | 0.50 | 17.0 | 7.0 | | BS-200-HS | 3.94 | 7.87 | 16.93 | 8.07 | 448 | | | | | | | 45,50 | | CB-65C | 7.00 | 9.50 | 23.8 | 11.4 | 1300 | | | | | | | HD800 | 5.94 | 8.00 | 23.3 | 12.5 | 970 | 45,83
65,00 | | | 7.00 | 9.50 | 23.0 | 11.4 | 1300 | BS-250 | 7.09 | 9.84 | 23.62 | 11.61 | 1280 | | | | | | | 65,10 | | ••• | | | | | | ••• | | | | | | HD900 | 7.00 | 9.00 | 27.1 | 12.5 | 1,300 | 66,66 | | CB-90C | 7.87 | 10.63 | 25.59 | 12.6 | 1610 | BS-220-HS | 5.91 | 8.66 | 19.69 | 12.99 | 874 | ••• | | | | | | 75,23
90.72 | | | 7.07 | 10.03 | 23.37 | 12.0 | | BS-270 | 7.87 | 10.63 | 25.59 | 11.61 | 1370 | | | | | | | 90,41 | | • • • | | | | | | BS-250-HS | 6.89 | 9.843 | 23.62 | 14.57 | 1702 | HD1000 | 8.00 | 10.00 | 30.8 | 12.5 | 1,720 | 92,50
108,42 | | | | | | | | BS-300 | 9.06 | 11.81 | 30.71 | 11.61 | 1875 | | | | | | | 130,19 | | • • • | | | | | | ••• | | | | | | HD1200 | 9.00 | 12.00 | 30.8 | 16.0 | 2,450 | 135,00
145,83 | | CB-150C | 8.00 | 11.50 | 30.8 | 11.4 | 2100 | • • • • | | | | | | | 9.00 | 12.00 | | 10.0 | 2,430 | 150,00 | | ••• | | | | | | BS-270-HS | 7.87 | 10.63 | 25.59 | 15.16 | 1904 | ••• | | | | | | 150,46 | | CB-200C | 9.84 | 13.19 | 33.47 | 13.5 | 3097 | BS-335 | 9.84 | 13.19 | 33.46 | 12.00 | 2500 | | | | | | | 195,29
195,45 | | | | | | | | | | | | | | HD1400 | 12.00 | 14.00 | 36.8 | 16.0 | 3,575 | 208,33 | | • • • | | | | | | BS-300-HS
BS-350 | 9.06
9.84 | 11.81 | 30.71
36.61 | 16.73
14.17 | 3136
3540 | | | | | | | 216,85
231,46 | | ••• | | | | | | ••• | | | | | | • • • • | | | | | | 240,00 | | CB 350C | 9.00 | 13.50 | 36.5 | 12.0 | 3500 | | | | | | | | | | | | | 249,00
250,00 | | CB-250C | 9.00 | 13.30 | 30.3 | 13.8 | 3300 | BS-350-HS | 9.84 | 13.78 | 36.61. | 17.32 | 5152 | | | | | | | 289,13 | | ••• | | | | | | | | | | | | HD1600 | 14.00 | 16.00 | 45.4 | 17.0 | 5,450 | 316,66 | | ••• | | | | | | | | | | | | ••• | | | | | | 346,00
375,00 | | CB-375C | 12.8 | 16.73 | 40.55 | 19.0 | 6459 | BS-425 | 12.60 | 16.73 | 40.55 | 17.32 | 5400 | | | | -27.5 | | | 376,10 | | CB-500C | 13.78 | 17.72 | 42.91 | 19.4 | 7452 | | | | | | | HD1800 | 16.00 | 18.00 | 51.4 | 17.8 | 6,800 | 416,66
505,97 | | | 13.70 | | 42.71 | 17.4 | | BS-450 | 13.78 | 17.72 | 42.91 | 18.90 | 6218 | ••• | | | | | | 506,30 | | ••• | | | | | | BS-425-HS | 12.8 | 16.73 | 40.55 | 22.44 | 7392 | | | | | | | 542,12 | | • • • | | | | | | BS-450-HS | 13.78 | 17.72 | 42.91 | 22.44 | 8233 | | | | | | | 700,00
722,83 | | • • • • | | | | | | | 13.70 | | 12.71 | | | | | | | | | 747,00 | # **Backstop Selection Procedure Definitions** | Application Terms | | Tandem Motor Drive | Two motors driving one drive pulley drive. | |----------------------------------|--|---------------------|---| | Brake hp (BHP)
Brake kW (BkW) | The calculated load required to operate the equipment. For conveyors, brake hp (kW) is based on the horsepower (kilowatts) required to overcome friction, and the horsepower (kilowatts) required to lift the load vertically. | Tandem Pulley Drive | Two pulleys are used to power conveyor, but are driven by one motor through a dual output drive arrangement. This is not commonly used today. | | Drive Pulley | A pulley mounted on the headshaft which supplies power to move conveyor belt. | Dual Pulley Drive | Two pulleys are used to power conveyor and each pulley is driven by a separate motor(s). | | Lift hp (LHP)
Lift kW(LkW) | Horsepower (kilowatts) required to lift the load vertically. | Headshaft | Shaft on which drive pullely is mounted. | | Motor hp (MHP)
Motor kW (MkW) | Motor nameplate rating. | Indexing | Continuous cyclic or periodic applications of the backstop as encountered in the conversion of reciprocating or oscillating motion into intermittent linear motion. | | Motor Starting Torque | Torque that the motor is capable of supplying at zero rpm (rev./min.) for approximately 15 seconds in a design B motor or 6 seconds in a design C motor to start equipment. | Jogging | Stop/start movement with jerking or jolting motion. | | | design C motor to start equipment. Also called locked rotor torque. | Backstop Terms | _ | | Motor Stall Torque | Torque required to stop motor rotor from operating and is generally caused by overload conditions. | Backstop Rating | Catalog torque rating. | | | | Backstop load | Load applied to the backstop. | | Motor Breakdown
Torque | Maximum torque the motor produces (at about 75% of speed). | Backstop operation | Engagement of backstop rollers and outer race. | | Drive Pulley hp (kW) | Horsepower (kilowatts) supplied to drive pulley. | Tandem Backstops | Two backstops on the same drive pulley. | | Single Pulley Drive | One drive pulley provides all power to conveyor. | Dual Backstops | Two backstops on the same conveyor, but each on separate drive pulley. | ### **Rexnord Tests Every Falk NRT Before Shipment** # TRUE HOLD Low Speed Backstops are Full-Load Tested for Faultless Performance!! Falk - A Rexnord Industries, LLC Company NRT Backstop Test Report M.O. Number Cold Temperature Cold Temperature At each of 8 separate rotational positions, 45 degrees apart, the backstop and the separate rotational positions, 45 degrees apart, the backstop and the separate rotational positions, 45 degrees apart, the backstop and the separate rotations and the separate rotations and the separate rotations are separated as a subjected to full-load reversals and functioned property. Backstop Size_ Hot Temperature Hot Temperature Hot Temperature After spin test completion and attaining the temperature rise listed above, and the backstop full-load reversals were applied, as stated above, and the backstop full-load reversals were applied, as stated above, and the backstop full-load reversals were applied, as
stated above, and the backstop After full-load testing in the "Cold" condition, the backstop listed above was run in the over-running direction for 30 minutes and the following run in the over-running direction for 30 minutes and the following run in the over-running direction for 30 minutes and the following run in the over-running direction for some state of Seal Functioning Noise Check _Drag Torque has successfully passed Falk certifies that this backstop, sold to And shipped to Testing Technician full-load test ___ Test Date - Test protocol calls for full rating load tests and full maximum rating speed test on each NRT. Test certificates available upon request. © Rexnord Industries, LLC, 2009 (561-110) 25 ### NRT INDUSTRY APPLICATIONS **AGGREGATE** NRT mounted on headshaft on Primary Crusher Out-feed conveyor from quarry to stockpile **COAL** NRT headshaft mounted on clean coal stockpile belt conveyor **COPPER** NRT headshaft mounted on secondary crusher out-feed conveyor **CEMENT** NRT on headshaft of Clinker Bucket Elevator **COAL** NRT (one of two units) reducer LS shaft mounted on triple 1000kW drift conveyor handling coal **COPPER** NRT headshaft mounted on plant in-feed conveyor ### **REXNORD OFFERS ACCESSORIES TO MEET YOUR NEEDS** ### **RETAINING COLLARS** **SHAFT GUARDS** **KEEPER PLATE ASSEMBLIES** **AIRMAX BREATHERS** © Rexnord Industries, LLC, 2009 (561-110) 27 ### **World Class Customer Service** For more than 100 years, the dedicated people of Rexnord have delivered excellence in quality and service to our customers around the globe. Rexnord is a trusted name when it comes to providing skillfully engineered products that improve productivity and efficiency for industrial applications worldwide. We are committed to exceeding customer expectations in every area of our business: product design, application engineering, operations, and customer service. Because of our customer focus, we are able to thoroughly understand the needs of your business and have the resources available to work closely with you to reduce maintenance costs, eliminate redundant inventories and prevent equipment down time. Rexnord represents the most comprehensive portfolio of power transmission and conveying components in the world with the brands you know and trust. AirMax, TRUE HOLD, and Rexnord are registered trademarks of Rexnord Industries, LLC. Falk is a trademark of Rexnord. All rights reserved. #### WORLDWIDE CUSTOMER SERVICE #### **AUSTRALIA** Rexnord Australia Pty. Ltd. Picton, New South Wales Phone: 61-2-4677-3811 Fax: 61-2-4677-3812 Falk-Rexnord Australia Pty Ltd Broadmeadow New South Wales Phone: 61-2-4962-8000 Fax: 61-2-4962-8001 ### BRAZIL Rexnord Correntes Ltda. Sao Leopoldo - RS Phone: 55-51-579-8022 Fax: 55-51-579-8029 #### CANADA Rexnord Canada Ltd. Scarborough, Ontario Phone: 1-416-297-6868 Fax: 1-416-297-6873 #### CHINA Rexnord China Shanghai, China Phone: 86-21-62701942 Fax: 86-21-62701943 #### **EUROPE** Rexnord NV/SA Mechelen, Belgium Phone: 32-15-443881 Fax: 32-15-443860 #### LATIN AMERICA Rexnord International Milwaukee, Wisconsin Phone: 1-414-643-2366 Fax: 1-414-643-3222 E-mail: international1@rexnord.com #### MEXICO Rexnord S. A. de C. V. Mexico DF, Mexico Phone: 52-55-9140-3500 Fax: 52-55-9140-3550 #### SINGAPORE Rexnord International, Inc. Singapore City, Singapore Phone: 65-6338-5622 Fax: 65-6338-5422 #### **UNITED STATES** Customer Service Phone: 866-Rexnord (866-739-6673) E-mail: rexnordcs(state)@rexnord.com Example: rexnordcsohio@rexnord.com #### ALL COUNTRIES NOT LISTED ABOVE Rexnord International Milwaukee, Wisconsin Phone: 1-414-643-2366 Fax: 1-414-643-3222 E-mail: international2@rexnord.com Rexnord Industries, LLC, Gear Group, 3001 West Canal Street, Milwaukee, WI 53208-4200 USA Phone: 414-342-3131 Fax: 414-937-4359