

TABLE OF CONTENTS

Sec	tion	I	Page
I	GENE	RAL INFORMATION	1-1
	1-1.	Description	1-1
	1-6.	Accessories	1-2
	1-8.	Instruments with Options	1-2
	1-10.	Instrument Identification	1-2
п	INSTA	LLATION	2-1
_	2-1.	Inspection	2-1
	2-3.	Installation	2-1
	2-5.	Rack Mounting	2-1
	2-9.	Three-Conductor Power Cable	2-2
	2-12.	Primary Power Requirements	2-2
	2-15.	Initial Battery Operation Check .	2-3
	2-17.	Repackaging for Shipment	2-3
π	OPER	ATION	3-1
	3-1	Introduction	3-1
	3-3	Mechanical Adjustment of	
	• ••	Meter Zero	3-1
	3-5.	Controls and Indicators	3-1
	3-7.	Operating Instructions	3-1
	3-9.	Battery Operation	3-1
	3-11.	Battery Charging Times	3-1
	3-13.	Battery Charge Check	3-1
	3-15.	Major Sources of Error, Microwave	
		Power Measurements	3-1
	3-17.	Power Meter Accuracy of 1% or	
		Greater Using the DC Substitution	
		Method · · · · · · · · · · · ·	3-5
	3-21.	Equipment Used for DC Substitution	3-5
	3-24.	Additional Applications	3-5
īV	THEO	RY OF OPERATION · · · · · ·	4-1
	4-1.	Overall Description	4-1
	4-6.	Circuit Description	4-1
	4-7.	RF Bridge Circuit	4-1
	4-12.	Metering Bridge Circuit	4-2
	4-17.	Synchronous Detector • • • • •	4-2
	4-21.	Differential Amplifier Q104/Q105	4-3
	4-23.	Feedback Current Generator Q107	4-3

Sec	tion	Page
	4-25.	Meter Circuit $\ldots \ldots \ldots \ldots \ldots 4-4$
	4-31.	DC Calibration and Substitution 4-4
	4-33	Regulated Power Supply 4-4
	4-36	Power Switch
v	MAINT	$\Gamma ENANCE \cdot 5-1$
	5-1.	Introduction $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 5-1$
	5-4.	Cover Removal and Replacement . 5-1
	5-6.	Top Cover Removal 5-1
	5-7.	Top Cover Replacement 5-1
	5-8.	Bottom Cover Removal 5-2
	5-9.	Bottom Cover Replacement 5-2
	5-10.	Side Cover Removal 5-3
	5-12.	Test Equipment 5-3
	5-14.	Troubleshooting 5-3
	5-17.	The Power Supply
	5 - 21	10-KC Oscillator-Amplifier Check 5-4
	5-27	10-KC Amplifier Check 5-7
	5-32	Metering and Feedback Circuit 5-7
	5-34	Squaring Circuit Checks
	5-40	Battery and Charging Checks 5-7
	5-42	Battery Check 5-7
	5 - 45	Charging Checks 5.9
	5-50	Battony Warranty 5.9
	5 59	Battery warranty · · · · · · · · · · · · · · · · · · ·
	0-04. E E4	Mechanical Adjustment of
	5-04.	Mechanical Adjustment of
	5 50	
	0-00. E E7	Deven Supply Adjustments
	5-51.	Power Supply Adjustments . 5-9
	5-58.	Oscillator Frequency Adjustment 5-9
	5-63.	Coarse Null Adjustment 5-9
	5-69.	Zero and Vernier Control
		Adjustment $\cdots \cdots \cdots$
	5-70.	Full Scale Accuracy Adjustment 5-10
	5-71.	Performance Check 5-10
	5-74.	Zero Carry-Over Check · · · 5-10
	5-75.	Calibration and Range Tracking
		Accuracy $\ldots \ldots \ldots \ldots \ldots 5-11$
VI	REPL.	ACEABLE PARTS
• -	6-1	Introduction 6-1
	6-4	Ordering Information 6-1
	U-I	or doring mitor mation 0-1

.

LIST OF ILLUSTRATIONS

Numl	per Title				Page	
1-1.	Model 431B Power Meter · · · ·	•	•	•	1-0	
2-1.	The Combining Case	•			2-1	
2-2.	Steps to Place Instrument into					
	Combining Case			•	2-2	
2-3.	Adapter Frame Instrument Combinat	io	ns		2-2	
2-4.	Two Half Modules in Rack Adapter.				2-3	
2-5.	Repackaging for Shipment	•	•	•	2-3	
3-1.	Front and Rear Panel Controls and					
	Indicators	•	•	•	3-2	
3-2.	Turn-On and Nulling Procedure	•	•	•	3-3	
3-3.	DC Substitution Technique	•	•	•	3-4	
3-4.	Permanent Record	•	•	•	3-5	
3-5.	Increased Resolution		•	•	3-6	
3-6.	Leveler Setup	•			3-6	
3-7.	Monitor Control Systems				3-7	
3-8.	Determining Insertion Loss or Gain	•	•	٠	3-7	

Numbe 4-1. H 4-2. H 4-3. M 4-4. M 4-5. S 4-6. H 4-7. H 4-8. M 4-9. H 4-10. H	r Block Diagram AF Circuit Metering Bridge Julling Circuit Synchronous Det Differential Amp Feedback Curren Meter Circuit . DC Calibration a Regulated Power	Ti Cir ecto olifie nt Ge	cuit r. er ener Subs	rat tit	ion	• • • •	• • • • • • •	· · · · · · · · · · ·	• • • • • • • •	• • • • • • •	Page 4-0 4-1 4-2 4-2 4-3 4-3 4-3 4-3 4-4 4-4 4-5
4-11. 1 5-1. (5-2. 7 5-3. 1 5-4. 1	Cover Switch Ar Cover Removal Cop View • • • • Power Meter As Power Supply •	semi	gem bly	еп	•	•	•	•	•	•	4-5 5-0 5-6 5-13 5-14

LIST OF TABLES

Numi	per Title	Page
1-1.	Specifications · · · · · · · · · · · · · · · · · · ·	1-1
1-2.	Model 431B Thermistor Mounts • • • •	1-2
3-1.	Voltmeter Readout to Power Multipliers \cdot	3-6
5-1.	Test Equipment • • • • • • • • • • • • • • • • • • •	5-1
5-2.	Troubleshooting	5-3
5-3.	Power Supply DC Voltage Checks	5-5
5-4.	Power Supply Ripple Checks	5-5
5-5.	10-kc Oscillator-Amplifier DC Voltage	
	Checks	5-5
5-6.	10-kc Amplifier DC Voltage Checks	5-5
5-7.	DC Voltages in Squaring Circuit	5-5
5-8.	Data for Calibration, Tracking Accuracy	
	Check	5-11
6-1.	Reference Designation Index	6-2
6-2.	Replaceable Parts	6-8
6-3.	Code List of Manufacturers	6-11

•

Figure 1-1. Model 431B Power Meter

SECTION I GENERAL INFORMATION

1-1. DESCRIPTION.

1-2. The $\frac{1}{2}$ Model 431B Power Meter, with $\frac{1}{2}$ temperature compensated thermistor mounts, measures rf power from 10 microwatts (-20 dbm) to 10 milliwatts (+10 dbm) in the 10-mc to 40-gc frequency range. Direct reading accuracy of the instrument is $\pm 3\%$ of full scale. Instrument specifications are given in table 1-1.

1-3. The design of the Model 431B and its thermistor mount, results in almost complete freedom from measurement error caused by ambient temperature changes. The instrument incorporates two selfbalancing bridges with one arm of each bridge being a thermistor. The two matched thermistors, both located within the mount, are thermally coupled, but electrically isolated. One thermistor is used to absorb rf power; the other is used to provide temperature compensation. Thus, the thermal drift problems normally associated with the thermistor-power meter arrangement have been greatly reduced. A single setting of the ZERO control on the most sensitive power range is maintained within $\pm 0.5\%$ for all higher power ranges.

1-4. The temperature compensated thermistor mounts used with the instrument are specifically designed for \oint Model 431A/B Power Meters. Coaxial and waveguide thermistor mounts cover the 10-mc to 40-gc frequency range. Table 1-2 gives thermistor mount operating frequency, mount configuration, and operating resistance.

Instrument Type: Automatic, self-balancing for temperature com- pensated mounts	Weight: Net 8 lb (3.63 kg) with cover and cables 11-1/2 lb (5.44 kg) including battery; shipping approx. 13 lb (5.9 kg)
Power Ranges: 7 ranges with full scale readings of 10, 30, 100 and 300 μ w; 1, 3 and 10 mw. Also calibrated in dbm from -20 to +10.	Accessories Furnished: 5 ft (1.5 m) cable for @ temperature-compensated thermistor mounts. 7-1/2 ft (2.3 m) power cable, NEMA plug.
External Bolometer: Temperature-compensated thermistor mounts required for operation (参 478A and 486A series).	Accessories Available: 431A-95B Rechargeable Battery Pack for field
Accuracy: $\pm 3\%$ of full scale from $\pm 20^{\circ}$ C to $\pm 35^{\circ}$ C, $\pm 5\%$ of full scale from 0°C to $\pm 55^{\circ}$ C	Models 478A and 486A Thermistor Mounts
Zero Carry-Over: Less than 0.5% of full scale when zeroed on most sensitive range	 Model 8402A Power Meter Calibrator Model H01-8401A Leveler Amplifier
Recorder/Voltmeter Output: Phone jack on rear with 1 ma maximum into 1000	Options: 01. Rechargeable battery installed, provides up to 24 hours continuous operation,
Calibration Input:	02. Rear input connector wired in parallel with front panel input connector,
Binding posts on rear for calibration of bridge with	10. With 20 foot cable for 100 Ω or 200 Ω mount, 11. With 50 foot cable for 100 Ω mount,
Power Supply: 115 or 230 volts±10%, 50 to 1000 cps, 2-1/2 watts	12. With 100 foot cable for 100 Ω mount, 13. With 200 foot cable for 100 Ω mount,
Dimensions: 6-17/32 in.(166 mm) high, 7-25/32 in. (198 mm) wide, 12-1/2 in. (318 mm) deep	21. With 50 foot cable for 200 Ω mount, 22. With 100 foot cable for 200 Ω mount, 23. With 200 foot cable for 200 Ω mount.

Table 1-1. Specifications

Table 1-2. Model 431B Thermisto	or Mounts
---------------------------------	-----------

Coaxial	Cype Waveguide	Frequency Range	Operating Resistance in ohms			
@ 478A		10 mc to 10 gc	200			
	@ S486A	2.6 to 3.95 gc	100			
	🖗 G486A	3.95 to 5.85 gc	100			
-	🖗 J486A	5.3 to 8.2 gc	100			
	H486A	7.05 to 10.0 gc	100			
	🖗 X486A	8.2 to 12.4 gc	100			
	M486A	10.0 to 15.0 gc	100			
	@ P486A	12.4 to 18.0 gc	100			
	⊕ K486A ⊕ K486AC*	18.0 to 26.5	200			
	 R486A R486AC* 	26.5 to 40.0	200			
* With ci	* With circular contact flange adapter					

1-5. The Model 431B has provisions for using the dc substitution method of measurement and for checking calibration accuracy of the power meter. The dc substitution method of measurement which requires other equipment provides greater power measurement accuracies than can be obtained by the power meter alone. In addition a jack in series with the panel meter permits digital or chart recording of measurements, operation of alarm or control systems and use in a closed-loop leveling system.

1-6. ACCESSORIES.

1-7. Two accessories are supplied with the Model 431B Power Meter: a 7-1/2-foot, detachable power cable and a 5-foot cable that connects the thermistor mount to the Model 431B. Thermistor mounts are available (see table 1-2) but not supplied with the instrument. A rechargeable battery with installation kit is also available. A list of supplied and available accessories is given in table 1-1, Specifications.

1-8. INSTRUMENTS WITH OPTIONS.

1-9. The options available with the Model 431B Power Meter are given in table 1-1. The thermistor mount cable options require modification and recalibration of the Model 431B Power Meter. The recalibration procedures for the cables are given in section V, Maintenance, under Oscillator Frequency Adjustment (paragraph 5-58) and Coarse Null Adjustment (paragraph 5-63).

1-10. INSTRUMENT IDENTIFICATION.

1-11. Hewlett-Packard uses a two-section eight-digit serial number (000-00000). If the first three digits of the serial number on your instrument do not agree with those on the title page of this manual, consult the Appendix for information regarding manual changes.

SECTION II

2-1. INSPECTION.

2-2. This instrument was carefully inspected both mechanically and electrically, before shipment. It should be physically free of mars or scratches and in perfect electrical order upon receipt. To confirm this, the instrument should be inspected for physical damage in transit. Also check for supplied accessories, and test the electrical performance of the instrument using the procedure outlined in paragraph 5-71. If there is damage or deficiency, see the warranty on the inside rear cover of this manual.

2-3. INSTALLATION.

2-4. The P Model 431B is fully transistorized; therefore no special cooling is required. However, the instrument should not be operated where the ambient temperature exceeds 55°C (140°F).

2-5. RACK MOUNTING.

2-6. The Model 431B is a submodular unit that when used alone can be bench mounted only. However, when used in combination with other submodular units it can be bench and/or rack mounted. The combining case and adapter frame are designed specifically for this purpose. 2-7. COMBINING CASE. The combining case is a full-module unit which accepts varying combinations of submodular units. Being a full-module unit, it can be bench or rack mounted analogous to any full-module instrument. An illustration of the combining case is shown in figure 2-1. Instructions for installing the Model 431B in a combining case are given graphically in figure 2-2.

2-8. ADAPTER FRAME. The adapter frame is a rack frame that accepts any combination of submodular units. It can be rack mounted only. An illustration of the adapter frame is given in figure 2-3. To assemble, refer to Figure 2-4 and proceed as follows:

a. Place the adapter frame (1) on edge of bench as illustrated.

- b. Stack the submodular units (2) in the frame.
- c. Place the spacer clamps (3) between instruments.

d. Place spacer clamps (4) on the two end instruments.

e. Push the combination into the frame.

Figure 2-1. The Combining Case

Figure 2-2. Steps to Place Instrument into Combining Case

Figure 2-3. Adapter Frame Instrument Combinations

f. Insert screws (5) on both sides of frame, and tighten until submodular instruments are secure in frame.

g. The complete assembly is ready for rack mounting.

2-9. THREE-CONDUCTOR POWER CABLE.

2-10. To protect operating personnel, the National Electrical Manufacturers' Association (NEMA) recommends that the instrument panel and cabinet be grounded. All Hewlett-Packard instruments are equipped with a three-conductor power cable which, when plugged into an appropriate receptacle, grounds the instrument. The offset pin on the power cable three-prong connector is the ground wire.

2-11. To preserve the protection feature when operating the instrument from a two-contact outlet, use a three-prong to two-prong adapter and connect the green pigtail on the adapter to ground.

2-12. PRIMARY POWER REQUIREMENTS.

2-13. The Model 431B can be operated from an ac or dc primary power source. The ac source can be either 115 or 230 volts, 50 to 1000 cps. The dc source is a 24-volt rechargeable battery. The rechargeable battery is supplied with option 01 instruments only. 2-14. For operation from ac primary power, the instrument can be easily converted from 115- to 230-volt operation. The LINE VOLTAGE switch, SI a two-position slide switch located at the rear of the instrument, selects the mode of ac operation. The line voltage for which the instrument is set to operate appears on the slider of the switch. A 15/100-ampere, slow-blow fuse is used for both 115- and 230- volt operation.

CAUTION

DO NOT CHANGE THE SETTING OF THE LINE VOLTAGE SWITCH WHEN THE POWER METER IS OPERATING.

2-15. INITIAL BATTERY OPERATION CHECK.

2-16. The following applies to option 01 instruments or instruments that have field-installed batteries. When the battery is used as the Model 431B power source for the first time, perform the following steps:

a. Connect Model 431B to ac source. Set POWER switch to CHARGE and charge battery for a minimum of 16 hours or overnight. Note: the battery can be maintained in the charging state indefinitely without damaging the battery. It will assume its full capacity, 1.25 ampere hour, and no more.

b. Perform turn-on procedure given in figure 3-2 with POWER at AC. If the procedure checks out normally, proceed to step c.

c. Repeat turn-on procedure given in figure 3-2 with POWER at BATTERY ON. If operation is not the same as that obtained with ac power applied, refer to paragraphic 5-40, Battery and Charging Checks.

2-17. REPACKAGING FOR SHIPMENT.

2-18. The Model 431B is shipped in a foam-pack and cardboard carton (see figure 2-5). When repackaging the instrument for shipment, the original foam-pack and cardboard carton can be used if available. If not available, they can be purchased from Hewlett-Packard Co. (refer to section VI, misc). Use the following as a general guide for repackaging the instrument.

a. Place the instrument in the foam-pack as shown in figure 2-5.

b. Mark the packing box with "Fragile", "Delicate Instrument."

Note

If the instrument is to be shipped to Hewlett-Packard for service or repair, attach to the instrument a tag identifying the owner and indicating the service or repair to be accomplished, include the model number, and full serial number, of the instrument. In any correspondence, identify the instrument by model number, serial number and serial number prefix.

Figure 2-4. Two Half Modules in Rack Adapter

Figure 2-5. Repackaging for Shipment

SECTION III OPERATION

3-1. INTRODUCTION.

3-2. The @ Model 431B Power Meter measures rf power ranging from .01 to 10 milliwatts with power meter accuracy of $\pm 3\%$. The zero carries over from range to range within $\pm 0.5\%$ of full scale when the meter is zeroed on the most sensitive scale.

3-3. MECHANICAL ADJUSTMENT OF METER ZERO.

3-4. The procedure for performing the mechanical adjustment of the meter zero is given in section V, paragraph 5-54.

3-5. CONTROLS AND INDICATORS.

3-6. The front and rear panel controls and connectors are explained in figure 3-1. The explanations are keyed to corresponding controls and indicator on the drawing of the front and rear panels of the instrument provided with the figure.

3-7. OPERATING INSTRUCTIONS.

3-8. Figure 3-2, Turn-On and Nulling Procedure, and figure 3-3, DC Substitution Technique, give stepby-step instructions for operating the Model 431B. In figure 3-2, each step is numbered to correspond with numbers on the accompanying drawing of the power meter.

3-9. BATTERY OPERATION.

3-10. The following applies to power meters having a factory or a field-installed rechargeable nickel-cadmium battery. See figure 3-1, Turn-On and Nulling Procedure, for step-by-step instructions for operating the Model 431B from a battery.

3-11. BATTERY CHARGING TIMES.

3-12. The battery used in the Model 431B requires two hours of charge time for one hour of battery operation. When the battery is fully charged, the Model 431B can be continuously operated for 24 hours with 48 hours of charge time. However, it is recommended that battery operated instruments be operated for eight hour periods with a 16 hour recharge time. This makes the Model 431B available for portable use daily, yet maintains the battery at full charge.

3-13. BATTERY CHARGE CHECK.

3-14. Under normal conditions, a fully charged battery will start at approximately 27 volts and drop to about 22 volts after 24 hours of continuous use at room temperature.

a. Connect the Model 431B to ac primary power. Set POWER to AC and perform the turn-on and nulling procedure given in figure 3-2. This will check for normal operation from ac primary power. If performance is normal proceed to step b.

b. Set POWER to BATTERY CHARGE: the AC CHARGE lamp will glow. Allow Model 431B to charge the battery for 48 hours. This will allow the battery to obtain a full charge.

c. After the recharge interval, set POWER to BATTERY ON. Since battery is now fully charged, you should be able to zero-set and null the meter (figure 3-2). If not the battery or battery charging circuit is at fault. Refer to Battery and Charging Checks paragraph 5-40.

3-15. MAJOR SOURCES OF ERROR, MICROWAVE POWER MEASUREMENTS.

3-16. In microwave power measurements, the following are the major sources of error: 1) mismatch error or tuner loss (when a tuner is used to tune out mismatch error), 2) bolometer mount efficiency, 3) substitution error, 4) instrument error and 5) error due to the unilateral properties of a thermistor. Thus five errors must be known if accurate power measurements are to be obtained. Expressed mathematically:

Total measurement error =

mismatch (or tuner) loss + calibration factor + instrument error + error due to the unilateral properties of a thermistor

a. <u>Mismatch Loss</u>. Unless the mount and rf source are perfectly matched to the transmission system, a fraction of incident power is reflected and does not reach the thermistor. Since there generally is more than one source of mismatch in a microwave measurement system and the resulting error signals interact, loss cannot be calculated from the swr figure, it can only be expressed as lying between two limits. Limits of mismatch loss generally are determined by means of a chart such as the Mismatch Loss Limits chart included in each of the thermistor mount Operating Notes. A tuner such as the @ Model 872A or 870A can be used to minimize loss, although the tuner itself will introduce some loss.

b. Bolometer Mount Efficiency and Substitution Error. Not all the rf power applied to the mount is used to heat the rf thermistor. Some of it is absorbed by the other elements in the mount, such as the walls of the rf chamber, the heat sinks, the leads, etc. Substitution error results because rf power does not affect the thermistor to the same degree as dc power. Substitution error and mount efficiency are often combined for simplicity of measurement into what is termed "calibration factor". Typically, the calibration factor of the Model X486A waveguide mount is 97% to 98%.

- 1. POWER: The POWER switch sets up connections to the selected power sources or to the battery charging circuit. When the power switch is in the AC position, externally supplied 115 or 230 volts is applied to the instrument. If the instrument contains a battery, a trickle charge is applied to maintain the battery at full charge. With POWER at BATTERY ON, a 24-vdc battery within the instrument supplies primary power to the instrument. With POWER at CHARGE, 115- and 230-volt power is used to charge the battery (16 to 24 hours is required to obtain full battery charge). The instrument is inoperative in this position. Note: Batteries are installed at the factory for option 01 instruments only.
- 2. RANGE: The RANGE switch can be set for full scale power readings from .01 to 10 milliwatts in seven steps. It also includes a NULL position which, in conjunction with the adjacent null screwdriver adjust, insures that the metering bridge is reactively balanced.
- 3. THERMISTOR MOUNT: The THERMISTOR MOUNT connector is a female receptacle that accepts a specially-made cable which is supplied with the instrument. The cable connects the mount thermistors into their respective bridges within the power meter.

- 4. MOUNT RES: This two-position slide switch sets the power meter to accommodate thermistor mounts of 100- or 200-ohm nominal resistance.
- 5. ZERO and VERNIER: The ZERO control coarsely sets the meter pointer near zero; the VERNIER control is a more exact adjustment which sets the meter pointer on zero.
- In Option 02 instruments only, mount connector wired in parallel with front - panel connector. Two mounts cannot be connected simultaneously.
- 7. RECORDER: The RECORDER input is a grounded telephone jack for monitoring the current which operates the Model 431B meter.
- 8. DC CALIBRATION & SUBSTITUTION: This terminal permits application of known direct current to the rf bridge. The power reading obtained with the accurately known dc power applied is then compared with the reading obtained when rf power was applied. The dc substitution technique is used both to calibrate the 431B and to increase the accuracy of power measurement.
- 9. LINE VOLTAGE: The LINE VOLTAGE switch, S1, is a two-position slide switch that selects the mode of ac operation. The line voltage for which the instrument is set to operate appears on the slider of the switch. A 15/100 slow-blow fuse is used for both 115 and 230 volt operation.

1. Connect thermistor mount and cable to the THERMISTOR MOUNT. (*) thermistor mounts and their frequency ranges are given in table 1-2, Model 431B Thermistor Mounts.

Note

When possible, the Model 431B should be zeroed and nulled with the power source to be measured connected to the thermistor mount. If this is not possible, and a coaxial thermistor mount is used, terminate the rf input into a 50-ohm load. Power source should be off while zero and null-setting the Model 431B Power Meter.

- 2. Set MOUNT RES to match thermistor mount resistance (100 or 200 ohms).
- 3. Set RANGE to .01 MW.
- 4. Set POWER to AC; AC & CHARGE lamp will glow. If instrument is battery-operated, rotate POWER to BATTERY ON.
- 5. Adjust ZERO control for 25 to 75% of full scale on meter.
- 6. Rotate RANGE to NULL and adjust null screwdriver adjust (adjacent to NULL on RANGE switch) for a minimum reading.

7. Repeat steps 5 and 6 until NULL reading is within NULL region on the meter.

Note

If instrument is battery-operated and you are not able to zero the meter, or if meter pointer fluctuates rapidly, battery needs recharging. Refer to paragraph 3-11.

8. Set RANGE switch to the power range to be used and zero-set the meter with ZERO and VERNIER controls.

Note

Zero-set accuracy of 0.5% of full scale can be obtained by zero setting the meter on the most sensitive range (.01 mw) only, and assuming the meter is properly zeroed on all less sensitive ranges. For maximum accuracy, zero set the meter on the range to be used.

9. Apply rf power at the thermistor mount and read power on Model 431B meter. Power is indicated on the meter directly in mw or dbm.

Note

This instrument is accurate to within $\pm 3\%$. Accuracy to $\pm 1\%$, or better, is possible using the dc substitution technique described in figure 3-3. See also paragraphs 3-15 and 3-17.

Note

A second digital voltmeter, in parallel with a 1000-ohm ($\pm 10\%$, 1 watt) resistor, connected in series with the RECORDER output of the Model 431B will increase accuracy of reference duplication.

- 4. Turn off, or disconnect, the rf source.
- 5. Turn power supply on; adjust the output voltage of the power supply until the reference of step 3 is duplicated. A potentiometer arrangement may be substituted for the adjustable power supply. However, at least 10,000 ohms must remain in series with the supply.

7. Calculate power in mw from the expression

Power (MW) =
$$\frac{I_{dc}^2 R_d}{4 \times 10^3}$$

- where R_d = operating resistance of the termistor (100 or 200 ohms)
- and I_{dc} = substitution current in milliamps (from step 6)
- 9. To minimize error due to drift in either the reference or substituted power level, steps 1 through 6 should be repeated.

c. Instrument Error. This is the inability of the power meter to accurately measure and interpret the information available at the thermistor element. In specifying the accuracy of a power meter, instrument error is the figure usually given. For the Model 431B, instrument error is $\pm 3\%$ of full scale, 20°C to 35°C. This error can be reduced by special techniques such as the dc substitution method discussed in para. 3-17.

d. Error Due to the Unilateral Properties of a Thermistor. The thermistor used in conjunction with the Model 431A/B exhibits unilateral properties which, when the source of power is a dc current, causes a slightly different indication of power than is obtained by the calculation of I^2R . Thus the dc power required to produce a reading on the Model 431A/B Power Meter is not the same as the rf power required to produce the same reading on the Model 431A/BPower Meter. The maximum error produced from this source of error is $\pm 0.3 \ \mu$ watts, typical error is $\pm 0.1 \ \mu$ watt. Since the order of magnitude of this error is small (0.3 μ watt) it need be minimized only on the two most sensitive ranges of the Model 431A/B Power Meter. Refer to the 🖗 Model 8402A Power Meter Calibrator manual for procedure used to minimize this error.

3-17. POWER METER ACCURACY OF 1% OR GREATER USING THE DC SUBSTITUTION METHOD.

3-18. Highly accurate instruments are available for measuring direct current. Thus, where optimum accuracy is required, there is considerable advantage in using a technique where the rf measurement is used only as a reference and the determination of rf power is based on precise dc measurements. In general the technique involves:

a. Applying rf power to the Model 431B in the usual manner, and noting the resulting meter indication for use as a reference.

b. Removing the rf power and applying sufficient dc at the DC CALIBRATION & SUBSTITUTION terminals to exactly duplicate the meter indication produced by the rf power.

c. Using the value of dc which duplicated the reference in calculating rf power.

3-19. Although the dc substitution technique is the most accurate method of measuring rf power, there are sources of error that must be considered. The accuracy of the dc substitution technique depends largely upon:

a. how precisely the reference is duplicated,

b. how accurately the value of the substituted dc is known,

c. the actual operating resistance of the thermistor, and

d. the actual ratio of current division in the rf bridge.

3-20. With precision components in the substitution setup and careful procedure, error produced by the Model 431B Power Meter can be reduced to 1% or less. This is assuming nominal thermistor mount resistance (100 or 200 ohms) and that half the applied dc flows through the rf thermistor. The dc substitution technique using the Model 431B is shown in figure 3-3.

3-21. EQUIPMENT USED FOR DC SUBSTITUTION.

3-22. The **B** Model 8402A Power Meter Calibrator was specifically designed to be used for calibration and dc substitution measurements of rf power. In addition, the instrument will accurately measure the operating resistance of the thermistor mount being used. Use the procedures given in the manual provided with the **B** Model 8402A Power Meter Calibrator to perform the dc substitution measurements.

3-23. Although the most convenient and accurate means of applying the dc substitution technique is by using Model 8402A Power Meter Calibrator, it is also possible to accurately measure power using the dc substitution technique with the arrangement shown in figure 3-3. The digital voltmeter is used to monitor the substitution current. The power supply output and voltmeter input are ungrounded to eliminate ground currents.

3-24. ADDITIONAL APPLICATIONS.

3-25. At the RECORDER output, the Model 431B furnishes a current (0 to 1 ma dc) which is proportional to the power measured. This feature makes possible a measurement system with more capability than simply the indication of power on a meter. Some of the more sophisticated measurement systems are shown in block diagram form in figures 3-4 through 3-8.

3-26. PERMANENT RECORD. Use of a recorder in the measurement system is indicated in figure 3-4. Resistance across the Model 431B RECORDER output should be 1000 ohms $\pm 10\%$ for optimum measurement accuracy. Any type of recorder may be used with the Model 431B; if input resistance exceeds 1000 ohms, use a shunt across the recorder input.

Figure 3-4. Making a Permanent Record

Figure 3-5. Obtaining Increased Resolution

3-27. INCREASED RESOLUTION. Digital readout of power to three decimal places can be obtained with the arrangement shown in figure 3-5. The value of R1 is 316.2 ohms $\pm .1\%$ and R_t is 1000 ohms $\pm .1\%$. Correct placement of the decimal in the readout is determined by the setting of the power meter RANGE switch. On the divider-switch arrangement at the voltmeter input may be replaced by a single 1000-ohm .1% resistor. With this arrangement, on the .01, .1, and 10 MW ranges, power is read in the same way as when the arrangement shown in figure 3-5 is used, decimal placement being determined by the setting of RANGE. On the .03, .3, and 3 MW ranges, however to obtain the power readings the voltmeter indication must be multiplied by the factor given in table 3-1.

Table 3-1. Voltmeter Readout to Power Multipliers

Range	Multiplier			
.03 MW	0.0316			
.3	0.316			
3	3.16			

3-28. LEVELER. Figure 3-6 is a block diagram of a closed-loop control circuit for maintaining output power at a constant level. It is recommended for use in leveling the output of various types of m microwave equipment such as bwo sweep oscillators, twt microwave amplifiers, and rf generators. In addition to the Model 431B and its thermistor mount, such a leveling system requires the @ H01-8401A Leveler Amplifier and a directional coupler with good directivity such as one of the @ 752 series of waveguide couplers or 770 series of coaxial couplers. The output of the power source is sampled by the coupler and applied to the Model 431B. A dc signal, proportional to the power sample, is fed (from the Model 431B RECORDER jack) to the Leveler Amplifier. In the H01-8401A the signal from the Model 431B is compared to an internal reference voltage, and the difference is amplified and fed back as a control voltage to hold output power constant.

3-29. MONITOR CONTROL SYSTEMS. By adding a dc amplifier and relay circuit to the rf monitoring arm of a system, the dc signal provided by the Model 431B can be used to actuate alarm or control circuits. Arrangement of equipment to provide an alarm or control system is shown in block diagram form in figure 3-7.

3-30. DETERMINING INSERTION LOSS OR GAIN AS A FUNCTION OF FREQUENCY. Arrangement of a system to obtain information on insertion loss or gain as a function of frequency is indicated in figure 3-8. Initially, the device under test is not connected into the system; connect the thermistor mount directly to the sweep oscillator. Set the sweep oscillator for the band of interest, and record variations in amplitude as frequency is swept; this curve is the reference. Next, insert the device under test between the sweep oscillator and the thermistor mount, and again record frequency response. The difference between the second reading and the reference, at any one frequency, is the insertion loss or gain of the device at that frequency.

Figure 3-6. Leveler Setup

Figure 3-7. Monitoring Control Systems

Figure 4-1. Block Diagram

SECTION IV THEORY OF OPERATION

4-1. OVERALL DESCRIPTION.

4-2. Figure 4-1 is a block diagram which shows the Model 431B Power Meter and its associated thermistor mount. The thermistor mount contains two thermistor elements (R_d and R_c). Thermistor element R_d absorbs the rf power applied to the mount; thermistor element R_c converts the applied rf power to a meter indication and provides compensation for ambient temperature changes at the thermistor mount.

4-3. The power meter circuitry incorporates two bridges which are made self-balancing by means of separate feedback loops. Regenerative (positive) feedback is used in the detection loop; degenerative feedback in the metering loop. One thermistor element is used in one arm of each of the self-balancing bridges. In the detection loop, the 10 kc oscillator-amplifier supplies enough 10 kc power ($I_{10 \text{ kc}}$) to bias thermistor element R_d to the operating resistance which balances the rf bridge. The same amount of 10 kc power is also supplied to thermistor element R_c by the series-connected primaries of transformers T101 and T102.

4-4. When rf power is applied to thermistor element Rd, an amount of 10 kc power equal to the rf power is removed from thermistor element R_d by the selfbalancing action of the rf bridge. Since the primaries of T101 and T102 are series-connected, the same amount of 10 kc power is also removed from thermistor element R_c , thus, the action which balances the rf bridge unbalances the metering bridge. The metering bridge loop automatically re-balances by substituting dc power for 10 kc power. Since the 10 kc power equaled the applied rf power, the substituted dc power is also equal to the applied rf power. Instead of metering the feedback current directly, which would require the use of a nonlinear meter scale, an analog current is derived which is proportional to the square of the feedback. Since power is a square-law function of current, the analog current thus derived is proportional to rf power, making possible the use of a linear scale on the meter.

4-5. There is little drift of the power meter zero point when ambient temperature at the thermistor mount changes. If, for example, ambient temperature at the mount increases, a decrease in electrical power to the thermistors is required to hold their operating resistances constant. The decrease, for both thermistors, is made automatically by the detection loop (figure 4-1) which reduces 10 kc power. The amount of dc power in the metering loop remains unchanged however, and since this dc power controls the meter action, the ambient temperature changes do not affect the meter indication. The compensation capability depends upon the match of thermistor temperature characteristics. When thermistor mounts are built, the thermistors are selected to insure optimum match of thermal characteristics.

4-6. CIRCUIT DESCRIPTION.

4-7. <u>RF BRIDGE CIRCUIT.</u>

4-8. A simplified schematic diagram of the rf bridge circuit is shown in figure 4-2. The rf bridge circuit consists of the rf bridge and 10-kc oscillator-amplifier. The rf bridge includes thermistor R_d , the secondary winding of T101, resistors R102 and R103, the MOUNT RES switch, S101, and capacitance represented by C_a and C_b . The rf bridge and 10 kc oscillator-amplifier are connected in a closed loop (the detection loop) which provides regenerative feedback for the oscillator-amplifier. This feedback causes the 10 kc oscillator-amplifier to oscillate.

4-9. When the power meter is off, thermistor R_d is at ambient temperature and its resistance is about 1500 ohms; the rf bridge is unbalanced. When the power meter is turned on this unbalance of the rf bridge causes a large error signal to be applied to the 10 kc oscillator-amplifier. Consequently maximum 10 kc bias voltage is applied to the rf bridge. As this 10 kc voltage biases R_d to its operating resistance (100 or 200 ohms) the rf bridge approaches a state of balance and regenerative feedback diminishes until there is just sufficient 10 kc bias power to hold R_d at operating resistance. This condition is equilibrium for the detection loop.

4-10. With application of rf power, thermistor R_d 's resistance decreases causing the regenerative signal from the rf bridge to decrease. Accordingly, 10 kc power diminishes, the thermistor returns to operating resistance and the detection loop regains equilibrium.

4-11. The MOUNT RES switch, S101, changes the resistance arm of the rf bridge so that the bridge will function with either a 100 or 200 ohm thermistor mount.

Figure 4-2. RF Circuit

4-12. METERING BRIDGE CIRCUIT.

4-13. A simplified schematic diagram of the metering bridge circuit is shown in figure 4-3. Operation of the metering bridge circuit is similar to the rf bridge circuit. It uses the same principle of self-balancing through a closed loop (metering loop). The major difference is that dc rather than 10-kc power is used to rebalance the loop. The resistive balance point is adjusted by the ZERO and VERNIER controls which constitute one arm of the bridge. The MOUNT RES switch (not shown in figure 4-3) which is mechanically linked to both the rf bridge and metering bridge, changes metering bridge reference resistance from 100 to 200 ohms. When the MOUNT RES switch is in the 200-ohm position some of the feedback current is shunted to ground through R101. This maintains the I^2R function constant when mount resistance is changed from 100 or 200 ohms. The switch also adds the necessary reactance for each position.

4-14. The same 10 kc power change produced in the rf bridge by rf power also affects the metering bridge through the series connection of T101 and T102 primaries. Although this change of 10-kc power has equal effect on both the rf and metering bridges, it is initiated by the rf bridge circuit alone. The metering bridge cannot control 10-kc bias power, but the 10-kc bias power does affect the metering circuit. Once a change in the 10-kc bias power has affected (unbalanced) the metering bridge, a separate, closed dc feedback loop (metering loop) re-establishes equilibrium in the metering circuit.

4-15. Variations in 10-kc bias level, initiated in the rf bridge circuit, cause proportional unbalance of the metering bridge, and there is a change in the 10-kc error signal (S_{10 kc}) applied to the 10-kc tuned amplifiers in the metering loop. These error signal variations are amplified by three 10-kc amplifiers, and rectified by the synchronous detector. From the synchronous detector the dc equivalent (I_{dc}) of the 10-kc signal is returned to the metering bridge, and is monitored by the metering circuit to be indicated by the meter. This dc feedback to the metering bridge acts to return bridge to its normal, near-balance condition.

Figure 4-3. Metering Bridge Circuit

4-2

Figure 4-4. Nulling Circuit

4-16. The reactive components of the metering bridge are balanced with variable capacitor C103 and inductor L102. Null adjust, C103, is an operational adjustment and L102 is a maintenance adjustment. Null adjust C103, is adjusted with the RANGE switch in the NULL position. A simplified schematic diagram of the NULL circuit is shown in figure 4-4. The 10 kc signal is taken at the synchronous detector, rectified by CR105, and read on the meter. The rectified signal contains both reactive and resistive voltage components of the bridge unbalance.

4-17. SYNCHRONOUS DETECTOR.

4-18. The synchronous detector converts the 10-kc error signal from the metering bridge to a varying dc signal. A simplified schematic of the synchronous detector is shown in figure 4-5. The detector is a bridge rectifier which has a rectifier in series with a linearizing resistance in each of its arms. Two 10-kc voltages, designated E3 and E4 in figure 4-5, are applied to the bridge; 1) voltage E3, induced in the secondary of transformer T103, is proportional to the metering-bridge error signal and is incoming from 10-kc tuned amplifier Q103; 2) voltage E4, induced in the secondary of T104, is proportional to a voltage supplied by the 10-kc oscillator-amplifier. Voltage E4 is much larger than voltage E3 and switches appropriate diodes in and out of the circuit to rectify voltage E3. Section (a) of figure 4-5 shows the current path through diodes CR102 and CR104 for a positive-going signal; section(b) shows the current path through diodes CR101 and CR103 for a negative-going signal. The rectified output is taken at the center taps of transformers T103 and T104.

4-19. Operation of the circuit is as follows: When the left side of T104 is positive with respect to the right side as in figure 4-5a, diodes CR102 and CR104 conduct while diodes CR101 and CR103 are biased off. With the polarities reversed, as in figure 4-5b, the

Figure 4-5. Synchronous Detector

diodes CR102 and CR104 are biased off. The resultant output is a pulsating dc signal equivalent to the applied 10-kc error signal. This pulsating dc signal is filtered and applied to differential amplifier Q104/Q105.

4-20. Proper synchronous detector output requires an in phase relationship between E3 and E4 and for amplitude of E4 to be larger than that of E3.

4-21. DIFFERENTIAL AMPLIFIER Q104/Q105.

4-22. A simplified schematic diagram of the amplifier is shown in figure 4-6. The pulsating dc from the synchronous detector is filtered by C117, C118, C119,

Figure 4-6. Differential Amplifier

I DC

DC BIAS TO

TO FEEDBACK-CURRENT-SQUARED GENERATOR

0106

and R140, amplified by Q104 and fed to both the feedback current-squared generator, Q106 (figure 4-7) and feedback current generator Q107. Temperature compensation and low emitter circuit resistance for Q107 are provided by Q105. Diode CR106 protects Q106 and Q107 from excessive reverse bias when Q104 is cut off.

4-23. FEEDBACK CURRENT GENERATOR Q107.

4-24. A simplified schematic diagram of the feedback current generator is shown in figure 4-7. The dc signal from the differential amplifier is applied to feedback current generator Q107. Q107 has two functions: 1) it

-18VDC

Figure 4-8. Meter Circuit

completes the metering loop to the metering bridge, and 2) it operates in conjunction with the first 10-kc amplifier, Q101, and the RANGE switch to change metering loop gain so that the meter will read full scale for each power range. Diode CR107 provides additional temperature compensation for Q107.

4-25. METER CIRCUIT.

4-26. The meter circuit is shown in figure 4-8. It includes feedback current-squared generator Q106, a squaring circuit, the meter, and RECORDER jack, J102. The purpose of the meter circuit is to convert a linear voltage function, proportional to applied power, to a squared function so that power may be indicated on a linear meter scale. The linear voltage function is applied to the base of Q106 and is converted to a square law function by the squaring circuit in series with Q106 emitter.

4-27. SQUARING CIRCUIT. The squaring circuit includes diodes CR109-113, and resistors R167-177. Temperature compensation for the squaring circuit is provided by CR108.

4-28. The design of the squaring circuit is such that individual diodes conduct at discrete values of emitter voltage so that emitter conductance approximates a square law function. Thus the collector current of Q106 is made to approximate a square law function, and the meter indicates power on a linear scale.

4-29. RECORDER OUTPUT. The current which drives the meter can be monitored at the RECORDER output, a telephone-type two-wire jack. A RESISTOR OF 1000 OHMS MUST REMAIN IN SERIES WITH THE METER FOR ALL APPLICATIONS USING THE METER-DRIVING CURRENT.

4-30. ZEROING. Perfect balance of the metering bridge would mean that no 10 kc error signal would be applied to the 10 kc amplifiers, there would be no dc feedback from Q107, and the metering loop would be open. With an open metering loop, zero reference could not be accurately established. In the Model

Figure 4-9. DC Calibration and Substitution

431B this occurrence is prevented by insuring a closed metering loop even when the ZERO control causes the meter pointer to deflect downscale from zero. By the combined actions of R141 and R179, the zero setting of the meter pointer does not coincide with absolute balance of the metering bridge. A slight unbalance of the bridge is maintained by R141, while R179 provides a counter-action in the feedback current-squared generator, Q106, so that the meter can indicate zero even though the metering bridge is not perfectly balanced. Resistor R179 also sets the full scale accuracy of the meter.

4-31. DC CALIBRATION AND SUBSTITUTION.

4-32. A simplified schematic diagram of the dc calibration and substitution circuit is shown in figure 4-9. Highly accurate rf power measurements can be made using the dc substitution technique given in figure 3-3. In the dc substitution method dc is used to duplicate the rf power reading. An accurate, known current (I_{dc}) is supplied externally at the DC CALIBRATION and SUB-STITUTION terminals. Calculation of the substituted dc power gives an accurate measure of the rf power. Effectively, dc power is substituted for rf power.

4-33. REGULATED POWER SUPPLY.

4-34. A simplified schematic diagram of the power supply is shown in figure 4-10. The power supply operates from either a 115 or 230 volt, 50 to 1000 cps ac source or from an optional 24 volt, 30 ma rechargeable battery. Three voltages and two current outputs are provided by the power supply. Regulated voltages of -18 and -25 vdc and unregulated \pm 1.5 vdc operate the power meter circuits. The current outputs are used for maintaining battery charge (trickle charge) for recharging the battery.

4-35. The -18 vdc is regulated by a conventional series regulator, Q1 through Q5. The -25 vdc is developed across CR9, a 6.8 volt zener diode referenced at -18 vdc. The unregulated +1.5 vdc is taken

across the series diodes, CR5 and CR6. The -18 vdc supply is adjusted by R13.

4-36. POWER SWITCH.

4-37. A simplified schematic diagram of the power switching arrangement is shown in figure 4-11. The power switch, S2, has four positions: OFF, AC, BATTERY ON, and BATTERY CHARGE. In the AC position, the instrument operates from the conventional line voltage: if a battery has been installed in the instrument, a trickle charge is supplied to the battery. In the BATTERY ON position, instrument operation is entirely dependent on the battery. In the CHARGE position, -25 volts is connected to the battery for recharging: the Model 431B cannot be operated during this time. Approximately 37 ma dc is applied to the battery during charge time.

Figure 4-10. Regulated Power Supply

Figure 4-11. Power Switch Arrangement

Figure 5-1. Cover Removal

SECTION V

5-1. INTRODUCTION.

5-2. This section includes instructions and information for the maintenance, troubleshooting and repair of the Model 431B Power Meter.

5-3. The testing and repair of @ Model 486A and 478A thermistor mounts are discussed in the Operating Notes for each instrument. Complex procedures and special equipment are needed for some of these operations. Therefore, if the trouble proves to be a thermistor mount, contact an @ field office for assistance. Except as stated in the Operating Note, DO NOT ATTEMPT TO REPAIR THE THERMISTOR MOUNT.

5-4. COVER REMOVAL AND REPLACEMENT.

5-5. Refer to figure 5-1 when removing instrument covers. Removal of the top cover exposes the circuit areas shown in figure 5-2. Routine checks and adjustments can be performed without the removal of other covers. However, operations such as soldering on

the circuit board and removal of the meter, RANGE POWER, or MOUNT RES switch would require the removal of the bottom cover and one, or both, of the side covers.

5-6. TOP COVER REMOVAL.

a. At the rear of the instrument, remove the two screws which retain the cover.

b. Grasp the cover from the rear, slide it back 1/2 inch, then tilt forward edge of the cover upward and lift the cover from the instrument.

5-7. TOP COVER REPLACEMENT.

a. Rest the cover flat on the cast guides projecting inward near the top of each side frame (see (1), figure 5-1).

b. Slide the cover forward allowing its forward edge to enter the groove in the front panel.

c. Replace the two cover retaining screws.

Instrument Type	Use	Critica	Instrument Recommended		
DC voltmeter	DC voltage measurement Calibration accuracy check	Range: 0.5 to Accuracy: $\pm 0.$ Resolution: the	@405BR/CR		
Ohmmeter	Continuity & resistance checks	Range: 1 ohm t Accuracy: 5%	Range: 1 ohm to 10 megohms Accuracy: 5% of full scale		
Precision milliammeter or Power Meter	Calibration accuracy check	Milliammeter	Accuracy: 0.1% of full scale Range: 0 to 30 ma	Sensitive Research Instrument Corp Model B, Bamilek	
		Calibrator	Current accuracy: 0.1% Resistance accuracy: 0.2%	Meter Calibrator A Calibrato	
Milliammeter	Battery circuit check	Range: 3 to 60 Accuracy: 5%	@ 412A @ 428A/B		
Oscilloscope or AC voltmeter	Power supply ripple check 10 kc oscillator- amplifier check 10 kc amplifier check	Oscilloscope	Bandwidth: 100 kc Accuracy: 5% Input impedance: 1 megohm Sensitivity: 1 mv/cm	@ 130B/C @ 120B @ 122A	
	adjust	AC voltmeter	Accuracy: 5% Input impedance: 1 megohm Range: .01 to 100 mv	@ 400D/H/L @ 403A/B	

Table 5-1. Test Equipment

Instrument Type	Use	Critical Specifications	Instrument Recommended
DC Source or Power Meter Calibrator	Calibration accuracy check	Range: 0 to 220 vdc or Current Output: 0 to 20 ma	 711A, 712B Power Supplies 8402A Power Meter Calibrator
Thermistor Mount	Completion of test circuit	See table 1-2 for list of suitable mounts	⊕ 478A, 486A
Frequency counter	10 kc oscillator- amplifier check 10 kc oscillator-amp- lifier frequency adjust	5 place readout Min. input sensitivity: 4 v rms Max. frequency: greater than 10 kc Accuracy: better than 0.1%	@ 521C or E @ 5212A @ 5512A
Variable Transformer	Power supply adjustment	Range: 103 to 127 vac @ 7-1/2 amp 206 to 254 vac @ 4 amp Voltmeter range: 100 to 127 vac 200 to 254 vac Voltmeter accuracy: ±1 volt	General Radio type W10MT3A
Soldering Iron & Tips	Repair	Wattage rating: 50 watts Min tip temp: 800 ⁰ F Tip size O.D.: 1/16" to 3/32	Ungar #776 solder- ing iron handle Ungar #PL333 tiplet Ungar #854 Cup tip
Resistor	Charging checks	Value: 780 Ω Accuracy: ±1% Wattage: 3 watts	Dale Type RS-2
Resistor	Charging checks	Value: 7500 Ω Accuracy: ±1% Wattage: 2 watts	Electra MF2, T-0
Decade Resistance Divider	Zero and vernier control adjustment Full scale accuracy adj	Range: 50Ω to $50 K \Omega$ Multiple: 10Ω Accuracy: 1% per decade	GR1432P Decade Resistance Box
Precision Resistor	Zero and vernier control adjustment	Value: 1000 Ω Accuracy: ±0.1% Wattage: 0.25 watts	Ultronex Type 205A
Decade Capacitors	Oscillator frequency adjustment Coarse null adjustment	Range: 10 to 1000 pf Capacitance per step: .0001 μ fd Accuracy: .1% per decade	General Radio Type 1419-B

Table 5-1. Test Equipment (Cont'd)

5-8. BOTTOM COVER REMOVAL.

a. Set the tilt stand as shown in figure 5-1.

b. Remove the two retaining screws at the rear of the cover.

c. Slide the cover rearward far enough to free its forward edge from the front foot assembly.

d. Tilt the forward edge of the cover upward and lift the cover from the instrument.

5-9. BOTTOM COVER REPLACEMENT.

a. Set the tilt stand as shown in figure 5-1.

b. Rest the bottom cover flat on the cast guides projecting inward near the bottom of each side frame (see (2), figure 5-1).

c. Slide the cover forward on the guides so that the formed portion at the rear of the cover slides over the two short projections at the rear corner of each side frame (see (3), figure 5-1).

d. Replace the two retaining screws and the rear foot assembly.

5-10. SIDE COVER REMOVAL.

5-11. The side covers cannot be removed until the top and bottom covers are off (see paragraphs 5-6 and 5-8). Each side cover is held in place by four screws retained by nuts which are not fastened to the side frames.

Note

Replace side covers before replacing either the top or the bottom cover.

5-12. TEST EQUIPMENT.

5-13. Any instruments which satisfy the specifications of table 5-1 can be used for the tests described in this maintenance section.

5-14. TROUBLESHOOTING.

5-15. The first step in troubleshooting the Model 431B Power Meter should be isolation of trouble to the thermistor mount and thermistor mount cable or to the power meter itself. The thermistor match check in the maintenance section of the **(b)** Operating Note pertaining to the thermistor mount in use will indicate a defective thermistor or thermistors. A simple ohmmeter continuity check and inspection of the thermistor mount cable and its connectors can be used to prove the cable. 5-16. Table 5-2, Troubleshooting, and the following detailed tests are given to aid in correcting trouble within the Model 431B. To make localizing of trouble easier, the 431B circuitry is divided into five sections; the power supply, the 10 kc oscillator-amplifier (including the rf bridge), the 10 kc amplifier (including the metering bridge), the dc metering and feedback amplifiers, and the squaring circuit. Tests are given for each of these sections.

5-17. THE POWER SUPPLY.

5-18. The dc test point voltages shown on the power supply schematic diagram, with two exceptions, apply to instruments operated from either ac or battery primary power. Voltage limits shown at C1 and C2 apply only to instruments operated from ac primary power. Refer to figure 5-2, Top View, for component location.

a. Connect Model 431B to a variable line transformer and set transformer for 115 vac (or 230 vac).

b. Connect a dc voltmeter (see table 5-1 for voltmeter requirements) between the negative terminal of C6 and Model 431B ground. The voltage here should be -18 vdc; adjust with potentiometer R13.

c. With the voltmeter connected as above, test the regulation of the power supply (for instruments

Table 5-2. Troubleshooting

Trouble Indication	Possible Cause
Null impossible	Thermistor mount Thermistor mount cable MOUNT RES switch T102
Meter does not indicate, does not zero but does null	Q106
Meter pointer drifts during readings	Thermistor mount Q106, Q107 Thermistor mount in unstable thermal environment RF source unstable DC calibration/substitution source unstable Oscillator-amplifier 10 kc amplifier Interference from external 10 kc signal
Rotation of the ZERO or VERNIER control results in erratic movement of the meter pointer on the .01 MW range	ZERO or VERNIER potentiometer
Movement of the thermistor mount cable causes ab- rupt flicker of the meter pointer on the . 01 MW range	Thermistor mount Thermistor mount cable
Meter pointer stays down scale	T102 Thermistor mount Thermistor mount cable Power supply Meter RECORDER jack Q106 C102, C101 10 kc amplifier

Trouble Indication	Possible Cause
Meter pointer stays up scale	T102 Oscillator failure Thermistor mount cable Large unbalance in the metering bridge C105 C104 10 kc amplifier failure
Calibration inaccurate, all power ranges	Thermistor mount in strong rf field Interference from stray 10 kc signal Thermistor mount Meter not mechanically zero-set Meter MOUNT RES switch Power supply Battery 10 kc amplifier Resistor, collector Q101 Q107, Q106 Q102
Calibration inaccuracy, NOT all power ranges	Resistors emitter Q107 Q106 10 kc amplifier
Zero setting does not carry over from range to range within specification	Q106 R141 Q104

Table 5-2. Troubleshooting (Cont'd)

operated from ac primary power) by varying the line voltage $\pm 10\%$ about the nominal 115 or 230 vac. There should be no perceptible variation of the -18 vdc.

d. If -18 volts cannot be obtained by adjustment of R13, or if regulation is not satisfactory, proceed with the following test to determine the causes:

- Use a dc voltmeter (see table 5-1) to check the ac voltage limits at the points listed in table 5-3. See figure 5-2, top view, for component location. All voltages are measured with reference to the Model 431B ground.
- (2) Check ripple voltages (ac operation), using an ac voltmeter or oscilloscope, at the points listed in table 5-4. Table 5-1 gives requirements for the voltmeter or oscilloscope.

5-19. If the power meter does not function normally (e.g., pointer driven to its limits, no power indication) and power supply regulation is unsatisfactory, another circuit area, such at the 10 kc oscillator-amplifier or 10 kc amplifier, could be the cause.

5-20. A -18 vdc supply which is set high or low causes calibration inaccuracy of the Model 431B.

5-21. 10-KC OSCILLATOR-AMPLIFIER CHECK.

5-22. Tests of the oscillator-amplifier should be made according to the step sequence in which they appear below. A dc voltmeter, an ac voltmeter or oscilloscope and a frequency counter are needed for the tests (see table 5-1 for test instrument specifications). Figure 5-2, Top View, shows component location. 5-23. STEP 1.

a. Connect the oscilloscope between the positive lead of C125 and ground, check the 10 kc oscillatoramplifier output amplitude and waveform. Output amplitude, with a 200 ohm thermistor mount connected to the Model 431B, should be 15 vac $\pm 20\%$ peak-to-peak. If a 100-ohm mount is used, the amplitude should be 8 vac $\pm 20\%$ peak-to-peak. The waveform must be sinusoidal with only slight crossover distortion (caused by Q110 and Q111).

b. Check the frequency of the oscillator-amplifier. If a Model 478A thermistor mount is used, terminate the rf input to the mount in 50 ohms. A Model 486A thermistor mount does not require termination. Connect the frequency counter between the positive lead of C125 and ground. With Model 478A thermistor mount connected to the Model 431B, the oscillator-amplifier frequency should be 9750-10,000 cps. With a Model 486A thermistor mount connected, the frequency should be 10 kc \pm 50 cps.

5-24. STEP 2.

a. Connect the oscilloscope between the base of Q108 and ground; observe the amplitude of the feedback signal to the oscillator-amplifier. It must be less than 12 mv peak-to-peak: if not, 10 kc oscillatoramplifier gain is incorrect. The cause could be Q108, Q109, C124, L101, L105 or T101. If T101 is the cause of trouble use a special soldering tip to remove it from etched circuit board (see table 5-1).

Test Point	DC Voltage Limits	Voltage Out of Limits, Check
Minus end of C1	-38 to -43	ac line voltage, CR1, CR4, C1
Minus end of C2	-24 to -27	ac line voltage, CR2, CR3, C2, battery
Anode of CR8	-10.7 to -12.3	CR8
Anode of CR7	- 6.0 to - 7.5	CR7, Q3
Minus end of C6	-18	R13, Q5, Q2
Base of Q1	-18.3 to -18.6	Q1, Q3, Q2, CR7
Anode of CR9	-24.0 to -25.6	CR9, POWER switch
Plus end of C1	+ 1.4 to +1.5	CR5, CR6

Table 5-3. Power Supply DC Voltage Checks

Table 5-4. Power Supply Ripple Checks

Test Point	AC Voltag	ge Limits	Voltage Out of Limits Check	
Test Tomt	R.M.S. Peak-to-Peak			
Minus end of C1	1.8 v max.	5 v max.	CR1, CR4, C1	
Minus end of C2	1.1 v max.	3 v max.	CR2, CR3, C2, C6, Q13	
Minus end of C6	10.6 mv max.	30 mv max.	Q1 to Q5, CR7, CR15, C2, C6	

Table 5-5. 10 KC Oscillator-Amplifier DC Voltage Checks

Test Point	DC Voltage Limits	Voltage Out of Limits, Check
Collector of Q110	-18	Power Supply
Emitter of Q109	-10.0 to -14.0	Q108, Q109, C122, C121
Minus end of C121	-5.0 to -6.5	C121, Q108, R153

Table 5-6. 10 KC Amplifier DC Voltage Checks

Test Point	DC Voltage Limits	Voltage Out of Limits, Check
Emitter of Q101	-1.5 to -2.5	C112, R116, R115, C110, Q101
Collector of Q101	-4.5 to -6.0	Q101, C113, R117 to R124
Positive end of C116*	-3.5 to -4.5	Q103, R132, Q102, C115
* Short base to emitte	r of Q101	

Table 5-7.	DC	Voltages	in S	Squaring	Circuit
------------	----	----------	------	----------	---------

Test Point	DC Voltage Limits	Voltage Out of Limits, Check
Cathode CR113	+ 10.30 to + 10.46	CR113, R167, R173
Cathode CR112	+ 8.50 to + 9.64	CR112, R174, R168
Cathode CR111	+ 6.41 to + 6.51	CR111, R175, R169
Cathode CR110	+ 4.39 to + 4.47	CR110, R176, R170
Cathode CR109	+ 2.48 to $+$ 2.52	CR109, R177, R171
Cathode CR108	0	CR108, CR109 to CR113

Figure 5-2. Top View

b. Using the dc voltmeter, make dc measurements at the points listed in table 5-5. If the presence of 10 kc signal interferes with the dc measurements, the 10 kc oscillator can be disabled, without appreciably affecting the dc voltages, by grounding the collector of Q109. DC voltages are measured with reference to the Model 431B ground.

5-25. STEP 3. If there is no 10 kc output from the oscillator-amplifier proceed as follows:

a. Disconnect the thermistor mount.

5-6

b. Disconnect the positive lead of C125 from the circuit board.

c. Make a direct connection between the positive lead of C125 and bridge side of C120 (terminal 35 on the underside of the circuit board).

d. Using the oscilloscope, monitor the output of the oscillator-amplifier. If oscillation is present, the metering and rf bridges should be examined for defect. The waveform of the oscillation under this condition may show limiting.

5-26. If component replacement is required as a result of the foregoing tests, note the following:

a. After replacement of Q110 or Q111, check the amplitude of the 10 kc oscillator-amplifier output (paragraph 5-23a).

b. If Q108 or Q109 has been replaced, check the output frequency of the oscillator-amplifier (para. 5-23b).

c. After replacement of L105 or C124, readjustment of the oscillator frequency could be necessary. See paragraph 5-58 for this procedure.

5-27. 10 KC AMPLIFIER CHECK.

5-28. A dc voltmeter and oscilloscope are needed for checking the 10 kc amplifier. Table 5-1, Test Equipment, gives equipment requirements. Refer to figure 5-2, Top View, for component location.

5-29. Table 5-6 lists dc voltage check points and possible causes for deviations from the given limits. All voltages are referenced to the Model 431B ground. If the presence of a 10-kc signal interferes with dc measurement, ground the center tap of L102.

5-30. Calibration inaccuracy, common to all power ranges, can be caused by the 10 kc amplifier. In particular, an out-of-tolerance resistor in the collector of Q101 or a defect in the Q102 stage, which results in improper gain, will produce calibration error.

5-31. An open signal path or very low gain in the 10-kc amplifier can drive the meter pointer to its downscale limit. For signal tracing, the 10kc error signal from the metering bridge can be used, or C110 can be disconnected and used as a means of injecting a substitute 10 kc test signal.

Note

A special soldering tip is required to replace transformer T102. Refer to table 5-1 for the type of soldering tip to be used.

5-32. METERING AND FEEDBACK CIRCUIT.

5-33. Before performing this procedure refer to paragraphs 5-69 and 5-70 and check values of R141 and R179. The differential amplifier (Q104 and Q105), the feedback current squared generator (Q106), the feedback current generator (Q107), and the squaring circuit comprise the metering and feedback circuit. See figure 5-2, top view, for component location.

Note

Transistors Q106 and Q107 are selected for optimum calibration accuracy. If Q106 or Q107 is replaced, check calibration accuracy using procedure given in paragraph 5-76 or 5-78. It may be necessary to try several transistors to get proper calibration accuracy.

5-34. SQUARING CIRCUIT CHECKS.

5-35. A check of the squaring circuit is advisable if full scale or tracking accuracy of the Model 431B does not meet specifications. The squaring circuit includes CR108 through CR113 and R167 through R177. Figure 5-2, Top View, shows component location. 5-36. The squaring circuit is tested under two conditions: (1) when all diodes are conducting, and (2) when no diodes are conducting. Both conditions should be used whenever the squaring circuit is tested.

5-37. A digital voltmeter (see table 5-1 for specifications) is recommended for the following measurements.

5-38. DIODES CONDUCTING. The following procedure measures the forward voltage drop of each diode in the squaring circuit.

a. Set the Model 431B RANGE switch to 1 MW, and adjust the ZERO and VERNIER controls for exact full scale deflection of the meter pointer.

b. Disconnect the grounding link at the digital voltmeter input, and measure the voltage drop across the individual diodes of the squaring circuit. The requirement is 0.4 to 0.5 vdc.

5-39. DIODES OFF. The test points listed in table 5-7 are the midpoints of five two-resistor voltage dividers connected between -18 vdc and ground. This check verifies that each diode is properly back biased.

a. Adjust the Model 431B ZERO control for a belowzero deflection of the meter pointer.

b. Connect the voltmeter (ungrounded input) between the regulated -18 vdc supply and the test points listed in table 5-7. The voltmeter readings should be within the limits specified in the table.

5-40. BATTERY AND CHARGING CHECKS.

5-41. The information and procedures which follow pertain to power meters having the optional nickel cadmium battery. The battery is an assembly of 20 individual, permanently sealed cells connected in series. At full charge, battery terminal voltage should be 27 volts ± 1 volt. An inoperative cell reduces terminal voltage by approximately 1.3 volts.

5-42. BATTERY CHECK.

5-43. BATTERY VOLTAGE. A dc voltmeter is needed for this test. See table 5-1 for voltmeter requirements.

a. Make sure that the Model 431B is disconnected from the ac line. Connect the dc voltmeter between the BATTERY - and BATTERY + terminals on the etched circuit board.

b. Set the POWER switch to BATTERY ON and observe the voltmeter reading. Battery voltage should be -24 to -27 volts. If it is not, and the battery has been charged, check the charging circuits and the current drain imposed by the Model 431B circuitry. If the state of charge of the battery is uncertain, allow a 48-hour recharge, then recheck the battery voltage. Check the charging circuits if the battery voltage is still not within 27 \pm 1 volt.

Section V Paragraphs 5-44 to 5-55

5-44. BATTERY CURRENT DRAIN. The current supplied by the battery to the Model 431B circuitry should be checked if the battery does not seem to maintain a charge. A clip-on or series-connected current meter (see table 5-1) is required for the following procedure.

a. Check that the Model 431B is disconnected from the ac line.

b. Connect the current meter to monitor the current in one of the leads between the battery terminals and the BATTERY - and BATTERY + terminals on the circuit board.

c. Set the POWER switch to BATTERY ON and observe the reading on the current meter; it should read 40 to 53 ma.

5-45. CHARGING CHECKS.

5-46. The following procedures test the recharge and trickle charge capability of the Model 431B. A direct current meter (see table 5-1), a 7500 ohm $\pm 1\%$, 2 watt resistor and a 780 ohm $\pm 1\%$, 3 watt resistor are required for these tests. The battery is disconnected from the BATTERY - and BATTERY + circuit board terminals during both tests.

5-47. TRICKLE CHARGE CURRENT. The following procedure is used to check the trickle charge current applied to the battery when the power meter is operated from ac primary power.

a. Connect the 7500 ohm 2-watt resistor between the BATTERY - and BATTERY + terminals of the circuit board.

b. Connect the current meter to monitor the current through the resistor.

c. Connect the Model 431B to the ac line, set the POWER switch to AC, and observe the reading of the current meter. Trickle-charge current should be 3.2 to 4.8 ma.

5-48. CHARGE CURRENT. The following procedure checks the current supplied for recharging the battery.

a. Connect the 780 ohm 3-watt resistor between the BATTERY - and BATTERY + terminals of the circuit board.

b. Connect the current meter to monitor current through the resistor.

c. Connect the Model 431B to the ac line, set the POWER switch to BATTERY CHARGE, and observe the reading of the current meter. Charging current should be 27 to 40 ma.

5-49. A battery which will not assume rated terminal voltage with proper charging current may have a defective cell or cells. In such cases the battery must be replaced (see section VI Table of Replaceable Parts).

5-50. BATTERY WARRANTY.

5-51. The warranty, appearing on the inside of the rear cover of this manual, also applies to the accessory battery (option 01). Within the warranty period, the battery may be returned to Customer Service for repair or replacement.

5-52. REPAIR.

5-53. The etched circuit board used in the Model 431B is of the plated-through type which consists of a base board and conductor. The board does not include funneled eyelets. The conductor material is plated to the wall of the holes; thus the conductor is effectively extended into the hole. This type of board can be soldered from either the conductor or component side of the board with equally good results. The rules given below should be followed when repairing a platedthrough type etched circuit board.

a. Avoid applying excessive heat when soldering on the circuit board.

b. To remove a damaged component, clip component leads near the component; then apply heat and remove each lead with a straight upward motion.

c. Use a special tool to remove components having multiple connections, such as potentiometers, transformers, etc. Refer to table 5-1 for type of soldering tip required.

d. Use a toothpick to free hole of solder before installing a new component.

5-54. MECHANICAL ADJUSTMENT OF METER ZERO.

5-55. When meter is properly zero-set, pointer rests over the zero calibration mark on the meter scale when the instrument is 1) at normal operating temperature, 2) in its normal operating position, and 3) turned off. Zero-set as follows to obtain best accuracy and mechanical stability:

a. Allow the instrument to operate for at least 20 minutes; this allows the meter movement to reach normal operating temperature.

b. Turn instrument off and allow 30 seconds for all capacitors to discharge.

c. Rotate mechanical zero adjustment screw until pointer is on zero. Reverse direction of adjustment screw approximately 3° in order to free adjustment screw from meter movement. If the pointer moves while freeing the adjustment screw, this step must be repeated.

Note

Use of the parallax-eliminating mirror on the meter scale increases the accuracy of the mechanical zero-set.

5~8

Model 431B

5-56. ADJUSTMENTS.

5-57. POWER SUPPLY ADJUSTMENT.

a. Connect a dc voltmeter (see table 5-1 for required specifications) between the negative end of C6 and Model 431B ground.

b. Adjust -18 v REG. ADJ., R13, for -18 vdc.

c. Vary line voltage from 103 to 127 vac (207 to 253 vac): -18 vdc should not vary perceptibly.

5-58. OSCILLATOR FREQUENCY ADJUSTMENT.

5-59. If both 100 and 200 ohm thermistor mounts are to be used interchangeably with the Model 431B, the frequency of the 10 kc oscillator-amplifier should be adjusted in the following sequence: the 200 ohm mount procedure, paragraph 5-61, then the 100 ohm mount procedure, paragraph 5-62. If only one type of mount will be used with the power meter only the appropriate procedure is required.

5-60. An oscilloscope and frequency counter are needed for these adjustments. See table 5-1, Test Equipment for requirement. A plastic alignment tool should be used for the adjustment of L101 to avoid core damage.

5-61. 200 OHM MOUNT. The following procedure adjusts the 10 kc oscillator frequency when a 200 ohm thermistor mount is connected to the Model 431B.

a. Connect the 200 Ω thermistor mount and cable to the Model 431B; set the MOUNT RES switch to 200 Ω .

b. Connect the frequency counter between the plus end of C125 and ground; adjust L101 to give a frequency of 10,150 cps.

c. Connect the oscilloscope to the base of Q108 and observe the feedback signal amplitude. It should not exceed 12 mv peak-to-peak.

5-62. 100 OHM MOUNT. The following procedure adjusts the 10 kc oscillator frequency when a 100 ohm thermistor mount is connected to the Model 431B.

a. Connect the 100 ohm thermistor mount and cable to the Model 431B, and set MOUNT RES to 100 $\Omega.$

b. Connect the frequency counter between the positive end of C125 and ground. The frequency should be 10 KC ± 50 cps. If it is not, proceed with step c.

c. Substitute values of capacitance for C101 until the frequency is within the limits of step b.

Note

A decade capacitance box can be used to determine proper value of capacitance that must be used (see table 5-1).

5-63. COARSE NULL ADJUSTMENT.

5-64. If both 100 and 200 ohm thermistor mounts are to be used interchangeably with the Model 431B, the coarse null adjustment should be made in the following sequence; the procedure in paragraph 5-67 first, and then the procedure in paragraph 5-68.

5-65. If only a 200 ohm thermistor mount is to be used with the power meter, follow the procedure of paragraph 5-68. When only a 100 ohm thermistor mount is to be used, the procedure of paragraph 5-67 is sufficient.

5-66. An oscilloscope or ac vtvm is needed for these adjustments. See table 5-1, Test Equipment, for requirements. A plastic alignment tool should be used for the adjustment of L102 to avoid core damage.

5-67. 100 OHM MOUNT. The following procedure is used to make coarse adjustment of the null when a 100 ohm thermistor mount is connected to the Model 431B.

a. Set MOUNT RES to 100 Ω .

b. Observe the arrangement and travel of null capacitor C103, then mechanically center C103.

c. Connect the oscilloscope or ac vtvm between ground and the base of Q103.

d. Switch the Model 431B on and set RANGE to 10 MW.

e. Adjust the ZERO control to maintain a meter indication of less than 5% of full scale on the Model 431B while adjusting L102 for a minimum indication on the oscilloscope or vtvm.

f. Set RANGE to .01 MW and repeat step e, this time maintaining an on-scale meter indication on the Model 431B.

g. Move the oscilloscope or vtvm connection from the base of Q103 to the lead of R138 nearest T103.

h. Adjust null capacitor C103 to minimize oscilloscope or vtvm indication. Minimum indication should occur with the capacitor near the center of its range.

<u>Note:</u> A decade capacitance box can be used to determine the value of capacitance to be added (refer to table 5-1).

i. Set Model 431B RANGE switch to NULL. Adjust the null capacitor, C103, for a minimum indication on the Model 431B meter. Minimum indication should occur at less than 4% of full scale and C103 should be near its mid-range.

Note: When only a 100-ohm thermistor mount will be used with the Model 431B, the value of C104 may be changed to obtain the null requirements specified above.

5-68. 200 OHM. The following procedure is used to make coarse null adjustment when a 200-ohm therm-istor mount is connected to the Model 431B.

a. Set MOUNT RES to 200 Ω .

b. Set RANGE to .01 MW.

c. Connect the oscilloscope or vtvm between ground and the lead of R138 nearest T103.

d. Mechanically center the null capacitor, C103, by observing its rotor plates.

e. Using the ZERO and VERNIER controls, maintain an on-scale indication on the Model 431B meter while substituting values for C105 to obtain a minimum indication on the oscilloscope or vtvm.

f. Adjust C103, the null capacitor, to improve the minimum indication on the oscilloscope or vtvm. The null capacitor should be near mid-range.

Note

A decade capacitance box can be used to determine the value of capacitance to be added (see table 5-1).

g. Set RANGE to NULL. The Model 431B meter deflection should be less than 4% of full scale. If it is not, increase the value of C104 in approximately 50 pf increments to a maximum value of 500 pf. If 100 and 200 ohm thermistor mounts are to be used, repeat the null procedure for 100 ohm mounts (paragraph 5-67) after each increase in capacitance of C104.

5-69. ZERO AND VERNIER CONTROL ADJUSTMENT.

a. Connect a dc digital voltmeter (see table 5-1) at the Model 431B RECORDER jack. Use a special telephone-plug-to-dual-banana-plug cable assembly terminated with a 1000-ohm $\pm 0.1\%$ 0.25-watt wire-wound resistor.

b. Set Model 431B RANGE to .01 MW, and adjust Model 431B ZERO and VERNIER controls for zero meter reading on the Model 431B.

c. Set Model 431B RANGE to 10 MW.

d. Connect a decade resistance box across R141 (see figure 5-2), and adjust to obtain zero indication on Model 431B Power Meter.

e. Note amount of resistance required from resistance box to obtain zero indication.

f. Remove the decade resistance box, and replace with resistor of value noted in step e.

g. Check the Model 431B range-to-range zero drift by 1) setting Model 431B RANGE to .01 MW, and readjusting its VERNIER for zero meter reading, 2) switching the Model 431B through its complete range while observing the digital dc voltmeter reading. Test limits: digital dc voltmeter reading must not exceed +5 mv (+0.005V) on any Model 431B range.

5-70. FULL SCALE ACCURACY ADJUSTMENT.

a. Connect a @ Model 8402A (see table 5-1) at the Model 431B POWER METER terminals. Check that Model 8402A OUTPUT CURRENT is off. b. Set Model 431B RANGE to 10 MW; set Model 8402A RANGE (MW) to 10 MW, and FUNCTION to CAL.

c. Adjust the Model 431B ZERO and VERNIER controls for a zero indication on the meter.

d. Set Model 8402A OUTPUT CURRENT to ON; connect decade box across terminals of R179. Adjust decade box for a reading of exactly 10 mw on 431B panel meter. Switch Model 8402A to 8 mw, 6 mw, 4 mw, then 2 mw. Model 431B panel meter should track within $\pm 2\%$ of full scale (see table 5-8). Disconnect decade box.

e. Set Model 8402A OUTPUT CURRENT to OFF.

f. Set Model 431B RANGE to 3 MW; set Model 8402A RANGE (MW) to 3 MW.

g. Reset Model 431B VERNIER to zero the meter, if necessary.

h. Set Model 8402A OUTPUT CURRENT to ON; note and record the Model 431B percent - of - powerreading error (1.7%/division on 0-3 meter scale).

i. Repeat steps b through h for all Model 431B RANGE positions.

j. Connect a decade resistance box across R179 (see figure 5-2).

k. Select the resistance value which equalizes the magnitude of the largest positive and negative percent error.

m. Remove the decade resistance box and replace with a resistor of the value selected in step k.

n. Check all Model 431B RANGE positions. Test limits: the Model 431B full-scale power-reading error must not exceed 3% at ambient temperatures of 20°C to 35°C on all range positions (refer to table 5-8).

5-71. PERFORMANCE CHECK.

5-72. The tests described below which verify that the Model 431B meets specifications, use only panel controls and connectors. These tests can be used for incoming quality control, for routine preventive maintenance, and after repair. A thermistor mount must be connected to the Model 431B for the performance checks, though no rf power will be applied.

Note

If there is possibility of rf pick-up, the thermistor mount should be appropriately shielded.

5-73. Check the mechanical zero-set of the Model 431B meter according to paragraph 5-54.

5-74. ZERO CARRY-OVER CHECK.

a. Set Model 431B RANGE to .01 MW.

Section V Paragraphs 5-75 to 5-80

b. Adjust ZERO and VERNIER controls to set the meter pointer over the zero calibration mark.

c. Rotate RANGE through its .03, .1, .3, 1, 3, and 10 MW positions, observing the accuracy of the zero setting at each position. The zero must carry over from range to range within $\pm 0.5\%$ of full scale.

5-75. CALIBRATION AND RANGE TRACKING ACCURACY.

5-76. Calibration and range tracking accuracy is verified by dc substitution. Briefly, dc substitution involves 1) applying enough direct current at the DC CALIBRATION & SUBSTITUTION terminals to obtain the desired meter indication 2) accurately determining the applied current and 3) calculating the dc power applied. The difference between the substituted dc power and the meter indication it produced is the calibration error. The $\frac{1}{20}$ Model 8402A Power Meter Calibrator, or other means of producing accurate direct currents, is used as the substitution source. 5-77. CALIBRATION AND TRACKING ACCURACY TEST USING THE @ MODEL 8402A POWER METER CALIBRATOR. The Model 8402A Power Meter Calibrator provides constant currents sufficient to cause full scale meter indication on each of the Model 431B power ranges. It also has provision for checking the tracking accuracy of the Model 431B on the 10 mw range.

5-78. Refer to the Operating and Service Manual of the Power Meter Calibrator for correct test procedure.

5-79. ALTERNATE METHOD FOR CHECKING CAL-IBRATION AND RANGE TRACKING ACCURACY. The calibration and range tracking accuracy of the Model 431B can be checked by dc substitution using the equipment and connections shown in figure 3-3.

5-80. Using the data in table 5-8 the full scale calibration accuracy of each range and the tracking accuracy of the 10 mw range can be tested.

Test Point		Substitution	Current (I _{dc})	
Full Scale	Tracking	Mount Res 100 Ω	Mount Res 200 Ω	Model 431B Meter Reads
10 mw 3 mw 1 mw .3 mw .1 mw .03 mw .01 mw	8 mw 6 mw 4 mw 2 mw	20.00 ma 17.89 15.49 12.65 8.94 10.95 6.32 3.46 2.00 1.10 0.632	14. 14 ma 12. 65 10. 95 8. 94 6. 32 7. 75 4. 47 2. 45 1. 41 0. 775 0. 447	9.7 to 10.3 mw 7.8 to 8.2 mw 5.8 to 6.2 mw 3.8 to 4.2 mw 1.8 to 2.2 mw 2.91 to 3.09 mw 0.97 to 1.03 mw 0.097 to 0.103 mw 0.0291 to 0.0309 mw 0.0097 to 0.0103 mw

Table 5-8. Data for Calibration, Tracking Accuracy Check

Figure 5-3. Power Meter Assembly

01370-3

Model 431B

SECTION VI REPLACEABLE PARTS

6-1. INTRODUCTION.

6-2. This section contains information for ordering replacement parts. Table 6-1 lists parts in alphanumerical order of their reference designators and indicates the description and $\frac{1}{29}$ stock number of each part, together with any applicable notes. Table 6-2 lists parts in alpha-numerical order of their $\frac{1}{29}$ stock numbers and provides the following information on each part:

a. Description of the part (see list of abbreviations below).

b. Typical manufacturer of the part in a five-digit code; see list of manufacturers in appendix.

c. Manufacturer's stock number.

d. Total quantity used in the instrument (TQ column).

6-3. Miscellaneous parts not indexed in Table 6-1 are listed at the end of the table.

6-4. ORDERING INFORMATION.

6-5. To order a replacement part, address order or inquiry to your nearest Hewlett-Packard field office.

- 6-6. Specify the following information for each part:
 - a. Model and complete serial number of instrument.
 - b. Hewlett-Packard stock number.
 - c. Circuit reference designator.
 - d. Description.

6-7. To order a part not listed in tables 6-1 and 6-2, give a complete description of the part and include its function and location.

A B C C R D L DS E	= assembly = motor = capacitor = diode = delay line = device signaling (lamp) = misc electronic part	F = 1 FL = 1 J = 1 K = 1 L = 1 M = 1 MP = 1	fuse filter jack relay inductor meter mechanical part	P Q R RT S T	в в п п п п	plug transistor resistor thermistor switch transformer	V W X XF XDS Z	<pre>= vacuum tube, neon bulb, photocell, etc. = cable = socket = luseholder = lampholder = network</pre>
			ABBREVIATIO	<u>ONS</u>				
A BP BWO CCER CCOEF CCOM CONIN CCONN CCT DEPC EIA	<pre>= ampereS = bandpass = backward wave oscillator = ceramic = cabinet mount only = coefficient = composition = connection = cathode-ray tube = deposited carbon = Tubes or transistors meeting Electronic Industries' Associa- tion standards will normally result in instrument operating within specifications; tubes and transistors selected for best performance will be supplied if ordered by \$ tock numbers. CT = electrolytic</pre>	F FXD GE GL GRD H HG HR IMPG INS K LIN LOG M MA MINAT METFLI MFR MTG = 1	<pre>= farads = farads = fixed = germanium = glass = ground(ed) = henries = mercury = hour(s) = impregnated = incandescent = insulation (ed) = kilo = 1000 = linear taper = logarithmic taper = meg = 10⁶ = milliamperes = miniature M= metal film = manufacturer mounting</pre>	NC NE NO NPO NSR OBD P PC PF PC PO PO PO ROT ROT RMS		normally closed neon normally open negative positive zero (zero temperature coefficient) not separately replaceable order by de- scription peak printed circuit board picofarads = 10 ⁻¹² farads peak-to-peak peak inverse voltage porcelain position(s) polystyrene potentiometer rectifier rotary root-mean-square	S-B SE SECT SI SIL SIL TA TD TT TU TU TU TU TU TU TWT U VAC VAC W/ W/ W/	<pre>= slow-blow = selenium ?= section(s) = silicon = silicon = sliver = slide = tantalum = time delay = tidanium dioxide = toggle = tolerance = trimmer = traveling wave tube = micro = 10⁻⁶ = vacuum = variable = with = withs = witewound = without = optimum value selected at factory, average value shown (nart max</pre>
ENC	AP = encapsulated	MY =	mylar	RMC) =	rack mount only		be omitted)

REFERENCE DESIGNATORS

01370-3

Table	6-1.	Reference	Designation	Index

Reference Designation	Stock No.	Description #	Note
AlOl	431B-65A	ASSY:ETCHED CIRCUIT, INCLUDES:	
		C1 THRU C6 R102,R103 C102,C106 R105 THRU R110 C110 THRU C125 R113 THRU R116 CR1 THRU CR9 R125 THRU R140 CR101 THRU CR113 R142 THRU R144 L101 THRU L105 R150 THRU R155 Q1 THRU Q5 R167 THRU R178 Q101 THRU Q111 R180 R2 R2 THRU R14 Z1 R9 THRU R14	
BTl		SEE OPTION OL	
C1 C2 C3 C4 C5	0180-00 49 0180-01 38 0150-0012 0160-01 74 0180-005 9	C:FXD ELECT 20 UF 50VDCW C:FXD ELECT 100 UF +100-10% 40VDCW C:FXD CER 0.01 UF 20% 1000VDCW C:FXD CER 0.47 UF +80-20% 25VDCW C:FXD ELECT 10 UF +100-10% 25VDCW	
C6 C7 THRU	0180-0105	C:FXD ELECT 50 UF 25VDCW	
C100 C101 C102	0140-0220 0160-0185	NOT ASSIGNED C:FXD MICA 200 PF 1% 300VDCW C:FXD MICA 2100 PF 1% 300VDCW	•
C103 C104 C105 C106 C107 THRU	0121-0035 0140-0204 0140-0220 0180-0106	C:VAR AIR 7.2-143.7 PF C:FXD MICA 47 PF 5% 500VDCW C:FXD MICA 200 PF 1% 300VDCW C:FXD ELECT 60 UF 6VDCW	•
c109		NOT ASSIGNED	
C110 C111 C112 C113 C114	0160-01 74 0180-00 59 0170-006 9 0160-01 74 0180-0059	C:FXD CER 0.47 UF +80-20% 25VDCW C:FXD ELECT 10 UF +100-10% 25VDCW C:FXD POLY 0.1 UF 2% 50VDCW C:FXD CER 0.47 UF +80-20% 25VDCW C:FXD ELECT 10 UF +100-10% 25VDCW	
C115 C116 C117 C118 C119	0170-0 069 0180-0059 0160-0174 0180-0105 0180-0105	C:FXD POLY 0.1 UF 2% 50VDCW C:FXD ELECT 10 UF +100-10% 25VDCW C:FXD CER 0.47 UF +80-20% 25VDCW C:FXD ELECT 50 UF 25VDCW C:FXD ELECT 50 UF 25VDCW	
C120 C121 C122 C123 C124 C125	0160-0174 0180-0059 0180-0059 0160-0174 0170-0069 0180-0049	C:FXD CER 0.47 UF +80-20% 25VDCW C:FXD ELECT 10 UF +100-10% 25VDCW C:FXD ELECT 10 UF +100-10% 25VDCW C:FXD CER 0.47 UF +80-20% 25VDCW C:FXD POLY 0.1 UF 2% 50VDCW C:FXD ELECT 20 UF 50VDCW	
CR1 THRU CR4 CR5 AND	1901 -00 25	DIODE:SILICON 50 MA 1V 100 PIV	
CR6 CR7	1901-0026 1902-0017	DIODE:SILICON DIODE:SILICON AVALANCHE	
CR8 CR9 CR10 THRU	1902-001 8 1902-0017	DIODE:SILICON AVALANCHE 1N941 DIODE:SILICON AVALANCHE	
CRIOO CRIO1 THRU CRIO4	191 0-0 016	NOT ASSIGNED DIODE:GERMANIUM 100 MA 1V 60 PIV	

Reference Designation	B Stock No.	Description #	Note
CR105 CR106 CR107 THRU CR113 DS1	1901-0025 1901-002 5 1901-0024 1450-0048	DIODE:SILICON 50 MA 1V 100 PIV DIODE:SILICON 50 MA 1V 100 PIV DIODE:SILICON LAMP:NEON NE2H	
F1 J1 J2 THRU	2110-0017 1251-0148	FUSE :CATRIDGE 0.15 AMP CONNECTOR :POWER MALE 3 PIN	
J101	1251-0149	CONNECTOR FEMALE 6 CONTACT	
J102 J103	1251-0066 5060-0632 5060-0633 0340-0086	JACK:TELEPHONE FOR 2 CONNECTOR PLUG DC CALIBRATION & SUBSTITUTION, CONSISTS OF: BINDING POST:BLACK BINDING POST:RED INSULATOR:BLACK 2-HOLE(INSIDE)	
LI L2 THRU L100	0340-0090	INSULATOR BLACK 2-HOLE (OUTSIDE) NSR PART OF ZI NOT ASSIGNED	
L101 L102 L103 THRU	9140-0122 9140-0122	COIL:VAR 2 WINDINGS 9-20 UH EACH COIL:VAR 2 WINDINGS 9-20 UH EACH	,
L105	9110-0040	INDUCTOR: AUDIO 2.5 MH	
M101 P1 P2 01	1120-0311	METER, CALIBRATED NSR PART OF W1 NSR PART OF W1 TRANSISTOP (CEPHANILIM 201370)	
Q2 Q3 Q4 Q5	1850-0064 1850-0065 1851-0017 1854-0003	TRANSISTOR:2N1183 TRANSISTOR:GERMANIUM 2N1370 TRANSISTOR:GERMANIUM 2N1304 TRANSISTOR:SILICON	
Q6 THRU Q100 Q101 Q102 Q103 THRU	1850-0065 1851-0017	NOT ASSIGNED TRANSISTOR:GERMANIUM 2N1370 TRANSISTOR:GERMANIUM 2N1304	
Q105	1850-0065	TRANSISTOR : GERMANIUM 2N1370	
Q106 Q107 Q108 Q109 Q110 Q111	1854-0045 1854-0003 1850-0065 1851-0017 1850-0040 1851-0024	TRANSISTOR:SILICON TRANSISTOR:SILICON TRANSISTOR:SILICON TRANSISTOR:GERMANIUM 2N1370 TRANSISTOR:GERMANIUM 2N1304 TRANSISTOR:2N503 TRANSISTOR:GERMANIUM 2N388A	
R1 R2 R3 R4 R5	0687-3331 0687-3321 0690-3911 0690-1221 0687-4721	R:FXD COMP 33K OHM 10% 1/2W R:FXD COMP 3.3K OHM 10% 1/2W R:FXD COMP 390 OHM 10% 1W R:FXD COMP 1.2K OHM 10% 1W R:FXD COMP 1.2K OHM 10% 1/2W	
R6 R7 R8	0687-2711 0687-3321	R:FXD COMP 270 OHM 10% 1/2W R:FXD COMP 3.3K OHM 10% 1/2W NSR PART OF Z1	1
RY R10	0687-4721 0687-3321	R:FXD COMP 4.7K OHM 10% 1/2W R:FXD COMP 3.3K OHM 10% 1/2W	

Table 6-1. F	Reference	Designation	Index ((Cont'd)	ţ
--------------	-----------	-------------	---------	----------	---

Model 4	31B
---------	-----

Table 6-1. Reference	Designation	Index ((Cont'	d))
----------------------	-------------	---------	--------	----	---

Reference Designation	Stock No.	Description #	Note
R11 R12 R13 R14 R15 THRU R100	0687-1821 0758-0006 2100-0182 0758-0005	R:FXD COMP 1.8K OHM 10% 1/2W R:FXD MET FLM 10K OHM 5% 1/2W R:VAR COMP 3.3K OHM 10% LIN 1/3W R:FXD MET FLM 4.7K OHM 5% 1/2W NOT ASSIGNED	
R101 OPT 10 OPT 11 OPT 12 OPT 21-23	0727-0395 0727-0483 0727-0484 0727-0485 0727-0485 0727-0486	R:FXD DEPC 316 0HM 1/2% 1/2W R:FXD DEPC 318.1 0HM 1% 1/2W R:FXD DEPC 320.1 0HM 1% 1/2W R:FXD DEPC 323.4 0HM 1% 1/2W R:FXD DEPC 329.8 0HM 1% 1/2W	
R102 OPT 10 OPT 11,21 OPT 12,22 OPT 13,23	0811-0051 0811-0096 0811-0085 0811-0086 0811-0087	R:FXD WW 200.3 0HM 0.1% 1/4W R:FXD WW 200.7 0HM 0.1% 1/4W R:FXD WW 201.5 0HM 0.1% 1/4W R:FXD WW 203.3 0HM 0.1% 1/4W R:FXD WW 207.1 0HM 0.1% 1/4W	
R103 OPT 10 OPT 11,21 OPT 12,22 OPT 13,23	0811-0051 0811-0099 0811-0088 0811-0089 0811-0090	R:FXD WW 200.3 OHM 0.1% 1/4W R:FXD WW 202.5 OHM 0.1% 1/4W R:FXD WW 206.6 OHM 0.1% 1/4W R:FXD WW 213.0 OHM 0.1% 1/4W R:FXD WW 226.3 OHM 0.1% 1/4W	
R105 OPT 10 OPT 11,21 OPT 12,22 OPT 13,23	0811-0063 0811-0094 0811-0095 0811-0112 0811-0101	R:FXD WW 189.0 OHM 0.1% 1/4W R:FXD WW 190.2 OHM 0.1% 1/4W R:FXD WW 192.7 OHM 0.1% 1/4W R:FXD WW 197.7 OHM 0.1% 1/4W R:FXD WW 208.2 OHM 0.1% 1/4W	
R106 OPT 10 OPT 11,21 OPT 12,22 OPT 13,23	0811-0064 0811-0091 0811-0098 0811-0092 0811-0093	R:FXD WW 255.0 OHM 0.1% 1/4W R:FXD WW 256.0 OHM 0.1% 1/4W R:FXD WW 258.0 OHM 0.1% 1/4W R:FXD WW 258.0 OHM 0.1% 1/4W R:FXD WW 261.4 OHM 0.1% 1/4W R:FXD WW 268.2 OHM 0.1% 1/4W	
R107 R108 R109 R110 R111A/B	0811-0065 0811-0066 0758-0020 0811-0065 2100-0342	R:FXD WW 511 OHM 1% 0.08W R:FXD WW 887 OHM 1% 0.08W R:FXD WE T FLM 22K OHM 5% 1/2W R:FXD WW 511 OHM 1% 0.08W R:VAR CONCENTRIC FRONT SECT:WW 10K OHM 10% LIN 2W REAR SECT:WW 800 OHM 10% LIN 2W	
R112 R113 R114 R115 R116	0686-7525 0686-3325 0686-2725 0686-3325	NOT ASSIGNED R:FXD COMP 7.5K OHM 5% 1/2W R:FXD COMP 3.3K OHM 5% 1/2W R:FXD COMP 2.7K OHM 5% 1/2W R:FXD COMP 3.3K OHM 5% 1/2W	
R117 R118 R119 R120 R121	0683-4315 0683-3305 0683-7505 0683-2215 0683-1025	R:FXD COMP 430 OHM 5% 1/4W R:FXD COMP 33 OHM 5% 1/4W R:FXD COMP 75 OHM 5% 1/4W R:FXD COMP 220 OHM 5% 1/4W R:FXD COMP 1K OHM 5% 1/4W	
R122 R123 R124 R125 R126	0683-2435 0683-9115 0683-2725 0686-1025 0686-1525	R:FXD COMP 24K OHM 5% 1/4W R:FXD COMP 910 OHM 5% 1/4W R:FXD COMP 2.7K OHM 5% 1/4W R:FXD COMP 1K OHM 5% 1/2W R:FXD COMP 1.5K OHM 5% 1/2W	

Reference Designation	D Stock No.	Description #	Note
R127	0686-7525	R:FXD COMP 7.5K OHM 5% 1/2W	
R128	0686-3325	R:FXD COMP 3.3K OHM 5% 1/2W	
R129	0686-1535	R:FXD COMP 15K OHM 5% 1/2W	
R130	0687-3321	R:FXD COMP 3.3K OHM 10% 1/2W	
R131	0687-5611	R:FXD COMP 560 OHM 10% 1/2W	
R132 R133 R134 THRU R137 R138	0686-3325 0687-1511 0758-0003 0687-1521	R:FXD COMP 3.3K OHM 5% 1/2W R:FXD COMP 150 OHM 10% 1/2W R:FXD MET FLM 1K OHM 5% 1/2W R:FXD COMP 1.5K OHM 10% 1/2W	
R139	0687-1531	R:FXD COMP 15K OHM 10% 1/2W	•
R140	0686-1025	R:FXD COMP 1K OHM 5% 1/2W	
R141	0687-3931	R:FXD COMP 39K OHM 10% 1/2W	
R142	0687-1221	R:FXD COMP 1.2K OHM 10% 1/2W	
R143	0687-5611	R:FXD COMP 560 OHM 10% 1/2W	
R144 R145 THRU R149 R150 R151	0687-5611 0727-0131 0687-3321	R:FXD COMP 560 0HM 10% 1/2W NOT ASSIGNED R:FXD DEPC 3920 0HM 1% 1/2W R:FXD COMP 3.3K 0HM 10% 1/2W	
R152 R153 R154 R155 R155 R156 THRU R159	0727-0124 0727-0124 0687-5611 0687-3311	R:FXD DEPC 3K OHM 1% 1/2W R:FXD DEPC 3K OHM 1% 1/2W R:FXD COMP 560 OHM 10% 1/2W R:FXD COMP 330 OHM 10% 1/2W NOT ASSIGNED	
R160	0727-0396	R:FXD DEPC 1.194K OHM 1/2% 1/2W	* * * *
R161	0727-0397	R:FXD DEPC 2.12K OHM 1/2% 1/2W	
R162	0727-0398	R:FXD DEPC 3.79K OHM 1/2% 1/2W	
R163	0727-0399	R:FXD DEPC 6.73K OHM 1/2% 1/2W	
R164	0727-0341	R:FXD DEPC 12K OHM 1/2% 1/2W	
R16 5	0727-0400	R:FXD DEPC 21.36K OHM 1/2% 1/2W	•
R16 6	0727-0342	R:FXD DEPC 38.05K OHM 1/2% 1/2W	
R167	0727-0407	R:FXD DEPC 82.09K OHM 1/2% 1/2W	
R168	0727-0346	R:FXD DEPC 63.14K OHM 1/2% 1/2W	
R169	0727-0346	R:FXD DEPC 52.55K OHM 1/2% 1/2W	
R170	0727-0402	R:FXD DEPC 46.67K OHM 1/2% 1/2W	
R171	0727-0401	R:FXD DEPC 41.46K OHM 1/2% 1/2W	
R172	0727-0403	R:FXD DEPC 52.3K OHM 1/2% 1/2W	
R173	0727-0405	R:FXD DEPC 57.46K OHM 1/2% 1/2W	
R174	0727-0405	R:FXD DEPC 69.49K OHM 1/2% 1/2W	
R175	0727 -0408	R:FXD DEPC 94.2K OHM 1/2% 1/2W	•
R176	0727-0409	R:FXD DEPC 142K OHM 1/2% 1/2W	
R177	0727-0410	R:FXD DEPC 256.8K OHM 1/2% 1/2W	
R178	0687-5631	R:FXD COMP 56K OHM 10% 1/2W	
R179	0687-5631	R:FXD COMP 56K OHM 10% 1/2W	
R180	0758-0021	R:FXD MET FLM 51K OHM 5% 1/2W	
R181	0727-0100	R:FXD DEPC 1K OHM 1% 1/2W	
S1 S2 S3 Thru S100 S101 S102	3101-0033 3100-0370 3101-0032 3100-0273	SWITCH:SLIDE LINE VOLTAGE SWITCH:ROTARY POWER NOT ASSIGNED SWITCH:SLIDE MOUNT RES SWITCH:ROTARY RANGE	
]

Table 6-1.	Reference	Designation	Index	(Cont'd)
------------	-----------	-------------	-------	----------

Reference Designation	le Stock No.	Description #	Note
TI T2 THRU	9100-0141	TRANSFORMER : POWER	
T100 T101 T102	9120-0066 9120-0066	NOT ASSIGNED TRANSFORMER : AUDIO TRANSFORMER : AUDIO	
T103 T104	9120 -0065 9120 -0065	TRANSFORMER JAUDIO TRANSFORMER JAUDIO	
Wl	8120-0078	ASSY, POWER CABLE ISMOOTH BLACK, EXTRA LIMP, 7.5 FT. NEMA PLUG-IN	
XF1	1400-0084	FUSEHOLDER EXTRACTOR POST TYPE	
Z 1	431 8- 60A	ASSY, COIL: INCLUDES: LI, RB	
		MISCELLANEOUS	
	0370-0064 0370-0067 0370-0104	KNOB : VERNIER KNOB : ZERO KNOB : POWER® RANGE	
	5000-0703 5060-0718 50 00-0717 5060-072 8	COVER, 6 X 11 COVER,HALF RESESS (TOP) COVER,HALF MODULE (BOTTOM) FOOT ASSY, HALF MODULE	
	4318-16A 4318-19A 4318-19B 4318-19W	ASSY, CABLE 5', THERMISTOR MOUNT ASSY, POWER SWITCH, INCLUDES: R1, S2 ASSY, MOUNT RES SWITCH, INCLUDES: R101, S101. ASSY, RANGE SWITCH, INCLUDES: R117 THRU R124 R160 THRU R166 STK. NO. 4318-16A	
	0510-0123 1205-0002	RETAINER, INDICATOR LIGHT(USED WITH DS¥) HEAT SINK:TRANSISTOR	
	9211-0160 9220-0225	CARTON, CORRUGATED PAD, FOAM	

-

Reference Designation	@ Stock No.	Description #	Note
		OPTIONS	
		OPTION DI	
	1420-0009 431A-64A	BATTERY, RECHARGEABLE(BII) SUPPORT, BATTERY	
	4318-95A	RECHARGEABLE BATTERY INSTALLATION KIT	
		OPTION 03	
	#21 A. 160	ASSY CARLE SDECTAL DUDDOSE INCLUDES.	
	1251-0149	CONNECTOR, FEMALE	
		OPTION 10	
	4318-16D	ASSY. CABLE 201 THERMISTOR MOUNT FOR USE WITH	
		HP MODEL 486A OR 478A THERMISTOR MOUNT	
		OPTION 11	
	431B-16E	ASSY, CABLE 50' THERMISTOR MOUNT FOR USE WITH	
		HP MODEL 486A THERMISTOR MOUNT	
		OPTION 12	
	4318-16F	ASSY, CABLE 100' THERMISTOR MOUNT FOR USE WITH HP MODEL 486A THERMISTOR MOUNT	
		OPTION 13	
	4318-16G	ASSY, CABLE 200" THERMISTOR MOUNT FOR USE WITH HP MODEL 486A THERMISTOR MOUNT	
		OPTION 21	
	4318-16E	ASSY, CABLE 50' THERMISTOR MOUNT FOR USE WITH HP MODEL 478A THERMISTOR MOUNT	
		OPTION 22	
	4318-16F	ASSY, CABLE 100' THERMISTOR MOUNT FOR USE WITH HP MODEL 478A THERMISTOR MOUNT	
		OPTION 23	
	431 B- 16G	ASSY, CABLE 200' THERMISTOR MOUNT FOR USE WITH HP MODEL 478 A THERMISTOR MOUNT	

Table 6-1. Reference Designation Index (Cont'd)

Table 6-2. Replaceable Parts

🕸 Stock No.	Description #	Mfr.	Mír. Part No.	TQ	
					1
1]	
0121-0075	C.VAD AID 7 3-143 7 DF	28480	0121-0035		
0140-0204	C:FXD MICA 47 PF 5% 500VDCW	04062	DM15E 470J	1	
0140-0290	CIFXD MICA 200 PF 1% 300VDCW	04062	DW15F 201F 300V	2	
0150-0012	C:FXD CER 0.01 UF 20% 1000VDCW	56289	H-1038	1	
0160-0174	C:FXD CER 0.47 UF +80-20% 25VDCW	56289	5C11A	6	
0160-0185	C	14655	CD20F 212F		
0170-0069	C:FXD POLY 0.1 UF 2% 50VDCW	56289	114P1042R5S3	3	ļ
0180-0049	C:FXD ELECT 20 UF 50VDCW	56289	300198A1	2	
0180-0059	C:FXD ELECT 10 UF +100-10% 25VDCW	56289	300182A1	6	
0180-0105	C:FXD ELECT 50 UF 25VDCW	56289	S97#41	3	
0180-01 06	C:FXD ELECT 60 UF 20% 6VDCW	56289	1500606X0006B2	1	
0180-0138	C:FXD ELECT 100 UF +100-10% 40VDCW	56289	TYPE 41D	1	
0340-0086	INSULATOR BLACK 2-HOLE (INSIDE)	28480	0340-0086	11	ł
0340-0090	INSULATOR: BLACK 2-HOLE (OUTSIDE)	28480	0340-0090		
0570-0004	NUO JYENNIEN	20400	vj/0-0004	1 -	
0370-0067	KNOB ZERO	28480	0370-0067	11	
0570-0104 4314-164	ANUD FUWER, RANGE	28480	4314-164	2	ļ
437A-16G	ASSY, CABLE (INCLUDES 1251-0149)	28480	4314-166		
431A-60A	ASSY, COIL, (DNCLUDES LI, R8)	28480	431A-60A	i	
4314-644	SUPPORT BATTERY	28480	431A_64A	10	
431A-64B	COVER, BATTERY	28480	431A-64B	1.	
4318-16A	WIRING HARNESS	28480	4318-16A	11	
4318-16C	WIRING HARNESS	28480	4318-16C	11	Ì
4318-160 4318-165	ASSY, CABLE 20' THERMISTOR MOUNT	28480	4318-160	1.	
4318-16E	ASSY, CABLE 50' THERMISTOR MOUNT (486A)	28480	4318-16E 4318-16E		
4318-16F	ASSY, CABLE 100' THERMISTOR MOUNT (486A)	28480	431B-16F	1.	
4318-16F	ASSY, CABLE 100' THERMISTOR MOUNT (478A)	28480	4318-16F	1º	
431 B- 16G	ASSY, CABLE 200' THERMISTOR MOUNT (486A)	28480	4318-16G	120	
4318-16G	ASSY, CABLE 200' THERMISTOR MOUNT(478A)	28480	431 8- 16G	1•	
431 8- 19 A	ASSY, POWER SWITCH(INCL R1,S2)4318-16C	28480	431 8 19A	1	
4318-19B	ASSY, MOUNT RES SWITCH(INCL R101, S101)	28480	431 8-19 8	1	
4 <u>518</u> -19W	ASSY, RAND SWITCH (INCL R117 THRU R166)	28480	4318-19W	1	
4710-07A	RECHARGEARIE RATTERY INSTALLATION VIT	20480	4318-654	1	
4710 774	REGRARGEAGEE DATIENT INSTREEMTION RIT	20400	4710-974		
0510-0123	RETAINER: INDIGATOR LIGHT	78553	C12008-014-4	11	
0683-2215	R:FXD COMP 220 OHM 5% 7/4W	01121			
0683_2435	REFXD COMP 24K OHM FAL 1/AW	01121	CB 2435	†	
0683-2725	R:FXD COMP 2.7K OHM 5% 1/4W	01121	CB 2725	11	
0683-3305	RIFXD COMP 33 OHM 5% 1/4W	1121	CB 3305		
0683-4315	R:FXD COMP 430 OHM 5% 1/4W	01121	CB 4315	lî l	ļ
0683-7505	R:FXD COMP 75 OHM 5% 1/4W	01121	CB 7505	1	
0683-9115	R :FXD COMP 910 OHM 5% 1/4W	01121	CB 9115	1	
0686-1025	RIFAD COMP IK UHM 5% 1/2W	01121	LE 1025	2	
0686-1525	RIFXD COMP 1.5K OHM 5% 1/2W	01121	EB 1525	1	
0686-2725	RIFAD COMP 15K OHM 5% 1/2W RIFAD COMP 2 7X OHM 5% 1/2W	01121	LB 1555		
0686-3325	RIFXD COMP 3.3K OHM 54 1/2W	01121	FB 3325	1	
0686-7525	R:FXD COMP 7.5K OHM 5% 1/2W	p1121	EB 7525	2	
			°=OPTIONAL	.	
<u> </u>					

Table 6-2.	Replaceable Parts	(Cont'd)
------------	-------------------	----------

🖗 Stock No.	Description #	Mfr.	Mfr. Part No.	TQ
0687-1221	R:FXD COMP 1.2K OHM 10% 1/2W	01121	EB 1221	1
0687-1511	R:FXD COMP 150 OHM 10% 1/2W	01121	EB 1511	1
0687-1521	R:FXD COMP 1.5K OHM 10% 1/2W	01121	EB 1521	1
0687-1551 0687-1821	R:FXD COMP 15K OHM 10% 1/2W R:FXD COMP 1.8K OHM 10% 1/2W	01121	EB 1821	1
0687-2711	R:FXD COMP 270 OHM 10% 1/2W	01121	EB 2711	1
0687-3311	R:FXD COMP 330 OHM 10% 1/2W	01121	EB 3311	1
0687-3321	R:FXD COMP 3.3K OHM 10% 1/2W	01121	EB 3321	5
0687 -3331	R:FXD COMP 33K OHM 10% 1/2W	01121	EB 3331	i
0687 -39 31	R:FXD COMP 39K OHM 10% 1/2W	01121	EB 3931	
0687-4721	R:FXD COMP 4,7K OHM 10% 1/2W	01121	EB 4721	2 4 2
0687-5611	R:FXD COMP 560 OHM 10% 1/2W	01121	EB 5611	
0687-5631	R:FXD COMP 56K OHM 10% 1/2W	01121	EB 5631	
0690-1221 0690-3911	R:FXD COMP 1.2X OHM 10% 1W R:FXD COMP 390 OHM 10% 1W	01121 01121 01121	GB 1221 GB 3911	1
0727-0100 0727-0124	R:FXD DEPC 1K OHM 1% 1/2W R:FXD DEPC 3K OHM 1% 1/2W R:FXD DEPC 3K OHM 1% 1/2W	19701 19701	DC 1 OBD DC 1/2C OBD	1 2
0727-0341 0727-0342	R:FXD DEPC 12K OHM 1/2% 1/2W R:FXD DEPC 12K OHM 1/2% 1/2W R:FXD DEPC 38.05K OHM 1/2% 1/2W	19701 19701 19701	DC 1/2A OBD DC 1/2A OBD DC 1/2A OBD	1
0727-0346	R:FXD DEPC 63,14K OHM 1/2% 1/2W	19701	DC 1/2A 08D	1
0727-0395	R:FXD DEPC 316 OHM 1/2% 1/2W	19701	DC 1/2A 08D	
0727-0397	R:FXD DEPC 1,1944 OHM 1/2% 1/2W	19701	DC 1/2A OBD	1
0727-0397	R:FXD DEPC 2,13K OHM 1/2% 1/2W	19701	DC 1/2A OBD	
0727-0398	R:FXD DEPC 3,79K OHM 1/2% 1/2W	19701	DC 1/2A OBD	
072 7- 039 9	R:FXD DEPC 6.73K OHM 1/2% 1/2W	19701	DC 1/2A 08D	1
0727-0400	R:FXD DEPC 21.36K OHM 1/2% 1/2W	19701	DC 1/2A 08D	
0727-0401	R:FXD DEPC 41.46K OHM 1/2% 1/2W	19701	DC 1/2A 08D	1
0727-0402	R:FXD DEPC 46.67K OHM 1/2% 1/2W	19701	DC 1/2A 080	1
0727-0403	R:FXD DEPC 52.3K OHM 1/2% 1/2W	19701	DC 1/2A 080	1
0727-0404	R:FXD DEPC 52.55K OHM 1/2% 1/2W	19701	DC 1/2A OBD	1
0727-0405	R:FXD DEPC 57.46K OHM 1/2% 1/2W	19701	DC 1/2A OBD	
0727 -0406	R:FXD DEPC 69,49K OHM 1/2% 1/2W	19701	DC 1/2A OBD	1
0727 -0407	R:FXD DEPC 82.09K OHM 1/2% 1/2W	19701	DC 1/2A OBD	1
0727 -0408	R:FXD DEPC 94,2K OHM 1/2% 1/2W	19701	DC 1/2A OBD	1
0727-040 9	R:FXD DEPC 142K OHM 1/2% 1/2W	19701	DC 1/2A OBD	1
0727-0410	R:FXD DEPC 256.8K OHM 1/2% 1/2W	19701	DC 1/2A OBD	1
0727-0483	R:FXD DEPC 318.1 OHM 1% 1/2W	28480	0727 -048 3	1°
0727-0484	R:FXD DEPC 320.1 OHM 1% 1/2W	28480	0727-0484	1°
0727-0485	R:FXD DEPC 323.4 OHM 1% 1/2W	28480	0727-0485	1°
0727-0486	R:FXD DEPC 329.8 OHM 1% 1/2W	28480	0727-0486	1°
0758-0003	R:FXD MET FLM 1K OHM 5% 1/2W	07115	C 20 08D	4
0758-0005 0758-0006 0758-0020	R:FXD METFLM 4.7K OHM 5% 0.5W R:FXD METFLM 10K OHM 5% 0.5W R:FXD METFLM 22K OHM 5% 1/2W	07115 07115 07115	C 20 080 C 20 080 C 20 080 C 20 080	1 1 1
0758-0021	R:FXD MET FLM 51K OHM 5% 1/2W	07115	C 20 0BD	1
0811-0051	R:FXD WW 200.3 OHM 0.1% 1/4W	05347	Lr 205rp 0BD	
0811-0063	R:FXD WW 189 OHM 0.5% 1/4w	05347	LR 205RP 080	1 1 2
0811-0064	R:FXD WW 255 OHM 0.5% 1/4w	05347	LR 205RP 080	
0811-0065	R:FXD WW 511 OHM 1% 0.08W	99957	M3 A 080	
			°=ΩPT1ΩNA	

Table $6-2$.	Replaceable Parts	(Cont'd)
---------------	-------------------	----------

🖗 Stock No.	Description #	Mfr.	Mfr. Part No.	ΤQ	
0811-0066	R:FXD WW 887 OHM 1% 0.08W	99957	M3 A OBD	1	
0811-0085	R:FXD WW 201.5 OHM 0.1% 1/4W	28480	0811-0085	1	
0811-0086	R:FXD WW 203.3 OHM 0.1% 1/4W	28480	0811-0085	1.	Ì
0811-0087	R FXD WW 207.1 000 0.1% 1/4W	28480	0811-0088	1.	
0011-0000		20100	0011-0000		
0811-0089	R:FXD WW 213.0 OHM 0.1% 1/4W	28480	0811-0089	1•	
0811-0090	R:FXD WW 226.3 UMM 0.1% 1/4W	28480	0811-0090	10	Ì
0811-0092	RIFXD WW 261.4 OHM 0.1% 1/4W	28480	0811-0092	1.	
0811-0093	R:FXD WW 268.2 OHM 0.1% 1/4W	28480	0811-0093	1.	
0911 0008		28480	0811_000#	2.	
0811-0095	R = FXD WW 192.7 0HM 0.1% 1/4W	28480	0811-0095		
0811-0096	R:FXD WW 200.7 OHM 0.1% 1/4W	28480	0811-0096	i•	
0811-0098	R:FXD WW 258.0 OHM 0.1% 1/4W	28480	0811-0098	1•	
0811-0099	R:FXD WW 202,5 OHM 0,1% 1/4W	28480	0811-0099	1•	
081 10 101	R:FXD WW 208.2 OHM 0.1% 1/4W	28480	9811-0101	1.	
0811-0112	R:FXD WW 197.7 OHM 0.1% 1/4W	28480	0811-0112	1.0	
1120-0311	METERICALIBRATED	28480	1120-0311	1	
1251-0066	JACK TELEPHONE. FOR 2 CONNECTOR PLUG	82389	2J-1339	i	
1251-0148	CONNECTOR POWER MALE 3 PIN	60427	H-1061 1G-3L	1	- {
1400-0084	FUSEHOLDER EXTRACTOR POST TYPE	75915	342014	1	
1420-0009	BATTERY, RECHARGEABLE 1-25 AH	88220	OBD	i.	
1450-0048	LAMP INEÓN NE2N	08717	8 58R	1	
1850-0040	TRANSISTOR :GERMANIUM 2N383	94154	2N383	1	
1850-0064	TRANSISTOR : GERMANIUM 2N1183	02735	2N1183	ī	
1850-0065	TRANSISTOR : GERMANIUM 2N1370	01295	2N1370	2	
1851-0017	TRANSISTORIGERMANIUM 201304	01295	2N1304	3	
1091-0024	TRANSTSTOR IGENMANTON ZHOODA	01275	21900A		
1854-0003	TRANSISTOR :SILICON	07263	S-3056	1	
1874-0047		82547	RI 2022	1	
1901-0025	DIODE:SILICON 50 MA 1V 100 PIV	98925	CSD2693	6	
1902-0017	DIODE :SILICON ÁVALANCHE	01281	PS8135	2	
1902-0018	DIODE :SILICON AVALANCHE	04713	1 N941	1	
1910-0016	DIODE:GERMANIUM 100 MA 1V 60 PIV	93332	02361	Â.	1
2100-0182	R: VAR COMP 3.3K OHM 10% LIN 1/3W	11237	UPE-70	1	
2100-0342	RIVAR WW 2SECT 10K/800 OHM 10% 2W	11237	C2-252	1	
2110-0017		72912	515.170	*	
3100-0273	SWITCH ROTARY, RANGE	76854	213364K3	1	
5100-0570 3101-0032	SWITCH ROTART PUWER	76834		1	
3101-0033	SWITCH:SLIDE. LINE VOLTAGE	42190	DOLOM(SPECIAL)	1	
5000-0703	COVER, 6 X 11	28480	5000-0703	2	i
5000-0717	COVER_HALF MODULE(BOTTOM)	28480	5000-071 7	1, 1	
5060-0632	BINDING POST:BLACK	28480	5060-0632	1	
5060-0633	BINDING POST:RED	28480	5060-0633	li	
5060-0728	FOOT ASSY. HALF MODELE	28480	5060-0718 5050-0708	11	
		20400	7000-0728	L I	
8120-0078	ASSY, POWER CABLE, BLACK	70903	KH-4147	11	
9110-0040	INDUCTOR AUDIO	08724	1805	1	
9120-0065	TRANSFORMER : AUDIO	98734	2-2690	22	
9120-0066	TRANSFORMER : AUDIO	98734	2-2695	2	
71 40-012 2	CUTLIVAR 2 WINDINGS, 9-20 UH EACH	09250	18-473	2	
			∣ "=OPTION	AU	

TABLE 6-3.

CODE LIST OF MANUFACTURERS

The following code numbers are from the Federal Supply Code for Manufacturers Cataloging Handbooks H4-1 (Name to Code) and H4-2 (Code to Name) and their latest supplements. The date of revision and the date of the supplements used appear at the bottom of each page. Alphabetical codes have been arbitrarily assigned to suppliers not appearing in the H4 handbooks.

Code No.	Manufacturer	Address	Code No.	Manufacturer	Address	Code No.	Manufacturer	Address	Code No.	Manufacturer	Address
900300	U.S.A. Common A	ny supplier of U.S.	07137	Transistor Electionics Co	orp, Minneapolis, Minn,	20183	General Atronics Corp.	Philadelphia, Pa.	72825	Hugh H. Eby Inc.	Philadelphia, Pa.
60213	Sage Electronics Corp.	Rochester, N.Y.	67138	Electronic Tube Dry.	Elmira, N.Y.	21226	Executone, Inc. Executone, Inc.	New York, N.Y.	72928	Gudeman Co. Robert M. Hadiev Co.	Chicago, 11.
30334	Humidial	Colton, Calif.	07149	Filmohm Corp.	New York, N.Y.	21335	The Falmir Bearing Co.	New Britain, Conn.	72982	Erie Technological Prod	lucis, Inc. Erre, Pa.
063/3	Garlock Inc., Electronucc Products Out	Canden N I	07233	Cinch-Graphik Co.	City of Industry, Calif.	24455	G.E. Lamp Division		73061	Hansen Mfg. Co., Inc.	Princeton, Ind.
00656	Aerovos Corp. M	lew Beglard, Mass.	07261	Avnel Corp. Eauchuid Camera & Inst.	Los Angeles, Calit, Coro	74655	Ceneral Radio Co	ark, Cleveland, Ofio	73076	H.M. Harper Co. Helipot Duy of Pochase	Chicago, III.
00779	Anp. Irc.	Harrisburg, Pa.	0,105	Semiconductor Div.	Mountain View, Calif.	26365	Gries Reproducer Corp.	New Rachelle, N.Y.	, 1150	Nempor Div. or Deckalan	Fullerton, Calif.
00781	Aurcrait Radio Corp.	Boonion, N.J.	07322	Minnesola Rubbei Co.	Minneagolis, Minn.	26462	Grobet File Co. of America	a, Inc.	73293	Hughes Products Division	to no
0.0.5	statueto cugineering coort	Burlington, Wis.	07387	Technical Wire Products i	Los Angeles, Calit.	2600.2	Handline Watch Ca	Carisladi, N.J.	73645	Hughes Arroratt Co.	Newport Beach, Calif.
C0853	Sangame Electric Co.,		07910	Continental Device Corp.	Hawthorne, Calif.	28480	Kewlett-Packard Co.	Palo Allo, Calil.		American Phillips Co.	, Inc. Hicksville, N. Y.
00866	Pickens Div.	PICHERS, S.C.	07933	Raytheon Mig. Co		33173	G.E. Receiving Tube Depi	t. Owensboro Ky.	73506	Bradley Semiconductor C	orp. Handen, Conn.
00891	Carl E. Holmes Corp. L	os Angeles, Calif,	07966	Semiconductor Div.	Mountain View, Calil.	35434	Lectrohm inc.	Chicago, III.	/ 3559 73682	Calling Electric, Inc.	Hartford, Conn.
01121	Atlen Bradley Co.	Wilwaukee, Wis.	0/200	Laboratories	Palo Alto, Calit,	30130	Hawkes	ibury, Ontario, Canada		MSL Industries Inc.	Philadelphia, Pa.
C1255	Litton Industries, Inc. 8 TRW Semiconductors Inc.	everly Kills, Calif.	07980	Boonton Radio Corp.	Rockaway, N.J.	37942	P.R. Mallory & Co., inc.	indianapolis, Ind.	73734	Federal Screw Products	inc. Chicago, III.
61295	Texas Instruments, Inc.	Connoale, Cann.	08145	U.S. Engineering Co.	Los Angeles, Calif. Pomona, Calif.	39543	Nechanical Industries Prod	1. Ca. Akron, Dhio	73743	Fischer Special Mig. Co.	Crecienali, Ohio
	Transision Products Div.	Dallas, Texas	08358	Burgess Battery Co.	Toatona, Com.	42190	Muter Co.	Chicago, III.	73846	Goshen Slamping & Tool	Co. Elysta, Unio Co. Goshen ind
01349	The All-ance Mig. Co.	Alliance, Ohio Vac Nues, Calif		Miagara	Falls,Onlario, Canada	43990	C.A. Norgren Co.	Englewood, Colo.	73899	JFD Electronics Corp.	Brooklyn, M.Y.
01930	Amerack Carp.	Rockford, III.	08664	The Bristol Co.	Waterbury, Conn.	44655	Ohmite Mfg. Co.	Skokie, III.	73905	Jennings Radio Mig. Corp	p. San Jose, Calif.
01961	Pulse Engineering Co.	Santa Clara, Calif.	08718	TT Cannon Electric Inc	Phoenix Div.	47904 48620	Polaroid Colp. Precision Thermometer 8	Cambridge, Mass.	74455	J.H. Wiens and Sons	Replune, N.J. Winchester Mass
02114	Ferroacube Corp. of America	Saugerties, M.Y.			Phoenix, Arizona			Southampton, Pa,	74861	Industrial Condenser Cor	p. Chicago, III,
02286	Amphéoni-Bore Flectronics Ci	Palo Allo, Calic.	68792	CBS Electronics Semico	nductor	49956	Raytheon Company	Lexington, Mass.	74868	R.F. Ploducts Division o	of Ampheno)-
02735	Radio Corp. of America, Semi	DAGector	08984	Operations, Div. of C.B. MeliRain	S.,Inc. Lowell, Mass.	52090	Rowan Controller Co.	Westminster, Md.	74970	Borg Electronics Corp.	. Danbury, Conn.
	and Malerials Div.	Somerville, N.J.	09026	Babcock Relays Div.	Costa Mesa, Calif.	54294	Shallcross Mig. Co.	Selma, N.G.	75042	International Resistance	Co. Philadelohia. Pa.
02771	Vocaline Co. 0) America, Inc.	id Savbrook Cone	09134	Texas Capacitor Co.	Housion, Texas	55026	Simpson Elactric Co.	Chicago, III.	75378	James Knights Co.	Sandwich, III.
02777	Hopkins Engineering Co. S	an Fernando, Calil.	09345	Atohn Electronics	Sun Valley, Calif.	55933	Sonotone Corp.	Einsford, N.Y.	75818	Lenz Flectric Corporatio	on MI. Veroan, N.Y. Chicann III
03508	G.E. Semiconductor Prod. Dep	t. Syracuse, N.Y.	09569	Mailory Battery Co. of	chicago, in.	22279	Systems Div.	Sp. Notwalk, Conn.	75915	Littlefuse, inc.	Des Plaines, III.
03705	Apex Machine & Tool Co.	Dayton, Ohio Complete Calif		Canada, Ltd. To	iooto, Onitario, Canada	56137	Spaulding Fibre Co.,inc.	Tonawanda, N.Y.	76005	Lord Mig. Co.	Erie, Pa.
03877	Transition Electric Corp.	Wakefield, Mass.	10214	General Traosistor West	ern Corp.	56289	Sprague Electric Co.	North Adams, Mass.	76210	C.W. Marwedel	San Francisco, Calif.
03888	Pyralilm Resistor Co.,Inc.	Cedar Xnolls, N.J.	10411	Ta-Tal Inc	Los Angeles, Calif.	59445	Telex, Inc. Thomas & Reits Co.	St.Paul, Minn, Elizabeth N I	/0433	Micanold Div.	, Kewark, N.J.
03954	Singer Co., Diehl Div.,	famou ite N I	10546	Carborundum Co	Niapara Falls, N.Y.	68741	Triplett Electrical Inst. Ci	o. Biuffton, Dhro	76487	James Millen Mig. Co.,Ir	nc. Maiden, Mass.
04009	Autow Batt and Hegeman El	ect. Co.	11236	CTS of Berne, Inc.	Beroe, Ind.	61775	Union Switch and Signal,	Div. of	76493	J.W. Miller Co.	Los Angeles, Calif.
		Hartford, Conn.	11237	Chicago Telephone of Cal	ifornia, Inc.	67:10	Westinghouse Air Brake	Co. Pittsburgh, Pa.	76545	Mueller Electric Co.	Cleveland, Ohio
04013	Taurus Corp.	Lambeilville, N.).	11242	Ray State Flectronics Col	so, rasa pena, cant. n Waltham Mass.	63743	Ward-Leanard Electric Co.	Mt. Vernon, N.Y.	76854	Dak Manufacturing Co.	Crystal Lake, III.
04062 04222	Elmenco Products Co. Bi-O Division of Aerovat	Mew York, M.Y. Mystle Beach, S.C.	11312	Microwave Electronics Col	p. Palo Afte, Calif.	64959	Western Electric Co.,Inc.	New York, N.Y.	77068	The Bendix Corp.	No. 11 No
04354	Precision Paper Tube Co.	Chicago, MI.	11534	Duncan Electronics Inc.	Costa Mesa, Calif.	65092	Weston Inst. Div. of Dayst	rom, Inc.	27025	Pacific Metals Co	No. Hollywood, Calif.
04404	Dymec Division of Hewlett-Pa	ickaid Co.	11711	General Instrument Corp.,	Semiconductor Div.,	66295	Wittek Mfg. Co.	Chicago, III,	77221	Phanostran Instrument an	d
04651	Sulaania Electric Products	Palo Alto, Calif.	11717	Imperial Electronic, Inc.	Buena Park, Calif,	66346	Revere Wollansak Div. Min	na, Mining &		Electronic Co.	South Pasadena, Calif.
04033	Microwave Device Drv. Mo	untain View, Calif.	11870	Melabs, Inc.	Palo Allo, Calif.		Mig. Co.	St. Paul, Minn.	11252	Philadelphia Steel and Wi	Philadelobus Pa
04713	Motorola, Inc., Semiconductor	Prod. Div.	12136	Philadelphia Handle Co.	Camden, N.J. Dever N.H	702/6	Allen Mrg. Co.	Hartford, Conn.	77342	American Machine & Fou	ndry Co.
04732	Febrar Calling Western Dry	Phoenix, Arizona Eulwer City, Calif	12859	Nippon Electric Co., Ltd.	Tokyo, Japan	70318	Alimetal Screw Product Co), Inc.		Potter & Brumfield Dre	Princeton, lad.
04773	Automatic Electric Co.	Northlake, Itt.	[288]	Netex Electronics Corp.	Clark, N.J.			Garden City, N.Y.	77630	TRW Electronic Compone	nts Div. Camden, N.J. Recision Dus
04796	Sequoia Wire Co. R	edwood City, Calif.	12930	Detta Semiconductor Inc.	Newport Beach, Calif.	78485	Atlantic India Rubber Work	ks, inc. Chicago, III.	11030	General instrument Corp.,	Brooklyn, N.Y.
04811	Precisian Carl Spring Co.	E) Monle, Cass.	3103	Thermolloy Tablahay	Dallas, Texas	70903	Belden Mig. Co.	Chicago, BI,	77764	Resistance Products Co.	Harrisburg, Pa.
05006	Twentieth Century Plastics,	Inc.	13396	Midland-Wright Div. of Pac	she industries, inc.	70998	Bird Electronic Corp.	Cleveland, Ohio	77969	Rubbergraft Corp. of Cali	f. Totrance, Calif.
		Los Angeles, Cahl.			Kansas City, Kansas	71002	Birnbach Radio Co.	New York, N.Y.	10103	Tool Warks	Elgin, III,
05277	Westinghouse Electric Corp.	Venerat De	14099	Sem-Tech	Newbury Park, Calif.	/1041	Multav Cn of Texas	Duncy, Mass.	78283	Signal Indicator Corp.	New York, N.Y.
05347	Semi-Conductor Dept.	San Mateo, Calif.	14193	American Components Inc.	Conshohocken, Pa.	71218	Bud Radio, Inc.	Willoughby, Ohio	78290	Stathers-Dana Inc.	Pitman, N.J.
05593	Himitranic Engineering Co.	Sunnyvale, Calif.	14493	Hewlett-Packard Company	Loveland, Calo.	71286	Camloc Fastener Corp.	Paramus, M.J.	78471	Tiliev Mig. Co.	San Francisco, Calif.
05616	Cosmo Plastic		14655	Cornell Dublier Electric C	orp. Newark, N.J.	71400	Bussmann Mig. Div. of	L Indengurst L.H., M.T.	78488	Stackpole Carbon Co.	SI, Maiys, Pa.
85674	Raiber Colman Co	Rockford, Jil.	34960	Whitems mig, Lo, Webster Electronics Co.	San Jose, Calif.		McGraw-Edison Co.	St. Louis, Mo.	78493	Standard Thomson Corp.	Waltham, Mass.
05728	Titlen Optical Co.		15291	Adjustable Bushing Co.	K.Hollywood, Calif.	71436	Chicago Condenser Corp.	Chicago, 11.	/8553 78796	Transformer Engineers	 Cleveland, Uhio San Gabriel Calif.
	Rasiya Heights,	Long Island, N.Y.	15558	Micron Electronics		71447	Calif, Spring Co., Inc.	Picc-Rivera, Calif. Elkhart ind	78947	Ucinite Co.	Newtonville, Mass.
05/29	Metro-rei Corp. Stewart Engineering Co	Santa Ciuz, Calif.	15772	Garden (ily, Long Island, N.Y.	71468	ITT Cannon Electric Inc.	Los Angeles, Calif.	79136	Waldes Kohinool Inc.	Long Island City, N.Y.
05820	Wakefield Engineering Inc.	Wakefield, Wass.	147.14	Coil Spring Co.	Santa Clara, Calif.	71471	Cinema Engineering Co.	Burbank, Calif.	79142	Veeder Rool, Mc. Weeco Mfg. Co	Hartlord, Cons.
06034	The Bassick Co.	Bridgeport, Conn.	15818	Amelco Inc.	Mt. View, Calif.	73482	C.P. Clare & Co, Centralab Dur, of Clobe III	Chicago, III.	79727	Continental-Witt Electron	ics Corp,
061/5	Bausch and Lomb Uplical Co. F.T.A. Products Co. of Amer	. Nochester, N.T.	15909	Daven Drv. Thomas A. Ed	ison Ind, Long Island Cuty, N.Y.	/1330		Milwaukee, Wis.			Philadelphia, Pa.
06475	Western Devices Inc.	Burbank, Calif.	16037	Spruce Pine Mica Co.	Spruce Pine, N.C.	71616	Commercial Plastics Co.	Chicago, Ili.	/9963	Zierick Mig. Corp.	New Rochelle, R.Y.
06540	Amatom Electronic Hardware	Co., inc.	16352	Computer Diode Corp.	Lodi, N.J.	71700	The Cornish Wire Co.	New Yaik, N. Y. Korke Chicago (U	00051	Clock Co.	Morristown, N.J.
06555	Beede Frentucal Jostrument (iew Kocnelie, N.Y.	16688	Ideal Piec, Meter Co., In De lur Meter Dur	C. Binakiya M.Y	71753	A.O. Smith Corp., Clowley	r Dav.	80120	Schnitzer Alloy Products	Co. Elizabeth, N.J.
	Acces Figerical manifiator (Penacook, N.B.	16758	Delco Radio Div. of G.M.	Corp. Kokomo, Ind.			West Drange, N.J.	80130	Times Telepholo Equipm	ent New York, N.Y.
06686	General Devices Co., Inc.	Indianapolis, Ind.	17109	Thermonetics Inc.	Canoga Park, Calif.	71785	Cinch Mfg. Co., Howard E	3. Jones Div, Chicago III	0013[Tube meeting EIA stan	darés-Washington, D.C.
06751	Nuclean Corp. of America	Phoen Arra	17474	Tranex Company	Mountain View, Calif.	71984	Dow Corning Corp.	Midland, Mich.	80207	Unimax Switch, Div. Max	on
06812	Torrington Mig. Co., West Di	v. Van Nuys, Calif.	18486	Radio Industries	Des Plaines, IV.	72136	Electro Molive Mig. Co., In	nc.	88775	Electronics Corp.	Wallingford, Conn.
06980	Eitel-McCullough Inc.	San Carlos, Calsi.	18583	Curtis Instrument, Inc.	MI, Kisco, N.Y.	1170'	Colo Coll Co. Inc.	Willimantic, Conn. Providence P 1	80223	Oxford Electric Corp.	
07088	Kelvin Electric Co.	Van Nuvs, Cald,	18873	E.I. DaPont and Co., Inc.	Wilmington, Del.	72354	John E, Fast Co., Div. Vi	icloreen instr. Co.	80294	Bourns Laboratories, Inc	Riverside, Calif.
07113	Electronic Components De	pt. Bradford, Pa.	1912	Eclipse-Pioneet Div.	Teleibora, N.J.			Chicago, III.	80411 80484	Robertshaw Controls Co.	Hallsboro, Ohio Detance, Ohio
07126	Digitran Co.	Pasadena, Calif.	19500	Thomas A. Edison Indust	nes,	72619	indiana General Coro - Fli	BCOOKIYA, N.Y. ECTRONICS Day.	80509	Avery Adhesive Label C	orp. Montovia, Calif.
			14101	Div. of McGraw-Edison Flectra Mig. Co.	Co. West Drange, N.J.	12030		Keasby, N.J.			
			13/01	C		72765	Drake Mig. Co.	Chicago, Wi.			

00015-40 Revised: May, 1965

From: FSC. Handbook Supplements H4-1 Dated DECEMBER 1964 H4-2 Dated MARCH 1962

TABLE 6-3.

CODE LIST OF MANUFACTURERS (Continued)

Code No.	Monufacturer	Address	Code No.	Manufacturer	Address	Code No.	Manufacturer	Address	Code No.	Manufacturer	Address
63656	Hannarlund Co., Inc.	Yen York, N.Y.	83621	Loyd Scruggs Co.	Festus, No.	9384 9384	Robbins and Myers, Inc.	New York, N.Y.	96731	General Milts Inc.,	
80640	Stevens, Arnold, Co., Inc.	Boston, Mass.	54.71	Atea Electronics Inc.	Great Neck, N.Y.		Slevens Mig. Co., Inc.	Manstield, Ohio		Electronics Div.	Minneagnitis, Mira.
21030	International Instruments Inc.	Urange, Conn.	64295	A.J. Gicsenei Uo., Inc. S	an Francisci, Cali.	73-55	Howard J. Smith Hic.	Port Monniouth, N.J.	38821	North Hills Electronics, in	Gien Cove, N.Y.
110/3	Glayfii Co.	LaGrange, III.	34411	CRW Capacitor D.V.	Ugar a P, INES,	7:929	G.V. Contreis	Livingston, N.J.	96975	Semiconductor Div. of Clev	ite Corp.
5.095	Triad Transformer Corp.	Venice, Calif.	545/6	Saikes (al2'al), Mc.	Broom ngion, ind,	24.3. 971.3	General Cable Corp.	Bayonne, M.J.	09070	feleval and firms	Wakham, Mass.
01215	Which the See Decidence Co., Mc.	HOIWAIK, CAIN.	95471	A R Baut Ca	BCURLY, M.J.	34.44	led Camp Convisions	Owner Nore	30310	Pereiracional Ciectionic	0
811.2	Walker Products Jac	Cleveland Ohio	85474	R M Bracamonte & Co S	an Francisco, Carl	94119	Scientific Electronics Pindi	ints inc	90109	Columbia Technical Com	Now York M V
51353	International Rectil er Core, F'	Seeudo. Calif.	8566.2	Kouled Koids, Inc.	Handen Coun		Electronica - room	Joveizad Colo	99313	Varian Associates	Palo Allo Calu
21541	The A-roas Products Cc. C	ambridge, Mass.	85911	Seaniless Rubbe: Co.	Chicago, FI.	94154	Tung-Sol Electure, Inc.	Newark N.J.	99515	Marshali Ind. Elect. Produc	ts Div.
31850	Barry Conticis, Div. Barry Wright	Corp.	86197	Clifton Precision Products C	a., luc.	94:97	Cuiliss-Wright Corp.				San Marine, Call.
		Waterton, Mass.		(Clifton Heights, Pa.		Electrenics Div.	Easl Paterson, N.J.	99707	Control Switch Division, Co	introls Co.
52942	Carler Precision Electric Co.	Skokie, III.	86579	Precision Rubber Products (Colp. Dayton, Ohio	94?22	South Chester Corp.	Chester, Pa.		of America	El Segundo, Calil.
82617	Speili Faraday Inc., Cooper Hewe	dt	86684	Radio Corp. of America, Elec	tranic	94310	Tru-Ohm Products		99800	Delevan Electronics Corp.	East Aurera, N.Y.
	Electric Div.	Hobsker, M.J.		Comp. & Devices Div.	Harrises, N.J.		Memcar Components Drv.	Huntington, Ind.	99848	Wilco Corporation	Indianaan'is, ind.
27142	Jetters Electronics Division of		87216	Philop Corporation - Lansdale	B visioni	94330	Wire Cloth Products, Inc.	Bellwood, III.	99934	Renbrandi, Inc.	Boston, Mass.
	Speer Carben Co.	De Beis, Pa.			Lansdale, Pa.	94687	Worcesler Pressed Aluminu	na Cerp,	99942	Holfman Electronics Corp.	
32170	Fairch 1d Carlera & Inst. Corp.,		87473	Western Fibrous Glass Produ	cis Co.			Woicester, Mass.		Semiconductor Div.	El Monte, Cal-1
	Delense Prod. Division	Chilton, N.J.		Sa Sa	in Francisco, Calil.	95023	George A. Philbucs Researc	hers, Inc.	99957	Technology Instrument Corp	
62209	Magure Industries, Inc. G	reeuwich, Conn.	67664	Van Waters & Rogers Inc. Sa	in Francisco, Calif.			Boston, Mass.		of Calif.	Newbury Park, Calil,
62719	Sylvan a Electric Prod. Inc.		87930	Tower MIg. Corp.	Providence, R.I.	95736	Allies Products Corp.	Miami, Fla.			
	Electronic Tube Division	Emporium, Pa.	86140	Cutler-Hammer, Inc.	Lincoln, III,	952 36	Continental Connector Corp	Woodside, N.Y.			
\$23/5	Astron Division, Renweir Industr	ies inc.	66220	Gould-National Batteries, Inc	Core Cidan Mil	95/03	Leecrari Mig. Co., Inc.	Long Island, N.T.			
07300	Courted up to the	Chicano III	20600	Concept Mills Inc.	Dirp. Christe, N.J.	95265	National Coll Co	Sheudan Wyn			
32367	Switch all, Inc.	Chicago, III.	20030	Crawbay Electric Co	Ophland, Calul	95775	Vitramon lec	Bridgenort Conn.			
0204;	Second Product 1	tilahara Mass	80419	Constal Electric Co.	Corrano, Carri,	95348	Gordo & Core	Binomiueld N I			
£77Ea	Phyliost Advance Cookol Co	teliat It	03473	deneral clecking providenting	Schevertady NY	95354	Nethode Mig. Co.	Chicago, III.	THE E	FOLLOWING HEP VENDOR	S HAVE NO YON
82866	Research Products Com	Madison Wis	89665	United Transformer Co.	Chicago III	95712	Oage Electric Co., Inc.	Franklin, Ind,	BER A	SSIGNED IN THE LATEST	SUPPLEMENT TO
82877	Rolron Mig. Co., Inc.	Foccslock, N.Y.	90179	US Rubber Co. Consumer loc	1 & Plastics	95987	Weckesser Co.	Chicago, III.	THE	FEDERAL SUPPLY COD	FOR MANUFAC
82993	Vector Electronic Co.	Glendale, Calil.		Pred. Div.	Passaic, N.I.	95667	Huggins Laboratories	Sunnyvale, Calif.	TURER	S HANDBODK.	
83053	Western Washer Mig. Co. Los	Angeles, Calif.	90970	Bearing Engineering Co. Sar	n Francisco, Ca'il.	96095	HI-Q Div. of Aerovox Corp.	Olean, N.Y.			
83058	Carr Fastener Co. C.	ambridge Mass.	91260	Connor Spring Mig. Co. Sar	Francisco, Calif.	96256	Thordaison-Meissner Div. a	1	0000F	Malco Tool and Die	Los Angeles, Cant.
83086	New Hampshire Ball Bearing, Inc		91345	Miller D-al & Nameplate Co.	El Monte, Calif.		Maguire Industries, Inc.	Mt. Carmel, 11.	000014	Western Coil Div. of Autom	alic
	Pet	erborough, N.H.	91418	Radic Vaterials Co.	Chicage, 111.	96296	Solar Manutaclusing Co.	Los Angeles, Calif.		ind., luc.	Redwood City, David
83125	General Instrument Corp.,		91506	Augat Inc.	Allieboio, Mass	96330	Cariton Sciew Co.	Chicago, III.	0000Z	Willow Leather Products Cr	orp. Newark, N.J.
	Capacitor Div.	Darington, S.C.	9163/	Dale Electionics, Inc.	Columbus, Neor.	96341	Microwave Associates, Inc.	Durlington, Mass.	000A A	British Radio Electionics L	. Id.
6.1148	If t wire and Cable Div. Los	Angeles, La II.	01301		Willow Glove, Pa.	07464	Excel Hansipher Co.	Caxiano, Cain.	0004.0	~ ~ .	Washington, D.C.
10165	Victory Engineering Corp. 2	Springrieio, N.J.	01927	K E Development Co. P.	maxerield, laiss,	07520	Automatic & Precision Min	Encloweed N I	UUUAB	ETA	t og i ta
03298	Bendik Colp., Red Balls Div.	Neg Dank, n.J.	91970	Honeywell Inc. Micro Switch	nuu city, caro.	97979	Reon Resistor Coro	Vonkers N V	UUUAK	Siemens-America	Market Director Market
022220	Furth decate if inc	Riccillan NY	,,,,,,	Honeywert mer, micio gwiten	Ereenal III	97983	Litter System loc Adler-We	stric	00008	Brosses bestweet	white Planas, N.Y.
10065	Coolda Scienco	Chicago III	1.961	Nahm-Bros Soune Co	Dakland Calil	,,,,,,,	Commun Dix	New Rochelle NY	000000	Components Co	Mars Marca - Calls
43501	Cavill Wite and Cable Co.	5	92180	Tru-Connector Corp.	Peabody, Mass.	98141	R.Troncis, Inc.	Jamaica, N.Y.	000000	Rubber For & Ocyatooner	Harmond Calls
03391	Div of Ariesace Colo. B	lookfield, Mass.	92367	Elgeet Optical Co., Inc.	Rochesler, N.Y	9B159	Rubber Teck, Inc.	Gaidena, Calif.	00an N	A "N" D Mfg Ca	Sale Lase Coll ²
8 3594	Burroughs Corp.		92196	Universal Industries, Inc.		98220	Francis L. Moseley	Pasadena, Calif.	00000	Continen	Dakland (A)
	Electronic Tube Div.	Plainfield, N.J.		City	y of Industry, Calif.	98278	Microdot, Inc.	So. Pasadena, Calif.	00055	Control of Elgun Walch Co.	Burbank, Call
83740	Evercady Div. National Carbon		92607	Tensolite Insulated Wire Co.,	Inc.	96791	Sealectio Corp.	Mamaroneck, N.Y.	000##	California Eastern Lah,	Burington, Ca
	Div. Union Carbide Corp.	New York, N.Y.			Tariytown, N.Y.	98405	Carad Corp.	Redwood City, Calif.	006 Y Y	S.K. Smilt Co.	Los Angeles, Cal
83777	Nodel Eng. and Mfg., inc. H	luntington, Ind.	93332	Sylvania Electric Prod. Inc.							
				Serviconductor Div.	Woburn, Mass.						

50015-40 Rev:sed: May, 1965 From: FSC, Handhook Supplements H4-) Dated DECEMBER (He) H4-2 Dated MARCH (He)

APPENDIX

MANUAL CHANGES

This manual describes directly instruments with serial prefix 451-. For other serials, change the manual as indicated below. If your serial prefix does not appear either here or on a change sheet supplied with the manual, the correct information can be obtained from your nearest Hewlett-Packard Field Office (see lists on following pages).

Serial Prefix 432-:

Table 1-1: Change Zero Carry-Over to read, "Less than 1% of full scale when zeroed on most sensitive range."

Paragraph 1-3, last sentence: change to read, "...within \pm 1% for all higher power ranges.

Paragraph 3-2, second sentence: change to read, "...from range to range within $\pm 1\%$ of full scale...."

Figure 3-2, item 8, Note: change to read, "Zero-set accuracy of 1% can be obtained..."

Paragraph 5-74c: Change last sentence to read, "The zero must carry over from range to range within $\pm 1\%$ of full scale."

Serial Prefix 221, 223, and 301:

Make above changes plus:

Figure 5-3, Q106: Change type to 1854-0003.

Table 6-1, Q106: Change hp Stock No. to 1854-0003.

Table 6-2, 1854-0003: Change TQ to 3. 1854-0045: Delete