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Abstract. Behaviour Trees is a novel approach for requirements
engineering. It advocates a graphical tree notation that is easy to use
and to understand. Individual requirements are modelled as single trees
which later on are integrated into a model of the system as a whole. We
develop a formal semantics for a subset of Behaviour Trees using CSP.
This work, on one hand, provides tool support for Behaviour Trees. On
the other hand, it builds a front-end to a subset of the CSP notation
and gives CSP users a new modelling strategy which is well suited to
the challenges of requirements engineering.
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1 Introduction

Modelling system requirements in a complete and traceable manner is an es-
sential step in system design. Usually, this step has to bridge the gap between
a natural language description and a formal or informal notation. To ease the
task, the notation should support the most direct translation from the given
description. It should be easily understood by customers who are not familiar
with mathematical notations. Ideally, it would also provide a means to trace
back the ingredients in the resulting model to parts of the given text. Analysing
the requirements model is a crucial step toward early error detection. Gaps and
inconsistencies in the requirements discovered in the early phase of modelling
can still be rectified easily. For larger systems, this analysis should be supported
by tools.

Tool support suggests the use of a formal modelling notation. However, for-
mal notations are usually not very close to informally given requirements and
for customers are often hard to read and to understand. Addressing this twofold
need, we suggest the integration of a graphical notation that supports require-
ments engineering, with a formal notation that provides a formal semantics and
tool support for the analysis. We are aiming at integrating Behaviour Trees and
CSP.

The Behaviour Tree Notation [Dro03] is a graphical notation that allows the
user to first model individual requirements that are subsequently integrated into

E. Boiten, J. Derrick, G. Smith (Eds.): IFM 2004, LNCS 2999, pp. 148-[I67] 2004.
© Springer-Verlag Berlin Heidelberg 2004


Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN ----------------------------------------
Dateioptionen:
     Kompatibilität: PDF 1.3
     Für schnelle Web-Anzeige optimieren: Nein
     Piktogramme einbetten: Nein
     Seiten automatisch drehen: Nein
     Seiten von: 1
     Seiten bis: Alle Seiten
     Bund: Links
     Auflösung: [ 2400 2400 ] dpi
     Papierformat: [ 595.276 824.882 ] Punkt

KOMPRIMIERUNG ----------------------------------------
Farbbilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 300 dpi
     Downsampling für Bilder über: 450 dpi
     Komprimieren: Ja
     Automatische Bestimmung der Komprimierungsart: Ja
     JPEG-Qualität: Maximal
     Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 300 dpi
     Downsampling für Bilder über: 450 dpi
     Komprimieren: Ja
     Automatische Bestimmung der Komprimierungsart: Ja
     JPEG-Qualität: Maximal
     Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 2400 dpi
     Downsampling für Bilder über: 3600 dpi
     Komprimieren: Ja
     Komprimierungsart: CCITT
     CCITT-Gruppe: 4
     Graustufen glätten: Nein

     Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN ----------------------------------------
     Alle Schriften einbetten: Ja
     Untergruppen aller eingebetteten Schriften: Nein
     Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
     Immer einbetten: [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]
     Nie einbetten: [ ]

FARBE(N) ----------------------------------------
Farbmanagement:
     Farbumrechnungsmethode: Farbe nicht ändern
     Methode: Standard
Geräteabhängige Daten:
     Einstellungen für Überdrucken beibehalten: Ja
     Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
     Transferfunktionen: Anwenden
     Rastereinstellungen beibehalten: Ja

ERWEITERT ----------------------------------------
Optionen:
     Prolog/Epilog verwenden: Ja
     PostScript-Datei darf Einstellungen überschreiben: Ja
     Level 2 copypage-Semantik beibehalten: Ja
     Portable Job Ticket in PDF-Datei speichern: Nein
     Illustrator-Überdruckmodus: Ja
     Farbverläufe zu weichen Nuancen konvertieren: Ja
     ASCII-Format: Nein
Document Structuring Conventions (DSC):
     DSC-Kommentare verarbeiten: Ja
     DSC-Warnungen protokollieren: Nein
     Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
     EPS-Info von DSC beibehalten: Ja
     OPI-Kommentare beibehalten: Nein
     Dokumentinfo von DSC beibehalten: Ja

ANDERE ----------------------------------------
     Distiller-Kern Version: 5000
     ZIP-Komprimierung verwenden: Ja
     Optimierungen deaktivieren: Nein
     Bildspeicher: 524288 Byte
     Farbbilder glätten: Nein
     Graustufenbilder glätten: Nein
     Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
     sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS ----------------------------------------

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
     /ColorSettingsFile ()
     /AntiAliasMonoImages false
     /CannotEmbedFontPolicy /Warning
     /ParseDSCComments true
     /DoThumbnails false
     /CompressPages true
     /CalRGBProfile (sRGB IEC61966-2.1)
     /MaxSubsetPct 100
     /EncodeColorImages true
     /GrayImageFilter /DCTEncode
     /Optimize false
     /ParseDSCCommentsForDocInfo true
     /EmitDSCWarnings false
     /CalGrayProfile ()
     /NeverEmbed [ ]
     /GrayImageDownsampleThreshold 1.5
     /UsePrologue true
     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /AutoFilterColorImages true
     /sRGBProfile (sRGB IEC61966-2.1)
     /ColorImageDepth -1
     /PreserveOverprintSettings true
     /AutoRotatePages /None
     /UCRandBGInfo /Preserve
     /EmbedAllFonts true
     /CompatibilityLevel 1.3
     /StartPage 1
     /AntiAliasColorImages false
     /CreateJobTicket false
     /ConvertImagesToIndexed true
     /ColorImageDownsampleType /Bicubic
     /ColorImageDownsampleThreshold 1.5
     /MonoImageDownsampleType /Bicubic
     /DetectBlends true
     /GrayImageDownsampleType /Bicubic
     /PreserveEPSInfo true
     /GrayACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>
     /ColorACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>
     /PreserveCopyPage true
     /EncodeMonoImages true
     /ColorConversionStrategy /LeaveColorUnchanged
     /PreserveOPIComments false
     /AntiAliasGrayImages false
     /GrayImageDepth -1
     /ColorImageResolution 300
     /EndPage -1
     /AutoPositionEPSFiles true
     /MonoImageDepth -1
     /TransferFunctionInfo /Apply
     /EncodeGrayImages true
     /DownsampleGrayImages true
     /DownsampleMonoImages true
     /DownsampleColorImages true
     /MonoImageDownsampleThreshold 1.5
     /MonoImageDict << /K -1 >>
     /Binding /Left
     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
     /MonoImageResolution 2400
     /AutoFilterGrayImages true
     /AlwaysEmbed [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]
     /ImageMemory 524288
     /SubsetFonts false
     /DefaultRenderingIntent /Default
     /OPM 1
     /MonoImageFilter /CCITTFaxEncode
     /GrayImageResolution 300
     /ColorImageFilter /DCTEncode
     /PreserveHalftoneInfo true
     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /ASCII85EncodePages false
     /LockDistillerParams false
>> setdistillerparams
<<
     /PageSize [ 595.276 841.890 ]
     /HWResolution [ 2400 2400 ]
>> setpagedevice
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a system design model. This integration is based on the tree structure: individual
requirements are modelled by simple tree structures and are integrated by graft-
ing one tree, A, onto a node, B, of another tree when the root node of A matches
the node B. This tree model takes all components of the system into perspective
within the same view, thus reflecting the natural language description. A view
on the behaviour of a single component can later be factored out from the inte-
grated behaviour tree, as well as the structural view of the system’s architecture.
Moreover, the notation supports the bookkeeping of modelling information. So
far, there is no formal semantics defined for this notation.

Communicating Sequential Processes (CSP) [Hoa85/R0s98] is a process alge-
bra for elegantly specifying the behaviour of interacting components. It is well
suited to reflect the semantics of Behaviour Trees because the language provides
all needed constructs for modelling the variants of control flow used in Behaviour
Tree models. The model checker FDR (Failure Divergence Refinement) [For96]
provides an analysis tool for CSP and hence can be used for analysing Behaviour
Tree models if we provide a translation from the latter into CSP. It allows the
user to check a model for deadlock and livelock and for the refinement relation
between two models. These checks can be exploited to check a requirements
model for inconsistencies and incompleteness.

Interacting CSP processes, on the other hand, synchronised via the CSP chan-
nel mechanism can be challenging to read if the user is faced with a large number
of components that interact a lot. This dictates another motivation for the in-
tegration: Behaviour Trees make a nice graphical front-end for representing the
interaction of CSP processes. Moreover, Behaviour Trees provide a systematic
and constructive way of capturing functional requirements in a system design
model. A similar stepwise approach could not easily be followed when using the
CSP notation to model functional requirements. Points of integration for two
individual requirements would be difficult to determine in a CSP setting.

Similar work has been undertaken by others (see e.g., [NB02I/BD00]) by in-
tegrating parts of UML and CSP. Although the integration step is different,
the motivation is quite similar: CSP serves as formal semantics to a non-formal
graphical notation, and the graphical notation provides a user-friendly front-end
for CSP. In extension to that, our approach adds a new modelling dimension to
the process algebra.

The paper is organised as follows: Section [2 introduces the notation of Be-
haviour Trees. Section Bl briefly overviews the CSP notation and describes the
integration of Behaviour Trees and CSP. The integration is illustrated by means
of an example in Section @l In Section[d, we summarise the results of our analysis
using FDR. Section Blsummarises this work and gives an outlook to future work.

2 Behaviour Trees

A great challenge of requirements engineering is how to get from a set of func-
tional requirements to a system design that meets these requirements. The task
is even harder if the requirements show defects and will subsequently change. Be-
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haviour Trees [Dro03] is a new notation that targets this challenge by promoting
a constructive and systematic way for going from a set of functional requirements
to a design that satisfies those requirements. Behaviour is expressed in terms of
components realising states, undergoing events and satisfying constraints which
determine control flow and data flow. Moreover components may have threads
of concurrent behaviour. These constituents are the set of key elements of the
Behaviour Tree Notation as shown in Figure [I}

tag component tag component tag component tag | component I
[state] ? condition ? < output > ?? event ??
a.) State Realisation c.) Decision e.) Data Output g.) Create Thread
tag | System-name tag component tag component tag | component --
[state] 7?7 event ?? > input < ?? event ??
b.) System State Realisation d.) Event f.) Data Input h.) Kill Thread

Fig. 1. Key Elements of the Behaviour Tree Notation

A box refers to a component and either its state (Figllla and b), its con-
dition on the control-flow (Figlllc), an event occurrence (Figllld and g) , or
input-/output-flow (Figlle and f). Using a special construct (Figlllh) we can
also model the termination of a thread. Behaviour of the system component is
distinguished through a double-framed box. The boxes are the nodes of the tree.
They also carry a tag which is a pointer to the part of the requirements that
is modelled by the (sub-)tree (usually a sentence). Additionally, tags can have
a ‘+’ indicating that this box models an assumption that was implicit in the
requirements text or a ‘-’ for indicating that this information is actually missing
in the informal requirements. This notational convention maximises traceability
from the model back to the original text. A ‘+4’ in the tag-frame is used for
changed requirements; this helps developers managing the bookkeeping for the
evolution of the system.

In contrast to other notations such as sequence diagrams [HD99], activity
charts [BR.I99], and Statecharts [Har87], one Behaviour Tree can capture the be-
haviour of a number of components. A tree comprises boxes referring to multiple
components and modelling the causal dependencies of their control flow. This
allows a direct mapping from a natural language description into a tree structure.
The Behaviour Tree model of the requirements is built
sentence by sentence. For instance, the description

when the door is open the light should go on is trans- [E;:;J
lated into the tree shown in Figure Pl The arrows that
link the boxes in a tree-like manner denote the control l

Light
[on]

flow and the causal dependencies between the compo-
nents. We distinguish the following different forms (as
depicted in Figure[3] note that the number of branches
is not restricted to two):

Fig. 2. Example tree
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C C C
tag tag tag
[s] [s] [s]
D D E D E
ta; ta, ta; ta, ta;
¢ [s] ¢ [s"] ¢ [s7] ¢ 7b7? ¢ 70’ ?
a.) Sequential Flow b.) Concurrent Flow c.) Selected Flow
C C
tag tag
[s] [s]
D E . Dl 4 E|
“e 7e?? e e 7 “e M7e7? “e 77¢ 7
d.) Selected Event e.) Threaded Control Flow

a)
b)

2

Fig. 3. Syntax of the Control Flow

Sequential Flow: Component C realises state s and sequentially passes control
to component D which then realises state s’.

Concurrent Flow: Component C realises state s and concurrently passes con-
trol to components D and E.

In some cases (e.g., see Figure ), the control flow of the tree proceeds only
after one of the boxes (e.g., only the box D[s’] has an outgoing edge). It
means the two components realise their states s’ and s’’ concurrently and
after that the system continues in a sequential manner.

Selected Flow: On receiving control from component C, component D passes
control to its successor if the boolean condition b is true; E passes on control
if b’ is true. (The notation does not enforce the conditions to exclude each
other or the cases to be complete. It is part of the later analysis of the model
to ensure these criteria.)

Selected Event: On receiving control from component C, component D passes
control to its successor if event e occurs, if event e’ occurs component E
passes on control. If both events occur simultaneously the flow of control
will be chosen non-deterministically.

Threaded Control Flow: On receiving control from component C, both events
e and e’ trigger independent threads; one event occurring before the other
does not extinguish the possibility of the other event occurring and start-
ing the other thread. This notation is introduced in order to distinguish
concurrent flow guided by events from the flow of selected events (as in Fig-
ure Bld)). A thread can also be killed by another thread (the notation is
shown in Figure @(h)).

Modelling the given requirements as Behaviour Trees happens in a stepwise

manner: each sentence (or set of sentences which address the same issue) is
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translated into an individual requirements behaviour tree (RBT). Each RBT
has associated with it a so called “precondition” that needs to be satisfied by
the system as a whole in order for the encapsulated behaviour to be applicable.
This precondition is the root of the tree. It is either explicit in the requirements
or implicit, in which case it has to be added when modelling the Behaviour
Tree. (Note that adding implicit preconditions is a creative task that involves
understanding of the problem and is not automatable.) We mark an added pre-
condition with a ‘4’ (in its tag-frame). At least one other RBT has to establish
this precondition and therefore provide a point of integration for the two trees.
(Excluded from this rule is the precondition that becomes the root of the design
tree as a whole.) As we integrate the RBTs, one at a time, we are constructing
a model of the system design from its set of requirements.

R6 Oven R6 Oven
+ [open] R3 Door + [open]
l [open] l
l R6 User
R6 User . ;
+ | ??doorClosed ?7? R3 Button + | ??doorClosed ??
l [disabled] l
R6 Door
Door
R [closed] > @ [closed]
l R3 Door N
. + [closed] Light Button
Light R6 g uf
ko [(l)%f] l [off] R3 [enabled]
l R3 Button J’
+ abled
Oven [enabled] R6 Qven
RO| fidie] lidle]

Fig. 4. Behaviour Trees of Requirements R6 and R3 and their integration

To demonstrate the approach we reproduce the example of the Microwave
Oven as published in [Dro03].

R1. There is a single control button available for the user of the oven. If the
oven is idle with the door closed and you push the button, the oven will
start cooking (that is, energise the power-tube for one minute).

R2. If the button is pushed while the oven is cooking it will cause the oven to
cook for an extra minute.

R3. Pushing the button when the door is open has no effect (because it is dis-
abled).

R4. Whenever the oven is cooking or the door is open the light in the oven will
be on.

R5. Opening the door stops the cooking.
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R6. Closing the door turns off the light. This is the normal idle state prior to
cooking when the user has placed food in the oven.

R7. If the oven times-out, the light and the power-tube are turned off and then
a beeper emits a sound to indicate that the cooking is finished.

In order to demonstrate one integration step we show the RBTs for require-
ments R6 and R3 in Figure @l Note the implicit preconditions in R6 (marked
with a ‘+’): the oven must be open and the user has to close the door. Re-
quirement R3 is also extended to model the behaviour of the button in case the
door is closed. Two of the trees share a point of integration and can be grafted
together. Note, that the point of integration, namely the box Door [closed], is
marked with a ‘Q’ in the tag.

R2 Oven

[cookStopped]

RS Oven

?2time out??

Oven
[extraMin]

Oven

Button
R7
[cookFinished]

b
— Light Powertube
R7| Oven”
- [idle]

a.) Projected Behaviour of the Oven Component b.) Architecture of interacting Components

[open]

Fig. 5. Different Views of the System Design

In a similar fashion all other individual RBTs are integrated into the tree.
The result is called Design Behaviour Tree (DBT) (see Figure [6). Leaf nodes
marked with a symbol indicate a loop back to an earlier node in the tree.
Note that requirement R8 was added to the tree after it was found missing in
the original requirements.

By applying a filter to the DBT, one can extract the different component
behaviours. We filter out all boxes that belong to a specific component. Figure[5h,
for example, shows the behaviour of the oven component. Missing from this
view, however, are the events that trigger the behaviour. The view is therefore
incomplete.

An architectural view can be gained by applying a simple algorithm to the
DBT, marking all components and interfaces between them (for more detail see
[Dro03]). Figure Bb shows an architectural view of the oven system.



154 K. Winter

R6| Oven
+ [Open]
v
R6 User
+ | ??DoorClosed??
R6 Door
@ [Closed]
v
Light Button
R6
[Off] R3 [Enabled]
[)
R6 Oven
@ [Idle]
RI User RS User
??PushButton??| | - ??DoorOpen??|
RI Button RS Door
[Pushed] - [Open]
R4 | Light R1| Powertube RS Button R8| Light
[On] [Energised] | |- | [Disabled] - | on]
Rl Oven R8| Oven”
[Cooking] - [Open]
Oven
R2 User R5 User R7 9 2
+ [??PushButton?? + ??DoorOpen?? ?%TmeOut??
7 7 %
R2 Button R5 Door R7 Light R7 | Powertube
[Pushed] @ [Open] [Off] [Off]
R Oven RS | Powertube R3 Button . Beeper
[ExtraMin] + | [off] [Disabled] [Sounded]
R2|  Oven” Rs| Oven R7 Oven
+ [Cooking] [CookStop] [CookFinish]
R5| Oven” R7| Oven”
- [Open] - [Idle]

Fig. 6. Design Behaviour of the Microwave Oven

3 Integration of Behaviour Trees with CSP

We now introduce an integration of Behaviour Trees with CSP. By doing so, we
provide the former notation with a formal semantics and the latter with a front-
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end notation that supports a novel approach for modelling functional require-
ments. As shown in the previous section, Behaviour Trees provide a systematic
and constructive way of capturing functional requirements in a system design
model. Individual functional requirements are modelled as single Behaviour Trees
in isolation and are later integrated into one Design Behaviour Tree. A similar
stepwise approach could not easily be followed when using the CSP notation to
model functional requirements. Points of integration for two individual require-
ments would be more difficult to determine. However given a Design Behaviour
Tree that integrates the set of requirements, it is easy to see how this can be
captured as interacting CSP processes. We first give a brief overview of the CSP
notation as it is used in our approach.

3.1 The Notation of CSP

CSP (Communicating Sequential Processes) [Hoa85[Ros98| is a process algebra
for modelling interacting components. Each component is specified through its
behaviour which is given as a process. A process defines a sequence (or a set of
sequences) of events that the process may undergo. This set of events is called
the alphabet of a process. We model

P=a—-Q

to define that process P undertakes event a and then behaves like process Q.
Channels are a medium for transferring data and are used in a similar fashion
as events. Output of data d on channel ¢ is modelled as c!d, data input is modelled
by ¢?d. Two processes synchronising on these two channel events perform a
handshake communication and exchange the value of data d.
The external choice operator O provides a means to capture alternatives:

P=a—-QOb—>R

specifies that P does an a and then behaves like ) or does b and then continues
like R depending on which event the environment of P is communicating, a or
b.

Processes can run in parallel, P || @, in which case they have to synchronise
on all events their alphabets have in common. It is possible to restrict the set of
synchronising events by using the alphabetised parallel,

P Al @

where A and B are subsets of the alphabet of P and @, respectively. In this case
the processes P and () synchronise on those events that the sets A and B have
in common, i.e., the synchronisation set is given as A N B.

STOP, SKIP and CHAOS() are special processes. STOP models the un-
successful termination of a process (like a deadlock), while SKIP represents
the successful termination. The process CH AOS(A) models arbitrary behaviour
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over the alphabet A. That is, the traces of this process are given as all possible
sequences over events in set A.

A process’s behaviour can also be guarded by a boolean expression over
process parameters.

P=b&Q

models that if b is true then P behaves like ). Otherwise, if b is not true then
P terminates unsuccessfully (i.e., equals STOP).
We also use the interrupt operator, A.

P=(a—Q)A(Mb— R)

models that the process a — @ is interrupted if the event b occurs in which case
P continues to behave like process R.

3.2 Translating a Behaviour Tree into CSP Processes

The semantics of a Behaviour Tree can be captured by interacting CSP processes.
We translate the fully integrated Design Behaviour Tree (DBT) as a whole rather
than the individual Requirements Behaviour Trees (RBTs). That is, we assume
that the completion of individual trees (i.e., adding implicit preconditions etc.)
and their integration into one single tree has already been done by the user.

Since Behaviour Tree Notation is not (yet) equipped with a formal semantics
our translation is described in an algorithmic fashion rather than being fully
formalised. Note that we are aiming at an automatable translation process.

In the following, we describe our translation procedure mostly in terms of the
given example of the Microwave Oven in order to illustrate the process. This,
however, does not limit the applicability of our approach to this example. In
cases where features of the notation are not contained in the oven example, we
introduce abstract examples for illustration.

Generally, each component in the DBT is modelled as a CSP component
with its behaviour defined as a process. These CSP components run in parallel
and have to synchronise on all events they have in common.

A component process is divided into sub-processes. Each sub-process reflects
a state change that the component exhibits between the appearance of two of
its boxes in the DBT. Usually, a state change is triggered by an event box that
appears between two boxes of the component. In order to determine the sub-
processes for each component, we have to traverse each branch in the tree.

The name of sub-process and events are derived from the component name,
the state name and the event name respectively, as they are given in the Be-
haviour Tree. We follow the CSP convention that process names are capitalised
whereas event names are not.

Given the Design Behaviour Tree of the Microwave Oven in Figure [6] for
example, we traverse the tree to define a sub-process for each state realisation
box, e.g., for the box Oven [Open] we define OvenOpen as a sub-process of com-
ponent Qven, for the box Door [Closed] we define DoorClosed as a sub-process
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of component Door. In addition, we define an initial sub-process for each com-
ponent other than the system component. This sub-process starts at the root
node.

We might start to naturally translate the DBT into the following sub-process
for the Oven component:

OvenOpen = user DoorClosed — Ovenldle
The initial sub-processes for the components Door and Light are

DoorInit = user DoorClosed — DoorClosed
LightInit = user DoorClosed — LightOff

The CSP components of the system, like Oven, Light and Door, are
running in parallel and have to synchronise on the events in common, e.g.,
user DoorClosed. This synchronisation on events that occur in the DBT, how-
ever, does not guarantee that the components get control in the right order. The
three sub-processes above, when running in parallel, will change concurrently
the state of all components, the Oven, the Light and the Door. Even if in this
case study this might be acceptable, in general it is not.

To overcome this problem, we augment the edges in the tree with additional
events e; as shown in Figure @ Branching edges that model concurrent state
realisation share the same event (e.g., two edges are labelled by event e3). A
single outgoing edge from two concurrent state realisations is duplicated so that
each box has an outgoing edge. Both edges carry the same label (e.g., two edges
are labelled with e4). In case of a selected flow, selected event, and threaded
control flow, each edge is labelled individually (e.g., edges labelled by events
e1s, e17, and egz). These additional events ensure that the state changes of the
components, when running in parallel, happen in the same order as indicated in
the DBT. Whenever a component gives control to the component in the next
box this is marked through an event, namely the event that labels the outgoing
edge. Similarly, whenever a component gets control this is marked by the event
that labels its ingoing edge.

Each sub-process now describes the control flow in the tree up to the next
box of the same component in terms of the events along the edges and the DBT
events. We define our three sub-processes from above as follows:

DoorOpen = e; — userDoorClosed — es — DoorClosed
LightOn = e; — userDoorClosed — es — e3 — LightOff
OvenOpen = e; — user DoorClosed — e; — ez — eq4 — Ovenldle

All three sub-processes synchronise on the events {e;, user DoorClosed, es}, and
LightOn and OvenOpen will also synchronise on event es.

Generally, the processes have to interact on all events their individual al-
phabets have in common. Process internal events (that do not contribute to the
synchronisation between processes) are only those events that are not used by
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any other process. In an augmented Behaviour Tree these internal events la-
bel edges between two boxes that belong to the same component (e.g., es; in

Figure [9).

To simplify the CSP processes, we aim to minimise the number of events
involved in the processes. We observe that each sub-process has to synchronise
only on those events that determine when control is passed from itself onto
another component and when control is passed back to itself and a state change
will occur. Additionally, we want to keep track of the DBT events. In principle,
each sub-process needs to synchronise on three events:

1. the event labelling the outgoing edge of the box that corresponds to the sub-
process;
example: OvenOpen has to synchronise on e;

2. the DBT event that triggers the state change;
example: OvenOpen has to synchronise on user DoorOpen

3. the event labelling the ingoing edge of the next box of the component mark-
ing the follow-on sub-process;
example: OvenOpen has to synchronise on ey.

Moreover, DBT events can be identified with the events that label their
ingoing and outgoing edges. Since the event boxes are not translated into sub-
processes, we only need one event here instead of three. For instance, the se-
quence e; — userDoorClosed — e simplifies to user DoorClosed. However, we
have to distinguish between multiple occurrences of the same event in the tree.
Therefore, we number the DBT events if necessary (e.g., user DoorOpen; and
user DoorOpens as indicated in Figure [d).

According to these simplifications, the sub-processes reduce to

DoorOpen = user DoorClosed — DoorClosed
LightOn = userDoorClosed — e3 — LightOff
OvenOpen = user DoorClosed — e4 — Ovenldle.

It becomes more apparent how the synchronisation works if we consider the
follow-on sub-processes for the Door and the Light component:

DoorClosed = es — user DoorOpen — . ..
LightOff =e4 — ...

By synchronising on event ez, we ensure that LightOff can only be reached once
DoorClosed has started. Similarly, the synchronisation on e guarantees that
Ovenldle can only happen after LightOff has started. This corresponds to the
sequence of boxes in the tree.

Data flow boxes for input and output as shown in Figure[dl(e) and [I(f) are
modelled with CSP channels. We introduce a channel ¢; for each pair of data
flow boxes, assuming that these always follow each other in the Behaviour Tree.
The two components that are involved in the data exchange synchronise in a
handshake fashion on the CSP events ¢;!data and ¢;?data.
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3.3 Translating Modes of Control Flow

The procedure described above captures our translation into CSP for sequential
flow of control. It also subsumes modelling ‘concurrent flow’ (as depicted in
Figure B(b)). Concurrent flow in a Behaviour Tree denotes a state change of two
components happening at the same time. We capture this kind of concurrency
in our CSP model by running all corresponding CSP components in parallel.

Other modes of the control flow of Behaviour Trees are selected event, se-
lected flow and threads (see Figure Blc), (d) and (e)). A selected event branch
is modelled by means of the external choice operator: depending on the event
provided by the environment one branch of the sub-process will be chosen. For
example, given the DBT in Figure [ the sub-process OvenCooking is modelled
as follows:

OvenCooking = user PushButton — e15 — OvenFExtraMin
O user DoorOpen — exg — OvenCookStopped
O ovenTimeQOut — eg5 — OvenCook Finished

Selected flow in a Behaviour Tree can be modelled utilising a combination
of guarded event and external choice operator. Usually conditions are not pub-
lic to all components since their truth value depends on the attributes (i.e.,
parameters) of a particular component and has to be decided locally. In the
tree depicted in Figure [[l the control branches depend on condition Cond1 or
Cond?2 being satisfied in component A. (The ... in the tree indicate that more
boxes might stand between the boxes of component A and are omitted here.)
We translate this scenario into the following CSP sub-process for component A:

Alnit = e; — (aCond; & (ea — bEvent; — e3 — Astatel)
O aCondy & (e4 — cEventy — e5 — Astate2))

The choice between the two branches is guarded: if aCond; is true the process
AlInit behaves like bEvent; — eo — Astatel. Otherwise, if aCond; is not true
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Fig. 9. Augmented Design Behaviour Tree of the Microwave Oven

this branch does not terminate successfully, it behaves like STOP. The second
branch describes similar behaviour depending on the truth of aConds. If one of
the choices cannot terminate successfully because the guard is not satisfied the
choice operator will choose the other branch of the choice. Other components of
the system are usually not able to decide on the truth of conditions that depend
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on the state of one component. However, due to our synchronisation mechanism
they are forced to follow the selected flow in correspondence to the component
that is responsible for the selection, which is component A in the given case.

Concurrent control flow and threads are captured similarly by the CSP par-
allel operator combining the branches of the sub-tree in the sub-processes. To
kill a thread we utilise the interrupt operator. We give an abstract example
in Figure [§l The component A starts with its initial state Init. After that the
behaviour branches into two threads triggered by the two events Thread! and
Thread2. The occurrence of each of these events starts a new individual process,
a thread. In this example, the thread in the left branch kills the thread in the
right branch as depicted by the A--7??Thread27? box.

We model this Behaviour Tree in CSP by the following process:

Alnit = aThreadl — kill AThread2 — e3 — AStatel
I (aThread2 — e5s — AState2)A(killAThread2 — STOP)

This process has two sub-processes that run in parallel. The first one is triggered
by event aThreadl, the second one by aThread2. We introduce a kill-event
for the corresponding box, namely kill AT hread2. This kill-event activates the
interrupt that is modelled in the second sub-process. As soon as it occurs the
sub-process (aThread2 — e; — AState2) will be interrupted and terminates
due to the process STOP. Note that the additional labels e, es, and e4 in our
abstract example above are not used in the CSP model since they are merged
with the given DBT events.

4 Example

In this section, we give the full view of the CSP model of the Microwave Oven.
For the translation we took the Design Behaviour Tree (DBT) augmented with
additional events as shown in Figure @ The modelling follows the description
given in Section [3

The translation of the DBT results in the following CSP model. Traversing
the tree we get a set of sub-processes for the components involved.

The Owen component comprises six sub-processes as the Behaviour Tree
shows six state realisation boxes for this component.

OvenOpen = user DoorClosed — ey — Ovenldle

Ovenldle = user PushButton; — eg — OvenCooking
O user DoorOpeny — e15 — OvenOpen
OvenCooking = user PushButtons — e15 — OvenFExtraMin
O user DoorOpeng — egg — OvenCookStop
O ovenTimeOut — ea5 — OvenCookFinish
OvenExtraMin = e;g — OvenCooking

OvenCookStop = ea; — OvenOpen
OvenCookFinish = eag — Ovenldle
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At the leaves of the tree the branches loop back to the boxes Oven [Cooking],
Oven[Open] and Oven[Idlel, respectively. Accordingly, the sub-processes
OvenExtraMin, OvenCookStopped and OvenCookFinished loop back to the ear-
lier sub-processes. Note that we distinguish the two occurrences of events user-
DoorOpen and userPushButton through indexes. Similarly, we get the following
sub-processes for the components Door and Light.

DoorInit = user DoorClosed — DoorClosed

DoorClosed = e3 — (user DoorOpeny — DoorOpen

O user DoorOpeng — DoorOpen)
DoorOpen = ejg — user DoorClosed — DoorClosed
O e11 — userDoorClosed — DoorClosed

LightInit = user DoorClosed — es — LightOff

LightOff = eq4 — (user PushButton, — e; — LightOn

O user DoorOpeny — e11 — LightOn)
e2q4 — (user PushButton) — ey — LightOn

O user DoorOpeny — e11 — LightOn)

LightOn = eg — (ovenTimeOut — LightOff
O LightInit)

O e1o — userDoorClosed — e3 — LightOff

When translating the Design Behaviour Tree into sub-processes of the CSP
components, we have to follow each branch of the tree for each component. For
instance, although the Light component is not involved in the branches following
label event e;3 and e;7 we have to cater for these as a possible behaviour of the
overall system with which the Light component has to synchronise. This results
in an additional choice for the LightOn process, namely es — LightInit. The
behaviour of component Button is defined through the following sub-processes.

ButtonInit = userDoorClosed — e3 — ButtonEnabled
ButtonEnabled = e4 — (user DoorOpen; — e11 — ButtonDisabled
O user PushButton, — ButtonPushed)

ButtonDisabled = e12 — ButtonInit
O eoq — ButtonInit

ButtonPushed = ey — (user PushButtons — ButtonPushed
O userDoorOpeng — e19 — ButtonDisabled
O (userDoorOpeny — e1; — ButtonDisabled
O user PushButton, — ButtonPushed))
O e15 — (user PushButtony, — ButtonPushed
O userDoorOpeng — e19 — ButtonDisabled)
O (userDoorOpeny — e11 — ButtonDisabled
O user PushButton; — ButtonPushed))

Similarly to the sub-process LightOn above, the process ButtonPushed has
additional choices after synchronising on events e; and e;5. In both cases, the
overall system will reach the selected event branches and may choose to synchro-
nise on event egs next. The button component is not apparent in this branch.
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However, it has to synchronise on the events that follow the loop-back point
Oven[Idle]. This results in the additional choices (userDoorOpen; — e1; —
ButtonDisabled O user PushButton; — ButtonPushed) after events e; and
€15.

The sub-processes of components Powertube and Beeper are not affected by
branches of the tree to which they do not contribute. Consider, for example, com-
ponent Powertube: one of these branches is starting with event eg and loops back
to the root state Oven[Open]. At this point the Powertube is still in sub-process
Powertubelnit and waits for the first userPushButton event. The traversing of
this branch does not lead to an additional choice in sub-process Powertubelnit.
A similar observation can be made for each branch the components do not con-
tribute.

The translation for components Powertube and Beeper therefore results in
fairly simple sub-processes as shown below.

Powertubelnit = user PushButton; — ey — Powertube Energised
Powertube Energised = es — (user DoorOpeng — e19 — Powertube Off
O ovenTimeOut — PowertubeOff)

PowertubeOff = eag — Powertubelnit
O exq — Powertubelnit

BeeperlInit = ovenTimeOut — eay — BeeperSounded
BeeperSounded = ess — BeeperInit

The components are defined as being equal to the initial sub-processes, i.e.,
those starting at the root node of the DBT.

Oven = OvenOpen
Door = DoorlInit
Light = LightInit
Button = ButtonInit
Powertube = Powertubelnit
Beeper = BeeperlInit

In order to define the parallel composition of the components, we define
the alphabets of each of them. According to the reduced number of events, the
alphabets are reduced to a subset of the overall event alphabet as apparent in
the augmented tree . The single alphabets are listed as follows:

alphabet of Oven: a = {eq, es, €12, €15, €16, €20, €21, €25, €26, user DoorClosed,
user DoorOpeni, user DoorOpens, user Push Button,
user DoorOpena, ovenTimeOQut}
— alphabet of Door: (3 = {es,ei1, e19, user DoorClosed, user DoorOpeny,
user DoorOpena }
alphabet of Light: v = {es, e4, e7, €5, €11, €12, €24, user DoorOpeny,
user DoorClosed, user Push Buttoni, ovenTimeOut}
— alphabet of Button: ¢ = {es, ea, €11, €12, €15, €19, €20, user DoorOpen ,
user DoorOpeng, user DoorClosed, user Push Button1,
user PushButtons }
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— alphabet of Powertube: & = {es, ez, €19, €20, €24, user DoorOpens,
user PushButtoni, ovenTimeOut}
— alphabet of Beeper: ( = {eau, €25, ovenTimeOut}

The alphabet of the overall system is the union of the alphabets of all compo-
nents, i.e.,
Y =aUBU~yUJ§dUEeUC(
= {63,64767,68,611,612,615,616,619,620,621,624,6257626
user DoorClosed, user DoorOpeny , user DoorOpens,
user PushButton, , user PushButtong, ovenTimeOut}

The system is now defined as the parallel composition of all components
where each component synchronises over its own alphabet:

System =
Oven 4|5, (Door gl s, (Light 4|5, (Button s||s, (Powertube .|| Beeper))))

where

Y =BU~rUdUeUC
Sy =yUdUeU(
Yyg=0UeU(

24 =cU C

The simplification through the reduced number of events that the compo-
nents need to communicate reduces the size of the model substantially and thus
helps to improve the efficiency of the analysis step.

Unlike the projected behaviour from the DBT (as shown, for example, in
Figure[Gh), the view of a single component in the CSP model is complete in terms
of the DBT events that trigger the behaviour of the component. This component
model may guide the further development of the system components.

5 Analysis of the CSP Model

For analysing the model we use the model checker FDR (Failure Divergence Re-
finement) [For96]. FDR supports checking deadlock, livelock and determinism of
single CSP processes and allows checking the refinement relations (trace, failure,
and failure divergence) between two CSP processes.

For example, we utilise FDR to check if our model, which is constructed from
functional requirements, satisfies safety properties of the system. Safety prop-
erties are not necessarily stated as requirements in the requirements document
so that it seems useful to check if they are satisfied by the model of the given
requirements. Incompleteness and inconsistencies of the functional requirements
will show through a violation of the safety properties.

One safety property for the Microwave Oven that we might want to check is:

The power-tube should not be energised when the door is open.
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We model this property as a CSP process using the events for opening and
closing the door and for pushing the button as they were used in the system.
We define the set

¥ = {user DoorOpeny , user DoorOpeng, user DoorClosed,
user PushButton, , user PushButtons }.

The last two events are responsible for starting the power-tube. The user may
push the button arbitrarily often but as soon as the door is opened, it has to
be closed again before the two userPushButton events are available again. This
can be modelled by the processes @) and P below. The process Safety is then
defined as behaving like P on the events in 9. The behaviour on all other events
(defined through set Others) is unrestricted (modelled as Chaos(Others)).

Others = diff (X, 9)

Q = user PushButton; — Q
O user PushButtons, — @
O userDoorOpeny — P
O user DoorOpeng — P

P = userDoorClosed — Q)
Safety = P ||| CHAOS(Others)

We checked trace refinement between the process Safety and the system and
no violation was found. Due to the fact that the given example is very small the
model checking process terminated after very short time.

Several deadlock checks on single CSP components and on the system as a
whole were executed in order to debug our (so far hand-translated) CSP model.
Here we found it very useful to read the counter-examples that are output by
the FDR tool with the help of the given Design Behaviour Tree. The sequence of
events in the counter-example showed which branch in the tree the control flow
had taken. Generally, the given Design Behaviour Tree can be utilised to visualise
the counter-examples in cases where a deadlock occurs or a safety property is
violated.

6 Conclusion

We described the integration of Behaviour Trees and CSP. Behaviour Trees is
a graphical notation for requirements engineering. The user models each indi-
vidual functional requirement in isolation. The resulting individual requirements
trees are later on integrated into a single tree. A Behaviour Tree takes a view
on all components involved in the systems behaviour. This allows the user to
translate textual requirements quite easily into this notation. We model this
multi-component behaviour by means of communicating CSP processes. Each
process is captured in terms of sub-processes which model the state changes of
that component. In order to model the sequence of state changes of different
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components, we augment the edges of the tree with additional events. The CSP
components synchronise on these events as well as on the events that are given
in the tree. We intend to exploit the model checker FDR for the analysis of the
requirements model. To optimise the model we minimised the events that are in-
volved in the synchronisation: each component refers only to the events labelling
the edge outgoing from a state and and the edge in-going to the follow-on state
as well as the event in the tree which triggers the state change. This optimisation
reduced the size of the CSP model significantly.

We used the model checker FDR for the analysis of the requirements model.
We additionally modelled safety properties of the given system as a CSP process
and checked if the requirements model satisfies those by utilising the refinement
relation between the two models.

Our approach provides a formal semantics for parts of the notation of Be-
haviour Trees, and with this tool support for analysis. It also supports the user
with a graphical representation for a subset of the CSP language for ease of
communication with customers. This becomes apparent when the Behaviour
Tree can be utilised for visualising the output of the FDR tool: the sequence
of events in a counter-example shows the branch in the tree that represents the
particular trace. Moreover, the Behaviour Tree approach provides the CSP user
with support for requirements engineering.

The work in this paper handles only a sub-set of the Behaviour Tree Notation.
Future work will deal with unresolved issues of remaining language constructs.
These involve specifically the notation for data structures provided by the Be-
haviour Tree Notation.
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