
US005961641A

Ulllted States Patent [19] [11] Patent Number: 5,961,641
Hasegawa et al. [45] Date of Patent: Oct. 5, 1999

[54] DATA PROCESSOR AND DATA PROCESSING 5,444,861 8/1995 Adamec et a1. 395/700
SYSTEM 5,675,800 10/1997 Fisher, Jr. et a1. 395/700

5,680,620 10/1997 Ross 395/704

[75] Inventors: Hironobu Hasegawa, Kodaira;
Hiroyuki Sasaki, Fucyu; Masahiko OTHER PUBLICATIONS

Uraguchia Higashimurayama> an of DSP 96002 User’s Manual, Section 10, On—Chip Emulator,
Japan pp. 10_1_10_22.

[73] Assignee: Hitachi, Ltd., Tokyo, Japan Primary ExaminerAiassan KiZou
Assistant Examiner—Omar A. Omar

[21] Appl. No.: 08/864,970 Attorney, Agent, or Firm—Fay, Sharpe, Beall, Fagan,
_ Minnich & McKee

[22] Filed: May 29, 1997
_ _ _ _ _ [57] ABSTRACT

[30] Foreign Application Priority Data
A data processor has a ROM that holds a boot program for

May 31, 1996 [JP] Japan 8-138111 Causing the CPU to transfer a debug program from a Serial

[51] Int. Cl.6 G06F 15/177 interface circuit to a debug-use RAM area. When supplied
[52] US, Cl, __ 713/1; 709/208 externally With an SDI boot command, the serial interface

[58] Field of Search 395/700, 704; Circuit Outputs an SDI interrupt request Signal (SDIibOOt) to
364/200; 713/1; 709/208; 710/15; 714/34 an interrupt controller. The signal causes the CPU to execute

the boot program. Debug operations are varied as per the
[56] References Cited contents of the doWnloaded debug program, and data

exchanges upon debugging are carried out serially.
U.S. PATENT DOCUMENTS

4,451,882 5/1984 Dshkhunian et a1. 364/200 21 Claims, 15 Drawing Sheets

_____________ " 1

MI CROCOMPUTER
4 16A, 16D 14

3
‘5 BREAK

/TRST ——> CONTROLLER

l l
TCK —’ sm INTERNAL

MEMORY
DEBUGGING SERIAL TMS _*
TOOL CONTROLLER l2

TDI ——> SDl_boot
SD|_i nt INTERRUPT

TD() 4- SDl_brk CONTROLLER

13 TO

CPU

EXTERNAL BUS
MEMORY CONTROLLER l7

SYSTEM
F CONTROLLER I

\A 19/ 2 I ,1

5 TARGET SYSTEM ASEMDO /RST

U.S. Patent 0a. 5, 1999 Sheet 3 0f 15 5,961,641

F/G. 3
K m

T82 T81 T80 —* —*

* : RESERVED BIT

T82 T81 T50 COMMAND

I 0 O BOOT COMMAND

I 0 I SDI INTERRUPT COMMAND

I I 0 SDI BREAK COMMAND

F/G. 4
ASEMDO COMMENT

O ASE MODE (EVALUATION CHI P MODE)

I MAIN UNIT CHIP MODE (PRODUCT CH I P MODE)

U.S. Patent 0a. 5, 1999 Sheet 4 0f 15 5,961,641

o.
c _ 5-52% _ 2% E0 _ 3.5

6. Emma:
Q 25 _E _

5-556 _

2% o

‘7

o _ ED _ #95

o . Ema;
o

mmhw

N5

U.S. Patent 0a. 5, 1999 Sheet 5 0f 15 5,961,641

FIG. 5
H' 0000000

USER MEMORY AREA
(User_MEM)

H’ 1000000

EXTERNAL MEMORY SPACE

HI 4000000

W///////////// / RESERVED SPAy
HI 9000000 W %

’ @EééQE?ééXéK/ H' M00000 ?zxxzxxy”
RESERVED SPACE

HI B000000
ERVED CE

PERIPHERAL
MODULE SPACE

////////////
RESERVED SPACE

HI E000000 y

H' F000000

/ RESERVED CE
///////// //

PRODUCT MODE

U.S. Patent 0a. 5, 1999 Sheet 6 0f 15 5,961,641

P76. 7
H 0000000 M] I 0

USER MEMORY AREA
(User_MEM)

H' 1000000

EXTERNAL MEMORY SPACE

H' 4000000

/ RESERVED SPACE
HI 9000000

RESERVED SPACE
H, M00000 //////////// % V ////////// 7

RESERVED SPACE /
HI 3000000

RESERVED SPACE

PERIPHERAL
MODULE SPACE

H’ [5000090 7 ////////////7 // RESERVED SPACE / /////// //

H ' F 0 0 0 0 0 0 7 //////§§§5§§7/ RESERVED SPACE % // ////////////

EVALUATION MODE (USER MODE)

U.S. Patent 0a. 5, 1999 Sheet 7 0f 15 5,961,641

F/G. 8
H 0000000 V1 } 0

USER MEMORY AREA
(User_MEM)

HI 1000000

EXTERNAL MEMORY SPACE

H' 4000000 ZM
H’ 9000000‘

% RESERVED SPACE
H- M00000 /////////////

ATOR SPACE
E TERNAL)

H' 5000000 7 ////////////y RESERVED SPACE % % H’COOOOOO ///////Z///// /

PERI PHERAL
MODULE SPACE

H’ EOOOOOU 7 ////////////V / RESERVED SPACE % /// HI ///////////// /

EMULATOR CE
(INTERNA

EVALUATION MODE (BREAK MODE)

5,961,641

xv] 1 1

FIG. 9

RRBRAG %///%//%

//B % f
w] 1 2

W1 HA

~1 12A

BO ROGRAM AREA
(B Program)

R0 SAVE AREA

SOFTWARE BREAK VECTOR AREA ~1 1 '0

SDI BOOT VECTOR AREA

H' FFFF8OO

U.S. Patent

HI FFFFCOO

H'FFFFFCO

H'FFFFFFO

H‘ FFFFFF4 HARDWARE BREAK VECTOR AREA ~1 '15

H'FFFFFF8

H'FFFFFFC

INTERNAL EMULATOR SPACE IN BREAK MODE

U.S. Patent Sheet 9 0f 15 0a. 5, 1999

FIG. 70
BOOT FLOW

BRING /RST AND /TRST LOW

I
S2

ENTER RESET HOLD STATE (BREAK MODE)

I
S3

DRIVE /RST HIGH AND THEN /TRST
HIGH TO KEEP RESET HOLD STATE

I
S4

INPUT BOOT COMMAND VIA TDI

I
S5

GET BOOT COMMAND DECODED INSIDE
SDI TO OUTPUT SDI_boo'I: SIGNAL
TO INTERRUPT CONTROLLER

I
S6

LEAVE RESET HOLD STATE USING
SDI_boot SIGNAL BEFORE
EXECUTING BOOT PROGRAM

I
87

DOWNLOAD DATA FROM TDI TO ASERAM

I
S8

BRANCH TO STARTING ADDRESS OF ASERAM
AFTER DOWNLOADING TO ASERAM

I
S9

EXECUTE PROGRAM IN ASERAM

5,961,641

U.S. Patent 0a. 5, 1999 Sheet 10 0f 15 5,961,641

F/G. 77
t1 t2 t3 t4 t5

BREAK MODE
EXECUTE BOOT EXECUTE DEBUGGING
PROGRAM _ PROGRAM IN AsERAM

_\ T / RST . _J

/TRST \ /
BOOT TRANSFERRED
COMMAND DATA

SERIAL DATA ________ -_

INPUT (TDI)

SD|_boot SIGNAL A

RESET HOLD

(HAHN) -_/ \

CPU OPERATION I
STATUS L (A) (B)

(A) EXECUTION OF THE BOOT PROGRAM
1. DATA AND PROGRAMS ARE DOWNLOADED TO THE AsERAM BY

EXECUTION OF THE BOOT PROGRAM (IN BREAK MODE)
2. AFTER DOWNLOADING, PROCESSING BRANCHES TO THE ASERAM

(B) THE DEBUGGING PROGRAM IS EXECUTED IN THE AsERAM

U.S. Patent 0a. 5, 1999 Sheet 11 0f 15 5,961,641

FIG. 72
SDI BREAK FLOW

BRING /TRST LOW (TO INITIALIZE SDI) /(
EITHER IN USER MODE OR IN BREAK MODE
(SDI BREAK IS NOT ACCEPTED IN
PRODUCT CH I P MODE)

SI 0

I SI I

DRIVE /TRST HIGH F

I SI 2

INPUT SDI BREAK COMMAND VIA TDI F

I SI 3
GET BREAK COMMAND DECODED INSI DE
SDI TO OUTPUT SDI_brk SIGNAL
TO INTERRUPT CONTROLLER

I
ACCEPT BREAK BASED ON SDI_brk SIGNAL 5
BEFORE BRANCHING TO ASERAM

I
EXECUTE PROGRAM IN ASERAM 5
(FOR EMULATION)

SI 4

SI 5

U.S. Patent 0a. 5, 1999 Sheet 12 0f 15 5,961,641

FIG. 73

USER MODE
(BREAK MODE) _ BREAK MODE

/RST

/TRST —\ I

BREAK TRANSFERRED
COMMAND DATA

SERIAL DATA ___________ __

INPUT (TDI) :I'D

SDI_brk SIGNAL

RESET HOLD ----------- -- \ _.

(INTERNAL) SIGNAL

CPU OPERATION
STATUS (A) (B)

(A) NORMAL OPERATION TE
(B) GRAM EXECUTIO THE ASERAM
T. ARDWARE BREAK VECTOR IS READ
2. ESSING BRANCHES TO THE ASERAM
3. DEBUGGING PROGRAM IS EXECUTED IN THE ASERAM

U.S. Patent 0a. 5, 1999 Sheet 13 0f 15 5,961,641

F/G. 74
SDI INTERRUPT FLOW

S20
BRING /TRST LOW (TO INITIALIZE SDI) ;
EITHER IN MAIN UNIT CH I P MODE OR IN
USER MODE (SDI INTERRUPT IS NOT
ACCEPTED IN BREAK MODE)

I S21
DRIVE /TRST HIGH F

I 5822
INPUT SDI INTERRUPT COMMAND VIA TDI

S23
GET SDI INTERRUPT COMMAND DECODED 5
INSI DE SDI TO OUTPUT SDI_i nt
SIGNAL TO INTERRUPT CONTROLLER

I
ACCEPT INTERRUPT BASED ON SDI_i nt /(
SIGNAL BEFORE BRANCHING TO SDI
INTERRUPT ROUTINE

I 7 S25
EXECUTE USER PROGRAM
(SDI INTERRUPT ROUTINE)

S24

U.S. Patent 0a. 5, 1999 Sheet 14 0f 15 5,961,641

FIG. 75
t1 t2 123

(MAIN UNIT CH I P MODE) USER MODE
V A

/RST

/TRST -\ I

SERIAL DATA _____________ _

INPUT (TDI)

SDI_Int SIGNAL A

RESET HOLD --- -

(INTER SIGNA

CPU OPERATION STATUS (A) l (B)

NORMAL OPERATION STATE
SDI INTERRUPTION
AN SDI INTERRUPT VECTOR IS READ
THE SDI INTERRUPT VECTOR ROUTINE IS EXECUTED

(A)
(B)
I.
2.

U.S. Patent 0a. 5, 1999 Sheet 15 0f 15 5,961,641

S GE

.62. wzawzmmo

5,961,641
1

DATA PROCESSOR AND DATA PROCESSING
SYSTEM

BACKGROUND OF THE INVENTION

The present invention relates to data processors including
microcomputers, digital signal processors, microcontrollers
and microprocessors especially With debug support features
such as emulation. More particularly, the invention relates to
a data processor for debugging a microcomputer-based
system in a real-use operation environment such as out
doors.

The microcomputer-based system (also called the target
system) may be debugged by means of a microcomputer for
evaluation use With debug support features. In interfacing
the evaluation-use microcomputer to a debugging host
system, a large number of signal lines may be used to
transmit in parallel data, addresses and control signals
equivalent to those of the interface betWeen the microcom
puter in question and the target system. HoWever, Where the
target system is appreciably small in volume as in the case
of a portable communication terminal, it is often impossible
practically to equip the circuit board of the system With pins
or connectors for connecting numerous signal lines.

One proposed solution to such a bottleneck is the use of
a serial interface With the debugging host system. Technical
aspects of the solution are discussed illustratively in “DSP
96002 User’s Manual” (SECTION 10, ON-CHIP EMULA
TOR; p10—1~p10—22).

The technique described in the publication above involves
incorporating in a digital signal processor a command
decoder and a break point control circuit for debugging
purposes as Well as a serial interface for debug use Which
alloWs data to be input and output serially in synchronism
With a clock signal. Debug commands are fed externally to
the processor through the serial interface. The command
decoder decodes the commands thus supplied. The decoded
result is referenced in controlling Write and read operations
to and from internal registers as Well as in controlling break
points.

SUMMARY OF THE INVENTION

With the conventional technique outlined above, the
debug command functions are predetermined ?xedly and are
thus limitative of the degree of ?exibility With Which to set
simulated internal states for a data processor or to reference
internal states of the data processor for debugging purposes.
Given the fact that data processors such as digital signal
processors are adapted extensively to various data process
ing systems, the debug support features thus restricted are
not quite convenient to use. In other Words, debug opera
tions lack variability.

Adopting the above-mentioned serial interface reduces
the number of connectors for connection With the debugging
host system. HoWever, to minimiZe the number of signals
requires reevaluating the control techniques of handshaking
for asynchronous serial data input and output betWeen the
data processor in question and its external environment.

It is therefore an object of the present invention to provide
a data processor capable of minimiZing the number of signal
terminals for debugging.

It is another object of the invention to provide a data
processor alloWing debug operations to be varied easily.

It is a further object of the invention to provide a data
processor that permits debugging in an environment close to
the real-use condition in Which a target machine (i.e.,

15

25

35

65

2
product system) Will be operating, and to provide a data
processing system that utiliZes such a data processor.

These and other objects, features and advantages of the
invention Will become more apparent upon a reading of the
folloWing description and appended draWings.

In carrying out the invention and according to one aspect
thereof, there is provided as outlined in FIG. 1 a data
processor 1 formed on a semiconductor chip and comprising
a central processing unit 10, storage means 11 accessible by
the central processing unit 10, an interrupt controller 12 for
controlling interrupts to the central processing unit 10, serial
interface means 15 for outputting and inputting data serially
to and from the outside of the data processor 1, and an
internal bus 16 for connecting these component means and
units The storage means 11 includes a reWritable ?rst storage
area 111 and a second storage area 112 holding a boot
program for causing the central processing unit 10 to trans
fer data from the serial interface means 15 to the ?rst storage
area 111. The serial interface means 15 receives and decodes
a ?rst command (SDI boot command) from the outside, and
outputs a ?rst interrupt request signal (SDIiboot) to the
interrupt controller 12 in accordance With the decoded ?rst
command. The interrupt controller 12 supplies the central
processing unit 10 With ?rst interrupt control data for
executing the boot program in response to the ?rst interrupt
request signal.
When a system to Which the data processor is applied (i.e.,

target system) is subjected to softWare or system debugging,
a user program to be debugged is executed by the data
processor. The data acquired from execution of the program
is referenced externally When the user program is traced for
debugging through its execution. Where any data arising
from user program execution needs to be referenced from
the outside or Where desired operating conditions are to be
set for the user program, it is necessary for the data processor
to execute a debug control program different from the user
program. The boot program mentioned above is a program
that causes the central processing unit to doWnload such a
debug control program to an area different from a user
program storage area. An appropriate debug control program
may be prepared beforehand as needed depending on the
constitution of the system to be debugged. In operation, the
host system issues the ?rst command mentioned above to the
serial interface means. This causes the data processor to start
the boot program, doWnloading the debug control program
from the serial interface means to the ?rst storage area. That
is, When data coming out of the process of user program
execution is to be referenced externally or When desired
operating conditions are to be set for the user program, all
operations involved are performed under control of the
doWnloaded debug control program. Because all debug
operations are carried out as per the suitably prepared debug
control program, the variability of debug operations is
guaranteed. Debug operations by the data processor are in no
Way limited because of the types of commands that may be
accepted by the serial interface means.
The serial interface means for interfacing With the host

system reduces the number of interface terminals for debug
ging purposes. Under such constraints, both the variability
of debug operations and the ease of use are still ensured by
the inventive data processor.

Where the target system is a portable communication
terminal or a similar device to be carried around, it may be
desired to subject the target system to system or softWare
debugging in an outdoor setup approximating the actual use
environment. Such debugging conditions are readily met by

5,961,641
3

the data processor With its reduced number of interfacing
terminals for debug use together With its enhanced debug
operation versatility and ease of use.

In one preferred structure according to the invention, the
second storage area may include a region 112A accommo
dating a ?rst vector used by the central processing unit to
acquire a starting instruction address of the boot program
upon receipt of the ?rst interrupt control data.

In another preferred structure according to the invention,
the boot program may include, at the end thereof, an
instruction for causing instruction execution of the central
processing unit to branch to a predetermined address of the
debug control program transferred to the ?rst storage area.
This feature makes it possible automatically to activate the
doWnloaded debug control program, thereby starting initial
control operations immediately.

Illustratively, Where one such initial control operation is
the doWnloading of a user program to be debugged, the
storage means may have a reWritable third storage area 110,
and the debug control program may include a transfer
control program for transferring data from the serial inter
face means to the third storage area.

In the above setup, the user program is placed in a
memory area inside the data processor. This alloWs the user
program to be run at the actual operating speed for debug
ging purposes. While the user program is being executed, it
may be desired for the host system to sWitch processing of
the central processing unit to the debug control program as
needed (i.e., break operation) through the serial interface
means. In that case, the serial interface means may output a
second interrupt request signal (SDIibrk) to the interrupt
controller in accordance With a second command (SDI break
command) supplied externally; in response to the second
interrupt request signal, the interrupt controller may supply
the central processing unit With second interrupt control data
for causing the central processing unit to execute a prede
termined instruction of the debug control program in the ?rst
storage area.

In the above setup, the ?rst storage area may include a
region 111B accommodating a second vector used by the
central processing unit to acquire a predetermined instruc
tion address of the debug control program upon receipt of
the second interrupt control data. Because the region 111B
may have its contents updated by the central processing unit
in accordance With the debug control program, it is possible
to determine, as desired, debug processing to be executed by
issuance of such break commands.

HalfWay through user program execution, it may be
desired for the host system to make an interrupt as needed
through the serial interface means. In such a case, the serial
interface means may output a third interrupt request signal
(SDIiint) to the interrupt controller in accordance With a
third command (SDI interrupt command) supplied exter
nally; in response to the third interrupt request signal, the
interrupt controller may supply the central processing unit
With third interrupt control data for causing the central
processing unit to execute a predetermined program in either
the third storage area or a user memory space.

According to anther aspect of the invention, there is
provided a data processor 1 for communicating data for
debug operations With a host system via serial interface
means. As outlined in FIG. 1, the data processor 1 is formed
on a semiconductor chip and comprises a central processing
unit 10, storage means 11 accessible by the central process
ing unit 10, an interrupt controller 12 for controlling inter
rupts to the central processing unit 10, and the serial

15

25

35

45

55

65

4
interface means 15. The serial interface means 15 includes
a ?ag (FLG) operable both externally and by the central
processing unit 10, a data register (SDDR) accessible both
externally and by the central processing unit, and a com
mand decoder 154 for receiving and decoding an externally
supplied command and for supplying the interrupt controller
12 With an interrupt request signal re?ecting the decoded
result, the serial interface means 15 further permitting asyn
chronous serial data input and output betWeen the data
processor 1 and the outside thereof. The storage means 11
includes a reWritable ?rst storage area 111 and a second
storage area 112 holding a boot program for causing the
central processing unit 10 to transfer data from the data
register of the serial interface means 15 to the ?rst storage
area 111. In response to a ?rst interrupt request signal
(SDIiboot) included in the interrupt request, the interrupt
controller 12 supplies the central processing unit 10 With
?rst interrupt control data for causing the central processing
unit 10 to execute the boot program. In executing the boot
program, the central processing unit 10 gains access to the
data register (SDDR) if the ?ag (FLG) is in a ?rst state, the
central processing unit 10 further changing the ?ag (FLG) to
a second state When access to the data register (SDDR) is
completed.
When data is input and output serially and in an asyn

chronous fashion betWeen the data processor and the outside
thereof via the serial interface means, access to the data
register by the central processing unit is permitted depend
ing on the state of the ?ag (FLG). This prevents inadvertent
overWrite operations on the data register that is accessed
asynchronously both by the central processing unit and from
the outside thereof, Whereby asynchronous data exchanges
With the outside are carried out With ease.

When the ?ag is placed in the second state, the data
register may be accessed from outside of the data processor.
Upon completion of access to the data register, the ?ag may
be reverted to the ?rst state.

Illustratively, Where it is desired to use serial data input/
output signal lines to output ?ag data to the outside of the
data processor Without resorting to dedicated signal lines,
there may be additionally provided a state controller 153 for
making the data register accessible from outside the data
processor upon detection of the ?ag in the second state being
output to the outside of the data processor, the state con
troller further alloWing the ?ag to be changed to the ?rst
state upon completion of access to the data register by the
data processor.
A data processing system comprising the inventive data

processor may have a circuit board 50 incorporating an
external connection connector 51 attached to the serial
interface means included in the data processor. This con
nector 51 is used to connect the serial interface means to a
debugging tool for debug control or to the host system.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a microcomputer practiced
as an embodiment of the invention;

FIG. 2 is a block diagram of a typical setup in Which a
target system incorporating the microcomputer of FIG. 1 is
interfaced With a debugging tool;

FIG. 3 is an explanatory vieW of a typical command
register included in a serial interface circuit;

FIG. 4 is an explanatory vieW indicating typical micro
computer operation modes set by an emulator mode signal
ASEMOD;

FIG. 5 is a state transition diagram depicting state tran
sition control effected by a state controller included in the
serial interface circuit;

5,961,641
5

FIG. 6 is an explanatory vieW of an address space for the
CPU in product mode;

FIG. 7 is an explanatory vieW of an address space for the
CPU in user mode;

FIG. 8 is an explanatory vieW of an address space for the
CPU in break mode;

FIG. 9 is an explanatory vieW of a detailed internal
emulator space allocated in break mode;

FIG. 10 is a ?oWchart of steps constituting a procedure for
controlling boot operations to establish break mode using an
interrupt request signal SDIiboot;

FIG. 11 is a timing chart of typical boot operations for
establishing break mode by use of the interrupt request
signal SDIiboot;

FIG. 12 is a ?oWchart of steps constituting a procedure for
controlling transition to break mode using an interrupt
request signal SDIibrk;

FIG. 13 is a timing chart of typical operations for tran
sition to break mode by use of the interrupt request signal
SDIibrk;

FIG. 14 is a ?oWchart of steps constituting a procedure for
controlling interrupts using an interrupt request signal SDIi
int;

FIG. 15 is a timing chart of typical operations for con
trolling interrupts by use of the interrupt request signal
SDIiint; and

FIG. 16 is a perspective vieW of a typical setup in Which
a target system incorporating the microcomputer of FIG. 1
is interfaced With a debugging tool.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Outline of the Microcomputer
FIG. 1 is a block diagram of a microcomputer 1 practiced

as one preferred embodiment of the invention. The micro
computer 1 is formed on, but not limited by, a semiconductor
substrate made illustratively of silicon single crystal through
the use of knoWn semiconductor integrated circuit fabrica
tion techniques.

The microcomputer 1 comprises a central processing unit
(also called the CPU) 10, an internal memory 11 accessible
by the CPU 10, an interrupt controller 12 for controlling
interrupts to the CPU 10, a bus controller 13, a break
controller 14, a system controller 17, and a serial interface
circuit (SDI) 15 for permitting serial data input and output
betWeen the microcomputer 1 and the outside thereof. These
components are interconnected typically by an internal bus
16D and an internal address bus 16A. Where product-sum
operational circuits are included in the circuit block of the
CPU 10, it is possible to constitute the microcomputer 1 as
a data processor such as a digital signal processor dedicated
to digital signal processing.

The microcomputer 1 shoWn in FIG. 1 is equipped With
debug support features but not limited thereby. The break
controller 14 and serial interface circuit 15 are furnished
especially to support debugging. Amicrocomputer devoid of
such debug support features is sometimes called a product
chip for distinction from its counterpart provided With the
features. A microcomputer functionally equivalent to its
product-chip counterpart and furnished With the debug sup
port features is sometimes called an evaluation chip.

The internal memory 11 in the microcomputer 1 as an
evaluation chip offers a storage area for accommodating an
operation program for the CPU 10 in the form of a RAM
(random access memory) instead of a ROM (read only
memory) as is the case With most product chips. The RAM

10

15

25

35

45

55

65

6
area is shoWn in FIG. 1 as a user memory area (UseriMEM)
110. In the internal memory 11, the area 111 constitutes a
debug-use RAM area (ASERAM) that holds a debug control
program (debug program) and other control data. Reference
numeral 112 represents a boot program area (Booti
Program) that retains illustratively a boot program for caus
ing the CPU 10 to transfer the debug program and other data
from the serial interface circuit 15 to the debug-use RAM
area 111. The boot program area 112 is a ROM area.
The bus controller 13 controls the Width of data access

and a process of Wait cycle insertion With respect to an
access target area upon access to a bus by the CPU 10 inside
and outside the microcomputer. The manner of control
contingent on a given address range by the bus controller 13
is determined by the value set in a register 130 by the CPU
10.
The break controller 14 has a register 140 in Which the

CPU 10 sets a break condition in break mode (to be
described later). In user mode (also described later), the
break controller 14 checks to see if there appears on the
internal data bus 16D or internal address bus 16A a state that
matches a break condition made of a program address or a
data value set in the register 140. If a state matching the
break condition is detected, the break controller 14 supplies
a break interrupt request signal brks to the interrupt con
troller 12.
The interrupt controller 12 controls interrupts to the CPU

10. The interrupt controller 12 is fed With a break interrupt
request signal brks and With interrupt request signals SDIi
boot, SDIiint and SDIibrk from the serial interface circuit
15. Furthermore, the interrupt controller 12 is supplied With
an external interrupt request signal and an internal interrupt
request signal, neither shoWn. TWo logic circuits 120 and
121 are included in the interrupt controller 12. The logic
circuit 120 matches interrupt requests With interrupt cause
data, and the logic circuit 121 determines the priority of each
interrupt request. When interrupt requests occur, interrupt
priorities corresponding to the requests are referenced so
that the requests are accepted and serviced in order of their
priorities. The CPU 10 is suppiled With interrupt cause data
and an interrupt signal corresponding to each accepted
interrupt request. The CPU 10 calculates and acquires a
vector address from the interrupt cause data, and branches its
processing to an instruction address designated by the inter
rupt vector thus obtained. Needless to say, the CPU 10 saves
in time the data necessary for a return from the interrupt
handling.
Serial Interface Circuit
The serial interface circuit 15 is a circuit that permits

asynchronous serial data input and output betWeen the
microcomputer 1 and the outside thereof. As illustrated in
FIG. 2, Where a system (i.e., target system) using the
microcomputer 1 is to be debugged, the serial inter face
circuit 15 acts as a debugging circuit that interfaces the
microcomputer 1 to the host system (i.e., debugging tool) 4
via a serial controller 3. In FIG. 2, reference numeral 2
represents an external memory attach ed to the target system
5. The external memory 2 is connected to the bus controller
13 through an input/output port 19, not shoWn int FIG. 1.
As indicated in FIG. 1, the serial interface circuit 15

comprises a shift parallel conversion register 150, selectors
150 and 151, a command register SDIR, a status register
SDSR, a data register SDDR, a state controller 153 for
controlling data input and output regarding the serial con
troller 3, a register controller 157 for controlling data input
and output regarding the CPU 10, and a command decoder
154. The shift parallel conversion register 150 and data

5,961,641
7

register SDDR are each constituted by, but not limited to, a
32-bit register each. The command register SDIR and status
register SDSR are each made of a 16-bit register but not
limited thereto.

The shift parallel conversion register 150 is a shift register
that has serial-in/parallel-out and parallel-in/serial-out func
tions. In operation, the shift parallel conversion register 150
shifts serial data fed from a serial data input terminal TDI in
synchronism With a shift clock signal 155, and outputs the
result as parallel data onto a bus 156; parallel data fed from
the bus 156 is shifted in synchronism With the shift clock
signal 155 and output as serial data from a serial data output
terminal TDO.

The selector 151 selects one of the data I/O terminals on
each of the command register SDIR, status register SDSR
and data register SDDR and connects the selected terminals
to the bus 156. The selector 152 selects the other of the data
I/O terminals on each of the registers SDIR, SDSR and
SDDR and connects the selected terminals to the data bus
16D.

The register controller 157 receives address data and
read/Write signals from the bus controller 13. In operation,
the register controller 157 decodes the address signal and
controls the selector 152 by generating signals With Which to
select the terminals of the registers SDIR, SDDR and SDSR
as Well as read/Write signals for read/Write operations on the
registers. This alloWs the CPU 10 to access the registers
SDIR, SDSR and SDDR as needed.
As shoWn in FIG. 3, the command register SDIR is

supplied With a boot command, an SDI interrupt command
or an SDI break command in three bits TSO, TS1 and TS2.
When fed With a boot command, the command decoder 154
gives an interrupt request signal (SDI boot interrupt request
signal) SDIiboot to the interrupt controller 12. Likewise,
When supplied With an SDI interrupt command or an SDI
break command, the command decoder 154 gives an inter
rupt request signal SDIiint (SDI interrupt request signal) or
an interrupt request signal SDIibrk (SDI break interrupt
request signal) respectively to the interrupt controller 12.
What takes place in response to these interrupt requests Will
be described later in detail.

Access to the serial interface circuit 15 by the serial
controller 3 in synchronism With a transfer clock signal TCK
occurs asynchronously With regard to access to the serial
interface circuit. 15 by the CPU 10. To facilitate control in
such a case over data transfers betWeen the serial controller
3 and the CPU 10, the status register SDSR has a one-bit ?ag
FLG. The ?ag FLG is referenced so as to let either the CPU
10 or the serial controller 3 gain exclusive access to the data
register SDDR. When set to a logical 0, the ?ag FLG alloWs
the CPU 10 to access the data register SDDR and prevents
the serial controller 3 from gaining access thereto. When set
to a logical 1, the ?ag FLG enables the serial controller 3 to
access the data register SDDR and keeps the CPU 10 from
gaining access to the latter. The status register SDSR also
has other bits representing internal status of the serial
interface circuit 15.

The serial controller 3 controls data transfers to the serial
interface circuit 15 by observing the ?ag FLG that is output
in a state ST31 by the state controller 153 in FIG. 5. When
detecting via the serial data output terminal the ?ag FLG
being set to 1, the serial controller 3 doWnloads data (such
as the debug program) to the serial data input terminal TDI,
and uploads data (e.g., data indicating internal status of the
microcomputer in debug mode) from the serial data output
terminal TDO. The serial controller 3 Will not carry out data
transfers, i.e., Will not access the data register SDDR unless

15

25

35

45

55

65

8
and until the ?ag FLG is set to 1. When the ?ag FLG is set
to 1, the CPU 10 is denied access to the data register SDDR.
Illustratively, the bus controller 13 puts into the Wait state
the attempt by the CPU 10 to access the data register SDDR.
With data transfers completed, the serial controller 3 clears
the ?ag FLG to 0. Clearing the ?ag FLG alloWs the CPU 10
to resume its access, so far placed in the Wait state, to the
data register SDDR for a Write or a read operation thereto or
therefrom. After completing its access to the data register
SDDR, the CPU 10 sets the ?ag FLG to 1. When detecting
the ?ag FLG being set to 1, the serial controller 3 again
enables the serial interface circuit 15 to access the data
register SDDR.

In short, the serial controller 3 accesses the data register
SDDR When the ?ag FLG is set to 1, and clears the ?ag to
0 When the access operation is completed. The CPU 10 gains
access to the data register SDDR When the ?ag FLG is
cleared to 0, and sets the ?ag to 1 When the access operation
is completed. The ?ag-based regulatory or control scheme
outlined above prevents inadvertent overWrite operations on
the data register SDDR that is accessed asynchronously by
the CPU 10 and serial controller 3, Whereby asynchronous
serial data transfers With the outside are easily carried out.
The state controller 153 receives a reset signal/TRST, a

transfer clock signal TCK and a state control signal TMS,
each a single-bit signal. The reset signal/TRST is used as a
reset signal to initialiZe the serial interface circuit 15. The
transfer clock signal TCK is used as a synchroniZing clock
signal to transfer data via the serial data input and output
terminals TDI and TDO. The signal TCK also serves as a
reference clock signal according to Which the state controller
153 operates. Referencing the serial data output terminal
TDO, the state controller 153 checks to see if, When the ?ag
FLG is found to be output from the serial data output
terminal TDO via the shift parallel conversion register 150,
the output ?ag FLG has the logic value of 1.
The state controller 153 is a so-called state machine. It

causes transition of the internal control status in the serial
interface circuit 15 in a predetermined order. The direction
of the transition is determined by the logic value of the state
control signal TMS.

FIG. 5 is a state transition diagram depicting state tran
sition control effected by the state controller 153. In FIG. 5,
ST1 stands for a reset state, ST2 for an idle state, ST3 for a
selected state of the data register SDDR (or status register
SDSR), and ST4 for a selected state of the command register
SDIR. The direction in Which the current state is folloWed by
the neXt is determined by logic values 1 and 0 of the state
control signal TMS.

Either the register SDDR or the register SDSR is selected
depending on Whether or not the ?ag FLG having the logic
value of 1 is output to the outside through the serial data
output terminal TDO. That is, the state controller 153 selects
the data register SDDR in state ST3 upon sensing that the
?ag FLG being 1 is output to the outside through the serial
data output terminal TDO.

If TMS=0 in state ST3, then the state controller 153
alloWs states ST30 through ST35 to be selected successively
as per the logic value of the state control signal TMS. ST30
is a capture state in Which the data of the register SDDR
(SDSR) is output to the shift parallel conversion register
150; ST31 is a shift state in Which the shift parallel conver
sion register 150 is shifted in synchronism With the transfer
clock signal TCK When the control signal TMS is set to 0;
ST32 is a Work state (a reserved state for operation
sWitchover); ST33 is a pause state; ST34 is another Work
state (a reserved state for operation sWitchover); and ST35

