
RUTGERS UNIVERSITY
The State University of New Jersey

School of Engineering
Department of Electrical and Computer Engineering

94 Brett Road, Piscataway, NJ 08854-8058
Tel. 732-445-5017, e-mail: orfanidi@ece.rutgers.edu

332:348 — Digital Signal Processing Laboratory

Spring 2006

ADSP-2181 Experiments

Sophocles J. Orfanidis

sample
processing
algorithm

rx-buf
codec

analog input

analog output

AD1847
ADSP-2181 DSP

tx-buf

x

y

fs

Copyright © 1996–2006 by S. J. Orfanidis

http://www.ece.rutgers.edu/~orfanidi/ezkitl/ezkitl.html

Contents

1 Introduction 1

2 Getting Started 1
2.1 Running DSP Programs . 1
2.2 Decimal to Hex Format Converters . 3
2.3 Wavetable Generator Programs . 4
2.4 Subdirectory Structure . 5

3 Instruction Set Tutorial 5
3.1 Computational Units . 6
3.2 Data Transfers . 7
3.3 DAG Registers and Circular Buffers . 9
3.4 Defining and Initializing a Delay . 10
3.5 Reading and Writing a Delay-Line Buffer 10
3.6 Updating a Delay . 12
3.7 Multifunction Instructions and FIR Filters 12
3.8 Linear Delay-Line Buffers . 15
3.9 Concatenated Circular Buffers . 16

4 Experiments 16
4.1 Sampling and Quantization . 16
4.2 Delays . 23
4.3 FIR Filters . 25
4.4 Comb Filters . 32
4.5 Plain Reverb . 37
4.6 Allpass Reverb . 41
4.7 Lowpass Reverb . 46
4.8 Schroeder’s Reverb . 48
4.9 Stereo Reverb . 52
4.10 Reverberating Delay . 55
4.11 Multi-Delay Effects . 57
4.12 Multitap Delay Effects . 59
4.13 Karplus-Strong String Algorithm . 62
4.14 Wavetable Generators . 64
4.15 Notch Filters . 69
4.16 Flangers and Phasers . 80
4.17 Simulator Examples . 85

5 Macros 97
5.1 zero . 98
5.2 tap . 98
5.3 tapin . 99
5.4 cdelay . 99
5.5 dot . 100
5.6 cfir . 101

CONTENTS 3

5.7 ccan . 102
5.8 cdir . 105
5.9 wavgen . 107

6 Appendix 108
6.1 Decimal-to-Hex Format Converters . 108
6.2 Wavetable Generators . 110
6.3 Template and Begin/End Files . 113

References 115

1 INTRODUCTION 1

1. Introduction

This manual describes a number of hardware experiments illustrating the concrete
implementation of various DSP algorithms on the ADSP-2181 chip.

The experiments include quantization and aliasing effects; the circular buffer
implementation of delays, FIR, and IIR filters; the canceling of periodic interference
with notch filters; wavetable generators; and several audio effects, such as comb
filters, flangers and phasers, plain, allpass, and lowpass reverberators, Schroeder’s
reverberator, and several multi-tap, multi-delay, and stereo-delay type effects, as
well as the Karplus-Strong string algorithm. All of the experiments are based on
the text [1].

Our aim in these experiments is not to necessarily write the most efficient as-
sembly code, but rather to show beginning DSP students how straightforward and
fun it is to program a DSP chip and hear the algorithms in action. Thus, we have at
times sacrificed efficiency for clarity.

To facilitate the programming of these applications, we have written a number of
assembly code macros that closely parallel some of the C routines in the text, such
as cdelay and tap, and allow the manipulation of circular delay-line buffers and
the building up of more complex block diagrams. Our use of circular buffers and
pointers is identical to that in the text (e.g., filter coefficients and states are stored
in forward order and a delay is implemented by decrementing the buffer pointer.) A
number of DOS utilities are also included, such as decimal-to-hex format converters
and wavetable generators.

All of the included programs are based on the talkthru example program given
in the EZ-KIT Lite Reference Manual [2]. All processor and codec initialization de-
tails have been hidden away in two include-files, begin.dsp and end.dsp, simpli-
fying the structure of the programs and allowing the students to concentrate on
the translation of their sample processing algorithm to assembly code.

Several reference resources are available. Besides the EZ-KIT Reference Manual
and Data Sheets included in the kits, the following reference books may be obtained
(in PDF format) from the Analog Devices web page www.analog.com:

1. ADSP-2100 Family User’s Manual (also included in the newest kits.)
2. DSP Applications Using the ADSP-2100 Family, vols. 1 & 2.

2. Getting Started

2.1. Running DSP Programs

The process of running a signal processing algorithm on the ADSP-2181 chip of the
EZ-KIT Lite board consists of three stages:

1. Creating a text source file containing the assembly code implementation of
the algorithm. The default filename extension is .dsp. The DOS edit or emacs
text editors may be used to edit the source file. They can be invoked by the
DOS commands:

2 GETTING STARTED 2

edit filename.dsp
emacs filename.dsp

2. Compiling and linking the source file using the assembler and linker programs
asm21.exe and ld21.exe. These operations have been automated into the
DOS batch file ezk.bat, which can be invoked as follows:

ezk filename

where the source is filename.dsp. The result of these operations is the
executable file filename.exe. (This is executable on the 2181 chip, not under
DOS.)

3. Loading the executable file onto the chip via the serial connection using Dwight
Elvey’s public-domain loader program ezld.com found in [3]. The operation
has again been automated by a batch file, ezl.bat, and is invoked from DOS
as follows:

ezl filename

This loads filename.exe onto the processor and begins execution immedi-
ately. One can also load the program and enter a menu-oriented terminal
program by the command:

ezl filename t

The above utilities are in the path and can be executed from any subdirectory. The
doskey synonym dsp changes to the directory c:\adi_dsp\examples below which
are the subdirectories of the various examples.

There are a number of other useful utilities available. The batch file ezs.bat
will compile and link a source code file and then run the simulator sim2181.exe:

ezs filename

where the full name filename.dsp is assumed. Some simulator example programs
are in the examples subdirectory sim. The examples include quantization and
downsampling, an order-3 delay, an FIR, and an IIR filter implemented using circu-
lar buffers. In the simulator, one can step through every instruction in the program
and observe the contents of the delay-line buffer registers as they change from one
input sample to the next. There is also the DOS batch file mkezk.bat with usage:

mkezk filename

It generates the file filename.dsp by copying into it a template file, template.dsp,
from the macros subdirectory. The template file includes all the necessary DSP
processor and codec initializations.

The student can then enter his/her choice of sampling rate fs and insert a signal
processing algorithm at the appropriate places inside the file. Several sampling
rates may be selected, such as fs = 8, 16, 32, 44.1, 48 kHz, and more.

2 GETTING STARTED 3

2.2. Decimal to Hex Format Converters

The two DOS programs dec2hex.exe and hex2dec.exe allow the conversion from
decimal format to 1.15 (or, in general, a.b) hexadecimal format and vice versa. Their
C source code uses the routines adc.c and dac.c from [1] and is included in the
Appendix.

Both programs can receive their input from stdin or from an input file con-
taining the numbers to be converted (separated by spaces, tabs, or newlines). They
return their output to stdout or an output file. Typical usage examples are:

dec2hex 1.15 < data.dec > data.hex
dec2hex 2.14 < data.dec > data.hex
dec2hex 1.15

where data.dec is a file containing the decimal numbers to be converted to the
1.15 format (or, the 2.14 format in the second case.) and the file data.hex con-
tains the corresponding hex numbers. In the third case, the user must enter each
decimal number (or, a group of numbers separated by spaces) in the command line
followed by <RET> and enter a <CTRL-Z> or <CTRL-C> after the last number has
been processed. Similarly, the usage of hex2dec is as follows:

hex2dec 1.15 < data.hex > data.dec

For example, the following column of decimal numbers fed into dec2hex 1.15 for-
mat produces the second column of hex numbers. In turn, the hex numbers fed into
hex2dec 1.15 format will produce the third column of decimal numbers, which are
the original numbers rounded to 16-bit accuracy:

1.00000 0x7fff 0.999969482421875 (largest positive number)
0.50000 0x4000 0.500000000000000
0.40000 0x3333 0.399993896484375
0.00003 0x0001 0.000030517578125 (smallest positive number)

-0.00003 0xffff -0.000030517578125 (smallest negative number)
-0.40000 0xcccd -0.399993896484375
-0.50000 0xc000 -0.500000000000000
-1.00000 0x8000 -1.000000000000000 (largest negative number)

The overall range of representable numbers depends on the format. For example,
the above column of hex numbers fed into the hex2dec 2.14 format will produce
the third column scaled up by a factor of two. To determine which a.b format to
use, recall that all numbers to be converted must lie within the format’s range:

−2a−1 ≤ x ≤ 2a−1 − 2−b

Thus, for example, the ranges for the 1.15, 2.14, and 3.13 formats will be:

−1 ≤ x ≤ 1− 2−15

−2 ≤ x ≤ 2− 2−14

−4 ≤ x ≤ 4− 2−13

2 GETTING STARTED 4

In general, using B total bits so that a + b = B, the a.b format is simply a
scaled up version of the standard 0.B two’s complement binary representation
(b1, b2, . . . , bB):

x = (−b12−1 + b22−2 + b32−3 + · · · + bB2−B) (0.B format)
x = (−b12−1 + b22−2 + b32−3 + · · · + bB2−B)2a (a.b format)

where a = 0,1, . . . , B. Alternatively, we may think of the a.b format as the scaled
down version of the B.0 two’s complement integer format. Writing a = B−b in the
above expressions, we have:

x = (−b12B−1 + b22B−2 + b32B−3 + · · · + bB) (B.0 format)
x = (−b12B−1 + b22B−2 + b32B−3 + · · · + bB)2−b (a.b format)

where b = 0,1, . . . , B. Fig. 2.1 shows the bit weighting factors and the placement
of the fractional point for the four formats 0.16, 1.15, 2.14, and 3.13.

b2b1 b3 b5 b7 b9 b11 b13 b15b4 b6 b8 b10 b12 b14 b16

-2
-1

2
-2

2
-4

2
-6

2
-8

2
-10

2
-12

2
-14

2
-16

2
-3

2
-5

2
-7

2
-9

2
-11

2
-13

2
-15

-2
0

2
-1

2
-3

2
-5

2
-7

2
-9

2
-11

2
-13

2
-15

2
-2

2
-4

2
-6

2
-8

2
-10

2
-12

2
-14

0.16

b2b1 b3 b5 b7 b9 b11 b13 b15b4 b6 b8 b10 b12 b14 b161.15

b2b1 b3 b5 b7 b9 b11 b13 b15b4 b6 b8 b10 b12 b14 b16

-2
2

2
1

2
-1

2
-3

2
-5

2
-7

2
-9

2
-11

2
-13

2
0

2
-2

2
-4

2
-6

2
-8

2
-10

2
-12

3.13

b2b1 b3 b5 b7 b9 b11 b13 b15b4 b6 b8 b10 b12 b14 b16

-2
1

2
0

2
-2

2
-4

2
-6

2
-8

2
-10

2
-12

2
-14

2
-1

2
-3

2
-5

2
-7

2
-9

2
-11

2
-13

2.14

Fig. 2.1 Bit weights for 0.16, 1.15, 2.14, and 3.13 formats.

The programs dec2hex and hex2dec can be applied to any B which is a multiple
of 4. For example, they can convert to/from the 1.7, 1.23, or 1.31 formats (which
are 8-bit, 24-bit, and 32-bit formats) and their variants, such as the 2.6, 3.21, or 2.30
formats.

2.3. Wavetable Generator Programs

The DOS programs sinetbl.exe, squartbl.exe, trapztbl.exe are wavetable
generators, generating one period of sinusoidal, square wave, and trapezoidal wave-
forms. Their C source code is included in the Appendix. Just typing the name of
any of these utilities on the DOS command line followed by <RET> will display their
usage. These programs can be used in conjunction with the wavgen.dsp macro to
generate waveforms of different frequencies. Some examples of their usage are as
follows:

3 INSTRUCTION SET TUTORIAL 5

sinetbl 0 1 2000 > sin.dec
sinetbl 1 1 2000 > cos.dec

squartbl 1 -1 1000 2000 1 > square1.dec
squartbl 1 -1 1000 2000 0 > square2.dec

The first generates one period of length 2000 samples of a unit-amplitude sinusoid,
and the second a period of a cosinusoid, that is,

x1(n)= sin
(

2πn
D

)
, x2(n)= cos

(
2πn
D

)
, n = 0,1, . . . ,D− 1

with D = 2000. The third and fourth examples generate one period of the square
waves:

x3(n) = [1,1, . . . ,1︸ ︷︷ ︸
1000 ones

,−1,−1, . . . ,−1︸ ︷︷ ︸
1000 minus-ones

]

x4(n) = [0,1,1, . . . ,1︸ ︷︷ ︸
999 ones

,0,−1,−1, . . . ,−1︸ ︷︷ ︸
999 minus-ones

]

The square wave x3(n) jumps discontinuously from level 1 to−1, whereas x4(n)
has the value 0 at the discontinuities. See Section 4.15 for more on this.

2.4. Subdirectory Structure

The default installation directory of the EZ-KIT Lite software is c:\adi_dsp. The
various batch files, DOS utilities, and DSP macros for this lab are in the subdirectory
macros. The various examples are in the subdirectory examples. The detailed
contents of these directories are listed below:

c:\adi_dsp\macros:

ezk.bat ezl.bat ezs.bat mkezk.bat
dec2hex.exe hex2dec.exe sinetbl.exe squartbl.exe trapztbl.exe
uran.exe dec2hex.c hex2dec.c sinetbl.c squartbl.c
trapztbl.c uran.c begin.dsp ccan.dsp cdelay.dsp
cdir.dsp cfir.dsp dot.dsp dspmac.dsp end.dsp
tap.dsp tapin.dsp wavgen.dsp zero.dsp template.dsp

c:\adi_dsp\examples:

allpass comb delay fir flanger guitar
lowpass multidel multitap notch plain quantize
revdel reverb sim stereo wavtable

3. Instruction Set Tutorial

The ADSP-2181 processor has a powerful instruction set, which is summarized in
the Quick Programmer’s Reference section of the EZ-KIT Lite Reference Manual [2].

3 INSTRUCTION SET TUTORIAL 6

However, to get started writing simple filtering signal processing algorithms, one
needs only a small subset of the full set.

Temporary variables, such as delay-line buffers and multiplier coefficients, can
be stored in data memory (DM) or program memory (PM) from where they can be
transferred back and forth to the processor’s computational units where all the
arithmetic operations are carried out.

3.1. Computational Units

The three computational units are the multiplier accumulator (MAC), the arithmetic
logic unit (ALU), and the shifter. The MAC, ALU, and shifter registers that we will
be using in our examples are the following:

mx0, mx1, my0, my1, mr, mr0, mr1, mr2 (MAC)
ax0, ax1, ay0, ay1, ar (ALU)
sr, sr0, sr1, si, se (shifter)

The wordlength of these registers is as follows:

16 bits: mx0, mx1, my0, my1, mr0, mr1, ax0, ax1, ay0, ay1, ar, sr0, sr1, si
40 bits: mr (consists of mr2, mr1, mr0)
32 bits: sr (consists of sr1, sr0)
8 bits: mr2, se

The 40-bit accumulator register mr of the MAC consists of the three registers mr0,
mr1, mr2. The result of multiplying two 16-bit numbers is a 32-bit number placed
in the registers mr1, mr0, where mr1 contains the 16 MSB bits and mr0 the 16 LSB
bits. The 8-bit register mr2 is used for overflow bits. The subset of MAC operations
that we will be using is:

mr = 0; (clear MAC accumulator)
mr = x * y (ss); (multiply with 32-bit precision)
mr = x * y (rnd); (multiply, round to 16 bits, and put result in mr1)
mr = mr + x * y (ss); (multiply/accumulate with 32-bit precision)
mr = mr + x * y (rnd); (multiply/accumulate and round to 16 bits)
mr = mr - x * y (ss);
mr = mr - x * y (rnd);
if mv sat mr; (saturate if overflow occurs)

where x and y may be one of the following registers:

x: mx0, mx1, mr0, mr1, mr2, ar, sr0, sr1
y: my0, my1

Note that x must always be written to the left of y. The (ss) qualifier treats the
operands as signed 1.15 numbers and the MAC operation is carried out to full
double-precision. The qualifier (rnd) causes the double-precision 32-bit result to
be rounded off to its 16 most significant bits, with the result residing in mr1. The
last, if mv sat mr, instruction saturates mr to its largest (positive or negative)
value whenever the overflow flag mv is raised. The subset of ALU operations that
we will be using is:

3 INSTRUCTION SET TUTORIAL 7

ar = x + y;
ar = x - y;
ar = y - x;

where the permissible registers for x and y are:

x: ar, ax0, ax1, mr0, mr1, mr2, sr0, sr1
y: ay0, ay1

The shifter instructions that we will be using are the arithmetic shifts:

sr = ashift x by exp (hi); (multiply x by 2exp with MSB-result in sr1)
sr = ashift x (hi); (get exp from se register)

where x and exp are:

x: si, sr0, sr1, ar, mr0, mr1, mr2
exp: any signed integer, such as, ±1, ±2, . . .

The effect of this instruction is to scale x by the factor 2exp and place the result
in sr, with sr1 containing the 16 MSB bits. In the second ashift instruction, the
value of the exponent exp has been preloaded into the 8-bit exponent register se
and is read from there.

3.2. Data Transfers

Any of the above 16-bit computational registers can be loaded with a numerical
value (in 1.15 format), or transferred back and forth to another such register, or to
data memory DM or program memory PM. For example, suppose we have declared
some constants and some variables in data memory DM:

.const a = 0x6000; {a = 0.75 in decimal format}

.const D = 3;

.var/dm w[D+1]; {4-dimensional linear buffer w[i], i=0,1,2,3}

.var/dm x, y; {temporary variables}

Then, the following examples of data transfers are all executable in one cycle each:

mr1 = 0; {load mr1 with zero}
my1 = a; {load my1 with the constant a}
ax1 = 0x4000; {load ax1 with the value 0x4000 = 0.50 in decimal}
ar = sr1; {load ar with content of sr1}
mx1 = ay0; {load mx1 with content of ay0}
mr1 = dm(x); {load mr1 with content of DM location x}
dm(y) = my1; {load DM location y with the content of my1}
mr1 = dm(w); {load mr1 with content of buffer location w[0]}
mr1 = dm(w+1); {load mr1 with content of buffer location w[1]}
dm(w+2) = mr1; {load buffer location w[2] with content of mr1}

As a signal processing example, consider the implementation of the first-order filter:

y(n)= ay(n− 1)+bx(n), where a = 0.75, b = 0.25

3 INSTRUCTION SET TUTORIAL 8

Introducing the internal state w1(n)= y(n − 1), and noting that the next state is
w1(n+ 1)= y(n), we may draw a block diagram realization and write the sample
processing algorithm as follows:

x
b

a

y

w1

z-1

for each input sample x do:
y = aw1 + bx
w1 = y

To implement this example on the EZ-KIT Lite board, we must be able to read
input samples from the codec and write the output samples back to the codec.

In the sample talkthru program from the EZ-KIT Lite Manual [2], this is accom-
plished by using the so-called autobuffering technique of the ADSP-2181 serial
ports, which allows the samples from the stereo codec’s analog input to be written
to DM memory at a predefined receive-buffer location, called rx_buf. Samples from
the left and right channels are stored in rx_buf+1 and rx_buf+2.

After both stereo samples have been written to DM, a receive-interrupt is issued
to the DSP, which then initiates an interrupt service routine that implements the DSP
sample processing algorithm to be applied to the input samples. The sampling rate
fs (selected through the codec’s format register) determines the rate at which these
interrupts are being issued to the DSP, and therefore, the rate at which the sample
processing algorithm is repeatedly executed, generating the output samples.

The processed left/right output samples are then written back to some prede-
fined transmit-buffer location in DM, called tx_buf, from where they are passed on
to the DSP’s serial port and on to the codec to be converted to analog output. The
overall sequence of operations is shown in Fig. 3.1.

sample
processing
algorithm

rx-buf
codec

analog input

analog output

AD1847
ADSP-2181 DSP

tx-buf

x

y

fs

Fig. 3.1 Sample by sample processing on the EZ-KIT Lite board.

For our simple example, we start with the variable declarations and initializations:

.const a = 0x6000; {a = 0.75}

.const b = 0x2000; {b = 0.25}

.var/dm w1; {filter’s internal state}

ax0 = 0;
dm(w1) = ax0; {initialize w1 to zero}

Then, the sample processing algorithm (for the right channel only) will be:

my0 = dm(rx_buf + 2); {get right input from codec}

3 INSTRUCTION SET TUTORIAL 9

mx0 = b; {read filter coefficient b into my0}
mr = mx0 * my0 (ss); {mr = b * x}
mx0 = a; {read filter coefficient a}
my0 = dm(w1); {get internal state from DM}
mr = mr + mx0 * my0 (rnd); {mr = y = a * w1 + b * x = output sample}
dm(w1) = mr1; {update state, w1 = y}

dm(tx_buf + 2) = mr1; {send right output to codec}

Note that after the final MAC, only the rounded 16-bit MSB part of mr, contained in
mr1, is sent to the codec and saved into the internal state memory location.

3.3. DAG Registers and Circular Buffers

Another way to transfer data back and forth from DM or PM memory is indirectly
via the two sets of data address generator (DAG) registers. The address pointers
or index (I) registers i0,i1,i2,i3 are associated with DAG1 and can point only
to DM memory, whereas i4,i5,i6,i7 are associated with DAG2 and can point
either to DM or PM memory. Associated with these address pointers, we also have
the corresponding modify (M) registers m0,m1,m2,m3 and m4,m5,m6,m7, and the
corresponding length (L) registers L0,L1,L2,L3 and L4,L5,L6,L7. They are all
14-bit registers. Note that i0 and i1 are reserved in the EZ-KIT Lite.

The data memory location pointed to by an I-register can be accessed by the
instruction dm(I,M), where after the access (read or write), the address is incre-
mented or decremented automatically by an amount specified by the value of the
M-register. For example, the instruction

mr1 = dm(i2, m2);

writes into mr1 the contents of the DM memory location pointed to by i2 and then
changes i2 by an amount m2. If m2=1, then the new i2 will point to the next mem-
ory location, and if m2=-1, it will point to the previous location. This post-modify
scheme applies also to writing into memory. For example, the instruction

dm(i2, m2) = mr1;

writes the contents of mr1 into the memory location pointed to by i2 and then
changes i2 by an amount m2. A useful related instruction is the modify instruction,
which allows i2 to be changed by a desired amount m2 without reading or writing
data:

modify(i2, m2);

The DAG registers can keep track of the memory locations for both linear and cir-
cular buffer arrays. Thus, they are especially convenient for implementing circular
delay-line buffers.

Fig. 3.2 shows how the DAG pointer i2 points into a circular buffer, just like the
usual pointer p of the text [1]. The value of m2 specifies by how much i2 is to move.
As i2 moves up or down within the buffer locations, it wraps around automatically
if it exceeds the upper or lower bounds.

3 INSTRUCTION SET TUTORIAL 10

p = w+q
i0 m0 L0
i1 m1 L1
i2

i2

m2 L2
i3 m3 L3

...
...

...
...

DM

DAG1
circular
buffer

w

w0
w1

wq

wD

Fig. 3.2 DAG pointer into a circular delay-line buffer.

3.4. Defining and Initializing a Delay

To implement a delay of some maximum amount, say D = 100 samples, one must
declare it as a circular (D+1)-dimensional array, then set one of the I-registers
to point to the beginning of the buffer, and define the corresponding L-register to
contain the length of the buffer:

.const D = 100;

.var/dm/circ w[D+1]; {placed in DM memory}

i2 = ^w; {i2 initially points to beginning of w}
L2 = %w; {L2 is set equal to the length of w}

The buffer may be initialized to zero by the do-loop:

m2 = 1; {post-increment i2 by one}
cntr = L2;
do loop until ce; {repeat until counter expires}

loop: dm(i2, m2) = 0; {put 0 in dm(i2,m2) and point to next i2}

The do-loop iterates L2 times and therefore, because the buffer is circular, the
pointer i2 will wrap around completely and, upon exit, it will be pointing again at
the beginning of the buffer w. This initialization loop has been made into a macro,
zero.dsp, and is invoked by

zero(i2, m2, L2);

3.5. Reading and Writing a Delay-Line Buffer

Once the circular buffer w and pointer i2 have been defined, the delay-line’s tap
outputs can be obtained by accessing the buffer entries relative to i2. For example,
the value contained in the d-th tap, can be obtained by the instructions:

m2 = d; modify(i2, m2); {go to location pointed to by i2 + d}
m2 =-d; mr1 = dm(i2, m2); {put its content in mr1, then restore i2}

These steps have been put into a macro, tap.dsp, with usage:

3 INSTRUCTION SET TUTORIAL 11

tap(i2, m2, d, mr1);

where d is in the range d = 0,1, . . . ,D, and mr1 can be replaced by any other 16-bit
computational register. Fig. 3.3 illustrates these operations. One caveat on the use
of tap is that it cannot be used as described when the delay d is variable and is
passed through a register (because we cannot set m2 = -dreg). See Section 4.16
for further discussion of this point and a remedy.

i0 m0 L0
i1 m1 L1
i2

i2

i2+d

m2 L2
i3 m3 L3

...
...

...
...

...

DM

DAG1
circular
buffer

wdreg
dth tap

w0

sd

s0

wD

d

Fig. 3.3 Reading the dth tap of a circular delay-line buffer.

In filtering operations, we must put a new input sample into tap-0 before updat-
ing the delay line. Such operation can be accomplished by

m2 = 0; dm(i2, m2) = mx1;

which puts the value of mx1 into the location pointed to by i2without post-modifying
i2. These steps have been automated into another macro, tapin.dsp, with usage:

tapin(i2, m2, mx1);

where the mx1 register can be replaced by any other 16-bit register. Fig. 3.4 illus-
trates this operation.

i0 m0 L0
i1 m1 L1
i2

i2

m2 L2
i3 m3 L3

...
...

...
...

DM

DAG1
circular
buffer

wdreg
0th tap

w0
w1

s0

wD

Fig. 3.4 Writing into tap-0 of a circular delay-line buffer.

3 INSTRUCTION SET TUTORIAL 12

3.6. Updating a Delay

Once the input to the delay-line buffer is in, we may update the delay by simply
backshifting the pointer i2:

m2 = -1; modify(i2, m2);

Fig. 3.5 illustrates this operation. These two instructions have been placed into the
macro cdelay.dsp with usage:

cdelay(i2, m2);

In summary, the following macros in the directory c:\adi_dsp\macros facilitate
the operations required in circular delay lines:

zero(i2, m2, L2); {clear delay line to zero}
tapin(i2, m2, mx1); {put mx1 into tap-0 of delay line}
tap(i2, m2, d, mr1); {get the d-th tap and put in mr1}
cdelay(i2, m2); {update delay line}

i0 m0 L0
i1 m1 L1
i2

i2

before updating after updating

i2 -1

m2 L2
i3 m3 L3

... ...

... ...

... ...

... ...

DM DM

DAG1
circular
buffer

w

w0 w0

s-1= sD
s0 s1

s0

wD wD

i2
new

Fig. 3.5 Updating a circular delay-line buffer.

3.7. Multifunction Instructions and FIR Filters

Using the above circular buffer tools, we present a final example on implementing
an order-3 FIR filter and we also discuss multifunction-type instructions. The I/O
equation is:

y(n)= 2x(n)−3x(n− 1)−2x(n− 2)+x(n− 3)

The block diagram and circular buffer version of its sample processing algorithm
are shown below:

3 INSTRUCTION SET TUTORIAL 13

x ys0
z-1

z-1

z-1

s1

s2

s3

-3

2

-2

for each input x do:
∗p = s0 = x
s1 = tap(3,w, p,1)
s2 = tap(3,w, p,2)
s3 = tap(3,w, p,3)
y = 2s0 − 3s1 − 2s2 + s3

cdelay(3,w,&p)

Since the range of the filter coefficients is [−4,4], we must convert them with
the 3.13 format, resulting in the hex numbers:

h = [2,−3,−2,1]→ [0x4000, 0xa000, 0xc000, 0x2000]

Equivalently, these are the filter coefficients scaled down by 4 in order to fit
within the 1.15 format, namely

1

4
[2,−3,−2,1]= [0.50,−0.75,−0.50,0.25]→ [0x4000, 0xa000, 0xc000, 0x2000]

Because the MAC performs its multiplications in the 1.15 format, after the final
output y is computed, it can (optionally) be scaled up by a factor of 4 with the help
of the shifter. The following instructions declare the delay and filter coefficient
circular buffers and initialize them:

.const M = 3; {filter order}

.var/dm/circ w[M+1]; {delay-line buffer placed in DM}

.var/pm/circ h[M+1]; {filter coefficient buffer placed in PM}

.init h: 0x4000, 0xa000, 0xc000, 0x2000; {coefficient values}

i2 = ^w; L2 = %w; {delay-line buffer pointer and length}
i4 = ^h; L4 = %h; {coefficient buffer pointer and length}

zero(i2, m2, L2); {clear delay-line buffer to zero}

Assuming as in the previous example that the codec inputs and outputs come from
receive and transmit buffers in DM, the sample processing algorithm can be trans-
lated to assembly language as follows:

mx1 = dm(rx_buf + 2); {read right input from codec}

tapin(i2, m2, mx1); {put mx1 into tap-0 of delay line}

m2 = 1; m4 = 1;
mr = 0, mx0 = dm(i2,m2), my0 = pm(i4,m4); {s0,h0, next s1,h1}
mr = mr + mx0 * my0 (ss), mx0 = dm(i2,m2), my0 = pm(i4,m4); {s1,h1, next s2,h2}
mr = mr + mx0 * my0 (ss), mx0 = dm(i2,m2), my0 = pm(i4,m4); {s2,h2, next s3,h3}
mr = mr + mx0 * my0 (ss), mx0 = dm(i2,m2), my0 = pm(i4,m4); {s3,h3, next s0,h0}
mr = mr + mx0 * my0 (rnd); {mr = y}
if mv sat mr;

3 INSTRUCTION SET TUTORIAL 14

cdelay(i2, m2); {update delay}

sr = ashift mr1 by 2 (hi); {scale output by factor of 2^2 = 4}

dm(tx_buf + 2) = sr1; {write right output to codec}

The four code lines involving a MAC operation and fetching data from DM and
PM memories, are examples of multifunction instructions which are executable in
one cycle, that is, 30 nsec. These instructions are separated by commas instead of
semicolons.

The first multifunction instruction clears the MAC accumulator mr to zero, fetches
the values of s0, h0 into the registers mx0, my0, and then post-increments the buffer
pointers to point to the next buffer entries, that is, s1, h1. (All of that is done in one
cycle.)

The next code line calculates the partial product mr = h0s0, fetches s1, h1, and
points to s2, h2. The next line updates the partial sum mr = h0s0 + h1s1, fetches
s2, h2, and points to s3, h3. The next line updates the partial sum mr = h0s0 +
h1s1 + h2s2, fetches s3, h3, and wraps around to point to the beginning of the
circular buffers, namely, to s0, h0. The next line performs the final accumulation
mr = h0s0 + h1s1 + h2s2 + h3s3, and rounds the result to its 16 most significant
bits, contained now in mr1. The result is saturated if overflow is detected.

Then, the delay line is updated by backshifting its pointer i2. Note that the
argument m2 of cdelay(i2,m2) is set internally to m2=-1 in the macro.

Then, the computed output in mr1 is scaled up by a factor of 4 by the shifter
and the scaled result is placed in sr1, and finally sent out to the codec.

The repeated multifunction instructions can be replaced by a do-loop, which ef-
fectively performs the dot-product of the internal states with the filter coefficients:

m2 = 1; m4 = 1;
mr = 0, mx0 = dm(i2,m2), my0 = pm(i4,m4);
cntr = M; {M = filter order}

do dotloop until ce;
dotloop: mr = mr + mx0 * my0 (ss), mx0 = dm(i2,m2), my0 = pm(i4,m4);
mr = mr + mx0 * my0 (rnd);
if mv sat mr;

These instructions have been collected into a macro, dot.dsp, with usage:

dot(M, i4, m4, i2, m2); {result returned in mr1}

Fig. 3.6 illustrates the dot product operation. Note that i4, pointing to the filter
coefficients, cycles back to the beginning of the buffer, and i2, pointing to the filter
states, cycles back to the 0th state.

In summary, the sample processing algorithm can be simplified to the three
operations of: (a) reading the input sample into the delay line, (b) computing the
dot product output, and (c) updating the delay line:

mx1 = dm(rx_buf + 2); {read right input from codec}

tapin(i2, m2, mx1); {put mx1 into tap-0 of delay line}

3 INSTRUCTION SET TUTORIAL 15

i2

i4

...
...

... ...

...

DM

......

...

PM

i0 m0 L0
i1 m1 L1
i2 m2 L2
i3 m3 L3

DAG1

i4 m4 L4
i5 m5 L5
i6 m6 L6
i7 m7 L7

DAG2

h0s0
h1s1

hMsM

buffer w buffer h
w0

sM
s0
s1

wM

h1

hM

h0

Fig. 3.6 Dot product y = hTs of state vector with filter vector.

dot(M, i4, m4, i2, m2); {compute output into mr1}
cdelay(i2, m2); {update delay}

sr = ashift mr1 by 2 (hi); {scale output by factor of 2^2 = 4}

dm(tx_buf + 2) = sr1; {write right output to codec}

The three macros tapin, dot, and cdelay, have been combined into another macro,
cfir.dsp, which implements an FIR filter. The above example would read in this
case:

mx1 = dm(rx_buf + 2); {read right input from codec}

cfir(M, i4, m4, i2, m2, mx1); {input from mx1, output in mr1}

sr = ashift mr1 by 2 (hi); {scale output by factor of 2^2 = 4}

dm(tx_buf + 2) = sr1; {write right output to codec}

3.8. Linear Delay-Line Buffers

The DAG registers can also point to linear buffers. For example, the following
instructions define the buffer and its pointer:

.const D = 100;

.var/dm w[D+1]; {placed in DM memory}

i2 = ^w; {i2 points to beginning of w}
L2 = 0; {L2 must be set to 0 for a linear buffer}

The post-modify feature is still present, except i2 does not automatically wrap
around upon reaching the end of the buffer. The simulator example delex1.dsp
in the subdirectory examples\sim illustrates the operation of a linear delay line.

4 EXPERIMENTS 16

3.9. Concatenated Circular Buffers

Finally, we mention concatenated circular buffers, which can be used to store the
denominator and numerator coefficients of an IIR filter. The following declaration
defines two buffers each of length M+1 in PM:

.const M = 100;

.var/pm/circ a[M+1], b[M+1];

i4 = ^a;
L4 = 2*(M+1);

This declaration defines an extended circular buffer of double-length 2(M+1). The
DAG pointer i4 will traverse both buffers a and b before wrapping around to the
beginning of a. See Section 5.7 for more details.

4. Experiments

4.1. Sampling and Quantization

This section contains three types of experiments: (a) sampling and immediate play-
back (based on the EZ-KIT Lite’s talkthru program), (b) input quantization effects,
and (c) demonstration of aliasing effects by downsampling.

Talkthru

This experiment illustrates the sampling and immediate playback of an input audio
signal. The following program, thru.dsp, is simply a copy of the template program,
template.dsp:

{thru.dsp - talkthru program - may be used as template}
{Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996}

{Based on mic2out.dsp from Analog Devices FTP site and the sample talkthru
program of the EZ-KIT Lite Reference Manual.}

{--- define sampling rate in kHz: --}
{0xc850 = 8 | 0xc851 = 5.5125 | 0xc852 = 16 }
{0xc853 = 11.025 | 0xc854 = 27.42857 | 0xc855 = 18.9 }

.const fs = 0xc85b; {0xc856 = 32 | 0xc857 = 22.05 | 0xc859 = 37.8 }
{0xc85b = 44.1 | 0xc85c = 48 | 0xc85d = 33.075}
{0xc85e = 9.6 | 0xc85f = 6.615 }

{---}

.include <c:\adi_dsp\macros\begin.dsp>; {initializations and DSP macros}

{--- start processing input samples --------------------------------------}

wait: idle; jump wait; {wait for interrupt and loop forever}
{interrupt service routine starts here}

input_samples: ena sec_reg; {enable secondary register set}

4 EXPERIMENTS 17

{--- read input samples from codec ---------------------------------------}

ax1 = dm(rx_buf + 1); {left input sample}
mx1 = dm(rx_buf + 2); {right input sample}

{--- write output samples to codec ---------------------------------------}

dm(tx_buf + 1) = ax1; {left output sample}
dm(tx_buf + 2) = mx1; {right output sample}

{--- return from interrupt ---}

rti;

.include <c:\adi_dsp\macros\end.dsp>; {wrapup}

It is the same as the example talkthru program of the EZ-KIT Lite Reference Manual
[2]. The input samples from the codec are deposited in the receive-buffer locations
in DM, rx_buf+1 and rx_buf+2, and then copied into the registers ax1 and mx1 for
the left and right channels.

Then, without any further processing, the input samples are written back into
the transmit-buffer locations tx_buf+1 and tx_buf+2 from where they are read by
the codec and sent to the analog output.

Lab Procedure

Change directory into c:\adi_dsp\examples\quantize by the DOS commands:

dsp
cd quantize

Compile, link, and load this program with the DOS commands:

ezk thru
ezl thru

Speak into the mike.

Quantization Effects

The program quantize.dsp illustrates input quantization effects:

{quantize.dsp - quantization to B bits}
{Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996}

{--- choose sampling rate in kHz: --}
{0xc850 = 8 | 0xc851 = 5.5125 | 0xc852 = 16 }
{0xc853 = 11.025 | 0xc854 = 27.42857 | 0xc855 = 18.9 }

.const fs = 0xc85b; {0xc856 = 32 | 0xc857 = 22.05 | 0xc859 = 37.8 }
{0xc85b = 44.1 | 0xc85c = 48 | 0xc85d = 33.075}
{0xc85e = 9.6 | 0xc85f = 6.615 }

{---}

.include <c:\adi_dsp\macros\begin.dsp>; {initializations and DSP macros}

4 EXPERIMENTS 18

{--- define constants, variables, and buffers ----------------------------}

.const B = 6; {quantization bits per sample}

.const L = 16 - B; {L least-significant bits thrown away}

{--- start processing input samples --------------------------------------}

wait: idle; jump wait; {wait for interrupt and loop forever}
{interrupt service routine starts here}

input_samples: ena sec_reg; {enable secondary register set}

{--- read input samples from codec ---------------------------------------}

mr0 = dm(rx_buf + 1); {left input sample}
mr1 = dm(rx_buf + 2); {right input sample}

{--- sample processing algorithm ---}

sr = ashift mr0 by -L (hi); {shift right by L bits}
sr = ashift sr1 by L (hi); {shift left by L bits}
mr0 = sr1; {requantized left sample}

sr = ashift mr1 by -L (hi); {shift right by L bits}
sr = ashift sr1 by L (hi); {shift left by L bits}
mr1 = sr1; {requantized right sample}

{--- write output samples to codec ---------------------------------------}

dm(tx_buf + 1) = mr0; {left output sample}
dm(tx_buf + 2) = mr1; {right output sample}

{--- return from interrupt ---}

rti;

.include <c:\adi_dsp\macros\end.dsp>; {wrapup}

The input samples from the codec are available in 16-bit resolution. In this experi-
ment, each input sample is re-quantized to B-bit resolution, where 1 ≤ B ≤ 16, and
then it is sent out to the codec. The number of least-significant bits that are thrown
away are L = 16− B.

The re-quantization operation is done conveniently by the shifter by first shifting
to the right by L bits and then shifting to the left by L bits. This has the effect of
filling the last L bits with zeros. The simulator program quantex1.dsp in the
examples subdirectory sim steps through such a re-quantization operation.

Lab Procedure

a. Still in the c:\adi_dsp\examples\quantize directory, compile and run the
above program with an initial choice of B = 6 bits. Speak into the mike and
listen to the quantization noise.

Repeat the above procedure by editing the program and choosing the succes-
sive values B = 16,15, . . . ,1. For the higher values of B you will probably

4 EXPERIMENTS 19

not hear any quantization noise. The noise should become more and more
evident as you decrease B, especially below 8 bits. Make sure you listen to
1-bit and 2-bit speech.

b. The quantization operation is an example of a nonlinear memoryless opera-
tion on each input sample. Other examples of such nonlinear operations can
be tried out.

As a distortion example, modify the above program so that instead of quan-
tizing each sample, it squares it, that is, y(n)= x2(n), and then it sends y(n)
to the output. Compile and run this program. Can you understand the types
of distortions you are hearing in the frequency domain? Repeat when each
input sample is cubed, that is, y(n)= x3(n). (You may need to scale up the
output y(n) using the shifter.)

Aliasing by Downsampling

The following program dnsample.dsp implements a downsampling operation where
the sampling rate is reduced by a factor of M:

{dnsample.dsp - downsampling and aliasing by decimation}
{Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996}

{--- choose sampling rate in kHz: --}
{0xc850 = 8 | 0xc851 = 5.5125 | 0xc852 = 16 }
{0xc853 = 11.025 | 0xc854 = 27.42857 | 0xc855 = 18.9 }

.const fs = 0xc85c; {0xc856 = 32 | 0xc857 = 22.05 | 0xc859 = 37.8 }
{0xc85b = 44.1 | 0xc85c = 48 | 0xc85d = 33.075}
{0xc85e = 9.6 | 0xc85f = 6.615 }

{---}

.include <c:\adi_dsp\macros\begin.dsp>; {initializations and DSP macros}

{--- define constants, variables, and buffers ----------------------------}

.const M = 6; {decimation ratio; fs_low = fs/M}

.var/dm/circ s[M]; {low-rate sampling pulse train}

.const A = 0x7fff; {A=1, amplitude of sampling pulse}

i5 = ^s; L5 = %s; m5 = 1; {low-rate sampling pulse train}

cntr = M; {initialize pulse train to zero}
do zero_s until ce; {s = [0, 0, ..., 0]}

zero_s: dm(i5, m5) = 0; {may also call zero(i5, m5, L5)}

ax0 = A; {set s[0] = A}
dm(s) = ax0; {s = [A, 0, ..., 0] = A and M-1 zeros}

{--- start processing input samples --------------------------------------}

wait: idle; jump wait; {wait for interrupt and loop forever}
{interrupt service routine starts here}

input_samples: ena sec_reg; {enable secondary register set}

{--- read input samples from codec ---------------------------------------}

4 EXPERIMENTS 20

mr0 = dm(rx_buf + 1); {left input sample}
mr1 = dm(rx_buf + 2); {right input sample}

{--- sample processing algorithm ---}

ar = dm(i5, m5); {get sampling pulse}
ar = pass ar; {forces updating of AZ flag}
if ne jump output; {if AR != 0, write output}

mr0 = 0; {else, write zero outputs}
mr1 = 0;

{--- write output samples to codec ---------------------------------------}

output:

#if 1 {optional amplification}
sr = ashift mr0 by 1 (hi); mr0 = sr1;
sr = ashift mr1 by 1 (hi); mr1 = sr1;

#endif

dm(tx_buf + 1) = mr0; {left output sample}
dm(tx_buf + 2) = mr1; {right output sample}

{--- return from interrupt ---}

rti;

.include <c:\adi_dsp\macros\end.dsp>; {wrapup}

The re-sampling operation is accomplished by multiplying the input samples x(n)
at the initial rate fs by a periodic re-sampling pulse train s(n) consisting of unit
impulses every M of the original samples and has zeros otherwise, that is,

s(n)= [1,0,0, . . . ,0︸ ︷︷ ︸
M−1

,1,0,0, . . . ,0︸ ︷︷ ︸
M−1

,1,0,0, . . . ,0︸ ︷︷ ︸
M−1

, . . .]

The re-sampled input signal will be:

x′(n)= s(n)x(n)

It is nonzero only every M samples. These nonzero samples are separated by a
sampling time interval T′ =MT, resulting in the reduced sampling rate:

f ′s =
1

T′
= 1

MT
= 1

M
fs

If M becomes too large, aliasing effects will become audible as the spectral im-
ages due to sampling overlap more and more. The aliasing will arise from the spec-
tral components of x(n) that lie outside the reduced Nyquist interval [−f ′s/2, f ′s/2].
A more mathematical discussion of downsampling effects may be found in Section
12.5 of the text [1].

4 EXPERIMENTS 21

In the above program, instead of actually multiplying by s(n), we store one
period of s(n) into a circular buffer s, that is, we store the numbers [1,0,0, . . . ,0],
and periodically cycle over them with the help of the DAG pointer i5 with m5=1.

Every M samples, we encounter a nonzero value in s and then we output that
input sample to the codec. Otherwise, we output zero to the codec. The following
three instructions implement this logic:

ar = dm(i5, m5);
ar = pass ar;
if ne jump output;

The first reads the current value of s(n) from the circular buffer and saves it in
ar. The second passes ar back into ar and its only effect is to force the updating
of the flag bits of the ALU, and in particular, the flag AZ, which is AZ=1 whenever
ar=0, and AZ=0 whenever ar is nonzero. The third instruction tests whether ar is
nonzero and if so it outputs the current sample, otherwise it outputs zeros to the
codec. To examine these operations in more detail, look at the simulator program
dnsamp1.dsp in the examples subdirectory sim.

The following program, dnsamp2.dsp, is an alternative way to demonstrate
aliasing. It generates internally a sinusoid of frequency f using a sinusoidal wavetable
generator, and then it outputs everyMth sample of that sinusoid. The resulting si-
nusoid will be heard as having frequency fa = fmodf ′s , where f ′s = fs/M.

Wavetables are discussed in Section 8.1.3 of Ref. [1], and also in Section 4.14
of this manual and in the Appendix. The wavetable stores one period of length
D samples of a sinusoid and it is stepped at increments of every c samples. The
resulting sinusoid will have frequency f = cfs/D.

{dnsamp2.dsp - aliasing of a sinusoid by decimation}
{Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996}

{--- define sampling rate in kHz: --}
{0xc850 = 8 | 0xc851 = 5.5125 | 0xc852 = 16 }
{0xc853 = 11.025 | 0xc854 = 27.42857 | 0xc855 = 18.9 }

.const fs = 0xc850; {0xc856 = 32 | 0xc857 = 22.05 | 0xc859 = 37.8 }
{0xc85b = 44.1 | 0xc85c = 48 | 0xc85d = 33.075}
{0xc85e = 9.6 | 0xc85f = 6.615 }

{---}

.include <c:\adi_dsp\macros\begin.dsp>; {initializations and DSP macros}

{--- define constants, variables, and buffers ----------------------------}

.const M = 10; {downsampling ratio; fs_low = fs/M}

.var/dm/circ s[M]; {low-rate sampling pulse train}

.const D = 2000; {basic frequency increment fs/D = 4 Hz}

.var/dm/circ sine[D]; {sinusoidal wavetable, from sinetbl.hex}

.const FS = 8000; {fast sampling rate in samples/sec}

.const c = 250; {f = c * fs / D = c * 4 = 1000 Hz}

.const T = 4; {desired total duration in seconds}

.var/dm N; {N = fs * T = no. of samples in T sec}

4 EXPERIMENTS 22

ax1 = T * FS; {N = T * FS = duration in samples}
dm(N) = ax1; {save N in DM}

i5 = ^s; L5 = %s; m5 = 1; {low-rate sampling pulse train}
i6 = ^sine; L6 = %sine; m6 = c; {sine wavetable with increment c}

zero(i5, m5, L5); {initialize pulse train s(n) to zero}
ax0 = 0x7fff; {set s[0] = 1}
dm(s) = ax0; {s = [1,0,0,...,0] = one and M-1 zeros}

.init sine: <sinetbl.hex>; {load sinusoidal wavetable}
{from file sinetbl.hex}

{--- start processing input samples --------------------------------------}

wait: idle; jump wait; {wait for interrupt and loop forever}
{interrupt service routine starts here}

input_samples: ena sec_reg; {enable secondary register set}

{--- sample processing algorithm ---}

ay0 = dm(N);
ar = ay0 - 1; {decrement N -> N-1 until zero}
dm(N) = ar; {save new N}
if eq jump stop; {do not stop until N iterations}

mr1 = dm(i6, m6); {mr1 = sinusoidal input sin(2*pi*f*t)}

ar = dm(i5, m5); {get sampling pulse}
ar = pass ar; {forces updating of AZ flag}
if ne jump output; {if AR != 0, write output}

mr1 = 0; {else, output is zero}

output:

dm(tx_buf + 1) = mr1; {left output sample}
dm(tx_buf + 2) = mr1; {right output sample}

rti;

stop:

.include <c:\adi_dsp\macros\end.dsp>; {wrapup}

Lab Procedure

a. The constant A represents the unit amplitude of the re-sampling pulse train
s(n). Set A = 0 andM = 1, and recompile and run. You should hear nothing
because s(n) becomes identically zero, so that ar remains zero causing only
zeros to be sent to the codec. For the next part, reset A to unity.

b. With an initial choice of fs = 48 kHz, choose successive downsampling ra-
tios of M = 1,2,3,4,6,8,12,16,24,48,96, corresponding to sample rates of
f ′s = 48,24,16,12,8,6,4,3,2,1,0.5 kHz. In each case, recompile and run the

4 EXPERIMENTS 23

program and listen to the output. This experiment works better if you run it
on a music CD than on your speech.

c. For the program dnsamp2.dsp, the sampling rate is fs = 8 kHz and the fre-
quency of the generated sinusoid f = 1 kHz. If the sampling rate is decimated
down by a factor of M = 10 to the new sampling frequency of f ′s = 800 Hz,
then the frequency f = 1 kHz will be aliased with fa = 1000− 800 = 200 Hz,
which lies in the new Nyquist interval [−400,400] Hz.

To hear this effect, first you must generate the 2000-long period of the wavetable.
The program reads the sinusoidal table values in 1.15 hex format from the file
sinetbl.hex. These values can be generated by the following DOS command,
which pipes the output of sinetbl.exe into dec2hex.exe:

sinetbl 0 1 2000 | dec2hex 1.15 > sinetbl.hex

The program plays the output for 4 seconds. No microphone input is required.
The codec keeps sampling the input and, therefore, interrupts the processor
at the sampling rate fs. However, the samples that are loaded automatically
into the receive register rx_buf are not used. Instead, the interrupt service
routine reads a wavetable sample and sends it to the output every Mth time,
while at other times, it sends zero to the output.

In this experiment, first choose M = 1, compile, and run the program to hear
the 1 kHz sinusoid. Then, set M = 10, recompile and run to hear the 200 Hz
aliased version.

4.2. Delays

The program delay.dsp implements a maximum delay of duration TD = 0.75 sec.
At an 8 kHz sampling rate, the total number of samples in the delay will be:

D = TD
T
= fsTD = 8000 Hz× 0.75 sec = 6000

Thus, the transfer function of the delay will beH(z)= z−D = z−6000. Its implemen-
tation requires a 6001-dimensional circular buffer:

{delay.dsp - plain delay by TD sec}
{Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996}

{Based on cdelay.c of Introduction to Signal Processing, p.177.
I/O equation: y(n) = x(n-d), range of delay d=1, 2, ..., D.
Sample processing algorithm:

for each input x do:
y = tap(D, w, p, d) get d-th tap
*p = x put input x into tap-0
cdelay(D, w, &p) update delay

}

{--- define sampling rate in kHz: --}
{0xc850 = 8 | 0xc851 = 5.5125 | 0xc852 = 16 }

4 EXPERIMENTS 24

{0xc853 = 11.025 | 0xc854 = 27.42857 | 0xc855 = 18.9 }
.const fs = 0xc850; {0xc856 = 32 | 0xc857 = 22.05 | 0xc859 = 37.8 }

{0xc85b = 44.1 | 0xc85c = 48 | 0xc85d = 33.075}
{0xc85e = 9.6 | 0xc85f = 6.615 }

{---}

.include <c:\adi_dsp\macros\begin.dsp>; {initializations and DSP macros}

{--- define constants, variables, and buffers ----------------------------}

.const D = 6000; {max delay = TD = D/fs = 6000/8000 = 3/4 sec}

.const d = 2000; {d-th tap, d = 1,2,...,D}

.var/dm/circ w[D+1]; {define delay-line buffer}

i2 = ^w; L2 = %w; {buffer pointer and length}

zero(i2, m2, L2); {clear delay line}

{--- start processing input samples --------------------------------------}

wait: idle; jump wait; {wait for interrupt and loop forever}
{interrupt service routine starts here}

input_samples: ena sec_reg; {enable secondary register set}

{--- read input samples from codec ---------------------------------------}

ax1 = dm(rx_buf + 1); {left input sample}
mx1 = dm(rx_buf + 2); {right input sample}

{--- sample processing algorithm --- process right channel only ----------}

tap(i2, m2, d, my1); {d-th tap output into my1}
tapin(i2, m2, mx1); {input from mx1 into tap-0}
cdelay(i2, m2); {update delay}

{--- write output samples to codec ---------------------------------------}

dm(tx_buf + 1) = my1; {left output sample}
dm(tx_buf + 2) = my1; {right output sample}

{--- return from interrupt ---}

rti;

.include <c:\adi_dsp\macros\end.dsp>; {wrapup}

The initial version of the program outputs the 2000th tap, that is, the signal y(n)=
x(n−d), corresponding to a time delay in seconds: Td = dT = d/fs = 2000/8000 =
0.25 sec. The sample processing algorithm in the notation of the text [1] is:

x
y

s0
z-1

z-1 z-1 z-1

s1 s2 sd sD

... ...

d delays

D delays

for each input x do:
y = tap(D,w,p, d)
∗p = x
cdelay(D,w,&p)

4 EXPERIMENTS 25

Lab Procedure

a. Go to the directory c:\adi_dsp\examples\delay and compile, link, and load
this program by the following DOS commands:

dsp
cd delay
ezk delay
ezl delay

Give the system an impulse by lightly tapping the table with the mike, and
listen to the impulse response. Then, speak into the mike.

Bring the mike near the speaker and then give the system an impulse. You
should hear repeated echoes. If you bring the mike too close to the speak-
ers the output goes unstable. Draw a block diagram realization that would
explain the effect you are hearing. Experimentally determine the distance at
which the echoes remain marginally stable, that is, neither die out nor di-
verge. (Technically speaking, the poles of your closed-loop system lie on the
unit circle.)

b. Change the sampling rate to 16 kHz, recompile and reload keeping the value
of d the same, that is, d = 2000. Listen to the impulse response. What is the
duration of the delay in seconds now?

c. Reset the sampling rate back to 8 kHz, and this time change d to its maximum
value d = D = 6000. Recompile, reload, and listen to the impulse response.
Experiment with lower and lower values of d and listen to your delayed voice
until you can no longer distinguish a separate echo. How many milliseconds
of delay does this correspond to?

d. Set d = 0, recompile and reload. It should correspond to no delay at all, that
is, y(n)= x(n). But what do you hear? Can you explain why? Can you fix it by
changing the program? Will your modified program still work with d �= 0? Is
there any good reason for structuring the program the way it was originally?

4.3. FIR Filters

General FIR Filter Program

The implementation of an FIR filter is accomplished with the help of the macro cfir,
which is the assembly code equivalent of the text routines cfir.c and cfir2.c.
The following is a general FIR filtering program:

{fir.dsp - FIR filter experiment}
{Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996}

{Based on cfir.c or cfir2.c of Introduction to Signal Processing}

{--- define sampling rate in kHz: --}
{0xc850 = 8 | 0xc851 = 5.5125 | 0xc852 = 16 }

4 EXPERIMENTS 26

{0xc853 = 11.025 | 0xc854 = 27.42857 | 0xc855 = 18.9 }
.const fs = 0xc850; {0xc856 = 32 | 0xc857 = 22.05 | 0xc859 = 37.8 }

{0xc85b = 44.1 | 0xc85c = 48 | 0xc85d = 33.075}
{0xc85e = 9.6 | 0xc85f = 6.615 }

{---}

.include <c:\adi_dsp\macros\begin.dsp>; {initializations and DSP macros}

{--- define constants, variables, and buffers ----------------------------}

.const M = 206; {from firlp.m with fc=200 Hz, Df=100 Hz}

.var/dm/circ w[M+1]; {circular delay-line buffer in DM}

.var/pm/circ h[M+1]; {filter coefficient buffer in PM}

i2 = ^w; L2 = %w; {delay-line buffer pointer and length}
i4 = ^h; L4 = %h; {coefficient buffer pointer and length}

zero(i2, m2, L2); {clear delay line}

.init h: <fir.hex>; {read coefficients in 1.15 hex format}
{from file fir.hex}

{--- start processing input samples --------------------------------------}

wait: idle; jump wait; {wait for interrupt and loop forever}
{interrupt service routine starts here}

input_samples: ena sec_reg; {enable secondary register set}

{--- read input samples from codec ---------------------------------------}

ax1 = dm(rx_buf + 1); {left input sample}
mx1 = dm(rx_buf + 2); {right input sample}

{--- sample processing algorithm --- process right input only ------------}

cfir(M, i4, m4, i2, m2, mx1); {input from mx1, output in mr1}

{--- write output samples to codec ---------------------------------------}

dm(tx_buf + 1) = mr1; {left output sample}
dm(tx_buf + 2) = mr1; {right output sample}

{--- return from interrupt ---}

rti;

.include <c:\adi_dsp\macros\end.dsp>; {wrapup}

The filter coefficients are read from the hex file fir.hex. The value of the filter
order M must be edited into the program. The delay-line buffer is in DM memory
and the filter coefficient buffer in PM.

The following MATLAB file firlp.m implements a Kaiser design of a lowpass
filter with prescribed cutoff frequency and transition width. The passband and
stopband attenuations are assumed to be 0.1 dB and 40 dB, respectively. It uses
the functions dtft.m and klh.m of Chapter 10 of the text [1]:

% firlp.m - lowpass FIR design

4 EXPERIMENTS 27

% Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996
%
% the filter coeff file, lp.dec, in decimal format must be postprocessed
% by dec2hex to convert it to the 1.15 format hex file lp.hex, that is,
% dec2hex 1 15 < lp.dec > lp.hex
%
% to run it on the EZ-KIT Lite,
% copy lp.hex into fir.hex, recompile and load fir.dsp
% (you may also need to edit the designed filter order M into fir.dsp)

fs = 8000; % 8 kHz rate

Apass = 0.1; % 0.1 dB
Astop = 40; % 40 dB, stopband ripple: delta = 0.01

fc = input(’cutoff frequency fc (in Hz) = ’); % e.g., fc = 200 Hz
Df = input(’transition width Df (in Hz) = ’); % e.g., Df = 100 Hz

fpass = fc - Df/2;
fstop = fc + Df/2;

h = klh(1, fs, fpass, fstop, Apass, Astop)’; % Kaiser design

save lp.dec h /ascii % save in decimal format

[N, N1] = size(h); M = N-1 % filter order M

NF = 400; % number of frequencies
w = (0:NF-1) * pi / NF; % NF freqs over positive Nyquist
H = 20 * log10(abs(dtft(h’, w)))’; % magnitude response in dB

save lpmag.dat H /ascii

Using this program, we have designed two FIR filters with a sampling rate of 8 kHz
and cutoff frequencies and widths:

fc Δf
200 Hz 100 Hz
200 Hz 10 Hz

These specifications imply that the passband, transition, and stopband frequency
ranges are in Hz (where the stopband extends to the Nyquist frequency fs/2 = 4000
Hz):

passband transition stopband
0–150 150–250 250–4000
0–195 195–205 205–4000

Thus, within the passband, the attenuation must remain less than 0.1 dB and within
the stopband, it must be greater than 40 dB. The magnitude responses |H(f)| of
the two filters are plotted in units of dB, that is, 20 log10 |H(f)|, in the following
figures:

4 EXPERIMENTS 28

The designed filters have ordersM = 206 andM = 2054, respectively, and their
impulse responses are in the data files lp1.dec and lp2.dec in decimal format (as
generated by firlp.m.)

As discussed in Ch.10 of the text [1] that the filter order M of an FIR filter is
essentially inversely proportional to its transition widthΔf , and therefore, it should
be no surprise that the second filter has 10-times greater order than the first.

FIR Filtering in Stereo

If we want to process the input samples in stereo, we must apply the filter to the two
channels separately. The following program fir2.dsp independently processes the
left and right stereo channels. It uses two circular delay-line buffers in DM and a
common filter coefficient buffer in PM:

{fir2.dsp - FIR filter experiment - with separate stereo channels}
{Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996}

{Based on cfir.c or cfir2.c of Introduction to Signal Processing}

{--- define sampling rate in kHz: --}
{0xc850 = 8 | 0xc851 = 5.5125 | 0xc852 = 16 }
{0xc853 = 11.025 | 0xc854 = 27.42857 | 0xc855 = 18.9 }

.const fs = 0xc850; {0xc856 = 32 | 0xc857 = 22.05 | 0xc859 = 37.8 }
{0xc85b = 44.1 | 0xc85c = 48 | 0xc85d = 33.075}
{0xc85e = 9.6 | 0xc85f = 6.615 }

{---}

.include <c:\adi_dsp\macros\begin.dsp>; {initializations and DSP macros}

{--- define constants, variables, and buffers ----------------------------}

.const M = 206; {designed by firlp.m or firhp.m}

.var/dm/circ wL[M+1]; {left delay-line buffer in DM}

.var/dm/circ wR[M+1]; {right delay-line buffer in DM}

.var/pm/circ h[M+1]; {filter coefficient buffer in PM}

i2 = ^wL; L2 = %wL; {delay-line buffer pointer and length}
i3 = ^wR; L3 = %wR; {delay-line buffer pointer and length}
i4 = ^h; L4 = %h; {coefficient buffer pointer and length}

zero(i2, m2, L2); {clear left delay line}

4 EXPERIMENTS 29

zero(i3, m3, L3); {clear right delay line}

.init h: <fir.hex>; {read coefficients in 1.15 hex format}
{from file fir.hex}

{--- start processing input samples --------------------------------------}

wait: idle; jump wait; {wait for interrupt and loop forever}
{interrupt service routine starts here}

input_samples: ena sec_reg; {enable secondary register set}

{--- read input samples from codec ---------------------------------------}

ax1 = dm(rx_buf + 1); {left input sample}
mx1 = dm(rx_buf + 2); {right input sample}

{--- sample processing algorithm --- process right input only ------------}

cfir(M, i4, m4, i2, m2, ax1); {input from ax1, output in mr1}
ay1 = mr1; {left output}
cfir(M, i4, m4, i3, m3, mx1); {input from mx1, output in mr1}
my1 = mr1; {right output}

{--- write output samples to codec ---------------------------------------}

dm(tx_buf + 1) = ay1; {left output sample}
dm(tx_buf + 2) = my1; {right output sample}

{--- return from interrupt ---}

rti;

.include <c:\adi_dsp\macros\end.dsp>; {wrapup}

FIR Filtering of Sinusoids

Finally, we consider a third version of the FIR filtering program, fir3.dsp, that
uses the concept of wavetable generators from Section 8.1.3 of the text [1].

{fir3.dsp - FIR filtering of sinusoids generated by circular wavetable}
{Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996}

{Based of cfir.c and Sec. 8.1.3 of Introduction to Signal Processing}

{--- define sampling rate in kHz: --}
{0xc850 = 8 | 0xc851 = 5.5125 | 0xc852 = 16 }
{0xc853 = 11.025 | 0xc854 = 27.42857 | 0xc855 = 18.9 }

.const fs = 0xc850; {0xc856 = 32 | 0xc857 = 22.05 | 0xc859 = 37.8 }
{0xc85b = 44.1 | 0xc85c = 48 | 0xc85d = 33.075}
{0xc85e = 9.6 | 0xc85f = 6.615 }

{---}

.include <c:\adi_dsp\macros\begin.dsp>; {initializations and DSP macros}

{--- define constants, variables, and buffers ----------------------------}

.const FS = 8000; {sampling rate in samples/sec}

4 EXPERIMENTS 30

.const M = 206; {from firlp.m with fc=200 Hz, Df=100 Hz}

.var/dm/circ w[M+1]; {circular delay-line buffer in DM}

.var/pm/circ h[M+1]; {filter coefficient buffer in PM}

.const D = 800; {basic frequency increment fs/D = 10 Hz}

.var/dm/circ s[D]; {sinusoidal wavetable, from sinetbl.hex}
{see Section 8.1.3 of text}

.const c1 = 10; {f1 = c1 * fs / D = c1 * 10 = 100 Hz}

.const c2 = 40; {f2 = c2 * fs / D = c2 * 10 = 400 Hz}

.const A1 = 0x4000; {A1 = 0.5 = amplitude of sinusoid 1}

.const A2 = 0x4000; {A2 = 0.5 = amplitude of sinusoid 2}

.const T = 4; {desired total duration in seconds}

.var/dm N; {N = fs * T = no. of samples in T sec}

ax1 = T * FS; {N = T * FS = duration in samples}
dm(N) = ax1; {save N in DM}

i2 = ^w; L2 = %w; {delay-line buffer pointer and length}
i4 = ^h; L4 = %h; {coefficient buffer pointer and length}

i5 = ^s; L5 = %s; m5 = c1; {sinusoid f1, wavetable increment c1}
i6 = ^s; L6 = %s; m6 = c2; {sinusoid f2, wavetable increment c2}

zero(i2, m2, L2); {clear delay line}

.init h: <fir.hex>; {read coefficients in 1.15 hex format}
{from file fir.hex}

.init s: <sinetbl.hex>; {load sinusoidal wavetable}
{from file sinetbl.hex}

{--- start processing input samples --------------------------------------}

wait: idle; jump wait; {wait for interrupt and loop forever}
{interrupt service routine starts here}

input_samples: ena sec_reg; {enable secondary register set}

{--- sample processing algorithm ---}

ay0 = dm(N);
ar = ay0 - 1; {decrement N until zero}
dm(N) = ar;
if eq jump stop; {do not stop until N iterations}

mx1 = A1;
my1 = dm(i5, m5); {my1 = s1 = sin(2*pi*f1*t)}
mr = mx1 * my1 (ss); {mr = A1 * s1}

mx1 = A2;
my1 = dm(i6, m6); {my1 = s2 = sin(2*pi*f2*t)}
mr = mr + mx1 * my1 (rnd); {mr = x = A1 * s1 + A2 * s2}

#if 1 {use 0 to skip filtering}
cfir(M, i4, m4, i2, m2, mr1); {input from mr1, output in mr1}

#endif

{--- write samnples to codec ---}

4 EXPERIMENTS 31

dm(tx_buf + 1) = mr1; {left output sample}
dm(tx_buf + 2) = mr1; {right output sample}

rti;

stop:

.include <c:\adi_dsp\macros\end.dsp>; {wrapup}

This program generates internally a sum of two sinusoids and filters them through
the cfir macro. The input signal is:

x(t)= A1 sin(2πf1t)+A2 sin(2πf2t)

where the two sinusoidal terms are generated from a common wavetable which is
cycled every c1 and c2 samples, such that

f1 = c1
fs
D
, f2 = c2

fs
D

The wavetable is filled with one period of length D, that is, by the numbers:

s(n)= A sin
(2πn
D

)
, n = 0,1, . . . ,D− 1

We use D = 800 so that the smallest frequency that can be generated is fs/D =
8000/800 = 10 Hz, at an 8 kHz sampling rate. We tookA = 1 for the amplitude and
generated the D sinusoidal values by the DOS wavetable generator sinetbl.exe
and converted them to hex by the DOS commands:

sinetbl 0 1 800 > sinetbl.dec
dec2hex 1.15 < sinetbl.dec > sinetbl.hex

The wavetable is loaded on the chip at run time. The wavetable is cycled over
at different speeds by two independent DAG2 pointers, i5 and i6, which are incre-
mented respectively by m5=c1 and m6=c2. The wavetable increments are c1 = 10
and c2 = 40, resulting in the frequencies f1 = 100 and f2 = 400 Hz. One is in the
passband and the other in the stopband of the filter. Thus, the filter will remove
f2 and let f1 pass through. The amplitudes were chosen to be A1 = A2 = 0.5. In
Section 4.14, we discuss the definition and use of the macro wavgen.dsp which can
also be used to generate the required sinusoids.

Lab Procedure

a. Go into the directory c:\adi_dsp\examples\fir. Then, convert the filter
coefficient file lp1.dec into the hex file fir.hex. Then, compile and load the
fir.dsp program. These operations are carried out by the commands:

dsp
cd fir
dec2hex 1.15 < lp1.dec > fir.hex
ezk fir
ezl fir

4 EXPERIMENTS 32

Speak into the mike or sing a do-re-mi scale. Note how the filter cuts off the
higher pitches of your voice.

b. Next, test the longer filter. First edit the file fir.dsp so that M = 2054, then
convert the coefficient file lp2.dec into fir.hex, recompile and reload.

Speak into the mike. The filter will cut off the higher pitches in your voice,
but it also introduces a perceptible delay in the output. This delay was too
short to be heard for the first filter.

Through their phase response, all filters introduce a certain amount of delay,
which depends on the frequency of the input. FIR filters can be designed to
have linear phase, which implies that all frequency components of the input
get delayed by the same amount, and thus, the input as a whole gets delayed.
For a linear phase FIR filter of order M, the amount of delay is:

D = M
2

⇒ TD = M
2
T = M

2fs

Thus, how much is the delay in seconds for filter-1 and filter-2?

c. Next, run program fir3.dsp with the order-206 filter. First, listen to the
unfiltered sinusoid f1. This can be done by commenting out the cfir call and
replacing the sinusoid amplitudes by A1 = 1 (0x7fff in hex) and A2 = 0.

Then, listen to the unfiltered component f2, and then, to the unfiltered sum
of both. Finally, uncomment cfir and send in the sum of the two. You will
hear only the f1 component at the output.

4.4. Comb Filters

This experiment implements the FIR comb filter given by Eq. (8.2.8) of the text [1]:

y(n)= x(n)+ax(n−D)+a2x(n− 2D)+a3x(n− 3D)

Its transfer function is

H(z)= 1+ az−D + a2z−2D + a3z−3D

This filter can be implemented using the program fir.dsp of the previous experi-
ment as a general FIR filter with an impulse response:

h = [1,0,0, . . . ,0︸ ︷︷ ︸
D−1 zeros

, a,0,0, . . . ,0︸ ︷︷ ︸
D−1 zeros

, a2,0,0, . . . ,0︸ ︷︷ ︸
D−1 zeros

, a3]

Because of the sparseness of the impulse response, a more efficient implementation
is to program the block diagram directly, in the sense of using a common delay
line of order 3D and tapping it out at taps 0, D, 2D, and 3D. The block diagram
realization and corresponding sample processing algorithm will be:

4 EXPERIMENTS 33

x ys0

s1

s2

s3

a

a2

a3

z-D

z-D

z-D

for each input x do:
s0 = x
s1 = tap(3D,w,p,D)
s2 = tap(3D,w,p,2D)
s3 = tap(3D,w,p,3D)
y = s0 + as1 + a2s2 + a3s3

∗p = s0

cdelay(3D,w,&p)

The following program comb.dsp is the translation to assembly language:

{comb.dsp - FIR comb filter}
{Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996}

{Based on Eq.(8.2.8) of Introduction to Signal Processing.
I/O equation: y(n) = a0 x(n) + a1 x(n-D) + a2 x(n-2D) + a3 x(n-3D)
Sample processing algorithm:

for each x do:
*p = s0 = x read filter input
s1 = tap(3*D, w, p, D) get tap-D
s2 = tap(3*D, w, p, 2*D) get tap-2D
s3 = tap(3*D, w, p, 3*D) get tap-3D
y = a0 * s0 + a1 * s1 + a2 * s2 + a3 * s3 filter output
cdelay(3*D, w, &p) update delay

}

{--- define sampling rate in kHz: --}
{0xc850 = 8 | 0xc851 = 5.5125 | 0xc852 = 16 }
{0xc853 = 11.025 | 0xc854 = 27.42857 | 0xc855 = 18.9 }

.const fs = 0xc850; {0xc856 = 32 | 0xc857 = 22.05 | 0xc859 = 37.8 }
{0xc85b = 44.1 | 0xc85c = 48 | 0xc85d = 33.075}
{0xc85e = 9.6 | 0xc85f = 6.615 }

{---}

.include <c:\adi_dsp\macros\begin.dsp>; {initializations and DSP macros}

{--- define constants, variables, and buffers ----------------------------}

.const a0 = 0x7fff; {a0 = 0.9999 = approximate unity}

.const a1 = 0x4000; {a1 = 0.50}

.const a2 = 0x2000; {a2 = a1^2 = 0.50^2 = 0.25}

.const a3 = 0x1000; {a3 = a1^3 = 0.50^3 = 0.125}

.const D = 2000; {TD = D/fs = 2000/8000 = 1/4 sec}

.var/dm/circ w[3*D + 1]; {delay-line buffer, max delay = 3*D}

i2 = ^w; L2 = %w; {delay-line buffer pointer and length}

zero(i2, m2, L2); {clear delay line}

{--- start processing input samples --------------------------------------}

4 EXPERIMENTS 34

wait: idle; jump wait; {wait for interrupt and loop forever}
{interrupt service routine starts here}

input_samples: ena sec_reg; {enable secondary register set}

{--- read input samples from codec ---------------------------------------}

ax1 = dm(rx_buf + 1); {left input sample}
mx1 = dm(rx_buf + 2); {right input sample}

{--- sample processing algorithm --- process right channel only ----------}

my1 = a0;
mr = mx1 * my1 (ss); {mr = a0 * x}

tap(i2, m2, D, my0); {my0 = s1 = D-th tap}
mx0 = a1;
mr = mr + mx0 * my0 (ss); {mr = a0 * x + a1 * s1}

tap(i2, m2, 2*D, my0); {my0 = s2 = 2D-th tap}
mx0 = a2;
mr = mr + mx0 * my0 (ss); {mr = a0 * x + a1 * s1 + a2 * s2}

tap(i2, m2, 3*D, my0); {my0 = s3 = 3D-th tap}
mx0 = a3;
mr = mr + mx0 * my0 (rnd); {a0 * x + a1 * s1 + a2 * s2 + a3 * s3}
if mv sat mr; {saturate mr if overflow}

tapin(i2, m2, mx1); {put input from mx1 into tap-0}
cdelay(i2, m2); {update delay}

{--- write output samples to codec ---------------------------------------}

dm(tx_buf + 1) = mr1; {left output sample}
dm(tx_buf + 2) = mr1; {right output sample}

{--- return from interrupt ---}

rti;

.include <c:\adi_dsp\macros\end.dsp>; {wrapup}

The delay D is taken to be D = 2000, corresponding to TD = 0.25 sec, so that
the total duration of the filter is 3TD = 0.75 sec. The parameter a is chosen to be
a = 0.5.

Lab Procedure

a. Go to directory c:adi_dsp\examples\comb, compile, link, and load the pro-
gram using the commands:

dsp
cd comb
ezk comb
ezl comb

4 EXPERIMENTS 35

Listen to the impulse response of the filter. Speak into the mike. Bring the
mike close to the speakers and get a closed-loop feedback.

b. Keeping the delay D the same, choose a = 0.2 and run the program again.
What effect do you hear? Repeat for a = 0.1.

c. Finally, run the program with the values a = 1 and a = −1. Note that 1 is rep-
resented approximately by 0x7fff in 1.15 format, whereas −1 is represented
exactly by 0x8000.

d. The FIR comb filter can also be implemented as an ordinary FIR filter, without
taking into account the sparseness of its impulse response h. In this part,
define the (3D+ 1)-dimensional impulse response:

h = [1,0,0, . . . ,0︸ ︷︷ ︸
D−1 zeros

, a,0,0, . . . ,0︸ ︷︷ ︸
D−1 zeros

, a2,0,0, . . . ,0︸ ︷︷ ︸
D−1 zeros

, a3]

and assign it to a circular buffer in PM. Then, use the program fir.dsp of
the previous section to implement this filter. Compile and run with the value
D = 2000 so that you may compare its output with that of comb.dsp.

e. The FIR comb can also be implemented recursively using the geometric series
formula to rewrite its transfer function in the recursive form:

H(z)= 1+ az−D + a2z−2D + a3z−3D = 1− a4z−4D

1− az−D

which requires a (4D+1)-dimensional delay-line buffer. The canonical real-
ization and the corresponding sample processing algorithm are shown below:

x ys0

s1

s4

a

−a4

z-D

z-3D

for each input x do:
s1 = tap(4D,w,p,D)
s4 = tap(4D,w,p,4D)
s0 = x+ as1

y = s0 − a4 ∗ s4

∗p = s0

cdelay(4D,w,&p)

The following program comb2.dsp is the assembly code implementation. Us-
ing the values D = 1600 (corresponding to a 0.2 sec delay) and a = 0.5,
recompile and run both the comb.dsp and comb2.dsp programs and listen
to their outputs. In general, such recursive implementations of FIR filters are
more prone to the accumulation of roundoff errors than the non-recursive
versions. You may want to run these programs with a = 1 and a = −1 to
observe this sensitivity.

4 EXPERIMENTS 36

{comb2.dsp - FIR comb filter implemented recursively}
{Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996}

{Based on Eq.(8.2.8) of Introduction to Signal Processing.
I/O equation: y(n) = a0 x(n) + a1 x(n-D) + a2 x(n-2D) + a3 x(n-3D)
Sample processing algorithm:

for each x do:
s1 = tap(4*D, w, p, D) get tap-D
s4 = tap(4*D, w, p, 4*D) get tap-4D
*p = s0 = x + a * s1
y = s0 - a4 * s4 filter output
cdelay(4*D, w, &p) update delay

}

{--- define sampling rate in kHz: --}
{0xc850 = 8 | 0xc851 = 5.5125 | 0xc852 = 16 }
{0xc853 = 11.025 | 0xc854 = 27.42857 | 0xc855 = 18.9 }

.const fs = 0xc850; {0xc856 = 32 | 0xc857 = 22.05 | 0xc859 = 37.8 }
{0xc85b = 44.1 | 0xc85c = 48 | 0xc85d = 33.075}
{0xc85e = 9.6 | 0xc85f = 6.615 }

{---}

.include <c:\adi_dsp\macros\begin.dsp>; {initializations and DSP macros}

{--- define constants, variables, and buffers ----------------------------}

.const a0 = 0x7fff; {a0 = 0.9999 = approximate unity}

.const a1 = 0x4000; {a1 = 0.50}

.const a4 = 0x0800; {a4 = a1^4 = 0.50^4 = 0.0625}

.const D = 1600; {TD = D/fs = 1600/8000 = 0.20 sec}

.var/dm/circ w[4*D + 1]; {delay-line buffer, max delay = 4*D}

i2 = ^w; L2 = %w; {delay-line buffer pointer and length}

zero(i2, m2, L2); {clear delay line}

{--- start processing input samples --------------------------------------}

wait: idle; jump wait; {wait for interrupt and loop forever}
{interrupt service routine starts here}

input_samples: ena sec_reg; {enable secondary register set}

{--- read input samples from codec ---------------------------------------}

ax1 = dm(rx_buf + 1); {left input sample}
mx1 = dm(rx_buf + 2); {right input sample}

{--- sample processing algorithm --- process right channel only ----------}

mr = 0;
mr1 = mx1; {mr = x = input}

tap(i2, m2, D, my0); {my0 = s1 = D-th tap}
mx0 = a1;
mr = mr + mx0 * my0 (rnd); {mr = s0 = x + a1 * s1}
if mv sat mr; {saturate mr if overflow}
sr0 = mr1; {sr0 = s0}

4 EXPERIMENTS 37

mx0 = a4;
tap(i2, m2, 4*D, my0); {my0 = s4 = 4D-th tap}
mr = mr - mx0 * my0 (rnd); {mr = y = s0 - a4 * s4}
if mv sat mr; {saturate mr if overflow}

tapin(i2, m2, sr0); {put input from sr0 into tap-0}
cdelay(i2, m2); {update delay}

{--- write output samples to codec ---------------------------------------}

dm(tx_buf + 1) = mr1; {left output sample}
dm(tx_buf + 2) = mr1; {right output sample}

{--- return from interrupt ---}

rti;

.include <c:\adi_dsp\macros\end.dsp>; {wrapup}

4.5. Plain Reverb

A plain reverberator can be used as an elementary building block for more compli-
cated reverberation algorithms. It is given by Eq. (8.2.12) of the text [1] and shown
in Fig. 8.2.6. Its I/O equation and transfer function are:

y(n)= ay(n−D)+x(n), H(z)= 1

1− az−D
Its sample processing algorithm using a circular delay-line buffer is given by Eq. (8.2.14)
of Ref. [1]:

x y

z-D

a

sD

for each input sample x do:
sD = tap(D,w,p,D)
y = x+ asD
∗p = y
cdelay(D,w,&p)

The following program plain.dsp is the translation to assembly code:

{plain.dsp - plain reverb - IIR comb filter}
{Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996}

{Based on plain.c of Introduction to Signal Processing.
Sample processing algorithm from Eq.(8.2.14) and Fig.8.2.6:

for each x do :
sD = tap(D, w, p, D) get D-th tap
y = x + a * sD filter output
*p = y put y into tap-0
cdelay(D, w, &p) update delay

}

{--- define sampling rate in kHz: --}

4 EXPERIMENTS 38

{0xc850 = 8 | 0xc851 = 5.5125 | 0xc852 = 16 }
{0xc853 = 11.025 | 0xc854 = 27.42857 | 0xc855 = 18.9 }

.const fs = 0xc850; {0xc856 = 32 | 0xc857 = 22.05 | 0xc859 = 37.8 }
{0xc85b = 44.1 | 0xc85c = 48 | 0xc85d = 33.075}
{0xc85e = 9.6 | 0xc85f = 6.615 }

{---}

.include <c:\adi_dsp\macros\begin.dsp>; {initializations and DSP macros}

{--- define constants, variables, and buffers ----------------------------}

.const a = 0x4000; {feedback coefficient a = 0.50}

.const D = 3000; {TD = D/fs = 3/8 = 0.375 sec}

.var/dm/circ w[D+1]; {delay-line buffer}

i2 = ^w; L2 = %w; {delay-line buffer pointer and length}

zero(i2, m2, L2); {clear delay line}

{--- start processing input samples --------------------------------------}

wait: idle; jump wait; {wait for interrupt and loop forever}
{interrupt service routine starts here}

input_samples: ena sec_reg; {enable secondary register set}

{--- read input samples from codec ---------------------------------------}

ax1 = dm(rx_buf + 1); {left input sample}
mx1 = dm(rx_buf + 2); {right input sample}

{--- sample processing algorithm --- process right channel only ----------}

mr = 0;
mr1 = mx1; {mr = x = input}

my1 = a;
tap(i2, m2, D, mx1); {mx1 = sD = D-th tap}
mr = mr + mx1 * my1 (rnd); {mr = x + a * sD}

tapin(i2, m2, mr1); {put y in tap-0}
cdelay(i2, m2); {update delay}

{--- write output samples to codec ---------------------------------------}

dm(tx_buf + 1) = mr1; {left output sample}
dm(tx_buf + 2) = mr1; {right output sample}

{--- return from interrupt ---}

rti;

.include <c:\adi_dsp\macros\end.dsp>; {wrapup}

The program plain2.dsp is the implementation in stereo:

{plain2.dsp - plain reverb - IIR comb filter - in stereo}
{Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996}

4 EXPERIMENTS 39

{Based on plain.c of Introduction to Signal Processing.
Sample processing algorithm from Eq.(8.2.14) and Fig.8.2.6:

for each x do :
sD = tap(D, w, p, D) get D-th tap
y = x + a * sD filter output
*p = y put y into tap-0
cdelay(D, w, &p) update delay

}

{--- define sampling rate in kHz: --}
{0xc850 = 8 | 0xc851 = 5.5125 | 0xc852 = 16 }
{0xc853 = 11.025 | 0xc854 = 27.42857 | 0xc855 = 18.9 }

.const fs = 0xc850; {0xc856 = 32 | 0xc857 = 22.05 | 0xc859 = 37.8 }
{0xc85b = 44.1 | 0xc85c = 48 | 0xc85d = 33.075}
{0xc85e = 9.6 | 0xc85f = 6.615 }

{---}

.include <c:\adi_dsp\macros\begin.dsp>; {initializations and DSP macros}

{--- define constants, variables, and buffers ----------------------------}

.const aL = 0x4000; {left feedback coefficient aL = 0.50}

.const DL = 3000; {left TD = D/fs = 3/8 = 0.375 sec}

.const aR = 0x4000; {right feedback coefficient aR = 0.50}

.const DR = 3000; {right TD = D/fs = 3/8 = 0.375 sec}

.var/dm/circ wL[DL+1]; {left delay-line buffer}

.var/dm/circ wR[DR+1]; {right delay-line buffer}

i2 = ^wL; L2 = %wL; {left delay buffer pointer and length}
i3 = ^wR; L3 = %wR; {right delay buffer pointer and length}

zero(i2, m2, L2); {clear left delay line}
zero(i3, m3, L3); {clear right delay line}

{--- start processing input samples --------------------------------------}

wait: idle; jump wait; {wait for interrupt and loop forever}
{interrupt service routine starts here}

input_samples: ena sec_reg; {enable secondary register set}

{--- read input samples from codec ---------------------------------------}

ax1 = dm(rx_buf + 1); {left input sample}
mx1 = dm(rx_buf + 2); {right input sample}

{--- sample processing algorithm for left channel ------------------------}

mr = 0;
mr1 = ax1; {mr = x = left input}

my0 = aL;
tap(i2, m2, DL, mx0); {mx0 = sD = D-th tap}
mr = mr + mx0 * my0 (rnd); {mr = y = x + a * sD = left output}

tapin(i2, m2, mr1); {put y in tap-0}
cdelay(i2, m2); {update left delay}

4 EXPERIMENTS 40

dm(tx_buf + 1) = mr1; {left output sample}

{--- sample processing algorithm for right channel -----------------------}

mr = 0;
mr1 = mx1; {mr = x = right input}

my0 = aR;
tap(i3, m3, DR, mx0); {mx0 = sD = D-th tap}
mr = mr + mx0 * my0 (rnd); {mr = y = x + a * sD = right output}

tapin(i3, m3, mr1); {put y in tap-0}
cdelay(i3, m3); {update right delay}

dm(tx_buf + 2) = mr1; {right output sample}

{--- return from interrupt ---}

rti;

.include <c:\adi_dsp\macros\end.dsp>; {wrapup}

The plain reverberator is an IIR comb filter with frequency response shown in Fig.
8.2.7. When the filter parametera is positive and near unity, the peak gains 1/(1−a)
become large, causing overflows. In such cases, the input must be appropriately
scaled down using the shifter before it is passed to the filter. This was not done in
the above programs, but the reader should be aware that it may need to be done.

Lab Procedure

a. Go to directory c:\adi_dsp\examples\plain, compile, link, and run the pro-
gram plain.dsp with the parameter values D = 3000 and a = 0.5. Listen to
the impulse response of the system. Speak into the mike.

(If you have a portable CD with you, change the jumpers on the EZ-KIT Lite
board, and play a CD through it. To get better sound quality, you may want
to use the stereo version plain2.dsp. In this case, you may also want to
experiment with using different values of the left and right delays.)

b. Recompile and run the program with the new feedback coefficient a = 0.25.
Listen to the impulse response. Repeat for a = 0.75. Discuss the effect of
increasing or decreasing a.

c. According to Eq. (8.2.16), the effective reverberation time constant is given by

τeff = ln ε
lna

TD, TD = DT = D/fs

For each of the above values of a, calculate τeff in seconds, assuming ε =
0.001 (which corresponds to the so-called 60-dB time constant.) Is what you
hear consistent with this expression?

4 EXPERIMENTS 41

d. According to this formula, τeff remains invariant under the replacements:

D→ 2D, a→ a2

Test if this is true by running your program and hearing the output with
D = 6000 and a = 0.52 = 0.25 and comparing it with the case D = 3000 and
a = 0.5. Repeat the comparison also with D = 1500 and a = √0.5 = 0.7071.

4.6. Allpass Reverb

Like the plain reverberator, an allpass reverberator can be used as an elementary
building block for building more complicated reverberation algorithms. It is given
by Eq. (8.2.25) of the text [1] and shown in Fig. 8.2.17. Its I/O equation and transfer
function are:

y(n)= ay(n−D)−ax(n)+x(n−D), H(z)= −a+ z−D
1− az−D

Its sample processing algorithm using a circular delay-line buffer is given by Eq. (8.2.14)
of Ref. [1]:

x
s0

sD

z-D

y

a

-a for each input sample x do:
sD = tap(D,w,p,D)
s0 = x+ asD
y = −as0 + sD
∗p = s0

cdelay(D,w,&p)

The program allpass.dsp is the translation to assembly code:

{allpass.dsp - allpass reverb - canonical realization}
{Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996}

{Based on allpass.c of Introduction to Signal Processing.
Sample processing algorithm from Eq.(8.2.30) and Fig. 8.2.17:

for each x do:
sD = tap(D, w, p, D) get D-th tap
s0 = x + a * sD input to delay line
y = -a * s0 + sD filter output
*p = s0 put input to delay line
celay(D, w, &p) update delay line

}

{--- define sampling rate in kHz: --}
{0xc850 = 8 | 0xc851 = 5.5125 | 0xc852 = 16 }
{0xc853 = 11.025 | 0xc854 = 27.42857 | 0xc855 = 18.9 }

.const fs = 0xc850; {0xc856 = 32 | 0xc857 = 22.05 | 0xc859 = 37.8 }
{0xc85b = 44.1 | 0xc85c = 48 | 0xc85d = 33.075}
{0xc85e = 9.6 | 0xc85f = 6.615 }

{---}

4 EXPERIMENTS 42

.include <c:\adi_dsp\macros\begin.dsp>; {initializations and DSP macros}

{--- define constants, variables, and buffers ----------------------------}

.const a = 0x4000; {feedback coefficient a = 0.50}

.const D = 3000; {TD = D/fs = 3/8 = 0.375 sec}

.var/dm/circ w[D+1]; {delay-line buffer}

i2 = ^w; L2 = %w; {delay-line buffer pointer and length}

zero(i2, m2, L2); {clear delay line}

{--- start processing input samples --------------------------------------}

wait: idle; jump wait; {wait for interrupt and loop forever}
{interrupt service routine starts here}

input_samples: ena sec_reg; {enable secondary register set}

{--- read input samples from codec ---------------------------------------}

ax1 = dm(rx_buf + 1); {left input sample}
mx1 = dm(rx_buf + 2); {right input sample}

{--- sample processing algorithm --- process right channel only ----------}

mr = 0;
mr1 = mx1; {mr = x = input}

my0 = a;
tap(i2, m2, D, mx0); {mx0 = sD = D-th tap}
mr = mr + mx0 * my0 (rnd); {mr = s0 = x + a * sD}

tapin(i2, m2, mr1); {put s0 in tap-0}
cdelay(i2, m2); {update delay}

mr = mr1 * my0 (rnd); {mr = a * s0}
ay0 = mx0; {ay0 = sD}
ar = ay0 - mr1; {ar = y = sD - a * s0}

{--- write output samples to codec ---------------------------------------}

dm(tx_buf + 1) = ar; {left output sample}
dm(tx_buf + 2) = ar; {right output sample}

{--- return from interrupt ---}

rti;

.include <c:\adi_dsp\macros\end.dsp>; {wrapup}

The program allpass2.dsp is the implementation in stereo:

{allpass2.dsp - allpass reverb in stereo}
{Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996}

{Based on allpass.c of Introduction to Signal Processing.
Sample processing algorithm from Eq.(8.2.30) and Fig.8.2.17:

for each x do:

4 EXPERIMENTS 43

sD = tap(D, w, p, D) get D-th tap
s0 = x + a * sD input to delay line
y = -a * s0 + sD filter output
*p = s0 put input to delay line
celay(D, w, &p) update delay line

}

{--- define sampling rate in kHz: --}
{0xc850 = 8 | 0xc851 = 5.5125 | 0xc852 = 16 }
{0xc853 = 11.025 | 0xc854 = 27.42857 | 0xc855 = 18.9 }

.const fs = 0xc850; {0xc856 = 32 | 0xc857 = 22.05 | 0xc859 = 37.8 }
{0xc85b = 44.1 | 0xc85c = 48 | 0xc85d = 33.075}
{0xc85e = 9.6 | 0xc85f = 6.615 }

{---}

.include <c:\adi_dsp\macros\begin.dsp>; {initializations and DSP macros}

{--- define constants, variables, and buffers ----------------------------}

.const aL = 0x4000; {left feedback coefficient aL = 0.50}

.const DL = 3000; {left TD = D/fs = 3/8 = 0.375 sec}

.const aR = 0x4000; {right feedback coefficient aR = 0.50}

.const DR = 3000; {right TD = D/fs = 3/8 = 0.375 sec}

.var/dm/circ wL[DL+1]; {left delay-line buffer}

.var/dm/circ wR[DR+1]; {right delay-line buffer}

i2 = ^wL; L2 = %wL; {left delay buffer pointer and length}
i3 = ^wR; L3 = %wR; {right delay buffer pointer and length}

zero(i2, m2, L2); {clear left delay line}
zero(i3, m3, L3); {clear right delay line}

{--- start processing input samples --------------------------------------}

wait: idle; jump wait; {wait for interrupt and loop forever}
{interrupt service routine starts here}

input_samples: ena sec_reg; {enable secondary register set}

{--- read input samples from codec ---------------------------------------}

ax1 = dm(rx_buf + 1); {left input sample}
mx1 = dm(rx_buf + 2); {right input sample}

{--- sample processing algorithm for left channel -----------------------}

mr = 0;
mr1 = ax1; {mr = x = left input}

my0 = aL;
tap(i2, m2, DL, mx0); {mx0 = sD = D-th tap}
mr = mr + mx0 * my0 (rnd); {mr = s0 = x + a * sD}

tapin(i2, m2, mr1); {put s0 in tap-0}
cdelay(i2, m2); {update left delay}

mr = mr1 * my0 (rnd); {mr = a * s0}

4 EXPERIMENTS 44

ay0 = mx0; {ay0 = sD}
ar = ay0 - mr1; {ar = y = sD - a * s0}

dm(tx_buf + 1) = ar; {write left output to codec}

{--- sample processing algorithm for right channel -----------------------}

mr = 0;
mr1 = mx1; {mr = x = right input}

my0 = aR;
tap(i3, m3, DR, mx0); {mx0 = sD = D-th tap}
mr = mr + mx0 * my0 (rnd); {mr = s0 = x + a * sD}

tapin(i3, m3, mr1); {put s0 in tap-0}
cdelay(i3, m3); {update right delay}

mr = mr1 * my0 (rnd); {mr = a * s0}
ay0 = mx0; {ay0 = sD}
ar = ay0 - mr1; {ar = y = sD - a * s0}

dm(tx_buf + 2) = ar; {write right output to codec}

{--- return from interrupt ---}

rti;

.include <c:\adi_dsp\macros\end.dsp>; {wrapup}

Although the overall frequency response of the allpass reverberator is unity,
the intermediate stage of computing the recursive part s0 can overflow because
this part is just like the plain reverb and its peak gain is 1/(1− a).

The allpass reverberator can also be implemented in its transpose realization
form, which avoids overflows better than the canonical form. It is depicted below
together with its sample processing algorithm:

x y

sD

s0

−a

a

z-D

for each input x do:
sD = tap(D,w,p,D)
y = sD − ax
∗p = s0 = x+ ay
cdelay(D,w,&p)

The program allpass3.dsp is the assembly code implementation:

{allpass3.dsp - allpass reverb - transpose realization}
{Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996}

{Based on allpass.c of Introduction to Signal Processing.
Sample processing algorithm from Eq.(8.2.30) and Fig.8.2.17:

for each x do:
sD = tap(D, w, p, D) get D-th tap
s0 = x + a * sD input to delay line
y = -a * s0 + sD filter output

4 EXPERIMENTS 45

*p = s0 put input to delay line
celay(D, w, &p) update delay line

}

{--- define sampling rate in kHz: --}
{0xc850 = 8 | 0xc851 = 5.5125 | 0xc852 = 16 }
{0xc853 = 11.025 | 0xc854 = 27.42857 | 0xc855 = 18.9 }

.const fs = 0xc850; {0xc856 = 32 | 0xc857 = 22.05 | 0xc859 = 37.8 }
{0xc85b = 44.1 | 0xc85c = 48 | 0xc85d = 33.075}
{0xc85e = 9.6 | 0xc85f = 6.615 }

{---}

.include <c:\adi_dsp\macros\begin.dsp>; {initializations and DSP macros}

{--- define constants, variables, and buffers ----------------------------}

.const a = 0x4000; {feedback coefficient a = 0.50}

.const D = 3000; {TD = D/fs = 3/8 = 0.375 sec}

.var/dm/circ w[D+1]; {delay-line buffer}

i2 = ^w; L2 = %w; {delay-line buffer pointer and length}

zero(i2, m2, L2); {clear delay line}

{--- start processing input samples --------------------------------------}

wait: idle; jump wait; {wait for interrupt and loop forever}
{interrupt service routine starts here}

input_samples: ena sec_reg; {enable secondary register set}

{--- read input samples from codec ---------------------------------------}

ax1 = dm(rx_buf + 1); {left input sample}
mx1 = dm(rx_buf + 2); {right input sample}

{--- sample processing algorithm --- process right channel only ----------}

mr = 0;

tap(i2, m2, D, mr1); {mr = sD = D-th tap}

my1 = a;
mr = mr - mx1 * my1 (rnd); {mr = y = sD - a * x}

sr1 = mr1; {sr1 = y}

mr = 0;
mr1 = mx1; {mr = x}

mr = mr + sr1 * my1 (rnd); {mr = s0 = x + a * y}

tapin(i2, m2, mr1); {put s0 in tap-0}
cdelay(i2, m2); {update delay}

{--- write output samples to codec ---------------------------------------}

dm(tx_buf + 1) = sr1; {left output sample}
dm(tx_buf + 2) = sr1; {right output sample}

4 EXPERIMENTS 46

{--- return from interrupt ---}

rti;

.include <c:\adi_dsp\macros\end.dsp>; {wrapup}

Lab Procedure

a. Go to directory c:\adi_dsp\examples\allpass, compile, link, and run the
program allpass.dsp with the parameter values D = 3000 and a = 0.5.
Repeat with a = 0.9.

Listen to the impulse response of the system. Speak into the mike. Compare
the output sound with that of the plain reverberator.

b. As in the previous experiment, compare the 60-dB time constants of the case
D = 6000 and a = 0.52 and the case D = 3000 and a = 0.5.

c. Repeat part (a) using the transposed form implemented by the program all-
pass3.dsp. Compare the output to that of allpass.dsp.

4.7. Lowpass Reverb

The lowpass reverberator of this experiment is shown in Fig. 8.2.21 of Ref. [1].
Setting a = −a1, the corresponding sample processing algorithm is:

for each input sample x do:
sD = tap(D,w,p,D)
v0 = av1 + sD
u = b0v0 + b1v1

y = x+ u
v1 = v0

∗p = y
cdelay(D,w,&p)

The following program lowpass.dsp is an implementation.

{lowpass.dsp - lowpass reverb}
{Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996}

{Based on lowpass.c of Introduction to Signal Processing.
Sample processing algorithm from Eq.(8.2.34) and Fig.8.2.21:

for each input x do:
sD = tap(D, w, p, D) get D-th tap
v0 = a * v1 + sD input to unit delay
u = b0 * v0 + b1 * v1 output of feedback filter
y = x + u filter output
v1 = v0 update unit delay
*p = y input to D-fold delay
cdelay(D, w, &p) update D-fold delay

4 EXPERIMENTS 47

}

{--- define sampling rate in kHz: --}
{0xc850 = 8 | 0xc851 = 5.5125 | 0xc852 = 16 }
{0xc853 = 11.025 | 0xc854 = 27.42857 | 0xc855 = 18.9 }

.const fs = 0xc850; {0xc856 = 32 | 0xc857 = 22.05 | 0xc859 = 37.8 }
{0xc85b = 44.1 | 0xc85c = 48 | 0xc85d = 33.075}
{0xc85e = 9.6 | 0xc85f = 6.615 }

{---}

.include <c:\adi_dsp\macros\begin.dsp>; {initializations and DSP macros}

{--- define constants, variables, and buffers ----------------------------}

.var/dm v1; {state of first-order feedback filter}

.const a = 0x4000; {a = 0.50}

.const b0 = 0x199a; {b0 = 0.20}

.const b1 = 0x0ccd; {b1 = 0.10}

.const D = 3000; {TD = D/fs = 3/8 = 0.375 sec}

.var/dm/circ w[D+1]; {circular delay line}

i2 = ^w; L2 = %w; {delay-line buffer pointer and length}

ax0 = 0;
dm(v1) = ax0; {clear feedback delay, v1 = 0}
zero(i2, m2, L2); {clear delay line}

{--- start processing input samples --------------------------------------}

wait: idle; jump wait; {wait for interrupt and loop forever}
{interrupt service routine starts here}

input_samples: ena sec_reg; {enable secondary register set}

{--- read input samples from codec ---------------------------------------}

ax1 = dm(rx_buf + 1); {left input sample}
mx1 = dm(rx_buf + 2); {right input sample}

{--- sample processing algorithm --- process right channel only ----------}

tap(i2, m2, D, mr1); {mr1 = sD = D-th tap}

mx0 = a;
my1 = dm(v1); {state v1}
mr = mr + mx0 * my1 (rnd); {mr = v0 = sD + a * v1}
if mv sat mr;
sr0 = mr1; {save v0 for later updating v1}

my0 = b0;
mr = mr1 * my0 (ss); {mr = b0 * v0}
mx0 = b1;
mr = mr + mx0 * my1 (rnd); {mr = u = b0 * v0 + b1 * v1}
if mv sat mr;

ay1 = mx1; {ay1 = x = input}
ar = mr1 + ay1; {ar = y = x + u = output}

4 EXPERIMENTS 48

dm(v1) = sr0; {update lowpass filter, v1 = v0}
tapin(i2, m2, ar); {put y in tap-0}
cdelay(i2, m2); {update delay}

{--- write output samples to codec ---------------------------------------}

dm(tx_buf + 1) = ar; {left output sample}
dm(tx_buf + 2) = ar; {right output sample}

{--- return from interrupt ---}

rti;

.include <c:\adi_dsp\macros\end.dsp>; {wrapup}

Lab Procedure

a. Go to the directory c:\adi_dsp\examples\lowpass. Using the parameters
D = 3000, a = 0.5, b0 = 0.20, b1 = 0.10, compile and run this program.
Listen to its impulse response. Speak into the mike. Notice how successive
echoes get more and more mellow as they circulate through the lowpass filter.

b. Try the caseD = 20, a = 0, b0 = b1 = 0.49. You will hear a guitar-like sound.
Repeat for D = 40 and D = 80. What do you hear? We will encounter these
cases again in making a model of a guitar string.

4.8. Schroeder’s Reverb

A more realistic reverberation effect can be achieved using Schroeder’s model of
reverberation, which consists of several plain reverb units in parallel, followed by
several allpass units in series. An example is shown in Fig. 8.2.18 of the text
[1]. Its sample processing algorithm is given by Eq. (8.2.31) of [1]. The program
reverb.dsp is an implementation:

{reverb.dsp - Schroeder’s reverberator}
{Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996}

{Based on Fig.8.2.18 of Introduction to Signal Processing.
Sample processing algorithm is given by Eq.(8.2.31) and the code is
taken from plain.dsp and allpass.dsp.}

{--- choose sampling rate in kHz: --}
{0xc850 = 8 | 0xc851 = 5.5125 | 0xc852 = 16 }
{0xc853 = 11.025 | 0xc854 = 27.42857 | 0xc855 = 18.9 }

.const fs = 0xc85b; {0xc856 = 32 | 0xc857 = 22.05 | 0xc859 = 37.8 }
{0xc85b = 44.1 | 0xc85c = 48 | 0xc85d = 33.075}
{0xc85e = 9.6 | 0xc85f = 6.615 }

{---}

.include <c:\adi_dsp\macros\begin.dsp>; {initializations and DSP macros}

{--- define constants, variables, and buffers ----------------------------}

4 EXPERIMENTS 49

.const b1 = 0x7fff; {b1 = 0.9999}

.const b2 = 0x7333; {b2 = 0.90}

.const b3 = 0x6666; {b3 = 0.80}

.const b4 = 0x599a; {b4 = 0.70}

.const a1 = 0x70a4; {a1 = 0.88}

.const a2 = 0x70a4; {a2 = 0.88}

.const a3 = 0x70a4; {a3 = 0.88}

.const a4 = 0x70a4; {a4 = 0.88}

.const a5 = 0x70a4; {a5 = 0.88}

.const a6 = 0x70a4; {a6 = 0.88}

.const D1 = 1759;

.const D2 = 1949;

.const D3 = 2113;

.const D4 = 2293;

.const D5 = 307;

.const D6 = 313;

.var/dm/circ w1[D1 + 1];

.var/dm/circ w2[D2 + 1];

.var/dm/circ w3[D3 + 1];

.var/dm/circ w4[D4 + 1];

.var/dm/circ w5[D5 + 1];

.var/dm/circ w6[D6 + 1];

.var/dm x[5]; {dm(x) = input x, dm(x+i) = parallel outputs x_i}

i2 = ^w1; L2 = %w1;
i3 = ^w2; L3 = %w2;
i4 = ^w3; L4 = %w3;
i5 = ^w4; L5 = %w4;
i6 = ^w5; L6 = %w5;
i7 = ^w6; L7 = %w6;

zero(i2, m2, L2);
zero(i3, m3, L3);
zero(i4, m4, L4);
zero(i5, m5, L5);
zero(i6, m6, L6);
zero(i7, m7, L7);

{--- start processing input samples --------------------------------------}

wait: idle; jump wait; {wait for interrupt and loop forever}
{interrupt service routine starts here}

input_samples: ena sec_reg; {enable secondary register set}

{--- read input samples from codec ---------------------------------------}

ax1 = dm(rx_buf + 1); {left input sample}
mx1 = dm(rx_buf + 2); {right input sample}

{--- sample processing algorithm --- process right channel only ----------}

si = mx1; {read current input into SI}
sr = ashift si by -3 (hi); {scale x down by a factor of 8}
dm(x) = sr1; {save x}

4 EXPERIMENTS 50

{--- plain-1 ---}

mr = 0;
mr1 = dm(x); {mr = x = input}

mx1 = a1;
tap(i2, m2, D1, my1); {my1 = sD1 = D1-th tap}
mr = mr + mx1 * my1 (rnd); {mr = x1 = x + a1 * sD1}

tapin(i2, m2, mr1); {put x1 into tap-0}
cdelay(i2, m2); {update delay}

dm(x + 1) = mr1; {save x1 for later usage}

{--- plain-2 ---}

mr = 0;
mr1 = dm(x); {mr = x = input}

mx1 = a2;
tap(i3, m3, D2, my1); {my1 = sD2 = D2-th tap}
mr = mr + mx1 * my1 (rnd); {mr = x2 = x + a2 * sD2}

tapin(i3, m3, mr1); {put x2 into tap-0}
cdelay(i3, m3); {update delay}

dm(x + 2) = mr1; {save x2 for later usage}

{--- plain-3 ---}

mr = 0;
mr1 = dm(x); {mr = x = input}

mx1 = a3;
tap(i4, m4, D3, my1); {my1 = sD3 = D3-th tap}
mr = mr + mx1 * my1 (rnd); {mr = x3 = x + a3 * sD3}

tapin(i4, m4, mr1); {put x3 into tap-0}
cdelay(i4, m4); {update delay}

dm(x + 3) = mr1; {save x3 for later usage}

{--- plain-4 ---}

mr = 0;
mr1 = dm(x); {mr = x = input}

mx1 = a4;
tap(i5, m5, D4, my1); {my1 = sD4 = D4-th tap}
mr = mr + mx1 * my1 (rnd); {mr = x4 = x + a4 * sD4}

tapin(i5, m5, mr1); {put x4 into tap-0}
cdelay(i5, m5); {update delay}

dm(x + 4) = mr1; {save x4 for later usage}

{--- combine parallel outputs of plain sections --------------------------}

4 EXPERIMENTS 51

mr = 0;
mx0 = b1; my0 = dm(x+1);
mr = mr + mx0 * my0 (ss); {mr = b1 * x1}

mx0 = b2; my0 = dm(x+2);
mr = mr + mx0 * my0 (ss); {mr = b1 * x1 + b2 * x2}

mx0 = b3; my0 = dm(x+3);
mr = mr + mx0 * my0 (ss); {mr = b1 * x1 + b2 * x2 + b2 * x2}

mx0 = b4; my0 = dm(x+4);
mr = mr + mx0 * my0 (rnd); {x5 = b1*x1 + b2*x2 + b2*x2 + b4*x4}
if mv sat mr; {mr = x5}

{--- allpass-1 ---}

my0 = a5;
tap(i6, m6, D5, mx0); {mx0 = sD5 = D5-th tap}
mr = mr + mx0 * my0 (rnd); {mr = s05 = x5 + a5 * sD5}

tapin(i6, m6, mr1); {put s05 in tap-0 of delay-D5}
cdelay(i6, m6); {update delay}

mr = mr1 * my0 (rnd); {mr = a5 * s05}
ay0 = mx0; {ay0 = sD5}
ar = ay0 - mr1; {ar = x6 = sD5 - a5 * s05}

{--- allpass-2 ---}

mr = 0;
mr1 = ar; {mr = x6 = input}

my0 = a6;
tap(i7, m7, D6, mx0); {mx0 = sD6 = D6-th tap}
mr = mr + mx0 * my0 (rnd); {mr = s60 = x6 + a6 * sD6}

tapin(i7, m7, mr1); {put s06 in tap-0}
cdelay(i7, m7); {update delay}

mr = mr1 * my0 (rnd); {mr = a6 * s06}
ay0 = mx0; {ay0 = sD6}
ar = ay0 - mr1; {ar = y = sD6 - a6 * s06}

{--- write output samples to codec ---------------------------------------}

dm(tx_buf + 1) = ar; {left output sample}
dm(tx_buf + 2) = ar; {right output sample}

{--- return from interrupt ---}

rti;

.include <c:\adi_dsp\macros\end.dsp>; {wrapup}

There are six multiple delays each requiring its own circular buffer and DAG pointer.

4 EXPERIMENTS 52

Lab Procedure

a. Go to the directory c:\adi_dsp\examples\reverb. Compile and run this
program. Listen to its impulse response and speak into the mike.

b. What are the feedback delays of each unit in msec? Replace all the delays by
double their values, compile, and run again. Compare the output with that of
part (a). Repeat when you triple all the delays. (Note that you can just replace
the constant definitions by .const D1 = 2*291;, etc.)

c. Repeat parts (a, b) with the following value of the feedback multiplier a=0x7000.
(What is its decimal value?)

d. On occasion, you can hear quantization overflow effects, especially when the
input gets too strong. Introduce appropriate scaling factors for each plain re-
verb filter and replace the allpass filters by their transposed forms. Recompile
and run. Have you managed to eliminate the overflow effects?

4.9. Stereo Reverb

In several of the previous experiments, we considered processing in stereo. In those
cases, the left and right channels were processed completely independently of each
other. In this experiment, we allow the cross-coupling of the two channels, so that
the reverb characteristics of one channel influences those of the other.

An example of such system is given in Problems 8.22 and 8.23 and depicted
in Fig. 8.4.1 of the text [1]. Here, we assume that the feedback filters are plain
multiplier gains, so that

GL(z)= aL, GR(z)= aR
Each channel has its own delay-line buffer and circular pointer. The sample

processing algorithm is modified now to take in a pair of stereo inputs and produce
a pair of stereo outputs:

for each input stereo pair xL, xR do:
sLL = tap(L,wL, pL, L)
sRR = tap(R,wR, pR,R)
yL = cLxL + sLL
yR = cRxR + sRR
∗pL = sL0 = bLxL + aLsLL + dRsRR
∗pR = sR0 = bRxR + aRsRR + dLsLL
cdelay(L,wL,&pL)
cdelay(R,wR,&pR)

where L and R denote the left and right delays. Cross-coupling between the chan-
nels arises because of the coefficientsdL anddR. The following program stereo.dsp
is an implementation:

4 EXPERIMENTS 53

{stereo.dsp - stereo delay effects with cross-feedback}
{Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996}

{Based on Fig.8.4.1 of Introduction to Signal Processing.
Assuming the feedback filters are plain multipliers, GL(z)=aL,
GR(z)=aR, the sample processing algorithm is:

for each pair xL,xR do:
sLL = tap(L, wL, pL, L) L-th tap of left delay
sRR = tap(R, wR, pR, R) R-th tap of right delay
yL = cL * xL + sLL left output
yR = cR * xR + sRR right output
*pL = bL * xL + aL * sLL + dR * sRR input to left delay
*pR = bR * xR + aR * sRR + dL * sLL input to right delay
cdelay(L, wL, &pL) update left delay
cdelay(R, wR, &pR) update right delay

}

{--- define sampling rate in kHz: --}
{0xc850 = 8 | 0xc851 = 5.5125 | 0xc852 = 16 }
{0xc853 = 11.025 | 0xc854 = 27.42857 | 0xc855 = 18.9 }

.const fs = 0xc850; {0xc856 = 32 | 0xc857 = 22.05 | 0xc859 = 37.8 }
{0xc85b = 44.1 | 0xc85c = 48 | 0xc85d = 33.075}
{0xc85e = 9.6 | 0xc85f = 6.615 }

{---}

.include <c:\adi_dsp\macros\begin.dsp>; {initializations and DSP macros}

{--- define constants, variables, and buffers ----------------------------}

.const aL = 0x0000; {aL = 0 - left self-feedback}

.const aR = 0x0000; {aR = 0 - right self-feedback}

.const bL = 0x6666; {bL = 0.8 - left delay gain}

.const bR = 0x6666; {bR = 0.8 - right delay gain}

.const cL = 0x4000; {cL = 0.5 - left direct path gain}

.const cR = 0x4000; {cR = 0.5 - right direct path gain}

.const dL = 0x4000; {dL = 0.5 - cross feedback from L to R}

.const dR = 0x4000; {dR = 0.5 - cross feedback from R to L}

.const L = 3000; {TL = L/fs = 3/8 = 0.375 sec}

.const R = 3000; {TR = R/fs = 3/8 = 0.375 sec}

.var/dm/circ wL[L+1]; {left delay-line buffer}

.var/dm/circ wR[R+1]; {right delay-line buffer}

i2 = ^wL; L2 = %wL; {delay-line buffer pointer and length}
i3 = ^wR; L3 = %wR;

zero(i2, m2, L2); {clear delay line}
zero(i3, m3, L3);

{--- start processing input samples --------------------------------------}

wait: idle; jump wait; {wait for interrupt and loop forever}
{interrupt service routine starts here}

input_samples: ena sec_reg; {enable secondary register set}

4 EXPERIMENTS 54

{--- read input samples from codec ---------------------------------------}

mx0 = dm(rx_buf + 1); {left input sample}
mx1 = dm(rx_buf + 2); {right input sample}

{--- sample processing algorithm ---}

tap(i2, m2, L, sr0); {sr0 = sLL = L-th tap of left delay}
tap(i3, m3, R, sr1); {sr1 = sRR = R-th tap of right delay}

mr = 0;
mr1 = sr0; {mr1 = sLL}
my0 = cL;
mr = mr + mx0 * my0 (rnd); {mr = yL = cL * xL + sLL = left output}
if mv sat mr;

dm(tx_buf + 1) = mr1; {send left output to codec}

mr = 0;
mr1 = sr1; {mr1 = sRR}
my0 = cR;
mr = mr + mx1 * my0 (rnd); {mr = yR = cR * xR + sRR = right output}
if mv sat mr;

dm(tx_buf + 2) = mr1; {send right output to codec}

my0 = bL;
mr = mx0 * my0 (ss); {mr = bL * xL}
my0 = aL;
mr = mr + sr0 * my0 (ss); {mr = bL * xL + aL * sLL}
my0 = dR;
mr = mr + sr1 * my0 (rnd); {mr = bL * xL + aL * sLL + dR * sRR}
if mv sat mr;
tapin(i2, m2, mr1); {input to left delay}
cdelay(i2, m2); {update left delay}

my0 = bR;
mr = mx1 * my0 (ss); {mr = bR * xR}
my0 = aR;
mr = mr + sr1 * my0 (ss); {mr = bR * xR + aR * sRR}
my0 = dL;
mr = mr + sr0 * my0 (rnd); {mr = bR * xR + aR * sRR + dL * sLL}
if mv sat mr;
tapin(i3, m3, mr1); {input to right delay}
cdelay(i3, m3); {update right delay}

{--- return from interrupt ---}

rti;

.include <c:\adi_dsp\macros\end.dsp>; {wrapup}

Lab Procedure

a. Go to the directory c:\adi_dsp\examples\stereo. Compile and run this
program. Even though the self-feedback multipliers were set to zero aL =

4 EXPERIMENTS 55

aR = 0, you will hear repeated echoes bouncing back and forth between the
speakers because of the cross-coupling.

b. Next try the case dL �= 0, dR = 0. And then, dL = 0, dR �= 0. These choices
decouple the influence of one channel but not that of the other.

c. Next, introduce some self-feedback, such as aL = aR = 0.5. Repeat part (a).

4.10. Reverberating Delay

A prototypical delay effect found in most commercial audio effects processors was
discussed in Problem 8.17 of the text [1]. Its transfer function is:

H(z)= c+ b z−D

1− az−D
Its block diagram realization and corresponding sample processing algorithm using
a circular delay-line buffer are given below:

x y
b

c

a

z-D
s0 sD

for each input x do:
sD = tap(D,w,p,D)
y = cx+ sD
∗p = s0 = bx+ asD
cdelay(D,w,&p)

The following program revdel.dsp is an implementation:

{revdel.dsp - reverberating delay with direct path}
{Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996}

{Based on Problem 8.17 of Introduction to Signal Processing.
Sample processing algorithm:

for each input x do:
sD = tap(D, w, p, D); D-th tap output of delay
y = sD + c * x; c = direct path gain, y = output
s0 = b * x + a * sD; b = gain before delay
*p = s0; put s0 into delay’s tap-0
cdelay(D, w, &p); update delay

}

{--- define sampling rate in kHz: --}
{0xc850 = 8 | 0xc851 = 5.5125 | 0xc852 = 16 }
{0xc853 = 11.025 | 0xc854 = 27.42857 | 0xc855 = 18.9 }

.const fs = 0xc850; {0xc856 = 32 | 0xc857 = 22.05 | 0xc859 = 37.8 }
{0xc85b = 44.1 | 0xc85c = 48 | 0xc85d = 33.075}
{0xc85e = 9.6 | 0xc85f = 6.615 }

{---}

.include <c:\adi_dsp\macros\begin.dsp>; {initializations and DSP macros}

{--- define constants, variables, and buffers ----------------------------}

4 EXPERIMENTS 56

.const a = 0x4000; {a = 0.5} {feedback gain}

.const b = 0x7fff; {b = 0.9999} {gain before delay}

.const c = 0x0000; {c = 0} {gain for direct sound}

.const D = 6000; {TD = D/fs = 6/8 = 0.75 sec}

.var/dm/circ w[D+1]; {delay-line buffer}

i2 = ^w; L2 = %w; {buffer pointer and length}

zero(i2, m2, L2); {clear delay line}

{--- start processing input samples --------------------------------------}

wait: idle; jump wait; {wait for interrupt and loop forever}
{interrupt service routine starts here}

input_samples: ena sec_reg; {enable secondary register set}

{--- read input samples from codec ---------------------------------------}

ax1 = dm(rx_buf + 1); {left input sample}
mx1 = dm(rx_buf + 2); {right input sample}

{--- sample processing algorithm --- process right channel only ----------}

tap(i2, m2, D, sr1); {sr1 = sD}
mr1 = sr1;

my1 = c;
mr = mr + mx1 * my1 (rnd); {mr = y = sD + c * x}
if mv sat mr;
ar = mr1; {save for output}

my1 = b;
mr = mx1 * my1 (ss); {mr = b * x}
my1 = a;
mr = mr + sr1 * my1 (rnd); {mr = s0 = b * x + a * sD}
if mv sat mr;

tapin(i2, m2, mr1); {put s0 into delay-line input}
cdelay(i2, m2); {update delay}

{--- write output samples to codec ---------------------------------------}

dm(tx_buf + 1) = ar; {left output sample}
dm(tx_buf + 2) = ar; {right output sample}

{--- return from interrupt ---}

rti;

.include <c:\adi_dsp\macros\end.dsp>; {wrapup}

Lab Procedure

a. Go to the directory c:\adi_dsp\examples\revdel. Compile and run this
program. Listen to its impulse response and speak into the mike. Here, the
direct sound path has been removed, c = 0, in order to let the echoes be more

4 EXPERIMENTS 57

clearly heard.

b. What values of b and c would you use (expressed in terms of a) in order to
implement a plain reverberator of the form:

H(z)= 1

1− az−D

For a = 0.5, calculate the proper values of b, c, and then compile and run the
program. Compare its output with that of plain.dsp.

c. Compile and run the cases a = 1, b = c = 1 and a = −1, b = −1, c = 1. What
are the transfer functions in these cases?

4.11. Multi-Delay Effects

Here, we consider the multi-delay effects processor shown in Fig. 8.2.27 of the
text [1]. We assume that the feedback filters are plain multipliers. Using two sepa-
rate circular buffers for the two delays, the block diagram realization and sample
processing algorithm are in this case:

for each input x do:
s1D1 = tap(D1,w1, p1,D1)
s2D2 = tap(D2,w2, p2,D2)
y = b0x+ b1s1D1 + b2s2D2

∗p2 = s20 = s1D1 + a2s2D2

cdelay(D2,w2,&p2)
∗p1 = s10 = x+ a1s1D1

cdelay(D1,w1,&p1)

The program multidel.dsp is an implementation.

{multidel.dsp - multi-delay effects algorithm}
{Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996}

{Based on Fig. 8.2.27 of Introduction to Signal Processing.
Assuming the feedback filters are plain multipliers, G1(z)=a1,
G2(z)=a2, and circular buffers for the two delays, the sample
processing algorithm is:

for each x do:
s1D = tap(D1, w1, p1, D1) D1-th tap output
s2D = tap(D2, w2, p2, D2) D2-th tap output

4 EXPERIMENTS 58

y = b0 * x + b1 * s1D + b2 * s2D filter output
*p2 = s20 = s1D + a2 * s2D put input s20 into delay-2
cdelay(D2, w2, &p2) update delay-2
*p1 = s10 = x + a1 * s1D put input s10 into delay-1
cdelay(D1, w1, &p1) update delay-1

}

{--- define sampling rate in kHz: --}
{0xc850 = 8 | 0xc851 = 5.5125 | 0xc852 = 16 }
{0xc853 = 11.025 | 0xc854 = 27.42857 | 0xc855 = 18.9 }

.const fs = 0xc850; {0xc856 = 32 | 0xc857 = 22.05 | 0xc859 = 37.8 }
{0xc85b = 44.1 | 0xc85c = 48 | 0xc85d = 33.075}
{0xc85e = 9.6 | 0xc85f = 6.615 }

{---}

.include <c:\adi_dsp\macros\begin.dsp>; {initializations and DSP macros}

{--- define constants, variables, and buffers ----------------------------}

.const a1 = 0x4000; {a1 = 0.50}

.const a2 = 0x3333; {a2 = 0.40}

.const b0 = 0x7fff; {b0 = 0.9999, that is, 1}

.const b1 = 0x6666; {b1 = 0.80}

.const b2 = 0x4ccd; {b2 = 0.60}

.const D1 = 3000;

.const D2 = 4000;

.var/dm/circ w1[D1+1]; {delay-1 buffer}

.var/dm/circ w2[D2+1]; {delay-2 buffer}

i2 = ^w1; L2 = %w1; {delay-line buffer pointer and length}
i3 = ^w2; L3 = %w2; {delay-line buffer pointer and length}

zero(i2, m2, L2); {clear delay-1}
zero(i3, m3, L3); {clear delay-2}

{--- start processing input samples --------------------------------------}

wait: idle; jump wait; {wait for interrupt and loop forever}
{interrupt service routine starts here}

input_samples: ena sec_reg; {enable secondary register set}

{--- read input samples from codec ---------------------------------------}

ax1 = dm(rx_buf + 1); {left input sample}
mx1 = dm(rx_buf + 2); {right input sample}

{--- sample processing algorithm --- process right channel only ----------}

tap(i2, m2, D1, sr0); {sr0 = s1D = D1-th tap}
tap(i3, m3, D2, sr1); {sr1 = s2D = D2-th tap}

my0 = b0;
mr = mx1 * my0 (ss); {mr = b0 * x}

my0 = b1;

4 EXPERIMENTS 59

mr = mr + sr0 * my0 (ss); {mr = b0 * x + b1 * s1D}

my0 = b2;
mr = mr + sr1 * my0 (rnd); {mr = y = b0 * x + b1 * s1D + b2 * s2D}
if mv sat mr;

{--- write output samples to codec ---------------------------------------}

dm(tx_buf + 1) = mr1; {left output sample}
dm(tx_buf + 2) = mr1; {right output sample}

{--- sample processing algorithm (cont’d) --------------------------------}

mr = 0;
mr1 = sr0; {mr = s1D}
my0 = a2;
mr = mr + sr1 * my0 (rnd); {mr = s20 = s1D + a2 * s2D}
if mv sat mr;
tapin(i3, m3, mr1); {put s20 into tap-0 of delay-2}
cdelay(i3, m3); {update delay-2}

mr = 0;
mr1 = mx1; {mr = x}
my0 = a1;
mr = mr + sr0 * my0 (rnd); {mr = s10 = x + a1 * s1D}
if mv sat mr;
tapin(i2, m2, mr1); {put s10 into tap-0 of delay-1}
cdelay(i2, m2); {update delay-1}

{--- return from interrupt ---}

rti;

.include <c:\adi_dsp\macros\end.dsp>; {wrapup}

Lab Procedure

a. Go to the directory c:\adi_dsp\examples\multidel. Compile and run this
program. Listen to its impulse response and speak into the mike.

b. Set b1 = 0 and run again. Then, set b2 = 0 and run. Can you explain what
you hear?

4.12. Multitap Delay Effects

This experiment is based on the multi-tap delay line effects processor of Fig. 8.2.29
of the text [1]. It uses a common circular delay-line buffer of order D1+D2, which
is tapped out at taps D1 and D1+D2. The sample processing algorithm is:

4 EXPERIMENTS 60

x y

b0

b1
a1

a2 b2

z-D1

z-D2

s0

s1

s2

for each input sample x do:
s1 = tap(D1 +D2,w, p,D1)
s2 = tap(D1 +D2,w, p,D1 +D2)
y = b0x+ b1s1 + b2s2

s0 = x+ a1s1 + a2s2

∗p = s0

cdelay(D1 +D2,w,&p)

The following program multitap.dsp is an assembly language implementation:

{multitap.dsp - multitap delay line with feedforward and feedback}
{Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996}

{Based on Fig. 8.2.29 of Introduction to Signal Processing.
The sample processing algorithm is:

for each x do:
s1 = tap(D1+D2, w, p, D1) D1-th tap output
s2 = tap(D1+D2, w, p, D1+D2) (D1+D2)-th tap output
y = b0 * x + b1 * s1 + b2 * s2 filter output
*p = s0 = x + a1 * s1 + a2 * s2 put input s0 into delay
cdelay(D1+D2, w, &p) update delay

}

{--- define sampling rate in kHz: --}
{0xc850 = 8 | 0xc851 = 5.5125 | 0xc852 = 16 }
{0xc853 = 11.025 | 0xc854 = 27.42857 | 0xc855 = 18.9 }

.const fs = 0xc850; {0xc856 = 32 | 0xc857 = 22.05 | 0xc859 = 37.8 }
{0xc85b = 44.1 | 0xc85c = 48 | 0xc85d = 33.075}
{0xc85e = 9.6 | 0xc85f = 6.615 }

{---}

.include <c:\adi_dsp\macros\begin.dsp>; {initializations and DSP macros}

{--- define constants, variables, and buffers ----------------------------}

4 EXPERIMENTS 61

.const a1 = 0x199a; {a1 = 0.20}

.const a2 = 0x4000; {a2 = 0.50}

.const b0 = 0x7fff; {b0 = 0.9999, that is, 1}

.const b1 = 0x6666; {b1 = 0.80}

.const b2 = 0x4ccd; {b2 = 0.60}

.const D1 = 3000; {D1/fs = 3000/8000 = 0.375 sec}

.const D2 = 4500; {D1+D2 = 7500, 7500/8000 = 0.9375 sec}

.var/dm/circ w[D1+D2+1]; {delay-line buffer}

i2 = ^w; L2 = %w; {delay-line buffer pointer and length}

zero(i2, m2, L2); {clear delay line}

{--- start processing input samples --------------------------------------}

wait: idle; jump wait; {wait for interrupt and loop forever}
{interrupt service routine starts here}

input_samples: ena sec_reg; {enable secondary register set}

{--- read input samples from codec ---------------------------------------}

ax1 = dm(rx_buf + 1); {left input sample}
mx1 = dm(rx_buf + 2); {right input sample}

{--- sample processing algorithm --- process right channel only ----------}

tap(i2, m2, D1, sr0); {tap s1 into sr0}
tap(i2, m2, D1+D2, sr1); {tap s2 into sr1}

my0 = b0;
mr = mx1 * my0 (ss); {mr = b0 * x}
my0 = b1;
mr = mr + sr0 * my0 (ss); {mr = b0 * x + b1 * s1}
my0 = b2;
mr = mr + sr1 * my0 (rnd); {mr = y = b0 * x + b1 * s1 + b2 * s2}
if mv sat mr;

{--- write output samples to codec ---------------------------------------}

dm(tx_buf + 1) = mr1; {left output sample}
dm(tx_buf + 2) = mr1; {right output sample}

{--- sample processing algorithm (cont’d) --------------------------------}

mr = 0;
mr1 = mx1; {mr = x}
my0 = a1;
mr = mr + sr0 * my0 (ss); {mr = x + a1 * s1}
my0 = a2;
mr = mr + sr1 * my0 (rnd); {mr = s0 = x + a1 * s1 + a2 * s2}
if mv sat mr;

tapin(i2, m2, mr1); {input s0 into delay}
cdelay(i2, m2); {update delay}

4 EXPERIMENTS 62

{--- return from interrupt ---}

rti;

.include <c:\adi_dsp\macros\end.dsp>; {wrapup}

Lab Procedure

a. Go to the directory c:\adi_dsp\examples\multitap. Compile and run this
program. Listen to its impulse response and speak into the mike.

b. Repeat for the following values of the feedback parameters: a1 = a2 = 0.5,
which makes the system marginally stable with a periodic steady output (any
random noise would be grow unstable.)

Repeat also for the case a1 = a2 = 0.75, which corresponds to an unstable
filter. (Please reset the processor before the output grows too loud.)

4.13. Karplus-Strong String Algorithm

A model of a plucked string is obtained by running the lowpass reverb filter with
zero input, but with initially filling the delay line with random numbers. These
random numbers model the initial harshness of plucking the string. But, as the
random numbers recirculate through the lowpass filter, their high frequencies are
gradually removed, resulting in a sound that models the string vibration.

The model can be approximately “tuned” to a frequency f1 by picking D such
that D = fs/f1. (There are ways to “fine-tune”, but we do not consider them in
this simple experiment.) The Karplus-Strong model assumes a simple averaging
FIR filter for the lowpass feedback filter as given by Eq. (8.2.40) of the text [1]. Here,
we take the transfer function to be:

G(z)= b0(1+ z−1)

with some b0 	 0.5 to improve the stability of the closed-loop system. See text ref-
erences [108-111] for more discussion on such models. The following program gui-
tar.dsp implements the algorithm. The code is identical to that of lowpass.dsp:

{guitar.dsp - Karplus-Strong string algorithm}
{Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996}

{Based on Fig.8.2.21 and Eq.(8.2.40) of Introduction to Signal Processing.
The filtering algorithm is similar to that of lowpass reverb, with the
coefficient choices a = 0, b0 = b1 = 0.5. The length of the delay-line
is designed by tuning it to a desired frequency, i.e., D = fs/f1.
The buffer is filled with D+1 noise samples and the filter is run
with zero input. Sample processing code is the same as in lowpass.dsp.

}

{--- define sampling rate in kHz: --}
{0xc850 = 8 | 0xc851 = 5.5125 | 0xc852 = 16 }
{0xc853 = 11.025 | 0xc854 = 27.42857 | 0xc855 = 18.9 }

4 EXPERIMENTS 63

.const fs = 0xc85b; {0xc856 = 32 | 0xc857 = 22.05 | 0xc859 = 37.8 }
{0xc85b = 44.1 | 0xc85c = 48 | 0xc85d = 33.075}
{0xc85e = 9.6 | 0xc85f = 6.615 }

{---}

.include <c:\adi_dsp\macros\begin.dsp>; {initializations and DSP macros}

{--- define constants, variables, and buffers ----------------------------}

.var/dm v1; {state of first-order feedback filter}

.const a = 0x0000; {a = 0}

.const b0 = 0x3fdf; {b0 = 0.499}

.const b1 = 0x3fdf; {b1 = 0.499}

.const D = 100; {f1 = fs/D = 44100/100 = 441 Hz}

.var/dm/circ w[D+1]; {circular delay line}

i2 = ^w; L2 = %w; {delay-line buffer pointer and length}

.init w: <w.hex>; {load w with random numbers}
{w.hex copied from w440hz.hex}

ax0 = 0;
dm(v1) = ax0; {clear feedback delay, v1 = 0}

{--- start processing input samples --------------------------------------}

wait: idle; jump wait; {wait for interrupt and loop forever}
{interrupt service routine starts here}

input_samples: ena sec_reg; {enable secondary register set}

mx1 = 0; {zero input}

{--- sample processing algorithm --- (from lowpass.dsp) ------------------}

tap(i2, m2, D, mr1); {mr1 = sD = D-th tap}

mx0 = a;
my1 = dm(v1); {state v1}
mr = mr + mx0 * my1 (rnd); {mr = v0 = sD + a * v1}
if mv sat mr;
sr0 = mr1; {save v0 for later updating v1}

my0 = b0;
mr = mr1 * my0 (ss); {mr = b0 * v0}
mx0 = b1;
mr = mr + mx0 * my1 (rnd); {mr = u = b0 * v0 + b1 * v1}
if mv sat mr;

ay1 = mx1; {ay1 = x = input}
ar = mr1 + ay1; {ar = y = x + u = output}

dm(v1) = sr0; {update lowpass filter, v1 = v0}
tapin(i2, m2, ar); {put y in tap-0}
cdelay(i2, m2); {update delay}

{--- write output samples to codec ---------------------------------------}

4 EXPERIMENTS 64

dm(tx_buf + 1) = ar; {left output sample}
dm(tx_buf + 2) = ar; {right output sample}

{--- return from interrupt ---}

rti;

.include <c:\adi_dsp\macros\end.dsp>; {wrapup}

In this experiment, the sampling rate is set to 44.1 kHz and the generated sound
is the note A440, that is having frequency 440 Hz. The correct amount of delay is
then

D = fs
f1
= 44100

440
= 100

The delay line must be filled with D+1 random numbers. They were generated
as follows by the routine uran.c given in the Appendix:

uran 0 1 100 2001 | dec2hex 1.15 > w440hz.hex

where the seed value was arbitrary and the output of uran was piped into dec2hex
whose output was the hex file w440hz.hex. Similarly, the file w220hz.hex contains
twice as many random numbers which are used to generate the frequency 220 Hz.

Lab Procedure

a. Go to the directory c:\adi_dsp\examples\guitar. Set D = 100 in the pro-
gram, copy w440hz.hex into w.hex and run. The program disables the inputs
and simply outputs the re-circulating and gradually decaying random num-
bers.

b. Repeat by copying w220hz.hex into w.hex and editing the valueD = 200 into
the program. The note you hear should be an octave lower.

4.14. Wavetable Generators

Here, we present some examples of wavetable generators using the macro wav-
gen.dsp. Two wavetables can be used in combination to illustrate AM and FM
modulation.

Sinusoidal Wavetable

The first program, sine.dsp, generates a simple sinusoid.

{sine.dsp - sinusoid generated from a wavetable}
{Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996}

{Based on Sec.8.1.3 of Introduction to Signal Processing}

{--- choose sampling rate in kHz: --}

4 EXPERIMENTS 65

{0xc850 = 8 | 0xc851 = 5.5125 | 0xc852 = 16 }
{0xc853 = 11.025 | 0xc854 = 27.42857 | 0xc855 = 18.9 }

.const fs = 0xc850; {0xc856 = 32 | 0xc857 = 22.05 | 0xc859 = 37.8 }
{0xc85b = 44.1 | 0xc85c = 48 | 0xc85d = 33.075}
{0xc85e = 9.6 | 0xc85f = 6.615 }

{---}

.include <c:\adi_dsp\macros\begin.dsp>; {initializations and DSP macros}

{--- define constants, variables, and buffers ----------------------------}

.const D = 4000;

.var/dm/circ sine[D]; {min frequency f1 = fs/D = 8/4 = 2 Hz}

.init sine: <sinetbl.hex>; {load one period of the wavetable}
{generated by sinetbl.c}

.const A = 0x7fff; {A = 1 = signal amplitude}

.const c = 100; {signal frequency f = c * f1 = 200 Hz}

i6 = ^sine; L6 = %sine; {pointer for signal generator}

{--- start processing input samples --------------------------------------}

wait: idle; jump wait; {wait for interrupt and loop forever}
{interrupt service routine starts here}

input_samples: ena sec_reg; {enable secondary register set}

{--- sample processing algorithm ---}

wavgen(i6, m6, A, c, mx1); {mx1 = A * sin(2*pi*f*t)}

{--- write output samples to codec ---------------------------------------}

dm(tx_buf + 1) = mx1; {left output sample}
dm(tx_buf + 2) = mx1; {right output sample}

{--- return from interrupt ---}

rti;

.include <c:\adi_dsp\macros\end.dsp>; {wrapup}

The sinusoidal wavetable has periodD = 4000 and is read from the file sinetbl.hex,
which was generated by the DOS commands:

sinetbl 0 1 4000 > sinetbl.dec
dec2hex 1.15 < sinetbl.dec > sinetbl.hex

Therefore, the smallest frequency that can be generated by the wavetable at an 8
kHz sampling rate is f1 = fs/D = 8000/4000 = 2 Hz. Higher frequencies can be
selected by the parameter c resulting in f = cf1 = cfs/D.

At each sampling instant, the program does nothing with the codec inputs. In-
stead, it generates a sample of a sinusoid by a call to wavgen and sends it to the
codec.

4 EXPERIMENTS 66

AM Modulation

The next program, am.dsp, illustrates AM modulation. The envelope frequency is
chosen to be 2 Hz and the signal frequency 200 Hz. The AM-modulated signal is of
the form:

x(t)= A(t)sin(2πft), where A(t)= Aenv sin(2πfenvt)

A common sinusoidal wavetable, sinetbl.hex, is used to generate both the
signal and its sinusoidal envelope.

{am.dsp - AM modulation of using common wavetable}
{Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996}

{Based on Sec.8.1.3 of Introduction to Signal Processing}

{--- choose sampling rate in kHz: --}
{0xc850 = 8 | 0xc851 = 5.5125 | 0xc852 = 16 }
{0xc853 = 11.025 | 0xc854 = 27.42857 | 0xc855 = 18.9 }

.const fs = 0xc850; {0xc856 = 32 | 0xc857 = 22.05 | 0xc859 = 37.8 }
{0xc85b = 44.1 | 0xc85c = 48 | 0xc85d = 33.075}
{0xc85e = 9.6 | 0xc85f = 6.615 }

{---}

.include <c:\adi_dsp\macros\begin.dsp>; {initializations and DSP macros}

{--- define constants, variables, and buffers ----------------------------}

.const D = 4000;

.var/dm/circ sine[D]; {min frequency f1 = fs/D = 8/4 = 2 Hz}

.init sine: <sinetbl.hex>; {load one period of the wavetable}
{generated by sinetbl.c}

.const Aenv = 0x7fff; {Aenv = 1 = envelope amplitude}

.const cenv = 1; {envelope fenv = cenv * f1 = 2 Hz}

i5 = ^sine; L5 = %sine; {pointer for envelope generator}

.const c = 100; {signal frequency f = c * f1 = 200 Hz}

i6 = ^sine; L6 = %sine; {pointer for signal generator}

{--- start processing input samples --------------------------------------}

wait: idle; jump wait; {wait for interrupt and loop forever}
{interrupt service routine starts here}

input_samples: ena sec_reg; {enable secondary register set}

{--- sample processing algorithm ---}

wavgen(i5, m5, Aenv, cenv, ax1); {A(t) = Aenv * sin(2*pi*fenv*t)}
wavgen(i6, m6, ax1, c, mx1); {A(t) * sin(2*pi*f*t)}

{--- write output samples to codec ---------------------------------------}

dm(tx_buf + 1) = mx1; {left output sample}
dm(tx_buf + 2) = mx1; {right output sample}

4 EXPERIMENTS 67

{--- return from interrupt ---}

rti;

.include <c:\adi_dsp\macros\end.dsp>; {wrapup}

FM Modulation

The third program, fm.dsp, illustrates FM modulation in which the frequency of a
sinusoid is itself varying sinusoidally. The generated signal is of the form

x(t)= sin
(
2πf(t)t

)
Because the frequency of the sinusoid is passed into the wavetable generator via

the parameter c, we define the frequency f(t) in the form f(t)= c(t)fs/D, where

c(t)= c0 +Am sin(2πfmt)

We choose the modulation depth Am = 0.3c0, so that c(t) varies sinusoidally
between the limits 0.7c0 ≤ c(t)≤ 1.3c0, and therefore, the frequency will vary in
the limits 0.7f0 ≤ f(t)≤ 1.3f0, where f0 = c0fs/D. The center frequency is f0 = 200
Hz, corresponding to c0 = 100 and Am = 0.3c0 = 30.

The same wavetable, sinetbl.hex, is used to generate both the parameter c(t)
and the modulated signal x(t). The modulation frequency is fm = cmfs/D, where
cm = 1 resulting in fm = 2 Hz.

{fm.dsp - FM modulation of using common sinusoidal wavetable}
{Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996}

{Based on Sec.8.1.3 of Introduction to Signal Processing}

{--- choose sampling rate in kHz: --}
{0xc850 = 8 | 0xc851 = 5.5125 | 0xc852 = 16 }
{0xc853 = 11.025 | 0xc854 = 27.42857 | 0xc855 = 18.9 }

.const fs = 0xc850; {0xc856 = 32 | 0xc857 = 22.05 | 0xc859 = 37.8 }
{0xc85b = 44.1 | 0xc85c = 48 | 0xc85d = 33.075}
{0xc85e = 9.6 | 0xc85f = 6.615 }

{---}

.include <c:\adi_dsp\macros\begin.dsp>; {initializations and DSP macros}

{--- define constants, variables, and buffers ----------------------------}

.const D = 4000;

.var/dm/circ sine[D]; {min frequency f1 = fs/D = 8/4 = 2 Hz}

.init sine: <sinetbl.hex>; {load one period of the wavetable}
{generated by sinetbl.c}

.const Am = 30; {Am = 0.30 * c0}

.const cm = 1; {fm = cm * fs/D = 2 Hz}

i5 = ^sine; L5 = %sine; {pointer for frequency generator}

4 EXPERIMENTS 68

.const A = 0x4000; {A = 0.50 = signal amplitude}

.const c0 = 100; {signal freq f0 = c0 * f1 = 200 Hz}

i6 = ^sine; L6 = %sine; {pointer for signal generator}

{--- start processing input samples --------------------------------------}

wait: idle; jump wait; {wait for interrupt and loop forever}
{interrupt service routine starts here}

input_samples: ena sec_reg; {enable secondary register set}

{--- sample processing algorithm ---}

wavgen(i5, m5, Am, cm, ay1); {ay1 = Am * sin(2*pi*fm*t)}
ax1 = c0;
ar = ax1 + ay1; {ar = c = c0 + Am * sin(2*pi*fm*t)}
wavgen(i6, m6, A, ar, mx1); {mx1 = FM-modulated sinusoid}

{--- write output samples to codec ---------------------------------------}

dm(tx_buf + 1) = mx1; {left output sample}
dm(tx_buf + 2) = mx1; {right output sample}

{--- return from interrupt ---}

rti;

.include <c:\adi_dsp\macros\end.dsp>; {wrapup}

Lab Procedure

a. Go to directory c:\adi_dsp\examples\wavetabl. Run the program sine.dsp
and listen to the 200 Hz sinusoid. Reset the frequency to 50 Hz, recompile
and run. Keep decreasing the frequency by 10 Hz each time and determine
the lowest frequency you can hear (but, to be fair don’t increase the speaker
volume; that would compensate the attenuation introduced by your ears.)

b. Set the frequency at 4000 Hz (the Nyquist frequency.) Recompile and run. Can
you explain what you hear? Replace the sinusoidal wavetable, sinetbl.hex,
with a cosinusoidal one and repeat the experiment at the Nyquist frequency.

c. Replace the sinusoidal table sinetbl.hex with the square wavetable squar-
tbl.hex, which has period 4000 and is equal to +1 for the first half of the
period and −1 for the second half. Run the program with frequency f = 200
Hz. The wavetable amplitude was chosen to beA = 1/

√
2 in order to make the

rms value of the square wave equal to the rms value of the original sinusoid.

d. Run and listen to the program am.dsp, with the initial signal frequency of
f = 200 Hz and envelope frequency of fenv = 2 Hz. Repeat for f = 2000 Hz.
Repeat and explain what you hear for the cases: f = 200 Hz, fenv = 100 Hz.
Then, f = 200 Hz, fenv = 190 Hz. Then, f = 200 Hz, fenv = 200 Hz.

4 EXPERIMENTS 69

e. Run and hear the program fm.dsp with the following three values of the mod-
ulation depth: Am = 0.3c0, Am = c0, Am = 0.1c0. Repeat these cases when
the center frequency is changed to f0 = 2000 Hz.

f. Replace the sinusoidal wavetable with the square one, squartbl.hex, and
repeat the case f0 = 200 Hz, Am = 0.3c0. You will hear a square wave whose
frequency switches between a high and a low value two times a second.

g. Keep the square wavetable that generates the alternating frequency, but gen-
erate the signal by a sinusoidal wavetable. To do this , generate a second
sinusoidal wavetable, say of length 800, and define a circular buffer for it
and set one of the DAG registers, e.g., i6, to point to it. Then generate your
FM-modulated sinusoid using this table. The generated signal will be of the
form:

x(t)= sin
(
2πf(t)t

)
, f(t)= 2 Hz square wave

h. Rewrite the fir3.dsp program of Section 4.3 using calls to the wavetable
generator macro wavgen. Repeat part (c) of the lab procedure of that Section.

4.15. Notch Filters

In these experiments, we demonstrate the use of filtering for canceling periodic
interference. The input signal is of the form:

x(n)= s(n)+v(n)
where s(n) is the microphone input and v(n) a periodic interference signal gener-
ated internally using a wavetable generator.

Multi-Notch Filter

When the noise is periodic, its energy is concentrated at the harmonics of the fun-
damental frequency: f1, 2f1, 3f1, and so on. To cancel the entire noise component,
we must use a filter with multiple notches at these harmonics.

As discussed in Section 8.3.2 of the text [1], a simple design arises when the
period of the noise is an integral multiple of the sampling period, that is, T1 = DT,
which implies that the fundamental frequency f1 and its harmonics will be:

f1 = fs
D
, fk = kf1 = kfsD, k = 0,1,2, . . .

or, in units of radians per sample:

ω1 = 2π
D
, ωk = kω1 = 2πk

D

These are recognized as the D-th root-of-unity frequencies. The corresponding
notch filter, designed by Eqs. (8.3.26) and (8.3.27) of the text, has the form:

4 EXPERIMENTS 70

H(z)= b 1− z−D
1− az−D

To avoid overflows, we use the transposed realization of this transfer function,
whose block diagram and sample processing algorithm are shown below:

x y

sD

s0

b

a−1

z-D

for each input x do:
sD = tap(D,w,p,D)
y = bx+ sD
∗p = s0 = ay − bx
cdelay(D,w,&p)

A quick way to understand this transposed realization is to write:

H(z)= Y(z)
X(z)

= b 1− z−D
1− az−D ,

from where we obtain the I/O equation on which the block diagram is based:

Y(z)= bX(z)+z−D(aY(z)−bX(z))
In the experiment, we take the fundamental period to be 800 Hz and the sam-

pling rate 8 kHz. Thus, the period D is:

D = fs
f1
= 8000 Hz

800 Hz
= 10

The width of the notches is taken to be Δf = 50 Hz. Then, the design equations
(8.3.27) give the parameter values b = 0.91035, a = 0.8207. Their, 1.15 hex equiv-
alents are 0x7486 and 0x690d, respectively. The magnitude response of this filter
plotted over the right-half of the Nyquist interval is shown below, together with a
magnified view of the notch width at 800 Hz:

Using a square wavetable, the program notch.dsp generates a square wave of
period D = 10 and adds it to the microphone input. The resulting signal is then
filtered by the above multi-notch filter, removing the periodic noise.

4 EXPERIMENTS 71

{notch.dsp - notching comb filter canceling 800 Hz harmonics}
{Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996}

{Based on Eq.(8.3.26) and Example 8.3.9 of Introd. to Signal Processing.
Input signal is microphone input + 800 Hz square wave:

x = A0 * (mike) + A * (square wave)

To better avoid overflows, we use the transpose realization with
sample processing algorithm:

for each input x do:
sD = tap(D, w, p, D)
y = b * x + sD
*p = s0 = a * y - b * x
cdelay(D, w, &p)

}

{--- define sampling rate in kHz: --}
{0xc850 = 8 | 0xc851 = 5.5125 | 0xc852 = 16 }
{0xc853 = 11.025 | 0xc854 = 27.42857 | 0xc855 = 18.9 }

.const fs = 0xc850; {0xc856 = 32 | 0xc857 = 22.05 | 0xc859 = 37.8 }
{0xc85b = 44.1 | 0xc85c = 48 | 0xc85d = 33.075}
{0xc85e = 9.6 | 0xc85f = 6.615 }

{---}

.include <c:\adi_dsp\macros\begin.dsp>; {initializations and DSP macros}

{--- define constants, variables, and buffers ----------------------------}

.const A0 = 0x4000; {A0 = 0.5 = input scale factor}

.const D = 10; {D = fs/f1 = period of square wave}

.var/dm/circ w[D+1]; {filter’s delay-line buffer}

i2 = ^w; L2 = %w; {delay-line buffer pointer and length}

zero(i2, m2, L2); {clear delay line}

.const Ds = 800; {wavetable’s min freq: fs/Ds = 10 Hz}

.var/dm/circ s[Ds]; {square wavetable}

i6 = ^s; L6 = %s; {wavetable pointer and length}

.const c = 80; {square wave frequency f1 = c * fs/Ds}

.const A = 0x1000; {A = A0/4 = square wave amplitude}

.init s: <squartbl.hex>; {load wavetable}

.const a = 0x690d; {coefficient a = 0.8207 = 0x690d}

.const b = 0x7486; {coefficient b = 0.91035= 0x7486}
{design specs: f1 = 800 Hz, Df = 50 Hz}

{--- start processing input samples --------------------------------------}

wait: idle; jump wait; {wait for interrupt and loop forever}
{interrupt service routine starts here}

input_samples: ena sec_reg; {enable secondary register set}

{--- read input samples from codec ---------------------------------------}

4 EXPERIMENTS 72

ax1 = dm(rx_buf + 1); {left input sample}
mx1 = dm(rx_buf + 2); {right input sample}

{--- sample processing algorithm ---}

wavgen(i6, m6, A, c, mr1); {mr1 = A * square wave}

my1 = A0;
mr = mr + mx1 * my1 (rnd); {mr = x = A0 * mike + A * square}
if mv sat mr;

{ar = mr1; jump nofilter;} {uncomment to bypass filter}

mx1 = mr1; {save x temporarily}

my0 = b;
mr = mx1 * my0 (rnd); {mr1 = b * x}
if mv sat mr;

tap(i2, m2, D, ay1); {ay1 = sD = D-th tap}
ar = mr1 + ay1; {ar = y = b * x + sD = output}

my1 = a;
mr = ar * my1 (ss); {mr = a * y}
my1 = b;
mr = mr - mx1 * my1 (rnd); {mr = s0 = a * y - b * x}
if mv sat mr;

tapin(i2, m2, mr1); {put s0 into tap-0}
cdelay(i2, m2); {update delay line}

{--- write samples to codec ---}

nofilter:

dm(tx_buf + 1) = ar; {left output sample}
dm(tx_buf + 2) = ar; {right output sample}

{--- return from interrupt ---}

rti;

.include <c:\adi_dsp\macros\end.dsp>; {wrapup}

The filtering operation can be bypassed by uncommenting the jump nofilter in-
struction, in order to hear the desired signal plus the noise. The particular square
wave of period 10 generated by the program is of the form:

v(n)= [1,1,1,1,1,−1,−1,−1,−1,−1, . . .]

It contains only odd harmonics. As discussed in Example 1.4.6 and Section 9.7
of the text, all harmonics that lie outside the Nyquist interval are wrapped inside
the interval and get aliased with the harmonics within the interval. Thus, the above
periodic signal contains only the harmonicsω1 = 2π/10,ω3 = 3ω1 = 6π/10, and
ω5 = 5ω1 = 10π/10 = π. In fact, we can show using the techniques of Section

4 EXPERIMENTS 73

9.7 of the text that the signal v(n) can be expressed in the alternative sinusoidal
form, obtained from the 10-point DFT of one period of the square wave:

v(n)= 0.4

sin
(ω1

2

) sin
(
ω1n+ ω1

2

)+ 0.4

sin
(ω3

2

) sin
(
ω3n+ ω3

2

)+ 0.2 cos(ω5n)

Thus, the filter only acts to remove these three odd harmonics. It may appear
puzzling that the Fourier series expansion of this square wave does not contain
exclusively sine terms, as it would in the continuous-time case. This discrepancy
can be traced to the discontinuity of the square wave. In the continuous-time case,
any finite Fourier series sinusoidal approximation to the square wave will vanish at
the discontinuity points. Therefore, a more appropriate discrete-time square wave
might be of the form:

v(n)= [0,1,1,1,1,0,−1,−1,−1,−1, . . .]

The DOS square wavetable generator squartbl.exe has a command-line option
that allows one to select this type of square wave. Using again the techniques of
Section 9.7, we find for its inverse DFT expansion:

v(n)= 0.4

tan
(ω1

2

) sin(ω1n)+ 0.4

tan
(ω3

2

) sin(ω3n)

where now only pure sines (as opposed to sines and cosines) appear. The difference
between the above two square waves contains the effect of the discontinuities and
is given by

v(n)= [1,0,0,0,0,−1,0,0,0,0, . . .]

Its discrete Fourier series is the difference of the above two:

v(n)= 0.4 cos(ω1n)+0.4 cos(ω3n)+0.2 cos(ω5n)

Lab Procedure

a. Go to subdirectory c:\adi_dsp\examples\notch. Generate two square waveta-
bles of the above two types by the DOS commands:

squartbl 1 -1 400 800 1 | dec2hex 1.15 > squartbl.hex
squartbl 1 -1 400 800 0 | dec2hex 1.15 > squartb2.hex

Compile and run the program notch.dsp with the filter off. Speak into the
mike and listen to the interference. Repeat with the filter on. Repeat with the
filter on, but using the second wavetable. Turn off the interference by setting
its amplitude A = 0 and listen to the effect the filter has on your voice input.

4 EXPERIMENTS 74

b. Estimate the 60-dB time constant (in seconds) of the filter in part (a). Redesign
the notch filter so that its 3-dB width is now Δf = 2 Hz. What is the new time
constant? Run the new filter and listen to the filter transients as the steady-
state gradually takes over and suppresses the noise. Turn off the square wave,
recompile and run. Listen to the impulse response of the filter by lightly
tapping the mike on the table. Can you explain what you are hearing?

c. Generate a square wave with frequency of 1000 Hz, corresponding to wavetable
increment c = 100. Repeat part (a). Now the interference harmonics do not
coincide with the filter’s notches and you will still hear the interference.

d. Design the correct multi-notch filter that should be used in part (b). Edit the
program notch.dsp to reflect the new design, and run it to verify that it does
indeed remove the 1000 Hz interference.

Single- and Double-Notch Filters

Using a single-notch filter with notch frequency at f1 = 800 Hz instead of the
multi-notch filter would not be sufficient to cancel completely the square wave in-
terference. The third and higher harmonics will survive it. Such a single-notch filter
can be designed with Eqs. (8.2.22) and (8.2.23) of the text, which are implemented
by the MATLAB function parmeq.m. Assuming the same width Δf = 50 Hz, the
transfer function will be:

H1(z)= 0.980741− 1.586872z−1 + 0.980741z−2

1− 1.586872z−1 + 0.961481z−2

A similar design with a notch at f3 = 3f1 = 2400 Hz gives:

H3(z)= 0.980741+ 0.606131z−1 + 0.980741z−2

1+ 0.606131z−1 + 0.961481z−2

The cascade of the two is a fourth-order filter of the form H13(z)= H1(z)H3(z)
with coefficients obtained by convolving the coefficients of filter-1 and filter-3:

H13(z)= 0.961852(1− z−1 + z−2 − z−3 + z−4)
1− 0.980741z−1 + 0.961111z−2 − 0.942964z−3 + 0.924447z−4

The magnitude responses of the two single-notch filters H1(z), H3(z) and of
the double-notch filter H13(z) are shown below:

4 EXPERIMENTS 75

The program notch1.dsp implements the filter H1(z) in its direct form using
the macro cdir. The coefficients must be scaled down by a factor of 2 to make
them fit into the 1.15 format. Thus, we must use scaling exponents ea = eb = 1.

{notch1.dsp - single-notch filter at 800 Hz & width 50 Hz - direct form}
{Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996}

{Designed with parmeq.m of Appendix D, with the MATLAB commands:
GB = 1/sqrt(2); f0 = 800; fs = 8000; Df = 50;
[b, a, beta] = parmeq(1, 0, GB, 2*pi*f0/fs, 2*pi*Df/fs);

}

{--- define sampling rate in kHz: --}
{0xc850 = 8 | 0xc851 = 5.5125 | 0xc852 = 16 }
{0xc853 = 11.025 | 0xc854 = 27.42857 | 0xc855 = 18.9 }

.const fs = 0xc850; {0xc856 = 32 | 0xc857 = 22.05 | 0xc859 = 37.8 }
{0xc85b = 44.1 | 0xc85c = 48 | 0xc85d = 33.075}
{0xc85e = 9.6 | 0xc85f = 6.615 }

{---}

.include <c:\adi_dsp\macros\begin.dsp>; {initializations and DSP macros}

{--- define constants, variables, and buffers ----------------------------}

.const A0 = 0x4000; {A0 = 0.5 = input scale factor}

.const M = 2; {filter order}

.var/dm/circ w[M+1]; {y-delay-line buffer in DM}

.var/dm/circ v[M+1]; {x-delay-line buffer in DM}

.var/pm/circ a[M+1], b[M+1]; {concatenated coeffs in PM}

.const ea = 1; {scaling exponent for a}

.const eb = 1; {scaling exponent for b}

.const ex = 0; {input scaling exponent}

i2 = ^w; L2 = %w; {y-delay-line pointer}
i3 = ^v; L3 = %v; {x-delay-line pointer}
i4 = ^a; L4 = 2*(M+1); {double-length a,b coefficients}

zero(i2, m2, L2); {clear y-delay line}
zero(i3, m3, L3); {clear x-delay line}

.const Ds = 800; {wavetable’s min freq: fs/Ds = 10 Hz}

.var/dm/circ s[Ds]; {square wavetable}

i6 = ^s; L6 = %s; {wavetable pointer and length}

.const c = 80; {square wave freq: f1 = c * fs/Ds}

.const A = 0x1000; {A = A0/4 = square wave amplitude}

.init s: <squartbl.hex>; {load wavetable}

.init a: <a.hex>; {denominator coefficients}

.init b: <b.hex>; {numerator coefficients}

{--- start processing input samples --------------------------------------}

wait: idle; jump wait; {wait for interrupt and loop forever}

4 EXPERIMENTS 76

{interrupt service routine starts here}
input_samples: ena sec_reg; {enable secondary register set}

{--- read input samples from codec ---------------------------------------}

ax1 = dm(rx_buf + 1); {left input sample}
mx1 = dm(rx_buf + 2); {right input sample}

{--- sample processing algorithm ---}

wavgen(i6, m6, A, c, mr1); {mr1 = A * square wave}

my1 = A0;
mr = mr + mx1 * my1 (rnd); {mr = x = A0 * mike + A * square}
if mv sat mr;

{sr1 = mr1; jump nofilter;} {uncomment to bypass filter}

sr = ashift mr1 by -ex (hi); {pre-scale x down}
{compute output y}

cdir(M, i4, m4, i2, m2, i3, m3, ea, eb, sr1); {input from sr1}
{output in ar}

sr = ashift ar by ex (hi); {post-scale y up}

{--- write samples to codec ---}

nofilter:

dm(tx_buf + 1) = sr1; {left output sample}
dm(tx_buf + 2) = sr1; {right output sample}

{--- return from interrupt ---}

rti;

.include <c:\adi_dsp\macros\end.dsp>; {wrapup}

The program notch2.dsp implements the filter H1(z) in its canonical form using
the macro ccan. To prevent overflows, the input signal must be scaled down by a
factor of 16 = 24 before it is passed to the filter, and the output scaled up by the
same factor. Thus, the input scaling exponent is ex = 4.

{notch2.dsp - single-notch filter at 800 Hz & width 50 Hz - canonical form}
{Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996}

{Designed with parmeq.m of Appendix D, with the MATLAB commands:
GB = 1/sqrt(2); f0 = 800; fs = 8000; Df = 50;
[b, a, beta] = parmeq(1, 0, GB, 2*pi*f0/fs, 2*pi*Df/fs);

}

{--- define sampling rate in kHz: --}
{0xc850 = 8 | 0xc851 = 5.5125 | 0xc852 = 16 }
{0xc853 = 11.025 | 0xc854 = 27.42857 | 0xc855 = 18.9 }

.const fs = 0xc850; {0xc856 = 32 | 0xc857 = 22.05 | 0xc859 = 37.8 }
{0xc85b = 44.1 | 0xc85c = 48 | 0xc85d = 33.075}
{0xc85e = 9.6 | 0xc85f = 6.615 }

{---}

4 EXPERIMENTS 77

.include <c:\adi_dsp\macros\begin.dsp>; {initializations and DSP macros}

{--- define constants, variables, and buffers ----------------------------}

.const A0 = 0x4000; {A0 = 0.5 = input scale factor}

.const M = 2; {filter order}

.var/dm/circ w[M+1]; {circular delay-line buffer in DM}

.var/pm/circ a[M+1], b[M+1]; {concatenated coeffs in PM}

.const ea = 1; {scaling exponent for a}

.const eb = 1; {scaling exponent for b}

.const ex = 4; {input scaling exponent}

i2 = ^w; L2 = %w; {delay-line buffer pointer and length}
i4 = ^a; L4 = 2*(M+1); {double-length a,b coefficients}

zero(i2, m2, L2); {clear delay line}

.const Ds = 800; {wavetable’s min freq: fs/Ds = 10 Hz}

.var/dm/circ s[Ds]; {square wavetable}

i6 = ^s; L6 = %s; {wavetable pointer and length}

.const c = 80; {square wave frequency f1 = c * fs/Ds}

.const A = 0x1000; {A = A0/4 = square wave amplitude}

.init s: <squartbl.hex>; {load wavetable}

.init a: <a.hex>; {denominator coefficients}

.init b: <b.hex>; {numerator coefficients}

{--- start processing input samples --------------------------------------}

wait: idle; jump wait; {wait for interrupt and loop forever}
{interrupt service routine starts here}

input_samples: ena sec_reg; {enable secondary register set}

{--- read input samples from codec ---------------------------------------}

ax1 = dm(rx_buf + 1); {left input sample}
mx1 = dm(rx_buf + 2); {right input sample}

{--- sample processing algorithm ---}

wavgen(i6, m6, A, c, mr1); {mr1 = A * square wave}

my1 = A0;
mr = mr + mx1 * my1 (rnd); {mr = x = A0 * mike + A * square}
if mv sat mr;

{sr1 = mr1; jump nofilter;} {uncomment to bypass filter}

sr = ashift mr1 by -ex (hi); {pre-scale x down}
{compute output y}

ccan(M, i4, m4, i2, m2, ea, eb, sr1); {input from sr1}
{output in sr1}

sr = ashift sr1 by ex (hi); {post-scale y up}

4 EXPERIMENTS 78

{--- write samples to codec ---}

nofilter:

dm(tx_buf + 1) = sr1; {left output sample}
dm(tx_buf + 2) = sr1; {right output sample}

{--- return from interrupt ---}

rti;

.include <c:\adi_dsp\macros\end.dsp>; {wrapup}

The program notch13.dsp implements the filter H13(z) in its direct form. The
coefficients already fit in 1.15 format and do not need any further scaling.

{notch3.dsp - double-notch filter at 800 Hz and 2400 Hz - canonical form}
{Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996}

{Designed with parmeq.m of Appendix D, with the MATLAB commands:
GB = 1/sqrt(2); f1 = 800; f3 = 2400; fs = 8000; Df = 50;
[b1, a1, beta1] = parmeq(1, 0, GB, 2*pi*f1/fs, 2*pi*Df/fs);
[b3, a3, beta3] = parmeq(1, 0, GB, 2*pi*f3/fs, 2*pi*Df/fs);
a13 = conv(a1, a3); b13 = conv(b1, b3);

}

{--- define sampling rate in kHz: --}
{0xc850 = 8 | 0xc851 = 5.5125 | 0xc852 = 16 }
{0xc853 = 11.025 | 0xc854 = 27.42857 | 0xc855 = 18.9 }

.const fs = 0xc850; {0xc856 = 32 | 0xc857 = 22.05 | 0xc859 = 37.8 }
{0xc85b = 44.1 | 0xc85c = 48 | 0xc85d = 33.075}
{0xc85e = 9.6 | 0xc85f = 6.615 }

{---}

.include <c:\adi_dsp\macros\begin.dsp>; {initializations and DSP macros}

{--- define constants, variables, and buffers ----------------------------}

.const A0 = 0x4000; {A0 = 0.5 = input scale factor}

.const M = 4; {filter order}

.var/dm/circ w[M+1]; {circular delay-line buffer in DM}

.var/pm/circ a[M+1], b[M+1]; {concatenated coeffs in PM}

.const ea = 0; {scaling exponent for a}

.const eb = 0; {scaling exponent for b}

.const ex = 3; {input scaling exponent}

i2 = ^w; L2 = %w; {delay-line buffer pointer and length}
i4 = ^a; L4 = 2*(M+1); {double-length a,b coefficients}

zero(i2, m2, L2); {clear delay line}

.const Ds = 800; {wavetable’s min freq: fs/Ds = 10 Hz}

.var/dm/circ s[Ds]; {square wavetable}

i6 = ^s; L6 = %s; {wavetable pointer and length}

4 EXPERIMENTS 79

.const c = 80; {square wave frequency f1 = c * fs/Ds}

.const A = 0x1000; {A = A0/4 = square wave amplitude}

.init s: <squartbl.hex>; {load wavetable}

.init a: <a13.hex>; {denominator coefficients}

.init b: <b13.hex>; {numerator coefficients}

{--- start processing input samples --------------------------------------}

wait: idle; jump wait; {wait for interrupt and loop forever}
{interrupt service routine starts here}

input_samples: ena sec_reg; {enable secondary register set}

{--- read input samples from codec ---------------------------------------}

ax1 = dm(rx_buf + 1); {left input sample}
mx1 = dm(rx_buf + 2); {right input sample}

{--- sample processing algorithm ---}

wavgen(i6, m6, A, c, mr1); {mr1 = A * square wave}

my1 = A0;
mr = mr + mx1 * my1 (rnd); {mr = x = A0 * mike + A * square}
if mv sat mr;

{sr1 = mr1; jump nofilter;} {uncomment to bypass filter}

sr = ashift mr1 by -ex (hi); {pre-scale x down}
{compute output y}

ccan(M, i4, m4, i2, m2, ea, eb, sr1); {input from sr1}
{output in sr1}

sr = ashift sr1 by ex (hi); {post-scale y up}

{--- write samples to codec ---}

nofilter:

dm(tx_buf + 1) = sr1; {left output sample}
dm(tx_buf + 2) = sr1; {right output sample}

{--- return from interrupt ---}

rti;

.include <c:\adi_dsp\macros\end.dsp>; {wrapup}

Lab Procedure

a. Run the program notch1.dsp with the filter off. Then, run it with the filter
on. Do you hear the partial suppression of the interference? Next, replace the
square wavetable with a sinusoidal wavetable generated by the DOS command:

sinetbl 0 1 800 | dec2hex 1.15 > sinetbl.hex

4 EXPERIMENTS 80

and replace squartbl.hex by sinetbl.hex. Now, the interference is one
sinusoid at 800 Hz, and therefore it will be completely canceled by the filter.

b. Run the program notch2.dsp. Repeat by choosing the smaller values of the
input scaling exponent: ex = 3,2,1,0. Listen to the overflow effects.

c. Can you explain theoretically why in the numerator of H13(z) you have the
polynomial with alternating coefficients 1− z−1 + z−2 − z−3 + z−4?

d. Run the program notch13.dsp using the wavetable squartbl.hex. Listen
to the suppression of the harmonics at f1 and f3. However, the harmonic
f5 = 4000 Hz (i.e., the Nyquist frequency) can still be heard.

Next, replace squartbl.hex with squartb2.hex. You will hear no interfer-
ence at all because your square wave now has harmonics only at f1 and f3
which are canceled by the double-notch filter.

4.16. Flangers and Phasers

Flangers and phasers are similar audio effects involving variable notch filters. The
flanger is implemented as an FIR comb filter with a time-variable delay. The phaser
is implemented as a single-notch second-order IIR filter with time-variable notch
frequency. Variants of these can easily be constructed, such as, IIR combs with
variable delays, variable multi-notch filters, or even, lowpass filters with continu-
ously variable cutoff frequency.

Flangers

The program flanger.dsp implements a simple flanging processor as defined by
Eqs. (8.2.17) and (8.2.18) of the text [1]. The delay varies sinusoidally from 0 to 50
msec with a frequency of 4 Hz. For simplicity, we do not use a linearly interpolated
delay.

{flanger.dsp - flanging processor}
{Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996}

{Based on Eqs.(8.2.18-8.2.19) of Introduction to Signal Processing.
I/O equation: y(n) = 0.5 * x(n) + 0.5 * x(n-d(n))
Sample processing algorithm:

for each x do:
*p = s0 = x
d = (D - D * sin(2*pi*fc*t)) / 2 variable delay
s1 = tap(D, w, p, d)
y = a0 * s0 + a1 * s1
cdelay(D, w, &p)

}

{--- define sampling rate in kHz: --}
{0xc850 = 8 | 0xc851 = 5.5125 | 0xc852 = 16 }
{0xc853 = 11.025 | 0xc854 = 27.42857 | 0xc855 = 18.9 }

.const fs = 0xc850; {0xc856 = 32 | 0xc857 = 22.05 | 0xc859 = 37.8 }
{0xc85b = 44.1 | 0xc85c = 48 | 0xc85d = 33.075}

4 EXPERIMENTS 81

{0xc85e = 9.6 | 0xc85f = 6.615 }
{---}

.include <c:\adi_dsp\macros\begin.dsp>; {initializations and DSP macros}

{--- define constants, variables, and buffers ----------------------------}

.const a0 = 0x4000; {a0 = 0.50}

.const a1 = 0x4000; {a1 = 0.50}

.const D = 400; {TD = D/fs = 400/8000 = 50 msec}

.var/dm/circ w[D + 1]; {delay-line buffer, max delay = D}

.const D2 = D/2;

i2 = ^w; L2 = %w; {delay-line buffer pointer and length}

zero(i2, m2, L2); {clear delay line}

.const Ds = 4000; {sinusoidal wavetable}

.var/dm/circ sine[Ds]; {min frequency f1 = fs/Ds = 8/4 = 2 Hz}

.init sine: <sinetbl.hex>; {load one period of the wavetable}
{generated by sinetbl.c}

.const c = 2; {signal frequency fc = c * f1 = 4 Hz}

i6 = ^sine; L6 = %sine; {pointer for signal generator}

{--- start processing input samples --------------------------------------}

wait: idle; jump wait; {wait for interrupt and loop forever}
{interrupt service routine starts here}

input_samples: ena sec_reg; {enable secondary register set}

{--- read input samples from codec ---------------------------------------}

ax1 = dm(rx_buf + 1); {left input sample}
mx1 = dm(rx_buf + 2); {right input sample}

{--- sample processing algorithm --- process right channel only ----------}

wavgen(i6, m6, D2, c, ay1); {ay1 = D2 * sin(2*pi*fc*t)}
ax1 = D2;
ar = ax1 - ay1; {ar = d = D2 - D2 * sin(2*pi*fc*t)}

my1 = a0;
mr = mx1 * my1 (ss); {mr = a0 * x}

m2 = ar; modify(i2, m2); {these three lines replace the call}
ar = -ar; {to tap(i2, m2, ar, my0), because}
m2 = ar; my0 = dm(i2, m2); {we cannot directly set m2 = -ar}

mx0 = a1;
mr = mr + mx0 * my0 (rnd); {a0 * x + a * s1}
if mv sat mr;

tapin(i2, m2, mx1); {put input from mx1 into tap-0}
cdelay(i2, m2); {update delay}

4 EXPERIMENTS 82

{--- write output samples to codec ---------------------------------------}

dm(tx_buf + 1) = mr1; {left output sample}
dm(tx_buf + 2) = mr1; {right output sample}

{--- return from interrupt ---}

rti;

.include <c:\adi_dsp\macros\end.dsp>; {wrapup}

The time-varying delay is generated by a sinusoidal wavetable. A special feature of
this implementation is that we cannot call tap directly to get the d-th tap because
the value of d is passed through a data register and the instruction set will not
allow us to negate it. Thus, we replace tap by its individual instructions and take
the negative with the help of the ALU register ar.

Lab Procedure

a. Go to directory c:\adi_dsp\examples\flanger. Compile and run this pro-
gram. Then, repeat by lowering the frequency of the varying delay to 2 Hz.

b. Repeat with increasing the maximum delay to 300 msec.

c. Repeat parts (a,b) by replacing the sinusoidal wavetable with a square wave
one.

Phasers

The following program phaser.dsp implements a phaser as a variable notch filter:

{phaser.dsp - phasing effect with a variable notch filter}
{Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996}

{Based on Section 8.2.2 and Eq.(8.2.22) if Introd. to Signal Processing.
Design width Df = 80 Hz, b0 = 1 / (1 + tan(Dw/2)) = 0.9695.
Notch frequency varies sinusoidally from 200 Hz to 800 Hz:

f0 = 500 + 300 * sin(2*pi*fsweep*t) (in Hz)
w0 = 0.125*pi + 0.075*pi * sin(2*pi*fsweep*t) (in rads/sample)

Sweep frequency fsweep = 10 Hz. Because w0 varies between
0.20*pi < w0 < 0.05*pi

we can use the approximation cos(w0) = 1 - w0^2 / 2.
}

{--- define sampling rate in kHz: --}
{0xc850 = 8 | 0xc851 = 5.5125 | 0xc852 = 16 }
{0xc853 = 11.025 | 0xc854 = 27.42857 | 0xc855 = 18.9 }

.const fs = 0xc850; {0xc856 = 32 | 0xc857 = 22.05 | 0xc859 = 37.8 }
{0xc85b = 44.1 | 0xc85c = 48 | 0xc85d = 33.075}
{0xc85e = 9.6 | 0xc85f = 6.615 }

{---}

4 EXPERIMENTS 83

.include <c:\adi_dsp\macros\begin.dsp>; {initializations and DSP macros}

{--- define constants, variables, and buffers ----------------------------}

.var/dm/circ w[3]; {y-delay-line buffer in DM}

.var/dm/circ v[3]; {x-delay-line buffer in DM}

.var/pm/circ a[3], b[3]; {concatenated coeffs in PM}

.const ea = 1; {scaling exponent for a}

.const eb = 1; {scaling exponent for b}

.const ex = 1; {input scaling exponent}

i2 = ^w; L2 = %w; {y-delay-line pointer}
i3 = ^v; L3 = %v; {x-delay-line pointer}
i4 = ^a; L4 = 6; {double-length a,b coefficients}

zero(i2, m2, L2); {clear y-delay line}
zero(i3, m3, L3); {clear x-delay line}

.const Ds = 4000; {wavetable’s min freq: fs/Ds = 2 Hz}

.var/dm/circ s[Ds]; {cosinusoidal wavwetable}

i6 = ^s; L6 = %s; {points to sweep frequency}

.const csweep = 5; {fsweep = 10 Hz}

.const w1 = 0x3244; {w1 = 0.125*pi => f1 = 500 Hz}

.const w2 = 0x1e28; {w2 = 0.075*pi => f2 = 300 Hz}

.const b0 = 0x3e0c; {b0 = 0.9695, scaled by 2}

.const b11 = 0x83e7; {b11 = -2*b0 = -1.9390, scaled by 2}

.const a2 = 0x3c19; {a2 = 2*b0-1 = 0.9390, scaled by 2}

.const a0 = 0x4000; {a0 = 1, scaled by 2}

.init s: <sinetbl.hex>; {load wavetable}

.init a: a0, 0, a2; {initial denominator coefficients}

.init b: b0, 0, b0; {initial numerator coefficients}

{--- start processing input samples --------------------------------------}

wait: idle; jump wait; {wait for interrupt and loop forever}
{interrupt service routine starts here}

input_samples: ena sec_reg; {enable secondary register set}

{--- read input samples from codec ---------------------------------------}

ax1 = dm(rx_buf + 1); {left input sample}
mx1 = dm(rx_buf + 2); {right input sample}

{--- sample processing algorithm ---}

ax0 = w1;
wavgen(i6, m6, w2, csweep, ay0); {ay0 = w2 * sine(sweep*n)}
ar = ax0 + ay0; {ar = w0 = w1 + w2*sin(wsweep*n)}

mr= 0; {calculate cos(w0)}
mr1 = 0x7fff; {mr = 1}
sr = ashift ar by -1 (hi); {sr1 = w0 / 2}

4 EXPERIMENTS 84

my0 = ar; {my0 = w0}
mr = mr - sr1 * my0 (rnd); {mr1 = cos(w0) = 1 - w0^2 / 2}

my0 = b11; {current a1 and b1 coefficients}
mr = ar * my0 (rnd); {mr1 = -2 * b0 * cos(w0)}

m5 = 1;
modify(i4, m5); {start from a0, point to a1}
pm(i4, m5) = sr1; {save current a1, point to a2}

m5 = 2;
modify(i4, m5); {point to b1}
pm(i4, m5) = sr1; {save b1, point back to a0}

sr1 = mx1;

{jump nofilter;} {uncomment to bypass filter}

sr = ashift sr1 by -ex (hi); {pre-scale x down}
{compute output y}

cdir(2, i4, m4, i2, m2, i3, m3, ea, eb, sr1); {input from sr1}
{output in ar}

sr = ashift ar by ex (hi); {post-scale y up}
sr = ashift sr1 by 1 (hi); {make it a little louder}

{--- write samples to codec ---}

nofilter:

dm(tx_buf + 1) = sr1; {left output sample}
dm(tx_buf + 2) = sr1; {right output sample}

{--- return from interrupt ---}

rti;

.include <c:\adi_dsp\macros\end.dsp>; {wrapup}

The notch frequency varies sinusoidally between the limits of 200 Hz and 800 Hz:

f0 = 500+ 300 sin(2πfsweept)

where the sweep frequency is initially chosen to be fsweep = 10 Hz. Assuming an 8
kHz sampling rate the notch frequency in radians per sample will be:

ω0 = 0.125π+ 0.075π sin(2πfsweept)

The filter’s transfer function is given by Eq. (8.2.22) of the text [1]. The width
parameter b = 0.9695 was calculated from Eq. (8.2.23) by assuming a 3-dB width
of Δf = 80 Hz, or Δω = 0.02π. The filter’s transfer function is therefore,

H(z)= 0.9695− 1.9390 cosω0 z−1 + 0.9695z−2

1− 1.9390 cosω0 z−1 + 0.9390z−2

The magnitude and phase responses of the two filters corresponding to the two
extreme values of the notch frequency f0 = 200,800 Hz are shown below:

4 EXPERIMENTS 85

As ω0 varies, these two filters continuously “morph” into each other. In the
program, the filter is implemented in its direct form to avoid overflows. Moreover,
because the middle coefficients a1 = b1 = −1.9390 cosω0 take on values in the
2.14 format’s range, we have used that format to convert them to hex. This ef-
fectively divides the filter coefficients by 2 and must be compensated by using the
scaling exponents ea = eb = 1, corresponding to the scaling factors Ga = 2ea = 2,
Gb = 2eb = 2.

The varying notch frequency is generated using a sinusoidal wavetable. Because
ω0 remains small, we have calculated cosω0 using the approximation:

cosx = 1− 1

2
x2

Lab Procedure

a. Compile and run the program phaser.dsp. Experiment with lower and higher
values of the sweep frequency.

b. Repeat part (a) using a square wavetable.

c. Write another version of the program that calculates cosω0 using the im-
proved approximation:

cosx = 1− 1

2
x2 + 1

24
x4

Then, let the notch frequency vary over a somewhat wider range.

4.17. Simulator Examples

The first two simulator examples simulate the quantization and downsampling al-
gorithms discussed in Section 4.1 of this manual.

Quantization Example

The program quantex1.dsp implements quantization to B bits. If you choose B to
be 4, 8, and 12 bits, you could observe how the algorithm preserves one, two, or
three of the MSB hex digits of each word, and sets the remaining digits to zero.

4 EXPERIMENTS 86

{quantex1.dsp - quantization example}
{Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996}

.include <c:\adi_dsp\macros\dspmac.dsp>; {DSP macros}

.module/ram/abs=0 decim1;

.const B = 8; {quantization bits per sample}

.const L = 16 - B; {L least-significant bits thrown away}

.const N = 8; {number of input samples}

.var/dm x[N]; {input samples}

.var/dm y[N]; {output samples}

i2 = ^x; m2 = 1; L2 = 0; {input samples}
i3 = ^y; m3 = 1; L3 = 0; {output samples}

.init x: <x.hex>; {read input samples from file}

jump start; nop; nop; nop; {Interupt vector table}
rti; nop; nop; nop; {No interrupts used}
rti; nop; nop; nop;
rti; nop; nop; nop;
rti; nop; nop; nop;
rti; nop; nop; nop;
rti; nop; nop; nop;

start:

cntr=N; {process N input samples}
do output until ce;

mr1 = dm(i2, m2); {read input sample}
sr = ashift mr1 by -L (hi); {shift it right by L bits}
sr = ashift sr1 by L (hi); {shift it left by L bits}

output: dm(i3, m3) = sr1; {write output sample}

idle;

.endmod;

Downsampling Example

The program dnsamp1.dsp implements the downsampling operation. If you choose
M = 3, then every third input sample will come out intact, whereas the other sam-
ples will be zero.

{dnsamp1.dsp - decimation/downsampling example}
{Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996}

.include <c:\adi_dsp\macros\dspmac.dsp>; {DSP macros}

.module/ram/abs=0 decim1;

.const M = 3; {decimation ratio}

.const N = 8; {number of input samples}

.const A = 0x7fff; {sampling pulse amplitude, A=1}

4 EXPERIMENTS 87

.var/dm x[N]; {input samples}

.var/dm y[N]; {output samples}

.var/dm/circ s[M]; {periodic pulse train}

i2 = ^x; m2 = 1; L2 = 0; {input samples}
i3 = ^y; m3 = 1; L3 = 0; {output samples}
i5 = ^s; L5 = %s; m5 = 1; {pulse train}

.init x: <x.hex>; {read input samples from file}

jump start; nop; nop; nop; {Interupt vector table}
rti; nop; nop; nop; {No interrupts used}
rti; nop; nop; nop;
rti; nop; nop; nop;
rti; nop; nop; nop;
rti; nop; nop; nop;
rti; nop; nop; nop;

start:

cntr=M;
do zero_s until ce; {initialize s to zero}
zero_s: dm(i5, m5) = 0;

ax1 = A; {set s[0] = A}
dm(s) = ax1; {s = [A,0,...,0] = A and M-1 zeros}

cntr=N; {process N input samples}
do output until ce;

mr1 = dm(i2, m2); {read input sample}

ar = dm(i5, m5); {get sampling pulse}
ar = pass ar; {forces updating of AZ flag}
if ne jump output; {if AR != 0, write output}

{else} mr1 = 0; {if AR = 0, output is 0}

output: dm(i3, m3) = mr1; {write output sample}

idle;

.endmod;

Delay Examples

The next two simulator examples illustrate linear and circular delay-line buffers
and are based on Example 4.2.1 of the text [1]. The input and 3-fold delayed output
signals are:

x = 1

4
[1,1,2,1,2,2,1,1]

y = 1

4
[0,0,0,1,1,2,1,2,2,1,1]

They have been scaled by 4 to fit into the 1.15 format. The corresponding 1.15 hex
input samples are:

4 EXPERIMENTS 88

x = [0x2000, 0x2000, 0x4000, 0x2000, 0x4000, 0x4000, 0x2000, 0x2000]

Linear Buffer

The program delex1.dsp implements the 3-fold delay using a linear buffer:

{delex1.dsp - delay example using linear buffer}
{Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996}

{Based on Example 4.2.1 of Introduction to Signal Processing}

.include <c:\adi_dsp\macros\dspmac.dsp>; {DSP macros}

.module/ram/abs=0 delex1;

.var/dm x[8]; {input samples}

.var/dm y[11]; {output samples}

.var/dm w[4]; {linear delay-line buffer in DM}

.init x: <xfir.hex>;

.init w: 0x0000, 0x0000, 0x0000, 0x0000;

jump start; nop; nop; nop; {Interupt vector table}
rti; nop; nop; nop; {No interrupts used}
rti; nop; nop; nop;
rti; nop; nop; nop;
rti; nop; nop; nop;
rti; nop; nop; nop;
rti; nop; nop; nop;

start: i3 = ^x; m3 = 1; L3 = 0; {input samples}
i5 = ^y; m5 = 1; L5 = 0; {output samples}

cntr = 8;
do outputs until ce; {process 8 input samples}

my1 = dm(w+3); {get tap-3}
dm(i5, m5) = my1; {save in y and point to next y}

mx1 = dm(i3, m3); {read x and point to next x}
dm(w) = mx1; {put x in delay line}

{update linear buffer}
my0 = dm(w+2); {w[2] = tap-2}
dm(w+3) = my0; {w[3] = w[2]}

my0 = dm(w+1); {w[1] = tap-1}
dm(w+2) = my0; {w[2] = w[1]}

my0 = dm(w); {w[0] = tap-0}
outputs: dm(w+1) = my0; {w[1] = w[0]}

cntr = 3; {three input-off transients}
do transients until ce;

my1 = dm(w+3); {get tap-3}
dm(i5, m5) = my1; {save in y and point to next y}

mx0 = 0;
dm(w) = mx0; {put 0 in delay line}

4 EXPERIMENTS 89

{update linear buffer}
my0 = dm(w+2); {w[2] = tap-2}
dm(w+3) = my0; {w[3] = w[2]}

my0 = dm(w+1); {w[1] = tap-1}
dm(w+2) = my0; {w[2] = w[1]}

my0 = dm(w); {w[0] = tap-0}
transients: dm(w+1) = my0; {w[1] = w[0]}

idle;

.endmod;

Circular Buffer

The program delex2.dsp implements the 3-fold delay using a circular buffer:

{delex2.dsp - delay example using circular buffer}
{Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996}

{Based on Example 4.2.1 of Introduction to Signal Processing}

.include <c:\adi_dsp\macros\dspmac.dsp>; {DSP macros}

.module/ram/abs=0 delex1;

.var/dm x[8]; {input samples}

.var/dm y[11]; {output samples}

.var/dm/circ w[4]; {circular delay-line buffer in DM}

.init x: <xfir.hex>;

.init w: 0x0000, 0x0000, 0x0000, 0x0000;

jump start; nop; nop; nop; {Interupt vector table}
rti; nop; nop; nop; {No interrupts used}
rti; nop; nop; nop;
rti; nop; nop; nop;
rti; nop; nop; nop;
rti; nop; nop; nop;
rti; nop; nop; nop;

start: i2 = ^w; L2 = %w; {circular buffer}
i3 = ^x; m3 = 1; L3 = 0; {input samples}
i5 = ^y; m5 = 1; L5 = 0; {output samples}

cntr = 8;
do outputs until ce; {process 8 input samples}

m2 = 3; modify(i2, m2); {point to tap-3}
m2 = 0; my1 = dm(i2, m2); {get tap-3}
m2 =-3; modify(i2, m2); {point back to tap-0}

dm(i5, m5) = my1; {write y}

mx1 = dm(i3, m3); {get input x}
m2 = 0; dm(i2, m2) = mx1; {put it into tap-0}

4 EXPERIMENTS 90

m2 = -1;
outputs: modify(i2, m2); {backshift buffer pointer}

cntr = 3; {3 input-off transients}
do transients until ce;

m2 = 3; modify(i2, m2); {point to tap-3}
m2 = 0; my1 = dm(i2, m2); {get tap-3}
m2 =-3; modify(i2, m2); {point back to tap-0}

dm(i5, m5) = my1; {write y}

mx1 = 0; {zero input x}
m2 = 0; dm(i2, m2) = mx1; {put it into tap-0}

m2 = -1;
transients: modify(i2, m2); {backshift buffer pointer}

idle;

.endmod;

FIR Filter Examples

The next two examples illustrate FIR filtering and are based on Example 4.2.1 of the
text [1]. The input signal and filter are:

h = 1

4
[1,2,−1,1], x = 1

4
[1,1,2,1,2,2,1,1]

The output is the convolution:

y = h∗ x = 1

16
[1,3,3,5,3,7,4,3,3,0,1]

In 1.15 format, the filter, input, and output signals are:

h = [0x2000, 0x4000, 0xe000, 0x2000]
x = [0x2000, 0x2000, 0x4000, 0x2000, 0x4000, 0x4000, 0x2000, 0x2000]
y = [0x0800, 0x1800, 0x1800, 0x2800, 0x1800, 0x3800, 0x2000, 0x1800,

0x1800, 0x0000, 0x0800]

The filter and input hex numbers can also be obtained by converting the unscaled
signals in the 3.13 format. The output samples can be converted using hex2dec
into their unscaled decimal versions using the 5.11 format to compensate for the
factor 16.

The program firex1.dsp implements the FIR filter using the macros tapin,
dot, and cdelay:

{firex1.dsp - FIR example using tapin, dot, cdelay}
{Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996}

{Based on Example 4.2.1 of Introduction to Signal Processing. The filter
coefficients and are stored in the files h.dec/h.hex. The input and
output signals are in the files xfir.dec/xfir.hex, yfir.dec/yfir.hex.

4 EXPERIMENTS 91

h = 0.25 = 1/4 x = 0.25 = 1/4 y = 0.0626 = 1/16
0.50 = 2/4 0.25 = 1/4 0.1875 = 3/16

-0.25 = -1/4 0.50 = 2/4 0.1875 = 3/16
0.25 = 1/4 0.25 = 1/4 0.3125 = 5/16

0.50 = 2/4 0.1875 = 3/16
0.50 = 2/4 0.4375 = 7/16
0.25 = 1/4 0.2500 = 4/16
0.25 = 1/4 0.1875 = 3/16

0.1875 = 3/16
0.0000 = 0/16
0.0625 = 1/16

(The h-coefficients and x have been scaled down to fit in 1.15 format,
as compared to Example 4.2.1.)

}

.include <c:\adi_dsp\macros\dspmac.dsp>; {DSP macros}

.module/ram/abs=0 firex1;

.const L=8; {input signal length}

.const M=3; {filter order}

.var/dm/ram x[L]; {input samples}

.var/dm/ram y[L+M]; {output samples}

.var/dm/ram/circ w[M+1]; {delay-line buffer in DM}

.var/pm/ram/circ h[M+1]; {filter taps in PM}

.init x: <xfir.hex>; {read L input samples}

.init h: <h.hex>; {read M+1 filter taps}

jump start; nop; nop; nop; {Interupt vector table}
rti; nop; nop; nop; {No interrupts used}
rti; nop; nop; nop;
rti; nop; nop; nop;
rti; nop; nop; nop;
rti; nop; nop; nop;
rti; nop; nop; nop;

start: i2 = ^w; m2 = 0; L2 = %w; {delay line buffer}
i4 = ^h; m4 = 0; L4 = %h; {filter taps buffer}
i3 = ^x; m3 = 1; L3 = 0; {input samples}
i5 = ^y; m5 = 1; L5 = 0; {output samples}

zero(i2, m2, L2); {clear delay line}

cntr = L;
do outputs until ce; {process L input samples}

ax0 = dm(i3, m3); {read x into AX0}
tapin(i2, m2, ax0); {put x in delay line}
dot(M, i4, m4, i2, m2); {compute output in MR1}
cdelay(i2, m2); {update delay}

outputs: dm(i5, m5) = mr1; {output y}

cntr = M; {M input-off transients}
do transients until ce;

ax0 = 0; {read x=0 into AX0}
tapin(i2, m2, ax0); {put it in delay line}
dot(M, i4, m4, i2, m2); {compute output in MR1}

4 EXPERIMENTS 92

cdelay(i2, m2); {update delay}
transients: dm(i5, m5) = mr1; {output y}

idle;

.endmod;

The program firex2.dsp implements the FIR filter using the macro cfir:

{firex2.dsp - FIR example using cfir}
{Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996}

{Based on Example 4.2.1 of Introduction to Signal Processing. The filter
coefficients and are stored in the files h.dec/h.hex. The input and
output signals are in the files xfir.dec/xfir.hex, yfir.dec/yfir.hex.

h = 0.25 = 1/4 x = 0.25 = 1/4 y = 0.0626 = 1/16
0.50 = 2/4 0.25 = 1/4 0.1875 = 3/16

-0.25 = -1/4 0.50 = 2/4 0.1875 = 3/16
0.25 = 1/4 0.25 = 1/4 0.3125 = 5/16

0.50 = 2/4 0.1875 = 3/16
0.50 = 2/4 0.4375 = 7/16
0.25 = 1/4 0.2500 = 4/16
0.25 = 1/4 0.1875 = 3/16

0.1875 = 3/16
0.0000 = 0/16
0.0625 = 1/16

(The h-coefficients and x have been scaled down to fit in 1.15 format,
as compared to Example 4.2.1.)

}

.include <c:\adi_dsp\macros\dspmac.dsp>; {dsp macros}

.module/ram/abs=0 firex2;

.const L=8; {input signal length}

.const M=3; {filter order}

.var/dm/ram x[L]; {input samples}

.var/dm/ram y[L+M]; {output samples}

.var/dm/ram/circ w[M+1]; {delay-line buffer in DM}

.var/pm/ram/circ h[M+1]; {filter taps in PM}

.init x: <xfir.hex>; {read L input samples}

.init h: <h.hex>; {read M+1 filter taps}

jump start; nop; nop; nop; {Interupt vector table}
rti; nop; nop; nop; {No interrupts used}
rti; nop; nop; nop;
rti; nop; nop; nop;
rti; nop; nop; nop;
rti; nop; nop; nop;
rti; nop; nop; nop;

start: i2 = ^w; L2 = %w; {delay line buffer}
i4 = ^h; L4 = %h; {filter taps buffer}
i3 = ^x; m3 = 1; L3 = 0; {input samples}
i5 = ^y; m5 = 1; L5 = 0; {output samples}

4 EXPERIMENTS 93

zero(i2, m2, L2); {clear delay line}

cntr = L;
do outputs until ce; {process L input samples}

ax0 = dm(i3, m3); {read x into AX0}
cfir(M, i4, m4, i2, m2, ax0); {output in MR1}

outputs: dm(i5, m5) = mr1; {output y}

cntr = M; {input-off transients}
do transients until ce;

ax0 = 0; {read x=0 into AX0}
cfir(M, i4, m4, i2, m2, ax0); {output in MR1}

transients: dm(i5, m5) = mr1; {output y}

idle;

.endmod;

IIR Filter Examples

The next two programs illustrate IIR filtering based on Example 7.5.4 of the text [1].
The transfer function is taken to be:

H(z)= 0.25+ 0.25z−1 − 0.50z−2

1− z−3

where the b-coefficients have been scaled down by 4 to fit into the 1.15 format.
Similarly, the input has been scaled down by 8:

x = 1

8
[1,3,2,5,4,6,0,0,0]

The expected output from that example was worked out in the text:

y = 1

32
[1,4,7,14,17,27,28,29,27]

The program canex1.dsp implements an IIR filter using the canonical realization
macro ccan:

{canex1.dsp - canonical realization example using ccan}
{Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996}

{Based on Example 7.5.4 of Introduction to Signal Processing. The filter
coefficients are:

a = [1, 0, 0, -1]
b = [1, 1, 2, 0] / 4 = [0.25, 0.25, 0.50, 0]

The coefficients define a double-length concatenated circular buffer i7,
and are stored in the files a.dec/a.hex and b.dec/b.hex. The input and
output signals are in the files xiir.dec/xiir.hex, yiir.dec/yiir.hex:

x = 0.125 = 0x1000 = 1/8 y = 0.03125 = 0x0400 = 1/32
0.375 = 0x3000 = 3/8 0.12500 = 0x1000 = 4/32

4 EXPERIMENTS 94

0.250 = 0x2000 = 2/8 0.21875 = 0x1c00 = 7/32
0.625 = 0x5000 = 5/8 0.43750 = 0x3800 = 14/32
0.500 = 0x4000 = 4/8 0.53125 = 0x4400 = 17/32
0.750 = 0x6000 = 6/8 0.84375 = 0x6c00 = 27/32
0.000 = 0x0000 = 0/8 0.87500 = 0x7000 = 28/32
0.000 = 0x0000 = 0/8 0.90625 = 0x7400 = 29/32
0.000 = 0x0000 = 0/8 0.84375 = 0x6c00 = 27/32

(The b-coefficients and x have been scaled down to fit in 1.15 format,
as compared to Example 7.5.4.)

Scaling factors:

The a,b coefficients that are used in the program and read from
the file ab.hex are the related to the true a,b coefficients by
the following scale factors whoes exponents are passed to ccan():

a_used = 2^(-ea) * a_true
b_used = 2^(-eb) * b_true

In this example: ea = 0, eb = 0, (no further scaling is needed)

The input samples x must also, in general, be scaled down before
passed into ccan() and then the output from ccan() must be scaled up:

x1 = 2^(-ex) * x input to ccan()
y1 = ccan(x1) output from ccan() due to x1
y = 2^ex * y1 output due to x

In this example, we must use ex = 1 (or larger).
The unscaled input (ex = 0) causes overflows and the wrong output.

}

.include <c:\adi_dsp\macros\dspmac.dsp>; {dsp macros}

.module/ram/abs=0 canex1;

.const L=9; {input signal length}

.const M=3; {filter order}

.var/dm x[L]; {input samples}

.var/dm y[L]; {output samples}

.var/dm/circ w[M+1]; {delay-line buffer in DM}

.var/pm/circ a[M+1], b[M+1]; {concatenated coeffs in PM}

.init x: <xiir.hex>; {input samples}

.init a: <a.hex>; {denominator coefficients}

.init b: <b.hex>; {numerator coefficients}

.const ea = 0; {scaling exponent for a}

.const eb = 0; {scaling exponent for b}

.const ex = 1; {pre/post scaling exponent}

jump start; nop; nop; nop; {Interupt vector table}
rti; nop; nop; nop; {No interrupts used}
rti; nop; nop; nop;
rti; nop; nop; nop;
rti; nop; nop; nop;
rti; nop; nop; nop;

4 EXPERIMENTS 95

rti; nop; nop; nop;

start: i2 = ^w; L2 = %w; {delay-line buffer}
i4 = ^x; m4 = 1; L4 = 0; {input samples}
i5 = ^y; m5 = 1; L5 = 0; {output samples}
i7 = ^a; L7 = 2*(M+1); {double-length a,b coef-}

{-ficient buffer}
zero(i2, m2, L2); {clear delay line}

cntr = L;
do outputs until ce;

sr1 = dm(i4, m4); {read input x}
sr = ashift sr1 by -ex (hi); {pre-scale x down}

{compute output y}
ccan(M, i7, m7, i2, m2, ea, eb, sr1); {input from sr1}

{output in sr1}
sr = ashift sr1 by ex (hi); {post-scale y up}

outputs: dm(i5, m5) = sr1; {write y}

idle;

.endmod;

Further down-scaling of the input and up-scaling of the output are necessary to
avoid overflows. The input scaling exponent was ex = 1. The program direx1.dsp
implements an IIR filter using the direct-form realization macro cdir. It does not
need any input down-scaling and therefore ex = 0.

{direx1.dsp - direct-form-I realization example using cdir}
{Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996}

{Based on Example 7.5.4 of Introduction to Signal Processing. The filter
coefficients are:

a = [1, 0, 0, -1]
b = [1, 1, 2, 0] / 4 = [0.25, 0.25, 0.50, 0]

The coefficients define a double-length concatenated circular buffer i7,
and are stored in the files a.dec/a.hex and b.dec/b.hex. The input and
output signals are in the files xiir.dec/xiir.hex, yiir.dec/yiir.hex:

x = 0.125 = 0x1000 = 1/8 y = 0.03125 = 0x0400 = 1/32
0.375 = 0x3000 = 3/8 0.12500 = 0x1000 = 4/32
0.250 = 0x2000 = 2/8 0.21875 = 0x1c00 = 7/32
0.625 = 0x5000 = 5/8 0.43750 = 0x3800 = 14/32
0.500 = 0x4000 = 4/8 0.53125 = 0x4400 = 17/32
0.750 = 0x6000 = 6/8 0.84375 = 0x6c00 = 27/32
0.000 = 0x0000 = 0/8 0.87500 = 0x7000 = 28/32
0.000 = 0x0000 = 0/8 0.90625 = 0x7400 = 29/32
0.000 = 0x0000 = 0/8 0.84375 = 0x6c00 = 27/32

(The b-coefficients and x have been scaled down to fit in 1.15 format,
as compared to Example 7.5.4.)

Scaling factors:

The a,b coefficients that are used in the program and read from

4 EXPERIMENTS 96

the file ab.hex are the related to the true a,b coefficients by
the following scale factors whoes exponents are passed to cdir():

a_used = 2^(-ea) * a_true
b_used = 2^(-eb) * b_true

In this example: ea = 0, eb = 0, (no further scaling is needed)

The input samples x must also, in general, be scaled down before
passed into cdir() and then the output from cdir() must be scaled up:

x1 = 2^(-ex) * x input to cdir()
y1 = cdir(x1) output from cdir() due to x1
y = 2^ex * y1 output due to x

In this example (unlike canex1), we use ex = 0 (or larger).
}

.include <c:\adi_dsp\macros\dspmac.dsp>; {dsp macros}

.module/ram/abs=0 direx1;

.const L=9; {input signal length}

.const M=3; {filter order}

.var/dm x[L]; {input samples}

.var/dm y[L]; {output samples}

.var/dm/circ w[M+1]; {y-delay-line buffer in DM}

.var/dm/circ v[M+1]; {x-delay-line buffer in DM}

.var/pm/circ a[M+1], b[M+1]; {concatenated coeffs in PM}

.init x: <xiir.hex>; {input samples}

.init a: <a.hex>; {denominator coefficients}

.init b: <b.hex>; {numerator coefficients}

.const ea = 0; {scaling exponent for a}

.const eb = 0; {scaling exponent for b}

.const ex = 0; {pre/post scaling exponent}

jump start; nop; nop; nop; {Interupt vector table}
rti; nop; nop; nop; {No interrupts used}
rti; nop; nop; nop;
rti; nop; nop; nop;
rti; nop; nop; nop;
rti; nop; nop; nop;
rti; nop; nop; nop;

start: i2 = ^w; L2 = %w; {y-delay-line buffer}
i3 = ^v; L3 = %v; {x-delay-line buffer}
i4 = ^x; m4 = 1; L4 = 0; {input samples}
i5 = ^y; m5 = 1; L5 = 0; {output samples}
i7 = ^a; L7 = 2*(M+1); {double-length a,b coef-}

{-ficient buffer}
zero(i2, m2, L2); {clear y-delay line}
zero(i3, m3, L3); {clear x-delay line}

cntr = L;
do outputs until ce;

sr1 = dm(i4, m4); {read input x}

5 MACROS 97

sr = ashift sr1 by -ex (hi); {pre-scale x down}
{compute output y}

cdir(M, i7, m7, i2, m2, i3, m3, ea, eb, sr1); {input in sr1}
{output in ar}

sr = ashift ar by ex (hi); {post-scale y up}
outputs: dm(i5, m5) = sr1; {write y}

idle;

.endmod;

Lab Procedure

Go to directory c:\adi_dsp\examples\sim. Compile and load each program into
the simulator by running the batch file ezs.bat, that is,

ezs quantex1
ezs dnsamp1
ezs delex1
ezs delex2
ezs firex1
ezs firex2
ezs canex1
ezs direx1

Three predefined data windows will open. Using the <CTRL-G> command, set the
windows to display the contents of the arrays y, x, and w. The windows can be
toggled from hex to decimal format using <CTRL-T>.

Step through the programs by issuing the command step in the command line
window. Observe and write down the contents of the delay-line buffer w, and the
input and output arrays x, y, as each instruction is executed and as each input
sample gets processed.

5. Macros

In this section we give the source code of the following macros used in the experi-
ments:

zero.dsp
tap.dsp
tapin.dsp
cdelay.dsp
dot.dsp
cfir.dsp
ccan.dsp
cdir.dsp
wavgen.dsp

The files are in the directory c:\adi_dsp\macros.

5 MACROS 98

5.1. zero

The macro zero initializes a circular delay-line buffer to zero:

{zero.dsp - initialize delay line buffer to zero.
Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996.

%0 = pointer to delay-line buffer, e.g., I2
%1 = M-register to use with buffer, e.g., M2
%2 = length of buffer, e.g., L2

typical usage:

zero(i2, m2, L2); i2 cycles back to its initial value

internal operation:

cntr = L2; m2 = 1;

do loop until ce;
loop: dm(i2, m2) = 0;

}

.macro zero(%0, %1, %2);

.local loop;

cntr = %2; %1 = 1;
do loop until ce;

loop: dm(%0, %1) = 0;

.endmacro;

5.2. tap

The macro tap allows the accessing of the tap outputs of a delay line and is modeled
after the routines tap.c and tap2.c of the text [1]:

{tap.dsp - tap outputs of circular delay line.
Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996.

Based on tap.c and tap2.c of Introduction to Signal Processing.

%0 = pointer to delay-line buffer, e.g., i2
%1 = M-register to use with buffer, e.g., m2
%2 = d, for d-th tap content, where d=1, ... ,D
%3 = data register for result, e.g.,

ax0, ax1, ay0, ay1, ar, mx0, mx1, my0, my1, mr1, sr1

typical usage:

tap(i2, m2, d, sr1); put d-th tap content into SR1

note: i2 is not changed
internal operation:

m2 = d; modify(i2, m2); point to d-th tap
m2 =-d; sr1 = dm(i2, m2); put d-th tap in data register and

restore i2 to its entry value
}

5 MACROS 99

.macro tap(%0, %1, %2, %3);

%1 = %2; modify(%0, %1); {point to d-th tap}
%1 = -%2; %3 = dm(%0, %1); {put d-th tap in data register}

.endmacro;

5.3. tapin

The macro tapin transfers the content of a data register into tap-0 of a delay line.
The analogous statement in the text is∗p = x, which puts x into the buffer location
pointed to by the pointer p. Here, the role of the pointer is played by the I-register:

{tapin.dsp - put input sample into tap-0 of delay line.
Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996.

%0 = pointer to delay-line buffer, e.g., I2
%1 = M-register to use with buffer, e.g., M2
%2 = data register holding input, e.g.,

ax0, ax1, ay0, ay1, ar, mx0, mx1, my0, my1, mr1, sr0, sr1

typical usage:

tapin(i2, m2, mx1); put value from MX1 into 0-th tap

note: i2 is not changed
internal operation:

m2 = 0; dm(i2, m2) = mx1;

}

.macro tapin(%0, %1, %2);

%1 = 0; dm(%0, %1) = %2; {put value from dreg %2 into delay line}

.endmacro;

5.4. cdelay

The macro cdelay is the assembly code equivalent of the routines cdelay.c and
cdelay2.c of the text and its effect is to decrement the circular pointer pointing
into the delay-line buffer:

{cdelay.dsp - update circular delay-line buffer.
Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996.

Based on cdelay.c and cdelay2.c of Introduction to Signal Processing.

%0 = pointer to delay-line buffer, e.g., i2
%1 = m-register to use with buffer, e.g., m2

typical usage:

cdelay(i2, m2);

5 MACROS 100

internal operation:

m2 = -1; modify(i2, m2); (i.e., backshift pointer i2)

}

.macro cdelay(%0, %1);

%1 = -1; modify(%0, %1); {backshift pointer}

.endmacro;

5.5. dot

The macro dot employs multifunction instructions to compute the dot product of
two circular buffers, one residing in DM and the other in PM. It is modeled after the
FIR filtering routine fir.dsp found in [3].

The dot-product result is returned in mr1. The I-register circular pointers do not
change—they cycle completely around to their entry values:

{dot.dsp - dot product of a DM with a PM circular buffer of length M+1.
Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996.

%0 = filter order M, i.e., length L = M+1
%1 = pointer to filter taps buffer in PM, e.g., i4 (not modified)
%2 = m-register to use with tap buffer, e.g., m4
%3 = pointer to delay-line buffer in DM, e.g., i2 (not modified)
%4 = m-register to use with delay buffer, e.g., m2

result is returned in MR1;
i2, i4 are not modified - they cycle around to their entry values

typical usage:

dot(M, i4, m4, i2, m2);

internal operation:

m2 = 1; m4 = 1;
mr = 0, mx0 = dm(i2, m2), my0 = pm(i4, m4);
cntr = M;
do loop until ce

loop: mr = mr + mx0 * my0 (ss), mx0 = dm(i2, m2), my0 = pm(i4, m4);
mr = mr + mx0 * my0 (rnd);
if mv sat mr;

}

.macro dot(%0, %1, %2, %3, %4);

.local loop;

%2 = 1; %4 = 1;
mr = 0, mx0 = dm(%3, %4), my0 = pm(%1, %2);
cntr = %0;
do loop until ce;

loop: mr = mr + mx0 * my0 (ss), mx0 = dm(%3, %4), my0 = pm(%1, %2);
mr = mr + mx0 * my0 (rnd);

5 MACROS 101

if mv sat mr;

.endmacro;

When dot is used in the implementation of IIR filters, the DAG pointer i4 points
to a double-length circular buffer in PM consisting of the concatenation of the de-
nominator and numerator coefficients. In that case, it takes two calls of dot for i4
to wrap around completely. See the macros ccan and cdir.

5.6. cfir

The macro cfir is the assembly code equivalent of the routines cfir.c and cfir2.c
of the text. It takes its input from a data register and puts it in tap-0 of the delay
line, then it computes the dot-product output of the filter and returns it into mr1,
and finally it updates the delay line:

{cfir.dsp - direct-form FIR filter of order M using circular buffers.
Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996.

Based on cfir.c and cfir2.c of Introduction to Signal Processing.
In book: y = cfir(M, h, w, &p, x);

%0 = filter order M, so that filter length is L = M+1
%1 = pointer to filter taps buffer in PM, e.g., i4
%2 = m-register to use with tap buffer, e.g., m4
%3 = pointer to delay-line buffer in DM, e.g., i2
%4 = m-register to use with delay buffer, e.g., m2
%5 = data register holding input, e.g.,

ax0, ax1, ay0, ay1, ar, mx0, mx1, my0, my1, mr1, sr0, sr1

The filter output is returned in MR1.
Upon exit, the delay-line pointer i2 is decremented.

typical usage:

cfir(M, i4, m4, i2, m2, mx1);

internal operation:

tapin(i2, m2, mx1); put input from MX1 into tap-0
dot(M, i4, m4, i2, m2); compute dot-product output
cdelay(i2, m2); update delay line

}

.macro cfir(%0, %1, %2, %3, %4, %5);

tapin(%3, %4, %5); {read input sample into delay line}
dot(%0, %1, %2, %3, %4); {compute filter output into MR1}
cdelay(%3, %4); {update delay line}

.endmacro;

5 MACROS 102

5.7. ccan

The macro ccan implements the canonical realization of an IIR filter and is the
assembly code equivalent of the routines ccan.c and can2.c of the text. It takes
its input from a data register, returns its output into sr1, and updates the delay
line:

{ccan.dsp - canonical-form IIR filter of order M using circular buffers.
Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996.

Based on ccan.c and can2.c of Introduction to Signal Processing.

%0 = filter order M
%1 = pointer to filter taps buffer in PM, e.g., i4
%2 = m-register to use with tap buffer, e.g., m4
%3 = pointer to delay-line buffer in DM, e.g., i2
%4 = m-register to use with delay buffer, e.g., m2
%5 = exponent for a-coefficient scale factor
%6 = exponent for b-coefficient scale factor
%7 = data register holding input, e.g.,

ax0, ax1, ay0, ay1, ar, mx0, mx1, my0, my1, mr1, sr0, sr1

The filter output is returned in SR1.
The input may need to be scaled down further to avoid overflows.
Upon exit, the delay-line pointer i2 is decremented.

The filter coefficients must be stored consecutively in the order:

[a0, a1, a2,..., aM, b0, b1,..., bM]

and i4 is points to this double-length buffer. The a,b coefficients
used in the program are related to the true a,b coefficients by the
scale factors, defined by the exponents ea, eb:

a = a_true / Ga, Ga = 2^ea = scale factor
b = b_true / Gb, Gb = 2^eb = scale factor

(because a0_true = 1, it follows that a0 = 1/Ga. This
coefficient is redundant and not really used in the computation; it
always gets multiplied by zero.)

The common double-length circular buffer i4 should be declared as:

.var/pm/circ a[M+1], b[M+1];
i4 = ^a; L4 = 2*(M+1);

The program assumes that numerator and denominator have order M.
The delay-line buffer must be declared as follows:

.var/dm/circ w[M+1];
i2 = ^w; L2 = %w;

typical usage:

ccan(M, i4, m4, i2, m2, ea, eb, ax1);

internal operation:

5 MACROS 103

mx1 = ax1;
mr1 = 0;
tapin(i2, m2, mr1);
dot(M, i4, m4, i2, m2);
sr = ashift mr1 by ea (hi);
mr = 0;
mr1 = sr1;
my0 = 0x8000;
mr = mr + mx1 * my0 (rnd);
if mv sat mr;
ar = -mr1;
tapin(i2, m2, ar);
dot(M, i4, m4, i2, m2);
sr = ashift mr1 by eb (hi);
cdelay(i2, m2);

}

.macro ccan(%0, %1, %2, %3, %4, %5, %6, %7);

mx1 = %7; {mx1 = input x}
mr1 = 0;
tapin(%3, %4, mr1); {put s0 = 0 into tap-0}
dot(%0, %1, %2, %3, %4); {mr1 = dot(M,a,s)}
sr = ashift mr1 by %5 (hi); {sr1 = Ga * dot(M,a,s)}
mr = 0;
mr1 = sr1; {mr = Ga * dot(M,a,s)}
my0 = 0x8000; {facilitates MAC usage}
mr = mr + mx1 * my0 (rnd); {mr = Ga * dot(M,a,s) - x}
if mv sat mr;
ar = -mr1; {ar = s0 = x - Ga * dot(M,a,s)}
tapin(%3, %4, ar); {input s0 into tap-0}
dot(%0, %1, %2, %3, %4); {mr1 = dot(M,b,s)}
sr = ashift mr1 by %6 (hi); {sr1 = y = Gb * dot(M,b,s)}
cdelay(%3, %4);

.endmacro;

Fig. 5.1 shows this realization together with the necessary scale factors. To fit within
the 1.15 format, the filter coefficients must be scaled by appropriate factors of the
form:

Ga = 2ea , Gb = 2eb

The scaled and unscaled coefficients are related by

a′ = [a′0, a′1, . . . , a′M]=
1

Ga
[1, a1, . . . , aM]= 1

Ga
a

b′ = [b′0, b′1, . . . , b′M]=
1

Gb
[b0, b1, . . . , bM]= 1

Gb
b

where a′ are the scaled coefficients that will be loaded in DM, and a are the true
coefficients. (Note that a′0 is no longer unity, but that does not matter because it
is not really used in the computation.) The overall transfer function is not affected
by these scale factors; only the intermediate calculations.

5 MACROS 104

s0

−a1
′

−a2
′

z-1

z-1

s1

s2

Ga1/Ga1/Gxx y
b0

′

b1
′

b2
′

Gb Gx

Fig. 5.1 Canonical form with scaling factors.

To be able to use the dot-product macro dot, we write the sample processing
algorithm for the true coefficients in the form of Eq. (7.2.6) of the text, which we
have modified here to use a circular delay-line buffer w with state vector s defined
relative to the buffer pointer p:

for each input sample x do:
∗p = s0 = 0
∗p = s0 = x− dot(M, a, s)
y = dot(M,b, s)
cdelay(M,w,&p)

Writing the unscaled coefficients in terms of the scaled ones, a = Gaa′ and
b = Gbb′, we obtain the sample processing algorithm depicted in the above block
diagram:

for each input sample x do:
∗p = s0 = 0
∗p = s0 = x−Gadot(M, a′, s)
y = Gbdot(M,b′, s)
cdelay(M,w,&p)

The canonical realization is more prone to overflows than the direct or trans-
posed forms. In such cases the input xmust also be scaled down by an appropriate
scale factor of the form Gx = 2ex . After filtering, the output may be scaled back
up by the same factor as shown in the block diagram. The input scaling is not im-
plemented in the above sample processing algorithm. If necessary, it may be done
outside ccan using the shifter.

In the main program, the denominator and numerator coefficients a and b must
be concatenated into a double-length circular buffer. If the DAG pointer i4 is set
to point to the beginning of a and i2 to the state vector s, then after the first call of
dot, i2 will wrap around completely, and i4 will be left pointing to the beginning of
b. Only after the second call of dot will the pointer i4 wrap around to the beginning
of a, while i2 will wrap around again. Thus, upon exit from ccan, i4 will remain
unchanged, whereas i2 will be backshifted due to the last call of cdelay.

5 MACROS 105

5.8. cdir

The macro cdir implements the direct-form-I realization and is the assembly code
equivalent of the routines dir.c and dir2.c of the text. It takes its input from a
data register, returns its output into ar, and updates the delay lines:

{cdir.dsp - direct-form-I IIR filter of order M using circular buffers.
Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996.

Based on dir.c and dir2.c of Introduction to Signal Processing.

%0 = filter order M
%1 = pointer to filter taps buffer in PM, e.g., i4
%2 = m-register to use with tap buffer, e.g., m4
%3 = pointer to y-delay-line buffer in DM, e.g., i2
%4 = m-register to use with y-delay buffer, e.g., m2
%5 = pointer to x-delay-line buffer in DM, e.g., i3
%6 = m-register to use with x-delay buffer, e.g., m3
%7 = exponent for a-coefficient scale factor
%8 = exponent for b-coefficient scale factor
%9 = data register holding input, e.g.,

ax0, ax1, ay0, ay1, ar, mx0, mx1, my0, my1, mr1, sr0, sr1

The filter output is returned in AR.
The input may need to be scaled down further to avoid overflows.
Upon exit, the delay-line pointer i2 is decremented.

The filter coefficients must be stored consecutively in the order:

[a0, a1, a2,..., aM, b0, b1,..., bM]

and i4 is points to this double-length buffer. The a,b coefficients
used in the program are related to the true a,b coefficients by the
scale factors, defined by the exponents ea, eb:

a = a_true / Ga, Ga = 2^ea = scale factor
b = b_true / Gb, Gb = 2^eb = scale factor

(because a0_true = 1, it follows that a0 = 1/Ga. This
coefficient is redundant and not really used in the computation; it
always gets multiplied by zero.)

The common double-length circular buffer i4 should be declared as:

.var/pm/circ a[M+1], b[M+1];
i4 = ^a; L4 = 2*(M+1);

Program assumes that both numerator and denominator have order M.
The y- and x-delay-line buffers must be declared as follows:

.var/dm/circ w[M+1];

.var/dm/circ v[M+1];
i2 = ^w; L2 = %w;
i3 = ^v; L3 = %v;

typical usage:

cdir(M, i4, m4, i2, m2, i3, m3, ea, eb, ax1);

5 MACROS 106

internal operation:

tapin(i3, m3, ax1);
mr = 0;
tapin(i2, m2, mr1);
dot(M, i4, m4, i2, m2);
sr = ashift mr1 by ea (hi);
ay1 = sr1;
dot(M, i4, m4, i3, m3);
sr = ashift mr1 by eb (hi);
ar = sr1 - ay1;
tapin(i2, m2, ar);
cdelay(i2, m2);
cdelay(i3, m3);

}

.macro cdir(%0, %1, %2, %3, %4, %5, %6, %7, %8, %9);

tapin(%5, %6, %9); {u0 = x = input}
mr = 0;
tapin(%3, %4, mr1); {s0 = 0}
dot(%0, %1, %2, %3, %4); {dot(M,a,s)}
sr = ashift mr1 by %7 (hi); {Ga * dot(M,a,s)}
ay1 = sr1;
dot(%0, %1, %2, %5, %6); {dot(M,b,u)}
sr = ashift mr1 by %8 (hi); {Gb * dot(M,b,u)}
ar = sr1 - ay1; {output y in AR}
tapin(%3, %4, ar); {s0 = y}
cdelay(%3, %4); {update y-delay}
cdelay(%5, %6); {update x-delay}

.endmacro;

The coefficients must be scaled in the same way as in the canonical form. Fig. 5.2
shows the scaled realization.

x yu0

b0
′

b1
′

b2
′

z-1

z-1

u1

u2

s0

−a1
′

−a2
′

z-1

z-1

s1

s2

Gb /Ga Ga1/Gx Gx

Fig. 5.2 Direct form with scaling factors.

The sample processing algorithm is the circular version of that in Eq. (7.1.10)
of the text and can be stated in the following form that uses the scaled coefficients
(again, the input prescaling is not implemented inside cdir):

5 MACROS 107

for each input sample x do:
∗pv = u0 = x
∗pw = s0 = 0
∗pw = y = s0 = Gbdot(M,b′,u)−Gadot(M, a′, s)
cdelay(M,v,&pv)
cdelay(M,w,&pw)

where pv and pw are the x-delay and y-delay buffer pointers, v, w are the corre-
sponding buffers, and u, s the corresponding states relative to the current values
of the pointers.

5.9. wavgen

The macro wavgen implements a wavetable generator as discussed in Section 8.1.3
of the text [1]. To facilitate the usage of the DAG registers, the wavetable circular
buffer is loaded and circulated in forward order. If the wavetable has lengthD, and
the address increment is c, then the wavetable is cycled over every c of its samples
generating a waveform of basic frequency

f = cfs
D

The stored waveform is scaled by the amplitude factor A. By assigning two
different DAG registers to the wavetable and two different address increments, one
can generate waveforms of two different frequencies.

{wavgen.dsp - wavetable generator
Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996.

Based on wavgen.c of Introduction to Signal Processing, Sec.8.1.3.

%0 = pointer to wavetable buffer, e.g., i5
%1 = m-register to use with buffer, e.g., m5
%2 = desired amplitude A
%3 = desired increment c (frequency f = c * fs / D)
%4 = data register holding output, e.g.,

ax0, ax1, ay0, ay1, ar, mx0, mx1, my0, my1, mr1, sr0, sr1

registers mx0,my0 are altered

typical usage:

wavgen(i5, m5, A, c, my1);

internal operation:

m5 = c;
mx0 = A;
my0 = dm(i5, m5);
mr = mx0 * my0 (rnd);

6 APPENDIX 108

my1 = mr1;
}

.macro wavgen(%0, %1, %2, %3, %4);

%1 = %3;
mx0 = %2;
my0 = dm(%0, %1);
mr = mx0 * my0 (rnd);
%4 = mr1;

.endmacro;

6. Appendix

This appendix contains the listings of the following files, all of which reside in the
directory c:\adi_dsp\macros:

dec2hex.c, hex2dec.c
sinetbl.c, squartbl.c, trapztbl.c, uran.c
template.dsp, dspmac.dsp

6.1. Decimal-to-Hex Format Converters

The decimal-to-hex format converter dec2hex.c uses the adc.c routine of the text
[1] to get the 2’s complement binary representation of a number, and then it collects
the bits in groups of fours to get the hex digits. It can be used with any value of B,
such as B = 8,16,24,32, as long as a and b are such that a+ b = B:

/* dec2hex.c -- decimal to hex (a.b)-format converter
* Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996
*
* Usage: dec2hex a.b < decimal.dat > hex.dat
*

*/

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>

void adc(); 2’s complement ADC with rounding from I2SP-ch.2

void main(int argc, char ** argv)
{

int i, a, B, *b, *h; b = bit vector, h = hex vector
double x, R;

if (argc != 2) {
puts("\nDecimal to hex (a.b)-format converter");
puts("Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996\n");
puts("Usage: dec2hex a.b < decimal.dat > hex.dat");
puts("e.g., dec2hex 1.15 < decimal.dat > hex.dat \n");

6 APPENDIX 109

puts("In the (1.15)-format, the range is -1 <= x <= 1-2^(-15)");
puts("and in hex, -1 = 8000, 1-2^(-15) = 7fff");
puts("\nTotal number of bits: B = a+b, (must be a multiple of 4)");
puts("Full scale range is R = 2^a");
puts("Outputs have B/4 hex digits\n");
puts("The B bits [b_1, b_2, ..., b_B] represent the number:");
puts(" x = -2^{a-1} b_1 + 2^{a-2} b_2 + ... + 2^{-b} b_B");
puts("The limits are:");
puts(" -2^(a-1) <= x <= 2^(a-1) - 2^(-b)");
puts("e.g., in (4.12)-format, -8 <= x <= 8 - 2^(-12)\n");
exit(0);
}

a = atoi(argv[1]);
B = a + atoi(strchr(argv[1], ’.’) + 1); total bits

R = pow(2, a); 2^a = full scale

b = (int *) calloc(B, sizeof(int)); B-bit vector
h = (int *) calloc(B/4, sizeof(int)); B/4 hex digits

while(fscanf(stdin, "%lf", &x) != EOF) {
adc(x, b, B, R); convert to binary
for (i=0; i < B/4; i++) {

h[i] = 8 * b[4*i] + 4 * b[4*i+1] + 2 * b[4*i+2] + b[4*i+3];
printf("%x", h[i]);
}

printf("\n");
}

}

The program hex2dec.c performs the converse operation, that is, hex-to-decimal
conversion. For each hex number to be converted, it reads its hex digits as chars,
then works out the binary bit pattern of the number, and then calls the text routine
dac.c to convert it to decimal. Again, one must have a+b = B, where the program
assumes that there will be B/4 hex chars in each hex number to be converted:

/* hex2dec.c -- hex to decimal (a.b)-format converter
* Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996
*
* Usage: hex2dec a.b < hex.dat > decimal.dat
*

*/

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <ctype.h>
#include <string.h>

double dac(); dac.c - from I2SP, ch.2
int c2h();

void main(int argc, char ** argv)
{

char *s;

6 APPENDIX 110

int i, j, a, B, *b;
double x, R;

if (argc != 2) {
puts("\nHex to decimal (a.b)-format converter");
puts("Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996\n");
puts("Usage: hex2dec a.b < hex.dat > decimal.dat");
puts("e.g., hex2dec 1.15 < hex.dat > decimal.dat\n");
puts("Total bits: B = a+b, (must be a multiple of 4)");
puts("Full scale range is R = 2^a");
puts("Inputs must have B/4 hex digits\n");
puts("For the (a.b)-format, the outputs are in the range:");
puts(" -2^(a-1) <= x <= 2^(a-1) - 2^(-b)");
exit(0);
}

a = atoi(argv[1]);
B = a + atoi(strchr(argv[1], ’.’) + 1); total bits

b = (int *) calloc(B, sizeof(int)); B-bit vector
s = (char *) calloc(B/4 + 1, sizeof(char)); B/4 hex digits

R = pow(2, a); 2^a = full scale

while(fscanf(stdin, "%s", s) != EOF) { hex chars
for (i=0; i<B/4; i++) i-th hex digit

for (j=0; j<4; j++) j-th bit
b[4*i+j] = (c2h(s[i]) & (1 << 3-j)) ? 1 : 0; masks: 8,4,2,1

x = dac(b, B, R); scaled output
printf("% .16lf\n", x);
}

} end of main

———————————————————————

/* c2h.c - convert hex char into hex integer
*
* input is the char: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f
* output is the int: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
*

*/

int c2h(c)
char c;
{

c = tolower(c);

if (isdigit(c))
return (c - ’0’); hex digits 0-9

else
return (c - ’a’ + 10); hex digits a-f

}

6.2. Wavetable Generators

The waveform generator programs below are based on those given in Section 8.1.3
of the text [1]. They all generate one period of a required waveform to be stored

6 APPENDIX 111

in a circular wavetable buffer. The C program sinetbl.c generates one period of
length D of a sinusoidal or cosinusoidal signal.

/* sinetbl.c - sine wavetable of amplitude A, period D samples */
/* Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996 */

#include <stdio.h>
#include <math.h>

void main(int argc, char ** argv)
{

int c, i, D;
double A, pi = 4 * atan(1.0);

if (argc != 4) {
puts("\nSine/Cosine Wavetable");
puts("Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996\n");
puts("Usage: sinetbl c A D > file.dat\n");
puts(" c = 0/1 for sine/cosine");
puts(" A = amplitude");
puts(" D = period");
exit(0);
}

c = atoi(argv[1]);
A = atof(argv[2]);
D = atoi(argv[3]);

for (i=0; i<D; i++)
if (c==1)

printf("%.15lf\n", A * cos(2 * pi * i / D));
else

printf("%.15lf\n", A * sin(2 * pi * i / D));
}

The program squartbl.c generates one period of length D of a square wave. One
can choose between (a) a completely discontinuous jumping between two levels, or
(b) a more gradual transition where the values at the discontinuities are replaced
by the mid value between the levels.

/* squartbl.c - square wavetable of period D and subperiod D1 */
/* Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996 */

#include <stdio.h>
#include <math.h>

void main(int argc, char ** argv)
{
int i, D, D1;
double A1, A2, x;

if (argc != 6) {
puts("\nSquare Wavetable");
puts("Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996\n");
puts("Usage: squartbl A1 A2 D1 D t > file.dat\n");
puts(" A1 = amplitude of sub-period D1");

6 APPENDIX 112

puts(" A2 = amplitude of remaining period (D-D1)");
puts(" D1 = sub-period");
puts(" D = total period");
puts(" t = 1 alternates discontinuously from A1 to A2");
puts(" t = 0 goes through mid-level value (A1+A2)/2");
exit(0);
}

A1 = atof(argv[1]);
A2 = atof(argv[2]);
D1 = atoi(argv[3]);
D = atoi(argv[4]);
x = 1 - atof(argv[5]); x = 1 - t

printf("%.15lf\n", A1 - x * (A1 - A2) / 2); A1 or (A1+A2)/2

for (i=1; i < D1; i++)
printf("%.15lf\n", A1);

printf("%.15lf\n", A2 + x * (A1 - A2) / 2); A2 or (A1+A2)/2

for (i=D1+1; i < D; i++)
printf("%.15lf\n", A2);

}

The program trapztbl.c implements a trapezoidal waveform generator, which
also includes a triangular waveform as a special case.

/* trapztbl.c - trapezoidal wavetable of period D and subperiods D1, D2 */
/* Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996 */

#include <stdio.h>
#include <math.h>

void main(int argc, char ** argv)
{
int i, D, D1, D2;
double A;

if (argc != 5) {
puts("\nTrapezoidal Wavetable");
puts("Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996\n");
puts("Usage: trapztbl A D1 D2 D > file.dat\n");
puts(" A = amplitude");
puts(" D1 = duration of linearly increasing portion");
puts(" D2 = duration of constant part");
puts(" D = total period");
puts(" D-(D1+D2) = duration of linearly decreasing portion");
exit(0);
}

A = atof(argv[1]);
D1 = atof(argv[2]);
D2 = atoi(argv[3]);
D = atoi(argv[4]);

for (i=0; i<D; i++)

6 APPENDIX 113

if (i < D1)
printf("%.15lf\n", i * A / D1);

else
if (i < D1 + D2)

printf("%.15lf\n", A);
else

printf("%.15lf\n", (D - i) * A / (D - D1 - D2));
}

Finally, the program uran.c generates a block of uniformly-distributed random
numbers of any desired mean and range. It is useful in designing the random
number inputs to the Karplus-Strong string algorithm. It uses the C function ran.c
of the text [1].

/* uran.c - generate block of uniform random numbers
* Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996
*
* range m-R <= x < m+R
*

*/

#include <stdio.h>
#include <math.h>
#include <stdlib.h>

double ran(); ran.c from I2SP, Appendix B

void main(int argc, char **argv)
{

int N, i;
long iseed;
double m, R, x;

if (argc != 5) {
puts("Generate a block uniform random numbers");
puts("Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996\n");
puts("Usage: uran m R N iseed > x.dat\n");
puts("N = length of block");
puts("range is the interval [m-R, m+R), mean = m\n");
exit(0);
}

m = atof(argv[1]);
R = atof(argv[2]);
N = atoi(argv[3]);
iseed = atol(argv[4]);

for (i=0; i<N; i++) {
x = 2 * R * (ran(&iseed) - 0.5) + m;
printf("% .15lf\n", x);
}

}

6.3. Template and Begin/End Files

The file template.dsp serves as the starting point of all program examples:

6 APPENDIX 114

{template.dsp - use as template for sample processing algorithms}
{Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996}

{Based on mic2out.dsp from Analog Devices FTP site and the sample talkthru
program of the EZ-KIT Lite Reference Manual.}

{--- choose sampling rate in kHz: --}
{0xc850 = 8 | 0xc851 = 5.5125 | 0xc852 = 16 }
{0xc853 = 11.025 | 0xc854 = 27.42857 | 0xc855 = 18.9 }

.const fs = 0xc850; {0xc856 = 32 | 0xc857 = 22.05 | 0xc859 = 37.8 }
{0xc85b = 44.1 | 0xc85c = 48 | 0xc85d = 33.075}
{0xc85e = 9.6 | 0xc85f = 6.615 }

{---}

.include <c:\adi_dsp\macros\begin.dsp>; {initializations and DSP macros}

{--- define constants, variables, and buffers ----------------------------}
{-------------------------- example --------------------------------------}
{.const D = 7670; approximately max delay for EZ-KIT Lite }
{.var/dm/circ w[D+1]; circular delay-line buffer of length D+1 }
{ }
{i2 = ^w; L2 = %w; delay-line buffer pointer and length }
{ }
{zero(i2, m2, L2); initialize delay-line to zero }
{---}

{--- start processing input samples --------------------------------------}

wait: idle; jump wait; {wait for interrupt and loop forever}
{interrupt service routine starts here}

input_samples: ena sec_reg; {enable secondary register set}

{--- read input samples from codec ---------------------------------------}

ax1 = dm(rx_buf + 1); {left input sample}
mx1 = dm(rx_buf + 2); {right input sample}

{--- sample processing algorithm ---}
{--------------------------------- example -------------------------------}
{ tap(i2, m2, D, my1); put Dth-tap output of delay into MY1 }
{ tapin(i2, m2, mx1); put current input from MX1 into 0th tap}
{ cdelay(i2, m2); update delay }
{---}

{--- write output samples to codec ---------------------------------------}

dm(tx_buf + 1) = ax1; {left output sample}
dm(tx_buf + 2) = mx1; {right output sample}

{--- return from interrupt ---}

rti;

.include <c:\adi_dsp\macros\end.dsp>; {wrapup}

The files begin.dsp and end.dsp in the directory c:\adi_dsp\macros are the
beginning and ending parts of the talkthru program in the EZ-KIT Lite’s Reference
Manual [2] and the mic2out.dsp program found in [3].

REFERENCES 115

We have made only two modifications to these files: (1) we redefined the codec’s
data format register so that it can be passed in as the constant fs, which may be
selected at the beginning of every example program, and (2) we added the include-
file dspmac.dsp, which includes all the DSP macros; its listing is:

{dspmac.dsp - includes all DSP macros.
Junior DSP Lab - Rutgers ECE Dept - S. J. Orfanidis - Jan 1996.

typical usage:
cdelay(i2, m2);
tap(i2, m2, d, my1);
tapin(i2, m2, mx1);
dot(M, i4, m4, i2, m2);
cfir(M, i4, m4, i2, m2, mx1);
ccan(M, i4, m4, i2, m2, ea, eb, ax1);
cdir(M, i4, m4, i2, m2, i3, m3, ea, eb, ax1);
wavgen(i5, m5, A, c, my1);
zero(i2, m2, L2);

}

.include <c:\adi_dsp\macros\cdelay.dsp>;

.include <c:\adi_dsp\macros\tap.dsp>;

.include <c:\adi_dsp\macros\tapin.dsp>;

.include <c:\adi_dsp\macros\dot.dsp>;

.include <c:\adi_dsp\macros\cfir.dsp>;

.include <c:\adi_dsp\macros\ccan.dsp>;

.include <c:\adi_dsp\macros\cdir.dsp>;

.include <c:\adi_dsp\macros\wavgen.dsp>;

.include <c:\adi_dsp\macros\zero.dsp>;

References

[1] S. J. Orfanidis, Introduction to Signal Processing, Prentice Hall, Upper Saddle
River, NJ, 1996.

[2] ADSP-2100 Family EZ-KIT Lite Reference Manual, Analog Devices, Norwood, MA,
1995. Available also from www.analog.com.

[3] Analog Devices BBS (617) 461-4258, or anonymous ftp site ftp.analog.com, or
web site www.analog.com. The ezld.com utility is included in the file ezkfo-
rum.zip in the subdirectory pub/dsp/ezktil of the ftp site.

