LENESAS

-
»
1
i
<
Q
-
c
D

RX113 Group

Renesas Starter Kit Code Generator Tutorial Manual
For CS+

RENESAS MCU
RX Family / RX100 Series

All information contained in these materials, including products and product specifications, represents
information on the product at the time of publication and is subject to change by Renesas Electronics
Corporation without notice. Please review the latest information published by Renesas Electronics
Corporation through various means, including the Renesas Electronics Corporation website
(http://www.renesas.com).

Renesas Electronics
Www.renesas.com Rev. 1.01 Mar 2015

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the
operation of semiconductor products and application examples. You are fully responsible for the incorporation of these
circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for
any losses incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas
Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever
for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property
rights of third parties by or arising from the use of Renesas Electronics products or technical information described in
this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other
intellectual property rights of Renesas Electronics or others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or
in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such
alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High
Quality”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade,
as indicated below.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio
and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial
robots etc.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster
systems; anticrime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a
direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may
cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality
grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas
Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable
for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for
which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas
Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage
range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no
liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified
ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products
have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use
conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to
implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire
in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including
but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or
any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please
evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all
applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation,
the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your
noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose
manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not
use Renesas Electronics products or technology described in this document for any purpose relating to military
applications or use by the military, including but not limited to the development of weapons of mass destruction. When
exporting the Renesas Electronics products or technology described in this document, you should comply with the
applicable export control laws and regulations and follow the procedures required by such laws and regulations.

10. Itis the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or
otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set
forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as
a result of unauthorized use of Renesas Electronics products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of
Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its
majority owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(2012.4)

Disclaimer

By using this Renesas Starter Kit (RSK), the user accepts the following terms:

The RSK is not guaranteed to be error free, and the entire risk as to the results and performance of the RSK is
assumed by the User. The RSK is provided by Renesas on an “as is” basis without warranty of any kind whether
express or implied, including but not limited to the implied warranties of satisfactory quality, fitness for a particular
purpose, title and non-infringement of intellectual property rights with regard to the RSK. Renesas expressly
disclaims all such warranties. Renesas or its affiliates shall in no event be liable for any loss of profit, loss of data,
loss of contract, loss of business, damage to reputation or goodwill, any economic loss, any reprogramming or recall
costs (whether the foregoing losses are direct or indirect) nor shall Renesas or its affiliates be liable for any other
direct or indirect special, incidental or consequential damages arising out of or in relation to the use of this RSK, even
if Renesas or its affiliates have been advised of the possibility of such damages.

Precautions

The following precautions should be observed when operating any RSK product:

This Renesas Starter Kit is only intended for use in a laboratory environment under ambient temperature and humidity
conditions. A safe separation distance should be used between this and any sensitive equipment. Its use outside the
laboratory, classroom, study area or similar such area invalidates conformity with the protection requirements of the
Electromagnetic Compatibility Directive and could lead to prosecution.

The product generates, uses, and can radiate radio frequency energy and may cause harmful interference to radio
communications. However, there is no guarantee that interference will not occur in a particular installation. If this
equipment causes harmful interference to radio or television reception, which can be determined by turning the
equipment off or on, you are encouraged to try to correct the interference by one or more of the following measures;

e ensure attached cables do not lie across the equipment

e reorient the receiving antenna

e increase the distance between the equipment and the receiver

e connect the equipment into an outlet on a circuit different from that which the receiver is connected
e power down the equipment when not in use

e consult the dealer or an experienced radio/TV technician for help NOTE: It is recommended that wherever
possible shielded interface cables are used.

The product is potentially susceptible to certain EMC phenomena. To mitigate against them it is recommended that the
following measures be undertaken;

e The user is advised that mobile phones should not be used within 20m of the product when in use.
e The user is advised to take ESD precautions when handling the equipment.

The Renesas Starter Kit does not represent an ideal reference design for an end product and does not fulfil the
regulatory standards for an end product.

How to Use This Manual

1. Purpose and Target Readers

This manual is designed to provide the user with an understanding of how to use Code Generator for RX
together with the CS+ IDE to create a working project for the RSK platform. It is intended for users designing
sample code on the RSK platform, using the many different incorporated peripheral devices.

The manual comprises of step-by-step instructions to generate code and import it into CS+, but does not
intend to be a complete guide to software development on the RSK platform. Further details regarding
operating the RX113 microcontroller may be found in the Hardware Manual and within the provided sample
code.

Particular attention should be paid to the precautionary notes when using the manual. These notes occur within the body
of the text, at the end of each section, and in the Usage Notes section.

The revision history summarizes the locations of revisions and additions. It does not list all revisions. Refer to the text of
the manual for details.

The following documents apply to the RX113 Group. Make sure to refer to the latest versions of these
documents. The newest versions of the documents listed may be obtained from the Renesas Electronics Web
site.

Document Type Description Document Title Document No.
User’s Manual Describes the technical details of the RSK hardware. RSKRX113 User’s R20UT2756EG
Manual
Tutorial Manual Provides a guide to setting up RSK environment, RSKRX113 Tutorial R20UT2757EG
running sample code and debugging programs. Manual
Code Generator Provides a guide to code generation and importing RSKRX113 Code R20UT3254EG
Tutorial into the CS+ IDE. Generator Tutorial
Manual
Quick Start Guide Provides simple instructions to setup the RSK and RSKRX113 Quick R20UT2758EG
run the first sample, on a single A4 sheet. Start Guide
Schematics Full detail circuit schematics of the RSK. RSKRX113 R20UT2755EG
Schematics
Hardware Manual Provides technical details of the RX113 RX113 Group, RO1UH0448EJ
microcontroller. User’'s Manual:
Hardware

2. List of Abbreviations and Acronyms

Abbreviation Full Form
ADC Analog-to-Digital Converter
API Application Programming Interface
COM COMmunications port referring to PC serial port
CPU Central Processing Unit
DVD Digital Versatile Disc
El Renesas On-chip Debugging Emulator
GUI Graphical User Interface
IDE Integrated Development Environment
IRQ Interrupt Request line
LCD Liquid Crystal Display
LED Light Emitting Diode
MCU Micro-controller Unit
PC Personal Computer
Pmod™ This is a Digilent Pmod™ Compatible connector. Pmod™ is registered to Digilent Inc.
Digilent-Pmod_Interface_Specification
PLL Phase-locked Loop
RAM Random Access Memory
ROM Read Only Memory
RSK Renesas Starter Kit
SCI Serial Communications Interface
SPI Serial Peripheral Interface
UART Universal Asynchronous Receiver/Transmitter
USB Universal Serial Bus

All trademarks and registered trademarks are the property of their respective owners.

http://www.digilentinc.com/index.cfm

Table of Contents

O YT o= 7
L1 PUIPOSE ... 7
1.2 FRALUIES ... 7
P2 1 11 (0T [3Tox o] o PRSP 8
3. Project Creation WIth CS..... ..o e e e e e e e e e e e eeeaaane 9
R 70 R [o1 1o T [V 1o o I PR TP PUPRRPT 9
3.2 Creating the PrOJECT ... ittt e e e e e skttt e e e e e e e e e s bt bbeeeea e e s e aanbbneeeaaeesaanne 9
4. Code Generation Using the CS+ PlUg iN......cooiiiiiiiiee i 10
o | i o o[0T 1o o PRSP 10
M =Y =Y o] [T g To @0 o [T 1= =T - (o S 10
B O To (- 1= T 1T - (o] gl o | PRSP 11
N O To [1= T g TT = i o] o F PRSP 12
44.1 (O [0 Tod QL CT=T o 1= = (o SO PR OTPPR 12
442 7L@ 3 o T4 1= OUPRPPTPRRN 14
443 Serial CommuniCatioNS INTEITACEoiiiiiiiie e 15
4.4.4 12-Dit A/D CONVEITET ..ttt ettt e e e e e ekt e et e e e e e s e s abbb bt e e e e e e s e aanbbeeeeeaeeesannbbeeeaaaaaas 16
4.4.5 GENEIAtING thE COUR.....eiiiii ittt e ettt e e e e e st e e e e e e e e e snbbbbe e e e e e e e e sanereneeas 18
T e (0] [=Tot BT 11T ST SP 19
LT R Ao [0 [1o ol = o =Tt A o] [0 [T T TR UUTPPPRRPT 22
OO KT oo [[1 1= To =11 (o) o F PSP 23
S A ST o o Yo o 8 {11 o 0] o)Y, 1 o USRS 23
37 I I 11 o 0] o), 1 T USSR 23
6.3 INCluding fileS iN the CS+ PrOJECT ... e e e s e s e e e e e s s s snn e e e e e e s e ennrnnees 24
6.4 Adding Code to Generated FilESuuiiiiiiiiie e 24
6.4.1 r_cg_userdefine.n Code INSEIION ... e e e 24
6.4.2 [oTo JIESN D22 To Mol @0 o (= [KST=T4 (o] o RO OO URPPP TR 25
6.4.3 [oTo JIESN 22 To I8 o @0 T [N [TST =T o 1T o I R 25
6.4.4 [oTo JIESN 22 Vo RN 1T o ol @ To [N 1 F=1= T 1 1o o 26
6.4.5 [oTo JIESToT Y 15T ool @ To [N 1 £7= T o (oo 26
6.4.6 I_CQ_SCI.n €O INSEITION ...ttt e e e et e e e e e e e sanbbbe e e e e e e e e annbeneeas 27
6.4.7 [eto I 04 F= 1T ol @do o [N 1 £-1=T 5 (o o HU PO PURPPT 28
7. Project Build and Debugger Configuration............couuuuieiinieeeeeeeeeiiie e 32
7.1 RUNNING the TULOTIAL....cciii ettt e e e e ettt e e e e e e e e e aabb et e e e e e e e s e bnbbeeeaaaeesannnbnneeas 33

8. AdAItIONAl INFOIMALION <. ..o 34

LENESANS

RSKRX113 R20UT3254EG0101
Rev. 1.01
RENESAS STARTER KIT Mar 03, 2015

1. Overview

1.1 Purpose

This RSK is an evaluation tool for Renesas microcontrollers. This manual describes how to use the CS+ IDE
Code Generator plug in to create a working project for the RSK platform.

1.2 Features

This RSK tutorial guides the user through creating a project to evaluate the following features:

« Project creation with CS+,
« Code Generation using the Code Generator plug in,
« User circuitry such as switches, LEDs and a potentiometer.

The RSK board contains all the circuitry required for microcontroller operation.

R20UT3254EG0101 Rev. 1.01 ——
Mar 03, 2015 RENESAS

RSKRX113 2. Introduction

2. Introduction

This manual is designed to answer, in tutorial form, how to use the Code Generator plug in for the RX family
together with the CS+ IDE to create a working project for the RSK platform. The tutorials help explain the

following:

e Project generation using the CS+,

e Detailed use of the Code Generator plug in for CS+,
e Integration with custom code,

e Building and running the project.

The project generator will create a tutorial project with three selectable build configurations:
e ‘DefaultBuild’ is a project with debug support and optimisation level set to two.
e ‘Debug’is a project built with the debugger support included. Optimisation is set to zero.

e ‘Release’is a project with optimised compile options, producing code suitable for release in a product.
Optimisation is set to two.

These tutorials are designed to show you how to use the RSK and are not intended as a comprehensive introduction to
the CS+ debugger, compiler toolchains or the E1 emulator. Please refer to the relevant user manuals for more in-depth

information.

R20UT3254EG0101 Rev. 1.01 ———
Mar 03, 2015 RENESAS

RSKRX113 3. Project Creation with CS+

3. Project Creation with CS+

3.1 Introduction

In this section the user will be guided through the steps required to create a new ‘C’ project for the RX113
microcontroller, ready to generate peripheral driver code using Code Generator. This project generation step
is necessary to create the MCU-specific source, project and debug files.

3.2 Creating the Project

To use the program, start CS+:
Windows™ 7 & Vista: Start Menu (Start Menu > All Programs > Renesas Electronics CS+ > CS+ for CC (RX,
RHB850)

windows™ 8: From Apps View @ click ‘CS+ for CC (RX,RH850)’ icon

e CS+ will show the Start Page. Use the

i ’ H A new project can be created.
GO bUtton to Create a New PrOJeCt' | A new project can also be created by reusing the file configuration registered to an esisting project.

e In the ‘Create Project’ dialog, select

‘RX’ from the ‘Microcontroller’ pull- Create Project =5=)
down. Microcontroller RX

e In the ‘Using Microcontroller’ list T
control, scroll down to ‘RX113 a‘ngl 3 (Search microcontrolle) —
expand‘ the tree ContrOI by CII.CkI’ng +. F RE5F511362:FP(100pin) - Pmdu;:l Name:RE5F511388<FP -
Select ‘R5F51138AxFP (100pin)’. ¥ RSFST1365LI(100pin) e

W R5F511375xFM(B2pin)
B R5F511372¢FP(100pin)
5F5113725cLJ(100pin)

i

. . . Additional Information Package=PLGF0100KB-A
e Ensure that in the ‘Kind of project’ pull- ’
5F511382%FM{64pin)

down, ‘Empty Application(CC-RX)’ is ;
selected. .

e Choose an appropriate name and

S nent

. . . Kind of project: Empty Application(CC-RX)
location for the project, then click me S =)
‘Create’ Project name: CG_Tutorial

. . . Place: C\Work: ——
Note: this tutorial assumes the project i e =]
is named and located at the place NEmlmeEe e
ShOWﬂ OppOSIte C:wiorkspace\CG_Tuteria\CG_Tutorial mtpj
° If the folder entered Cal’ant be found a [C] Pass the file composition of an existing project to the new project

‘QUES'[IOI’]' dla|Ogue W|th be dISp|ayed, L Project to be passed: Browse... U
CI'Ck 'Yes,- Copy composition files in the diverted project folder to a new project folder.

Create l [Cancel I [Help

e CS+ will create the blank project with

the standard project tree. A ‘Code Project Tree Skl | 7% Property

Generator’ node may also be shown, if [t]

previously enabled g - ? i - i CG.Tutora Propety

) ERN J CG Tutorial (Project)] 4 File
... 2% R5F51138A:FP (Microcentroller)
CC-RX (Build Tool) Absaolute path
; 25 R Simulator (Debug Tool) > Notes
L File
R20UT3254EG0101 Rev. 1.01 RENESAS Page 9 of 38

Mar 03, 2015

RSKRX113 4. Code Generation Using the CS+ plug in

4. Code Generation Using the CS+ plug in

4.1 Introduction

Code Generator is an CS+ plug in GUI tool for generating template ‘C’ source code for the RX113. When
using Code Generator, the user is able to configure various MCU features and operating parameters using
intuitive GUI controls, bypassing the need, in most cases, to refer to sections of the Hardware Manual.

By following the steps detailed in this tutorial, the user will generate a CS+ project called CG_Tutorial. A fully
completed Tutorial project is contained on the DVD and may be imported into CS+ by following the steps in
the Quick Start Guide. This tutorial is intended as a learning exercise for users who wish to use the Code
Generator to generate their own custom projects for CS+.

Once the user has configured the project, the ‘Generate Code’ function is used to generate three code
modules for each specific MCU feature selected. These code modules are name ‘r_cg_xxx.h’, ‘r_cg_xxx.c’,
and ‘r_cg_xxx_user.c’, where ‘xxx’ is a three letter acronym for the relevant MCU feature, for example ‘adc’.
Within these code modules, the user is free to add custom code to meet their specific requirement. Custom
code should be added between the following comment delimiters:

/* Start user code for adding. Do not edit comment generated here */
/* End user code. Do not edit comment generated here */

Code Generator will locate these comment delimiters, and preserve any custom code inside the delimiters on
subsequent code generation operations. Any code outside of these comment delimiters will be overwritten on
subsequent code generation sessions.

The CG_Tutorial project uses the ADC module with external trigger, Serial Communications Interface (SCI)
and LCD Driver. These modules are used to perform an A/D conversion, display the results on a terminal
program via the Virtual COM port and also on the LCD display attached to the RSK.

Following a tour of the key user interface features of Code Generator in 84.3, the reader is guided through
each of the peripheral function configuration dialogs in 84.4. In §6, the reader is familiarised with the structure
of the template code, as well as how to add custom code in the areas provided by the Code Generator.

4.2 Enabling Code Generator
After installation of CS+, Code Generator must be enabled. This step is only required once, CS+ will
remember this setting on subsequent launches.

From the ‘Tool’ pull-down menu select ‘Plug-in Setting..."”. On the ‘Additional Function’ tab, click the box next to
the ‘Code Generator/Pin View Plug-in’ option and ensure it is ticked:
Additional Function

Basic Function

Description
[“.{ Code Generator Plug-n Plug4n to generate the device driver automatically for VB50, 7BKD, TBKOR, RL78/G12, G13, G1

CodeGawﬁoran\ﬁav Plug+n Plug-in to generate the device driver automatically and to view the device corfiguration for RX,

Click ‘OK’. CS+ needs to restart to enable this selection, select ‘Yes’ from the Question dialogue box.

Module Name

After restarting, ‘Code Generator (Design Tool)' node will now be shown in the left-hand ‘Project Tree’ window

pane.
E Property
°:~] Code Generator Property
CG Tutorial (Project) 4 Generate File Mode
SF511388:FP (Microcontraller) AP output control
Generator (Design Tool) Output folder
Pin Wiew File generation control
i Peripheral Functions Register files
{ Code Preview Report type B
A CC-RY (Build Toal) 4 :;T;'::';;:':"“m
. R Simulator (Debug Tool) \ersion
File
R20UT3254EG0101 Rev. 1.01 RENESAS Page 10 of 38

Mar 03, 2015

RSKRX113 4. Code Generation Using the CS+ plug in

4.3 Code Generator Tour

This section presents a brief tour of Code Generator. For further details of the Code Generator paradigm and
reference, refer to the Application Leading Tool Common Operations manual (r20ut2663ej0100). Application
Leading Tool is the stand-alone version of Code Generator and this manual is applicable to the Code

Generator.

In the Project Tree pane, click on the icon next to ‘Code Generator’ node to expand the list.
Expand the ‘Peripheral Functions’ node by clicking on the next to it.

Open the ‘Peripheral Function’ tab by double clicking on the ‘Peripheral Functions’ name.

The CS+ main window will now contain a ‘Peripheral Functions’ tab with the Initial View as show in Figure 4-1.

@ CG_Tutorial - CS+ for CC - [Project Tree] =REN X
File Edit Wjew Project Build Debug Tool Window Help
e U= R N B R - U G B DefaultBuild > 2 @O s
028 Qo
Project Tree 75 Prapeity | 23 Peripheral Functions | B[
%] GenerateCode T O X B o6 MELE Do) 0 D D Fl & T s TR G M 23
Clock setting | EBlock diagram | =
ode Generator {Design Toal) YL setting
: 2 Pin View @ 27 <WCC < 36 [V)) 24 W< VEC <27 V) D 1.8M) ¢ YCC < 24 V) £
=W Deripheral Functions
i Clack Generatar Main clock oscilator and 551 clack [S51SCK) setting
-8 Waltage Detection Circuit Operation
.m0 Clock Frequency Accuracy b Main clock ozcillation source Resonator -
.m0 Lowy Powver Consumption f 16 {MHz)
- Interrupt Contraller Unit S :
.7 Buses Dscillator wait time 2 cpcles ~ 05 [us)
..m7 Data Transfer Contrall
= r.ans &r ontrofier Ozcillation stop detection function Disabled -
.m0 Bwent Link Controller =
[+-= IFO Ports PLL circuit setting
- Multi-Function Timer Pulse [T] Operation
-..m" Part Output Enable 2 wa 32
- 3-Bit Tirmer . .
-8 Comnpare Match Timer Sub-clock ozcillatar and RTC [RTCSCLE) setting
.0 Realtime Clock [Operation
... Tndependent Watchdog Tirm tiddle drive capacity -
-8 Serial Communications Inte) Dutput 3 x
- T2C Bus Interface TEoF]
W' Serial Peripheral Interface =
- CRC Calculatar
.. W7 12-Bit A/D Converter 3
. 12-Bit D/& Converter
- Comparator B =
... Data Operation Circuit \ !
F-Jf Code Preview - |[\ A Messages /
1 2 =] Fu & & £ Fa [[Fa m =] i
553 DISCONNECT

Figure 4-1 Initial View

Code Generator provides GUI features for configuration of MCU subsystems and peripherals. Once the user
has configured all required MCU subsystems and peripherals, the user can click the ‘Generate Code’ button,
resulting in a fully configured CS+ project.

Navigation to the MCU peripheral configuration screens may be performed by double-clicking the required
function in the Code Generator -> Peripheral Function on the left.

It is also possible to see a preview of the code that will be generated for the current peripheral function
settings by double-clicking the required function in the Code Generator -> Code Preview on the left.

R20UT3254EG0101 Rev. 1.01
Mar 03, 2015

RENESAS Page 11 of 38

RSKRX113 4. Code Generation Using the CS+ plug in

4.4 Code Generation

In the following sections, the reader is guided through the steps to configure the MCU for a simple tutorial
project containing ADC with external switch trigger, Serial Communications Interface (SCI) and LCD Output.

441 Clock Generator
Figure 4-2 shows a screenshot of Code Generator with the Clock Generator function open.

In this tutorial we are using the 16 MHz crystal resonator for the main clock source with the PLL circuit used as
a multiplier. The sub-clock oscillator is used as a clock source for the LCD peripheral.

Double click on the ‘Clock Generator’ entry in the Code Generator -> Peripheral Functions list.
Configure the Clock Generator options as shown in Figure 4-2.

Proceed to the next section to configure the I/O Ports.

R20UT3254EG0101 Rev. 1.01 RENESAS Page 12 of 38
Mar 03, 2015

RSKRX113 4. Code Generation Using the CS+ plug in

[Clock seting | Block disgsam -
WEL sebling
@ 27N VEC « 3BV 24 M) VEC < 27 V) D18 VEL < 241V

Main clock ascilstee and 55| clock [SSISCE] selling
[+ Dpesation
Main ek oscillsban soulce Resenstion -

Fraquency 16 PHz)
Dzcilatar vkt bme J27E8 cycles - 9192 fs)
Discilabon stop detaction lunclion Dz abled -

PLL crouit sotiing

Feequency x2 * 12 BiHz]
sbor and AT (RTCSCLE) setfing

Subrclock opcillstor diive capacity IHi:ﬂlﬁ'm: capacly ul
Fraquenay .78 kHz|

High speed cock cecillabor [HOCO) seding

[Opetation
Frequency 2 . MHz]
Dizzilstar vesd bime 28E eycloe | |BES 3]

Hete: ‘When oscilalon wail e of 138 cycles iz salected, tha HOCD lraquency
accuracy may nok be gusrantesd See the device uzer's manud for detals.

cellstee (LOCD) setling

Fracuency

4 MHz]
~Syslem clack sefting
Clock souce F.L arcult - I
Systam clock |CLE) xl - R Hz)
Pesphieral module clock [FCLEE) x1 - 32 MHz]
Petiphieral modulie clock foe ADC [PCLED) x1 - R Hz)
Flash IF clock [FCLE) =1 - c MHz)

MWDT-dedeated lw-zpesd clock osellzio MWD TLOCD] s=tling L
[Dpetation I
Fraquency 15 EHz

USE-dadicated clock |UCLE] sefting
[Ojpeeraticn
UCLE chock sowce USE-dedcatad FLL cock
Fraquency x 3 - 48 [MHz]

LED sounce clock (LCDSRCCLE) satting

saquency [sbcock oscilater - | D0R7EE pHa) i

CLEQUT pin setting
[Dipetations P15
Clack output souca Main clack ogcdiabor =
Fraquency x1/2 - 16 [S[ZH

‘ [r
Figure 4-2 Clock setting tab
R20UT3254EG0101 Rev. 1.01 . ZENESAS Page 13 of 38

Mar 03, 2015

RSKRX113 4. Code Generation Using the CS+ plug in

442 I/O Ports

This peripheral will be configured to assign output pins for user LEDs and input pins for user switches, with the
exception of SW3 which is used as a trigger for the A/D Converter peripheral. Please refer to the RSK
schematic for full details of the connectivity.

Double click on the 'I/O Ports’ entry in the Code Generator -> Peripheral Functions list.
Configuration is required for Port2, Port3 and PortJ. The port is selected from the tabs at the top of the
Peripheral Functions window.

Configure the ports as shown in Figure 4-3 Port 2 Configuration, Figure 4-4 Port 3 Configuration & Figure 4-5
Port J Configuration.

Proceed to the next section to configure the Serial Communications Interface.

| Port0 | Portd I PD'tzaPDltS | Portd | Ports | Port3 | Port, | FortB | Portc | PortD | FortE | PortF | PortH | Portl |

P20
@ Urused 1 In 0 Ol CMOS output
P
@ Unuzed D () Ot CtOS output
P22
) Urwzed) In I @ Out CMOS output v [Output 1
P23

) Unuzed il @ Out I CHOS output - [Output 1
P24

) Urused @ In @ Out CMOS output v] Output 1
P25

) Urused @ In @ Out CMOS output v] Output 1
P26

@ Unused @ In 0 Ol CMOS output
Py

@ Urused 1 In 0 Ol CMOS output

Figure 4-3 Port 2 Configuration

| Portd | Portd | F'ort2| Port3 IF'Dlt4 | Ports | Portd | Ports, | PortB | PortC | PortD | PortE | PortF | PortH | Port |

Pad

@ Unused I) Dut CHOS output
Pa1

@ Unuzed) In () Out CkOS output
P32

) Unused T Dut [] Pull-up CMOS output
P35

@ Unusged) n

Figure 4-4 Port 3 Configuration

| Port] | Paort1 | Port2 | Part3 | Partd | Parts | Port3 | Pota, | PortB | PartC | PortD | PartE | PartF | F‘c-rtHI Part) ||

FJO
) Unuzed () Out [Pull-up
FJ2
@ Unuzed n 0 O
FJ3
@ Unused) n () Qut CHOS output
FJE
@ Unused i) Out
PJ7
@ Unuzed n 0 Ou
Figure 4-5 Port J Configuration
R20UT3254EG0101 Rev. 1.01 REN ESNS Page 14 of 38

Mar 03, 2015

RSKRX113 4. Code Generation Using the CS+ plug in

4.4.3 Serial Communications Interface

This peripheral is configured to use SCI1. This channel of the SCI is connected to the USB to serial converter
and allows the application to send data to the terminal program running on the PC.

Double click on the 'Serial Communications Interface’ entry in the Code Generator -> Peripheral Functions list.
Configuration is required only SC1 which is selected from the tabs at the top of the Peripheral Functions
window.

Configure the ‘General setting’ and ‘Setting’ sub-tabs as shown in Figure 4-6 SCI1 General Setting tab &
Figure 4-7 SCI1 Setting tab.

This will configure the SCI1 channel to use asynchronous Tx/Rx using 8 data bits, No parity, 1 Stop bit at a
rate of 19200 baud.

Proceed to the next section to configure the 12-Bit A/D Converter.

SCiof sC1

sCi2 | 505 | sCI6 | sCi8 | S0 | son2 |

Setting

Function zetting
) Uruzed
(71 Azynchronous mode [Mulbi-processar Tranzmizsian
) Clock synchronous maode Transmizgion
71 Smart card interface mode Tranzmizzion
7 Simple IIC bus
() Simple 5P bus Slave tranzmit/receive
Fin zetting
FeD1/5MI501/55C01 F15 -
T=D1A5MOS11 /55041 F1E -
Figure 4-6 SCI1 General Setting tab
R20UT3254EG0101 Rev. 1.01 RENESAS Page 15 of 38

Mar 03, 2015

RSKRX113 4. Code Generation Using the CS+ plug in

sciz | sos | soe | soe | soie | soinz |
Setting

General zetting

Start bit edge detection sefting

@) Low level on BxD1 pin) Falling edge on BxD1 pin
Drata length zetting
@ 8 hits) ¥ bits
Parity zetting
@ Mone 1 Even) Odd
Stap bit length zetting
@ 1 hit 1 2 bits
Tranzfer direction setting
@) LSB-first) SB-first
Tranzfer rate zetting
Tranzfer clock, Internal clock. - P17
Bage clock 2 cycles for 1-bit period -
Bit rate |192DD vl [bps] [bctual walue: 19230076923, Eror 0.16026%)
SCK1 pin function SCET is not uzed -

MHaise filker zetting
[] Enable noise filter

Maize filter clock Clock. signal dividad by 1 32000000 [Hz]
Hardware flove control setting
@ MNone T CTS T RTS
CTS1/RTS1 pin F14
Data handling zetting
Tranzmit data handling Data handled in interrupt service routine -
Receive data handling Drata handled ininterupt service routine -

Interrupt zetting
Enable errar interupt [ERIT)

T=1. TEN, R=11. ERI priority Lewel 15 [highest) -

Callback function setting
Transmission end Reception end Reception eror

Figure 4-7 SCI1 Setting tab

4.4.4 12-bit A/D Converter

This peripheral is configured to sample the analogue output value of the RV1 potentiometer. The A/D
Converter is set to perform a sample when the user presses SW3, which is connected to the ADTRGO pin of
the microcontroller.

Double click on the '12-bit A/D Converter’ entry in the Code Generator -> Peripheral Functions list.

Configure the ‘General setting’ and ‘Setting’ sub-tabs as shown in Figure 4-8 A/D Converter General setting
tab & Figure 4-9 A/D Converter Setting tab.

Code Generator configuration is now complete. Proceed to the next section to generate the code.
. Setting

) Unuged

I @ Analog input channel mode I Motetwhen the 12-bit /0 converter is uged. output from port 4 and port 9 should not be used.

1 Temperature senzor made

) Internal reference voltage mode

Figure 4-8 A/D Converter General setting tab

R20UT3254EG0101 Rev. 1.01 RENESAS Page 16 of 38
Mar 03, 2015

RSKRX113

4. Code Generation Using the CS+ plug in

General seltingl Selting I

Operation mode setting

@ Single scan mode

Conwergion mode zetting

@) Mormal [ACC > 1.8]
WVREF([+) Setting

(0 AYCCO

VREF[-] Setting
() avsso

Dauble igger mode setting
@ Disable

Analog input channel setting

aiaret (Group &)
ANOOD

ANODT
ANOD2
ANOD3
ANO04
ANODS
AMNODE
ANODF
ANOOE
ANODI
ANDIO
ANOTT
ANDTZ2
AND3
ANOT4
ANDTE
ANOZ1

0 e o

Conwersion start trigger setting

IA./‘D conversion start tigger pin I

Conversion start tigger [Group B)

TRGA input capture/compare match fram MTLO
ADTRGO# pin selection
Data registers zetting
AD corverted value addition court
Data placement

Automatic clearing

AMO00 cornversion time setting
Input sampling time

AMO0T conversion bime getting
Input sampling time

AMO02 canversion bime setting
Input sampling time

ANO03 conversian time setting
Input sampling time

ANODS conversion time setting
Input sampling time

ANO0S conversion time setting
Input sampling time:

ANODE conversion time setting
Input sampling time

ANOOF conversion time setting
Input sampling time:

ANODB - ANOTS conwersion lime setting
Input sampling time

AND21 conversion time setting
Input sampling time

Conversion time setting
Total conversion time (Group &)

Total conversion time [Group B]
Interrupt setting

Enable 4D conversion end intermupt (51240101
Priority

Priority

() Graup #can mode () Continuous scan mode

() High speed [2WCC > 2.4V

) Internal reference voltage

() Enable

Convert [Group B) Add AD converted value

1-time conversion

Right-alignment -
Dizable automatic clearing -
7 (ns] [Actual value: 7]
0625 (nz] [Actual value: 0.625)
0625 [hs] [actual value: 0625)
0625 (nz] [Actual value: 0.625)
0625 (nz] [Actual value: 0.625)
0.625 (ps] [Actual value: 0.625)
0625 (nz] [Actual value: 0.625)
0625 (nz] [Actual value: 0.625)
0625 (mzl [Actual value: 0.625)
0625 (nz] [Actual value: 0.625)
825 (ITE]]

0.034 [us]

Lewvel 15 [highest] -

Level 15 [highest]

Figure 4-9 A/D Converter Setting tab

[Please set MTU

R20UT3254EG0101 Rev. 1.01
Mar 03, 2015

RENESAS

Page 17 of 38

RSKRX113

4. Code Generation Using the CS+ plug in

445 Generating the code

Peripheral function configuration is now complete. Click ‘Generate Code’ button located at the top right of the
Peripheral Function tab. The Console pane should report ‘The operation of generating file was successful’, as

shown Figure 4-10 below.

Output

MO403001

MO403000
MO403000

MO403000
MO403000

[tE0F)

MO40300E:

The generating source folder is: C:\Workspace\CG_Tut,orial\(J

:The following files were generat,ed:(J
MO402000:
MO402000:
MO402000:
MO402000:
MO402000:
MO402000:
MO402000:
MO402000:

cg_sro\r_cg main.c was generat,ed.(J
cyg_srehr_cyg_dbsct.c was generat,ed.(J
cy_srehr_og intpryg.c was generat,ed.(J
oy _srohr_og_resetprg.c was generated. |
cyg_srohr_cg_sbrk.c was generat,ed.(J
cg_srohr_cg_wectthl.c was generat,ed.(J
cyg_srohr_cg_sbrk.h was generat,ed.(J
cg_sreoh\r_cg_stacksct.h was generat,ed.(J

teg_srohr_cg wect.h was generat,ed.(J

teg_srohr_cg _hardware_setup.c was generat,ed.(J
MO0405000: cg_srohr_cg_macrodriver. h was generat,ed.(J
HMO402000:
HMO402000:
HMO402000:
HO402000:
HMO402000:
HMO402000:

cyg_srohr_cg userdefine h was generat,ed.(J
og_srelE_og_cgo.c wWas generat,ed.(J
og_srolE_oy_cgo_user.c was generat,ed.(J
cyg_srehr_cg cge. h was generat,ed.(J
og_srolE_cg_port.c was generat,ed.(J
og_srolE_og_port_User.o was generat,ed_(J

ey srehr_cyg_port.h was generat,ed.(J
teg_sreh\r_cg sci.c was generat,ed.(J
HMO402000:
HO402000:
HMO402000:
HMO402000:
HO409000:
HMO402003:

cg_sro\r_cg_sci_user.c was generat,ed.(J
cyg_srehr_cg_scih was generat,ed.(J

cyg_srehr_cg slZad.c was generat,ed.(J
cyg_srohr_cg slZzad user.c was generat,ed.(J
cyg_srehr_cg_slZad h was generat,ed.(J

The operation of generating file was successful.d

m

\ AllMessages / *Cods Generator ,(*Rapid Build /

Figure 4-10 Code generator console

Figure 4-11 shows the Code Generator Files in the Project Tree pane.
CG_Tutorial project will be completed by adding user code into these files and adding new source files to the

project.

53

e
..... & r_cq_main.c
..... ‘-'d r_cg_dbscte
..... ‘-'d r_cg_intprg.c
..... & r_cg_resetprg.c

Build tool generated files

Code Generator

..... ‘-'d r_cg_sldad_user.c
..... u r_cg_shbrk.h

..... u r_cg_stackscth
..... u r_cg_wecth

Figure 4-11 Generated Code in Project tree

In the following sections the

R20UT3254EG0101 Rev. 1.01
Mar 03, 2015

RENESAS

Page 18 of 38

RSKRX113

5. Project Settings

5.

Project Settings

This section covers changes to the CS+ blank project to allow it to run on the RSK.

In the ‘Project Tree’ pane, click
on ‘CC-RX (Build Tool). The
build properties will appear in
the main window.

CS+ creates a single build
configuration called ‘Default
Build’ for the project. This has
standard code optimisation
turned on by default (level 2).

4 CC-R Property

4 Build Mode
Build mode
a4 CPU
Instruction et architecture
Izesz floating-point operation instiuctiong M ol-niofpu)
E ndian type for data Little-endian datal-endian=litle]
Rounding methiod for floating-point constant op round bo nearest(-round=nearest]
Handliing of denormalized numbers in floating-p Handles az zeros(-denormalize=off]
Precizion of the double twpe and long double by Handles in single precision(-dbl_zsizes
Replaces the int type with the short tepe Mo
Sign of the char type Handles az unzsigned char(-unzsigned)
Sign of the bit-figld type Handles as unsigned[-unsigned_bitfig
Selects the enumeration wpe size automaticall, Mo
Order af bit-field members Allozates from right[-bit_order=right]
Azzumes the boundary alignment value for st Mol-unpack]
Enables C++ exceptional handling funchion [y, Mol-noesception]
Enables the C++ exceptional handling function Mol-rtti=off]
General registers uzed only in fast interrupt fun Monel-fint_register=0]
Branch width size Compilez within 24 bits[-branch=24]
B aze register for ROM Hone
B aze regizter for RéM Hone
Address walue of base register that sets the adi [Fe2] 00000000
Fegister of baze register that setz the address « Hone
Ayoidz a problem specific to the CPU type Mo
Saves and restores ACC using the interrupt fun Mo

[T T '] oY

Build mode
Selects the build mode name to be wzed during build.

DefaultBuild

Rl architecture-iza=rv]

C Language

Select the ‘Compile Options’
tab at the bottom of the

properties window pane.
Under ‘Language of the C
source file’ select:
‘C99(-lang=c99)’ as shown
opposite.

4 Source

Language of the C zourze file
Language of the C++ zource file
» Additional include paths
» Syztemn include pathz

C99[-lang=c99]

C9

Linker Section Mapping

Select the ‘Link Options’ tab
at the bottom of the
properties window pane.
Under ‘Section -> ROM to
RAM mapped section’, add
the three mappings as
shown opposite.

Pl FOM to BAM mapped section
1] D
(1] o
[£] D

ROM to BAM mapped zection[3]
=R

R20UT3254EG0101 Rev. 1.01
Mar 03, 2015

RENESAS Page 19 of 38

RSKRX113

5. Project Settings

e These settings are easily
added by clicking the L.J
button and pasting the
following text into the dialog:

D=R
D_1=R_1
D_2=R_2

This instructs the linker to assign
RAM rather than ROM addresses
to initialised C variables.

=

Text Edit =g |

ok || caneel || Hel

Build Mode Creation and Configuration - Debug

e From the ‘Build’ toolbar menu,
select ‘Build Mode Settings...".

e Click on ‘DefaultBuild’ entry in
the Build mode list:

e Click ‘Duplicate’ and in the
resulting ‘Character String Input’
dialog, enter ‘Debug’ for the
name of the duplicate build
mode.

e Click ‘Close’.

Build Mode Settings [

Selected build mode:

Debug Apply to &l

Build mode list:
Duplicate. ..

Cloze] [Help]

e In the main CC-RX Property
window, under the ‘Common
Options’ tab, click on the line
containing ‘Build Mode’, click the
pull-down arrow and select
‘Debug’ from the pull-down’.

4\ CC-R Property

4 BuildMode
Build mode
CFU

> PIC/FID

> Output File Type and Path

R20UT3254EG0101 Rev. 1.01
Mar 03, 2015

RENESAS Page 20 of 38

RSKRX113

5. Project Settings

In the ‘Frequently Used Options
(for Compile)’ group, select the
‘Optimization Level’ option and
select ‘0’ from the pull-down.

This has now created a ‘Debug’
build mode, with no code
optimisation.

This Build Mode will be used
throughout this tutorial to build
and debug the project.

Frequently Used Options[for Compie]

Additional inchude paths

System include paths

Macro definition

Outputs debugaging informatiorn 'esz[-debug)

O ptirization level 0[-optimize=0]
Qutputz additional information for inker-rmodul B ST
O ptirization type -oplimize=
Outputs & source list file 2[-optimize=2]

4 Frequently Used Options[for Azzemble] |Max(-optimize=rma:)

Additional include paths[1]
System include paths[0]
b acro definition[0]

v v v k

Build Mode Creation and Configuration - Release

All of the sample code projects
contained in this RSK are
configured with three Build
modes; ‘DefaultBuild’, ‘Debug’
and ‘Release’.

‘Release’ is created in the same
way as above; by duplicating
‘Default Build’.

‘Release’ build mode leaves
code optimisation turned on and
removes debug information from
the output file.

To remove debug information

3] [#

4, CCR¥ Property

4 BuildMode

Build rmode

CPU

PIC/PID

Dutput File Type andPath

Frequently Uzed O ptions[for Compie)
Additional include paths
System include paths
tacro definition
Outputs debugging information
Optimization level

Release

Additional include paths[1]

A W

Optirmization type

from the ‘Release’ build mode, in DOutputs a source list file M al-noliztfile)
the ‘CC-RX Property’ window,
select the ‘Common Options’ tab
at the bottom of the window
pane. For the ‘Outputs
debugging information’ option,
select ‘No(-nodebug).
e The ‘Debug’ build will be used to
the remainder of this tutorial:
Reset the build mode back to Gl Save Al Ctrl +Shift+2,
‘Debug’ using the ‘Build Mode’
pull-down control
e From the menus, select ‘File ->
Save All' to save all project
settings.
R20UT3254EG0101 Rev. 1.01 RENESAS Page 21 of 38

Mar 03, 2015

RSKRX113 5. Project Settings
5.1 Adding Project Folders
o Before new source files are ' Property @ Peripheral Functions j’ [_c_main. ¢ j’ oo
added to the 'p'rOJect, we w_|II A C6_Tutoriel Froperty
create two additional folders in 2 Filn
the CS+ Project Tree. Build CG_Tutarial I
e In the Project Tree pane, right-] Rebuid CGTutorial
click the CG_Tutorial project A RXSim | Clean C6 Tutoria
name and select ‘Add -> Add @B Fie | B} Gpen Folder with Explorer
New Category'. Bl Windows Explorer Menu
Add 4 |+ﬁ Add Subpraoject..
(s Set CG_Tutorial as Sctive Project |+ﬁ Add Mew Subproject..,
i1 Save Project and Developrnent Tools as Package.. [1 AddFile..
5| Paste Chrl+y 1] Add MewFile..
Renarme F2 |_l\—|_l Add Mew Category
7 Property
e Rename the newly-created ‘New
Category’ folder to ‘C Source
Files'.
e Repeat these steps to create a | C Source Files

new category folder for

‘Dependencies’

L Dependencies

R20UT3254EG0101 Rev. 1.01
Mar 03, 2015

RENESAS

Page 22 of 38

RSKRX113 6. User Code Integration

6. User Code Integration

At this stage of a typical project development the user would expand on the generated code to create the
application required. As a demonstration this tutorial will include code lines and files from the complete
‘Tutorial’ project, supplied on the RSK installation DVD.

When inserting code in Code Generator created files, it must be placed in the areas delimited by comments as
follows:

/* Start user code for _xxxxx_. Do not edit comment generated here */
/* End user code. Do not edit comment generated here */

Where _xxxx_ depends on the particular area of code, i.e. ‘function’ for insertion of user functions and
prototypes, ‘global’ for insertion of user global variable declarations, or ‘include’ for insertion of pre-processor
include directives. User code inserted inside these comment delimiters is protected from being overwritten by
Code Generator, if the user refreshes the Code Generator-generated code.

6.1 Support file copying
RSK support and utility functions are provided in the following files:
iodefine.h,
r_rsk_utility.c,
r_rsk_utility.h,
rskrx113def.h.

Using Windows™ Explorer, locate the ‘Tutorial’ project folder and copy the files above to the project folder
created in section 3.2, this will be ‘C:\Workspace\CG_Tutorial’ if following the example screenshots.

The ‘Tutorial’ project is a standard RSK sample and can be obtained by following the steps shown in the Quick
Start Guide.

6.2 LCD file copying

API functions for the RSK LCD App v2 display are included in the following files:
r_lcd_appv2.c.
r_lcd_appv2.h.

Using Windows™ Explorer, locate the ‘Tutorial’ project folder and copy the files above to the project folder
created in section 3.2, this will be ‘C:\Workspace\CG_Tutorial’ if following the example screenshots.

The ‘Tutorial’ project is a standard RSK sample and can be obtained by following the steps shown in the Quick
Start Guide.

R20UT3254EG0101 Rev. 1.01 RENESAS Page 23 of 38
Mar 03, 2015

RSKRX113

6. User Code Integration

6.3 Including files in the CS+ Project

e Right-click on ‘C Source Files’ in the Project Tree F"T LI 57 Propery |53 Peipheral Furcions
and Se|eCt ‘Add -> Add F|Ie, 2 @ 3 El __l C Source Files Property

. i Tutorial (Project])* 4 Category Informabon

Browse to and select the following files copied in
the section above and click ‘Add’:

RSF511388:FP (Micracantroller)
Code Generator (Design Tool)
A, CC-RX (Build Toal)

r rsk utility.c i R Simulator (Debug Tool)
- Y &L 3 File
I‘_|Cd_appV2C ﬂ Build toal generated files

Categon name
Shartout to a Folder
Notes

__l Code Generator
T

e Right-click on ‘Dependencies’ in the Project Tree

and select ‘Add -> Add File..." s I) | T]
. . . . B Open Folder with Expl 1 Add MewFile.,
e Browse to and select the following files copied in « IO FYf had NewFie
. . B y = Windows Explorer Menu | Add New Category
the section above and click ‘Add’: _ _
. . i Remowe from Project Shift+Del
iodefine.h, 24 Copy Cttec
r_rsk_utility.h, al poste .y
I’SkI’X113defh, d@ Renarne F2
r_lcd_appv2.h. Property

6.4 Adding Code to Generated Files
This section covers inserting code in to the newly created Code Generator files.

Each subsection is a Code Generated source file that needs to be opened by double clicking on the file name
in the CS+ Project Tree window: ‘File -> Code Generator’.

The code from each section should be copied from this document and pasted in to the relevant file at the
location indicated.

6.4.1 r_cg _userdefine.h Code Insertion
Open this file by double clicking on the file name in the CS+ Project Tree window.

Insert the following at the end of the file between the user code delimiter comments as shown below.

/* Start user code for function. Do not edit comment generated here */

(€]
©

extern volatile uint8_t g_adc_trigger;

#define TRUE
#define FALSE

/* End user code. Do not edit comment generated here */

R20UT3254EG0101 Rev. 1.01

LENESAS
Mar 03, 2015 ,{

Page 24 of 38

RSKRX113 6. User Code Integration

6.4.2 r_cg_sl2ad.c Code Insertion
Open this file by double clicking on the file name in the CS+ Project Tree window.
Insert the following at the end of the file between the user code delimiter comments as shown below.

/* Start user code for adding. Do not edit comment generated here */

/
* Function Name: R_S12AD SWTriggerStart
* Description : This function starts the ADO converter.
* Arguments : None
* Return Value : None
/
void R_S12AD_SWTriggerStart (void)
S12AD.ADCSR.BIT.ADST = 1U;
}
/
End of function R_S12AD_SWTriggerStart
/
/
* Function Name: R_S12AD_SWTriggerStop
* Description : This function stops the ADO converter.
* Arguments - None
* Return Value : None
/
void R_S12AD_SWTriggerStop (void)
S12AD.ADCSR.BIT.ADST = 0U;
}
/
End of function R_S12AD_SWTriggerStop
/

/* End user code. Do not edit comment generated here */

6.4.3 r_cg_sl2ad.h Code Insertion
Open this file by double clicking on the file name in the CS+ Project Tree window.
Insert the following at the end of the file between the user code delimiter comments as shown below.

/* Start user code for function. Do not edit comment generated here */

/* Flag indicates when A/D conversion is complete */
extern volatile uint8_t g_adc_complete;

/* Functions for starting and stopping software triggered A/D conversion */
void R_S12AD_SWTriggerStart (void);
void R S12AD SWTriggerStop (void);

/* End user code. Do not edit comment generated here */

R20UT3254EG0101 Rev. 1.01 = zENESAS Page 25 of 38
Mar 03, 2015

RSKRX113 6. User Code Integration

6.4.4 r_ cg_sl2ad_user.c Code Insertion
Open this file by double clicking on the file name in the CS+ Project Tree window.

Insert the following between the user code delimiter comments as shown below in the file section designated
Global variables and functions:

/* Start user code for global. Do not edit comment generated here */

/* Flag indicates when A/D conversion is complete */
volatile uint8_t g_adc_complete;

/* End user code. Do not edit comment generated here */

Insert the following in to the function static void r_sl12ad_interrupt(void):
/* Start user code. Do not edit comment generated here */

/* Flag that the ADC had completed a sample */
g_adc_complete = 1;

/* End user code. Do not edit comment generated here */

6.4.5 r_cg_sci_user.c Code Insertion
Open this file by double clicking on the file name in the CS+ Project Tree window.

Insert the following between the user code delimiter comments as shown below in the file section designated
Global variables and functions:

/* Start user code for global. Do not edit comment generated here */

/* Global used to receive a character from the PC terminal */
uint8_t g_rx_char;

/* Flag used to control transmission to PC terminal */
volatile uint8_t g_tx_flag = FALSE;

/* Flag used locally to detect transmission complete */
static volatile uint8 t scil_txdone;

/* End user code. Do not edit comment generated here */

Insert the following in to the function static void r_scil_cal lback_transmitend(void)

/* Start user code. Do not edit comment generated here */
| scil_txdone = TRUE; |

/* End user code. Do not edit comment generated here */

Insert the following in to the function static void r_scil_callback_receiveend(void)

/* Start user code. Do not edit comment generated here */
/* Check the contents of g _rx_char */

g_rx_char = g_rx_char & OxDF; /* Ensure ASCII char is in upper case */

/* Check for the 'c' trigger command */
if ('C'" == g_rx_char)
{

}

/* Set up SCI1 receive buffer and callback function again */
R_SCI1_Serial_Receive((uint8_t *)&g rx_char, 1);

g_adc_trigger = TRUE;

/* End user code. Do not edit comment generated here */

R20UT3254EG0101 Rev. 1.01 RENESAS Page 26 of 38
Mar 03, 2015

RSKRX113

6. User Code Integration

Insert the following between the user code delimiter comments at the end of the file:

/* Start user code for adding. Do not edit comment generated here */

/***

buffer size
Return Value : status -

MD_OK or MD_ARGERROR
***/
MD_STATUS R_SCI1_AsyncTransmit (uint8_t * const tx_buf, const uintl6_t tx_num)

{

* Function Name: R_SCI1_AsyncTransmit

* Description : This function sends SCI1 data and waits for the transmit end flag.
* Arguments ¢ tx_buf -

* transfer buffer pointer

* tx_num -

*

*

*

MD_STATUS status = MD_OK;

/* clear the flag before initiating a new transmission */
scil_txdone = FALSE;

/* Send the data using the API */
status = R_SCI1 Serial_Send(tx_buf, tx_num);

/* Wait for the transmit end flag */
while (FALSE == scil_txdone)

/* Wait */

return (status);

}

/***

* End of function R_SCI1_AsyncTransmit
***/

/* End user code. Do not edit comment generated here */

6.4.6 r_cg_sci.h Code Insertion

Insert the following between the user code delimiter comments at the end of the file:

/* Start user code for function. Do not edit comment generated here */

/* Exported functions used to transmit a number of bytes and wait for completion */
MD_STATUS R_SCI1_AsyncTransmit (uint8 t * const tx_buf, const uintl16_t tx_num);

/* Character is used to receive key presses from PC terminal */
extern uint8_t g rx_char;

/* Flag used to control transmission to PC terminal */
extern volatile uint8_t g_tx_flag;

/* End user code. Do not edit comment generated here */

R20UT3254EG0101 Rev. 1.01 .QENESAS
Mar 03, 2015

Page 27 of 38

RSKRX113 6. User Code Integration

6.4.7 r_cg_main.c Code Insertion

Insert the following between the user code delimiter comments as shown below in the file section designated
Includes:

/* Start user code for include. Do not edit comment generated here */

#tinclude "r_cg_sl2ad.h"
#tinclude "r_lcd_appv2.h"
#tinclude "r_rsk_utility.h"
#include "rskrxi13def.h"

/* End user code. Do not edit comment generated here */

Insert the following between the user code delimiter comments as shown below in the file section designated
Global Variables and functions:

/* Start user code for global. Do not edit comment generated here */

/* Welcome banner - displayed on serial port at startup*/
static uint8_t welcome_banner[] = "RSK RX113 - Tutorial - Press 'c' or SW3 for ADC Conversion\r\n\oe";

/* Prototype declaration for get_adc */
static uintl6_t get_adc (void);

/* Prototype declaration for lcd_display_adc */
static void lcd_display_adc (const uintl6_t adc_result);

/* Prototype declaration for uart_display_adc */
static void uart_display_adc (const uint8_ t adc_count, const uintl6_t adc_result);

/* Variable to store the ADC conversion count for user display */
static uint8_t adc_count = 0;

/* Prototype declaration for led_display_count */
static void led_display_count (const uint8_t count);

/* Variable for flagging user requested ADC conversion */
volatile uint8_t g_adc_trigger = FALSE;

/* End user code. Do not edit comment generated here */

Insert the following in to the function void main (void).
Note this overwrites the while(1U) loop included by Code Generator.

/* Start user code. Do not edit comment generated here */

/* Display Project Title on LCD*/
R_LCD_DisplayPanelString(PANEL_LCD_LINEL1, (uint8_t*) "TUTOR");

/* Set up SCI1 receive buffer and callback function */
R_SCI1_Serial_Receive((uint8_t *) &g_rx_char, 1);

/* Enable SCI1 operations */
R_SCI1_Start();

/* Display Welcome Banner on Serial Port */
R_SCI1_AsyncTransmit(welcome_banner, sizeof(welcome_banner));

R20UT3254EG0101 Rev. 1.01 RENESAS Page 28 of 38
Mar 03, 2015

RSKRX113

6. User Code Integration

while (1U)
uintl6_tadc_result;

/* If the user has requested ADC sample via the serial port */
if (TRUE == g_adc_trigger)
{

/* Call the function to perform an ADC conversion */
adc_result = get_adc();

/* Display the result on the LCD */
lcd_display_adc(adc_result);

/* Display count on LEDs */
led_display_count(adc_count);

/* Send the result to SCI1 UART */
uart_display_adc(adc_count, adc_result);

/* Increment the adc_count and check roll over */
if (16 == (++adc_count))

adc_count = 0;

}

/* Reset the flag */
g_adc_trigger = FALSE;
}

/* SW3 is directly wired into the ADTRGON pin so will

cause the conversion and interrupt */

else if (TRUE == g_adc_complete)

{
/* Get the result of the ADC conversion */
R_S12AD_Get_ValueResult(ADCHANNELO, &adc_result);

/* Display the result on the LCD */
lcd_display_adc(adc_result);

/* Display count on LEDs */
led_display_count(adc_count);

/* Send the result to the UART */
uart_display_adc(adc_count, adc_result);

/* Increment the adc_count and check roll over */
if (16 == (++adc_count))

adc_count = 0;

}

/* Reset the flag */
g_adc_complete = FALSE;
}

else

/* do nothing */
}
3

/* End user code. Do not edit comment generated here */

Insert the following in to the function void R_MAIN Userlnit (void):
/* Start user code. Do not edit comment generated here */

/* Initialise the LCD for the RSK LCD APP V2 display board */
R_LCD_Create();
R_LCD_Start();

/* Start the ADC */
R_S12AD_Start();

/* End user code. Do not edit comment generated here */

R20UT3254EG0101 Rev. 1.01 .QENESAS
Mar 03, 2015

Page 29 of 38

RSKRX113 6. User Code Integration

Insert the following between the user code delimiter comments at the end of the file:

/* Start user code for adding. Do not edit comment generated here */

/
* Function Name : get_adc
* Description : Creates a ADC12 Software trigger and returns the ADC result,
* once the ADC conversion is complete.
* Argument > none
* Return value : uintl6_t ADC sample value

static uintl6_t get_adc (void)
{

/* A variable to retrieve the ADC result */
uintl6_t adc_result;

/* Start a conversion */
R_S12AD_SWTriggerStart();

/* Wait for the ADC conversion to complete */
while (FALSE == g_adc_complete)

/* Wait */
}

/* Stop conversion */
R_S12AD_SWTriggerStop();

/* Clear ADC flag */
g_adc_complete = FALSE;

R_S12AD_Get_ValueResult(ADCHANNELO, &adc_result);

/* Set AD conversion start trigger source back to ADTRGOn pin */
R_S12AD_Start();

return adc_result;

}

/
* End of function get_adc

/

* Function Name : lcd_display_adc

* Description : Converts ADC result to a string and displays
* it on the LCD panel.

* Argument o uintl6_t adc result

* Return value : none

static void lcd_display_adc (const uintl6_t adc_result)
{

/* Declare temporary character string */

char lcd_buf[4];

/* Convert ADC result into a character string, and store in the
local string lcd_buffer */
uintl6_to_string(lcd_buf, Ou, adc_result);

/* Display the ADC value - Line 3 provides three
* characters, so skip the unused leading zero
*/
R_LCD_DisplayPanelString(PANEL_LCD_LINE3, (uint8_t *) lcd_buf + 1);
3

/
* End of function lcd_display_adc

R20UT3254EG0101 Rev. 1.01 .IENESAS
Mar 03, 2015

Page 30 of 38

RSKRX113 6. User Code Integration

/
* Function Name : uart_display_adc
* Description : Converts ADC result to a string and sends it to the UARTL.
* Argument > uint8_t : adc_count
* uintl6é_t: ADC result
* Return value : none

static void uart_display_adc (const uint8 t adc_count, const uintl6_t adc_result)

{
/* Declare a temporary variable */
char a;

/* Declare temporary character string */
static uint8_t uart_buffer[] = "ADC xH Value: xxxH\r\n";

/* Convert ADC result into a character string, and store in the local.
Casting to ensure use of correct data type. */

a = (char) (adc_count & 0x000F);

uart_buffer[4] = (char) ((a < 0x0A) ? (a + 0x30) : (a + 0x37));

a = (char) ((adc_result & 0OxOF00) >> 8);

uart_buffer[14] = (char) ((a < 0x0A) ? (a + 0x30) : (a + 0x37));

a = (char) ((adc_result & 0x00F0) >> 4);

uart_buffer[15] = (char) ((a < Ox0A) ? (a + 0x30) : (a + 0x37));

a = (char) (adc_result & 0x000F);

uart_buffer[16] = (char) ((a < 0x0A) ? (a + 0x30) : (a + 0x37));

/* Send the string to the UART */
R_SCI1_AsyncTransmit(uart_buffer, sizeof(uart_buffer));

}
/
* End of function uart_display_adc
/
/
* Function Name : led_display_count
* Description : Converts count to binary and displays on 4 LEDSO-3
* Argument o uint8_t count
* Return value : none
/
static void led_display_count (const uint8_t count)
{
/* Set LEDs according to lower nibble of count parameter */
LEDO = (uint8_t) ((count & 0x01) ? LED_ON : LED OFF);
LED1 = (uint8_t) ((count & 0x02) ? LED_ON : LED OFF);
LED2 = (uint8_t) ((count & 0x04) ? LED_ON : LED_OFF);
LED3 = (uint8_t) ((count & 0x08) ? LED_ON : LED_OFF);
}
/
* End of function led_display_count
/

/* End user code. Do not edit comment generated here */

R20UT3254EG0101 Rev. 1.01 .QENESAS
Mar 03, 2015

Page 31 of 38

RSKRX113

7. Project Build and Debugger Configuration

7. Project Build and Debugger Configuration

Select ‘Build Project’ from the ‘Build’ menu, or press F7. CS+ will build the project with no errors.

Configure the E1 debugger and board as follows.

In the ‘Project Tree’

% CG Tutorial (Project)

1
1

==

. T B e Line
pane, right-click the | B RSFS11388:FP (Micracontraller) 1 & s
RX ’S|mU|atO|.’ (Debug [_'-I Code Generator I:DESigI"I TIZII:ID z .g DISCLAIMER
Tool)'. Select:
o /" Pin Yiew 3 *# This software
Using Debug Tool - . il Peripheral Functions 4 # No other uses
RX E1(Serial)’. v TEnp -
- u::f Code F'rewemr S * applicable la
& * THIS SCOFTWARE
v T * QR STATUIORY,
Elj]' File Using Debug Tool
.ﬂ Build tool generated f .
=L L Code Generator]| Property R E20(3erial)
; b U r_cg_ main.c || 12 R Sirmulatar
H | - - = — =
° Double-click ‘RX £l R ET(Serial) Property
El(SerlaI) (Debug 4 Iqlemglﬂl]MfHAM
, . Size of internal ROM[EBytes] 512
Tool)' to display the Size of intermal RAM[KBytes] B4
debugger tool Size of DataFlash memory[kBytes] a
f 4 Clock
propertles' ain clock source EXTalL
° Under ‘ClOCk’, Change Malnc!ockfrequenc_l,l[MHz] 16.0000
X Operating frequency[tHz]
the ‘Main clock Allow changing of the clock source on writing internal fash memony No
4 Connection with Emulator
f{.g%%eonlfﬂylgl\z/l HZ) to Emulatar serial Mo.
. . 4 Connection with T arget Board
‘ . Pawer target from the eniulator [Mas 200ma) Yes
. Under Connection Supply voltags 2
Wlth Target Board', Communications method FIMNE
Change ‘POWer tal’get FIME baud rate[bps] 2000000
from the
emulator.(MAX
200mA) to ‘Yes’
. All other settings can
remain at their
defaults.
o Connect the E1 to the 5
PC and the RSK E1 | | =%
connector.
o Ensure the LCD APP

V2 display is
connected to JA4.

R20UT3254EG0101 Rev. 1.01
Mar 03, 2015

RENESAS

Page 32 of 38

RSKRX113 7. Project Build and Debugger Configuration

7.1 Running the Tutorial
Before launching the tutorial connect the RSK RL78G1C-USB port to a USB port on a PC. If this is the first
time the RSK has been connected to the PC then a device driver will be installed automatically.

Open Device Manager, the virtual COM port will now appear under 'Port (COM & LPT)' as 'RSK USB Serial
Port (COMx)', where x is a number. Open a terminal emulation program, such as HyperTerminal, connecting
to COMx with the settings 19200 baud, 8 data bits , No parity, 1 stop bit.

From the CS+ ‘Debug’ menu select ‘Download’ to start the debug session and download code
to the target.

Once the program has been downloaded onto the RSK device, the program can be executed. @
Click the ‘Go’ button or press F5 to begin the program from the current program counter
position.

The program will display 'RSK RX113 - Tutorial - Press 'c' or SW3 for ADC Conversion’ on the serial terminal
and ‘TUTOR’ on the bottom line of the LCD. Pressing SW3 or entering the character ‘C’ in the serial terminal
window will trigger an ADC conversion and display the resulting value on the terminal window and the LCD.

R20UT3254EG0101 Rev. 1.01 RENESAS Page 33 of 38
Mar 03, 2015

RSKRX113 8. Additional Information

8. Additional Information

Technical Support
For details on how to use CS+, refer to the manual available on the DVD or from the web site.

Online technical support and information is available at: http://www.renesas.com/rskrx113

For information about the RX113 Group microcontrollers refer to the RX113 Group Hardware Manual.
For information about the RX assembly language, refer to the RX Family Software Manual.
Technical Contact Details

Please refer to the contact details listed in section 8 of the “Quick Start Guide”

General information on Renesas microcontrollers can be found on the Renesas website at:
http://www.renesas.com/

Trademarks
All brand or product names used in this manual are trademarks or registered trademarks of their respective
companies or organisations.

Copyright

This document may be, wholly or partially, subject to change without notice. All rights reserved. Duplication of
this document, either in whole or part is prohibited without the written permission of Renesas Electronics
Europe Limited.

© 2014 Renesas Electronics Europe Limited. All rights reserved.
© 2014 Renesas Electronics Corporation. All rights reserved.
© 2014 Renesas System Design Co., Ltd. All rights reserved.

R20UT3254EG01001 Rev. 1.001 RRENESAS Page 34 of 38
Dec 15, 2014

http://www.renesas.com/rskrx113
http://www.renesas.com/

REVISION HISTORY

RSK RX113 Code Generator Tutorial Manual (CS+)

Rev. Date Description
Page Summary

1.00 Dec 15, 2014 — First Edition issued

1.01 Mar 03, 2015 | 13-10 | Updated Figure 4-2 - Figure 4-9

19-31

Added a frame

Renesas Starter Kit Manual: Code Generator Tutorial Manual

Publication Date: Rev. 1.01 Mar 03, 2015

Published by: Renesas Electronics Corporation

LENESAS

SALES OFFICES Renesas Electronics Corporatlon http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.

2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.

Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited

1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada

Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K

Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Dusseldorf, Germany

Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.

Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.

Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited

Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd.

13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan

Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.

80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949

Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, JIn Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd.

12F., 234 Teheran-ro, Gangnam-Ku, Seoul, 135-920, Korea

Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2014 Renesas Electronics Corporation. All rights reserved.
Colophon 3.0

RX113 Group

RENESAS

Renesas Electronics Corporation R20UT3254EG0101

	1. Overview
	1.1 Purpose
	1.2 Features

	2. Introduction
	3. Project Creation with CS+
	3.1 Introduction
	3.2 Creating the Project

	4. Code Generation Using the CS+ plug in
	4.1 Introduction
	4.2 Enabling Code Generator
	4.3 Code Generator Tour
	4.4 Code Generation
	4.4.1 Clock Generator
	4.4.2 I/O Ports
	4.4.3 Serial Communications Interface
	4.4.4 12-bit A/D Converter
	4.4.5 Generating the code

	5. Project Settings
	5.1 Adding Project Folders

	6. User Code Integration
	6.1 Support file copying
	6.2 LCD file copying
	6.3 Including files in the CS+ Project
	6.4 Adding Code to Generated Files
	6.4.1 r_cg_userdefine.h Code Insertion
	6.4.2 r_cg_s12ad.c Code Insertion
	6.4.3 r_cg_s12ad.h Code Insertion
	6.4.4 r_cg_s12ad_user.c Code Insertion
	6.4.5 r_cg_sci_user.c Code Insertion
	6.4.6 r_cg_sci.h Code Insertion
	6.4.7 r_cg_main.c Code Insertion

	7. Project Build and Debugger Configuration
	7.1 Running the Tutorial

	8. Additional Information

