

INTERFACING TOUCH SCREEN
WITH FPGA

SUBMITTED TO:

SUBMITTED BY:

AEISHWARYA BAVISKAR

ELECTRICAL AND ELECTRONICS ENGINEERING, VNIT NAGPUR

JENIL SAVLA

ELECTRICAL AND ELECTRONICS ENGINEERING, VNIT NAGPUR

INNOVATION CELL, INDIAN INSTITUTE OF

TECHNOLOGY, BOMBAY

ACKNOWLEDGEMENT:

We would like to thanks Prof. R. K. Singh and Prof. S. N. Merchant

for giving us
opportunity for this project.

We would like to extend our sincere thanks to EbrahimAttarwala for

his
Guidance and support in completion of this project.

We would like to express my deepest appreciation to all those who

provided me the possibility to complete this project.

We are highly indebted to innovation cell IIT, Bombay for their
guidance and constant supervision as well as for providing necessary

information regarding the project & also for their support in
completing the project.

Index:

1. INTRODUCTION

2. WHAT IS FPGA?

3. DE2I-150 BOARD

4. QUARTUS II

5. GETTING STARTED WITH FPGA

6. EXPERIMENTAL SETUP

7. TOUCH SCREEN

8. SPI SERIAL INTERFACE

9. CODE

INTRODUCTION

THE MAIN GOAL OF THIS PROJECT IS TO INTERFACE A TOUCH

SCREEN WITH THE FPGA. A RESISTIVE FOUR WIRE TOUCH

SCREEN IS USED FOR THE SAME. TEXAS INSTRUMENT’S ADS7843

SERVES AS A TOUCH SCREEN CONTROLLER WHICH CONVERTS

ANALOG SIGNALS FROM TOUCH SCREEN TO DIGITAL SIGNAL

THAT LATER IS PROVIDED AS AN INPUT TO THE FPGA.

PROGRAMMING OF THE FPGA IS DONE IN VERILOG HDL

LANGUAGE. THE BOARD IS PROVIDED WITH AN INDEPENDENT

PROGRAMMING PLATFORM QUARTUS II.

THE SERIAL COMMUNICATION IS ESTABLISHED BETWEEN THE

FPGA AND THE ADC USING SPI SERIAL BUS INTERFACE.

WHAT IS AN FPGA?

Field Programmable Gate Arrays (FPGAs) are semiconductor devices that are based around a matrix of
configurable logic blocks (CLBs) connected via programmable interconnects. FPGAs can be
reprogrammed to desired application or functionality requirements after manufacturing.

Basic elements of FPGA:

> Configurable logic blocks (CLBs)
> Configurable input output blocks
> Two layer metal network of vertical and horizontal lines for interconnecting the CLBs and FPGAs

THE DE2I-150 BOARD:

FPGA SPECIFICATIONS:
FEATURED DEVICES

Cyclone IV EP4CGX150DF31 device
720 M9K memory blocks

6,480 Kbits embedded memory
FPGA CONFIGURATION

JTAG and AS mode configuration
EPCS64 serial configuration device
On-board USB Blaster circuitry
MEMORY DEVICES

128MB (32Mx32bit) SDRAM
4MB (1Mx32) SSRAM
64MB (4Mx16) Flash with 16-bit mode

CONNECTORS

Ethernet 10/100/1000 Mbps ports

High Speed Mezzanine Card (HSMC)

40-pin expansion port

VGA-out connector

VGA DAC (high speed triple DACs)

DB9 serial connector for RS-232 port with flow control

CLOCK

Three 50MHz oscillator clock inputs

DISPLAY

16x2 LCD module

18 slide switches and 4 push-buttons switches

18 red and 9 green LEDs

Eight 7-segment displays

QUARTUS II

Quartus II is a software tool produced by Altera for analysis and synthesis of HDL designs, which

enables the developer to compile their designs, perform timing analysis, examine RTL diagrams,

simulate a design's reaction to different stimuli, and configure the target device with the programmer.

Its features include:

 An implementation of VHDL and Verilog for hardware description.

 Visual edition of logic circuits.

 Vector waveform simulation.

We have used Quartus II 12.1 and coding is done in Verilog. To start working on your fpga refer
the user manual and the getting started guide which helps through the initial steps in quartus II.

Verilog tutorials: www.hdlexpress.com- by Kirk Weedman.

Books referred: Verilog HDL programming by Samir

Palnitkar.http://d1.amobbs.com/bbs_upload782111/files_33/ourdev_585395BQ8J9A.pdf

You can start with some basic codes once a project is made in quartus.

http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=529

GETTING STARTED WITH THE FPGA

IMPLEMENTING LOGIC GATES ON FPGA(USING BLOCK DIAGRAM FILE):

A block diagram file is an easy way to get started. Various logic gates and simple ICs such as encoders, multiplexers

are available ready to use in the library. Here is an implementation of NAND gate:

https://www.youtube.com/watch?v=auQ7wpVH-0Q

BINARY UP-COUNTER USING ON BOARD LEDS AND PUSH BUTTONS:

There are 18 red and 7 green leds mounted on the board along with four push buttons and 18 slider switches. Here

is a code to access some of the leds and push buttons.

module countertest(KEY,LEDR);
input[1:0] KEY;
output[7:0] LEDR;
counter counter1(KEY[0],KEY[1],LEDR[7:0]);
endmodule
module counter (C,CLR,Q);
input C,CLR;
output [7:0] Q;
reg[7:0] tmp;
always @(posedge C or posedge CLR)
 begin
 if(CLR)
 tmp = 8'b00000000;

http://www.hdlexpress.com-/
http://d1.amobbs.com/bbs_upload782111/files_33/ourdev_585395BQ8J9A.pdf
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=529
https://www.youtube.com/watch?v=auQ7wpVH-0Q

 else
 tmp = tmp + 8'b00000001;
 end
assign Q = tmp;
endmodule

ACCESSING INTERNAL CLOCK TO BLINK ONBOARD LEDS:

module clock_test (CLOCK_50, LEDR);
input CLOCK_50 ;
output [17:0] LEDR;
reg [17:0] tmp;
always @(posedge CLOCK_50)
begin
 tmp <= tmp + 1'b1;// increment counter
end
assign LEDR = tmp;
endmodule

USING THE GPIO PINS TO MAKE AND GATE:

module andgate(input_1,input_2,GPIO);
 input input_1;
 input input_2;
 output [0:0]GPIO;
 wire and_temp;
 assign and_temp = input_1 & input_2;
 assign GPIO[0] = and_temp;
endmodule

SERIAL COMMUNICATION IN FPGA:

 USART SERIAL receiver:

module async_receiver(
 input clk,
 input RxD,
 output reg RxD_data_ready = 0,
 output reg [7:0] RxD_data = 0,
 // data received, valid only (for one clock cycle) when RxD_data_ready is asserted
// We also detect if a gap occurs in the received stream of characters
 // That can be useful if multiple characters are sent in burst
 // so that multiple characters can be treated as a "packet"output RxD_idle,
 // asserted when no data has been received for a while output reg RxD_endofpacket = 0
 // asserted for one clock cycle when a packet has been detected (i.e. RxD_idle is going high)
);
parameter ClkFrequency = 25000000; // 25MHz
parameter Baud = 115200;
parameter Oversampling = 8; // needs to be a power of 2
// we oversample the RxD line at a fixed rate to capture each RxD data bit at the "right" time

// 8 times oversampling by default, use 16 for higher quality reception generate
 if(ClkFrequency<Baud*Oversampling) ASSERTION_ERROR PARAMETER_OUT_OF_RANGE("Frequency too
low for current Baud rate and oversampling");
 if(Oversampling<8 || ((Oversampling & (Oversampling-1))!=0)) ASSERTION_ERROR
PARAMETER_OUT_OF_RANGE("Invalid oversampling value");
endgenerate
reg [3:0] RxD_state = 0;
`ifdef SIMULATION
wire RxD_bit = RxD;
wire sampleNow = 1'b1; // receive one bit per clock cycle
`else
wire OversamplingTick;
BaudTickGen #(ClkFrequency, Baud, Oversampling) tickgen(.clk(clk), .enable(1'b1), .tick(OversamplingTick));
// synchronize RxD to our clk domain
reg [1:0] RxD_sync = 2'b11;
always @(posedge clk) if(OversamplingTick) RxD_sync <= {RxD_sync[0], RxD};
// and filter it
reg [1:0] Filter_cnt = 2'b11;
reg RxD_bit = 1'b1;
always @(posedge clk)
if(OversamplingTick)
begin
 if(RxD_sync[1]==1'b1 && Filter_cnt!=2'b11) Filter_cnt <= Filter_cnt + 1'd1;
 else
 if(RxD_sync[1]==1'b0 && Filter_cnt!=2'b00) Filter_cnt <= Filter_cnt - 1'd1;
if(Filter_cnt==2'b11) RxD_bit <= 1'b1;
 else
 if(Filter_cnt==2'b00) RxD_bit <= 1'b0;
end
// and decide when is the good time to sample the RxD line
function integer log2(input integer v); begin log2=0; while(v>>log2) log2=log2+1; end endfunction
localparam l2o = log2(Oversampling);
reg [l2o-2:0] OversamplingCnt = 0;
always @(posedge clk) if(OversamplingTick) OversamplingCnt <= (RxD_state==0) ? 1'd0 : OversamplingCnt + 1'd1;
wire sampleNow = OversamplingTick && (OversamplingCnt==Oversampling/2-1);
`endif
// now we can accumulate the RxD bits in a shift-register
always @(posedge clk)
case(RxD_state)
 4'b0000: if(~RxD_bit) RxD_state <= `ifdef SIMULATION 4'b1000 `else 4'b0001 `endif; // start bit found?
 4'b0001: if(sampleNow) RxD_state <= 4'b1000; // sync start bit to sampleNow
 4'b1000: if(sampleNow) RxD_state <= 4'b1001; // bit 0
 4'b1001: if(sampleNow) RxD_state <= 4'b1010; // bit 1
 4'b1010: if(sampleNow) RxD_state <= 4'b1011; // bit 2
 4'b1011: if(sampleNow) RxD_state <= 4'b1100; // bit 3
 4'b1100: if(sampleNow) RxD_state <= 4'b1101; // bit 4
 4'b1101: if(sampleNow) RxD_state <= 4'b1110; // bit 5
 4'b1110: if(sampleNow) RxD_state <= 4'b1111; // bit 6
 4'b1111: if(sampleNow) RxD_state <= 4'b0010; // bit 7
 4'b0010: if(sampleNow) RxD_state <= 4'b0000; // stop bit
 default: RxD_state <= 4'b0000;
endcase
always @(posedge clk)

if(sampleNow && RxD_state[3]) RxD_data <= {RxD_bit, RxD_data[7:1]};
//reg RxD_data_error = 0;
always @(posedge clk)
begin
 RxD_data_ready <= (sampleNow && RxD_state==4'b0010 && RxD_bit); // make sure a stop bit is
received
 //RxD_data_error <= (sampleNow && RxD_state==4'b0010 && ~RxD_bit); // error if a stop bit is not
received
end
reg [l2o+1:0] GapCnt = 0;
always @(posedge clk) if (RxD_state!=0) GapCnt<=0; else if(OversamplingTick & ~GapCnt[log2(Oversampling)+1])
GapCnt <= GapCnt + 1'h1;
assign RxD_idle = GapCnt[l2o+1];
always @(posedge clk) RxD_endofpacket <= OversamplingTick & ~GapCnt[l2o+1] &&GapCnt[l2o:0];
endmodule

 USART SERIAL TRANSMITTER:

// Serial port demo program
// Assumptions: 50Mhz clock rate
module serial(data, clk, ser,start);
input clk;
output ser;
input [7:0]data;
// Start signal tells it to start sending bits
input start;
//The bits of data to send
//reg [7:0] data;
///
// Serial port clock generator
// Generate a 9600 baud clock signal for the serial port by dividing the
// 50Mhz clock by 5208
reg [14:0] clockdiv;
// Count from 0..5207 then reset back to zero
always @(posedge clk)
begin
 if (clockdiv == 434)
 clockdiv <= 0;
 else
 clockdiv <= clockdiv + 1;
end
// The serclock is a short pulse each time we are reset
wire serclock = (clockdiv == 0);
///
// Serial port state machine
// Only start the state machine when "start" is set. Only advance to the
// next state when serclock is set.

reg [3:0] state;

always @(posedge clk)
begin
 case (state)

 4'b0000: if (start) state <= 4'b0001;
 4'b0001: if (serclock) state <= 4'b0010; // Start bit
 4'b0010: if (serclock) state <= 4'b0011; // Bit 0
 4'b0011: if (serclock) state <= 4'b0100; // Bit 1
 4'b0100: if (serclock) state <= 4'b0101; // Bit 2
 4'b0101: if (serclock) state <= 4'b0110; // Bit 3
 4'b0110: if (serclock) state <= 4'b0111; // Bit 4
 4'b0111: if (serclock) state <= 4'b1000; // Bit 5
 4'b1000: if (serclock) state <= 4'b1001; // Bit 6
 4'b1001: if (serclock) state <= 4'b1010; // Bit 7
 4'b1010: if (serclock) state <= 4'b1111; // Stop bit
 default: state <= 4'b0000; // Undefined, skip to stop
 endcase
end
///
// Serial port data
// Ensure that the serial port has the correct data on it in each state
reg outbit;
always @(posedge clk)
begin
 case (state)
 4'b0000: outbit <= 1; // idle
 4'b0001: outbit <= 0; // Start bit
 4'b0010: outbit <= data[0]; // Bit 0
 4'b0011: outbit <= data[1]; // Bit 1
 4'b0100: outbit <= data[2]; // Bit 2
 4'b0101: outbit <= data[3]; // Bit 3
 4'b0110: outbit <= data[4]; // Bit 4
 4'b0111: outbit <= data[5]; // Bit 5
 4'b1000: outbit <= data[6]; // Bit 6
 4'b1001: outbit <= data[7]; // Bit 7
 4'b1010: outbit <= 1; // Stop bit
 default: outbit <= 1; // Bad state output idle
 endcase
end
// Output register to pin
assign ser = outbit;
///
// Test by outputting a letter 'd'
always @(posedge clk)
begin
 start = 1;
end
endmodule

 UART BAUD RATE GENERATOR

module BaudTickGen(input clk, enable,output tick); // generate a tick at the specified baud rate * oversampling
parameter ClkFrequency = 25000000;
parameter Baud = 115200;
parameter Oversampling = 1;
function integer log2(input integer v); begin log2=0; while(v>>log2) log2=log2+1; end endfunction

localparam AccWidth = log2(ClkFrequency/Baud)+8; // +/- 2% max timing error over a byte
reg [AccWidth:0] Acc = 0;
localparam ShiftLimiter = log2(Baud*Oversampling >> (31-AccWidth)); // this makes sure Inc calculation doesn't
overflow
localparam Inc = ((Baud*Oversampling << (AccWidth-
ShiftLimiter))+(ClkFrequency>>(ShiftLimiter+1)))/(ClkFrequency>>ShiftLimiter);
always @(posedge clk) if(enable) Acc <= Acc[AccWidth-1:0] + Inc[AccWidth:0]; else Acc <= Inc[AccWidth:0];
assign tick = Acc[AccWidth];
endmodule

The above three modules are basic modules for serial communication. Then you can write your own code to
perform serial communication as you want. For example for swapping the given stream of serial bytes, below is a
code:

module processor(clk, rxReady, rxData, txBusy, txStart, txData);
 input clk;
 input[7:0] rxData;
 input rxReady;
 input txBusy;
 output reg txStart;
 output reg[7:0] txData;

 localparam READ=0, SOLVING=1, WRITE1=2, WRITE2=3;
 localparam LEN = 10;
 localparam LENMAX = LEN - 1;

 integer ioCount;
 reg[7:0] data[0:LENMAX];
 integer state;

 initial begin
 txStart = 0;
 state = READ;
 end

 always @(posedge clk) begin
 case (state)
 READ: begin
 if (rxReady) begin
 data[ioCount] = rxData;
 if (ioCount == LENMAX) begin
 ioCount = 0;
 state = SOLVING;
 end else begin
 ioCount = ioCount + 1;
 end
 end
 end

 SOLVING: begin
 integer i;
 for (i = 0; i < LEN/2; i = i + 1) begin
 reg[7:0] swap;

 swap = data[i];
 data[i] = data[LENMAX-i];
 data[LENMAX-i] = swap;
 end
 state = WRITE1;
 end

 WRITE1: begin
 if (!txBusy) begin
 txData = data[ioCount];
 txStart = 1;
 state = WRITE2;
 end
 end

 WRITE2: begin
 txStart = 0;
 if (ioCount != LENMAX) begin
 ioCount = ioCount + 1;
 state = WRITE1;
 end else begin
 ioCount = 0;
 state = READ;
 end
 end
 endcase
 end
endmodule

For more reference:

- http://www.fpga4fun.com/SerialInterface.html

- http://www.sparxeng.com/blog/software/talking-rs-232-with-cyclone-ii-fpga-part-1

- http://www.sparxeng.com/blog/software/talking-rs-232-with-cyclone-ii-fpga-part-2

- http://www.sparxeng.com/blog/software/communicating-with-your-cyclone-ii-fpga-over-serial-port-part-3-number-

crunching

http://www.fpga4fun.com/SerialInterface.html
http://www.sparxeng.com/blog/software/talking-rs-232-with-cyclone-ii-fpga-part-1
http://www.sparxeng.com/blog/software/talking-rs-232-with-cyclone-ii-fpga-part-2
http://www.sparxeng.com/blog/software/communicating-with-your-cyclone-ii-fpga-over-serial-port-part-3-number-crunching
http://www.sparxeng.com/blog/software/communicating-with-your-cyclone-ii-fpga-over-serial-port-part-3-number-crunching

EXPERIMENTAL SETUP

RESISTIVE TOUCH SCREEN

A touch screen is a 2-dimensional sensing device that is constructed of 2 sheets of material

separated slightly by spacers. A common construction is a sheet of glass providing a stable bottom

layer and a sheet of Polyethylene (PET) as a flexible top layer. The 2 sheets are coated with a

resistive substance, usually a metal compound called Indium Tin Oxide (ITO). The ITO is thinly

and uniformly sputtered onto both the glass and the PET layer. Tiny bumps called spacer dots are

then added to the glass side, on top of the resistive ITO coating, to keep the PET film from sagging,

causing an accidental or false touch.

When the PET film is pressed down, the two resistive surfaces meet. The position of this meeting

(a touch) can be read by a touch screen controller circuit

TOUCH SCREEN CONTROLLER (ADS7843):

FPGA is a digital device hence it can process only digital input and gives digital output. The output

of a Resistive touchscreen is analog. Hence to convert the analog output to digital an analog to

digital converter touch screen controller is used. Texas instrument’s ADS7843 touch screen

controller is used for this.

SPECIFICATION:

●4-WIRE TOUCH SCREEN INTERFACE

● RATIOMETRIC CONVERSION

● SINGLE SUPPLY: 2.7V to 5V

● UP TO 125kHz CONVERSION RATE

● SERIAL INTERFACE

● PROGRAMMABLE 8- OR 12-BIT RESOLUTION

● 2 AUXILIARY ANALOG INPUTS

● FULL POWER-DOWN CONTROL

SPI BUS INTERFACE

SPI can be used as a simple and efficient way of communication between FPGAs and other chips.
It is synchronous.
It is serial.
It is full-duplex.
It is not plug-and-play.
There is one (and only one) master, and one (or more) slaves.
A clock is generated by the master, and one bit of data is transferred each time the clock toggles.
Because SPI is synchronous and full-duplex, every time the clock toggles, two bits are actually
transmitted (one in each direction). MOSI is the "master output" while MISO is the "slave output".
FPGA is the master and ADC is the slave in this case.
The master pulls SS down to indicate to the slave that communication is starting .
SPI can easily achieve a few Mbps (mega-bits-per-seconds). That means it can be used for
uncompressed audio, or compressed video.

CODE

 module spi(
 CLK, RSTn,

 TOUCH_CS,
 TOUCH_IRQ,
 TOUCH_BY,
 TOUCH_CLK,
 TOUCH_MISO,
 TOUCH_MOSI,

 test
);
 input CLK; //50 Mhz
 input RSTn; //assign switch

 input TOUCH_BY;
 output TOUCH_CS ; //make gnd
 // input TOUCH_IRQ;
 inout TOUCH_IRQ; //penirq
 output TOUCH_CLK; // ads clock
 input TOUCH_MISO; //from ads data
 output TOUCH_MOSI; // to ads control register

 output [3:0] test;
 reg TOUCH_CSr;
 reg TOUCH_CLKr;
 reg TOUCH_MOSIr; // check
 // Check the errer
 reg [7:0] count_irq;
 reg IRQ_FLAG;
 always @(posedge CLK or negedge RSTn)
 if (!RSTn) begin
 count_irq <= 8'd0;
 IRQ_FLAG <= 1'b0;
 end
 else if (count_irq == 8'd20)
 begin
 count_irq <= 8'd0;
 IRQ_FLAG <= 1'b1;

 end
 else
 count_irq <= count_irq + 1'b1;

 assign TOUCH_IRQ = (IRQ_FLAG)?1'BZ:1'b0;
 //
 reg [7:0] count_500ns;

 parameter T500ns = 8'd24 ;// 25 * 20ns = 500ns = 0.5us
 reg spi_clk_flag;
 // *** **
 `define spi_clk_open 1'b1 ;
 `define spi_clk_close 1'b0 ;
 // *********************************** ****************
 always @(posedge CLK or negedge RSTn)
 if (! RSTn)
 count_500ns <= 8'd0;
 else if (count_500ns == T500ns || (!spi_clk_flag))
 count_500ns <= 8'd0;
 else if (spi_clk_flag)
 count_500ns <= count_500ns + 1'b1;

 reg [7:0] count_2us;
 reg count_2us_flag;
 // **** ***
 `define count_2us_open 1'd1
 `define count_2us_close 1'd0
 // ************************************** ***********
 always @ (posedge CLK or negedge RSTn)
 if (!RSTn)
 count_2us <= 8'd0;
 else if (count_2us == 8'd99||(!count_2us_flag))
 count_2us <= 8'd0;
 else if (count_2us_flag)
 count_2us <= count_2us + 1'b1;
 else
 count_2us <= count_2us;

 // ****** **
 `define touch_clk_pos 8'd2
 `define touch_clk_neg T500ns / 2
 `define High 1'b1
 `define low 1'b0
 // ******************* ***

 parameter touch_cmd_x = 8'b1001_0000 ;// x_pos
 parameter touch_cmd_y = 8'b1101_0000 ;// Y_POS
 reg [15:0] state_touch;
 reg [7:0] count_cmd_bit;
 reg [7:0] count_dat_bit; // check
 reg [11:0] touch_x1data;
 reg [11:0] touch_x2data;
 reg [7:0] count_sample;

 always @(posedge CLK or negedge RSTn)
 if (!RSTn)
 begin
 state_touch <= 8'D0;
 spi_clk_flag <= `spi_clk_close;
 count_cmd_bit <= 8'd0;
 count_sample <= 8'd0;
 end
 else
 case (state_touch)
 8'd0:
 if (!TOUCH_IRQ) //PENIRQ pulls low when a touch event occurs
 begin
 state_touch <= 8'd1;
 count_sample <= 8'd0;
 TOUCH_CSr <=`low;
 spi_clk_flag <= `spi_clk_close;
 count_2us_flag <= `count_2us_close;
 TOUCH_CLKr <= `low;
 end
 else
 begin
 state_touch <= 8'd0;
 TOUCH_CSr <= `High;
 TOUCH_CLKr <= `low;
 end
 8'd1:
 begin
 state_touch <= 8'd2;
 spi_clk_flag <= `spi_clk_open; //start spi clk 50ns or 2Mhz frequency
 TOUCH_CSr <= `low; //slave select
 count_cmd_bit <= 8'd9; //to count MOSI control register bits
 count_dat_bit <= 8'd12;
 end
 8'd2 : // Write control bits
 if (count_500ns == `touch_clk_pos) // wait posedge clk
 begin
 state_touch <= 8'd3;
 TOUCH_CLKr <= `low;
 TOUCH_MOSIr <= touch_cmd_x [count_cmd_bit-2'b10];
 count_cmd_bit <= count_cmd_bit-1'b1;
 end
 else
 state_touch <= 8'd2;
 8'd3:
 if (count_cmd_bit == 8'D0) // count cmd bit =0 indicates that all the control bits are transfered now
conversion can be achievec
 begin
 TOUCH_MOSIr <= 1'd0;
 TOUCH_CLKr <= `low;
 if (count_2us == 8'd99)
 begin
 state_touch <= 8'd4;

 count_2us_flag <= `count_2us_close;
 count_dat_bit <= 8'd12;
 spi_clk_flag <=`spi_clk_open;

 end
 else
 begin
 state_touch <= 8'd3;
 count_2us_flag <= `count_2us_open;
 spi_clk_flag <= `spi_clk_close;
 end
 end
 else if (count_500ns == `touch_clk_neg)
 begin
 state_touch <= 8'd2; // to run the loop till all the control bits are transfered
 TOUCH_CLKr <= `High;
 end
 else
 state_touch <= 8'd3;
 8'd4: // Read Data
 if (count_500ns == `touch_clk_neg) // wait negedge clk
 begin
 state_touch <= 8'd5;
 TOUCH_CLKr <= `High;
 touch_x1data [count_dat_bit-1'b1] <= TOUCH_MISO;
 end
 else
 state_touch <= 8'd4;
 8'd5:
 begin
 state_touch <= 8'd6;
 count_dat_bit <= count_dat_bit - 1'b1;
 end
 8'd6:
 if (count_dat_bit == 8'D0)
 begin
 state_touch <= 8'd7;
 TOUCH_CLKr <= `low;
 end
 else if (count_500ns == `touch_clk_pos)
 begin
 TOUCH_CLKr <= `low;
 state_touch <= 8'd4;
 end
 else
 state_touch <= 8'd6;

 8'd7:
 begin
 state_touch <= 8'd8;
 spi_clk_flag <= `spi_clk_close; // Close the spi Clock
 TOUCH_CSr <= `High;
 end

 8'd8:
 if (count_2us == 8'd99)
 begin
 state_touch <= 8'd9;
 count_2us_flag <= `count_2us_close;
 end
 else
 begin
 state_touch <= 8'd8;
 count_2us_flag <= `count_2us_open;
 end

 8'd9:
 begin
 state_touch <= 8'd10;
 spi_clk_flag <= `spi_clk_open; //start spi clk 50ns or 2Mhz frequency
 TOUCH_CSr <= `low;
 count_cmd_bit <= 8'd9; //to count MOSI control register bits
 count_dat_bit <= 8'd12;
 end
 8'd10 : // Write control bits
 if (count_500ns == `touch_clk_pos) // wait posedge clk
 begin
 state_touch <= 8'd11;
 TOUCH_CLKr <= `low;
 TOUCH_MOSIr <= touch_cmd_y [count_cmd_bit-2'b10];
 count_cmd_bit <= count_cmd_bit-1'b1;
 end
 else
 state_touch <= 8'd10;
 8'd11:
 if (count_cmd_bit == 8'D0) // count cmd bit =0 indicates that all the control bits are transfered now
conversion can be achievec
 begin
 TOUCH_MOSIr <= 1'd0;
 TOUCH_CLKr <= `low;
 if (count_2us == 8'd99)
 begin
 state_touch <= 8'd12;
 count_2us_flag <= `count_2us_close;
 count_dat_bit <= 8'd12;
 spi_clk_flag <=`spi_clk_open;

 end
 else
 begin
 state_touch <= 8'd11;
 count_2us_flag <= `count_2us_open;
 spi_clk_flag <= `spi_clk_close;
 end
 end
 else if (count_500ns == `touch_clk_neg)
 begin

 state_touch <= 8'd10; // to run the loop till all the control bits are transfered
 TOUCH_CLKr <= `High;
 end
 else state_touch <= 8'd11;
 8'd12: // Read Data
 if (count_500ns == `touch_clk_neg) // wait negedge clk
 begin
 state_touch <= 8'd13;
 TOUCH_CLKr <= `High;
 touch_x2data [count_dat_bit-1'b1] <= TOUCH_MISO;
 end
 else
 state_touch <= 8'd12;
 8'd13:
 begin
 state_touch <= 8'd14;
 count_dat_bit <= count_dat_bit - 1'b1;
 end
 8'd14:
 if (count_dat_bit == 8'D0)
 begin
 state_touch <= 8'd15;
 TOUCH_CLKr <= `low;
 end
 else if (count_500ns == `touch_clk_pos)
 begin
 TOUCH_CLKr <= `low;
 state_touch <= 8'd12;
 end
 else
 state_touch <= 8'd14;

 8'd15:
 begin
 state_touch <= 8'd16;
 spi_clk_flag <= `spi_clk_close; // Close the spi Clock
 TOUCH_CSr <= `High;
 end
 8'd16:
 if (count_2us == 8'd99)
 begin
 state_touch <= 8'd0;
 count_2us_flag <= `count_2us_close;
 end
 else
 begin
 state_touch <= 8'd16;
 count_2us_flag <= `count_2us_open;
 end

 endcase
 assign TOUCH_CLK = TOUCH_CLKr;
 assign TOUCH_CS = TOUCH_CSr;

 assign TOUCH_MOSI = TOUCH_MOSIr;
 assign test = touch_x1data [3 : 0]; // display the data collected fourth place
 endmodule

FUTURE IMPROVEMENTS

The touch screen can be mounted on a LCD module. Thus, the LCD Touch screen module can be used

to develop further applications such as drawing pad.

