Qr:t’el

EBC Debugger User Manual

February 2007

Revision 0.2

Draft for Review

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT
AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY,
OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended
for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from
future changes to them.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and
other countries.

*QOther names and brands may be claimed as the property of others.

Copyright © 2007, Intel Corporation. All rights reserved.

i Draft for Review

Contents

1 1 o To L6 Tox Lo o 1S 1
1.1 L@ T VT 1
1.2 1= 00T 1
1.3 Conventions used in this dOCUMENT i 2

1.3.1 Pseudo-code CONVENTIONS ... i 2
1.3.2 TypographiC CONVENTIONS ... eee e 2
1.4 Related INformationttt eeeeennaes 3

2 (€1 1 11 o IS = T (<o [PP 5
2.1 What is the EBC DebUQGQEI? ...ttt ettt aaanes 5
2.2 Where iS EBC DEDUGOET ...ttt ettt ettt et et et e eee e 5
2.3 P e OUISITE e 5
2.4 Load the EBC DebDUQGOETt et e e e 5
2.5 RUN the EBC DebUQGQeT et eaeeaas 6
2.6 A typical EBC DebUQ SESSION ...t e 6

3 EBC Debugger Command DesCriptioN........ it 9
3.1 L@ T VT 9

3.1.1 (@] 0 a10 o= TaTo IS0 T o] 0 F= 1 Y200 9
3.1.2 Explanation of Command Description Layoutccooiiiiiiiiian... 10
3.2 EBC Debugger COMMANAS ...t e et et et et et neeeens 11
3.2.1 Execution class COMMANASeiiii e 11
e 11
T et eeaneeaneeaneeaneaaneaan 12
P e 13
O e 14
Q e 15
3.2.2 Break class commands.......cooiiiiii e 15
B C o 15
5T 17
T 18
T 19
2 20
2 21
s 22
B e et e et eaeeeaeeeaaeeaeaaeaaneaan 23
2 24
2 25
3.2.3 Information class commands. ..ot 26
S 26
TRA CE ot s 27
R s 28
L e ettt eaaeeaneeaeaaeaan 29
LY O 30
DB, DW, DD, D .ttt et ettt et et et 31
EB, EW, ED, EQ ettt ettt et et et et et et 32

Draft for Review

Appendix A

Figures

Tables

3.2.4 Symbol class commandsooiiiiiiii 33

LN e 33
LOADSYMBOL ..ttt et ettt ettt e ettt ettt e 35
UNLOADSYMBOL ...ttt et ettt ettt aaeee 36
LOADGCODE ...ttt ettt et 37
UNLOADQCODEttt ettt et et ettt et et ettt et ettt et et et e e e e e e e aneees 38
DISPLAYSYMBOL .. . ettt ettt ettt ettt eaan 39
DISPLAYCODE ...ttt 40
3.25 Other COMMANTS.....c.uiii e 41
H e e 41
Configuring the EBC Debugger under EFI Shell....... ..o 42
Al EBC Debugger Configurationc.oeiiiiii e e een 42
A.2 Where is EBC Debugger Configurationo 42
A.3 (@] o 010 = TaTo ISTU T4 o1 0 F= T Y20 42
A.3.1 Break class commandsS.......o.ccoiiiiiiiiiii e 42
B O C e 42
2] 10 PP 44
B O R e 45
2 46
2 0 PP 47
Figure 1. EBC Debug SESSION — StEP L ..ottt ettt e e e e eaans 7
Figure 2. EBC Debug SESSION — STEP 2 ...t eas 8
Figure 3. EBC Debug SESSION — St B ..ttt 8
Table 1. EBC Debugger Commands. e 9
Table 2 EBC Debugger Configuration Commandsc.oviieiiieiieeiiieiie i iieeaaeannsn 42

Draft for Review

Revision History

Revision Description Revision

Number Date
0.1 Initial release. January 2007
0.2 Draft candidate February 2007

Draft for Review

Draft for Review

1

Introduction

1.1

1.2

Overview

This document describes the information on how to use an EBC debugger on EFI
implementation. The following chapters include:

e How to use an EBC debugger

e Description for each EBC debugger command

Terms

The following terms are used throughout this document to describe varying aspects of
input localization:

Component
An executable image. Components defined in this specification support
one of the defined module types.

EF1
Generic term that refers to one of the versions of the EFI specification: EFI
1.02, EFI 1.10, UEFI 2.0, UEFI 2.1, or a later UEFI specification.

EFI 1.10 Specification

Intel Corporation published the Extensible Firmware Interface
Specification. Intel donated the EFI specification to the Unified EFI Forum,
and the UEFI now owns future updates of the EFI specification. See UEFI
Specifications.

GUID
Globally Unique Identifier. A 128-bit value used to name entities uniquely.
An individual without the help of a centralized authority can generate a
unique GUID. This allows the generation of names that will never conflict,
even among multiple, unrelated parties.

Module

A module is either an executable image or a library instance. For a list of
module types supported by this package, see module type.

Draft for Review

1.3

4BIntroduction

UEFI Application

An application that follows the UEFI specification. The only difference
between a UEFI application and a UEFI driver is that an application is
unloaded from memory when it exits regardless of return status, while a
driver that returns a successful return status is not unloaded when its
entry point exits.

UEFI Driver

A driver that follows the UEFI specification.

UEFI Specification Version 2.0
First version of the EFI specification released by The Unified EFI Forum.
This specification builds on the EFI 1.10 specification and transfers
ownership of the EFI specification from Intel to a non-profit, industry trade
organization.

UEFI Specification Version 2.1

Current version of the EFI specification released by the Unified EFI Forum.

The Unified EF1 Forum

A non-profit collaborative trade organization formed to promote and
manage the UEFI standard. For more information, see www.uefi.org.

Conventions used Iin this document

This document uses the typographic and illustrative conventions described below.

1.3.1 Pseudo-code conventions

Pseudo code is presented to describe algorithms in a more concise form. None of the
algorithms in this document are intended to be compiled directly. The code is
presented at a level corresponding to the surrounding text.

In describing variables, a list is an unordered collection of homogeneous objects. A
queue is an ordered list of homogeneous objects. Unless otherwise noted, the ordering
is assumed to be First In First Out (FIFO).

Pseudo code is presented in a C-like format, using C conventions where appropriate.
The coding style, particularly the indentation style, is used for readability and does not

necessarily comply with an implementation of the Extensible Firmware Interface
Specification.

1.3.2 Typographic conventions

This document uses the typographic and illustrative conventions described below:

Plain text The normal text typeface is used for the vast majority of the
descriptive text in a specification.

Draft for Review

1.4

Plain text (blue) Any plain text that is underlined and in blue indicates an active
link to the cross-reference. Click on the word to follow the
hyperlink.

Bold In text, a Bold typeface identifies a processor register name. In
other instances, a Bold typeface can be used as a running head
within a paragraph.

Italic In text, an Italic typeface can be used as emphasis to introduce
a new term or to indicate a manual or specification name.

BOLD Monospace Computer code, example code segments, and all prototype
code segments use a BOLD Monospace typeface with a dark red
color. These code listings normally appear in one or more
separate paragraphs, though words or segments can also be
embedded in a normal text paragraph.

Bold Monospace Words in a Bold Monospace typeface that is underlined and in
blue indicate an active hyperlink to the code definition for that
function or type definition. Click on the word to follow the

hyperlink.
Italic In code or in text, words in Italic Monospace indicate
Monospace placeholder names for variable information that must be

supplied (i.e., arguments).

Plain Monospace | |n code, words in a Plain Monospace typeface that is a dark red
color but is not bold or italicized indicate pseudo code or
example code. These code segments typically occur in one or
more separate paragraphs.

See the glossary sections in the EFI 1.10 Specification and in the EFI Documentation
help system for definitions of terms and abbreviations that are used in this document
or that might be useful in understanding the descriptions presented in this document.

See the references sections in the EFI 1.10 Specification and in the in the EFI
Documentation help system for a complete list of the additional documents and
specifications that are required or suggested for interpreting the information
presented in this document:

The EFI 1.10 Specification is available from the EFI web site
http://developer.intel.com/technology/efi/. The EFlI Documentation help system is
available from the EFI web site
http://developer.intel.com/technology/efi/help/efidocs.htm.

Related Information

The following publications and sources of information may be useful, or are referred to
by this document:

e Extensible Firmware Interface Specification, Version 1.10, Intel, 2001,
http://developer.intel.com/technology/efi.

Draft for Review 3

http://developer.intel.com/technology/efi/
http://developer.intel.com/technology/efi/help/efidocs.htm
http://developer.intel.com/technology/efi

4BIntroduction

Unified Extensible Firmware Interface Specification, Version 2.0, Unified EFI, Inc,
2006, http://www.uefi.org.

Unified Extensible Firmware Interface Specification, Version 2.1, Unified EFI, Inc,
2007, http://www.uefi.org.

Draft for Review

http://www.uefi.org/
http://www.uefi.org/

Getting Started

2.1

2.2

2.3

2.4

Note:

What is the EBC Debugger?

The EBC Debugger is a tool that can help a user to debug an EBC driver or an EBC
application in the EFI shell environment.

The EBC Debugger is an EFI native (service) driver. It is an EBC interpreter with
debug ability.

Where is EBC Debugger

The EBC Debugger is on the CD in the \EbcDebugger\ directory. The included binaries
only support Intel® 64, 1A-32, and Intel® Itanium® instruction set architectures.

Prerequisite

When the EBC Debugger is loaded, it will unload the existing EBC interpreter. So the
user should ensure that there are no other EBC interpreters loaded after that.

The EBC Debugger uses ConOut and Conln as input and output interface. Conln and
ConOut are required to operate the EBC debugger.

(Optional) In order to support symbolic debugging, the user needs to use DEBUG
version of the driver and provide the .MAP file from the building of the driver.
The .MAP file should be put into the first file system.

(Optional) In order to support source level debugging, the user need to use DEBUG
version driver and provide both the .MAP file and the .COD files from the building of
the driver. The .MAP and .COD files should be put into the first file system.

If 2 source files have same name they will have COD files with the same name, which
is not supported.

Load the EBC Debugger

As EBC Debugger is a driver, there are 2 ways to load it.
e The user can load it manually by using shell command “load EbcDebugger.efi.”

e The user can build the EbcDebugger.efi to the firmware image, so it will be loaded
automatically in system booting.

Draft for Review

2.5

2.6

Configuring the EBC Debugger under EFI Shell

Run the EBC Debugger

If the EBC debugger is loaded it will automatically start when it meets one of the
following conditions:

e An EBC image starts.
¢ Native-to-EBC thunk code is called.

e An EBC exception happens. For example, EBC Breakpoint exception.

When the EBC debugger starts, the EBC debugger prompt will be displayed. User can
then use EBC debugger commands in this shell-like environment.

A typical EBC Debug session

an example of a typical EBC debug session follows. EbcTest.efi is an EBC driver,
EbcTest.map is the .MAP file, EbcTest.cod, and EbcTestSub.cod are the .COD files.
These are located in the CD directory \EbcTest\.

The steps followed by the user are:

1) On the target system, boot an EFl system.

2) Get the debugger loaded into memory. (see 2.4)

3) Copy all the .MAP file and .COD file to 1°* file system, for example: fsntO:\ebctest\

4) Load the driver (load ebctest.efi). This causes the EBC debugger prompt to
display with the interpreter stopped at the EBC driver’s entry point. (see 2.5)

5) Load the symbol files at Debugger command prompt.

a) type “loadsymbol ebctest\ebctest.map a” (the “a” switch causes the
debugger to load all .cod file in same directory See Figure 1.

Draft for Review

fsntl:\> load ebctest.efi
EBC Interpreter Uersion - 1.0
EBC Debugger Uersion - 0.1

Break on Entrypoint
B? 37 00 00 01

OBDZ2EBZ0 :
0BDZ2E6ZS:
0BDZ2E6Z6 -
0OBDZ2EBZ8 :
OBDZEBZC :
0BDZ2E630 :
0BD2E635:

00

MOUIgd 65536

00 06 BREAK

60 00 50 8O HOUguw RO (-0, -80)
77 36 00 0O HOUIgw 0

B9 37 CA 03 0O

00

MOUreld R7. 0x000003CA

Please enter command now. "h’ for help.
{Using <Command> -b <...> to enable page break.)

EDB > loadsymbol ebctestswebctest.map a

EDB > _

Figure 1. EBC Debug session — step 1

6) The user will list all symbols with the In command and fine the address of
EfiMain() routing (Ox8D2E51A in this case) see Figure 2.

EDB > In

Sumbol File Mame: ebctest.map
Type Symbol

Address

0x08D2E442 (F) TestSubRoutine (EbcTest.obj)

0x08DZ2ES51A (F) EfiMain (EbcTest.obj)

0x08D2E600 ¢ F) TestSubRoutineSub (EbcTestSub.obj)

0x0BDZ2E620 (F) EfiStart (EbcLib:EbcLib.obj)

0x08D2EB00 ¢ F) varbss_init_C:\efi_srcA\TIANOAEdK\Sampleilniversa INEbci\Dxe\EbcT
est\EbcTest3c45badBef (EbcTest.obj)

0x08DZ2EBZ20 (F) varbss_init_C:\efi_src\TIANODAEdk\SamplesUniversal\Ebc\DxeM\EbcT
est\EbcTestSubSc45bbdBef (EbcTestSub.obj)

0x08D2EADD
0x08D2EAD4
0x08D2EADS
0x08D2EA14
0x08D2ECT0
0x0B8D2ECTD
0x0BD2ECBO
0x0B8D2E400

(GLH
(GLH
(G
(G
(G
(GLH
(GLH
(5P

CrtThunkBegin (EbcLib:EbcLib.obj)
CrtThunkEnd (EbcLib:EbcLib.obj)
CrtBegin (EbcLib:EbcLib.ohj)

CrtEnd (EbcLib:EbcLib.obj)

Test3tr (EbcTest.obj)

TestUariahlel (EbcTest.obj)
TestSubVariableSub (EbcTestSub.obj)
TestSubRoutine2 (EbcTest.ohj)

Draft for Review

Configuring the EBC Debugger under EFI Shell

Figure 2. EBC Debug session — step 2

7) The user allows the program to run freely until the EfiMain() routine (use the
command “G til 8d2e51a”). The program execution is now at the Image’s Entry
point. The user can set breakpoints and debug in their code. See Figure 3.

EDB > g til BdZe51a

Break on GoTil

[EfiMain] :

08DZES51A: 60 00 70 80 MOUgw RO, RO{-0,-112)
117 0 L

OBDZESIE: 77 58 58 00 34

08DZ2ES23: 12 MOUT wu BRO(+0,+88) , 4660
:118 : UINT16 test = 0x1234:

08BDZESZ24: 72 87 01 12 MOUnuw R?. BRO(+1,+128)
08DZ2ES28: 72 F1 85 21 MOUnuw R?, BR?{+5,+24)
:121 : EFI_STATUS Status:

121

:121 ;' SystemTable->Conlut->0utputString
0BDZESZ2C: 72 84 01 12 MOUnu R4, BRO(+1,+128)

EDB > _

Figure 3. EBC Debug session — step 3

The user can also set breakpoints in the source code using the EF1_BREAKPOINT()
macro, which is defined as _break(3) in debug builds. This will result in the EBC
debugger stopping at that place in the code.

Please see 3 for details on the commands of the EBC debugger.

Draft for Review

EBC Debugger Command
Description

3.1

Overview

3.1.1 Command Summary

Table 1 lists all EBC debugger commands.

Table 1. EBC Debugger Commands

Class Command Description
Execution G continue to run the program.
T step into.
P step over.
@] step out.
Q reset the debugger to default value and go.
Break BOC break on CALL.
BOCX break on CALLEX.
BOR break on RET.
BOE break on Driver Entrypoint.
BOT break on Native Thunk.
BL breakpoint list
BP breakpoint set
BC breakpoint clear
BD breakpoint disable
BE breakpoint enable
Information K show/clear call-stack
TRACE show/clear trace instruction branch
R display/modify register
L show/load instruction assembly count
SCOPE load scope address

DB, DW, DD, DQ | display memory

Draft for Review

10

Configuring the EBC Debugger under EFI Shell

Class Command

08D2EO010:
AFAFAFAF
AFAFAFAF
AFAFAFAF
AFAFAFAF

EB, EW, ED, EQ
Symbol LN
LOADSYMBOL
UNLOADSYMBOL
LOADCODE
UNLOADCODE
DISPLAYSYMBOL
DISPLAYCODE
Other H

Description

modify memory

list the symbol

load the symbol file

unload the symbol file

load the code file

unload the code file

disable/enable the symbol output
disable/enable the source code only output

help

3.1.2 Explanation of Command Description Layout

The description of each command is composed of four sections: Summary, Usage,

Function Key, and Description.

Summary is a brief explanation of the function of the command. Usage describes how
the command is used. Function Key is the fast way to run this command.
Description describes the details of the command.

Draft for Review

3.2 EBC Debugger Commands

3.2.1 Execution class commands
G
Summary
continue to run the program.
Usage
G [til <Address>]
(No Argument) - It means continue run the program.
til - It means continuing run the program till IP is the
Address.
<Address> - The hexical address user want to break at.

Function Key
[F5]

Description

Use of the go command causes the debugger not to interrupt execution of the EBC
image. The debugger will only break execution of the interpreter if it encounters an
exception (including an EBC breakpoint).

Examples

Examples:
* To continue run the program:
EDB > G

* To continue run the program until IP is 8D2F51A:
EDB > G TIL 8D2F51A
Break on GoTil

[EfiMain] :

08D2F51A: 60 00 70 80 MOVgw RO, RO(-0,-122)
;117 ;

08D2F51E: 77 58 58 00 34

08D2F523: 12 MOVIww @RO (+0,+88), 4660
;118 ; UINT1l6 test = 0x1234;

08D2F524: 72 87 01 12 MOVnw R7, @RO(+1,+128)
08D2F528: 72 F7 85 21 MOVnw R7, @R7 (+5,+24)
;121 ; EFI_STATUS Status;

;121 ;

;121 ; SystemTable->ConOut->0OutString (

08D2F52C: 72 84 01 12 MOVnw R4, @RO(+1,+128)

Draft for Review 11

Configuring the EBC Debugger under EFI Shell

T
Summary

step into.
Usage

T

(No Argument)

Function Key
[F8]

Description

The step into command will cause the EBC debugger to step a single instruction. If the
instruction is a call to internal code (CALL), then the debugger will break at the new
function CALL.

Examples

Examples:
* To step into the program:
EDB > T

12 Draft for Review

P

Summary

step over.

Usage

(No Argument)

Function Key
[F10]

Description

The step over command causes the EBC debugger to step a single instruction. If the
instruction is a call to internal code (CALL), then the external call is made and the
debugger breaks at the instruction following the CALL.

Examples

Examples:
* To step over the program:
EDB > P

Draft for Review

13

Configuring the EBC Debugger under EFI Shell

@)
Summary

step out.
Usage

(0]

(No Argument)

Function Key
[F11]

Description

The step out command causes the EBC debugger to step out function calls. The
function executes, but the debugger stops after the called function returns.

Examples

Examples:
* To step out the program:
EDB > O

14 Draft for Review

Q

Summary

reset the debugger to default value and go.

Usage

(No Argument)

Function Key
(None)

Description

The quit command will reset the debugger to default value and go.

Examples
Examples:
* To reset the debugger to default value and go:
EDB > Q
3.2.2 Break class commands
BOC
Summary

break on CALL.

Usage
BOC [on]|off]
(No Argument) - show current state
on - enable break-on-call
off - disable break-on-call

Function Key
(None)

Description

Enabling break-on-call will cause the debugger to halt execution and display the
debugger prompt prior to executing any EBC CALL (to EBC) instructions.

Draft for Review

Configuring the EBC Debugger under EFI Shell

Examples

Examples:
* To enable break-on-CALL:

EDB > BOC ON
* To show the current state:

EDB > BOC
BOC ON

16 Draft for Review

BOCX

Summary
break on CALLEX.
Usage
BOCX [on|off]
(No Argument) - show current state
on - enable break-on-callex
off - disable break-on-callex

Function Key
(None)

Description

Enabling break-on-callex causes the debugger to halt execution and display the
debugger prompt prior to executing EBC CALLEX (thunk out) instructions.

Examples

Examples:
* To enable break-on-CALLEX:
EDB > BOCX ON

* To show the current state:

EDB > BOCX
BOCX ON

Draft for Review

17

Configuring the EBC Debugger under EFI Shell

BOR
Summary
break on RET.
Usage
BOR [on]|off]
(No Argument) - show current state
on - enable break-on-return
off - disable break-on-return

Function Key
(None)

Description

Enabling break-on-return will cause the debugger to halt execution and display the
debugger prompt prior to executing EBC RET instructions.

Examples

Examples:
* To enable break-on-RET:
EDB > BOR ON

* To show the current state:

EDB > BOR
BOR ON

18 Draft for Review

BOE

Summary
break on Driver Entrypoint.
Usage
BOE [on]|off]
(No Argument) - show current state
on - enable break-on-entrypoint
off - disable break-on-entrypoint

Function Key
(None)

Description

Enabling break-on-entrypoint causes the debugger to halt execution and display the
debugger prompt prior to start a driver entry point. (Default is on).

Examples

Examples:
* To disable break-on-entrypoint:
EDB > BOE OFF

* To show the current state:

EDB > BOE
BOE OFF

Draft for Review

19

Configuring the EBC Debugger under EFI Shell

BOT
Summary
break on Native Thunk.
Usage
BOT [on]|off]
(No Argument) - show current state
on - enable break-on-thunk
off - disable break-on-thunk

Function Key
(None)

Description

Enabling break-on-thunk will cause the debugger to halt execution and display the
debugger prompt prior to start native call EBC thunk. (Default is on)

Examples

Examples:
* To enable break-on-thunk:
EDB > BOT ON

* To show the current state:

EDB > BOT
BOT ON

20 Draft for Review

BL

Summary
breakpoint list.

Usage
BL

(No Argument) - show the state for current breakpoint

Function Key
(None)

Description

List Breakpoint

Examples
Examples:
* To list breakpoint:
EDB > BL
Breakpoint:
Index Address Status
0 0x0000000008D2F52C *

Draft for Review

21

Configuring the EBC Debugger under EFI Shell

BP

Summary
breakpoint set.

Usage
BP <Address>

<Address> - Hexical breakpoint address

Function Key
(None)

Description

Set Breakpoint
Examples

Examples:

* To set breakpoint:
EDB > BP 8D2E52C

22 Draft for Review

BC

Summary
breakpoint clear.

Usage
BC <Index>|*

<Index> - Decimal breakpoint index, which can be got from BL command
* - For all the breakpoint

Function Key
(None)

Description

Clear Breakpoint
Examples

Examples:

* To clear breakpoint:
EDB > BC 0

Draft for Review 23

Configuring the EBC Debugger under EFI Shell

BD
Summary
breakpoint disable.
Usage
BD <Index>|*
<Index> - Decimal breakpoint index, which can be got from BL command
* - For all the breakpoint

Function Key
(None)

Description

Disable Breakpoint
Examples

Examples:

* To disable breakpoint:
EDB > BD 0

24 Draft for Review

BE

Summary
breakpoint enable.

Usage
BE <Index>|*

<Index> - Decimal breakpoint index, which can be got from BL command
* - For all the breakpoint

Function Key
(None)

Description

Enable Breakpoint
Examples

Examples:

* To enable breakpoint:
EDB > BE 0

Draft for Review 25

Configuring the EBC Debugger under EFI Shell

3.2.3 Information class commands
K
Summary
show/clear call-stack.
Usage
K [p [<ParameterNum>] |c]
(No Argument) - Show current call-stack
P - Show current call-stack with parameters
ParameterNum - Decimal call-stack parameters number, 8 by default, 16
as max
c - Clear current call-stack

Function Key
(None)

Description

The call-stack command will show or clear the current call-stack.

Examples
Examples:
* To show the current call-stack:
EDB > K
Call-Stack (TOP):
Caller Callee Name

0x0000000008D2F55A 0x0000000008D2F600 TestSubRoutineSub ()
0x0000000008D2F750 0x0000000008D2F51A EfiMain ()
0x00000000FFFFFFFF 0x0000000008D2F620 EfiStart ()

* To show the current call-stack with parameter:
EDB > K P 2
Call-Stack (TOP):
Caller Callee Name

0x0000000008D2F55A 0x0000000008D2F600 TestSubRoutineSub ()
Parameter Address (0x08B26F24) (
0x00000001, 0x00000005
)
0x0000000008D2F750 0x0000000008D2F51A EfiMain ()
Parameter Address (0x08B26FA4) (
0x08D2D710, 0x04C6FE90
)
0x00000000FFFFFFFF 0x0000000008D2F620 EfiStart()
Parameter Address (0x08B26FF4) (
OxAFAFAFAF, OxAFAFAFAF
)

26 Draft for Review

TRACE

Summary

show/clear trace instruction branch.

Usage
TRACE [c]
(No Argument) - Show current instrcution branch
c - Clear current instruction branch

Function Key
(None)

Description

The trace command will show or clear the latest instruction branch.

Examples

Examples:
* To show the current instruction branch:
EDB > TRACE
Instruction Trace (->Latest):
Source Addr Destination Addr Type

0x0000000008D2F652 0x0000000008D2F6CE (JMP8)
0x0000000008D2F6E8 0x0000000008D2F6EA (JMP8)
0x0000000008D2F702 0x0000000008D2F704 (JMP8)
0x0000000008D2F70C 0x0000000008D2F72A (JMP8)
0x0000000008D2F744 0x0000000008D2F704 (JMP8)
0x0000000008D2F70C 0x0000000008D2F70E (JMP8)
0x0000000008D2F728 0x0000000008D2F800 (CALL)

Draft for Review

Summary

Usage

Configuring the EBC Debugger under EFI Shell

display/modify register.

R [<Register> <Value>]

(No Argument) - Display all registers

<Register> - EBC VM register name (RO~R7, Flags, ControlFlags, and
IP

<Value> - The Hexical value of register

Function Key

[F2]

Description

Examples

28

The register command is used to display or modify the contents of EBC VM registers.
(RO—~R7, Flags, IP).

Examples:
* To show the current register:
EDB > R

RO - 0x0000000008b26F14, R1 - 0x000000000000

R2 - 0x0000000008b26F14, R3 - 0x000000000000

R4 - 0x0000000008b26F14, R5 - 0x000000000000

R6 - 0x0000000008b26F14, R7 - 0x000000000000

Flags - 0x0000000000000001, ControlFlags - 0x0000000000000000
Ip - 0x0000000008D2F61A

* To update the current register:
EDB > R R1 1

Draft for Review

L

Summary
show/load instruction assembly count.
Usage
L [<Count>]
(No Argument) - List current assembly code
Count - The decimal instruction assembly count

Function Key
[F4]

Description

The list assembly command will disassemble instructions starting with the current EBC
VM instruction pointer. (by default 5 instructions).

Examples

Examples:
* To show the current assembly:
EDB > L

Draft for Review 29

SCOPE

Summary

load scope address.

Usage
SCOPE <Address>

Configuring the EBC Debugger under EFI Shell

Address - The Hexical address where user wants to see the

assembly code

Function Key
(None)

Description

The list assembly command will disassemble instructions starting with the current EBC
VM instruction pointer. (by default 5 instructions).

Examples
Examples:
* To load the scope address:
EDB > SCOPE 8D2F61A
30

Draft for Review

DB, DW, DD, DQ

Summary
display memory.
Usage
D[B|W|D|Q] <Address> [<Count>]

Address - The hexical memory address
Count - The hexical memory count (not set means 1)

Function Key
(None)

Description
Display BYTES/WORDS/DWORDS/QWORDS Memory.

Examples
Examples:
* To show the memory:

EDB > DD 8D2E000 8
08D2E000: 30726670 00000000 O8DAAAL1C 08D2E088

08D2E010: AFAFAFAF AFAFAFAF AFAFAFAF AFAFAFAF

Draft for Review

31

Configuring the EBC Debugger under EFI Shell

EB, EW, ED, EQ

Summary

modify memory.

Usage
E[B|W|D|Q] <Address> <Value>
Address - The hexical memory address
Value - The hexical memory value

Function Key
(None)

Description
Enter BYTES/WORDS/DWORDS/QWORDS Memory.

Examples

Examples:
* To modify the memory:
EDB > ED 8D2FC78 8

32 Draft for Review

3.2.4 Symbol class commands

LN
Summary
list the symbol.
Usage
LN [[F <SymbolFile>] [S <Symbol>]] | <Address>
(No Argument) - List all the symbol
F <SymbolFile> - List the symbol in this symbol file only
S <Symbol> - List this symbol only
Address - The hexical memory address, which user want to find

the symbol for.

Function Key
(None)

Description

The show symbol command will list all the current symbol. It can list the symbol in
one symbol file, or list the same symbol in all the files. It can also list the symbol

according to nearest address. (In the result - type field, F means Function, SF means

Static Function, GV means Global Variable)

Draft for Review

33

Examples

34

Examples:

Configuring the EBC Debugger under EFI Shell

* To list the symbol:

EDB > LN
Symbol File Name:
Address Type

0x08D2F442 (F)
0x08D2F51A (F)
0x08D2F600 (F)
0x08D2F620 (F)

0x08D2F800 (F)

ebctest.map
Symbol

TestSubRoutine (EbcTest.obj)
EfiMain (EbcTest.obj)
TestSubRoutineSub (EbcTest.obj)
EfiStart (EbcLib:EbcLib.obj)

varbss _init C:\efi src\TIANO\Edk\Sample\Universal\Ebc\Dxe\EbcTest\EbcTest
$c45b6d8ef (EbcTest.obj)

0x08D2F820 (F)

varbss_init C:\efi src\TIANO\Edk\Sample\Universal\Ebc\Dxe\EbcTest\EbcTest
Sub$c45b6d8ef (EbcTestSub.obj)

0x08D2FA00 (GV)
0x08D2FA04 (GV)
0x08D2FA08 (GV)
0x08D2FAl4 (GV)
0x08D2FC70 (GV)
0x08D2FC78 (GV)
0x08D2FC80 (GV)
0x08D2F400 (SF)

CrtThunkBegin (EbcLib:EbcLib.obj)
CrtThunkEnd (EbcLib:EbcLib.obj)
CrtBegin (EbcLib:EbcLib.obj)

CrtEnd (EbcLib:EbcLib.obj)

TestStr (EbcTest.obj)

TestVariablel (EbcTest.obj)
TestSubVariableSub (EbcTestSub.obj)
TestSubRoutine2 (EbcTest.obj)

* To list the nearest symbol:

EDB > LN 8d2£500

Symbol at Address

Symbol File Name:
Address Type

0x08D2F51A (F)

not found, print nearest one!
ebctest.map
Symbol

* To list the symbol with name:
EDB > LN S EfiMain

Symbol File Name:
Address Type

0x08D2F51A (F)

ebctest.map

Symbol

EfiMain (EbcTest.obj)

Draft for Review

LOADSYMBOL

Summary

load the symbol file.

Usage
LOADSYMBOL <SymbolFile> [al]

SymbolFile - The EBC symbol file (Its name should be XXX.MAP)
a - Automatically load code files in the same dir

Function Key
(None)

Description

The load symbol command will load the ebc map file. Then it parses the function name
and global variable, and the print real name when do the disassembly. (Symbol file
name should be XXX.MAP).

Examples

Examples:
* To load the symbol:
EDB > LOADSYMBOL ebctest\ebctest.map

* To load the symbol and related code:
EDB > LOADSYMBOL ebctest\ebctest.map a

Draft for Review 35

Configuring the EBC Debugger under EFI Shell

UNLOADSYMBOL

Summary
unload the symbol file.

Usage
UNLOADSYMBOL <SymbolFile> [al]
SymbolFile - The EBC symbol file (Its name should be XXX.MAP)

Function Key
(None)

Description

The unload symbol command will unload the ebc map and cod file. After that the
name will not be print.

Examples

Examples:
* To unload the symbol:
EDB > UNLOADSYMBOL ebctest.map

36 Draft for Review

LOADCODE

Summary
load the code file.

Usage
LOADCODE <CodeFile> <SymbolFile>

CodeFile - The EBC code file (Its name should be XXX.COD)
SymbolFile - The EBC symbol file (Its name should be XXX.MAP)

Function Key
(None)

Description

The load code command will load the ebc cod file. Then it parses the cod file, and the
print source code when do the disassembly. (Code file name should be XXX.COD).

Examples

Examples:
* To load the code:
EDB > LOADCODE ebctest\ebctest.cod ebctest.map

Draft for Review 37

Configuring the EBC Debugger under EFI Shell

UNLOADCODE

Summary
unload the code file.

Usage
UNLOADCODE <CodeFile> <SymbolFile>

CodeFile - The EBC code file (Its name should be XXX.COD)
SymbolFile - The EBC symbol file (Its name should be XXX.MAP)

Function Key
(None)

Description

The unload code command will unload the ebc cod file. After that the source code will
not be print.

Examples

Examples:
* To unload the code:
EDB > UNLOADCODE ebctest\ebctest.cod ebctest.map

38 Draft for Review

DISPLAYSYMBOL

Summary
disable/enable the symbol output.
Usage
DISPLAYSYMBOL [on|off]
(No Argument) - swtich symbol output state to another one
on - enable symbol output
off - disable symbol output

Function Key
[F3]

Description

The display symbol command will configure the symbol show or not-show when
disassembly.

Examples

Examples:
* To siwtch display symbol:
EDB > DISPLAYSYMBOL

Draft for Review

39

Configuring the EBC Debugger under EFI Shell

DISPLAYCODE

Summary

disable/enable the source code only output.

Usage
DISPLAYCODE [on]|off]
(No Argument) - swtich source only output state to another one
on - enable source only output
off - disable source only output

Function Key
[F6]

Description

The display code command will configure the source code only show or miscellaneous
source code with assembly.

Examples

Examples:
* To siwtch display code:
EDB > DISPLAYCODE

40 Draft for Review

3.2.5 Other commands

H
Summary
Help.
Usage
H [<Command>]
(No Argument) - show help information for all command
Command - show detail help information for this command

Function Key
[F1]

Description

The help command will print help information for each command.
Examples

Examples:

* To print help:
EDB > H

Draft for Review

Configuring the EBC Debugger under EFI Shell

Appendix A Configuring the EBC
Debugger under EFI Shell

A.l EBC Debugger Configuration

Sometimes the user may want to disable all Break conditions and just let the EBC
image run. How can this be done and then reversed at the user’s discretion. The EFI
shell application EbcDebuggerConfig acomplishes this.

A.2 Where is EBC Debugger Configuration

EBC Debugger Configuration is on the CD in \EbcDebuggerConfig\ directory. The
binaries only support Intel® 64, 1A-32, and Intel® Itanium® architectures.

A.3 Command Summary

Table 2 lists all EBC debugger configuration commands.

Table 2 EBC Debugger Configuration Commands

Class Command Description
Break Break class break on CALL.
commands
BOC
BOCX break on CALLEX.
BOR break on RET.
BOE break on Driver Entrypoint.

o
]

break on Native Thunk.

A.3.1 Break class commands

BOC

Summary

break on CALL.

42 Draft for Review

Usage
BOC [on]|off]

(No Argument) - show current state
on - enable break-on-call
off - disable break-on-call

Description

Enabling break-on-call will cause the debugger to halt execution and display the
debugger prompt prior to executing any EBC CALL (to EBC) instructions.

Examples

Examples:
* To enable break-on-CALL:
Shell> EDBCFG BOC ON

* To show the current state:

Shell> EDBCFG BOC
BOC ON

Draft for Review

43

Configuring the EBC Debugger under EFI Shell

BOCX
Summary
break on CALLEX.
Usage
BOCX [on|off]
(No Argument) - show current state
on - enable break-on-callex
off - disable break-on-callex

Description

Enabling break-on-callex will cause the debugger to halt execution and display the
debugger prompt prior to executing EBC CALLEX (thunk out) instructions.

Examples

Examples:
* To enable break-on-CALLEX:
Shell> EDBCFG BOCX ON

* To show the current state:

Shell> EDBCFG BOCX
BOCX ON

44 Draft for Review

BOR

Summary

break on RET.

Usage
BOR [on]|off]
(No Argument) - show current state
on - enable break-on-return
off - disable break-on-return

Description

Enabling break-on-return will cause the debugger to halt execution and display the
debugger prompt prior to executing EBC RET instructions.

Examples

Examples:
* To enable break-on-RET:
Shell> EDBCFG BOR ON

* To show the current state:

Shell> EDBCFG BOR
BOR ON

Draft for Review

Configuring the EBC Debugger under EFI Shell

BOE
Summary
break on Driver Entrypoint.
Usage
BOE [on]|off]
(No Argument) - show current state
on - enable break-on-entrypoint
off - disable break-on-entrypoint

Description

Enabling break-on-entrypoint will cause the debugger to halt execution and display
the debugger prompt prior to start a driver entry point. (Default is on).

Examples

Examples:
* To disable break-on-entrypoint:
Shell> EDBCFG BOE OFF

* To show the current state:

Shell> EDBCFG BOE
BOE OFF

46 Draft for Review

BOT

Summary

break on Native Thunk.

Usage
BOT [on]|off]
(No Argument) - show current state
on - enable break-on-thunk
off - disable break-on-thunk

Description

Enabling break-on-thunk will cause the debugger to halt execution and display the
debugger prompt prior to start native call EBC thunk. (Default is on)

Examples

Examples:
* To enable break-on-thunk:
Shell> EDBCFG BOT ON

* To show the current state:

Shell> EDBCFG BOT
BOT ON

Draft for Review

47

	Contents
	Figures
	Tables
	Revision History
	1 Introduction
	1.1 Overview
	1.2 Terms
	1.3 Conventions used in this document
	1.3.1 Pseudo-code conventions
	1.3.2 Typographic conventions

	1.4 Related Information

	2 Getting Started
	2.1 What is the EBC Debugger?
	2.2 Where is EBC Debugger
	2.3 Prerequisite
	2.4 Load the EBC Debugger
	2.5 Run the EBC Debugger
	2.6 A typical EBC Debug session

	3 EBC Debugger Command Description
	3.1 Overview
	3.1.1 Command Summary
	3.1.2 Explanation of Command Description Layout

	3.2 EBC Debugger Commands
	3.2.1 Execution class commands
	3.2.2 Break class commands
	3.2.3 Information class commands
	3.2.4 Symbol class commands
	3.2.5 Other commands

