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Preface 

The presented work is created in contents of a master thesis that I have prepared for 

the "Universitat Politecnica de Catalunya" in Spain. At the "Technical University of 

Darmstadt" this thesis is submitted as a "Studienarbeit".  

The thesis consists of three parts. The enclosed CD-Rom contains the 

VHDLGenerator program with the corresponding installation files as well as the 

source code. The documentation of the VHDLGenerator Program is the paper at 

hand. For quick reference a user manual is available. The user manual is a copy of 

the most important notes, helpful when starting to work with VHDLGenerator.   

The structure of this thesis is closely related to the execution order of the program. 

The development of the VHDLGenerator program required knowledge of different 

fields of programming. For streaming the text files you have to know the Java 

streaming concepts, while the VHDLGenerator error detection is based on Java 

exception handling. Because the output file is written in a hardware description 

language (VHDL) one has to deal with the constraints of hardware design. 

Furthermore the theoretical background of minimization algorithms has to be 

understood in order to realize the Left Edge Algorithm that is used for register 

minimization. So as heterogeneous as the knowledge base is, as heterogeneous is the 

structure of this thesis. The different topics are addressed in the order they are 

executed inside the VHDLGenerator program.  

Every chapter is related to one working step of VHDLGenerator. It always starts 

with a   general explanation and theoretical background of a used concept and then 

explains how the theory is adapted to the specific case.  

 

 

Hagen Stübing 
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1 Introduction 

Common hardware design flows that are in use today, can not satisfy the 

correctness requirements of cryptographic applications, where an implementation 

error might violate the security. For this reason the Faculty of Integrated Circuits 

and Systems at the Technical University of Darmstadt started to develop a new 

design flow, appropriate for cryptographic applications. In contents of this work a 

VHDLGenerator is designed, which is part of that new developed hardware design 

flow. The objective of this VHDLGenerator is to convert a Data Flow Graph 

description into synthesizable VHDL code.    

A central aspect of the design flow is the desired support for automated 

verification after code entry. Although it is aimed towards cryptography, most 

aspects can be adopted to other domains. We will discuss first how the new design 

flow looks like, and then we explain how this work is related to it. Finally the overall 

structure is explained. 

The proposed design flow is shown in Figure 1.1. The different design phases are 

represented in the left column. The middle column denotes the actions required in the 

corresponding design phase, while the right column gives concrete examples for each 

design phase. 
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    Figure 1: proposed Design Flow 
 

The first step consists of the Code Entry Phase. There the developer generates an 

algorithmic implementation in the design language. The implementation has to 

follow the requirements of a formal specification.  

An automated verification tool is used to test the implementation against the 

specification given by the developer. 

The next step in the design flow is an automated scheduling and allocation 

process. For this purpose the HCDM tool is used. The HCDM Generator is a tool that 

has been created by Stephan Klaus [1] in contents of a dissertation at the Technical 

University of Darmstadt. HCDM is used to describe data dependencies between 

different tasks in form of task graphs. Scheduling and resource allocation is done 

automatically. A more detailed description of the HCDM tool is given in chapter 2. 

The last step of the design flow is the Code Generation. Right at this point starts 

the work of the implemented VHDLGenerator. Its purpose is exactly to parse the 

results of HCDM, i.e. the data flow graph together with the scheduling information 

and generate synthesizable VHDL source code. 

 



Introduction page 3 

 

When starting to design the VHDLGenerator program one has to partition the 

incidental converting work. It turned out to be of great advantage to introduce three 

different working stages.  

The structure of this thesis mirrors directly the internal stages of the 

VHDLGenerator program. Composed out of three processing stages, the input is 

parsed, then pre-processed and finally converted to VHDL code. All three stages are 

written in Java [24].  

The first stage parses the necessary files in order to extract all relevant 

information. The Parser stage is described in chapter 3.3. 

The second stage is the PreConverter stage, described in chapter 3.4. This stage 

contains the heavy weighted methods that do most of the work. Register 

minimization, Exception handling and the setting of the case-statements are only 

some tasks that are handled by the PreConverter stage.   

The third and final stage converts the pre-processed data to VHDL code. Because 

of the extensive work of the PreConverter, the methods of this stage are more      

light weighted. The VHDL generator stage is subject of chapter 3.4. 

VHDLGenerator offers a fourth optional stage. Depending on the users settings a 

testbench for the converted VHDL code can be created. How the testbench is 

constructed is explained in chapter 3.4.2. 

The VHDLGenerator usage is greatly simplified by creating a Graphical User 

Interface (GUI) that is presented in chapter 4. 

To demonstrate the correct behaviour of VHDLGenerator a benchmark program is          

constructed. Chapter 5 tells how the test program and its results look like.   
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2 The Data Flow Graph Presentation 

In the next sections it is explained why we use Data Flow Graphs to describe high 

level hardware applications. The background of graph theory is explained more in 

detail, than it would have been necessary for this chapter. But when it comes to 

explain Register Optimization this additional information will be helpful.  

The HCDM tool is introduced as an easy and comfortable way to create task 

graphs. The basic differences between Task Graphs and Data Flow Graphs are 

described. It is explained how the Task Graphs, generated by HCDM, are 

manipulated in order to obtain Data Flow Graphs. 
 

2.1 Data Representation Form 

When generating VHDL code it is of great importance to use an appropriate 

representation form for implementation, that reflects the basic nature of hardware 

description languages. Hardware implementations allow for example parallel 

computation. So our chosen data representation form should support parallel 

structures also.  And second, we target dataflow intensive algorithms. While this is a 

severe limitation in general, for HW implementations it is acceptable. The Control 

Flow is described implicitly by the presetting for scheduling and allocation inside 

HCDM.                   

Furthermore the representation form should be easy to extract by means of a parser.  

Given the two criteria of parallel data representation and simplicity of extraction, a 

graph based description turns out to be the best solution. We will use Data Flow 

Graphs, which are a subtype of graphs that also allow representing external inputs 

and outputs. In fact Data Flow Graphs show similar characteristics as digital 

hardware components. In the DFG a task can only fire if all of its inputs are ready 

and, the scheduled component is free to process. In the same manner VHDL 

Components are constructed.  

A general description of graph based data representation is following in the next 

section.  

To cover our second goal of extraction simplicity the previous mentioned HCDM 

tool could be used. This tool allows drawing Task Graphs graphically via a GUI. It 
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generates automatically a textual graph description, which follows a well-defined 

grammar that could be used to construct a pattern for the parser. Moreover HCDM 

also includes timing aspects.  It performs scheduling of different tasks on predefined 

resources. That issue covers the synchronisation aspect of common VHDL design. 

With respect to these aspects HCDM is considered to be an appropriate tool. The last 

sections of these paragraphs are dedicated to the HCDM tool.   

 

2.2 Graphs in general 

A graph G(V,E) consists of vertices V and its relations E. Vertices are often called 

nodes. The relations E are the edges between the vertices. Graphs can be categorized 

into two groups: directed graphs and undirected graphs.  

Undirected graphs are graphs that express a slack relation between vertices with 

temporal order between them. A compatibility graph is a good example for an 

undirected graph. We will work with compatibility graphs in chapter 3.3.2 in context 

of register optimization. 

A directed graph got a directed dependency between consecutive vertices.  In short, a     

directed graph is an undirected graph but with a temporal order of its vertices.  The 

HCDM Tool uses directed graphs. 

Directed graphs can be used to represent procedural languages with imperative 

semantics. That means we want to express an algorithm with a language that takes 

care of the execution order.  Calculation of one step is therefore based on results of 

the previous steps, which gives us a temporal order. 

The representation of the calculation flow is done graphically in terms of                 

its vertices (the tasks, represented as nodes) and its relations (the dependencies, 

represented as branches). The direction is indicated by drawing an arrow. 

We discuss the differences between two types of sequencing graphs: the task graph 

and the data flow graph. 
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2.3 Task Graphs 

The Task Graph is the one implemented forhe HCDM Generator. This sequencing 

graph has only task vertices. That 

includes, that also the 

dependencies only relate tasks. 

Task Graphs have two important 

characteristics: They are acyclic 

and polar. Acyclic means that the 

graph includes a partial order 

between its tasks. Polar means 

that it got a source vertex at the 

beginning and sink vertex at the 

end of the graph. In the HCDM 

tool the source vertex and the 

sink vertex are joined to the Root 

task.  

0 

1

2

3 4 5

6 

n

7 

* * + *
- + 

<

NOP 

NOP 

             Figure 2: Task Graph example 
 

This task does not implement any function but indicates the begin and the end of the 

graph. This fact will be important later when it comes to parsing of the tasks.  

All the initial tasks are successors of the Root Task and all final tasks are 

predecessors of the Root Task. Figure 2.1 shows an example of a task graph.  

Corresponding Tasks graphs designed by HCDM could look like the example in 

Figure 2.2.  
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        Figure 3: HCDM Task Graph example screenshot 
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2.4 Data Flow Graphs 

Compared to the Task Graph the Data Flow Graph (DFG) includes additional 

vertices. To every task in the graph possible external operators are appended. So a 

Data Flow Graph does not only give the data dependency between two consecutive 

tasks, but also the dependency of every task on external inputs. 

 

 
       Figure 4: Data Flow Graph example   
 

The destination for the task result can be either another component or an external 

output port. So a Data Flow Graph could be considered as an extended Task Graph. 

Figure 2.3 shows an example of a Data Flow Graph.  
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3 4 5 
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<

- 
+* * * 

2.5 HCDM in general 

The HCDM tool implements a set of genetic algorithms to generate an optimal 

resource binding and scheduling for a set of allocated resources and a CoDesign 

Model (CDM). A CDM is an extended Task Graph Model.  

The HCDM flow graph is basically described in terms of processes, their resources 

and the relations between them. Processes can be considered as tasks that run on a 

specified resource. A resource could be a physical component on which the process 
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runs. To every pair of process and resource and execution time is associated, which 

describes for which period of time the process is running on the resource. The 

different processes can be connected by branches. Branches represent data 

dependencies, i.e. a process followed by a second process connected by a branch 

indicates that the calculation of the second process is dependant on the results of the 

first process. 

In that way a directed hierarchical graph for representing algorithms of any kind can 

be drawn. The Task Graph is entered graphically via a graphical user interface. From 

the graphical representation a text file is generated that represents the textual 

description of the graph. Note that the drawn HCDM data flow graph does only 

specify the data dependencies of the implementation. It does not contain a sequential 

ordering of the operations. The order is generated during the scheduling and does not 

require any further user interaction. The designer has to define the resources and the 

tool will generate a corresponding scheduling and allocation. 
 

2.6 HCDM Grammar 

HCDM produces two different output text files. One is a file with the textual 

description of the graph. The other text file describes the scheduling for the different 

tasks on the specified components. For parsing these two files later on, the meaning 

of the grammar of these two files is important.  

The whole HCDM grammar and an example of a graph text file written with the 

HCDM grammar are added to the appendix of this thesis. For demonstration we state 

here an example of a task description written in HCDM. Further examples are 

following in the chapter on parsing.   
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   Figure 5: Task description in HCDM 

One can see that the graph description always starts with a declaration of the used 

resources. Shortly after, the tasks are defined. Each task contains several fields for 

setting task parame-ters. The HCDM grammar contains a PRIORITY field where the 

parameter for list schedul-ing has to be entered. Safety critical task can be marked 

inside the IMPORTANCE field. Furthermore the failure probability of a task can be 

taken into account inside the  FAILURE_PROBABILITY field. In the last section 

the relation between the tasks are de-fined. Tasks are connected over branch numbers 

inside IORELATION. These are all fields that are important for the original purpose 

of HCDM which is to perform scheduling and binding for embedded systems. When 

using HCDM for generating VHDL code most of these parameters will be ignored. 

In fact we only consider here the ones that are relevant for our VHDL conversion. 

More to this in the chapter on parsing.  

The Scheduling File produced by HCDM is quite self-explanatory and does not 

really need a specified grammar. The first line defines the start time and stop time of 

every task. In the second line the binding of every task with its resource is stated. 

 

 

 

 

 

TASK 14 {  
              NAME { Par2 } 
              OPTIMIZATIONTYPE { 1 } 
              IMPORTANCE { 1 } 
              FAILURE_PROBABILITY { 0.5 } 
              LEVEL { -3 } 
              PRIORITY { -4 } 
              TIMING { 0 }  
              RESOURCES {  (2,20 ) (5,20 ) } 
              IORELATIONS { 
                 IORELATION { 
                    INPUT { 84 181  } 
                    OUTPUT {78  } 
                    CONDITION {  true  } 
                 } 
              } 
              SUBTASKS {  
              } 
           } 
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2.7  HCDM and Data Flow Graphs 

As mentioned before HCDM has been created to design Task Graphs. That means 

that the tool does not provide any methods to represent external operators, needed for 

the Data Flow Graph. 

Without changing the HCDM program itself, it is still possible to adapt its 

functionality to create DFGs, which will be described next:  

For creating the Task Graph, HCDM provides two graphical elements: Circles that 

represent the Tasks and directed branches that represent the data dependencies. If we 

want to represent external operators, the task circles could be used.  

We use "pseudo" tasks to implement external inputs. External Inputs are defined 

as Tasks that are direct successors of the root task. We can identify them by 

comparing the branch numbers.  

In quite the same manner the external outputs are simulated. Outputs are defined 

to be the last tasks inside the DFG. They have outgoing branches back to the root 

task, which is an adequate characteristic for filtering them out.    

The name of the external operators is handed over the same name field as used for 

the task names (see HCDM grammar). In the later converted VHDL code these 

inputs also own a certain bit length.   

Inside the HCDM grammar for the Task construct there are several possible fields 

where to hand over the data type. In principle it is possible to enter the bit length into 

any of the predefined Task fields like IMPORTANCE, LEVEL or TIMING that are 

not used for our DFG converting. Because of simplicity and particularly because of 

consistential reasons we decide to enter the bit length right behind the variable name, 

separated by brackets. That implies, that when parsing the Task NAME field to 

VHDL, the name itself and the bit length have to be separated and stored 

individually. 
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3 The Data Flow Graph Compiler 

The nomination and structure that is applied to the VHDL Converter program is 

basically the same that is also used to describe the behaviour of a compiler for high 

level languages. In fact if we define a compiler accordingly to [5] as "a program that 

translates programs written in a high-level programming language into native 

machine language of a digital computer" the VHDL Converter can be considered as a 

complier. In fact the program shows similar characteristics as a compiler and we will 

orientate on the principles of compiler construction. 
 

3.1 Compiler in general 

In the next section the basic components of a common compiler are stated. Figure 6 

shows the model of a common compiler. 

 

 

TABLES 
 

Lexical 
Analyzer 

Syntactic 
Analyzer 

Source 
program 

Semantic 
Analyzer 

Code 
generator 

Code 
Optimizer 

Object 
program 

 ANALYSIS SYNTHESIS 

       Figure 6: Model of a classical compiler 

The compilation process is composed out of two parts: The analysis of the source 

program and the synthesis of its corresponding object program. During the analysis 

part the source program is fragmented into its basic parts and processed via a lexical, 

syntactic and semantic analyser. The pattern to distinguish between between 

keywords and relevant information are taken out of tables. The Lexical Analyzer 

needs tables to look up the Keyliterals, while the Syntactic Analyzer looks up the 

Keywords.                                                                          
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The extracted raw material is forwarded then to the synthesis which builds the 

equivalent object program modules.  

For our VHDLGenerator program we orientate on that classical compiler model. 

Thereby the basic structure is kept the same to some extend. Figure 7 shows the 

adjusted compiler model for VHDLGenerator. 
 

 

 

 

TABLES 

Lexical 
Analyzer 

Syntactic 
Analyzer 

Data Flow Graph 
description 

Semantic 
Analyzer 

Code  
Optimizer 

Code 
Generator 

VHDL  
Code 

 ANALYSIS SYNTHESIS 

Scheduling 
description 

Components 
description 

Parser Stage 

Error  
recognizer 

Testbench 
Generator 

VHDL 
Testbench 

PreConverter Stage Converter 
Stage 

   Figure 7: Model of the Data Flow Compiler 

 

 

As it can be seen, instead of one source program, we receive three text files that 

need to be extracted. In the drawing the analyzers are related to the Java classes in 

which they are executed. The boxes in beige indicate the membership to each class. 

Before the VHDL Code is generated an output register optimisation is performed via 

Left Edge algorithm in the code optimization phase during the PreConverter stage. 

Possible errors are detected and printed out. Optional a testbench could be generated.  

In the following we will explain more in detail how the different stages work. 
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3.2 The Parser stage 

In this section the design of the HCDM parser will be developed. First an 

introduction to parsing theory is given, where the different concepts and term 

declarations are explained. It is shown how these concepts are applied to the actual 

problem. A state chart diagram is developed to demonstrate the behaviour of the 

implemented Java Parser. 
 

3.2.1 Parser Theory 

In general parsing is defined as a process that analyzes a given sequence of literals 

and tries to extract the desired information according to a predefined grammar. That 

is the so called syntax analysis. Before the information could be analyzed, the given 

sequence needs to be sampled literal by literal, to extract the keywords.   

The elementary operation of every syntax analysis is called lexical analysis. The 

lexical analysis got as an input the literal sequence of the to be parsed data. It 

identifies literals that belong together and passes them as Lexemes one layer up to the 

syntax analysis.  

The syntax analysis then uses the given grammar to figure out the meaning of 

every Lexeme and the relation between adjacent Lexemes. 

So a Parser can be thought of having two layers that work in parallel. On the first 

layer a Lexemer scans the input sequence and produces valid Lexemes. To 

distinguish between two successive Lexemes the Lexemer needs to know the 

predefined separation literals. Separation literals can be set for example as white 

space or closing braces. According to Maximal Munch Rule literals are assembled 

until such a separation literal appears.   

On the second layer a Tokenizer absorbs the Lexemes and produces tokens 

according to the grammar. Tokens are considered to be a pair of Lexemes. First 

Lexeme indicates the token type and second the token value.  In most cases these two 

Lexemes are consecutive in the parsed text. The tokens are stored for further 

processing.  

If we pick up the idea of seeing the VHDLGenerator as a Complier there has to be 

a third stage following, the semantic analysis. During this step the actual meaning of 
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the collected tokens is determined and an intermediate form of source code is 

generated. The semantic analysis is done inside the PreConverter class and will be 

explained in the following sections.   
 

3.2.2 The HCDM Parser 

The implemented HCDM Parser is orientated on the previously introduced parser 

theory. We only make some slight changes in the nomenclature for the parser 

program code. Instead of naming the assembled literals as Lexemes they are named 

as Words. For the documentation we will use both synonyms.   

Furthermore it is not possible to run the two processes for Syntax Analysis and              

Lexical Analysis in parallel as it is recommended. That is basically due to the fact 

that Java is interpreted sequentially. So we need to serialize the two processes. How 

the serialization is realized can be seen from the state chart below. 

To convert the Data Flow Graph into synthesizable VHDL code the necessary 

information from three text files has to be parsed. Before we come to discuss the 

parser itself, basic concepts of streaming text files in Java need to be explained. 

 

3.2.2.1 Java streaming concepts in general 

In order to parse, the available data has to be serialized previously. This means, we 

need to find a method to read the data in and give it out literal by literal. In our case 

the data will be at text file and a literal will be a single char value. 

Java offers the possibility to handle data in form of streams that means to read and 

create streams. A stream can be considered as a batch of data on its way from some 

source to some specified destination. The big advantage is, that we can abstract from 

the kind of data that is streamed. That way the destination process does not have to 

care about where the stream comes from and the source process does not have to take 

care where the string is going to. In our case we are parsing from a text file into a 

storage variable of type Array List. 

All inputs and outputs in Java are realized as streams. To use streams the package 

java.io.* has to be included. The streams descend all from a common abstract 

class. The class InputStream implements the interface Reader. OutputStream 
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implements the interface Writer. All classes that inherit from one of the two classes 

provide the basic same functionality.  

The class Reader offers interfaces to open, read and close files. The class 

InputStreamReader and StringReader implement that interface. For our purpose we 

will use these two classes and another subclass called FileReader, which inherits 

from InputStreamReader, to read the text files produced by HCDM. To create and 

read streams with these classes is quite simple. If the path of the file is given to the 

constructor of FileReader, the file is opened in the read modus automatically. If the 

opening fails, a FileNotFoundException is thrown. So the method call always has to 

be placed inside a try-catch block. More on the topic error and exception handling in 

section 3.3.3.   

Within a loop the method read() applied to the FileReader object returns the text, 

sampled character by character. The return value is of type int and typcasted to char. 

This will be the smallest data unit the parser will work with. According to parser 

theory this single char value is nominated as Literal. 

Inside the Parser code it will not only be necessary to parse a whole text file but 

also to parse tokens out of a string. For this issue we use an instance of the class 

StringReader. A string can be streamed in the similar way as a file. 

The Parser only absorbs information out of text files and therefore we only need 

instances of type Reader. But later on it will be required to stream the converted 

VHDL code back into a text file. The output streaming in Java is done 

simultaneously as for the input stream. The used instance is of type FileWriter and 

implements the interface Writer. Like previously, the full path of the destination file 

is handed over by the constructor. The method write() appends a given string to the 

end of the text. The call has to be done inside a try catch block.  

 

3.2.2.2 Parsing inside VHDL Converter 

To construct the VHDL Code basically three different text files need to be parsed: 

The HCDM file that describes the tasks, ports and the hierarchical relation between 

them. The scheduling file sets start and stop times for the tasks and how they are bind 

to the components. The scheduling is necessary because we are dealing with limited 

 



The Data Flow Graph Compiler page 17 

 

resources. We also need to know which components are available and how their 

interface looks like. This information is contained in the components file.                                                

The parsing procedure is quite the same for every text file of the three, so we will 

explain it only once. First it is explained how the parsing is realized in general. 

Second, the information we want to extract out of every file is stated. 

The parsing process can be explained in terms of a deterministic finite state 

machine that is shown in figure 9. To understand the state chart some explanation of 

the expressions needs to be given: 

 

Expression Meaning 
valid Literal a literal that is a possible part of a Lexeme (word) 
KeyLiteral A literal that determines the end of a Word 

Word Lexeme 
Word_ID Stores the meaning of the consequent Lexeme to built the token pair 

not-relevant Lexem Lexeme that is not part of a Token 
KeyWord First Lexeme of a Token (indicates the type of the token) 

    Figure 8: State Chart expressions 

 

The program enters into the checkLiteral state every time a new literal is pushed 

out of the stream. 

If the current literal is not a valid literal, that means not a KeyLiteral or part of 

Lexeme, the parser breaks off the current iteration and takes the next literal in line. If 

the literal is valid but not a KeyLiteral, the literal is accumulated to the current 

Lexeme. KeyLiterals are defined for example as white space or closing braces. If one 

of these characters comes out of the stream, the Lexeme accumulation is aborted and 

the WordID is checked.  

If a matching WordID is set, the current Lexeme has to be the second Lexeme of a 

token pair. So the Token is stored. Analogous if the WordID is not set, the current 

Lexeme is neither a non-relevant Lexeme nor a KeyWord of a token pair. In the last 

case, the corresponding WordID is being set and the state machine continues 

accumulating literals.  

 



The Data Flow Graph Compiler page 18 

 

 

check Literal 

Accumulate 
Literal 

to Lexem 

Set WordID Check WordID 

No valid Literal / 
break 

- / break valid Literal / - 

Key Literal  
/stop Literal  
Accumulation 

Word / break 

Word.Length=0 
/ break 

WordID set / 
add Token 

- / - 

 
     Figure 9: Parser State Chart  

 

 

3.2.2.3 Parsing the HCDM file 

The file that contains most of the needed information is the HCDM.hcdm txt-file. 

The HCDM file is, as already described in chapter 2, a textual description of the data 

flow graph. So once the graph is drawn inside HCDM, the tool creates this file and 

saves it into a specified directory. We now want to use the explained Java streaming 

concepts and the Parser state machine to extract the relevant information out of the 

HCDM File. The HCDM file contains a lot of not needed or redundant information. 

Figure 10 demonstrates how Tasks are stated inside the HCDM grammar. 

 

 
 

 

 

 

 



The Data Flow Graph Compiler page 19 

 

  
    

    Figure 10: Task declaration inside HCDM 

  

 

 

 

 

TASK 14 { 
  
              NAME { Par2 } TASK DECLARATION 
 
              OPTIMIZATIONTYPE { 1 } 
              IMPORTANCE { 1 } 
              FAILURE_PROBABILITY { 0.5 } 
              LEVEL { -3 } 
              PRIORITY { -4 } 
              TIMING { 0 }  
              RESOURCES {  (2,20 ) (5,20 ) } 
              IORELATIONS { 
                 IORELATION { 
 

HIERACHICAL RELATION                     INPUT { 84 181  } 
TO OTHER TASKS                     OUTPUT {78  } 

                     
 CONDITION {  true  } 
                 } 
              } 
              SUBTASKS {  
              } 
          } 
  TASK 17 { 
  

EXTERNAL INPUT 
DECLARATION 

              NAME { b[32] } 
              
 OPTIMIZATIONTYPE { 1 } 
              IMPORTANCE { 1 } 
              FAILURE_PROBABILITY { 0.5 } 
              LEVEL { -3 }  
  PRIORITY { -4 } 
              TIMING { 0 }  
              RESOURCES {  (4,0 ) } 
              IORELATIONS { 
                 IORELATION { 
                    INPUT { 48  } 
 

OUTGOING BRANCH                     OUTPUT {87  } 
 
                    CONDITION {  true  } 
                 } 
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In fact the only information we want to get is: the name and bit width of external 

inputs, the task names and the hierarchical relation between them. So out of the 

HCDM grammar we choose the keywords NAME, INPUT and OUTPUT. When the 

state machine is in the WordIDcheck state, the Token is constructed when the 

WordID is set. So during the transition from this state back to the initial state, the 

token has to be stored somewhere. We decided to build a class with name Task in 

order to store all tokens. Tokens are stored inside attributes of this class.  

The Parser pattern can be described best in terms of a Backus-Naur Form (BNF). 

The BNF in figure 11 is referenced to the HCDM grammar stated in the appendix 

and only describes the fields that are extracted by the parser. 

 

 
   Figure 11: BNF description of Parser pattern  

 

 

 

 

<name>  → 'NAME { '<taskname> | <port>'}'. 

<taskname> → θ| <string>. 

<port> → θ| <portname> <leftdelimiter> <integer>  
     <rightdelimiter>. 

<portname>  → θ| <string>. 

<iorelation> → 'INPUT {' <idlist> '}' 

   'OUTPUT {' <idlist> '}'. 

<idlist> →  θ| <integer> ' '  <idlist>. 

<integer> →  <digit> | <integer> <digit>. 

<string> →  <letter> | <string> <letter>. 

<letter> → 'a' | 'b' | 'c' | ...| 'z' | 'A' | 'B' | 'C' 
  | ... |'Z'. 

<digit> →  ' 1 ' | ' 2 ' | ' 3 ' | ' 4 ' | ' 5 ' | ' 6 ' 
  | ' 7 '| ' 8 ' | ' 9 ' | ' 0 ' . 

<leftdelimiter>    → '['. 
 
<rightdelimiter>   → ']'. 
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Two important not yet mentioned design rules have to be taken into account when 

drawing DFG's with HCDM: 

1) When we model a component with a task symbol in HCDM, we have to take 

 care that we are drawing the corresponding inputs of the task in exactly the 

 same order as they are stated inside the component entity. If we do so HCDM 

 will assign ascending branch  numbers to the task and VHDLGenerator can 

 parse the associations correctly. 

2) If a task got more than one proceeding task, HCDM will generate an output 

 branch for each proceeding task. In VHDL these outputs should only be 

 related to one VHDL  component output. Note that VHDLGenerator is aware 

 of that and discards the different branches in a way that it produces a single 

 output that is routed to every following component.     

  

That way the parser goes from task to task, extracts the relevant information and 

puts everything into a variable of type ArrayList. Once all tasks are extracted the 

external input and output ports need to be separated from the real tasks to generate 

the top level interface. So an algorithm is started that identifies input and output 

ports, allocates them to the respective task and deletes them out of the ArrayList. To  

filter out the external ports we make use of the previously mentioned fact that 

external Inputs are designed tasks that are direct successors of the root task and 

external Outputs have outgoing branches back to the root task . 

The bit length of every input or output port is parsed from the name by using the 

discussed Java StringReader concepts.  
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3.2.2.4 Parsing the Scheduling File 

  The second file produced by HCDM is a scheduling file like it is shown in    

figure 12.  The scheduling file is parsed in the same manner as the HCDM file.  

 
   Figure 12: Scheduling File example 

In the first line of the scheduling file the start and stop times of the tasks are listed. 

Keywords are here the task names of the task that are already stored in the ArrayList 

variable. To every task the start time and stop time token is assigned. Later on one 

single time unit produced by HCDM will mapped to a single clock cycle inside the 

VHDL code. 

Note that the first entries in the scheduling file are the external inputs and outputs. 

These have to be removed out of the task array afterwards. Also the word "true" is 

only used as delimiter and is therefore ignored during the parsing process. 

When the schedule parsing has finished, the parsing of the component-binding 

starts. The trigger for the binding line is the keyword "BINDING" which is the first 

word in line. Extracted Tokens are associated to the respective task. 
 

true : b[32] ( 0 ,0 ), a[32] ( 0 , 0 ), top ( 0 , 20 ), Par2 ( 20 , 40 ), Par3 ( 20 , 40 ), 
Bottom ( 60 , 70 ), result[32] ( 70 , 70 ), 
---------------------------------------------------- 
 BINDING { (Par2-myAnd_2) (b[32]-Input_2) (Bottom-myOr_1) (top- 
 myXor_1) (a[32]-Input_3) (Par3-myAnd_1)  (result[32]-Output_1)  } 

3.2.2.5 Parsing the Components File 

The components on which the tasks run have to be specified somewhere. For that 

reason a text file is created to enter the needed components. To simplify the parsing 

work we can completely abstract from the components behavior. In fact it is only 

necessary to define the interface of a component. The behavior will be included later 

as a library inside the generated VHDL code. Figure 13 shows how the components 

file looks like. Note that the commentary will at the beginning will be ignored by the 

parser. 
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/* NOTE: Enter all used components, with their input and output ports,except the 
"clk","reset" and "enable" which are generated automatically */ 
 
NAME {myXor}  INPUT {a[32],b[32]}  OUTPUT {result[32]} 
NAME {myAnd} INPUT {a[32],b[32]}  OUTPUT {result[32]} 
NAME {myOr}    INPUT {a[32],b[32],c[32]} OUTPUT {result[32]} 

 
   Figure 13: Components File example  

 

So to every component the following information has to be entered: the components 

name, the inputs ports and output ports with the adequate bit width. Every 

component is expected to have a clock, a reset and an enable input. So thesis 

parameters are not entered by hand but generated automatically.  

The components are parsed separately from the tasks and stored inside a different 

ArrayList called UsedComponents. We will need them later for components 

declaration inside the VHDL code. Furthermore they are used for error detection, 

which will be subject of chapter 3.3.3. 
 

3.3 The PreConverter stage 

The Parser stage delivers two objects for further processing. One is called Tasks and 

contains all assigned tasks with their specified attributes. The other is called 

AllComponents and contains an ArrayList of all used VHDL components. The goal 

of the PreConverter stage is now to prepare the collected data for the final VHDL 

Converter stage. 

In the following chapter the theory of the different processing steps of the 

PreConverter are explained. Special attention is taken on the part about register 

optimization.                                        

The concepts are discussed in the same order as the related methods are executed 

inside the PreConverter code. 

 

3.3.1 Sorting of the Tasks 

During the execution of the VHDLGenerator program it occurs quite often that we 

have to sort arrays. Ports need to be sorted by their branch number, case-statements 

by their execution time and tasks by their start time. So because of the high usage of 
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sorting algorithm it is worth to have a deeper look in it, in order to choose the most 

appropriate one.  

When we want to perform the Left Edge algorithm it is of great importance to have 

the tasks sorted in ascending order to their Start Times. So the first step of the 

PreConverter stage is the sorting of the tasks. 

An appropriate algorithm for sorting has to be selected. Appropriate algorithm means 

here that we want to find an algorithm that sorts a given set of items with the lowest 

complexity. We define complexity here as number of steps and time units.   

In general one can categorize sorting algorithms either by their algorithm structure ( 

Divide&Conquer form [9]) or by their complexity [10]. Using the second 

categorization most of the common sorting algorithms are divided further into 

basically two classes of algorithms with respect to their execution time. For the first 

class of algorithms, the execution time increases quadratic ally with the number of 

items. The second class needs n*log n complexity with being n the number of items. 

Figure 14 and 15 [10] demonstrate how typical algorithms of each class behave for 

large n.  

Big-O notation is used, where the O represents the complexity of the algorithm, n 

stands for the number of items to be sorted and the whole expression inside 

parenthesis determines a measure for complexity. 

Inside the complexity class the algorithms may still vary in their constant runtime 

factor ( how much time each of the n*log n steps takes). 
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     Figure 14: O(n2) sorts 

 
     
     Figure 15: O(n log b) sorts  
As it can be seen the Quick Sort algorithm yields the best performance. Quick sort 

works onto the divide-and-conquer principle and uses recursive structures. That may 

cause problems for applications with resource limitation. For VHDLGenerator we 
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expect to have sufficient computation power and memory space, so that recursion is 

not a drawback for us.  

The dividing (partitioning) works in a way that we first choose a pivot element. All 

elements that are greater than the pivot element are put into a new partition. All 

elements that are smaller than the pivot are put into a second partition. Then the 

algorithm is repeated for each partition separately. At the end all partitions are 

concatenated.  

Figure 16 [9] gives pseudo code for the Quicksort algorithm: 

    Figure 16: Quicksort pseudo code    

Quicksort(X,l,r) 

1 if l<r 

2    then split ← PARTITION(X,l,r) 

3  Quicksort(X,l,split) 

4  Quicksort(X,split+1,r) 

PARTITION(X,l,r) 

1 pivot ← X [l] 

2 i ← l-1 

3 j ← r+1 

4 while TRUE 

5 do repeat j←j-1 

6  until X [j] <= pivot 

7  repeat i←i+1 

8  until X [i] >= pivot 

9  if i<j 

10   then exchange X [i] ↔ X [j] 

11  else return j 
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3.3.2 Register Optimization 

The implemented VHDL Converter has to deal with resource constraints. On one 

hand the number of available instances of one component type is limited. This 

implicates a scheduling of the tasks which is done by the HCDM tool and will not be 

discussed further. On the other hand we want to use a minimum amount of registers. 

A result coming out of one of the components has to be stored in a register until it is 

further processed. A register in VHDLGenerator is considered to be a signal of type 

std_logic_vector with the same bit length as the result vector. Depending on the task 

hierarchy not every result needs a private register. A register could be reused once 

the previous value has been passed to the input of the next component. So we would 

like to find an algorithm for yielding an optimum number of registers. 

A result of a component can be considered as a variable with a certain lifetime. 

The Lifetime of a variable is defined as "the interval from its birth to its death, where 

the former is the time at which the value is generated as an output of an operation 

and the latter is the latest time at which the variable is referenced as an input to 

another operation"[2].  

So first step would be to find the BirthTime and DeathTime of every task result. 

As it has been already turned out during the parsing of the Tasks it is always quite 

useful to extract the desired information and store it into an object ArrayList for 

further processing. We will proceed here in the same way. For these purposes a class 

TaskOuputLifetime is created that contains the following attributes which have to be 

set for every task: TaskName, BirthTime, DeathTime, RegisterName and 

RegisterBitWidth. So the ArrayList is filled with TaskOutputLifetime objects 

corresponding to every task.  

The BirthTime attribute is identically with the Stoptime attribute inside the task 

object and can be taken over directly. Note that the Stoptime is stated inside the 

scheduling file and has been parsed in the parser stage before. 

The DeadTime is found out with a bit more effort. If an output variable is used as 

input for more than one component, we need to find the component with the latest 

StartTime, i.e. we are looking for the maximum of all possible proceeding 

DeathTimes. So we first check which are the successor tasks of our current task. 

Then the StartTime of each is collected into an array. After having done this we go 
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through this array, compare all elements with each other, pick up the highest value 

and assign this value to the DeathTimes attribute of the current TaskOutputLifetime 

object. The procedure is then repeated for every task until all lifetimes of the task 

outputs are found.  

With this data now the optimum number of needed output register can be 

calculated using a minimization algorithm. There are basically two different methods 

to proceed: Finding the minimum number of registers either using                     

Clique Partitioning or using Graph Coloring. 

Clique Partitioning is described in [2] and has been first implemented by Tseng 

[15]. We observe that solving the register optimization with clique partitioning is   

NP - Complete. It does not guarantee an optimal result. 

The second alternative is the Graph Colouring approach. This algorithm promises 

optimal results with complexity O(n^2). An appropriate representative of Graph 

Colouring algorithms is the Left-Edge Algorithm.   

We will first explain the theoretical background of the left edge algorithm, talk 

about its development and then show how it is realized inside VHDL Converter. 

Accordingly to [2] the underlying theory of the Left Edge Algorithm is the Graph 

Colouring optimization problem. The Graph Colouring searches a vertex colouring 

with a minimum number of colours. In the algorithm below the different colours are 

represented by integer numbers. 

 

    Figure 17: Vertex Coloring pseudo code 
 

VERTEX_CO
1 for(i =  1 to |V|){ 

LOR(G(V,E)){ 

2  c=1; 

3  while( ∃ a vertex adjacent to  with color 

c) do { 
iv

4   c= c + 1; 
5  } 

6 Label v with color c; i
7 } 
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At the beginning every node got a colour number of 0. The algorithm is applied to 

the compatibility graph in figure 18. Note that compatibility graphs are undirected 

graphs. 

   

    Figure 18: Compatibility Graph  
 

The result is shown in Figure19.  In comparison figure 20 shows the optimum 

colouring. So the colouring graph algorithm does not yield optimal results. One way 

to improve the algorithm is the swapping colour method. In our example we reach 

the optimal solution either by backtracking or by swapping the colours of vertex v5 

and v4.  
 

                                           
       
 Figure 19: Non-minimum Coloring            Figure 20: Minimum Coloring  

 

Fortunately the Left Edge Algorithm holds an interesting property. The underlying 

graph built with our concept of lifetimes of variables belongs to a subgroup of graphs 

called interval graphs. Colouring the intervals is equivalent to colouring the vertices. 

For interval graphs the colouring algorithm needs polynomial time for solving and 

4

1

6

2 

3 5

4 

1 

6 

2 

3 5 

4

5 3

1 2

6

 



The Data Flow Graph Compiler page 30 

 

one important note: the result is optimal. This is based on the fact that interval 

graphs have perfect vertex elimination scheme. For detailed description on the 

definition of perfect graphs and perfect vertex elimination scheme take a look inside 

[2]. For Perfect Vertex Elimination Scheme there is no need of backtracking or 

colour swapping.  

The original Left Edge Algorithm as proposed by Hashimoto and Stevens[13] has 

been developed to solve channel routing problems. The goal was to assign wires to a 

minimum number of routing tracks.  

As a first step the wires are sorted with increasing order of their left end points 

from the left edge of the channel. That is the reason why this algorithm is called 

"Left-Edge". Now the assignment starts. The first wire at the left is assigned to the 

first track. Then we find the first wire whose left edge is to the right of the last 

selected wire and assign this one to the current track. If we reach the last column, the 

assigned wires are removed and a new track is started. 

This algorithm is repeated until no more wires can be assigned to tracks. Figure 21 

[14] shows the pseudo code for the proposed algorithm 
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   Figure 21: Left Edge pseudo code 

 

As it can be seen Left Edge algorithm uses a Greedy approach. Nevertheless the 

Left Edge Algorithm gains an optimal solution and is of complexity O(n2).[14]. 

Kurdahi and Parker [14] grabbed this idea and used the same principle for register           

minimization. There the wires correspond to the previous discussed lifetime of 

variables and the routing tracks are the to be minimized registers. The left and right 

edges of the wires are considered to represent the birth and death time of a variable 

formally known as lifetime. Accordingly to [14] all different lifetimes have to be 

collected inside a table. We have already discussed the procedure at the beginning of 

the chapter. Having done this, the goal of the Left Edge Algorithm is to assign output 

variables(wires) to registers(tracks) so as to minimize the total number of 

registers(tracks) to store the output value. Two wires cannot share a track if they 

overlap in space, whereas two variables cannot share a register if they overlap with 

their lifetimes.   

The presented algorithm is used inside the program REAL (Program for REgister 

ALlocation) which has been developed by Kurdahi and Parker. Very similar to 

Algorithm LEA 

Begin 

1 Sort all nets on their left most end positions: 

2 Initialize the tracks , , ... ,   dt1t 2t

 ( t  is the lowest track); 1

∈jn3 for each net   sorted list 

4  for each t , i from 1 to d i

5   if  doesn´t overlap with any nets 

in t  
jn

i

6   then assign  to  jn it

7  endfor 

8  delete jn  from the list 

9 endfor 

END. 
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VHDLGenerator, REAL gets as input a data flow graph whose operations have been 

scheduled, along with a lifetime table of the values in the DFG. REAL also has to 

deal with resource constraints, like number and type of operators used to implement 

the operations. Scheduling can be overlapping. In the paper of Kurdahi and Parker 

also register allocation for conditional branches is discussed. Conditional branches 

are not supported by HCDM so far and will not be discussed in contents of this work. 

As REAL is optimal for non-pipelined designs with no conditional branches we also 

expect VHDLGenerator to give optimal results when using the same algorithm.  

As implemented inside VHDLGenerator, the Left Edge Algorithm works in a 

quite simple but efficient way. The encoding in Java is realised based on the pseudo 

code shown in figure 22. 

Lifetimes are extracted as explained before. 

Note that the first step of the Left Edge algorithm, the ordering of the lifetimes is 

done inherently when the tasks are sorted by their lifetimes, as shown in part 3.1.1. 

The next step would be to pick up the first lifetime, allocate it to a register (colour) 

and check for overlapping with other lifetimes. If we consider the tasks to be sorted 

in ascending order to their Start Times a criterion for non overlapping lifetimes can 

be formulated quite easy:  

 Two Lifetimes do not overlap, when the death time of the first is smaller or 

 equal the start time of the next lifetime.  

Outputs with non overlapping lifetimes are packed into one register. Then the first 

element is deleted and the algorithm starts again. The whole procedure is repeated 

until all lifetimes are processed. As a final step the found lifetime register pairs are 

transferred to the tasks in a way that inside the task object the corresponding 

OutputRegister attribute is set. 

 



The Data Flow Graph Compiler page 33 

 

 
  Figure 22: Left Edge pseudo code for VHDLGenerator 

 

Note that PreConverter also offers another method with name 

allocateOutputRegister(). This method allocates non minimized registers to the tasks, 

i.e. every task gets a separate output register. This method could be used instead of 

the doLeftEdgeAlgorithm() method when we do not have to deal with resource 

constraints. The user of VHDLGenerator has can choose between these two modes in 

the graphical user interface. 
 

ALGORITHM VHDL_GENERATOR_LEA 
BEGIN 
1 SORT tasks in ascending order to their start times 
2 EXTRACT all Lifetimes and store them. 
3 LOOP  
4  irst element out of lifetimes  Take f
6  LOOP  //Compare to all other lifetimes 
7   IF(Deathtime of first Lifetime <=  
      Birthtime of next Lifetime) 
8    ASSIGN both tasks to same register
  
9   END IF 
10   REMOVE first lifetime out of list 
11  END LOOP 
12  END LOOP 
 
 

3.3.3 Error-detection and recovery techniques 

Although various tests have shown that VHDLGenerator program itself 

accomplishes its job in a correct way, you are never aware of faults that are 

introduced from the user's side. What is desirable is software that reacts robust to the 

users input. Software "is robust if it describes reasonable behaviour even when it is 

misused or used in error "[12]. Of course "reasonable" is an expandable item. We 

will define it here for the VHDLGenerator in a way that we say: the program should 

catch inputs that lead to a failure. The user should be informed where and why the 

error occurred.  

Furthermore it is often of use, to test the obtained results against the specification 

for faults. How to write system level tests for VHDL programs will be part of  

chapter 3.4. 
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We categorize possible faults into three abstraction levels on which they may 

appear. Figure 23 illustrates the different error levels where the intensity of the color 

indicates the impact of the error on the design.   

On first level there are the faults that are inserted on the syntactical level. That 

means for some reason the given input is faulty and cannot be further processed. In 

our case a level one fault could be a mistake due to the grammar of the to be parsed 

text. Level one faults can be detected as an error very soon during the processing of 

the program and therefore do not lead to a failure. 

On the second level we have to deal with faults that entered in a way that they are 

not detected as an error by the program itself. The faults are handed over through the 

whole process and end in a complete failure when the final operation is put into 

process. These kinds of faults are the worst because they may end in production 

errors. So it is highly recommendable to catch these faults and transform them into 

an error before they end up into a failure. 

 

 
   Figure 23: Error Level classification 

 

On the third level we want to handle faults that result neither into an error nor into 

a failure. These faults are made at the behavioural description of the input. In our 

case this means that the entered algorithm graph does not follow its specification. 

Like in a compiler these kinds of faults cannot be detected, because they take into 

account the given specification on which the entered algorithm is based. 

VHDLGenerator has no knowledge about that. The only chance to get rid of these 
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faults is to demonstrate the programmer how his implemented algorithm works. The 

programmer himself has to compare the result with the desired specification and 

perform possible changes.  

In this chapter we will only discuss the faults of level one and two because these 

are the kind of faults that are treated by the HCDMParser and PreConverter stage. 

Third level faults are subject of chapter 3.4. 
 

3.3.3.1 Java Exception handling in general 

Java offers comfortable constructs to catch and handle errors in form of exceptions 

in programs. In general an exception in Java is an event, which occurs during the 

execution of a program, and disrupts the normal flow of the program's instructions. 

The program flow is then bended over to the exception handling routine.    

All exceptions are thrown inside the execution of a method. Methods that are able 

to throw exceptions got the extension throws Exceptions next to the method 

identifier.   

Exception is a Java class of its own. There exist several classes that inherit from 

Exception and specify the different types of Exceptions. Note that one can also create 

an own exception class and define a specific behaviour there.  

So throwing an exception means creating an instance of this class and hand it over 

to the runtime system. The runtime system has to find an appropriate handler for the 

exception. As first step the runtime system gives the exception to the method above 

that calls the method in which the exception is thrown. The calling method either has 

to catch the exception and handle it or forward it to the method above. In the last 

case a new exception object has to be created that encapsulates the original exception 

message. That way an exception can be handed from the method it occurred up to the 

first method executed in the program. If not before, the exception has to be definitely 

handled there. The scheme is shown in the figure 24. 
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   Figure 24: Exception handling in Java  
 

Exceptions objects are created and thrown using the keywords new and throw. 

Messages are added over the constructor field. The throw statement could be 

embedded for example into an if-clause like:  

   Figure 25: throw statement  

 

In the calling method, all methods that might throw an exception have to be placed 

inside a try-catch block. Methods following after a try statement are executed and in 

case of an exception the runtime system jumps into the appropriate catch block. The 

stress lies upon "appropriate" catch block. The calling method can only handle 

exceptions that are part of one of its catch blocks. If for example a method throws an 

Method in  
which exception  

occurs 

Calling method  
with 

exception handler 

throws 

Looking for an appropriate  
handler Calling method  

with 
exception handler 

forwards 

Looking for an appropriate 
handler 

 
main 

handles 
exception  

last method where  
to handle the 
exception   

public void example() throws ExceptionType{ 
 if(condition){ 
  throw new ExceptionType(Message); 
 } 
} 
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exception of type IOException, then the calling method needs a case statement that 

covers this type. An example is shown in figure 26. 

      Figure 26: try-catch  
 

There exist other concepts like the finally block, which will not be discussed here. 

When writing an Exception handler for VHDLGenerator we will need to know how 

to create own Exception classes and how to throw, catch and handle Exceptions in 

Java.    

   

try{  
 example(); // throws a 
ExceptionType 
} catch (FileNotFoundException f){ 
  ... 
} catch (ExceptionType e){ 
  ... 
} 

3.3.3.2 Exception handling inside VHDLGenerator 

As mentioned in the introduction of this chapter, one of the goals of the 

HCDMParser and PreConverter stage is to catch and handle faults of level one and 

two.  

First we like to figure out all possible faults that might appear when executing 

VHDLGenerator and categorize them. The table in Figure 27 shows one out of 

several possibilities how to classify the different faults. The table is thought as a 

reference for the user to get a more detailed documentation of the error message 

printed out by VHDLGenerator.   

Every error got an error code that is printed out. Errors belonging to level one are 

of format 1.x, level two starts with 2.x. The Java Exception Type divides the levels 

further into the different Exception classes. All possible exceptions could be only 

generated in classes that contain executable methods, namely HCDMParser, 

PreConverter and VHDLGenerator. The location column gives information about 

working step in which the exception was thrown. Finally a description of the error 

and short proposition for solving is given. 
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Note that all exceptions thrown are forwarded up to the very first calling method, 

where they are handled.     

Level one exceptions occur when input data is faulty and the runtime system 

cannot proceed. These exceptions are safety non-critical because they result directly 

in an error and do not sneak through the whole process. They are generated by the 

Java runtime system automatically. An object is created and a message is added. All 

we have to do is write an appropriate handler that catches the exception, add an 

individual text and finally print out the whole message. 

Level two faults are safety critical and also more difficult to detect. Let us see why 

and how they could appear:  

VHDLGenerator does not take care whether the produced VHDL code is 

compilable or not. It just converts given input files into text file which contents could 

be interpreted as VHDL code. No guarantee of syntactical or semantic correctness is 

given. Some of these errors inside the VHDL code are detected by the VHDL 

Compiler and can therefore be corrected afterwards. But we could also imagine a 

scenario, where errors are not even recognized during the synthesis.  

So in order to reduce possible error sources VHDLGenerator should adapt to at 

least two faulty "level two" user inputs:  

Every tasks runs on a component that got a specified number of input ports. So a 

task needs as many inputs branches as the corresponding component got input ports. 

We should beware of assigning more ports, because then one will be unused. 

Assigning fewer ports will lead to floating ports which causes undetermined system 

behaviour.  

Once it is checked whether the number of input ports fit, we further have to verify 

the bit length of each port. In the Components File the bit length of every component 

port is stated in brackets next to the identifier. The Input ports bit length has to match 

with this bit length. Otherwise similar problems than for the previous case appear. 

We have to check for over and under assignment of bit length.  

All level two faults are detected by the method checkPorts() inside the 

PreConverter stage. 
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checkPorts() throws an exception of type PortException. PortException is a self-

made Exception type, that does nothing more than specify the level two exceptions 

and store messages.  

The procedure for finding the errors is straightforward. One loop iterates all tasks 

and compares the number of ports with the associated component ports. If a 

mismatch occurs a PortException with error report is thrown. The same procedure 

applies for a bit width mismatch. 
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Error 
Code 

Java 
Exception Location Description 

        
1.1 IOException HcdmParser The desired Hcdm File is not found in the given  
      filepath. 
   Make sure that the path is correct and the 
   HCDM File really exists inside the specified 
      directory. 
      Note that directories have to be  
      separated by "//". 
   New entered paths always have to be 
   confirmed with "Enter" 
    

1.2 IOException HcdmParser The desired Scheduling File is not found in the  
      given filepath. 
   Make sure that the path is correct and the 
   Scheduling File really exists inside the 
   specified directory. 
      Note that directories have to be 
      separated by "//". 
      New entered paths always have to be 
      confirmed with "Enter" 
       

1.3 IOException HcdmParser The desired Components File is not found  
      in the given filepath.  
      Make sure that the path is correct and the  
      Components File really exists inside the  
   specified directory. 
   Note that directories have to be 
   separated by "//". 
      New entered paths always have to be 
      confirmed with "Enter" 
       
        

1.4 IOException VHDLConverter The desired path to which the Vhdl File  
   should be created is not valid. 
      Please enter a reachable directory. 
      Note that directories have to be 
      separated by "//".  
      New entered paths always have to be  
    

1.5 IOException TestbenchGenerator The Testbench could not be created.  
      TestbenchGenerator uses the same destination  
   path as already used for the VHDL file. 
   Look further for Error Code 1.4 
 
 
 
 
 
 
    

 



The Data Flow Graph Compiler page 41 

 

Error 
Code 

Java 
Exception Location Description 

   the VHDL file could not be found on the 
   computer. 
   Make sure that the spelling is correct and that 
      the specified program is able to read text files. 
       Note that the code is a simple text file and can 
      always  be opened by a text editor like 
      "notepad" or "Kedit" 
        

1.7 Exception PreConverter HCDM File Syntax incorrect.   
      The information is entered in the wrong way. 
      Recheck the grammar  
        

1.7 Exception PreConverter Scheduling File Syntax incorrect.   
      The information is entered in the wrong way 
      due to the grammar. Verify that the scheduling 
   file got the correct format. 
   The correct format is stated in the  
   VHDLGenerator Reference Manual 
    

1.7 Exception PreConverter Components File Syntax incorrect.  
      The information is entered in the wrong way  
      Recheck the grammar  
        

1.8 Exception VHDLConverter The converting to VHDL failed. 

      
Make sure that the data flow graph is specified 
in a  

      correct way (no loops, no tasks without inputs). 
       

1.9 Exception TestbenchGenerator Testbench could not be created.  
      Recheck if VHDL code is testable. 
        

2.0 PortException PreConverter More Ports are assigned to the component  
      than allowed. 
      Increase either number of ports or  
      decrease number of component ports 
        

2.2 PortException PreConverter The Input port bit width does not fit with the  
      specified component input bit width.  
      Change either Input Bit Width of Port or  
   component 
        

2.3 PortException PreConverter The output port bit width does not fit with the  
      specified component output bit width.  
      Change either Output Bit Width of Port or  
   component 
    

 

    Figure 27: Error Type Reference 
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3.4 The Converter stage 

The VHDL Converter stage finally converts all collected and pre-processed data to           

synthesizable VHDL code. We make use of the Java streaming concepts already 

discussed in Chapter 3.2.2 to write a character stream into a text file. 

 

3.4.1 The VHDL Code Generator 

In the DFG a task can only fire if all of its inputs are ready and, the scheduled 

component is free to process. When generating the VHDL code, these semantics 

should be implemented carefully in the code so that the resulting hardware has got 

the same behaviour intended by the original DFG. The conversion is done correctly, 

when the DFG description and the synthesized hardware have the same input to 

output characteristics. 

The ports define the interface of our entity and are generated first. The whole 

design is synchronous, which means inputs and outputs of components are written 

and read synchronously to the clock. So first input will be clk. The clock should work 

at the same frequency used for the DFG scheduling and will be distributed to all 

components later on.  

For synchronous design it is also quite common to define a reset signal to set the 

circuit back to the initial state. The global reset is defined as low active.  

Third input is a one bit wide input called enable that starts the processing of every 

component. 

These three single bit inputs are the same for every DFG entity and are generated            

automatically.  

Next come the input and output ports of the DFG. Because the PreConverter has 

already processed the data, the Input and Output ports are easy to find. If a task got 

an external input or output, it is already stated in one of its attributes. So 

VHDLGenerator just has to check if some Tasks got same ports and then write the 

port with corresponding bit length into the output stream. The methods 

setInputPorts() and setOutputPorts() are responsible for this work. 

Then the underlying architecture has to be written. The architecture starts with the 

declaration of used components.  Fortunately the used components are already 
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extracted inside the PreConverter stage. They are all stored in the variable 

UsedComponents and with a proper framework of the VHDL syntax they can be 

pushed directly to the output stream. 

Every Input and Output Port of the components needs a buffer variable over which 

values are entered and red. The results of the components are written to registers. 

The method for allocating the registers is called declareRegister(). Depending on the 

used algorithm in the PreConverter stage, one register per component result or a 

minimum number of registers according to LEFTEDGE algorithm is generated. 

After the begin clause in VHDL the port map is done.  Named pormapping is used 

for the generated VHDL code. 

The scheduling in VHDL has to be realized inside a process statement, that is 

sensitive to clk and reset .  

We need a scheduler variable that triggers the corresponding inputs to components 

and takes the results back at the right point of time. The scheduler is realized as a 

counter that is incremented at every rising edge of the clock. The case statements are 

elaborated during the PreConverter Stage and can be put directly into the output 

stream with the right VHDL framework. 
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3.4.2 The VHDL Testbench Generator  

This chapter treats with the third class of error types not yet discussed in      

chapter 3.3. These errors appear on the logic level. The user should have a possibility 

to compare the current implementation to the given specification. 
  

3.4.2.1 Testbenches in general 

For VHDL models it is quite common to write so called testbenches for testing 

purposes. A testbench is a VHDL description itself with the difference that we do not 

define a port interface. The port declaration inside the entity is kept empty.  

The tested model is instantiated as a component and port mapped to internal test 

signals.  

The internal testbench signals receive test vectors at different points in time using 

concurrent statements. The keyword after followed by a time notation tells the 

simulator tool to assign that value at the specified point in time. Note that the after 

clause is not synthesizable and only used for simulation purposes. 

            Figure 28: VHDL Testbench  

 

The testbench and the proper VHDL code are handed over to the simulator, which 

represents the circuit behaviour in graphical form as a wave. 

 

 testbench 

model 

3.4.2.2 Testbench creating for VHDL Converter 

The name as well as the directory are constructed using the entered VHDL File 

path. The testbench uses basically the same concepts of streaming and declaration 

methods for the VHDL statements as the VHDLConverter stage. For assigning the 
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testbench variables it is quite helpful that the VHDLConverter class hands over an 

ArrayList called EntityInputPorts that contains the interface of our VHDL model. If 

we do so the testbench variables can be allocated much easier.  

The assigned testvectors are constructed per default using a random pattern. The 

algorithm for designing the random pattern is slightly tricky. The Java API provides 

a class called Random. When applying the method nextInt() to an instance of the 

Random class a pseudo random 32 bit integer number is given back. The method 

toBinaryString() returns the corresponding binary value as a string.  

We have to deal with basically two major problems that occur when calling the 

nextInt() method. If the generated random number does not cover all the given port 

bit width, we get a truncated bit vector, that leads to errors during the VHDL 

compiling process. That is why we have to pad leading zeros in this case. 

Another problem is the limited range of the produced random values. 

Unfortunately the Java API only provides indexed random methods up to 32 bit 

integer values. That means we receive a maximum bit width of 31 bit (1 bit reserved 

for the sign). VHDLGenerator is planned to be used for description of encryption 

algorithms, where bit length of 128 bit and more are quite common. To create 

appropriate testbenches we need to be able to extend the vector format to an arbitrary 

length. This is realised in VHDLGenerator by concatenating the random 32-bit 

values. The description of the concatenating algorithm can be formulated as 

described in figure 29. 

 
   Figure 29: concatenating algorithm description  

 

With the described algorithm random test vectors of arbitrarily size can be      

constructed. 

1. Concatenate n times the 31 bit generated random value 

31
thPortBitWidn =Nn∈     is calculated as:     rounded down to next 

 integer  number. 
2. Do zeros padding every time the random number does not go over the full 31 
 bit range. 
3. Pad the remaining bits of port width with random values 

31×−= nthPortBitWidremainder   The remainder is calculated as:  
4. Do zero padding if generated random number does not go over the full range of 
 the remainder width. 
5. Assign concatenate random value to testbench variable.  
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The corresponding assignment time for every test vector is generated out of the 

Runtime variable handed over from the previous stage.  

The testbench serves as evaluation for the structural design. A functional 

verification is not possible, because VHDLGenerator does not have information on 

the functionality. Thus for example CRC (cyclic redundancy check) could not be 

tested because the Random class does not provide methods, that generate correct 

checksums. 
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4 The Graphical User Interface 

Using the Graphical User Interface (GUI) is a comfortable way to work with        

VHDLGenerator. The following section gives a short introduction into the concepts 

of GUI programming in Java.  

In the last section the VHDLGenerator GUI itself is discussed. That section is also 

part of the reference manual.   
 

4.1 Java Swing vs. AWT 

The Java Foundation Classes (JFC) offer two basic sets of components, used for 

building a GUI: The Abstract Window Toolkit (AWT) and Swing. Before starting we 

have to figure out which one is best to use for our case. Let us emphasize some 

properties of both sets and point out the main differences. 

The AWT classes provide a rich set of user interface components and a robust 

event handling model for GUI programming. The included Layout Manager allows 

the creating of flexible window layouts which do not depend on a particular window 

size or screen resolution. The AWT components depend on native code counterparts 

(called peers) to handle their functionality. Therefore these components are also 

called heavyweight components in contrast to lightweight components which are 

used inside the Swing classes. The AWT delegates the painting of components as 

well as monitoring and controlling to the runtime system. Actual graphical operating 

systems like Windows XP or MacOSX got complex libraries that contain the desired 

components. These libraries are only available in a compiled form as binary data. 

Therefore you do not have the possibility to change or extend the given components.   

The Swing classes contain all features of the AWT. The big difference is that the 

Swing components are operating system independent. All used components inherit 

from the class ComponentUI and are therefore purely written in Java. Components 

provided by the operating systems are no longer used.   

We decide to take most of the components out of the Swing classes because 

compared to AWT, Swing got the following advantages. 

- Swing Components are available for all operating systems 
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- Programs using the swing components look the same for all operation 

 systems. That  is useful with respect to the portability of our VHDLGenerator 

 program. We want VHDLGenerator GUI to run also on different operating 

 systems like Linux or Windows XP without a significant change of the GUI 

 panel. 

- Swing Components are 100% coded in Java, that implicates that we are also 

 compatible to other hardware-platforms. 

- Swing Components uses Pluggable Look and Feel that allows an 

 interchangeable graphical representation. 

- Swing contains more than four times as many components as AWT . 

 

Beside all advantages there exist only some small drawbacks that are negligible. 

Because all components are emulated in Java the execution reduces a slightly in 

speed. But with regard to the working power of actual computers, the difference is 

not really noticeable. 
 

4.2 The Model-View-Controller Architecture in Java 

To make full use of all the Java Swing GUI power, one has to understand the 

underlying architecture. Swing uses a modified Model-View-Controller-Architecture 

(MVC). We will first explain the MVC and then show how these concepts are 

modified for Swing. 

As it can be seen from Figure 30, the architecture is composed of the interaction of 

three instances: 
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Model 

Controller View 

Model: The Model describes the properties of the component. Properties are 

  for example the colour, size or labelling. 

View:  The View is responsible for        

  representing the component      

  graphical, depending on the        

  adjustments made before.  

  Because the view is   

  separated one can easily  

  interchange the Look & Feel. 
          Figure 30: classical MVC architecture 

Controller:   The Controller is responsible for the interaction with the user. 

   It receives an input, like a mouse click or a menu select and 

   processes it. Processing means here that a proper action inside 

   software takes place. The Controller also notifies the Model to 

   update the View.    
 

In Practice the classical division between View and Controller turned out to have a 

to high communication complexity. Therefore the Swing architecture uses a modified 

architecture. 

View and Controller are merged 

together to the Delegate. Inside the 

Delegate, the Controller is called 

Listener. The Listener listens for 

events that take place on the 

component and perform the desired 

action. 

         
       Figure 31: Swing MVC architecture  
 

 

 

 

 

 

Model

Delegate 
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4.3 The VHDLGenerator GUI 

The VHDLGenerator GUI is composed of the two classes GUIPanel and 

GUIFrame. GuiFrame contains the main method from which the program is started.  

The entry method is the constructor of GUIPanel. Inside the GUIPanel the used 

components and labels are declared. We need to choose a layout manager to 

determine the position and size of every component. 

Java Swing offers several layout managers. We choose the GridBagLayout which 

is a bit more complex but also more powerful layout manager. With GridBagLayout 

it is possible to place components at any desired horizontal or vertical position.  

The panel is organized in rows and columns that form cells of arbitrary size. Each 

component is placed inside a cell. Figure 32 [23] shows an example how the cell 

organisation could look like. 

 
   Figure 32: GridBagLayout example screenshot  
GridBagLayout works basically with two objects of type GridBagLayout and                   

GridBagConstraints that implement the model inside the MVC architecture.  

The GridBagLayout is the layout manager that organizes the components on the 

panel based on predefined constraints. The constraints are set with the 

GridBagConstraints object. GridBagConstraints objects got several attributes that 

could be set to define the exact position and size of every component individually. 

We are making most use out of the attributes gridx and gridy. These two are used to 

define a number of the cell in x- and y-direction where you want to place the current 

component. With the insets variable the border space to adjacent components could 

be set. Once all desired constraints are set, the GridBagConstraints objects and our 

component are handed over to the GridBagLayout manager via the method 

setConstraints(component,GridBagConstraints). Then the constraints of the next 
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components are set. That way we "draw" the GUI step by step with all the 

components we would like to include.  

When designing the GUI one has to take care that the different fields and buttons 

are arranged in a logic and concise way. More on this topic inside the user manual in 

the last section of this chapter. 

The execution of the model does not do much but draw the specified button, field 

and switches on the panel. When pressing a button nothing happens, because we 

have not implemented yet the Controller, i.e. accordingly to the Swing model: the 

Delegate.  

The Delegate is formed out of methods called listeners. For every component a 

listener is created that reacts on actions that are performed by the user. If for example 

a button is pressed, the corresponding method is initiated and a specified action takes 

place. 
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4.4 GUI Reference Manual 

In the following a short reference manual is given how to work with 

VHDLGenerator. Although the meaning of the different options or fields are pretty 

self-explanatory, some detailed information for documentation reason is given. 

When starting the VHDLGenerator the user interface looks like in Figure 33. In 

VHDLGenerator the order of the program execution is directly mirrored to the GUI. 

That means, that information is entered in the same order, as it is processed later on. 

 
 

 
   Figure 33: VHDLGenerator GUI screenshot  
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HCDM File Path field 

In the first field the path of the HCDM file has to be entered. A default path is 

given, that is taken automatically, when no other path is specified. Note that when 

entering a new path, the directories have to be separated by "//". Otherwise the path 

is not taken correctly. Confirm the new entered path with "Return". The actual path 

is given out inside the message box. 

Errors that are related with this field contain error code: 1.1. For further 

information please take a look at the exception table in Chapter 3.3.3. 

 

Scheduling File Path field 

The second field is for entering the directory of the Scheduling file. Here the same 

properties as already explained for the HCDM File Path Field hold. Errors that are 

related with this field contain error code: 1.2 

 

Components File Path field 

The third field is for entering the directory of the Components file. Here the same 

properties as already explained for the HCDM File Path Field hold. Errors that are 

related with this field contain error code: 1.3 

 

VHDL File Path field 

This field specifies the directory and name of the VHDL code file produced by     

VHDLGenerator.  Errors that are related with this field contain error code: 1.4 

 

Default Button 

The Default Button sets back the file path fields to its initial value. After pressing 

"Enter" the path is taken. There exist four Default Buttons, one for every text field.   

 

Register Minimization Algorithm 

With this radio button one can select either Left edge algorithm or none 

minimization algorithm. Left edge algorithm allocates a minimum number of result 

registers accordingly to chapter 3.3.2. When choosing none minimization algorithm, 

every component result receives a separate register. The register minimization is 
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done inside the PreConverter stage, so possible errors that are related to this button 

contain error code: 1.5. 

 

The Create VHDL Testbench checkbox 

When having marked this field a testbench for the current VHDL model is created. 

The test bench is placed into the same directory as the generated VHDL code. For 

every input port five different random vectors are created.  

 

The Open VHDL Source File checkbox 

When having marked this field the produced text file specified at 

VHDLFilePathfield is opened using the "notepad.exe" of Windows or some other 

specified program. The File is opened after having pressed the "Generate VHDL" 

Button and no error occurred. If the previous "Create Testbench" checkbox is 

marked, then the also the generated Testbench file is opened. 

 

The Generate Button  

The Convert Button starts the VHDL converting process in the following order: 

1) A HCDMParser object is created and the three text files are parsed in the 

 order they are  represented on the graphical user interface. 

2) An object of type PreConverter is created. The HcdmParser object is handed 

 over as an argument to the constructor. The status of the register 

 minimization radio button is  stored into an attribute. 

 The method parse() applied to PreConverter object does the pre-converting 

 job. 

3) An object of type VHDLConverter is created. The PreConverter object is 

 handed over as an argument to the constructor. 

 The method convert() applied to VHDLConverter converts the data into 

 VHDL code 

4) Depending on the status of the "Open VHDL File" checkbox, the VHDL file 

 is opened by  "notepad.exe" or some other specified program.  

 

 

 



The Graphical User Interface page 55 

 

The Message Field 

The Message Field gives all information of the current state of the program. When 

new directories are entered into one of the four path fields and confirmed with 

"Enter", then the actual valid path of the corresponding field is given out. 

When pressing the "Generate VHDL " button the user is informed about the start 

of the convert process. If everything performs well, a message appears, that tells that 

the converting process succeeded. If not an error message with the according error 

code is given out. The user can correct the error by means of the two error tables in 

chapter 3.3.3.  

 

The Exit VHDLGenerator Button 

The Exit Button closes the VHDLGenerator program. 
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5 Conclusions 

To demonstrate the correctness of the VHDLGenerator program we construct a 

basic test example. The test program consists of a boolean equation and is 

constructed in a way that for the reader it is easy to read the results but still the full 

functionality of VHDLGenerator is demonstrated.  

 

5.1 The Test Program 

The realized Boolean equation contains four external inputs with 32 bit each. The 

Inputs are processed and combined via three different components: XOR, AND and 

OR component. All components are available as VHDL code and are registered 

inside the components entry file. Allocated are 2 AND, 1 XOR and 1 OR component. 

The equation is entered into HCDM Converter as follows: 

 

   ebadbacbaedcbaF ⋅⊗+⋅⊗+⋅⊗= )()()(),,,,(  
 

The corresponding data flow graph as well as the HCDM description are shown in 

figure 34 and figure 35. For clarity reasons the HCDM description is reduced to its 

functional parts. 

Notice again that all external inputs are drawn as successor tasks of the Root task, 

which is an essential condition for the parser. External outputs share the same output 

branch with the Root task.   
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       Figure 34: HCDM Boolean DFG screenshot 

 



Conclusions page 58 

 

 

AUFGABES { TASK 17 {  
 }TASKS {   NAME { b[32] } 
    TASK 11 {    OPTIMIZATIONTYPE { 1 } 
      NAME { ROOT }   IMPORTANCE { 1 } 
      OPTIMIZATIONTYPE { 1 }   FAILURE_PROBABILITY { 0.5 } 
      IMPORTANCE { 1 }   LEVEL { -3 } 
      FAILURE_PROBABILITY { 0.5 }   PRIORITY { -4 } 
      LEVEL { -3 }   TIMING { 0 }  
      PRIORITY { -4 }   RESOURCES {  (4,0 ) } 
      TIMING { 0 }    IORELATIONS { 
      RESOURCES {  }      IORELATION { 
      IORELATIONS {         INPUT { 48 } 
         IORELATION {         OUTPUT {87 } 
            INPUT { 48 69 93 90 96  }         CONDITION { true  } 
            OUTPUT {66  }      } 
             CONDITION {  true  }   } 
         }     SUBTASKS {  
      }     } 
      SUBTASKS {   } 
        TASK 14 {   TASK 20 {  
           NAME { Par2 }    NAME { Bottom } 
           OPTIMIZATIONTYPE { 1 }    OPTIMIZATIONTYPE { 1 } 
           IMPORTANCE { 1 }    IMPORTANCE { 1 } 
           FAILURE_PROBABILITY { 0.5 }    FAILURE_PROBABILITY { 0.5 } 
           LEVEL { -3 }    LEVEL { -3 } 
           PRIORITY { -4 }       PRIORITY { -4 } 
   TIMING { 0 }     TIMING { 0 }  
           RESOURCES {(2,20 )(5,20 ) }    RESOURCES {  (7,10 ) } 
           IORELATIONS {    IORELATIONS { 
              IORELATION {       IORELATION { 
                 INPUT { 84 181  }          INPUT { 45 51 78  } 
                 OUTPUT {78  }          OUTPUT {57  } 
                 CONDITION {  true  }          CONDITION { true  } 
              }       } 
           }    } 
            SUBTASKS {       SUBTASKS {  
             }      } 
         }   TASK 23 {  
         TASK 41 {      NAME { top } 
            NAME { d[32] }     OPTIMIZATIONTYPE { 1 } 
            OPTIMIZATIONTYPE { 1 }     IMPORTANCE { 1 } 
            IMPORTANCE { 1 }     FAILURE_PROBABILITY { 0.5 } 
            FAILURE_PROBABILITY { 0.5 }     LEVEL { -3 } 
            LEVEL { -3 }     PRIORITY { -4 } 
            PRIORITY { -4 }     TIMING { 0 }  
            TIMING { 0 }      RESOURCES {  (8,20 ) } 
            RESOURCES {  (3,0 ) }     IORELATIONS { 
            IORELATIONS {        IORELATION { 
               IORELATION {           INPUT { 75 87  } 
               
                       OUTPUT {181  } 

   INPUT { 93  }           OUTPUT {84 63 60  } 
          CONDITION {  true  } 

                 CONDITION {  true  }        } 
              }     } 
           }      SUBTASKS {  
     A
           } 
      SUBT SKS {         } 
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    Figure 35: HCDM description 

 

 

 

 

 

TASK 35 {  TASK 26 {  
   NAME { Par3 }   NAME { a[32] } 
   OPTIMIZATIONTYPE { 1 }   OPTIMIZATIONTYPE { 1 } 
   IMPORTANCE { 1 }   IMPORTANCE { 1 } 
   FAILURE_PROBABILITY { 0.5 }   FAILURE_PROBABILITY { 0.5 } 
   LEVEL { -3 }   LEVEL { -3 } 
   PRIORITY { -4 }   PRIORITY { -4 } 
   TIMING { 0 }    TIMING { 0 }  
   RESOURCES {  (2,20 ) (5,20 ) }   RESOURCES {  (10,0 ) } 
     IORELATIONS {     IORELATIONS { 
        IORELATION {        IORELATION { 
           INPUT { 60 81  }           INPUT { 69  } 
           OUTPUT {45  }           OUTPUT {75  } 
           CONDITION {  true  }           CONDITION {  true  } 
     }        } 
   }      } 
     SUBTASKS {       SUBTASKS {  
}      } 
      } 
TASK 38 {    TASK 29 {  
   NAME { c[32] }     NAME { e[32] } 
   OPTIMIZATIONTYPE { 1 }     OPTIMIZATIONTYPE { 1 } 
   IMPORTANCE { 1 }     IMPORTANCE { 1 } 
   FAILURE_PROBABILITY { 0.5 }     FAILURE_PROBABILITY { 0.5 } 
   LEVEL { -3 }     LEVEL { -3 } 
   PRIORITY { -4 }     PRIORITY { -4 } 
   TIMING { 0 }      TIMING { 0 }  
   RESOURCES {  (6,0 ) }     RESOURCES {  (9,0 ) } 
     IORELATIONS {     IORELATIONS { 
        IORELATION {      IORELATION { 
           INPUT { 96  }           INPUT { 90  } 
           OUTPUT {72  }           OUTPUT {81  } 
           CONDITION {  true  }           CONDITION {  true  } 
     }     } 
   }   } 
     SUBTASKS {      SUBTASKS {  
              }     } 
           }   } 
 TASK 44 {    TASK 32 {  
    NAME { result[32] }     NAME { Par1 } 
    OPTIMIZATIONTYPE { 1 }     OPTIMIZATIONTYPE { 1 } 
    IMPORTANCE { 1 }     IMPORTANCE { 1 } 
    FAILURE_PROBABILITY { 0.5 }     FAILURE_PROBABILITY { 0.5 } 
    LEVEL { -3 }     LEVEL { -3 } 
    PRIORITY { -4 }     PRIORITY { -4 } 
        TIMING { 0 }      TIMING { 0 }  
        RESOURCES {  (159,0 ) }       RESOURCES {  (2,20 ) (5,20 ) 

}           IORELATIONS { 
             IORELATION {        IORELATIONS { 
                INPUT { 57  }           IORELATION { 
                OUTPUT {66  }              INPUT { 63 72  } 
                CONDITION {  true  }              OUTPUT {51  } 
             }              CONDITION {  true  } 
          }            } 
            SUBTASKS {         } 
            }      SUBTASKS {  
           }      } 

  }     

 



Conclusions page 60 

 

HCDM schedules the different tasks on the components as follows: 

 
   Figure 36: HCDM Boolean example scheduling  

 

The data is extracted and parsed like explained before. Depending whether we 

have chosen register minimization or non-register minimization, the received VHDL 

code looks different. The complete generated VHDL Code as well as the 

corresponding testbench are added to the appendix B. 

 

true : d[32] ( 0 , 0 ), e[32] ( 0 , 0 ), c[32] ( 0 , 0 
), b[32] ( 0 ,0 ), a[32] ( 0 , 0 ), top ( 0 , 20 ), 
Par2 ( 20 , 40 ), Par3 ( 20 , 40 ), Par1 ( 40 , 60 ), 
Bottom ( 60 , 70 ), result[32] ( 70 , 70 ), 
   ------------------------------------------------- 
   BINDING { (Par2-myAnd_2) (d[32]-Input_1) (b[32]-
Input_2) (Bottom-myOr_1) (top-myXor_1) (a[32]-Input_3) 
(e[32]-Input_4) (Par1-myAnd_1) (Par3-myAnd_1) (c[32]-
Input_5) (result[32]-Output_1)  } 
 

5.2 Simulation Results 

Let us first verify the correct circuit behaviour of the basic version, where we do 

not make use of the register minimization algorithm. We simulate the VHDL code 

together with the needed components by means of the generated testbench. 

Waveforms demonstrate the correct behaviour.  

The encircled parts of the waveforms in figure 37 to 39 indicate the results of the 

single components. At this point in time we only acknowledge that the results are 

shifted to the right outputs at the specified point of time. So we can adhere that       

the VHDL code for scheduling and register allocation is generated correctly. 
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    Figure 37: Result of myXOR_1 
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   Figure 38: Result of myAND_1 and  myAND_2 
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   Figure 39: Figure 5.6: Final result of  myOR_1 
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Next step would be to verify the produced program for its arithmetical results. 

That means we want to know whether the gained results are correct according to the 

specified boolean equation. For that reason we have to take a look at the random 

input values that are generated by the TestbenchGenerator: 

The random port assignments for this example are: 
Input Port Assignment 

a " 10011111000100001001110110110000 " 

b " 01001110111110000010110010111110 " 

c " 01011011111110110110001011101000 " 

d " 10001000101110000110000100010000 " 

e " 00101001000000011110001011010100 " 

 

If we put these values into the proposed boolean equation and calculate by hand 

we yield:  

10000111010100010100000011100100

00)001011010100000111100010100100
 00000100010011100001101000100010

 00001011101011101101100101101111(
) 10110010111111100000100100111011
10001010011011001111111010110111(

)()(
)()()(),,,,(

=

+
+

⋅
⊗=

++⋅⊗=
⋅⊗+⋅⊗+⋅⊗=

edcba
ebadbacbaedcbaF

 

Comparing the result computed by hand with the result delivered by the program 

we find consistence. Hence we can state that the generated VHDL code works 

correct for the tested values.  

Depending on whether we have chosen register minimization or non-register 

minimization we obtain different VHDL source code. When comparing the two 

descriptions in terms of waveforms we can asses that the circuit behaviour is the 

same for both circuits. Note that for reasons of clarity the waveforms of the register 

minimized version are not added. So we can state further that using the left-edge 

register minimization for the VHDL code generation does not have any influence on 

the functional behaviour of the resulting circuit. That characteristic is a necessary 

condition for any minimization step you perform on digital circuits.  
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5.3 Synthesis Results 

Next step will be to check whether the generated VHDL description passes the 

synthesis. In figure 40 and the Synthesis reports of register minimization and register 

non-minimization are opposed. The relevant parts are highlighted. 

 
 Figure 40: Synthesis report without register  

=====================================================
*                              Final Report                                             
* 
=====================================================
Final Results 
RTL Top Level Output File Name     : VhdlCodeGenerated.ngr 
Top Level Output File Name             : VhdlCodeGenerated 
Output Format   : NGC 
Optimization Goal  : Speed 
Keep Hierarchy    : NO 
 
Design Statistics 
# IOs    : 194 
 
Cell Usage : 
# BELS   : 371 
#      GND   : 1 
#      INV   : 2 
#      LUT1  : 9 
#      LUT2  : 14 
#      LUT2_D                 : 2 
#      LUT2_L                  : 1 
#      LUT3                       : 178 
#      LUT3_D                  : 2 
#      LUT3_L                   : 7 
#      LUT4                       : 84 
#      LUT4_D                  : 13 
#      LUT4_L                  : 36 
#      MUXCY                 : 9 
#      MUXF5                   : 3 
#      VCC                       : 1 
#      XORCY                  : 9 
 
# FlipFlops/Latches        : 612 
 
#      FDC                        : 160 
#      FDCE                      : 32 
#      FDE                        : 420 
# Clock Buffers              : 1 
#      BUFGP         : 1 
# IO Buffers                 : 193 
#      IBUF                         : 161 
#      OBUF                        : 32 
===================================================== 
Device utilization summary: 
--------------------------- 
 
Selected Device : 3s200ft256-5  
 
 Number of Slices:                  401  out of   1920    20%   
 Number of Slice Flip Flops:    612  out of   3840    15%   
 Number of 4 input LUTs:       348  out of   3840     9%   
 Number of IOs:                       194 
 Number of bonded IOBs:       194  out of    173   112% (*)  
 Number of GCLKs:                1  out of      8    12%   
===================================================== 

 



Conclusions page 66 

 

  

================================================= 
*                             Final Report                                
   * 

================================================= 
Final Results 
RTL Top Level Output File Name      : VhdlCodeGenerated.ngr 
Top Level Output File Name           : 
VhdlCodeGenerated 
Output Format                 : NGC 
Optimization Goal           : Speed 
Keep Hierarchy               : NO 
 
Design Statistics 
# IOs                               : 194 
 
Cell Usage : 
# BELS                           : 545 
#      GND                       : 1 
#      INV                         : 2 
#      LUT1                      : 9 
#      LUT2                      : 7 
#      LUT2_L                  : 1 
#      LUT3                       : 175 
#      LUT3_D                 : 8 
#      LUT3_L                  : 9 
#      LUT4                     : 236 
#      LUT4_D                  : 9 
#      LUT4_L                  : 5 
#      MUXCY                 : 9 
#      MUXF5                  : 64 
#      VCC                       : 1 
#      XORCY                 : 9 
 
# FlipFlops/Latches       : 593 
 
#      FDC                       : 173 
#      FDCE                     : 32 
#      FDE                       : 388 
# Clock Buffers             : 1 
#      BUFGP                  : 1 
# IO Buffers                   : 193 
#      IBUF                      : 161 
#      OBUF                     : 32 
===================================================== 
Device utilization summary: 
--------------------------- 
 
Selected Device : 3s200ft256-5  
 
 Number of Slices:                     434  out of   1920    22%   
 Number of Slice Flip Flops:     593  out of   3840    15%   
 Number of 4 input LUTs:         461  out of   3840    12%   
 Number of IOs:                        194 
 Number of bonded IOBs:         194  out of    173   112% (*)  
 Number of GCLKs:                  1  out of      8    12%   
===================================================== 

Figure 41: Synthesis report with left edge register minimization 
 

 

A comparison of both reports yields that the left edge register minimization 

reduces the number of needed flip flops on the target device. 
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If we take a closer look to the produced codes we can figure why the second 

version needs less resources. In the figures above the segment where the temporary 

output registers are stated are shown for each code version. 

The non-minimized version needs one output register for each of the four 

instantiated VHDL component   

 

 ..... 
 signal reg_0: std_logic_vector(31 downto 0); 

 signal reg_1: std_logic_vector(31 downto 0); 

 signal reg_2: std_logic_vector(31 downto 0); 

 signal reg_3: std_logic_vector(31 downto 0); 

 

begin 

   ..... 

  Figure 42: VHDL code without register minimization 
 

In comparison the LEFT EDGE ALGORITHM reduces the number of  needed 

registers to three. 

 ..... 
  signal reg_0: std_logic_vector(31 downto 0); 
    signal reg_1: std_logic_vector(31 downto 0); 
    signal reg_2: std_logic_vector(31 downto 0); 
begin 
   ..... 

 
  Figure 43: VHDL code with Left Edge register minimization 

  

So we conclude that the reduced amount of needed output registers, generated by 

the LEFT EDGE Algorithm, is the cause for reduced amount of used flip flops.  
 

In contrast the number of LUT4 is increasing compared to the non-optimized 

variant. The additional resources are used for multiplexing the inputs for the 

registers. 

Depending on the application the user can decide whether to have minimized flip 

flops or less usage of combinatorial logic. In most applications the Flip Flops will be 

a more sever resource constraint. 
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  Appendix A 

HCDM describes the task graph in terms of bnf-grammar (Backus-Naur form), 

that allows a flexible number of parameters. Note that here the complete HCDM 

grammar is stated, although we will only take care of some of the fields. The 

modified grammar used for the parser is stated in chapter 3.2.2.3 . 
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In the following the parameter, that are provided by each component: 

• hCDM 

– NAME -The name. 

– ROOT - ID of the root task. 

– CURRENT ROOT - ID of current root. 

– CURRENT LEAFS - list of Task-ID of node of actual detail grade 

• Resource 

– NAME - The name. 

– COST - costs of this resource. 

– NUMBER - maximum amount that are allowed to use 

– TYPE -communication or functional resource. 

– CONNECTED - list of functional resources that are connected via a      

 communication resource. 

• Behavior class 

– NAMES - Names of each behaviours that are implemented by this class 

• Task 

– NAME - The name. 

– PRIORITY - priority for list scheduling. 
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– TIMING - default time behaviour, as long as no component binding exist 

– RESOURCES - a list of resources on which the task can be implemented 

– LEVEL - parameter for the graphical representation 

– OPTIMIZATIONTYPE - Kommunikations- oder funktionaler Task. 

– IMPORTANCE - importance of this task for error free function of the system 

– FAILURE PROBABILITY - breakdown probability of this task 
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  Appendix B 

The generated VHDL code for the register minimized version and the non-

minimized version are stated below. The testbench as well as the used VHDL 

components are the same for both. First the generated VHDL code without register 

optimization then the code with register optimization are stated: 

 

library ieee; 
use ieee.std_logic_1164.all; 
 
entity VhdlCodeGenerated is 
 
  port( mclk: in std_logic; 
        resetn: in std_logic; 
        a : in std_logic_vector(31 downto 0); 
        b : in std_logic_vector(31 downto 0); 
        e : in std_logic_vector(31 downto 0); 
        d : in std_logic_vector(31 downto 0); 
        c : in std_logic_vector(31 downto 0);         
        result : out std_logic_vector(31 downto 0)); 
end VhdlCodeGenerated; 
 
architecture arc of VhdlCodeGenerated is 
 
   component myXor is  
      port(   clk :in std_logic; 
              resetn: in std_logic; 
            enable: in std_logic; 
              a :in std_logic_vector(31 downto 0); 
              b :in std_logic_vector(31 downto 0); 
              result :out std_logic_vector(31 downto 0)); 
   end component myXor;  
    
 component myAnd is  
      port(   clk :in std_logic; 
              resetn: in std_logic; 
            enable: in std_logic; 
              a :in std_logic_vector(31 downto 0); 
              b :in std_logic_vector(31 downto 0); 
              result :out std_logic_vector(31 downto 0)); 
   end component myAnd;  
 
   component myOr is  
      port(   clk :in std_logic; 
              resetn: in std_logic; 
            enable: in std_logic; 
              a :in std_logic_vector(31 downto 0); 
              b :in std_logic_vector(31 downto 0); 
              c :in std_logic_vector(31 downto 0); 
   
    end component myOr;  

           result :out std_logic_vector(31 downto 0)); 
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 signal timer: integer range 0 to 1000; 
 
   signal myXor_1_enable: std_logic := 'Z'; 
   signal myAnd_1_enable: std_logic := 'Z'; 
   signal myAnd_2_enable: std_logic := 'Z'; 
   signal myOr_1_enable: std_logic := 'Z'; 
 
   signal CompInReg0: std_logic_vector(31 downto 0) := (others=>'Z'); 
   signal CompInReg1: std_logic_vector(31 downto 0) := (others=>'Z'); 
   signal CompInReg2: std_logic_vector(31 downto 0) := (others=>'Z'); 
   signal CompInReg3: std_logic_vector(31 downto 0) := (others=>'Z'); 
   signal CompInReg4: std_logic_vector(31 downto 0) := (others=>'Z'); 

   signal CompInReg5: std_logic_vector(31 downto 0) := (others=>'Z'); 
   signal CompInReg6: std_logic_vector(31 downto 0) := (others=>'Z'); 
   signal CompInReg7: std_logic_vector(31 downto 0) := (others=>'Z'); 
   signal CompInReg8: std_logic_vector(31 downto 0) := (others=>'Z'); 
 
   signal CompOutReg0: std_logic_vector(31 downto 0):= (others => 'Z'); 
  
    signal CompOutReg2: std_logic_vector(31 downto 0):= (others => 'Z'); 

 signal CompOutReg1: std_logic_vector(31 downto 0):= (others => 'Z'); 

   signal CompOutReg3: std_logic_vector(31 downto 0):= (others => 'Z'); 
 
 
   signal reg_0: std_logic_vector(31 downto 0):= (others => 'Z'); 
   signal reg_1: std_logic_vector(31 downto 0):= (others => 'Z'); 
   signal reg_2: std_logic_vector(31 downto 0):= (others => 'Z'); 
   signal reg_3: std_logic_vector(31 downto 0):= (others => 'Z'); 
 
begin 
 
   myXor_1: myXor 
      port map (clk => mclk,resetn => resetn,enable => myXor_1_enable,a => 
  CompInReg0,b => CompInReg1,result => CompOutReg0);  
  
   myAnd_1: myAnd 
      port map (clk => mclk,resetn => resetn,enable => myAnd_1_enable,a => 
  CompInReg2,b => CompInReg3,result => CompOutReg1);  

  
   myAnd_2: myAnd 
      port map (clk => mclk,resetn => resetn,enable => myAnd_2_enable,a => 
  CompInReg4,b =>CompInReg5,result => CompOutReg2);  
  
   myOr_1: myOr 
      port map (clk => mclk,resetn => resetn,enable => myOr_1_enable,a => 
  CompInReg6,b => CompInReg7,c => CompInReg8,result =>  
        CompOutReg3);  
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process(mclk,resetn) 
   begin 
 
      if resetn='0' then 
 
           timer<= 0 ; 
           result <= (others => '0'); 
 
      elsif mclk'event and mclk='1' then 
 
    case timer is 
 
                      when 0 =>  CompInReg0 <= a; 
                                  CompInReg1 <= b; 
                                  myXor_1_enable <= '1'; 
                                  timer <=timer+1; 
 
                      when 22 =>  reg_0 <= CompOutReg0; 
                                  myXor_1_enable <= '0'; 
                                  timer <=timer+1; 
 
                      when 23 =>  CompInReg2 <= e; 
                                  CompInReg3 <= reg_0; 
                                  myAnd_1_enable <= '1'; 
                                  CompInReg4 <= d; 
                                  CompInReg5 <= reg_0; 
                                  myAnd_2_enable <= '1'; 
                                  timer <=timer+1; 
 
                      when 45 =>  reg_1 <= CompOutReg1; 
                                  myAnd_1_enable <= '0'; 
                                  reg_2 <= CompOutReg2; 
                                  myAnd_2_enable <= '0'; 
                                  timer <=timer+1; 
 
                      when 46 =>  CompInReg2 <= c; 
                                  CompInReg3 <= reg_0; 
                                  myAnd_1_enable <= '1'; 
                                  timer <=timer+1; 
 
                      when 68 =>  reg_3 <= CompOutReg1; 
                                  myAnd_1_enable <= '0'; 
                                  timer <=timer+1; 
 
                      when 69 =>  CompInReg6 <= reg_1; 
                                  CompInReg7 <= reg_3; 
                                  CompInReg8 <= reg_2; 
                                  myOr_1_enable <= '1'; 
                                  timer <=timer+1; 
 
                      when 81 =>  result <= CompOutReg3; 
                                  myOr_1_enable <= '0'; 
                                  timer <=timer+1; 
 
                      when 83 =>  timer <= 83; -- end of Schedule  
 
                      when others => timer<=timer+1;  --only count up 
 
    end case; 
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       end if; 
 
   end process; 
 
end arc; 
 

 

  Figure 44: complete VHDL code without register minimization 
  

  

Next the VHDL code with register optimization is stated: 

library ieee; 
use ieee.std_logic_1164.all; 
 
entity VhdlCodeGenerated is 
 
  port( mclk: in std_logic; 
        resetn: in std_logic; 
        b : in std_logic_vector(31 downto 0); 
        a : in std_logic_vector(31 downto 0); 
        e : in std_logic_vector(31 downto 0); 
        d : in std_logic_vector(31 downto 0); 
        c : in std_logic_vector(31 downto 0);         
        result : out std_logic_vector(31 downto 0)); 
 
end VhdlCodeGenerated; 
 
architecture arc of VhdlCodeGenerated is 
 
   component myXor is  
      port(   clk :in std_logic; 
              resetn: in std_logic; 
            enable: in std_logic; 
              a :in std_logic_vector(31 downto 0); 
              b :in std_logic_vector(31 downto 0); 
              result :out std_logic_vector(31 downto 0)); 
   end component myXor;  
 
   component myAnd is  
      port(   clk :in std_logic; 
              resetn: in std_logic; 
            enable: in std_logic; 
              a :in std_logic_vector(31 downto 0); 
              b :in std_logic_vector(31 downto 0); 
              result :out std_logic_vector(31 downto 0)); 
   end component myAnd;  
 
   component myOr is  
      port(   clk :in std_logic; 
              resetn: in std_logic; 
            enable: in std_logic; 
              a :in std_logic_vector(31 downto 0); 
              b :in std_logic_vector(31 downto 0); 
              c :in std_logic_vector(31 downto 0); 
              result :out std_logic_vector(31 downto 0)); 
   end component myOr;  
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signal timer: integer range 0 to 1000; 
 
   signal myXor_1_enable: std_logic := 'Z'; 
   signal myAnd_1_enable: std_logic := 'Z'; 
   signal myAnd_2_enable: std_logic := 'Z'; 
   signal myOr_1_enable: std_logic := 'Z'; 
 
   signal CompInReg0: std_logic_vector(31 downto 0) := (others=>'Z'); 
   signal CompInReg1: std_logic_vector(31 downto 0) := (others=>'Z'); 
   signal CompInReg2: std_logic_vector(31 downto 0) := (others=>'Z'); 
   signal CompInReg3: std_logic_vector(31 downto 0) := (others=>'Z'); 
   signal CompInReg4: std_logic_vector(31 downto 0) := (others=>'Z'); 
   signal CompInReg5: std_logic_vector(31 downto 0) := (others=>'Z'); 
   signal CompInReg6: std_logic_vector(31 downto 0) := (others=>'Z'); 
   signal CompInReg7: std_logic_vector(31 downto 0) := (others=>'Z'); 
   signal CompInReg8: std_logic_vector(31 downto 0) := (others=>'Z'); 
 
   signal CompOutReg0: std_logic_vector(31 downto 0):= (others => 'Z'); 
   signal CompOutReg1: std_logic_vector(31 downto 0):= (others => 'Z'); 
   signal CompOutReg2: std_logic_vector(31 downto 0):= (others => 'Z'); 
   signal CompOutReg3: std_logic_vector(31 downto 0):= (others => 'Z'); 
 
 
   signal reg_0: std_logic_vector(31 downto 0):= (others => 'Z'); 
   signal reg_1: std_logic_vector(31 downto 0):= (others => 'Z'); 
   signal reg_2: std_logic_vector(31 downto 0):= (others => 'Z'); 
 
begin 
 
   myXor_1: myXor 
      port map (clk => mclk,resetn => resetn,enable => myXor_1_enable,a  
  => CompInReg0,b => CompInReg1,result => CompOutReg0);  
  
   myAnd_1: myAnd 
      port map (clk => mclk,resetn => resetn,enable => myAnd_1_enable,a  
  => CompInReg2,b => CompInReg3,result => CompOutReg1);  
  
   myAnd_2: myAnd 
      port map (clk => mclk,resetn => resetn,enable => myAnd_2_enable,a  
  => CompInReg4,b => CompInReg5,result => CompOutReg2);  
  
   myOr_1: myOr 
      port map (clk => mclk,resetn => resetn,enable => myOr_1_enable,a  
 => CompInReg6,b => CompInReg7,c => CompInReg8,result 
 =>CompOutReg3);  
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process(mclk,resetn) 
   begin 
 
      if resetn='0' then 
 
           timer<= 0 ; 
           result <= (others => '0'); 
 
      elsif mclk'event and mclk='1' then 
 
    case timer is 
                     when 0 =>  CompInReg0 <= b; 
                                  CompInReg1 <= a; 
                                  myXor_1_enable <= '1'; 
                                  timer <=timer+1; 
 
                      when 22 =>  reg_0 <= CompOutReg0; 
                                  myXor_1_enable <= '0'; 
                                  timer <=timer+1; 
 
                      when 23 =>  CompInReg2 <= e; 
                                  CompInReg3 <= reg_0; 
                                  myAnd_1_enable <= '1'; 
                                  CompInReg4 <= d; 
                                  CompInReg5 <= reg_0; 
                                  myAnd_2_enable <= '1'; 
                                  timer <=timer+1; 
 
                      when 45 =>  reg_1 <= CompOutReg1; 
                                  myAnd_1_enable <= '0'; 
                                  reg_2 <= CompOutReg2; 
                                  myAnd_2_enable <= '0'; 
                                  timer <=timer+1; 
 
                      when 46 =>  CompInReg2 <= c; 
                                  CompInReg3 <= reg_0; 
                                  myAnd_1_enable <= '1'; 
                                  timer <=timer+1; 
 
                      when 68 =>  reg_0 <= CompOutReg1; 
                                  myAnd_1_enable <= '0'; 
                                  timer <=timer+1; 
 
                      when 69 =>  CompInReg6 <= reg_1; 
                                  CompInReg7 <= reg_0; 
                                  CompInReg8 <= reg_2; 
                                  myOr_1_enable <= '1'; 
                                  timer <=timer+1; 
 
                      when 81 =>  result <= CompOutReg3; 
                                  myOr_1_enable <= '0'; 
                                  timer <=timer+1; 
 
 
                      when 83 =>  timer <= 83; -- end of Schedule  
 
                      when others => timer<=timer+1;  --only count up 
 
    end case; 
        
 

end if; 
 
   end process; 
 
end arc; 
 

 

  Figure 45: complete VHDL code with register minimization 
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The used components for the boolean equation look the same for both versions: 

 

The XOR component: 

 

library IEEE; 
use IEEE.std_logic_1164.all; 
 
entity myXor is 
 port ( 
  clk, resetn : in std_logic; 
  enable : in std_logic; 
  a: in std_logic_vector(31 downto 0); 
  b: in std_logic_vector(31 downto 0); 
  result: out std_logic_vector(31 downto 0) 
  ); 
end myXor; 
 
architecture RTL of myXor is 
  
begin 
  
 process (clk, resetn) 
  variable delay : integer range 0 to 31; 
 begin 
  if resetn='0' then   
   delay := 0; 
   result <= ( others => '0'); 
  elsif CLK'event and CLK='1' then 
   if enable='1' then  
      if delay = 20 then 
       result <= a xor b; 
       delay := 0; 
      else 
       delay := delay +1; 
       result <= ( others => '0'); 
      end if; 
   else 
      delay := 0; 
      result <= ( others => '0'); 
   end if; 
    
  end if; 
 end process; 
  
end RTL; 

    

  Figure 46: The used XOR component  
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The OR Component: 

 

library IEEE; 
use IEEE.std_logic_1164.all; 
 
entity myOR is 
 port ( 
  clk, resetn : in std_logic; 
  enable: in std_logic; 
  a: in std_logic_vector(31 downto 0); 
  b: in std_logic_vector(31 downto 0); 
  c: in std_logic_vector(31 downto 0); 
  result: out std_logic_vector(31 downto 0) 
  ); 
end myOR; 
 
architecture RTL of myOR is 
  
begin 
  
 process (clk, resetn) 
  variable delay : integer range 0 to 31; 
 begin 
  if resetn='0' then   
   delay := 0; 
   result <= ( others => '0'); 
  elsif CLK'event and CLK='1' then 
   if enable = '1' then 
      if delay = 10 then 
       result <= a or b or c; 
       delay := 0; 
      else 
       delay := delay +1; 
       result <= ( others => '0'); 
      end if; 
   else 
     delay := 0; 
     result <= ( others => '0'); 
   end if;  
  end if; 
 end process; 
  
end RTL; 
 

 

   Figure 47: The used OR component 
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The AND Component: 

  

library IEEE; 
use IEEE.std_logic_1164.all; 
 
entity myAND is 

(  port 
  clk, resetn : in std_logic; 

(31 downto 0); 
to 0); 
1 downto 0) 

tecture RTL of myAND is 

 others => '0'); 
then 

n 
a and b; 

 := delay +1; 

lay := 0; 
t <= ( others => '0'); 

  enable: in std_logic; 
  a: in std_logic_vector
  b: in std_logic_vector(31 down
  result: out std_logic_vector(3
  ); 
end myAND; 
 
archi
  
begin 
  
 process (clk, resetn) 
  variable delay : integer range 0 to 31; 
 begin 
  if resetn='0' then   

0;    delay := 
   result <= (
  elsif CLK'event and CLK='1' 
   if enable='1' then  
      if delay = 20 the
       result <= 
       delay := 0; 
      else 
       delay
       result <= (others => '0'); 
      end if; 
   else 
      de
      resul
   end if; 
  end if; 
 end process; 
  
end RTL; 
 
 

   Figure 48: The used AND component 

The testbench is the same for both versions: 
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library ieee; 
use ieee.std_logic_1164.all; 

estbench is 

estbench is 

; 
o 0); 

                 
 0)); 

1 downto 0):= (others => 'Z');  
wnto 0):= (others => 'Z');  

);  

hdlCodeGenerated  
t map (mclk => tb_clk,resetn => tb_resetn, a => tb_a, b => tb_b, e => tb_e, d => tb_d, c => tb_c, 

res ; 

1001110110110000" after 0 ns, 
          10001010010111100" after 1000 ns, 

, 

 

, 

  
entity VhdlCodeGenerated_T
nd VhdlCodeGenerated_Testbench; e

 
ated_T  architecture tb_arc of VhdlCodeGener

 
   component VhdlCodeGenerated  is  

port(mclk :in std_logic;     
        resetn: in std_logic;                    

(31 downto 0)          a : in std_logic_vector
        b : in std_logic_vector(31 downt

         e : in std_logic_vector(31 downto 0); 
        d : in std_logic_vector(31 downto 0); 

         c : in std_logic_vector(31 downto 0);   
        result : out std_logic_vector(31 downto
   end component VhdlCodeGenerated ;    
   signal tb_clk: std_logic :='0';  

signal tb_resetn: std_logic;      
   signal tb_a: std_logic_vector(3

(31 do     signal tb_b: std_logic_vector
   signal tb_e: std_logic_vector(31 downto 0):= (others => 'Z');  

    signal tb_d: std_logic_vector(31 downto 0):= (others => 'Z');  
   signal tb_c: std_logic_vector(31 downto 0):= (others => 'Z');  
   signal tb_result: std_logic_vector(31 downto 0):= (others =>'Z'   
begin   
   tb: V
    por    

ult =>   tb_result)
  

   tb_clk  <= not tb_clk after 20 ns; -- clock working at 50Mhz  
     tb_resetn <= '1' after 0 ns,  

          '0' after 5 ns,               '1' after 10 ns; 
 
   tb_a <= "1001111100010000

"001000100101001                 "11001100111001000000001000011110" after 2000 ns
             "11110111100011101100010110111010" after 3000 ns, 
             "11010110010001111110100110110110" after 4000 ns;  
 

 
tb_d <= "1000100010111

            "1101111100011

            "0010100010110

            "1110010101011

            "0001100110011

 

   tb_c <= "01011011111

            "0111110011101

            "0000010101111

            "0010100001010

             "0101100001010

 

end tb_arc; 

   tb_b <= "01001110111110000010110010111110" after 0 ns, 
          "10101111110101101010101000010100" after 1000 ns,    

             "01011100011111111110100101110100" after 2000 ns,
             "00100000011101100000001111111100" after 3000 ns, 
             "00100000011011010100000011000110" after 4000 ns;  
 
   tb_e <= "00101001000000011110001011010100" after 0 ns, 

          "11110011011000010010101101110010" after 1000 ns,    
             "00010111100111110001111101010010" after 2000 ns
             "01000010011000110011100111011000" after 3000 ns, 
             "10101001011010110011100101110110" after 4000 ns;  
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