

Development of a
VHDL Generator for

Scheduled Data Flow Graphs

MASTER THESIS

submitted by

HAGEN STÜBING

 IV

Honour declaration

Hereby I assure that the presented thesis was made without any help of third persons

and only with the indicated sources and means. All the figures and paragraphs taken

from the sources are clearly marked.

Darmstadt, 21.11.2006

 V

Preface

The presented work is created in contents of a master thesis that I have prepared for

the "Universitat Politecnica de Catalunya" in Spain. At the "Technical University of

Darmstadt" this thesis is submitted as a "Studienarbeit".

The thesis consists of three parts. The enclosed CD-Rom contains the

VHDLGenerator program with the corresponding installation files as well as the

source code. The documentation of the VHDLGenerator Program is the paper at

hand. For quick reference a user manual is available. The user manual is a copy of

the most important notes, helpful when starting to work with VHDLGenerator.

The structure of this thesis is closely related to the execution order of the program.

The development of the VHDLGenerator program required knowledge of different

fields of programming. For streaming the text files you have to know the Java

streaming concepts, while the VHDLGenerator error detection is based on Java

exception handling. Because the output file is written in a hardware description

language (VHDL) one has to deal with the constraints of hardware design.

Furthermore the theoretical background of minimization algorithms has to be

understood in order to realize the Left Edge Algorithm that is used for register

minimization. So as heterogeneous as the knowledge base is, as heterogeneous is the

structure of this thesis. The different topics are addressed in the order they are

executed inside the VHDLGenerator program.

Every chapter is related to one working step of VHDLGenerator. It always starts

with a general explanation and theoretical background of a used concept and then

explains how the theory is adapted to the specific case.

Hagen Stübing

Contents VI

Contents

Honour declaration ... IV

Preface ..V

Contents .. VI

List of Figures...VIII

1 Introduction...1

2 The Data Flow Graph Presentation...4

2.1 Data Representation Form ...4

2.2 Graphs in general ...5

2.3 Task Graphs ...6

2.4 Data Flow Graphs ..8

2.5 HCDM in general...8

2.6 HCDM Grammar ...9

2.7 HCDM and Data Flow Graphs ..11

3 The Data Flow Graph Compiler ...12

3.1 Compiler in general ...12

3.2 The Parser stage ...14
3.2.1 Parser Theory...14
3.2.2 The HCDM Parser...15

3.2.2.1 Java streaming concepts in general15
3.2.2.2 Parsing inside VHDL Converter16
3.2.2.3 Parsing the HCDM file...18
3.2.2.4 Parsing the Scheduling File..22
3.2.2.5 Parsing the Components File......................................22

3.3 The PreConverter stage..23
3.3.1 Sorting of the Tasks...23
3.3.2 Register Optimization..27
3.3.3 Error-detection and recovery techniques...................................33

3.3.3.1 Java Exception handling in general............................35
3.3.3.2 Exception handling inside VHDLGenerator37

3.4 The Converter stage ...42
3.4.1 The VHDL Code Generator ..42

Contents VII

3.4.2 The VHDL Testbench Generator ..44
3.4.2.1 Testbenches in general ...44
3.4.2.2 Testbench creating for VHDL Converter...................44

4 The Graphical User Interface..47

4.1 Java Swing vs. AWT ...47

4.2 The Model-View-Controller Architecture in Java.................................48

4.3 The VHDLGenerator GUI ...50

4.4 GUI Reference Manual ..52

5 Conclusions...56

5.1 The Test Program...56

5.2 Simulation Results ...60

5.3 Synthesis Results ...65

Appendix A..68

Appendix B ..71

References..81

List of Figures VIII

List of Figures

Figure 1: proposed Design Flow... 2

Figure 2: Task Graph example .. 6

Figure 3: HCDM Task Graph example screenshot ... 7

Figure 4: Data Flow Graph example .. 8

Figure 5: Task description in HCDM.. 10

Figure 6: Model of a classical compiler.. 12

Figure 7: Model of the Data Flow Compiler... 13

Figure 8: State Chart expressions ... 17

Figure 9: Parser State Chart ... 18

Figure 10: Task declaration inside HCDM ... 19

Figure 11: BNF description of Parser pattern .. 20

Figure 12: Scheduling File example.. 22

Figure 13: Components File example ... 23

Figure 14: O(n2) sorts.. 25

Figure 15: O(n log b) sorts.. 25

Figure 16: Quicksort pseudo code... 26

Figure 17: Vertex Coloring pseudo code .. 28

Figure 18: Compatibility Graph.. 29

Figure 19: Non-minimum Coloring Figure 20: Minimum Coloring 29

Figure 21: Left Edge pseudo code ... 31

Figure 22: Left Edge pseudo code for VHDLGenerator ... 33

Figure 23: Error Level classification .. 34

Figure 24: Exception handling in Java ... 36

Figure 25: throw statement.. 36

Figure 26: try-catch... 37

Figure 27: Error Type Reference .. 41

Figure 28: VHDL Testbench.. 44

Figure 29: concatenating algorithm description... 45

Figure 30: classical MVC architecture ... 49

Figure 31: Swing MVC architecture ... 49

Figure 32: GridBagLayout example screenshot.. 50

 IX

Figure 33: VHDLGenerator GUI screenshot .. 52

Figure 34: HCDM Boolean DFG screenshot.. 57

Figure 35: HCDM description .. 59

Figure 36: HCDM Boolean example scheduling .. 60

Figure 37: Result of myXOR_1.. 61

Figure 38: Result of myAND_1 and myAND_2.. 62

Figure 39: Figure 5.6: Final result of myOR_1 ... 63

Figure 40: Synthesis report without register ... 65

Figure 41: Synthesis report with left edge register minimization 66

Figure 42: VHDL code without register minimization .. 67

Figure 43: VHDL code with Left Edge register minimization................................... 67

Figure 44: complete VHDL code without register minimization 74

Figure 45: complete VHDL code with register minimization.................................... 76

Figure 46: The used XOR component.. 77

Figure 47: The used OR component .. 78

Figure 48: The used AND component ... 79

Figure 49: The generated VHDL testbench... 81

Introduction page 1

1 Introduction

Common hardware design flows that are in use today, can not satisfy the

correctness requirements of cryptographic applications, where an implementation

error might violate the security. For this reason the Faculty of Integrated Circuits

and Systems at the Technical University of Darmstadt started to develop a new

design flow, appropriate for cryptographic applications. In contents of this work a

VHDLGenerator is designed, which is part of that new developed hardware design

flow. The objective of this VHDLGenerator is to convert a Data Flow Graph

description into synthesizable VHDL code.

A central aspect of the design flow is the desired support for automated

verification after code entry. Although it is aimed towards cryptography, most

aspects can be adopted to other domains. We will discuss first how the new design

flow looks like, and then we explain how this work is related to it. Finally the overall

structure is explained.

The proposed design flow is shown in Figure 1.1. The different design phases are

represented in the left column. The middle column denotes the actions required in the

corresponding design phase, while the right column gives concrete examples for each

design phase.

Introduction page 2

 Figure 1: proposed Design Flow

The first step consists of the Code Entry Phase. There the developer generates an

algorithmic implementation in the design language. The implementation has to

follow the requirements of a formal specification.

An automated verification tool is used to test the implementation against the

specification given by the developer.

The next step in the design flow is an automated scheduling and allocation

process. For this purpose the HCDM tool is used. The HCDM Generator is a tool that

has been created by Stephan Klaus [1] in contents of a dissertation at the Technical

University of Darmstadt. HCDM is used to describe data dependencies between

different tasks in form of task graphs. Scheduling and resource allocation is done

automatically. A more detailed description of the HCDM tool is given in chapter 2.

The last step of the design flow is the Code Generation. Right at this point starts

the work of the implemented VHDLGenerator. Its purpose is exactly to parse the

results of HCDM, i.e. the data flow graph together with the scheduling information

and generate synthesizable VHDL source code.

Introduction page 3

When starting to design the VHDLGenerator program one has to partition the

incidental converting work. It turned out to be of great advantage to introduce three

different working stages.

The structure of this thesis mirrors directly the internal stages of the

VHDLGenerator program. Composed out of three processing stages, the input is

parsed, then pre-processed and finally converted to VHDL code. All three stages are

written in Java [24].

The first stage parses the necessary files in order to extract all relevant

information. The Parser stage is described in chapter 3.3.

The second stage is the PreConverter stage, described in chapter 3.4. This stage

contains the heavy weighted methods that do most of the work. Register

minimization, Exception handling and the setting of the case-statements are only

some tasks that are handled by the PreConverter stage.

The third and final stage converts the pre-processed data to VHDL code. Because

of the extensive work of the PreConverter, the methods of this stage are more

light weighted. The VHDL generator stage is subject of chapter 3.4.

VHDLGenerator offers a fourth optional stage. Depending on the users settings a

testbench for the converted VHDL code can be created. How the testbench is

constructed is explained in chapter 3.4.2.

The VHDLGenerator usage is greatly simplified by creating a Graphical User

Interface (GUI) that is presented in chapter 4.

To demonstrate the correct behaviour of VHDLGenerator a benchmark program is

constructed. Chapter 5 tells how the test program and its results look like.

The Data Flow Graph Presentation page 4

2 The Data Flow Graph Presentation

In the next sections it is explained why we use Data Flow Graphs to describe high

level hardware applications. The background of graph theory is explained more in

detail, than it would have been necessary for this chapter. But when it comes to

explain Register Optimization this additional information will be helpful.

The HCDM tool is introduced as an easy and comfortable way to create task

graphs. The basic differences between Task Graphs and Data Flow Graphs are

described. It is explained how the Task Graphs, generated by HCDM, are

manipulated in order to obtain Data Flow Graphs.

2.1 Data Representation Form

When generating VHDL code it is of great importance to use an appropriate

representation form for implementation, that reflects the basic nature of hardware

description languages. Hardware implementations allow for example parallel

computation. So our chosen data representation form should support parallel

structures also. And second, we target dataflow intensive algorithms. While this is a

severe limitation in general, for HW implementations it is acceptable. The Control

Flow is described implicitly by the presetting for scheduling and allocation inside

HCDM.

Furthermore the representation form should be easy to extract by means of a parser.

Given the two criteria of parallel data representation and simplicity of extraction, a

graph based description turns out to be the best solution. We will use Data Flow

Graphs, which are a subtype of graphs that also allow representing external inputs

and outputs. In fact Data Flow Graphs show similar characteristics as digital

hardware components. In the DFG a task can only fire if all of its inputs are ready

and, the scheduled component is free to process. In the same manner VHDL

Components are constructed.

A general description of graph based data representation is following in the next

section.

To cover our second goal of extraction simplicity the previous mentioned HCDM

tool could be used. This tool allows drawing Task Graphs graphically via a GUI. It

The Data Flow Graph Presentation page 5

generates automatically a textual graph description, which follows a well-defined

grammar that could be used to construct a pattern for the parser. Moreover HCDM

also includes timing aspects. It performs scheduling of different tasks on predefined

resources. That issue covers the synchronisation aspect of common VHDL design.

With respect to these aspects HCDM is considered to be an appropriate tool. The last

sections of these paragraphs are dedicated to the HCDM tool.

2.2 Graphs in general

A graph G(V,E) consists of vertices V and its relations E. Vertices are often called

nodes. The relations E are the edges between the vertices. Graphs can be categorized

into two groups: directed graphs and undirected graphs.

Undirected graphs are graphs that express a slack relation between vertices with

temporal order between them. A compatibility graph is a good example for an

undirected graph. We will work with compatibility graphs in chapter 3.3.2 in context

of register optimization.

A directed graph got a directed dependency between consecutive vertices. In short, a

directed graph is an undirected graph but with a temporal order of its vertices. The

HCDM Tool uses directed graphs.

Directed graphs can be used to represent procedural languages with imperative

semantics. That means we want to express an algorithm with a language that takes

care of the execution order. Calculation of one step is therefore based on results of

the previous steps, which gives us a temporal order.

The representation of the calculation flow is done graphically in terms of

its vertices (the tasks, represented as nodes) and its relations (the dependencies,

represented as branches). The direction is indicated by drawing an arrow.

We discuss the differences between two types of sequencing graphs: the task graph

and the data flow graph.

The Data Flow Graph Presentation page 6

2.3 Task Graphs

The Task Graph is the one implemented forhe HCDM Generator. This sequencing

graph has only task vertices. That

includes, that also the

dependencies only relate tasks.

Task Graphs have two important

characteristics: They are acyclic

and polar. Acyclic means that the

graph includes a partial order

between its tasks. Polar means

that it got a source vertex at the

beginning and sink vertex at the

end of the graph. In the HCDM

tool the source vertex and the

sink vertex are joined to the Root

task.

0

1

2

3 4 5

6

n

7

* * + *
- +

<

NOP

NOP

 Figure 2: Task Graph example

This task does not implement any function but indicates the begin and the end of the

graph. This fact will be important later when it comes to parsing of the tasks.

All the initial tasks are successors of the Root Task and all final tasks are

predecessors of the Root Task. Figure 2.1 shows an example of a task graph.

Corresponding Tasks graphs designed by HCDM could look like the example in

Figure 2.2.

The Data Flow Graph Presentation page 7

 Figure 3: HCDM Task Graph example screenshot

The Data Flow Graph Presentation page 8

2.4 Data Flow Graphs

Compared to the Task Graph the Data Flow Graph (DFG) includes additional

vertices. To every task in the graph possible external operators are appended. So a

Data Flow Graph does not only give the data dependency between two consecutive

tasks, but also the dependency of every task on external inputs.

 Figure 4: Data Flow Graph example

The destination for the task result can be either another component or an external

output port. So a Data Flow Graph could be considered as an extended Task Graph.

Figure 2.3 shows an example of a Data Flow Graph.

out1

1

2

3 4 5

6

7

x dx y a 3

const.

b 2

out2 out3

+
<

-
+* * *

2.5 HCDM in general

The HCDM tool implements a set of genetic algorithms to generate an optimal

resource binding and scheduling for a set of allocated resources and a CoDesign

Model (CDM). A CDM is an extended Task Graph Model.

The HCDM flow graph is basically described in terms of processes, their resources

and the relations between them. Processes can be considered as tasks that run on a

specified resource. A resource could be a physical component on which the process

The Data Flow Graph Presentation page 9

runs. To every pair of process and resource and execution time is associated, which

describes for which period of time the process is running on the resource. The

different processes can be connected by branches. Branches represent data

dependencies, i.e. a process followed by a second process connected by a branch

indicates that the calculation of the second process is dependant on the results of the

first process.

In that way a directed hierarchical graph for representing algorithms of any kind can

be drawn. The Task Graph is entered graphically via a graphical user interface. From

the graphical representation a text file is generated that represents the textual

description of the graph. Note that the drawn HCDM data flow graph does only

specify the data dependencies of the implementation. It does not contain a sequential

ordering of the operations. The order is generated during the scheduling and does not

require any further user interaction. The designer has to define the resources and the

tool will generate a corresponding scheduling and allocation.

2.6 HCDM Grammar

HCDM produces two different output text files. One is a file with the textual

description of the graph. The other text file describes the scheduling for the different

tasks on the specified components. For parsing these two files later on, the meaning

of the grammar of these two files is important.

The whole HCDM grammar and an example of a graph text file written with the

HCDM grammar are added to the appendix of this thesis. For demonstration we state

here an example of a task description written in HCDM. Further examples are

following in the chapter on parsing.

The Data Flow Graph Presentation page 10

 Figure 5: Task description in HCDM

One can see that the graph description always starts with a declaration of the used

resources. Shortly after, the tasks are defined. Each task contains several fields for

setting task parame-ters. The HCDM grammar contains a PRIORITY field where the

parameter for list schedul-ing has to be entered. Safety critical task can be marked

inside the IMPORTANCE field. Furthermore the failure probability of a task can be

taken into account inside the FAILURE_PROBABILITY field. In the last section

the relation between the tasks are de-fined. Tasks are connected over branch numbers

inside IORELATION. These are all fields that are important for the original purpose

of HCDM which is to perform scheduling and binding for embedded systems. When

using HCDM for generating VHDL code most of these parameters will be ignored.

In fact we only consider here the ones that are relevant for our VHDL conversion.

More to this in the chapter on parsing.

The Scheduling File produced by HCDM is quite self-explanatory and does not

really need a specified grammar. The first line defines the start time and stop time of

every task. In the second line the binding of every task with its resource is stated.

TASK 14 {
 NAME { Par2 }
 OPTIMIZATIONTYPE { 1 }
 IMPORTANCE { 1 }
 FAILURE_PROBABILITY { 0.5 }
 LEVEL { -3 }
 PRIORITY { -4 }
 TIMING { 0 }
 RESOURCES { (2,20) (5,20) }
 IORELATIONS {
 IORELATION {
 INPUT { 84 181 }
 OUTPUT {78 }
 CONDITION { true }
 }
 }
 SUBTASKS {
 }
 }

The Data Flow Graph Presentation page 11

2.7 HCDM and Data Flow Graphs

As mentioned before HCDM has been created to design Task Graphs. That means

that the tool does not provide any methods to represent external operators, needed for

the Data Flow Graph.

Without changing the HCDM program itself, it is still possible to adapt its

functionality to create DFGs, which will be described next:

For creating the Task Graph, HCDM provides two graphical elements: Circles that

represent the Tasks and directed branches that represent the data dependencies. If we

want to represent external operators, the task circles could be used.

We use "pseudo" tasks to implement external inputs. External Inputs are defined

as Tasks that are direct successors of the root task. We can identify them by

comparing the branch numbers.

In quite the same manner the external outputs are simulated. Outputs are defined

to be the last tasks inside the DFG. They have outgoing branches back to the root

task, which is an adequate characteristic for filtering them out.

The name of the external operators is handed over the same name field as used for

the task names (see HCDM grammar). In the later converted VHDL code these

inputs also own a certain bit length.

Inside the HCDM grammar for the Task construct there are several possible fields

where to hand over the data type. In principle it is possible to enter the bit length into

any of the predefined Task fields like IMPORTANCE, LEVEL or TIMING that are

not used for our DFG converting. Because of simplicity and particularly because of

consistential reasons we decide to enter the bit length right behind the variable name,

separated by brackets. That implies, that when parsing the Task NAME field to

VHDL, the name itself and the bit length have to be separated and stored

individually.

The Data Flow Graph Compiler page 12

3 The Data Flow Graph Compiler

The nomination and structure that is applied to the VHDL Converter program is

basically the same that is also used to describe the behaviour of a compiler for high

level languages. In fact if we define a compiler accordingly to [5] as "a program that

translates programs written in a high-level programming language into native

machine language of a digital computer" the VHDL Converter can be considered as a

complier. In fact the program shows similar characteristics as a compiler and we will

orientate on the principles of compiler construction.

3.1 Compiler in general

In the next section the basic components of a common compiler are stated. Figure 6

shows the model of a common compiler.

TABLES

Lexical
Analyzer

Syntactic
Analyzer

Source
program

Semantic
Analyzer

Code
generator

Code
Optimizer

Object
program

 ANALYSIS SYNTHESIS

 Figure 6: Model of a classical compiler

The compilation process is composed out of two parts: The analysis of the source

program and the synthesis of its corresponding object program. During the analysis

part the source program is fragmented into its basic parts and processed via a lexical,

syntactic and semantic analyser. The pattern to distinguish between between

keywords and relevant information are taken out of tables. The Lexical Analyzer

needs tables to look up the Keyliterals, while the Syntactic Analyzer looks up the

Keywords.

The Data Flow Graph Compiler page 13

The extracted raw material is forwarded then to the synthesis which builds the

equivalent object program modules.

For our VHDLGenerator program we orientate on that classical compiler model.

Thereby the basic structure is kept the same to some extend. Figure 7 shows the

adjusted compiler model for VHDLGenerator.

TABLES

Lexical
Analyzer

Syntactic
Analyzer

Data Flow Graph
description

Semantic
Analyzer

Code
Optimizer

Code
Generator

VHDL
Code

 ANALYSIS SYNTHESIS

Scheduling
description

Components
description

Parser Stage

Error
recognizer

Testbench
Generator

VHDL
Testbench

PreConverter Stage Converter
Stage

 Figure 7: Model of the Data Flow Compiler

As it can be seen, instead of one source program, we receive three text files that

need to be extracted. In the drawing the analyzers are related to the Java classes in

which they are executed. The boxes in beige indicate the membership to each class.

Before the VHDL Code is generated an output register optimisation is performed via

Left Edge algorithm in the code optimization phase during the PreConverter stage.

Possible errors are detected and printed out. Optional a testbench could be generated.

In the following we will explain more in detail how the different stages work.

The Data Flow Graph Compiler page 14

3.2 The Parser stage

In this section the design of the HCDM parser will be developed. First an

introduction to parsing theory is given, where the different concepts and term

declarations are explained. It is shown how these concepts are applied to the actual

problem. A state chart diagram is developed to demonstrate the behaviour of the

implemented Java Parser.

3.2.1 Parser Theory

In general parsing is defined as a process that analyzes a given sequence of literals

and tries to extract the desired information according to a predefined grammar. That

is the so called syntax analysis. Before the information could be analyzed, the given

sequence needs to be sampled literal by literal, to extract the keywords.

The elementary operation of every syntax analysis is called lexical analysis. The

lexical analysis got as an input the literal sequence of the to be parsed data. It

identifies literals that belong together and passes them as Lexemes one layer up to the

syntax analysis.

The syntax analysis then uses the given grammar to figure out the meaning of

every Lexeme and the relation between adjacent Lexemes.

So a Parser can be thought of having two layers that work in parallel. On the first

layer a Lexemer scans the input sequence and produces valid Lexemes. To

distinguish between two successive Lexemes the Lexemer needs to know the

predefined separation literals. Separation literals can be set for example as white

space or closing braces. According to Maximal Munch Rule literals are assembled

until such a separation literal appears.

On the second layer a Tokenizer absorbs the Lexemes and produces tokens

according to the grammar. Tokens are considered to be a pair of Lexemes. First

Lexeme indicates the token type and second the token value. In most cases these two

Lexemes are consecutive in the parsed text. The tokens are stored for further

processing.

If we pick up the idea of seeing the VHDLGenerator as a Complier there has to be

a third stage following, the semantic analysis. During this step the actual meaning of

The Data Flow Graph Compiler page 15

the collected tokens is determined and an intermediate form of source code is

generated. The semantic analysis is done inside the PreConverter class and will be

explained in the following sections.

3.2.2 The HCDM Parser

The implemented HCDM Parser is orientated on the previously introduced parser

theory. We only make some slight changes in the nomenclature for the parser

program code. Instead of naming the assembled literals as Lexemes they are named

as Words. For the documentation we will use both synonyms.

Furthermore it is not possible to run the two processes for Syntax Analysis and

Lexical Analysis in parallel as it is recommended. That is basically due to the fact

that Java is interpreted sequentially. So we need to serialize the two processes. How

the serialization is realized can be seen from the state chart below.

To convert the Data Flow Graph into synthesizable VHDL code the necessary

information from three text files has to be parsed. Before we come to discuss the

parser itself, basic concepts of streaming text files in Java need to be explained.

3.2.2.1 Java streaming concepts in general

In order to parse, the available data has to be serialized previously. This means, we

need to find a method to read the data in and give it out literal by literal. In our case

the data will be at text file and a literal will be a single char value.

Java offers the possibility to handle data in form of streams that means to read and

create streams. A stream can be considered as a batch of data on its way from some

source to some specified destination. The big advantage is, that we can abstract from

the kind of data that is streamed. That way the destination process does not have to

care about where the stream comes from and the source process does not have to take

care where the string is going to. In our case we are parsing from a text file into a

storage variable of type Array List.

All inputs and outputs in Java are realized as streams. To use streams the package

java.io.* has to be included. The streams descend all from a common abstract

class. The class InputStream implements the interface Reader. OutputStream

The Data Flow Graph Compiler page 16

implements the interface Writer. All classes that inherit from one of the two classes

provide the basic same functionality.

The class Reader offers interfaces to open, read and close files. The class

InputStreamReader and StringReader implement that interface. For our purpose we

will use these two classes and another subclass called FileReader, which inherits

from InputStreamReader, to read the text files produced by HCDM. To create and

read streams with these classes is quite simple. If the path of the file is given to the

constructor of FileReader, the file is opened in the read modus automatically. If the

opening fails, a FileNotFoundException is thrown. So the method call always has to

be placed inside a try-catch block. More on the topic error and exception handling in

section 3.3.3.

Within a loop the method read() applied to the FileReader object returns the text,

sampled character by character. The return value is of type int and typcasted to char.

This will be the smallest data unit the parser will work with. According to parser

theory this single char value is nominated as Literal.

Inside the Parser code it will not only be necessary to parse a whole text file but

also to parse tokens out of a string. For this issue we use an instance of the class

StringReader. A string can be streamed in the similar way as a file.

The Parser only absorbs information out of text files and therefore we only need

instances of type Reader. But later on it will be required to stream the converted

VHDL code back into a text file. The output streaming in Java is done

simultaneously as for the input stream. The used instance is of type FileWriter and

implements the interface Writer. Like previously, the full path of the destination file

is handed over by the constructor. The method write() appends a given string to the

end of the text. The call has to be done inside a try catch block.

3.2.2.2 Parsing inside VHDL Converter

To construct the VHDL Code basically three different text files need to be parsed:

The HCDM file that describes the tasks, ports and the hierarchical relation between

them. The scheduling file sets start and stop times for the tasks and how they are bind

to the components. The scheduling is necessary because we are dealing with limited

The Data Flow Graph Compiler page 17

resources. We also need to know which components are available and how their

interface looks like. This information is contained in the components file.

The parsing procedure is quite the same for every text file of the three, so we will

explain it only once. First it is explained how the parsing is realized in general.

Second, the information we want to extract out of every file is stated.

The parsing process can be explained in terms of a deterministic finite state

machine that is shown in figure 9. To understand the state chart some explanation of

the expressions needs to be given:

Expression Meaning
valid Literal a literal that is a possible part of a Lexeme (word)
KeyLiteral A literal that determines the end of a Word

Word Lexeme
Word_ID Stores the meaning of the consequent Lexeme to built the token pair

not-relevant Lexem Lexeme that is not part of a Token
KeyWord First Lexeme of a Token (indicates the type of the token)

 Figure 8: State Chart expressions

The program enters into the checkLiteral state every time a new literal is pushed

out of the stream.

If the current literal is not a valid literal, that means not a KeyLiteral or part of

Lexeme, the parser breaks off the current iteration and takes the next literal in line. If

the literal is valid but not a KeyLiteral, the literal is accumulated to the current

Lexeme. KeyLiterals are defined for example as white space or closing braces. If one

of these characters comes out of the stream, the Lexeme accumulation is aborted and

the WordID is checked.

If a matching WordID is set, the current Lexeme has to be the second Lexeme of a

token pair. So the Token is stored. Analogous if the WordID is not set, the current

Lexeme is neither a non-relevant Lexeme nor a KeyWord of a token pair. In the last

case, the corresponding WordID is being set and the state machine continues

accumulating literals.

The Data Flow Graph Compiler page 18

check Literal

Accumulate
Literal

to Lexem

Set WordID Check WordID

No valid Literal /
break

- / break valid Literal / -

Key Literal
/stop Literal
Accumulation

Word / break

Word.Length=0
/ break

WordID set /
add Token

- / -

 Figure 9: Parser State Chart

3.2.2.3 Parsing the HCDM file

The file that contains most of the needed information is the HCDM.hcdm txt-file.

The HCDM file is, as already described in chapter 2, a textual description of the data

flow graph. So once the graph is drawn inside HCDM, the tool creates this file and

saves it into a specified directory. We now want to use the explained Java streaming

concepts and the Parser state machine to extract the relevant information out of the

HCDM File. The HCDM file contains a lot of not needed or redundant information.

Figure 10 demonstrates how Tasks are stated inside the HCDM grammar.

The Data Flow Graph Compiler page 19

 Figure 10: Task declaration inside HCDM

TASK 14 {

 NAME { Par2 } TASK DECLARATION

 OPTIMIZATIONTYPE { 1 }
 IMPORTANCE { 1 }
 FAILURE_PROBABILITY { 0.5 }
 LEVEL { -3 }
 PRIORITY { -4 }
 TIMING { 0 }
 RESOURCES { (2,20) (5,20) }
 IORELATIONS {
 IORELATION {

HIERACHICAL RELATION INPUT { 84 181 }
TO OTHER TASKS OUTPUT {78 }

 CONDITION { true }
 }
 }
 SUBTASKS {
 }
 }
 TASK 17 {

EXTERNAL INPUT
DECLARATION

 NAME { b[32] }

 OPTIMIZATIONTYPE { 1 }
 IMPORTANCE { 1 }
 FAILURE_PROBABILITY { 0.5 }
 LEVEL { -3 }
 PRIORITY { -4 }
 TIMING { 0 }
 RESOURCES { (4,0) }
 IORELATIONS {
 IORELATION {
 INPUT { 48 }

OUTGOING BRANCH OUTPUT {87 }

 CONDITION { true }
 }

The Data Flow Graph Compiler page 20

In fact the only information we want to get is: the name and bit width of external

inputs, the task names and the hierarchical relation between them. So out of the

HCDM grammar we choose the keywords NAME, INPUT and OUTPUT. When the

state machine is in the WordIDcheck state, the Token is constructed when the

WordID is set. So during the transition from this state back to the initial state, the

token has to be stored somewhere. We decided to build a class with name Task in

order to store all tokens. Tokens are stored inside attributes of this class.

The Parser pattern can be described best in terms of a Backus-Naur Form (BNF).

The BNF in figure 11 is referenced to the HCDM grammar stated in the appendix

and only describes the fields that are extracted by the parser.

 Figure 11: BNF description of Parser pattern

<name> → 'NAME { '<taskname> | <port>'}'.

<taskname> → θ| <string>.

<port> → θ| <portname> <leftdelimiter> <integer>
 <rightdelimiter>.

<portname> → θ| <string>.

<iorelation> → 'INPUT {' <idlist> '}'

 'OUTPUT {' <idlist> '}'.

<idlist> → θ| <integer> ' ' <idlist>.

<integer> → <digit> | <integer> <digit>.

<string> → <letter> | <string> <letter>.

<letter> → 'a' | 'b' | 'c' | ...| 'z' | 'A' | 'B' | 'C'
 | ... |'Z'.

<digit> → ' 1 ' | ' 2 ' | ' 3 ' | ' 4 ' | ' 5 ' | ' 6 '
 | ' 7 '| ' 8 ' | ' 9 ' | ' 0 ' .

<leftdelimiter> → '['.

<rightdelimiter> → ']'.

The Data Flow Graph Compiler page 21

Two important not yet mentioned design rules have to be taken into account when

drawing DFG's with HCDM:

1) When we model a component with a task symbol in HCDM, we have to take

 care that we are drawing the corresponding inputs of the task in exactly the

 same order as they are stated inside the component entity. If we do so HCDM

 will assign ascending branch numbers to the task and VHDLGenerator can

 parse the associations correctly.

2) If a task got more than one proceeding task, HCDM will generate an output

 branch for each proceeding task. In VHDL these outputs should only be

 related to one VHDL component output. Note that VHDLGenerator is aware

 of that and discards the different branches in a way that it produces a single

 output that is routed to every following component.

That way the parser goes from task to task, extracts the relevant information and

puts everything into a variable of type ArrayList. Once all tasks are extracted the

external input and output ports need to be separated from the real tasks to generate

the top level interface. So an algorithm is started that identifies input and output

ports, allocates them to the respective task and deletes them out of the ArrayList. To

filter out the external ports we make use of the previously mentioned fact that

external Inputs are designed tasks that are direct successors of the root task and

external Outputs have outgoing branches back to the root task .

The bit length of every input or output port is parsed from the name by using the

discussed Java StringReader concepts.

The Data Flow Graph Compiler page 22

3.2.2.4 Parsing the Scheduling File

 The second file produced by HCDM is a scheduling file like it is shown in

figure 12. The scheduling file is parsed in the same manner as the HCDM file.

 Figure 12: Scheduling File example

In the first line of the scheduling file the start and stop times of the tasks are listed.

Keywords are here the task names of the task that are already stored in the ArrayList

variable. To every task the start time and stop time token is assigned. Later on one

single time unit produced by HCDM will mapped to a single clock cycle inside the

VHDL code.

Note that the first entries in the scheduling file are the external inputs and outputs.

These have to be removed out of the task array afterwards. Also the word "true" is

only used as delimiter and is therefore ignored during the parsing process.

When the schedule parsing has finished, the parsing of the component-binding

starts. The trigger for the binding line is the keyword "BINDING" which is the first

word in line. Extracted Tokens are associated to the respective task.

true : b[32] (0 ,0), a[32] (0 , 0), top (0 , 20), Par2 (20 , 40), Par3 (20 , 40),
Bottom (60 , 70), result[32] (70 , 70),
--
 BINDING { (Par2-myAnd_2) (b[32]-Input_2) (Bottom-myOr_1) (top-
 myXor_1) (a[32]-Input_3) (Par3-myAnd_1) (result[32]-Output_1) }

3.2.2.5 Parsing the Components File

The components on which the tasks run have to be specified somewhere. For that

reason a text file is created to enter the needed components. To simplify the parsing

work we can completely abstract from the components behavior. In fact it is only

necessary to define the interface of a component. The behavior will be included later

as a library inside the generated VHDL code. Figure 13 shows how the components

file looks like. Note that the commentary will at the beginning will be ignored by the

parser.

The Data Flow Graph Compiler page 23

/* NOTE: Enter all used components, with their input and output ports,except the
"clk","reset" and "enable" which are generated automatically */

NAME {myXor} INPUT {a[32],b[32]} OUTPUT {result[32]}
NAME {myAnd} INPUT {a[32],b[32]} OUTPUT {result[32]}
NAME {myOr} INPUT {a[32],b[32],c[32]} OUTPUT {result[32]}

 Figure 13: Components File example

So to every component the following information has to be entered: the components

name, the inputs ports and output ports with the adequate bit width. Every

component is expected to have a clock, a reset and an enable input. So thesis

parameters are not entered by hand but generated automatically.

The components are parsed separately from the tasks and stored inside a different

ArrayList called UsedComponents. We will need them later for components

declaration inside the VHDL code. Furthermore they are used for error detection,

which will be subject of chapter 3.3.3.

3.3 The PreConverter stage

The Parser stage delivers two objects for further processing. One is called Tasks and

contains all assigned tasks with their specified attributes. The other is called

AllComponents and contains an ArrayList of all used VHDL components. The goal

of the PreConverter stage is now to prepare the collected data for the final VHDL

Converter stage.

In the following chapter the theory of the different processing steps of the

PreConverter are explained. Special attention is taken on the part about register

optimization.

The concepts are discussed in the same order as the related methods are executed

inside the PreConverter code.

3.3.1 Sorting of the Tasks

During the execution of the VHDLGenerator program it occurs quite often that we

have to sort arrays. Ports need to be sorted by their branch number, case-statements

by their execution time and tasks by their start time. So because of the high usage of

The Data Flow Graph Compiler page 24

sorting algorithm it is worth to have a deeper look in it, in order to choose the most

appropriate one.

When we want to perform the Left Edge algorithm it is of great importance to have

the tasks sorted in ascending order to their Start Times. So the first step of the

PreConverter stage is the sorting of the tasks.

An appropriate algorithm for sorting has to be selected. Appropriate algorithm means

here that we want to find an algorithm that sorts a given set of items with the lowest

complexity. We define complexity here as number of steps and time units.

In general one can categorize sorting algorithms either by their algorithm structure (

Divide&Conquer form [9]) or by their complexity [10]. Using the second

categorization most of the common sorting algorithms are divided further into

basically two classes of algorithms with respect to their execution time. For the first

class of algorithms, the execution time increases quadratic ally with the number of

items. The second class needs n*log n complexity with being n the number of items.

Figure 14 and 15 [10] demonstrate how typical algorithms of each class behave for

large n.

Big-O notation is used, where the O represents the complexity of the algorithm, n

stands for the number of items to be sorted and the whole expression inside

parenthesis determines a measure for complexity.

Inside the complexity class the algorithms may still vary in their constant runtime

factor (how much time each of the n*log n steps takes).

The Data Flow Graph Compiler page 25

 Figure 14: O(n2) sorts

 Figure 15: O(n log b) sorts
As it can be seen the Quick Sort algorithm yields the best performance. Quick sort

works onto the divide-and-conquer principle and uses recursive structures. That may

cause problems for applications with resource limitation. For VHDLGenerator we

The Data Flow Graph Compiler page 26

expect to have sufficient computation power and memory space, so that recursion is

not a drawback for us.

The dividing (partitioning) works in a way that we first choose a pivot element. All

elements that are greater than the pivot element are put into a new partition. All

elements that are smaller than the pivot are put into a second partition. Then the

algorithm is repeated for each partition separately. At the end all partitions are

concatenated.

Figure 16 [9] gives pseudo code for the Quicksort algorithm:

 Figure 16: Quicksort pseudo code

Quicksort(X,l,r)

1 if l<r

2 then split ← PARTITION(X,l,r)

3 Quicksort(X,l,split)

4 Quicksort(X,split+1,r)

PARTITION(X,l,r)

1 pivot ← X [l]

2 i ← l-1

3 j ← r+1

4 while TRUE

5 do repeat j←j-1

6 until X [j] <= pivot

7 repeat i←i+1

8 until X [i] >= pivot

9 if i<j

10 then exchange X [i] ↔ X [j]

11 else return j

The Data Flow Graph Compiler page 27

3.3.2 Register Optimization

The implemented VHDL Converter has to deal with resource constraints. On one

hand the number of available instances of one component type is limited. This

implicates a scheduling of the tasks which is done by the HCDM tool and will not be

discussed further. On the other hand we want to use a minimum amount of registers.

A result coming out of one of the components has to be stored in a register until it is

further processed. A register in VHDLGenerator is considered to be a signal of type

std_logic_vector with the same bit length as the result vector. Depending on the task

hierarchy not every result needs a private register. A register could be reused once

the previous value has been passed to the input of the next component. So we would

like to find an algorithm for yielding an optimum number of registers.

A result of a component can be considered as a variable with a certain lifetime.

The Lifetime of a variable is defined as "the interval from its birth to its death, where

the former is the time at which the value is generated as an output of an operation

and the latter is the latest time at which the variable is referenced as an input to

another operation"[2].

So first step would be to find the BirthTime and DeathTime of every task result.

As it has been already turned out during the parsing of the Tasks it is always quite

useful to extract the desired information and store it into an object ArrayList for

further processing. We will proceed here in the same way. For these purposes a class

TaskOuputLifetime is created that contains the following attributes which have to be

set for every task: TaskName, BirthTime, DeathTime, RegisterName and

RegisterBitWidth. So the ArrayList is filled with TaskOutputLifetime objects

corresponding to every task.

The BirthTime attribute is identically with the Stoptime attribute inside the task

object and can be taken over directly. Note that the Stoptime is stated inside the

scheduling file and has been parsed in the parser stage before.

The DeadTime is found out with a bit more effort. If an output variable is used as

input for more than one component, we need to find the component with the latest

StartTime, i.e. we are looking for the maximum of all possible proceeding

DeathTimes. So we first check which are the successor tasks of our current task.

Then the StartTime of each is collected into an array. After having done this we go

The Data Flow Graph Compiler page 28

through this array, compare all elements with each other, pick up the highest value

and assign this value to the DeathTimes attribute of the current TaskOutputLifetime

object. The procedure is then repeated for every task until all lifetimes of the task

outputs are found.

With this data now the optimum number of needed output register can be

calculated using a minimization algorithm. There are basically two different methods

to proceed: Finding the minimum number of registers either using

Clique Partitioning or using Graph Coloring.

Clique Partitioning is described in [2] and has been first implemented by Tseng

[15]. We observe that solving the register optimization with clique partitioning is

NP - Complete. It does not guarantee an optimal result.

The second alternative is the Graph Colouring approach. This algorithm promises

optimal results with complexity O(n^2). An appropriate representative of Graph

Colouring algorithms is the Left-Edge Algorithm.

We will first explain the theoretical background of the left edge algorithm, talk

about its development and then show how it is realized inside VHDL Converter.

Accordingly to [2] the underlying theory of the Left Edge Algorithm is the Graph

Colouring optimization problem. The Graph Colouring searches a vertex colouring

with a minimum number of colours. In the algorithm below the different colours are

represented by integer numbers.

 Figure 17: Vertex Coloring pseudo code

VERTEX_CO
1 for(i = 1 to |V|){

LOR(G(V,E)){

2 c=1;

3 while(∃ a vertex adjacent to with color

c) do {
iv

4 c= c + 1;
5 }

6 Label v with color c; i
7 }

The Data Flow Graph Compiler page 29

At the beginning every node got a colour number of 0. The algorithm is applied to

the compatibility graph in figure 18. Note that compatibility graphs are undirected

graphs.

 Figure 18: Compatibility Graph

The result is shown in Figure19. In comparison figure 20 shows the optimum

colouring. So the colouring graph algorithm does not yield optimal results. One way

to improve the algorithm is the swapping colour method. In our example we reach

the optimal solution either by backtracking or by swapping the colours of vertex v5

and v4.

 Figure 19: Non-minimum Coloring Figure 20: Minimum Coloring

Fortunately the Left Edge Algorithm holds an interesting property. The underlying

graph built with our concept of lifetimes of variables belongs to a subgroup of graphs

called interval graphs. Colouring the intervals is equivalent to colouring the vertices.

For interval graphs the colouring algorithm needs polynomial time for solving and

4

1

6

2

3 5

4

1

6

2

3 5

4

5 3

1 2

6

The Data Flow Graph Compiler page 30

one important note: the result is optimal. This is based on the fact that interval

graphs have perfect vertex elimination scheme. For detailed description on the

definition of perfect graphs and perfect vertex elimination scheme take a look inside

[2]. For Perfect Vertex Elimination Scheme there is no need of backtracking or

colour swapping.

The original Left Edge Algorithm as proposed by Hashimoto and Stevens[13] has

been developed to solve channel routing problems. The goal was to assign wires to a

minimum number of routing tracks.

As a first step the wires are sorted with increasing order of their left end points

from the left edge of the channel. That is the reason why this algorithm is called

"Left-Edge". Now the assignment starts. The first wire at the left is assigned to the

first track. Then we find the first wire whose left edge is to the right of the last

selected wire and assign this one to the current track. If we reach the last column, the

assigned wires are removed and a new track is started.

This algorithm is repeated until no more wires can be assigned to tracks. Figure 21

[14] shows the pseudo code for the proposed algorithm

The Data Flow Graph Compiler page 31

 Figure 21: Left Edge pseudo code

As it can be seen Left Edge algorithm uses a Greedy approach. Nevertheless the

Left Edge Algorithm gains an optimal solution and is of complexity O(n2).[14].

Kurdahi and Parker [14] grabbed this idea and used the same principle for register

minimization. There the wires correspond to the previous discussed lifetime of

variables and the routing tracks are the to be minimized registers. The left and right

edges of the wires are considered to represent the birth and death time of a variable

formally known as lifetime. Accordingly to [14] all different lifetimes have to be

collected inside a table. We have already discussed the procedure at the beginning of

the chapter. Having done this, the goal of the Left Edge Algorithm is to assign output

variables(wires) to registers(tracks) so as to minimize the total number of

registers(tracks) to store the output value. Two wires cannot share a track if they

overlap in space, whereas two variables cannot share a register if they overlap with

their lifetimes.

The presented algorithm is used inside the program REAL (Program for REgister

ALlocation) which has been developed by Kurdahi and Parker. Very similar to

Algorithm LEA

Begin

1 Sort all nets on their left most end positions:

2 Initialize the tracks , , ... , dt1t 2t

 (t is the lowest track); 1

∈jn3 for each net sorted list

4 for each t , i from 1 to d i

5 if doesn´t overlap with any nets

in t
jn

i

6 then assign to jn it

7 endfor

8 delete jn from the list

9 endfor

END.

The Data Flow Graph Compiler page 32

VHDLGenerator, REAL gets as input a data flow graph whose operations have been

scheduled, along with a lifetime table of the values in the DFG. REAL also has to

deal with resource constraints, like number and type of operators used to implement

the operations. Scheduling can be overlapping. In the paper of Kurdahi and Parker

also register allocation for conditional branches is discussed. Conditional branches

are not supported by HCDM so far and will not be discussed in contents of this work.

As REAL is optimal for non-pipelined designs with no conditional branches we also

expect VHDLGenerator to give optimal results when using the same algorithm.

As implemented inside VHDLGenerator, the Left Edge Algorithm works in a

quite simple but efficient way. The encoding in Java is realised based on the pseudo

code shown in figure 22.

Lifetimes are extracted as explained before.

Note that the first step of the Left Edge algorithm, the ordering of the lifetimes is

done inherently when the tasks are sorted by their lifetimes, as shown in part 3.1.1.

The next step would be to pick up the first lifetime, allocate it to a register (colour)

and check for overlapping with other lifetimes. If we consider the tasks to be sorted

in ascending order to their Start Times a criterion for non overlapping lifetimes can

be formulated quite easy:

 Two Lifetimes do not overlap, when the death time of the first is smaller or

 equal the start time of the next lifetime.

Outputs with non overlapping lifetimes are packed into one register. Then the first

element is deleted and the algorithm starts again. The whole procedure is repeated

until all lifetimes are processed. As a final step the found lifetime register pairs are

transferred to the tasks in a way that inside the task object the corresponding

OutputRegister attribute is set.

The Data Flow Graph Compiler page 33

 Figure 22: Left Edge pseudo code for VHDLGenerator

Note that PreConverter also offers another method with name

allocateOutputRegister(). This method allocates non minimized registers to the tasks,

i.e. every task gets a separate output register. This method could be used instead of

the doLeftEdgeAlgorithm() method when we do not have to deal with resource

constraints. The user of VHDLGenerator has can choose between these two modes in

the graphical user interface.

ALGORITHM VHDL_GENERATOR_LEA
BEGIN
1 SORT tasks in ascending order to their start times
2 EXTRACT all Lifetimes and store them.
3 LOOP
4 irst element out of lifetimes Take f
6 LOOP //Compare to all other lifetimes
7 IF(Deathtime of first Lifetime <=
 Birthtime of next Lifetime)
8 ASSIGN both tasks to same register

9 END IF
10 REMOVE first lifetime out of list
11 END LOOP
12 END LOOP

3.3.3 Error-detection and recovery techniques

Although various tests have shown that VHDLGenerator program itself

accomplishes its job in a correct way, you are never aware of faults that are

introduced from the user's side. What is desirable is software that reacts robust to the

users input. Software "is robust if it describes reasonable behaviour even when it is

misused or used in error "[12]. Of course "reasonable" is an expandable item. We

will define it here for the VHDLGenerator in a way that we say: the program should

catch inputs that lead to a failure. The user should be informed where and why the

error occurred.

Furthermore it is often of use, to test the obtained results against the specification

for faults. How to write system level tests for VHDL programs will be part of

chapter 3.4.

The Data Flow Graph Compiler page 34

We categorize possible faults into three abstraction levels on which they may

appear. Figure 23 illustrates the different error levels where the intensity of the color

indicates the impact of the error on the design.

On first level there are the faults that are inserted on the syntactical level. That

means for some reason the given input is faulty and cannot be further processed. In

our case a level one fault could be a mistake due to the grammar of the to be parsed

text. Level one faults can be detected as an error very soon during the processing of

the program and therefore do not lead to a failure.

On the second level we have to deal with faults that entered in a way that they are

not detected as an error by the program itself. The faults are handed over through the

whole process and end in a complete failure when the final operation is put into

process. These kinds of faults are the worst because they may end in production

errors. So it is highly recommendable to catch these faults and transform them into

an error before they end up into a failure.

 Figure 23: Error Level classification

On the third level we want to handle faults that result neither into an error nor into

a failure. These faults are made at the behavioural description of the input. In our

case this means that the entered algorithm graph does not follow its specification.

Like in a compiler these kinds of faults cannot be detected, because they take into

account the given specification on which the entered algorithm is based.

VHDLGenerator has no knowledge about that. The only chance to get rid of these

TestbenchGenerat
or.java

A
lgorithm

- Saftey critical
LEVEL 3 - Difficult to detect

PreConverter.java S
em

antic
→ checkPorts() LEVEL 2 - Highly saftey critical

- Difficult to detect

HdcdmParser.java S
yntax

- Less saftey critical LEVEL 1 - Easy to detect

The Data Flow Graph Compiler page 35

faults is to demonstrate the programmer how his implemented algorithm works. The

programmer himself has to compare the result with the desired specification and

perform possible changes.

In this chapter we will only discuss the faults of level one and two because these

are the kind of faults that are treated by the HCDMParser and PreConverter stage.

Third level faults are subject of chapter 3.4.

3.3.3.1 Java Exception handling in general

Java offers comfortable constructs to catch and handle errors in form of exceptions

in programs. In general an exception in Java is an event, which occurs during the

execution of a program, and disrupts the normal flow of the program's instructions.

The program flow is then bended over to the exception handling routine.

All exceptions are thrown inside the execution of a method. Methods that are able

to throw exceptions got the extension throws Exceptions next to the method

identifier.

Exception is a Java class of its own. There exist several classes that inherit from

Exception and specify the different types of Exceptions. Note that one can also create

an own exception class and define a specific behaviour there.

So throwing an exception means creating an instance of this class and hand it over

to the runtime system. The runtime system has to find an appropriate handler for the

exception. As first step the runtime system gives the exception to the method above

that calls the method in which the exception is thrown. The calling method either has

to catch the exception and handle it or forward it to the method above. In the last

case a new exception object has to be created that encapsulates the original exception

message. That way an exception can be handed from the method it occurred up to the

first method executed in the program. If not before, the exception has to be definitely

handled there. The scheme is shown in the figure 24.

The Data Flow Graph Compiler page 36

 Figure 24: Exception handling in Java

Exceptions objects are created and thrown using the keywords new and throw.

Messages are added over the constructor field. The throw statement could be

embedded for example into an if-clause like:

 Figure 25: throw statement

In the calling method, all methods that might throw an exception have to be placed

inside a try-catch block. Methods following after a try statement are executed and in

case of an exception the runtime system jumps into the appropriate catch block. The

stress lies upon "appropriate" catch block. The calling method can only handle

exceptions that are part of one of its catch blocks. If for example a method throws an

Method in
which exception

occurs

Calling method
with

exception handler

throws

Looking for an appropriate
handler Calling method

with
exception handler

forwards

Looking for an appropriate
handler

main

handles
exception

last method where
to handle the
exception

public void example() throws ExceptionType{
 if(condition){
 throw new ExceptionType(Message);
 }
}

The Data Flow Graph Compiler page 37

exception of type IOException, then the calling method needs a case statement that

covers this type. An example is shown in figure 26.

 Figure 26: try-catch

There exist other concepts like the finally block, which will not be discussed here.

When writing an Exception handler for VHDLGenerator we will need to know how

to create own Exception classes and how to throw, catch and handle Exceptions in

Java.

try{
 example(); // throws a
ExceptionType
} catch (FileNotFoundException f){
 ...
} catch (ExceptionType e){
 ...
}

3.3.3.2 Exception handling inside VHDLGenerator

As mentioned in the introduction of this chapter, one of the goals of the

HCDMParser and PreConverter stage is to catch and handle faults of level one and

two.

First we like to figure out all possible faults that might appear when executing

VHDLGenerator and categorize them. The table in Figure 27 shows one out of

several possibilities how to classify the different faults. The table is thought as a

reference for the user to get a more detailed documentation of the error message

printed out by VHDLGenerator.

Every error got an error code that is printed out. Errors belonging to level one are

of format 1.x, level two starts with 2.x. The Java Exception Type divides the levels

further into the different Exception classes. All possible exceptions could be only

generated in classes that contain executable methods, namely HCDMParser,

PreConverter and VHDLGenerator. The location column gives information about

working step in which the exception was thrown. Finally a description of the error

and short proposition for solving is given.

The Data Flow Graph Compiler page 38

Note that all exceptions thrown are forwarded up to the very first calling method,

where they are handled.

Level one exceptions occur when input data is faulty and the runtime system

cannot proceed. These exceptions are safety non-critical because they result directly

in an error and do not sneak through the whole process. They are generated by the

Java runtime system automatically. An object is created and a message is added. All

we have to do is write an appropriate handler that catches the exception, add an

individual text and finally print out the whole message.

Level two faults are safety critical and also more difficult to detect. Let us see why

and how they could appear:

VHDLGenerator does not take care whether the produced VHDL code is

compilable or not. It just converts given input files into text file which contents could

be interpreted as VHDL code. No guarantee of syntactical or semantic correctness is

given. Some of these errors inside the VHDL code are detected by the VHDL

Compiler and can therefore be corrected afterwards. But we could also imagine a

scenario, where errors are not even recognized during the synthesis.

So in order to reduce possible error sources VHDLGenerator should adapt to at

least two faulty "level two" user inputs:

Every tasks runs on a component that got a specified number of input ports. So a

task needs as many inputs branches as the corresponding component got input ports.

We should beware of assigning more ports, because then one will be unused.

Assigning fewer ports will lead to floating ports which causes undetermined system

behaviour.

Once it is checked whether the number of input ports fit, we further have to verify

the bit length of each port. In the Components File the bit length of every component

port is stated in brackets next to the identifier. The Input ports bit length has to match

with this bit length. Otherwise similar problems than for the previous case appear.

We have to check for over and under assignment of bit length.

All level two faults are detected by the method checkPorts() inside the

PreConverter stage.

The Data Flow Graph Compiler page 39

checkPorts() throws an exception of type PortException. PortException is a self-

made Exception type, that does nothing more than specify the level two exceptions

and store messages.

The procedure for finding the errors is straightforward. One loop iterates all tasks

and compares the number of ports with the associated component ports. If a

mismatch occurs a PortException with error report is thrown. The same procedure

applies for a bit width mismatch.

The Data Flow Graph Compiler page 40

Error
Code

Java
Exception Location Description

1.1 IOException HcdmParser The desired Hcdm File is not found in the given
 filepath.
 Make sure that the path is correct and the
 HCDM File really exists inside the specified
 directory.
 Note that directories have to be
 separated by "//".
 New entered paths always have to be
 confirmed with "Enter"

1.2 IOException HcdmParser The desired Scheduling File is not found in the
 given filepath.
 Make sure that the path is correct and the
 Scheduling File really exists inside the
 specified directory.
 Note that directories have to be
 separated by "//".
 New entered paths always have to be
 confirmed with "Enter"

1.3 IOException HcdmParser The desired Components File is not found
 in the given filepath.
 Make sure that the path is correct and the
 Components File really exists inside the
 specified directory.
 Note that directories have to be
 separated by "//".
 New entered paths always have to be
 confirmed with "Enter"

1.4 IOException VHDLConverter The desired path to which the Vhdl File
 should be created is not valid.
 Please enter a reachable directory.
 Note that directories have to be
 separated by "//".
 New entered paths always have to be

1.5 IOException TestbenchGenerator The Testbench could not be created.
 TestbenchGenerator uses the same destination
 path as already used for the VHDL file.
 Look further for Error Code 1.4

The Data Flow Graph Compiler page 41

Error
Code

Java
Exception Location Description

 the VHDL file could not be found on the
 computer.
 Make sure that the spelling is correct and that
 the specified program is able to read text files.
 Note that the code is a simple text file and can
 always be opened by a text editor like
 "notepad" or "Kedit"

1.7 Exception PreConverter HCDM File Syntax incorrect.
 The information is entered in the wrong way.
 Recheck the grammar

1.7 Exception PreConverter Scheduling File Syntax incorrect.
 The information is entered in the wrong way
 due to the grammar. Verify that the scheduling
 file got the correct format.
 The correct format is stated in the
 VHDLGenerator Reference Manual

1.7 Exception PreConverter Components File Syntax incorrect.
 The information is entered in the wrong way
 Recheck the grammar

1.8 Exception VHDLConverter The converting to VHDL failed.

Make sure that the data flow graph is specified
in a

 correct way (no loops, no tasks without inputs).

1.9 Exception TestbenchGenerator Testbench could not be created.
 Recheck if VHDL code is testable.

2.0 PortException PreConverter More Ports are assigned to the component
 than allowed.
 Increase either number of ports or
 decrease number of component ports

2.2 PortException PreConverter The Input port bit width does not fit with the
 specified component input bit width.
 Change either Input Bit Width of Port or
 component

2.3 PortException PreConverter The output port bit width does not fit with the
 specified component output bit width.
 Change either Output Bit Width of Port or
 component

 Figure 27: Error Type Reference

The Data Flow Graph Compiler page 42

3.4 The Converter stage

The VHDL Converter stage finally converts all collected and pre-processed data to

synthesizable VHDL code. We make use of the Java streaming concepts already

discussed in Chapter 3.2.2 to write a character stream into a text file.

3.4.1 The VHDL Code Generator

In the DFG a task can only fire if all of its inputs are ready and, the scheduled

component is free to process. When generating the VHDL code, these semantics

should be implemented carefully in the code so that the resulting hardware has got

the same behaviour intended by the original DFG. The conversion is done correctly,

when the DFG description and the synthesized hardware have the same input to

output characteristics.

The ports define the interface of our entity and are generated first. The whole

design is synchronous, which means inputs and outputs of components are written

and read synchronously to the clock. So first input will be clk. The clock should work

at the same frequency used for the DFG scheduling and will be distributed to all

components later on.

For synchronous design it is also quite common to define a reset signal to set the

circuit back to the initial state. The global reset is defined as low active.

Third input is a one bit wide input called enable that starts the processing of every

component.

These three single bit inputs are the same for every DFG entity and are generated

automatically.

Next come the input and output ports of the DFG. Because the PreConverter has

already processed the data, the Input and Output ports are easy to find. If a task got

an external input or output, it is already stated in one of its attributes. So

VHDLGenerator just has to check if some Tasks got same ports and then write the

port with corresponding bit length into the output stream. The methods

setInputPorts() and setOutputPorts() are responsible for this work.

Then the underlying architecture has to be written. The architecture starts with the

declaration of used components. Fortunately the used components are already

The Data Flow Graph Compiler page 43

extracted inside the PreConverter stage. They are all stored in the variable

UsedComponents and with a proper framework of the VHDL syntax they can be

pushed directly to the output stream.

Every Input and Output Port of the components needs a buffer variable over which

values are entered and red. The results of the components are written to registers.

The method for allocating the registers is called declareRegister(). Depending on the

used algorithm in the PreConverter stage, one register per component result or a

minimum number of registers according to LEFTEDGE algorithm is generated.

After the begin clause in VHDL the port map is done. Named pormapping is used

for the generated VHDL code.

The scheduling in VHDL has to be realized inside a process statement, that is

sensitive to clk and reset .

We need a scheduler variable that triggers the corresponding inputs to components

and takes the results back at the right point of time. The scheduler is realized as a

counter that is incremented at every rising edge of the clock. The case statements are

elaborated during the PreConverter Stage and can be put directly into the output

stream with the right VHDL framework.

The Data Flow Graph Compiler page 44

3.4.2 The VHDL Testbench Generator

This chapter treats with the third class of error types not yet discussed in

chapter 3.3. These errors appear on the logic level. The user should have a possibility

to compare the current implementation to the given specification.

3.4.2.1 Testbenches in general

For VHDL models it is quite common to write so called testbenches for testing

purposes. A testbench is a VHDL description itself with the difference that we do not

define a port interface. The port declaration inside the entity is kept empty.

The tested model is instantiated as a component and port mapped to internal test

signals.

The internal testbench signals receive test vectors at different points in time using

concurrent statements. The keyword after followed by a time notation tells the

simulator tool to assign that value at the specified point in time. Note that the after

clause is not synthesizable and only used for simulation purposes.

 Figure 28: VHDL Testbench

The testbench and the proper VHDL code are handed over to the simulator, which

represents the circuit behaviour in graphical form as a wave.

 testbench

model

3.4.2.2 Testbench creating for VHDL Converter

The name as well as the directory are constructed using the entered VHDL File

path. The testbench uses basically the same concepts of streaming and declaration

methods for the VHDL statements as the VHDLConverter stage. For assigning the

The Data Flow Graph Compiler page 45

testbench variables it is quite helpful that the VHDLConverter class hands over an

ArrayList called EntityInputPorts that contains the interface of our VHDL model. If

we do so the testbench variables can be allocated much easier.

The assigned testvectors are constructed per default using a random pattern. The

algorithm for designing the random pattern is slightly tricky. The Java API provides

a class called Random. When applying the method nextInt() to an instance of the

Random class a pseudo random 32 bit integer number is given back. The method

toBinaryString() returns the corresponding binary value as a string.

We have to deal with basically two major problems that occur when calling the

nextInt() method. If the generated random number does not cover all the given port

bit width, we get a truncated bit vector, that leads to errors during the VHDL

compiling process. That is why we have to pad leading zeros in this case.

Another problem is the limited range of the produced random values.

Unfortunately the Java API only provides indexed random methods up to 32 bit

integer values. That means we receive a maximum bit width of 31 bit (1 bit reserved

for the sign). VHDLGenerator is planned to be used for description of encryption

algorithms, where bit length of 128 bit and more are quite common. To create

appropriate testbenches we need to be able to extend the vector format to an arbitrary

length. This is realised in VHDLGenerator by concatenating the random 32-bit

values. The description of the concatenating algorithm can be formulated as

described in figure 29.

 Figure 29: concatenating algorithm description

With the described algorithm random test vectors of arbitrarily size can be

constructed.

1. Concatenate n times the 31 bit generated random value

31
thPortBitWidn =Nn∈ is calculated as: rounded down to next

 integer number.
2. Do zeros padding every time the random number does not go over the full 31
 bit range.
3. Pad the remaining bits of port width with random values

31×−= nthPortBitWidremainder The remainder is calculated as:
4. Do zero padding if generated random number does not go over the full range of
 the remainder width.
5. Assign concatenate random value to testbench variable.

The Data Flow Graph Compiler page 46

The corresponding assignment time for every test vector is generated out of the

Runtime variable handed over from the previous stage.

The testbench serves as evaluation for the structural design. A functional

verification is not possible, because VHDLGenerator does not have information on

the functionality. Thus for example CRC (cyclic redundancy check) could not be

tested because the Random class does not provide methods, that generate correct

checksums.

The Graphical User Interface page 47

4 The Graphical User Interface

Using the Graphical User Interface (GUI) is a comfortable way to work with

VHDLGenerator. The following section gives a short introduction into the concepts

of GUI programming in Java.

In the last section the VHDLGenerator GUI itself is discussed. That section is also

part of the reference manual.

4.1 Java Swing vs. AWT

The Java Foundation Classes (JFC) offer two basic sets of components, used for

building a GUI: The Abstract Window Toolkit (AWT) and Swing. Before starting we

have to figure out which one is best to use for our case. Let us emphasize some

properties of both sets and point out the main differences.

The AWT classes provide a rich set of user interface components and a robust

event handling model for GUI programming. The included Layout Manager allows

the creating of flexible window layouts which do not depend on a particular window

size or screen resolution. The AWT components depend on native code counterparts

(called peers) to handle their functionality. Therefore these components are also

called heavyweight components in contrast to lightweight components which are

used inside the Swing classes. The AWT delegates the painting of components as

well as monitoring and controlling to the runtime system. Actual graphical operating

systems like Windows XP or MacOSX got complex libraries that contain the desired

components. These libraries are only available in a compiled form as binary data.

Therefore you do not have the possibility to change or extend the given components.

The Swing classes contain all features of the AWT. The big difference is that the

Swing components are operating system independent. All used components inherit

from the class ComponentUI and are therefore purely written in Java. Components

provided by the operating systems are no longer used.

We decide to take most of the components out of the Swing classes because

compared to AWT, Swing got the following advantages.

- Swing Components are available for all operating systems

The Graphical User Interface page 48

- Programs using the swing components look the same for all operation

 systems. That is useful with respect to the portability of our VHDLGenerator

 program. We want VHDLGenerator GUI to run also on different operating

 systems like Linux or Windows XP without a significant change of the GUI

 panel.

- Swing Components are 100% coded in Java, that implicates that we are also

 compatible to other hardware-platforms.

- Swing Components uses Pluggable Look and Feel that allows an

 interchangeable graphical representation.

- Swing contains more than four times as many components as AWT .

Beside all advantages there exist only some small drawbacks that are negligible.

Because all components are emulated in Java the execution reduces a slightly in

speed. But with regard to the working power of actual computers, the difference is

not really noticeable.

4.2 The Model-View-Controller Architecture in Java

To make full use of all the Java Swing GUI power, one has to understand the

underlying architecture. Swing uses a modified Model-View-Controller-Architecture

(MVC). We will first explain the MVC and then show how these concepts are

modified for Swing.

As it can be seen from Figure 30, the architecture is composed of the interaction of

three instances:

The Graphical User Interface page 49

Model

Controller View

Model: The Model describes the properties of the component. Properties are

 for example the colour, size or labelling.

View: The View is responsible for

 representing the component

 graphical, depending on the

 adjustments made before.

 Because the view is

 separated one can easily

 interchange the Look & Feel.
 Figure 30: classical MVC architecture

Controller: The Controller is responsible for the interaction with the user.

 It receives an input, like a mouse click or a menu select and

 processes it. Processing means here that a proper action inside

 software takes place. The Controller also notifies the Model to

 update the View.

In Practice the classical division between View and Controller turned out to have a

to high communication complexity. Therefore the Swing architecture uses a modified

architecture.

View and Controller are merged

together to the Delegate. Inside the

Delegate, the Controller is called

Listener. The Listener listens for

events that take place on the

component and perform the desired

action.

 Figure 31: Swing MVC architecture

Model

Delegate
Controller View

The Graphical User Interface page 50

4.3 The VHDLGenerator GUI

The VHDLGenerator GUI is composed of the two classes GUIPanel and

GUIFrame. GuiFrame contains the main method from which the program is started.

The entry method is the constructor of GUIPanel. Inside the GUIPanel the used

components and labels are declared. We need to choose a layout manager to

determine the position and size of every component.

Java Swing offers several layout managers. We choose the GridBagLayout which

is a bit more complex but also more powerful layout manager. With GridBagLayout

it is possible to place components at any desired horizontal or vertical position.

The panel is organized in rows and columns that form cells of arbitrary size. Each

component is placed inside a cell. Figure 32 [23] shows an example how the cell

organisation could look like.

 Figure 32: GridBagLayout example screenshot
GridBagLayout works basically with two objects of type GridBagLayout and

GridBagConstraints that implement the model inside the MVC architecture.

The GridBagLayout is the layout manager that organizes the components on the

panel based on predefined constraints. The constraints are set with the

GridBagConstraints object. GridBagConstraints objects got several attributes that

could be set to define the exact position and size of every component individually.

We are making most use out of the attributes gridx and gridy. These two are used to

define a number of the cell in x- and y-direction where you want to place the current

component. With the insets variable the border space to adjacent components could

be set. Once all desired constraints are set, the GridBagConstraints objects and our

component are handed over to the GridBagLayout manager via the method

setConstraints(component,GridBagConstraints). Then the constraints of the next

The Graphical User Interface page 51

components are set. That way we "draw" the GUI step by step with all the

components we would like to include.

When designing the GUI one has to take care that the different fields and buttons

are arranged in a logic and concise way. More on this topic inside the user manual in

the last section of this chapter.

The execution of the model does not do much but draw the specified button, field

and switches on the panel. When pressing a button nothing happens, because we

have not implemented yet the Controller, i.e. accordingly to the Swing model: the

Delegate.

The Delegate is formed out of methods called listeners. For every component a

listener is created that reacts on actions that are performed by the user. If for example

a button is pressed, the corresponding method is initiated and a specified action takes

place.

The Graphical User Interface page 52

4.4 GUI Reference Manual

In the following a short reference manual is given how to work with

VHDLGenerator. Although the meaning of the different options or fields are pretty

self-explanatory, some detailed information for documentation reason is given.

When starting the VHDLGenerator the user interface looks like in Figure 33. In

VHDLGenerator the order of the program execution is directly mirrored to the GUI.

That means, that information is entered in the same order, as it is processed later on.

 Figure 33: VHDLGenerator GUI screenshot

The Graphical User Interface page 53

HCDM File Path field

In the first field the path of the HCDM file has to be entered. A default path is

given, that is taken automatically, when no other path is specified. Note that when

entering a new path, the directories have to be separated by "//". Otherwise the path

is not taken correctly. Confirm the new entered path with "Return". The actual path

is given out inside the message box.

Errors that are related with this field contain error code: 1.1. For further

information please take a look at the exception table in Chapter 3.3.3.

Scheduling File Path field

The second field is for entering the directory of the Scheduling file. Here the same

properties as already explained for the HCDM File Path Field hold. Errors that are

related with this field contain error code: 1.2

Components File Path field

The third field is for entering the directory of the Components file. Here the same

properties as already explained for the HCDM File Path Field hold. Errors that are

related with this field contain error code: 1.3

VHDL File Path field

This field specifies the directory and name of the VHDL code file produced by

VHDLGenerator. Errors that are related with this field contain error code: 1.4

Default Button

The Default Button sets back the file path fields to its initial value. After pressing

"Enter" the path is taken. There exist four Default Buttons, one for every text field.

Register Minimization Algorithm

With this radio button one can select either Left edge algorithm or none

minimization algorithm. Left edge algorithm allocates a minimum number of result

registers accordingly to chapter 3.3.2. When choosing none minimization algorithm,

every component result receives a separate register. The register minimization is

The Graphical User Interface page 54

done inside the PreConverter stage, so possible errors that are related to this button

contain error code: 1.5.

The Create VHDL Testbench checkbox

When having marked this field a testbench for the current VHDL model is created.

The test bench is placed into the same directory as the generated VHDL code. For

every input port five different random vectors are created.

The Open VHDL Source File checkbox

When having marked this field the produced text file specified at

VHDLFilePathfield is opened using the "notepad.exe" of Windows or some other

specified program. The File is opened after having pressed the "Generate VHDL"

Button and no error occurred. If the previous "Create Testbench" checkbox is

marked, then the also the generated Testbench file is opened.

The Generate Button

The Convert Button starts the VHDL converting process in the following order:

1) A HCDMParser object is created and the three text files are parsed in the

 order they are represented on the graphical user interface.

2) An object of type PreConverter is created. The HcdmParser object is handed

 over as an argument to the constructor. The status of the register

 minimization radio button is stored into an attribute.

 The method parse() applied to PreConverter object does the pre-converting

 job.

3) An object of type VHDLConverter is created. The PreConverter object is

 handed over as an argument to the constructor.

 The method convert() applied to VHDLConverter converts the data into

 VHDL code

4) Depending on the status of the "Open VHDL File" checkbox, the VHDL file

 is opened by "notepad.exe" or some other specified program.

The Graphical User Interface page 55

The Message Field

The Message Field gives all information of the current state of the program. When

new directories are entered into one of the four path fields and confirmed with

"Enter", then the actual valid path of the corresponding field is given out.

When pressing the "Generate VHDL " button the user is informed about the start

of the convert process. If everything performs well, a message appears, that tells that

the converting process succeeded. If not an error message with the according error

code is given out. The user can correct the error by means of the two error tables in

chapter 3.3.3.

The Exit VHDLGenerator Button

The Exit Button closes the VHDLGenerator program.

Conclusions page 56

5 Conclusions

To demonstrate the correctness of the VHDLGenerator program we construct a

basic test example. The test program consists of a boolean equation and is

constructed in a way that for the reader it is easy to read the results but still the full

functionality of VHDLGenerator is demonstrated.

5.1 The Test Program

The realized Boolean equation contains four external inputs with 32 bit each. The

Inputs are processed and combined via three different components: XOR, AND and

OR component. All components are available as VHDL code and are registered

inside the components entry file. Allocated are 2 AND, 1 XOR and 1 OR component.

The equation is entered into HCDM Converter as follows:

 ebadbacbaedcbaF ⋅⊗+⋅⊗+⋅⊗=)()()(),,,,(

The corresponding data flow graph as well as the HCDM description are shown in

figure 34 and figure 35. For clarity reasons the HCDM description is reduced to its

functional parts.

Notice again that all external inputs are drawn as successor tasks of the Root task,

which is an essential condition for the parser. External outputs share the same output

branch with the Root task.

Conclusions page 57

 Figure 34: HCDM Boolean DFG screenshot

Conclusions page 58

AUFGABES { TASK 17 {
 }TASKS { NAME { b[32] }
 TASK 11 { OPTIMIZATIONTYPE { 1 }
 NAME { ROOT } IMPORTANCE { 1 }
 OPTIMIZATIONTYPE { 1 } FAILURE_PROBABILITY { 0.5 }
 IMPORTANCE { 1 } LEVEL { -3 }
 FAILURE_PROBABILITY { 0.5 } PRIORITY { -4 }
 LEVEL { -3 } TIMING { 0 }
 PRIORITY { -4 } RESOURCES { (4,0) }
 TIMING { 0 } IORELATIONS {
 RESOURCES { } IORELATION {
 IORELATIONS { INPUT { 48 }
 IORELATION { OUTPUT {87 }
 INPUT { 48 69 93 90 96 } CONDITION { true }
 OUTPUT {66 } }
 CONDITION { true } }
 } SUBTASKS {
 } }
 SUBTASKS { }
 TASK 14 { TASK 20 {
 NAME { Par2 } NAME { Bottom }
 OPTIMIZATIONTYPE { 1 } OPTIMIZATIONTYPE { 1 }
 IMPORTANCE { 1 } IMPORTANCE { 1 }
 FAILURE_PROBABILITY { 0.5 } FAILURE_PROBABILITY { 0.5 }
 LEVEL { -3 } LEVEL { -3 }
 PRIORITY { -4 } PRIORITY { -4 }
 TIMING { 0 } TIMING { 0 }
 RESOURCES {(2,20)(5,20) } RESOURCES { (7,10) }
 IORELATIONS { IORELATIONS {
 IORELATION { IORELATION {
 INPUT { 84 181 } INPUT { 45 51 78 }
 OUTPUT {78 } OUTPUT {57 }
 CONDITION { true } CONDITION { true }
 } }
 } }
 SUBTASKS { SUBTASKS {
 } }
 } TASK 23 {
 TASK 41 { NAME { top }
 NAME { d[32] } OPTIMIZATIONTYPE { 1 }
 OPTIMIZATIONTYPE { 1 } IMPORTANCE { 1 }
 IMPORTANCE { 1 } FAILURE_PROBABILITY { 0.5 }
 FAILURE_PROBABILITY { 0.5 } LEVEL { -3 }
 LEVEL { -3 } PRIORITY { -4 }
 PRIORITY { -4 } TIMING { 0 }
 TIMING { 0 } RESOURCES { (8,20) }
 RESOURCES { (3,0) } IORELATIONS {
 IORELATIONS { IORELATION {
 IORELATION { INPUT { 75 87 }

 OUTPUT {181 }

 INPUT { 93 } OUTPUT {84 63 60 }
 CONDITION { true }

 CONDITION { true } }
 } }
 } SUBTASKS {
 A
 }
 SUBT SKS { }

Conclusions page 59

 Figure 35: HCDM description

TASK 35 { TASK 26 {
 NAME { Par3 } NAME { a[32] }
 OPTIMIZATIONTYPE { 1 } OPTIMIZATIONTYPE { 1 }
 IMPORTANCE { 1 } IMPORTANCE { 1 }
 FAILURE_PROBABILITY { 0.5 } FAILURE_PROBABILITY { 0.5 }
 LEVEL { -3 } LEVEL { -3 }
 PRIORITY { -4 } PRIORITY { -4 }
 TIMING { 0 } TIMING { 0 }
 RESOURCES { (2,20) (5,20) } RESOURCES { (10,0) }
 IORELATIONS { IORELATIONS {
 IORELATION { IORELATION {
 INPUT { 60 81 } INPUT { 69 }
 OUTPUT {45 } OUTPUT {75 }
 CONDITION { true } CONDITION { true }
 } }
 } }
 SUBTASKS { SUBTASKS {
} }
 }
TASK 38 { TASK 29 {
 NAME { c[32] } NAME { e[32] }
 OPTIMIZATIONTYPE { 1 } OPTIMIZATIONTYPE { 1 }
 IMPORTANCE { 1 } IMPORTANCE { 1 }
 FAILURE_PROBABILITY { 0.5 } FAILURE_PROBABILITY { 0.5 }
 LEVEL { -3 } LEVEL { -3 }
 PRIORITY { -4 } PRIORITY { -4 }
 TIMING { 0 } TIMING { 0 }
 RESOURCES { (6,0) } RESOURCES { (9,0) }
 IORELATIONS { IORELATIONS {
 IORELATION { IORELATION {
 INPUT { 96 } INPUT { 90 }
 OUTPUT {72 } OUTPUT {81 }
 CONDITION { true } CONDITION { true }
 } }
 } }
 SUBTASKS { SUBTASKS {
 } }
 } }
 TASK 44 { TASK 32 {
 NAME { result[32] } NAME { Par1 }
 OPTIMIZATIONTYPE { 1 } OPTIMIZATIONTYPE { 1 }
 IMPORTANCE { 1 } IMPORTANCE { 1 }
 FAILURE_PROBABILITY { 0.5 } FAILURE_PROBABILITY { 0.5 }
 LEVEL { -3 } LEVEL { -3 }
 PRIORITY { -4 } PRIORITY { -4 }
 TIMING { 0 } TIMING { 0 }
 RESOURCES { (159,0) } RESOURCES { (2,20) (5,20)

} IORELATIONS {
 IORELATION { IORELATIONS {
 INPUT { 57 } IORELATION {
 OUTPUT {66 } INPUT { 63 72 }
 CONDITION { true } OUTPUT {51 }
 } CONDITION { true }
 } }
 SUBTASKS { }
 } SUBTASKS {
 } }

 }

Conclusions page 60

HCDM schedules the different tasks on the components as follows:

 Figure 36: HCDM Boolean example scheduling

The data is extracted and parsed like explained before. Depending whether we

have chosen register minimization or non-register minimization, the received VHDL

code looks different. The complete generated VHDL Code as well as the

corresponding testbench are added to the appendix B.

true : d[32] (0 , 0), e[32] (0 , 0), c[32] (0 , 0
), b[32] (0 ,0), a[32] (0 , 0), top (0 , 20),
Par2 (20 , 40), Par3 (20 , 40), Par1 (40 , 60),
Bottom (60 , 70), result[32] (70 , 70),

 BINDING { (Par2-myAnd_2) (d[32]-Input_1) (b[32]-
Input_2) (Bottom-myOr_1) (top-myXor_1) (a[32]-Input_3)
(e[32]-Input_4) (Par1-myAnd_1) (Par3-myAnd_1) (c[32]-
Input_5) (result[32]-Output_1) }

5.2 Simulation Results

Let us first verify the correct circuit behaviour of the basic version, where we do

not make use of the register minimization algorithm. We simulate the VHDL code

together with the needed components by means of the generated testbench.

Waveforms demonstrate the correct behaviour.

The encircled parts of the waveforms in figure 37 to 39 indicate the results of the

single components. At this point in time we only acknowledge that the results are

shifted to the right outputs at the specified point of time. So we can adhere that

the VHDL code for scheduling and register allocation is generated correctly.

Conclusions page 61

 Figure 37: Result of myXOR_1

Conclusions page 62

 Figure 38: Result of myAND_1 and myAND_2

Conclusions page 63

 Figure 39: Figure 5.6: Final result of myOR_1

Conclusions page 64

Next step would be to verify the produced program for its arithmetical results.

That means we want to know whether the gained results are correct according to the

specified boolean equation. For that reason we have to take a look at the random

input values that are generated by the TestbenchGenerator:

The random port assignments for this example are:
Input Port Assignment

a " 10011111000100001001110110110000 "

b " 01001110111110000010110010111110 "

c " 01011011111110110110001011101000 "

d " 10001000101110000110000100010000 "

e " 00101001000000011110001011010100 "

If we put these values into the proposed boolean equation and calculate by hand

we yield:

10000111010100010100000011100100

00)001011010100000111100010100100
 00000100010011100001101000100010

 00001011101011101101100101101111(
) 10110010111111100000100100111011
10001010011011001111111010110111(

)()(
)()()(),,,,(

=

+
+

⋅
⊗=

++⋅⊗=
⋅⊗+⋅⊗+⋅⊗=

edcba
ebadbacbaedcbaF

Comparing the result computed by hand with the result delivered by the program

we find consistence. Hence we can state that the generated VHDL code works

correct for the tested values.

Depending on whether we have chosen register minimization or non-register

minimization we obtain different VHDL source code. When comparing the two

descriptions in terms of waveforms we can asses that the circuit behaviour is the

same for both circuits. Note that for reasons of clarity the waveforms of the register

minimized version are not added. So we can state further that using the left-edge

register minimization for the VHDL code generation does not have any influence on

the functional behaviour of the resulting circuit. That characteristic is a necessary

condition for any minimization step you perform on digital circuits.

Conclusions page 65

5.3 Synthesis Results

Next step will be to check whether the generated VHDL description passes the

synthesis. In figure 40 and the Synthesis reports of register minimization and register

non-minimization are opposed. The relevant parts are highlighted.

 Figure 40: Synthesis report without register

===
* Final Report
*
===
Final Results
RTL Top Level Output File Name : VhdlCodeGenerated.ngr
Top Level Output File Name : VhdlCodeGenerated
Output Format : NGC
Optimization Goal : Speed
Keep Hierarchy : NO

Design Statistics
IOs : 194

Cell Usage :
BELS : 371
GND : 1
INV : 2
LUT1 : 9
LUT2 : 14
LUT2_D : 2
LUT2_L : 1
LUT3 : 178
LUT3_D : 2
LUT3_L : 7
LUT4 : 84
LUT4_D : 13
LUT4_L : 36
MUXCY : 9
MUXF5 : 3
VCC : 1
XORCY : 9

FlipFlops/Latches : 612

FDC : 160
FDCE : 32
FDE : 420
Clock Buffers : 1
BUFGP : 1
IO Buffers : 193
IBUF : 161
OBUF : 32
===
Device utilization summary:

Selected Device : 3s200ft256-5

 Number of Slices: 401 out of 1920 20%
 Number of Slice Flip Flops: 612 out of 3840 15%
 Number of 4 input LUTs: 348 out of 3840 9%
 Number of IOs: 194
 Number of bonded IOBs: 194 out of 173 112% (*)
 Number of GCLKs: 1 out of 8 12%
===

Conclusions page 66

===
* Final Report
 *

===
Final Results
RTL Top Level Output File Name : VhdlCodeGenerated.ngr
Top Level Output File Name :
VhdlCodeGenerated
Output Format : NGC
Optimization Goal : Speed
Keep Hierarchy : NO

Design Statistics
IOs : 194

Cell Usage :
BELS : 545
GND : 1
INV : 2
LUT1 : 9
LUT2 : 7
LUT2_L : 1
LUT3 : 175
LUT3_D : 8
LUT3_L : 9
LUT4 : 236
LUT4_D : 9
LUT4_L : 5
MUXCY : 9
MUXF5 : 64
VCC : 1
XORCY : 9

FlipFlops/Latches : 593

FDC : 173
FDCE : 32
FDE : 388
Clock Buffers : 1
BUFGP : 1
IO Buffers : 193
IBUF : 161
OBUF : 32
===
Device utilization summary:

Selected Device : 3s200ft256-5

 Number of Slices: 434 out of 1920 22%
 Number of Slice Flip Flops: 593 out of 3840 15%
 Number of 4 input LUTs: 461 out of 3840 12%
 Number of IOs: 194
 Number of bonded IOBs: 194 out of 173 112% (*)
 Number of GCLKs: 1 out of 8 12%
===

Figure 41: Synthesis report with left edge register minimization

A comparison of both reports yields that the left edge register minimization

reduces the number of needed flip flops on the target device.

Conclusions page 67

If we take a closer look to the produced codes we can figure why the second

version needs less resources. In the figures above the segment where the temporary

output registers are stated are shown for each code version.

The non-minimized version needs one output register for each of the four

instantiated VHDL component

 signal reg_0: std_logic_vector(31 downto 0);

 signal reg_1: std_logic_vector(31 downto 0);

 signal reg_2: std_logic_vector(31 downto 0);

 signal reg_3: std_logic_vector(31 downto 0);

begin

 Figure 42: VHDL code without register minimization

In comparison the LEFT EDGE ALGORITHM reduces the number of needed

registers to three.

 signal reg_0: std_logic_vector(31 downto 0);
 signal reg_1: std_logic_vector(31 downto 0);
 signal reg_2: std_logic_vector(31 downto 0);
begin

 Figure 43: VHDL code with Left Edge register minimization

So we conclude that the reduced amount of needed output registers, generated by

the LEFT EDGE Algorithm, is the cause for reduced amount of used flip flops.

In contrast the number of LUT4 is increasing compared to the non-optimized

variant. The additional resources are used for multiplexing the inputs for the

registers.

Depending on the application the user can decide whether to have minimized flip

flops or less usage of combinatorial logic. In most applications the Flip Flops will be

a more sever resource constraint.

Appendix A page 68

 Appendix A

HCDM describes the task graph in terms of bnf-grammar (Backus-Naur form),

that allows a flexible number of parameters. Note that here the complete HCDM

grammar is stated, although we will only take care of some of the fields. The

modified grammar used for the parser is stated in chapter 3.2.2.3 .

Appendix A page 69

In the following the parameter, that are provided by each component:

• hCDM

– NAME -The name.

– ROOT - ID of the root task.

– CURRENT ROOT - ID of current root.

– CURRENT LEAFS - list of Task-ID of node of actual detail grade

• Resource

– NAME - The name.

– COST - costs of this resource.

– NUMBER - maximum amount that are allowed to use

– TYPE -communication or functional resource.

– CONNECTED - list of functional resources that are connected via a

 communication resource.

• Behavior class

– NAMES - Names of each behaviours that are implemented by this class

• Task

– NAME - The name.

– PRIORITY - priority for list scheduling.

Appendix A page 70

– TIMING - default time behaviour, as long as no component binding exist

– RESOURCES - a list of resources on which the task can be implemented

– LEVEL - parameter for the graphical representation

– OPTIMIZATIONTYPE - Kommunikations- oder funktionaler Task.

– IMPORTANCE - importance of this task for error free function of the system

– FAILURE PROBABILITY - breakdown probability of this task

Appendix B page 71

 Appendix B

The generated VHDL code for the register minimized version and the non-

minimized version are stated below. The testbench as well as the used VHDL

components are the same for both. First the generated VHDL code without register

optimization then the code with register optimization are stated:

library ieee;
use ieee.std_logic_1164.all;

entity VhdlCodeGenerated is

 port(mclk: in std_logic;
 resetn: in std_logic;
 a : in std_logic_vector(31 downto 0);
 b : in std_logic_vector(31 downto 0);
 e : in std_logic_vector(31 downto 0);
 d : in std_logic_vector(31 downto 0);
 c : in std_logic_vector(31 downto 0);
 result : out std_logic_vector(31 downto 0));
end VhdlCodeGenerated;

architecture arc of VhdlCodeGenerated is

 component myXor is
 port(clk :in std_logic;
 resetn: in std_logic;
 enable: in std_logic;
 a :in std_logic_vector(31 downto 0);
 b :in std_logic_vector(31 downto 0);
 result :out std_logic_vector(31 downto 0));
 end component myXor;

 component myAnd is
 port(clk :in std_logic;
 resetn: in std_logic;
 enable: in std_logic;
 a :in std_logic_vector(31 downto 0);
 b :in std_logic_vector(31 downto 0);
 result :out std_logic_vector(31 downto 0));
 end component myAnd;

 component myOr is
 port(clk :in std_logic;
 resetn: in std_logic;
 enable: in std_logic;
 a :in std_logic_vector(31 downto 0);
 b :in std_logic_vector(31 downto 0);
 c :in std_logic_vector(31 downto 0);

 end component myOr;

 result :out std_logic_vector(31 downto 0));

Appendix B page 72

 signal timer: integer range 0 to 1000;

 signal myXor_1_enable: std_logic := 'Z';
 signal myAnd_1_enable: std_logic := 'Z';
 signal myAnd_2_enable: std_logic := 'Z';
 signal myOr_1_enable: std_logic := 'Z';

 signal CompInReg0: std_logic_vector(31 downto 0) := (others=>'Z');
 signal CompInReg1: std_logic_vector(31 downto 0) := (others=>'Z');
 signal CompInReg2: std_logic_vector(31 downto 0) := (others=>'Z');
 signal CompInReg3: std_logic_vector(31 downto 0) := (others=>'Z');
 signal CompInReg4: std_logic_vector(31 downto 0) := (others=>'Z');

 signal CompInReg5: std_logic_vector(31 downto 0) := (others=>'Z');
 signal CompInReg6: std_logic_vector(31 downto 0) := (others=>'Z');
 signal CompInReg7: std_logic_vector(31 downto 0) := (others=>'Z');
 signal CompInReg8: std_logic_vector(31 downto 0) := (others=>'Z');

 signal CompOutReg0: std_logic_vector(31 downto 0):= (others => 'Z');

 signal CompOutReg2: std_logic_vector(31 downto 0):= (others => 'Z');

 signal CompOutReg1: std_logic_vector(31 downto 0):= (others => 'Z');

 signal CompOutReg3: std_logic_vector(31 downto 0):= (others => 'Z');

 signal reg_0: std_logic_vector(31 downto 0):= (others => 'Z');
 signal reg_1: std_logic_vector(31 downto 0):= (others => 'Z');
 signal reg_2: std_logic_vector(31 downto 0):= (others => 'Z');
 signal reg_3: std_logic_vector(31 downto 0):= (others => 'Z');

begin

 myXor_1: myXor
 port map (clk => mclk,resetn => resetn,enable => myXor_1_enable,a =>
 CompInReg0,b => CompInReg1,result => CompOutReg0);

 myAnd_1: myAnd
 port map (clk => mclk,resetn => resetn,enable => myAnd_1_enable,a =>
 CompInReg2,b => CompInReg3,result => CompOutReg1);

 myAnd_2: myAnd
 port map (clk => mclk,resetn => resetn,enable => myAnd_2_enable,a =>
 CompInReg4,b =>CompInReg5,result => CompOutReg2);

 myOr_1: myOr
 port map (clk => mclk,resetn => resetn,enable => myOr_1_enable,a =>
 CompInReg6,b => CompInReg7,c => CompInReg8,result =>
 CompOutReg3);

Appendix B page 73

process(mclk,resetn)
 begin

 if resetn='0' then

 timer<= 0 ;
 result <= (others => '0');

 elsif mclk'event and mclk='1' then

 case timer is

 when 0 => CompInReg0 <= a;
 CompInReg1 <= b;
 myXor_1_enable <= '1';
 timer <=timer+1;

 when 22 => reg_0 <= CompOutReg0;
 myXor_1_enable <= '0';
 timer <=timer+1;

 when 23 => CompInReg2 <= e;
 CompInReg3 <= reg_0;
 myAnd_1_enable <= '1';
 CompInReg4 <= d;
 CompInReg5 <= reg_0;
 myAnd_2_enable <= '1';
 timer <=timer+1;

 when 45 => reg_1 <= CompOutReg1;
 myAnd_1_enable <= '0';
 reg_2 <= CompOutReg2;
 myAnd_2_enable <= '0';
 timer <=timer+1;

 when 46 => CompInReg2 <= c;
 CompInReg3 <= reg_0;
 myAnd_1_enable <= '1';
 timer <=timer+1;

 when 68 => reg_3 <= CompOutReg1;
 myAnd_1_enable <= '0';
 timer <=timer+1;

 when 69 => CompInReg6 <= reg_1;
 CompInReg7 <= reg_3;
 CompInReg8 <= reg_2;
 myOr_1_enable <= '1';
 timer <=timer+1;

 when 81 => result <= CompOutReg3;
 myOr_1_enable <= '0';
 timer <=timer+1;

 when 83 => timer <= 83; -- end of Schedule

 when others => timer<=timer+1; --only count up

 end case;

Appendix B page 74

 end if;

 end process;

end arc;

 Figure 44: complete VHDL code without register minimization

Next the VHDL code with register optimization is stated:

library ieee;
use ieee.std_logic_1164.all;

entity VhdlCodeGenerated is

 port(mclk: in std_logic;
 resetn: in std_logic;
 b : in std_logic_vector(31 downto 0);
 a : in std_logic_vector(31 downto 0);
 e : in std_logic_vector(31 downto 0);
 d : in std_logic_vector(31 downto 0);
 c : in std_logic_vector(31 downto 0);
 result : out std_logic_vector(31 downto 0));

end VhdlCodeGenerated;

architecture arc of VhdlCodeGenerated is

 component myXor is
 port(clk :in std_logic;
 resetn: in std_logic;
 enable: in std_logic;
 a :in std_logic_vector(31 downto 0);
 b :in std_logic_vector(31 downto 0);
 result :out std_logic_vector(31 downto 0));
 end component myXor;

 component myAnd is
 port(clk :in std_logic;
 resetn: in std_logic;
 enable: in std_logic;
 a :in std_logic_vector(31 downto 0);
 b :in std_logic_vector(31 downto 0);
 result :out std_logic_vector(31 downto 0));
 end component myAnd;

 component myOr is
 port(clk :in std_logic;
 resetn: in std_logic;
 enable: in std_logic;
 a :in std_logic_vector(31 downto 0);
 b :in std_logic_vector(31 downto 0);
 c :in std_logic_vector(31 downto 0);
 result :out std_logic_vector(31 downto 0));
 end component myOr;

Appendix B page 75

signal timer: integer range 0 to 1000;

 signal myXor_1_enable: std_logic := 'Z';
 signal myAnd_1_enable: std_logic := 'Z';
 signal myAnd_2_enable: std_logic := 'Z';
 signal myOr_1_enable: std_logic := 'Z';

 signal CompInReg0: std_logic_vector(31 downto 0) := (others=>'Z');
 signal CompInReg1: std_logic_vector(31 downto 0) := (others=>'Z');
 signal CompInReg2: std_logic_vector(31 downto 0) := (others=>'Z');
 signal CompInReg3: std_logic_vector(31 downto 0) := (others=>'Z');
 signal CompInReg4: std_logic_vector(31 downto 0) := (others=>'Z');
 signal CompInReg5: std_logic_vector(31 downto 0) := (others=>'Z');
 signal CompInReg6: std_logic_vector(31 downto 0) := (others=>'Z');
 signal CompInReg7: std_logic_vector(31 downto 0) := (others=>'Z');
 signal CompInReg8: std_logic_vector(31 downto 0) := (others=>'Z');

 signal CompOutReg0: std_logic_vector(31 downto 0):= (others => 'Z');
 signal CompOutReg1: std_logic_vector(31 downto 0):= (others => 'Z');
 signal CompOutReg2: std_logic_vector(31 downto 0):= (others => 'Z');
 signal CompOutReg3: std_logic_vector(31 downto 0):= (others => 'Z');

 signal reg_0: std_logic_vector(31 downto 0):= (others => 'Z');
 signal reg_1: std_logic_vector(31 downto 0):= (others => 'Z');
 signal reg_2: std_logic_vector(31 downto 0):= (others => 'Z');

begin

 myXor_1: myXor
 port map (clk => mclk,resetn => resetn,enable => myXor_1_enable,a
 => CompInReg0,b => CompInReg1,result => CompOutReg0);

 myAnd_1: myAnd
 port map (clk => mclk,resetn => resetn,enable => myAnd_1_enable,a
 => CompInReg2,b => CompInReg3,result => CompOutReg1);

 myAnd_2: myAnd
 port map (clk => mclk,resetn => resetn,enable => myAnd_2_enable,a
 => CompInReg4,b => CompInReg5,result => CompOutReg2);

 myOr_1: myOr
 port map (clk => mclk,resetn => resetn,enable => myOr_1_enable,a
 => CompInReg6,b => CompInReg7,c => CompInReg8,result
 =>CompOutReg3);

Appendix B page 76

process(mclk,resetn)
 begin

 if resetn='0' then

 timer<= 0 ;
 result <= (others => '0');

 elsif mclk'event and mclk='1' then

 case timer is
 when 0 => CompInReg0 <= b;
 CompInReg1 <= a;
 myXor_1_enable <= '1';
 timer <=timer+1;

 when 22 => reg_0 <= CompOutReg0;
 myXor_1_enable <= '0';
 timer <=timer+1;

 when 23 => CompInReg2 <= e;
 CompInReg3 <= reg_0;
 myAnd_1_enable <= '1';
 CompInReg4 <= d;
 CompInReg5 <= reg_0;
 myAnd_2_enable <= '1';
 timer <=timer+1;

 when 45 => reg_1 <= CompOutReg1;
 myAnd_1_enable <= '0';
 reg_2 <= CompOutReg2;
 myAnd_2_enable <= '0';
 timer <=timer+1;

 when 46 => CompInReg2 <= c;
 CompInReg3 <= reg_0;
 myAnd_1_enable <= '1';
 timer <=timer+1;

 when 68 => reg_0 <= CompOutReg1;
 myAnd_1_enable <= '0';
 timer <=timer+1;

 when 69 => CompInReg6 <= reg_1;
 CompInReg7 <= reg_0;
 CompInReg8 <= reg_2;
 myOr_1_enable <= '1';
 timer <=timer+1;

 when 81 => result <= CompOutReg3;
 myOr_1_enable <= '0';
 timer <=timer+1;

 when 83 => timer <= 83; -- end of Schedule

 when others => timer<=timer+1; --only count up

 end case;

end if;

 end process;

end arc;

 Figure 45: complete VHDL code with register minimization

Appendix B page 77

The used components for the boolean equation look the same for both versions:

The XOR component:

library IEEE;
use IEEE.std_logic_1164.all;

entity myXor is
 port (
 clk, resetn : in std_logic;
 enable : in std_logic;
 a: in std_logic_vector(31 downto 0);
 b: in std_logic_vector(31 downto 0);
 result: out std_logic_vector(31 downto 0)
);
end myXor;

architecture RTL of myXor is

begin

 process (clk, resetn)
 variable delay : integer range 0 to 31;
 begin
 if resetn='0' then
 delay := 0;
 result <= (others => '0');
 elsif CLK'event and CLK='1' then
 if enable='1' then
 if delay = 20 then
 result <= a xor b;
 delay := 0;
 else
 delay := delay +1;
 result <= (others => '0');
 end if;
 else
 delay := 0;
 result <= (others => '0');
 end if;

 end if;
 end process;

end RTL;

 Figure 46: The used XOR component

Appendix B page 78

The OR Component:

library IEEE;
use IEEE.std_logic_1164.all;

entity myOR is
 port (
 clk, resetn : in std_logic;
 enable: in std_logic;
 a: in std_logic_vector(31 downto 0);
 b: in std_logic_vector(31 downto 0);
 c: in std_logic_vector(31 downto 0);
 result: out std_logic_vector(31 downto 0)
);
end myOR;

architecture RTL of myOR is

begin

 process (clk, resetn)
 variable delay : integer range 0 to 31;
 begin
 if resetn='0' then
 delay := 0;
 result <= (others => '0');
 elsif CLK'event and CLK='1' then
 if enable = '1' then
 if delay = 10 then
 result <= a or b or c;
 delay := 0;
 else
 delay := delay +1;
 result <= (others => '0');
 end if;
 else
 delay := 0;
 result <= (others => '0');
 end if;
 end if;
 end process;

end RTL;

 Figure 47: The used OR component

Appendix B page 79

The AND Component:

library IEEE;
use IEEE.std_logic_1164.all;

entity myAND is

(port
 clk, resetn : in std_logic;

(31 downto 0);
to 0);
1 downto 0)

tecture RTL of myAND is

 others => '0');
then

n
a and b;

 := delay +1;

lay := 0;
t <= (others => '0');

 enable: in std_logic;
 a: in std_logic_vector
 b: in std_logic_vector(31 down
 result: out std_logic_vector(3
);
end myAND;

archi

begin

 process (clk, resetn)
 variable delay : integer range 0 to 31;
 begin
 if resetn='0' then

0; delay :=
 result <= (
 elsif CLK'event and CLK='1'
 if enable='1' then
 if delay = 20 the
 result <=
 delay := 0;
 else
 delay
 result <= (others => '0');
 end if;
 else
 de
 resul
 end if;
 end if;
 end process;

end RTL;

 Figure 48: The used AND component

The testbench is the same for both versions:

Appendix B page 80

library ieee;
use ieee.std_logic_1164.all;

estbench is

estbench is

;
o 0);

 0));

1 downto 0):= (others => 'Z');
wnto 0):= (others => 'Z');

);

hdlCodeGenerated
t map (mclk => tb_clk,resetn => tb_resetn, a => tb_a, b => tb_b, e => tb_e, d => tb_d, c => tb_c,

res ;

1001110110110000" after 0 ns,
 10001010010111100" after 1000 ns,

,

,

entity VhdlCodeGenerated_T
nd VhdlCodeGenerated_Testbench; e

ated_T architecture tb_arc of VhdlCodeGener

 component VhdlCodeGenerated is

port(mclk :in std_logic;
 resetn: in std_logic;

(31 downto 0) a : in std_logic_vector
 b : in std_logic_vector(31 downt

 e : in std_logic_vector(31 downto 0);
 d : in std_logic_vector(31 downto 0);

 c : in std_logic_vector(31 downto 0);
 result : out std_logic_vector(31 downto
 end component VhdlCodeGenerated ;
 signal tb_clk: std_logic :='0';

signal tb_resetn: std_logic;
 signal tb_a: std_logic_vector(3

(31 do signal tb_b: std_logic_vector
 signal tb_e: std_logic_vector(31 downto 0):= (others => 'Z');

 signal tb_d: std_logic_vector(31 downto 0):= (others => 'Z');
 signal tb_c: std_logic_vector(31 downto 0):= (others => 'Z');
 signal tb_result: std_logic_vector(31 downto 0):= (others =>'Z'
begin
 tb: V
 por

ult => tb_result)

 tb_clk <= not tb_clk after 20 ns; -- clock working at 50Mhz
 tb_resetn <= '1' after 0 ns,

 '0' after 5 ns, '1' after 10 ns;

 tb_a <= "1001111100010000

"001000100101001 "11001100111001000000001000011110" after 2000 ns
 "11110111100011101100010110111010" after 3000 ns,
 "11010110010001111110100110110110" after 4000 ns;

tb_d <= "1000100010111

 "1101111100011

 "0010100010110

 "1110010101011

 "0001100110011

 tb_c <= "01011011111

 "0111110011101

 "0000010101111

 "0010100001010

 "0101100001010

end tb_arc;

 tb_b <= "01001110111110000010110010111110" after 0 ns,
 "10101111110101101010101000010100" after 1000 ns,

 "01011100011111111110100101110100" after 2000 ns,
 "00100000011101100000001111111100" after 3000 ns,
 "00100000011011010100000011000110" after 4000 ns;

 tb_e <= "00101001000000011110001011010100" after 0 ns,

 "11110011011000010010101101110010" after 1000 ns,
 "00010111100111110001111101010010" after 2000 ns
 "01000010011000110011100111011000" after 3000 ns,
 "10101001011010110011100101110110" after 4000 ns;

References page 81

 estbench

 References

] Klaus, S. (2006). System -Level -Entwurfsmethodik eingebetteter Systeme.

 Aachen: Shaker Verlag, pp. 101-106, pp. 129-131.

] DeMichelli, G (1994). Synthesis and Optimization of Digital Circuits.

 New York: McGraw-Hill Inc, pp. 37- 42, pp. 100-102, pp.119-123, p.240,

 pp. 61-64, pp. 64-67.

 Figure 49: The generated VHDL t

[1

[2

References page 82

[3] Rozenberg,G. and Salomaa,A. (1997). Handbook of Formal Languages.

 Vol.1 Word Language Grammar. Berlin: Springer-Verlag.

p. 1-3.

n, A. and Reilly,E.D. and Dahlin,C.A. ed. (1993).

and

Practice of

- 150,

pp. 182-196.

 d Ullman,J.D. (1986).

 Compilers Principles,Techniques, and Tools.

 9). Algorithms and Theory of Computation

 Handbook. London: CRC Press LLC, pp. 3.1-3.25.

 http://linux.wku.edu/~lamonml/algor/sort/sort.html

 [Accessed 23 July 2006].

rnal, Vol. 5, 1,

[4] Reps,T. (2001). Maximal-Munch" Tokenization in Linear Time.

 University of Wisconsin, USA, September 2001, p

[5] Lutz, M. and Schmitt,F. J. (1997). Vom Prozessor zum Programm. München:

 Carl Hanser Verlag, pp.90-103.

 [6] Ralsto

 Encyclopedia of Computer Science .Third Edition. New York: Van Nostr

 Reinhold , pp. 207-208.

 [7] Tremblay,J.-P. and Sorenson,P.G. (1985). The Theory and

 Compiler Writing. New York: McGraw-Hill, pp.5-8, pp.138

[8] Aho,A.V. and Sethi,R. an

 Reading: Addison-Wesley, pp.1-15, pp.83-86.

[9] Atallah,M.J. (199

 [10] Lamont,M. . Sorting Algorithms [online]. Available at:

 [11] C.A.R. Hoare (1962): Quicksort. Computer Jou

 pp.10-15.

References page 83

 [12] Hehner,E.C.R. (1993). A Practical Theory of Programming.

3] ns (1971). Wire routing by optimizing

 channel assignment within large apertures. Proceedings of the 8th

 1.

[14] Kurdahi,F.J. and Parker,A.C. (1987).

. LosAngeles, USA,

 CA 90089-0781.

orith base on the ungarian

 funct nal u t

y':

 Blacksburg, USA, April 1997.

.

of

 ICDA2000. Beijing, China, February 2000.

 8] ondon:

[19] Oh,M. (1999). Transformation and VHDL Code Generation from

 142/ms_1999_oh_moonwook.pdf [Accessed at 14.September 2006]

 New York: Springer-Verlag, pp.67-68.

 [1 A. Hashimoto and J. Steve

 Design Automation Workshop. Atlantic City, USA, June 197

 REAL: A Program for REgister ALlocation.

 IEEE Design Automation Conference

 [15] Automated Synthesis of Data Paths in Digital Systems. IEEE

 Transactions on Computer-Aided Design, Volume 5, July 1986.

 [16] Lin,T.C. and Cyre,W.R. (1997). An alg m d H

 method for register reduction during complex io ni

 allocation. Southeastcon'97. 'Engineering new New Centur

 Proceedings IEEE.

 [17] Zhang,S. and Dai,W.W.-M. (2000). Linear Time Left Edge Algorithm

 INT'L Conference on Chip Design Automation: Proceedings

[1 Cooke,J (1998). Constructing Correct Software - the basics. L

 Springer-Verlag, pp. 10-11.

 Coarse-grained Data Flow Graph [online]. Department of Computer

 Engineering, Seoul National University. Available at:

 http://peace.snu.ac.kr/publications/data/

References page 84

ble VHDL Code Generation from

 Data Flow Graph. Proceedings of the 5th Asia Pacific Conference

el er

 [Accessed 23 August 2006].

lgary.ca/http/java.sun.com/docs

ailable at:

 darmstadt.de/student_area/rp/rekpro/5_6/uebung

4] API. Available at:

 http://java.sun.com/j2se/1.3/docs/api

 [20] Oh,M. and Ha,S. (1998). Synthesiza

 on Hardware Description Languages. Seoul, Korea, July 1998.

 [21] Fletcher,J. (2001). AWT vs Swing [online]. Borland Dev op

 Network. Available at:

 http://bdn.borland.com/article/ 0,1410,26970,00.html

 [22] Eckstein,R. and Loy,M. and Wood,D. (1998) .Java Swing.

 Sebastopol: O'Reilly & Associates, USA.

 [23] Sun Microsystems, Inc. . How to use GridBagLayout [online].

 Available at: https://cis.med.uca

 /books/tutorial/uiswing/layout/gridbag.html

 [Accessed 27 Oktober 2006].

 [24] SHOUFAN,A . Rekonfigurierbare Prozessoren [online]. Av

 http://www.vlsi.informatik.tu-

 /loesungen/1.pdf [Accessed 15 November 2006].

 [2 Sun Microsystems, Inc. . JAVA

 [Accessed 20 November 2006].

	Contents
	List of Figures

