
CCLRC / Rutherford Appleton Laboratory SSN/23.3
Particle Physics & Astronomy Research Council
Starlink Project
Starlink System Note 23.3

T.M.Gledhill
C.A.Clayton

8 Jan 1997

Starlink Benchmarking Utility

Version v1.0

User’s Manual

Abstract

The Starlink Benchmarking Utility provides a set of tools for investigating the performance
of computer systems running astronomy data reduction software. This manual is intended for
Starlink Site Managers and describes how to install and use the package.

SSN/23.3 ii

Starlink Benchmarking Utility

Version v1.0

Contents

1 Introduction 1

2 Installation 1

3 Running the Benchmarks 2
3.1 Prior Requirements . 2
3.2 Automatic Benchmarking – Recommended Procedure 3
3.3 Interactive Benchmarking . 5
3.4 Processing the Log Files . 5

4 The STARmark and IRAFmark Ratings 7

5 Extended Results 8

6 Disk I/O Effects 10

7 Elapsed Time 11

8 Other Benchmarks 12
8.1 Systems running AIPS . 12

9 Miscellaneous Issues 12
9.1 Changes to the ussc . 12
9.2 New Versions of IRAF . 13
9.3 Multiprocessor Machines . 13
9.4 Manufacturers’ SPECmark Ratings . 13

10 Acknowledgements 13

A Benchmark Descriptions 14

B Changes 15
B.1 V0.8 . 15
B.2 V0.9 . 15
B.3 V1.0 . 15

SSN/23.3 1

1 Introduction

System benchmarking is important not only in deciding what line to take in future hardware
purchases, but also to check whether current systems are set up correctly, whether software is
executing properly and as a tool to investigate configuration changes and tuning operations.
Although there is no shortage of available benchmarks, many of them are unfortunately either
very simplistic, perhaps running a piece of floating point Fortran code in a loop, or test a very
specific area of system performance. In both cases the result is unlikely to give a true indication
of how a real piece of software will perform.

The Starlink Benchmarking Utility is an easy–to–use set of tools for investigating the per-
formance of computer systems when running astronomy data reduction software and currently
includes benchmarks from the Starlink Software Collection and IRAF. The intention is to bench-
mark the sort of applications that are likely to be used by astronomers and hopefully to produce
a performance estimate which is of more relevance to astronomers.

The three main aims of the Utility are:

• To provide an indication of how well a machine performs when carrying out tasks typical
of astronomical data analysis.

• To check that all Starlink machines show consistent performance figures and that those
figures are within expectations.

• To act as a performance diagnostic in system tuning operations, allowing the effects of
hardware changes, such as adding extra memory or changing disk configurations, to be
investigated.

The principal result produced by the Starlink Benchmarking Utility is the STARmark rating,
which is described in Section 4. In addition, as of V1.0, an IRAFmark, based on the IRAF
benchmarks, can also be produced. These ratings should provide convenient benchmarks for
comparing the performance of different host systems. More detailed benchmarking results can
also be produced and this is discussed in Section 5.

2 Installation

The package is currently supported on Solaris and Digital Unix platforms at version v1.0.
Compressed tar files for each platform are available from the Starlink anonymous ftp account.

starbench_sun4_Solaris_v1.0.tar.Z1 (Solaris systems)

starbench_alpha_OSF1_v1.0.tar.Z2 (Digital Unix systems)

Installation of the package is straightforward and proceeds as follows:

1. Move to the empty directory in which you wish to install the package. A suitable place
would be in the /star/local tree, e.g. /star/local/starbench. Space requirements are
approximately 2MB for the compressed tar archive and 5.5MB for the installed package.

1ftp://starlink-ftp.rl.ac.uk/pub/tools/starbench_sun4_Solaris_v1.0.tar.Z
2ftp://starlink-ftp.rl.ac.uk/pub/tools/starbench_alpha_OSF1_v1.0.tar.Z

SSN/23.3 2

2. Obtain the compressed tar file, appropriate to your platform, from the Starlink ftp server
either via the URLs given above or directly via FTP as shown below:

% ftp starlink-ftp.rl.ac.uk

(login as ’anonymous’)

ftp> cd /pub/tools

ftp> bin

ftp> get starbench_***_v1.0.tar.Z

ftp> quit

3. Set the SYSTEM environment variable to identify your system.

For Digital Unix systems:
% setenv SYSTEM alpha_OSF1

For Solaris systems:
% setenv SYSTEM sun4_Solaris

4. Unpack the tar archive:

% zcat starbench_$SYSTEM_v1.0.tar.Z | tar xvf -

5. Execute the mk script. Note that the package will install into the current directory.

% ./mk install

3 Running the Benchmarks

The benchmarks are designed to be set up for automatic execution by the Unix cron daemon.
This method of execution is preferred since, not only does it involve a lesser degree of user
interaction, but it allows the benchmarks to be executed a number of times, at regular intervals,
so as to build up a statistical base of results from which more reliable conclusions can be drawn.

3.1 Prior Requirements

The following setup is required in order to run the benchmarks.

• To run the benchmarks in the recommended fashion the user must have permission to
run jobs using cron and at. This may necessitate placing the username in the files
/etc/cron.d/cron.allow and /etc/cron.d/at.allow.

• The benchmarks themselves create large temporary files so that a minimum of 11MB of free
space is recommended in the working directory (different from the installation directory).

• It is assumed that the ussc is installed under /star and that the user has access to it.

If IRAF benchmarks are to be run, it is assumed that IRAF software is installed un-
der /iraf/iraf. However, the environment variable iraf can be set to point to “non-
standard” locations. For example, if IRAF is installed in /star/iraf/iraf then...

> setenv iraf /star/iraf/iraf

...before starting up the benchmark package.

SSN/23.3 3

• The tcsh is used to time the benchmarks and is assumed to be in /usr/local/bin.

• The following packages are used by the benchmark suite and must be installed for the
benchmarks to function properly:

– USSC: KAPPA, PISA, SPECDRE, CCDPACK

– IRAF: ccdred, daophot, images

3.2 Automatic Benchmarking – Recommended Procedure

The procedure for cron execution of the benchmarks will now be described, along with some
guidelines intended to promote consistency in the results.

1. Move to a suitable directory

During execution, the benchmarks create a number of temporary files, some of which can
be quite large. These files are created in the current directory. The best policy is to move
to a directory with a large amount of free space before issuing any benchmark commands;
a minimum of 11MB is recommended. In any case, the benchmarks cannot be executed
whilst the current directory is the installation directory.

The location of the filesystems containing the current working directory, the benchmarking
package, the Starlink software (ussc), and the iraf installation can all be expected to
influence the benchmark results (this will be discussed later). It is suggested that, whenever
possible, the current working directory should be on a filesystem which is local to the
machine being tested. In addition, the filesystem should not be close to capacity, since
full filesystems often experience reduced I/O efficiency. For more information on how disk
I/O may affect the benchmark results, see Section 6.

2. Source the startup script

To make the package available, source the startup script (starbench.csh) in the instal-
lation directory. For example, if the package was installed in /star/local/starbench

then...

host% source /star/local/starbench/starbench.csh

An alias for this command could be defined in your .tcshrc script. This command sets
up various environment variables, checks the software installation and also checks which
packages (ussc and iraf) are installed on the system.

3. Submitting the benchmarks for execution

The benchmarks are submitted for execution by the cron using a single interactive script,
submit, which prompts for the necessary information. Here is a transcript of an example
session:

host% submit

Submit

SSN/23.3 4

This is an interactive script to submit benchmarks for execution

by the cron at regular intervals. In this way a benchmark profile

of the host machine can be built up.

The benchmarks will be run every hour. Give the number of minutes

past the hour to start each job. If you are running benchmarks on

several machines then it is a good idea to space them out.

Number of minutes past the hour [0] : 30

How many times should the benchmarks be run? The default is to run

them over a twenty-four hour period.

Number of times to run benchmarks [24] : 12

Give the name of a directory to hold the log files generated by

the benchmarks. The default is to put them in the current work

directory.

Give a directory for the log files [.] :

The default is to just run the USSC benchmarks [ussc]. If you wish

you may run the IRAF benchmarks instead [iraf] or both USSC and

IRAF benchmarks [both].

Specify which benchmarks to run [ussc] : both

...cron jobs started

warning: commands will be executed using /usr/local/bin/tcsh

job 793688940.a at Sat Feb 25 05:09:00 1995

...cron termination procedure queued

host%

The user is given the choice of when to execute the benchmarks (minutes past the hour)
and how many times to execute them. When making this choice you should obviously avoid
times when other heavy system processes, such as disk dumps or scratch disk purges, are
executing. In addition, if benchmarks are being executed on more than one host, but are
using the same disk space, then they should be spaced out in time so that they cannot
interfere with one another. A reasonable option would be to benchmark 3 hosts at a time
with executions separated by 20 minutes (i.e. 0, 20 and 40 minutes past the hour).

The user is given the choice of running the ussc benchmarks or the iraf benchmarks, or
running both. The default is to just run the ussc benchmarks.

The submit script makes an entry in the user’s crontab file causing the benchmarks to be
executed every hour at the requested time. In addition, a script to terminate execution of

SSN/23.3 5

the benchmarks, after the required number of runs, and return the user’s crontab file to
its previous state is queued for future execution using the Unix at command.

Each time the benchmark suite is executed, the results are recorded in a log file (filetype
.log) in the directory specified by the user. These log files contain the benchmark timings
along with information on the host system characteristics. They are simple ASCII files
and can be examined at any time.

3.3 Interactive Benchmarking

Although submit is the preferred command for running them, it is also possible to run the
benchmarks on an interactive one-off basis using the command bench. Simply type bench, after
sourcing the package startup script (previous section), and this will run the benchmarks and
print the results out to the screen.

If the bench command line switch -l is used and the name of a log file given then the results will
be sent to a log file rather than to the screen. If this option is used then the procedure could be
backgrounded. This direct method of running the software will only produce a snapshot of the
system and the results may not be as reliable as the multiple executions generated by submit.
However, it is useful for getting quick results or when troubleshooting. For example:

host% bench -l quick-bench.log

Note that log files should have .log as their file type so that they can be recognised as such by
the scan command.

The packages to benchmark can be selected using the -p command line switch, which takes the
value iraf, ussc or both. For example, to only use the iraf packages:

host% bench -l quick-bench.log -p iraf

The default is to just use the ussc packages.

3.4 Processing the Log Files

The log files produced by each execution of the benchmarks can all be processed together using
the scan command. This command accesses all of the log files in a given directory and sorts
them according to host. Benchmarks executed on different hosts may log their results to a
common directory and scan will sort them out, producing a results file for each host. For each
host, average benchmark timings are computed and written to a file <host>.bch. These files
are formatted lists of numbers and are largely for internal use within the package. If a .bch file
already exists for a host, then scan will rename it and produce a new one.

The scan command then reads the <host.bch> files (one for each host) and calculates mean
execution times and errors for each benchmark. These results are then compared with ‘standard’
measurements and a STARmark rating is calculated. If the IRAF benchmarks have been run,
then an IRAFmark rating is produced. An example transcript follows:

host% cd /data/user/results

host% scan

SSN/23.3 6

Scan

This utility will scan through the benchmark logfiles created by

the ’submit’ or ’bench -l’ commands to extract statistics and to

calculate a mean value and error for each benchmark.

The performance is then compared with ’standard’ results and the

STARmark96 benchmark rating is calculated. If IRAF benchmarking

was selected, then an IRAFmark96 rating will also be calculated.

Give the directory path for the log files. The default assumes

that they are in the current directory.

Log files directory [.] : <RETURN>

Benchmark Results

=================

Starlink Benchmark Utilities v1.0

Hostname : uhsul1

User : tmg

Opsys : SunOS 5.5

Platform : SUNW,Ultra-1

Physical Memory : 96.00Mb

Online Processors : 1

Processor Speed : 143MHz

USSC version : USSC176

STARmark96 : 2.44 +/- 0.02 (based on 12 measurements)

IRAFmark96 : 2.89 +/- 0.04 (based on 12 measurements)

host%

The results produced by the scan command can be sent to a log file as well as to the screen
using the -l command line switch:

host% scan -l results.lis

The scan command can also produce extended results enabling a more detailed investigation of
a system’s performance. This facility is also very useful for checking that the benchmarks have
executed correctly and that the results are not unduly influenced by any one application. Using
these extended results is described in section 5.

SSN/23.3 7

4 The STARmark and IRAFmark Ratings

The STARmark and IRAFmark ratings are intended as estimates of how well a machine performs
a sequence of astronomical data reduction tasks using Starlink and IRAF software. However, the
applications that go to make up these two rating are totally different, including different mixes
of CPU activity and disk I/O. It is therefore not possible to use STARmark and IRAFmark
ratings to compare the performance of Starlink and IRAF software on a particular machine.
They are, simply, measuring different things. The IRAF benchmarks have been included to
provide another performance estimate for a particular hardware configuration, which will be
more appropriate for sites running predominantly IRAF software.

Neither are the STARmark and IRAFmark ratings intended as definitive performance ratings for
a machine. Indeed, they cannot be since they only test a limited subset of a machine’s capability.
Rather than trying to separate out and measure specific aspects of performance (such as CPU
power, I/O efficiency, caching ability etc.) the current philosophy behind this package is to fold
all of these factors into global performance estimates which, hopefully, will be of more relevance
to the astronomer sitting in front of the screen. The STARmark and IRAFmark figures simply
provide a convenient single-figure handle on these estimates.

Each benchmark is timed (using the shell time command) to give the “total CPU execution
time” or tcpu for the benchmark. This is the sum of the user and kernel mode CPU times. In
order to calculate the STARmark and IRAFmark ratings, the tcpu figures for each benchmark
must be calibrated against a ‘standard’ result. In the case of the current package (v1.0) the
standard is a 64Mb SPARC10 model 51 (RAL machine rlssp0). Comparison of the benchmark
tcpu times on the machine being tested with those on the standard machine gives a speed rating
for each benchmark (i.e. how much faster the benchmark runs on the machine being tested than
on the standard machine), so that, for any particular benchmark:

speed =
tcpurlssp0
tcpumachine

Four benchmarks are currently incorporated in the STARmark rating, based on the KAPPA,
PISA, SPECDRE and CCDPACK Starlink packages. The speed ratings for these benchmarks
are averaged to form the STARmark rating.

STARmark = 0.25(speed(KAPPA) + speed(PISA) + speed(SPECDRE)
+ speed(CCDPACK))

The error quoted on the STARmark figure is derived from the spread in the results from multiple
executions of the benchmark package using the submit command. This spread in results is likely
to reflect variations in load and activity on the system throughout the timespan of the benchmark
executions. The quoted error therefore represents a lower limit on the real uncertainty which will
include systematic effects (e.g. whether the working directory is on a local or remote filesystem)
which may well dominate.

In a similar way, the IRAFmark rating is based on three IRAF packages: CCDRED, DAOPHOT
and IMAGES.

IRAFmark = (speed(CCDRED) + speed(DAOPHOT) + speed(IMAGES))/3.0

SSN/23.3 8

The current list of expected STARmark and IRAFmark figures for various machines
and configurations is available to Site Managers through the Starlink Forum System
Managers’ Conference, Note 4.03.

5 Extended Results

The scan command will print out more detailed results if given the -f command line switch.
An example transcript is given below.

host% cd /data/user/results

host% scan -f

Scan

This utility will scan through the benchmark logfiles created by

the ’submit’ or ’bench -l’ commands to extract statistics and to

calculate a mean value and error for each benchmark.

The performance is then compared with ’standard’ results and the

STARmark96 benchmark rating is calculated. If IRAF benchmarking

was selected, then an IRAFmark96 rating will also be calculated.

Give the directory path for the log files. The default assumes

that they are in the current directory.

Log files directory [.] :

Benchmark Results

=================

Starlink Benchmark Utilities v1.0

Hostname : uhsul1

User : tmg

Opsys : SunOS 5.5

Platform : SUNW,Ultra-1

Physical Memory : 96.00Mb

Online Processors : 1

Processor Speed : 143MHz

USSC version : USSC176

STARmark96 : 2.44 +/- 0.02 (based on 12 measurements)

3http://rlsaxps.bnsc.rl.ac.uk/Forum/Systems-Management/4

SSN/23.3 9

IRAFmark96 : 2.89 +/- 0.04 (based on 12 measurements)

Average Load : 0.065 +/- 0.106

Benchmark ucpu kcpu tpcu Speed Elapsed

--------- ---- ---- ---- ----- -------

FFT 23.37 0.46 23.83 +/- 0.04 3.17 +/- 0.01 25.14 +/- 0.51

SLA 12.06 0.02 12.08 +/- 0.10 1.47 +/- 0.01 12.42 +/- 0.18

KAPPA 9.77 3.87 13.64 +/- 0.22 2.68 +/- 0.04 86.64 +/- 6.33

PISA 10.34 2.40 12.75 +/- 0.23 2.43 +/- 0.04 48.47 +/- 1.12

SPECDRE 7.87 3.81 11.68 +/- 0.18 2.47 +/- 0.04 35.01 +/- 0.54

CCDPACK 13.32 5.33 18.66 +/- 0.18 2.17 +/- 0.02 67.20 +/- 1.94

CCDRED 10.12 4.00 14.11 +/- 0.23 2.59 +/- 0.04 101.44 +/- 4.40

DAOPHOT 16.05 3.91 19.96 +/- 0.17 1.55 +/- 0.01 37.18 +/- 1.49

IMAGES 11.28 1.60 12.88 +/- 0.43 2.24 +/- 0.07 46.45 +/- 5.92

The full output shows the CPU execution times recorded for individual benchmarks, the speed
ratings and the elapsed times. The nomenclature is as follows:

ucpu : Average CPU time (secs.) in user mode for each benchmark.
This is the time the CPU spends executing the user’s code.

kcpu : Average CPU time (secs.) in kernel mode for each benchmark.
This is the time the CPU spends executing system instructions.

tcpu : Average Total CPU time (ucpu + kcpu) for each benchmark.
The error on tcpu (secs.) is the standard deviation.

speed : The ratio of tcpu on the standard machine to tcpu on the
machine being benchmarked. The errors on the ‘speed’
figures are simply the propagated tcpu errors.

elapsed : Average elapsed time (secs.) for each benchmark. The error
is the standard deviation.

Since it is the four ‘speed’ figures for the KAPPA, PISA, SPECDRE and CCDPACK benchmarks
that are averaged to give the STARmark rating, a full output can be used to check whether the
computed STARmark is being biased by any particular benchmark. The same applies for the
IRAFmark. The benchmark scripts do check for successful completion and flag log files with

SSN/23.3 10

problems so that scan will not use them. However, it is also a good idea to check the errors on
the tcpu and speed figures to make sure that the results have not been influenced by a spurious
result. If the errors appear high then the log files should be examined.

In addition to the ‘astronomy’ benchmarks, the full output also shows results for the FFT
and SLA benchmarks. These benchmarks are purely CPU thrashers and do not do any disk
I/O (although the FFT benchmark can page heavily on systems with less than 32MB physical
memory). They can be useful in assessing to what degree the other benchmarks are likely to
be influenced by disk I/O considerations but they are not incorporated in the STARmark or
IRAFmark figures.

The individual benchmarks are described in Appendix A.

6 Disk I/O Effects

The package does not, at present, contain a disk I/O benchmark, although the inclusion of one
has been considered at some length. The effects of disk I/O efficiency on overall performance are
obviously important, especially in astronomy where large data files are routinely accessed. This
section documents some of the problems inherent in producing a meaningful ‘disk benchmark’.

First of all, one has to decide what to measure. The processes of disk reading and writing can be
split into two parts. The first part, which we will call the ‘internal’ part, incorporates the calls to
system I/O routines and the transfer of data to or from internal buffers and caches. The second
part, which we will call the ‘external’ part, incorporates the actual transfer of information to
or from a physical location on the disk. The efficiency of the internal part of disk I/O depends
on the machine and operating system whereas the efficiency of the external part of disk I/O
depends on the disk hardware and bus technology. These two aspects of disk I/O should really
be benchmarked separately, however, there are too many possible hardware combinations here
to produce a ‘standard’ benchmark result. Yet it is precisely the combined internal and external
efficiencies which influence the overall disk I/O performance of the system.

The benchmarks in this package measure the tcpu (total CPU) times. In disk I/O processes it
is only the internal (system) part of the I/O that is clocked by the CPU and hence appears in
the tcpu figure. The external part of the I/O operation (physically reading and writing) only
appears in elapsed time. The elapsed time that it takes a process to execute depends directly
on what is going on on the rest of the system, in other words on the system load. Without
knowing in advance how elapsed time on a particular machine scales with system load, the
external portion of disk I/O cannot be benchmarked. One possible solution is to run a disk
benchmark on a completely empty system where load is not a factor. However, even in this
case the effects of system daemons and processes may need to be considered. Most background
system daemon activity can legitimately be considered as part of the operating system, however
sporadic activity caused, for example, by remote ftp connections or tftp requests from booting
hardware, could influence the benchmarks.

In cases where a disk is not local to the system running the benchmarks then things are even more
complicated, since the load on the machine serving the disk must be taken into consideration.

Whenever possible the benchmarks should be executed from a disk which is local to the machine
being tested so as to minimise the effects of load on the file server on the benchmark results.
In addition, filesystems which are close to capacity or which are heavily fragmented should be

SSN/23.3 11

avoided since they may suffer from reduced I/O performance. If it is suspected that the choice
of disk is unduly influencing the benchmark results then the benchmarks should be run from
several different disks and the results compared.

Finally, disk I/O benchmarks are heavily influenced by the effects of a disk cache. I/O to often-
accessed small files can often be fulfilled from the cache and thus a benchmark involving such
files would really be testing the speed at which your CPU can read blocks out of the cache and
not the speed of your disk I/O subsystem. However, if your application actually does do a lot of
reading and writing of small files, then the inclusion of the effects of the cache in your benchmark
is valid. Also, the record length size plays a major role in performance measurements. Hence,
the most reliable disk benchmark is your actual application. This is the approach taken in the
present benchmarking suite. Real astronomical applications are used and thus they naturally
include disk I/O elements of the relevant types and in the appropriate proportions.

7 Elapsed Time

The STARmark and IRAFmark ratings (Section 4) only consider the performance of a machine
in terms of CPU time consumed and make no use of elapsed time. This is simply because elapsed
time is highly dependant on machine load and it is not possible to produce reliable benchmarks
even if one measures the machine load and attempts to account for it. Furthermore, it is usually
not possible to measure elapsed time on an “unloaded” system since a networked Unix system
is never idle.

Measurements of CPU usage, on the other hand, are highly repeatable and thus are suitable as
a benchmark. They are also useful for identifying small changes in performance resulting from
changes to system configuration.

Although elapsed time is difficult to interpret, it is of great interest to the interactive user who
experiences elapsed rather than CPU time. The elapsed time is available in the individual log
files produced by submit and bench -l and is output by the scan -f command. It can be
particularly important when exploring the effects of disk location. For example, trials have
shown that elapsed time for a benchmark run can increase by up to 500% when a remote disk
is used rather than a local one whereas the increase in CPU time, although measurable, was
small in comparison. Bearing in mind the difficulties inherent in benchmarking disk I/O, it is
still often possible to extract useful information from the elapsed times and we suggest some
guidelines for doing so:

• As described in Section 6 and above, elapsed time is highly dependent on system load
in a way which is hard to quantify. Pick a period when the system should be relatively
quiescent, e.g. overnight. Avoid other cron procedures such as disk dumps or scratch
disk purges. Beware of http or ftp connections. When disk space (working directory,
benchmark software or ussc) are on remote disks then activity on the disk server needs to
be considered also.

• Run the benchmarks over an extended period of time using the submit command. For
example, from midnight to 6am on several days of the week. Elapsed times are especially
susceptible to sporadic system activity. Establishing a large base of measurements spread
over time will smooth out these effects.

SSN/23.3 12

• Use the mean elapsed times produced by scan -f and check their standard deviations.
If the standard deviation on a measurement appears large then check the benchmark log
(.log) files for anomalous results. If you suspect that one particular measurement is
unduly influencing the result then try removing the log file (e.g. by renaming the .log

extension) and then run scan -f again.

8 Other Benchmarks

The benchmarks in this package are specifically intended to evaluate performance on systems
principally running Starlink and IRAF software. On systems where other packages (e.g. AIPS)
are heavily used then a benchmark specific to that package may be more appropriate. Such
benchmarks may have been provided by the suppliers of the software.

A number of benchmarks based on IRAF tasks are included in this package at V1.0. However, a
suite of more specialized IRAF benchmarks, which test the installation and performance of IRAF
software, exists and was produced by NOAO. These benchmarks are described in the document
A set of Benchmarks for Measuring IRAF System Performance written by Doug Tody which is
available from the Starlink IRAF mirror as bench.ps.Z4.

8.1 Systems running AIPS

A suite of benchmarks for systems running AIPS is available (the “Dirty Dozen Test” or DDT)
which will produce an AIPSmark rating. The DDT suite is a reliable way of determining two
things: firstly that a given AIPS installation gives accurate results, and secondly it is a measure
of the performance of AIPS on the given system.

Full details of the AIPS DDT, including latest results, can be found at this URL5

9 Miscellaneous Issues

9.1 Changes to the ussc

The ussc is continually being updated and since the benchmarks use the installed copy of the
collection, the tests being run will gradually change over time. Hence, it will be necessary to
re-run the benchmarks every so often to measure the performance of machines with the current
version of the ussc. The standard figures embedded in the benchmarking software will be
updated once a year and the year identifier in the STARmark rating incremented to distinguish
results from different incarnations of the software.

It might seem odd to use the everchanging installed copy of the software for the benchmarks
rather than a self contained, static copy. However, the size of the benchmarking package would
be enormous if it had to carry a private copy of the applications around with it. Moreover, we
are interested in how fast new machines run our current release of the software, not a frozen
copy, and hence despite the obvious drawback, we have elected to use the installed ussc for
benchmarking.

4ftp://www.starlink.ac.uk/pub/iraf/iraf/docs/bench.ps.Z
5http://info.cv.nrao.edu/aips/ddt.html

SSN/23.3 13

9.2 New Versions of IRAF

Similar arguments to those in Section 9.1 apply with regard to IRAF software. The current V1.0
release of this package has been tested with IRAF V2.10.4. As new versions of IRAF appear,
modifications to this package will no doubt be required.

9.3 Multiprocessor Machines

The benchmarks in this package do not test the benefit of multiprocessor machines. Since
benchmark tasks all execute sequentially it is unlikely that they would take advantage of multiple
processors.

9.4 Manufacturers’ SPECmark Ratings

While the results from this package should be in broad agreement with manufacturers’ SPEC-
mark ratings, they will provide a more realistic performance estimate for Starlink machines.
SPECmark ratings tend to indicate the potential that it is possible to realise with a machine
rather than the performance that will actually be returned when running ‘real’ applications.

10 Acknowledgements

The production of this IRAF benchmarking software has been undertaken after discussions
with Doug Tody, NOAO, the developer of IRAF. However, the benchmarking package has been
developed completely independently of the IRAF team so that any errors in the package or
spurious results that it might produce are wholly the responsibility of Starlink.

SSN/23.3 14

A Benchmark Descriptions

This appendix describes each benchmark and the operations it performs.

FFT:

A fortran program which runs a Fast Fourier Transform algorithm on a 1024x1024 element
double precision array using KAPPA subroutines. This benchmark should test CPU floating
point speed and the ability of the machine to handle large arrays. A considerable amount
of virtual memory is allocated (approximately 32MB) which may result in substantial paging
activity, depending on installed physical memory and other system processes. Fortran compiler
optimisation flag -O is used.

SLA:

The SLA benchmark exercises each of the subroutines in the C implementation of the SLALIB
Starlink subroutine package. This benchmark performs a substantial amount of floating point
arithmetic with no disk I/O. C compiler flag -O is used.

KAPPA:

This benchmark runs a total of 22 KAPPA tasks sequentially (detail enhancement, image arith-
metic, configuration change, compression and expansion, filtering and image statistics). Most
of the image processing tasks use a 319x503 pixel real image. A substantial amount of disk I/O
is done.

PISA:

This benchmark runs a modified version of the PISA demo script which locates and classifies
objects on a test image and fits them with profiling functions. Again, a substantial amount of
disk I/O is done.

SPECDRE:

This benchmark runs a modified version of the SPECDRE demo script which processes spectral
data and performs several fits. Some disk I/O.

CCDPACK:

This benchmark runs a modified version of the CCDPACK demo which performs inter-image
alignment, normalisation and mosaicing on test data. Disk I/O is quite intensive.

CCDRED:

This benchmark uses the CCDRED package in IRAF to create and process test CCD images.
A substantial amount of disk I/O is done, and at least 10MB of free disk space is required.

DAOPHOT:

The IRAF DAOPHOT package is used to perform crowded field photometry of a simulated
galaxy cluster image.

IMAGES:

The IRAF IMAGES package is used to perform image processing tasks on a test 512x512 CCD
image.

SSN/23.3 15

B Changes

B.1 V0.8

The package was released at v0.8 in March 1995

B.2 V0.9

The following changes were made at v0.9:

1. All benchmark scripts now check for successful completion. Any anomalies are reported.

2. The output from the scan command has been improved. A new -l command line flag
allows results to be logged to a file.

3. Benchmark scripts have been fixed to work with recent changes to the ussc.

4. The FFT benchmark has been re-written to use the PDA library.

5. The startup script now checks for the presence of benchmarked packages. Any absences
are noted.

6. More system information produced as part of the benchmark headers.

7. Package startup is now achieved by sourcing a startup script starbench.csh.

8. Makefile updated to Starlink standard.

B.3 V1.0

The following changes were made at v1.0:

1. Three IRAF benchmarks based on the CCDRED, DAOPHOT and IMAGES package are
included. These benchmarks use the locally installed version of IRAF except for modified
login.cl and mkiraf scripts, which are included with this package.

2. The package startup script (starbench.csh) has been enhanced to check for the presence
of ussc and iraf packages. It now prints out package availability.

3. A -p command line switch is added to the bench command, to facilitate running ussc and
iraf packages. This is also used by the submit command.

4. The scan command now checks the benchmark version numbers in the log files before
using them. It now calculates an IRAFmark where appropriate.

5. The SLALIB C benchmark uses customized comment-stripped code.

