
SMTP/POP3/IMAP Email Engine

Reference Library

(SEE_REF)

Version 7.3

November 21, 2014

This software is provided as-is.
There are no warranties, expressed or implied.

Copyright (C) 2014
All rights reserved

MarshallSoft Computing, Inc.
Post Office Box 4543

Huntsville AL 35815 USA

Email: info@marshallsoft.com
Web: www.marshallsoft.com

MARSHALLSOFT is a registered trademark of MarshallSoft Computing.

 1

TABLE OF CONTENTS

1 Introduction Page 4
 1.1 General Remarks Page 4
 1.2 SEE Arguments Page 4
 1.3 Documentation Set Page 4
 1.4 Declaration Files Page 5
 1.5 Language Notes Page 6

2 SEE Functions Page 7
 2.1 seeAbort Page 7
 2.2 seeAttach Page 8
 2.3 seeAttachmentParams Page 9
 2.4 seeByteToShort Page 10
 2.5 seeClose Page 11
 2.6 seeCommand Page 12
 2.7 seeConfigSSL Page 13
 2.8 seeDebug Page 14
 2.9 seeDecodeBuffer Page 16
 2.10 seeDecodeUTF8 Page 17
 2.11 seeDecodeUU Page 18
 2.12 seeDeleteEmail Page 19
 2.13 seeDriver Page 20
 2.14 seeEncodeBuffer Page 21
 2.15 seeEncodeUTF8 Page 22
 2.16 seeErrorText Page 23
 2.17 seeExtractLine Page 24
 2.18 seeExtractText Page 25
 2.19 seeForwardEmail Page 26
 2.20 seeGetEmailCount Page 27
 2.21 seeGetEmailFile Page 28
 2.22 seeGetEmailLines Page 29
 2.23 seeGetEmailSize Page 30
 2.24 seeGetEmailUID Page 31
 2.25 seeGetHeader Page 32
 2.26 seeGetTics Page 33
 2.27 seeImapConnect Page 34
 2.28 seeImapConnectSSL Page 35
 2.29 seeImapCopyMBmail Page 36
 2.30 seeImapCreateMB Page 37
 2.31 seeImapDeleteMB Page 36
 2.32 seeImapFlags Page 39
 2.33 seeImapListMB Page 40
 2.34 seeImapMsgNumber Page 41
 2.35 seeImapRenameMB Page 42
 2.36 seeImapSearch Page 43
 2.37 seeImapSelectMB Page 44
 2.38 seeImapSource Page 45
 2.39 seeIntegerParam Page 46
 2.40 seeIsConnected Page 49
 2.41 seeKillProgram Page 51
 2.42 seePop3Connect Page 52
 2.43 seePop3ConnectSSL Page 53

 2

 TABLE OF CONTENTS - continued

 2.44 seePop3Source Page 54
 2.45 seeQuoteBuffer Page 55
 2.46 seeReadQuoted Page 56
 2.47 seeRelease Page 57
 2.48 seeSendEmail Page 58
 2.49 seeSendHTML Page 60
 2.50 seeSetErrorText Page 62
 2.51 seeSetProxySSL Page 63
 2.52 seeShortToByte Page 65
 2.53 seeSleep Page 66
 2.54 seeSmtpConnect Page 67
 2.55 seeSmtpConnectSSL Page 68
 2.56 seeSmtpTarget Page 69
 2.57 seeStartProgram Page 70
 2.58 seeStatistics Page 71
 2.59 seeStringParam Page 73
 2.60 seeTestFileSet Page 75
 2.61 seeUnquoteBuffer Page 76
 2.62 seeVerifyFormat Page 77
 2.63 seeVerifyUser Page 78

3 SEE Error Return Code List Page 79

 3

1. Introduction

The SMTP/POP3/IMAP Email Engine Library (SEE) is a developer toolkit that provides a simple
interface to quickly develop SMTP, POP3/IMAP mail applications and can be used with any program
capable of calling the Windows API.

The SMTP/POP3/IMAP Email Engine (SEE) is a component library of functions providing easy control
of the SMTP (Simple Mail Transport Protocol), POP3 (Post Office 3), and IMAP 4 (Internet Message
Access Protocol) protocols.

A simple interface allows sending and receiving mail, including multiple MIME base64 and quoted-printable
encoded attachments from within an application. Knowledge of Winsock and TCP/IP is not needed.

We have versions of the SMTP/POP3/IMAP Email Engine for C/C++ (SEE4C), Delphi (SEE4D),
Visual Basic (SEE4VB), PowerBASIC (SEE4PB), Visual FoxPro (SEE4FP), Visual dBase (SEE4DB),
Alaska Xbase++ (SEE4XB), and COBOL (SEE4CB). All versions of SEE use the same DLLs
(SEE32.DLL and SEE64.DLL) and can be called from any program or compiler that can call the Windows
API.

The latest version of our SMTP/POP3/IMAP Email component software and complete technical
documentation can be found online at

 http://www.marshallsoft.com/email-component-library.htm

This SMTP/POP3/IMAP Email Reference Manual (SEE_REF) contains details on each individual SEE
function.

1.1 General Remarks

All functions return an integer code. Negative values are always errors. Refer to Section 3.0 below, "SEE
Error Return Code List"). The file seeErrors.txt contains a list of all error codes and their corresponding
numeric value.

Non-negative return codes are never errors. Note that the seeErrorText function is used to get the text
message associated with any error code.

Each function argument is marked as:

 (I) : 4-byte integer.
 (L) : 4-byte integer.
 (P) : 4-byte pointer.

Refer to the declaration files (see Section 1.3 below) for the exact syntax of each SEE function. Also note
that the example programs show exactly how SEE functions are called.

1.2 SEE Arguments

Only variables (previously declared in your program) should be passed to SEE functions, as is
demonstrated in the example programs.

Text strings passed to SEE functions must be terminated by a null character since SEE calls Windows API
functions that require null terminated strings.

 4

http://www.marshallsoft.com/email-component-library.htm

1.3 Documentation Set

The complete set of documentation consists of three manuals in Adobe PDF format. This is the third
manual (SEE_REF.PDF) in the set.

• SEE_4x Programmer’s Manual (SEE_4x.PDF)
• SEE User’s Manual (SEE_USR.PDF)
• SEE Reference Manual (SEE_REF.PDF)

The SMTP/POP3/IMAP Programmer’s Manual (SEE_4x.PDF) is the programming language
dependent manual and provides information needed to compile your programs as well as the examples in
the specified environment. The “x” in SEE_4x.PDF Programmer’s Manual specifies the host language
such as C for C/C++, VB for Visual Basic, etc.

The SMTP/POP3/IMAP User’s Manual (SEE_USR.PDF) discusses language independent
SMTP/POP3/IMAP email processing issues. License and purchase information is also provided.

The SMTP/POP3/IMAP Reference Manual (SEE_REF.PDF) contains details on each individual SEE
function.

1.4 Declaration Files

The exact syntax for calling SMTP/POP3/IMAP Email component (SEE) functions is specific to the
host language (C/C++, Delphi, VB, etc.) and is defined for each language in the “SEE declaration files”.
Each SEE product comes with the appropriate declaration file for the supported language. For example,

 SEE4C C/C++, .NET, C# SEE.H
 SEE4D Codegear (Borland) Delphi SEE32.PAS and SEE64.PAS
 SEE4VB Visual Basic SEE32.BAS and SEE64.BAS
 VB.NET SEE32.VB and SEE64.VB
 VBA (EXCEL,ACCESS,etc.) SEE32.BAS and SEE64.BAS
 SEE4PB PowerBASIC SEE32.PBI
 SEE4FP Visual FoxPro SEE32.FOX
 SEE4DB Visual dBase SEE32.CC
 SEE4XB Xbase++ SEE32.CH
 SEE4CB Fujitsu COBOL SEE32.CBI

If you are programming in a language that is capable of calling Windows API functions directly, then your application
can also call SEE functions. Let us know if you need a declaration file such a language.

Most SEE functions are used in one or more of the example programs.

 5

http://www.marshallsoft.com/see_usr.pdf
http://www.marshallsoft.com/see_ref.pdf

1.5 Language Notes

All language versions of the SMTP/POP3/IMAP Email component library include the example program
SEEVER. Refer to this program and the declaration file as defined in Section 1.3 above to see how SEE
functions are called. The SEEVER program is also the first program that should be compiled and run.

The best way to learn how a function is called is to find it used in one of the example programs.

1.5.1 C/C++, C++ .NET, C#

If you will be using SEE with C/C++ and another language, order the C/C++ version.

SEE works with Visual C++, Borland C/C++, Borland C++ Builder, Watcom C/C++, LCC, Visual C++
.NET and Visual C# .NET through Visual Studio 2013.

1.5.2 Delphi

Functions defined in the Delphi Unit SEEW.PAS begin with "f" rather than "see".

SEE works all version of Delphi from Delphi 2 through Delphi 2010 and Delphi XE-XE7.

1.5.3 Visual Basic

SEE works with all version of Visual Basic including VB.NET and Visual Basic for Applications (VBA).

1.5.4 PowerBASIC

Constants defined for PowerBASIC (SEE32.PBI) begin with the character '%' symbol.

SEE works with PBCC, PBDLL, and PBWIN.

1.5.5 Visual FoxPro

All strings passed to SEE functions must be prefixed with the '@' character.

SEE works with all versions of 32-bit Visual FoxPro.

1.5.6 Visual dBase

SEE works with all versions of Visual dBase.

1.5.7 Xbase++

Functions defined for Xbase++ begin with 'X'. All strings passed to SEE functions must be prefixed with
the '@' character.

SEE works with all versions of Alaska Xbase++.

1.5.8 COBOL

SEE4CB supports Fujitsu COBOL, but we also have a few example programs for other COBOL compilers
such as ACUCOBOL, Micro Focus COBOL, Realia COBOL, and RM COBOL.

1.5.9 Fortran

We have example programs for ABSOFT, Salford, Compaq Visual Fortran, and Digital Visual Fortran.

 6

2 SEE Functions

2.1 seeAbort: Abort seeDriver.

SYNTAX

 seeAbort(Chan)

 Chan : (I) Channel number.

REMARKS

The seeAbort function is used to abort the SEE state driver. This is used when calling the SEE state driver
(seeDriver) directly and it is necessary to abort.

After calling seeAbort, subsequent calls to seeDriver will return 0 (IDLE). Thus, SEE is ready for the
next command.

This function is not required unless the state driver seeDriver is being called directly.

RETURNS

• Return < 0 : An error has occurred. See Section 3 “SEE Error Return Code List”.

C/C++ Example

 // Abort SEE
 seeAbort(0);

BASIC Example

 ' Abort SEE
 Code = seeAbort(0)

ALSO REFER TO

seeDriver

 7

2.2 seeAttach: Initialize SMTP/POP3/IMAP Email Engine.

SYNTAX

 seeAttach(NbrChans,KeyCode)

 NbrChans : (I) Number of channels or threads.
 KeyCode : (L) Registration key code.

REMARKS

The seeAttach function must be the first SEE call made. Pass the maximum number of channels or
threads that will be in use. Use NbrChans = 1 for non-threaded applications.

The 'Chan' parameter for subsequent calls to SEE functions must be in the range of 0 to NbrChans-1.

In Win32, up to 128 threads (numbered from 0 to 127) can be started, each of which can be connected to a
different server and run independently.

When SEE is registered, you will receive a 'Registration KeyCode' which matches the 'KeyCode' within
the registered DLL. The keycode is 0 for the evaluation version. Refer to file KEYCODE.

RETURNS

• Return < 0 : An error has occurred. See Section 3 “SEE Error Return Code List”.

EXAMPLES

All example programs call seeAttach.

C/C++ Example

 // Initialize SEE (look in KEYCODE.H for SEE_KEY_CODE)
 seeAttach(1, SEE_KEY_CODE);

BASIC Example

 ' Initialize SEE (look in KEYCODE.BAS for SEE_KEY_CODE)
 Code = seeAttach(1, SEE_KEY_CODE)

ALSO REFER TO

seeSmtpConnect; seePop3Connect.

 8

2.3 seeAttachmentParams: Specifies attachment Content-Type headers.

SYNTAX

 seeAttachmentParams(ContentType,Encoding,Disposition,Description)

 ContentType : (P) Content-Type header.
 Encoding : (P) Content-Transfer-Encoding header.
 Disposition : (P) Content-Disposition header.
 Description : (P) Content-Description header.

REMARKS

This function specifies the "Content-Type:" headers for up to the first 5 attachments. Additional
attachments, if any, use the standard default headers. Passing a NULL or an empty string to any one of the
four parameters sets that parameter to the default value “application/octet-stream.”

The purpose of this function is to enable the creation of specific types of multi-part MIME parts. For
example, specifying

 Content-Type: audio/x-wav

sets the Content-Type of the attachment file to (audio) WAV that will allow some email clients to play the
WAV file when the attachment is clicked.

The seeAttachmentParams is used with SMTP servers only.

RETURNS

• Return < 0 : An error has occurred. See Section 3 “SEE Error Return Code List”.

EXAMPLES

C/C++ Example

 // set content parameters for first attachment
 char *ContentType = "Content-Type: audio/x-wav";
 char *XferEncoding = "Content-Transfer-Encoding: base64 ";
 char *Disposition = "Content-Disposition: attachment; filename= myfile.wav;"
 char *Description = "Content-Description: This is an audio wave file"
 Code = seeAttachmentParams(ContentType, XferEncoding, Disposition, Description)

BASIC Example

 ' set content parameters for first attachment
 Dim ContentType, XferEncoding, Disposition, Description As String
 ContentType = "Content-Type: audio/x-wav"
 XferEncoding = "Content-Transfer-Encoding: base64 "
 Disposition = "Content-Disposition: attachment; filename= myfile.wav"
 Description = "Content-Description: This is an audio wave file"
 Code = seeAttachmentParams(ContentType, XferEncoding, Disposition, Description)

ALSO REFER TO

seeSmtpConnect, seePop3Connect; MParts example program.

 9

2.4 seeByteToShort :: Converts 8-bit character buffer to 16-bit

SYNTAX

 seeByteToShort(Buffer)

 Buffer : (P) character buffer

REMARKS

The seeByteToShort function converts the (null terminated) character buffer 'Buffer' from 8-bit ASCII
characters to 16-bit Unicode ASCII characters.

The buffer must be null terminated (last character is a hex 00) and the buffer must be at least twice the size
(in bytes) of the character string (since 16-bit characters require twice the space as 8-bit characters).

This function is only necessary when working with 16-bit Unicode ASCII characters in C# and Delphi
.NET.

RETURNS

• Length of the string in characters.

EXAMPLES

C/C++ Example

See C example CODETEST

 int Code;
 char AsciiString[] = "MarshallSoft\0\0\0\0\0\0\0\0\0\0\0\0";

 // Convert 8-bit ASCII string to 16-bit ASCII
 Code = seeByteToShort((char *)AsciiString);

ALSO SEE

seeShortToByte

 10

2.5 seeClose: Closes connection opened by SEE.

SYNTAX

 seeClose(Chan)

 Chan : (I) Channel number.

REMARKS

The seeClose function closes the connection created by calling seeSmtpConnect, seePop3Connect,
seeSmtpConnectSSL, seePop3ConnectSSL, seeImapConnect, or seeImapConnect.

Call seeClose to terminate the connection before connecting again.

If the connect function fails, do not call seeClose since the connection is already closed.

RETURNS

• Return < 0 : An error has occurred. See section 3 “SEE Error Return Code List”.

EXAMPLES

C/C++ Example

 // close connection to server
 seeClose(0);

BASIC Example

 ' seeClose(0)
 Code = seeClose(0)

ALSO REFER TO

seeSmtpConnect , seePop3Connect, seeSmtpConnectSSL, seePop3ConnectSSL. All example programs
call seeClose.

 11

2.6 seeCommand: Transmits user command to SMTP or POP3 server.

SYNTAX

 seeCommand(Chan, Text)

 Chan : (I) Channel number.
 Text : (I) Command.

REMARKS

The seeCommand function sends an arbitrary text command to the SMTP, POP3, or IMAP4 server after
connecting.

The seeCommand function is designed to allow the user to send commands that are specific to a particular
SMTP or POP3 server. It can also be used to send SMTP, POP3, or IMAP4 commands that are not
implemented in the SEE library.

Call seeDebug with SEE_GET_LAST_RESPONSE in order to get the text of the server's response.

RETURNS

• Return < 0 : An error has occurred. See section 3 “SEE Error Return Code List”.

EXAMPLES

C/C++ Example

 // send NOOP command to server
 char *X = "NOOP"
 Code = seeCommand(0, X)

BASIC Example

 ' send NOOP command to server
 X = "NOOP" + Chr$(0)
 Code = seeCommand(0, X)

ALSO REFER TO

HELLO example program.

 12

2.7 seeConfigSSL: Add lines to SSL configuration file.

SYNTAX

 seeConfigCode(ConfigCode, ConfigPtr)

 ConfigCode : (I) Configuration code
 ConfigPtr : (P) Configuration text

REMARKS

The seeConfigSSL function adds lines to the SSL configuration file. seeConfigSSL provides the ability to
customize the SSL configuration file for a specific server as required.

Pass SSL_CONFIG_OPTIONS as the ConfigCode parameter to specify that the contents of ConfigPtr are
to be copied to the OPTIONS section of the SSL configuration file.

RETURNS

• Return > 0 : Number of bytes copied to the SSL configuration file.
• Return < 0 : An error has occurred. See Section 3 “SEE Error Return Code List”.

EXAMPLES

C/C++ Example

 char *Option = "debug=7";
 Code = seeConfigSSL(SSL_CONFIG_OPTIONS, Option);

BASIC Example

 Dim Option As String
 Option = "debug=7"
 Code = seeConfigSSL(SSL_CONFIG_OPTIONS, Option)

ALSO REFER TO

MailSSL example program.

 13

2.9 seeDebug: Returns debug information.

SYNTAX

 seeDebug(Chan, Index, Buffer, BufLen)

 Chan : (I) Channel number.
 Index : (I) Command index.
 Buffer : (P) Buffer to place text into.
 BufLen : (I) Length of above Buffer.

REMARKS

The seeDebug function returns (textual) debug information depending on the value of Index.

 SEE_COPY_BUFFER : Copies internal buffer.
 SEE_GET_ATTACH_NAMES : Gets list of attachment file names.
 SEE_GET_LAST_RECIPIENT : Gets last recipient acknowledged by server.
 SEE_GET_LAST_RESPONSE : Gets last server response.
 SEE_GET_LOCAL_IP : Gets local IP address.
 SEE_GET_REGISTRATION : Gets the SEE registration string.
 SEE_GET_SERVER_IP : Get server IP address in dotted notation.
 SEE_GET_ATTACH_TYPES : Get list of attachment types.

 14

SEE_COPY_BUFFER is used to copy the internal SEE buffer created when calling seeGetEmailLines
with NULL passed for 'Buffer'. Refer to seeGetEmailLines for details. ALSO REFER TO
SEE_WRITE_BUFFER in seeStringParam.

SEE_GET_ATTACH_NAMES gets the list of filenames received from downloading email from a POP3
server. Call only after all email has been read.

SEE_GET_LAST_RECIPIENT gets the last recipient acknowledged by the POP3 server. This is only
useful when running in direct mode (calls seeDriver) when a list of email addresses is being used in one
call to seeSendEmail.

SEE_GET_LAST_RESPONSE gets the text of the last server response.

SEE_GET_LOCAL_IP gets the local IP address in dotted decimal notation. Use this only after
connecting to an SMTP or POP3 server.

SEE_GET_REGISTRATION gets the user's SEE registration string.

SEE_GET_SERVER_IP gets the server IP address in dotted decimal notation. Use this only after
connecting to an SMTP or POP3 server.

SEE_GET_ATTACH_TYPES gets a list of attachment types separated by semi-colons. Use only after
completely downloading the email message.

RETURNS

• Return > 0 : Number of bytes copies to ‘Buffer’.
• Return < 0 : An error has occurred. See section 3 “SEE Error Return Code List”.

EXAMPLES

C/C++ Example

 // Get text of last server response
 char Buffer[128];
 Code = seeDebug(0, SEE_GET_LAST_RESPONSE, (char *)Buffer, 128);

BASIC Example

 ' Get text of last server response
 Dim Buffer As String * 128
 Code = seeDebug(0, SEE_GET_LAST_RESPONSE, Buffer, 128)

ALSO REFER TO

seeStatistics; SEEVER and GETRAW example programs.

 15

2.9 seeDecodeBuffer: Decodes buffer using base64.

SYNTAX

 seeDecodeBuffer(CodedPtr, ClearPtr, Length)

 CodedPtr : (P) Buffer of base-64 coded chars.
 ClearPtr : (P) Buffer to put decoded bytes.
 Length : (I) Length of above buffer.

REMARKS

The seeDecodeBuffer function decodes the buffer 'CodedPtr' of length 'Length' into 'ClearPtr', returning
the length in 'ClearPtr'.

The buffer 'CodedPtr' MUST contain base-64 encoded text, as created by seeEncodeBuffer.

The buffer 'ClearPtr' will contain the ASCII or binary data that was encoded.

RETURNS

• Return > 0 : Number of bytes copied to ClearPtr.
• Return < 0 : An error has occurred. See Section 3 “SEE Error Return Code List”.

EXAMPLES

C/C++ Example

 // BASE64 decode coded buffer
 char CodedBuffer[] = "TWFyc2hhbGxTb2Z0";
 char ClearBuffer[50];
 CodedLength = strlen(CodedBuffer)
 ClearLength = seeDecodeBuffer(CodedBuffer, ClearBuffer, CodedLength);

BASIC Example

 ' BASE64 decode coded buffer
 CodedBuffer = "TWFyc2hhbGxTb2Z0"
 ClearBuffer = Space$(50)
 CodedLength = LEN(CodedBuffer)
 ClearLength = seeDecodeBuffer(CodedBuffer, ClearBuffer, CodedLength)

ALSO REFER TO

seeEncodeBuffer; CodeTest example program.

 16

2.10 seeDecodeUTF8: Decode UTF encoded string.

SYNTAX

 seeDecodeUTF8(UTF8Buffer, UnicodeBuffer)

 UTF8Buffer : (P) Buffer for UTF8 string.
 UnicodeBuffer: (P) Pointer to buffer for 16-bit Unicode character.

REMARKS

The seeDecodeUTF8 function is used to decode a UTF8 string segment into a 16-bit Unicode value. Upon
return, the first two bytes of ‘UnicodeBuffer’ will contain the two bytes that make up the 16-bit Unicode
value in low byte, high byte order.

More information on Unicode can be found at http://www.unicode.org

RETURNS

• Return > 0 : Number of bytes in ‘UTF8Buffer’ consumed, which will be 1, 2, or 3.
• Return = 0 : An error was found in the UTF8 string segment.
• Return < 0 : An error has occurred (see section 3 “SEE Error Return Code List”)

EXAMPLES

C/C++ Example

See CODETEST.C

BASIC Example

See CODETEST.FRM

ALSO REFER TO

seeDecodeBuffer; CODETEST example program.

 17

http://www.unicode.org/

2.11 seeDecodeUU: Decode UU encoded line.

SYNTAX

 seeDecodeUU (CodedBuf, ClearBuf)

 CodedBuf : (P) Buffer containing UU encoded text.
 ClearBuf : (P) Buffer into which to copy decoded text.

REMARKS

The seeDecodeUU function is used to decode a UU-encoded line passed in ‘CodedBuf’. The line must be
terminated with a carriage return (CR) character or by a NULL character.

For example, the following UU-encoded text contains the single line "MarshallSoft Computing.".

 begin 666 test.txt
 836%R<VAA;&Q3;V9T($-O;7!U=&EN9RX`
 `
 end

The leading byte (8) corresponds to the length of the line (24 characters) and is not passed to
seeDecodeUU. Refer to the example below.

Unlike MIME encoded attachments, UU-encoded attachments cannot always be located algorithmically.
For this reason, the programmer must write code to find any UU-encoded attachments, and decode one line
at a time.

UU-encoding has been obsolete since the advent of MIME encoding. Nevertheless, some UU-encoded
attachments are still being emailed, and therefore this function is provided.

RETURNS

• Return > 0: Number of bytes copied to ‘ClearBuf’.
• Return < 0 : An error has occurred. See section 3 “SEE Error Return Code List”.

EXAMPLES

C/C++ Example

 // decode test UU-encoded string
 lstrcpy((char *)CodedBuff,(char *)"36%R<VAA;&Q3;V9T($-O;7!U=&EN9RX`\r\n");
 CodedLen = lstrlen((char *)CodedBuff);
 ClearLen = seeDecodeUU((char *)CodedBuff,(char *)ClearBuff);
 ClearBuff[ClearLen] = '\0';

BASIC Example

 ' decode test UU-encoded string
 CodedBuff = "36%R<VAA;&Q3;V9T($-O;7!U=&EN9RX`" + Chr$(13) + Chr$(10)
 CodedLen = Len(CodedBuff)
 ClearLen = seeDecodeUU(CodedBuff, ClearBuff)
 ClearBuff = Left$(ClearBuff,ClearLen)

ALSO REFER TO

seeDecodeBuffer.

 18

2.12 seeDeleteEmail: Deletes email from the Server.

SYNTAX

 seeDeleteEmail(Chan, MsgNbr)

 Chan : (I) Channel number.
 MsgNbr : (I) Message number.

REMARKS

The seeDeleteEmail function deletes the email numbered 'MsgNbr' from the server.

The first message is always number 1. Call seeGetEmailCount first to get the number of email messages
on the server. Email is not renumbered or physically deleted until you call seeClose.

Be careful! Once an email has been deleted from the server, it cannot be recovered.

The seeDeleteEmail function is used with POP3 and IMAP servers only.

RETURNS

Return < 0 : An error has occurred. See section 3 “SEE Error Return Code List”.

EXAMPLES

C/C++ Example

 // delete email message 1 (first email message) on server
 seeDeleteEmail(0, 1)

BASIC Example

 ' delete email message 1 (first email message) on server
 Code = seeDeleteEmail(0, 1)

ALSO REFER TO

seeGetEmailUID, seeGetEmailCount; READER example program.

 19

2.13 seeDriver: Executes next SEE state.

SYNTAX

 seeDriver(Chan)

 Chan : (I) Channel number.

REMARKS

The seeDriver function executes the next state in the SEE state engine. The purpose of this function is to
allow the programmer to get control after the driver executes each state.

The seeDriver function is explicitly called only after the AUTO_DRIVER_CALL flag has been disabled
(see function seeIntegerParam). If the AUTO_DRIVER_CALL flag has not been disabled (the default),
then seeDriver does not need to be called.

Refer to the Section 6 "Theory of Operation" in the SMTP/POP3/IMAP Email User’s Manual
(SEE_USR) for more details on the operation of seeDriver.

RETURNS

• Return = 0 : The driver is done.
• Return > 0 : The returned value is the state just executed.
• Return < 0 : An error has occurred. See section 3 “SEE Error Return Code List”.

EXAMPLES

C/C++ Example
 // execute next state
 Code = seeDriver(0);

BASIC Example

 ' execute next state
 Code = seeDriver(0)

ALSO REFER TO

seeIntegerParam, seeSmtpConnect, and seePop3Connect; READER example program.

 20

http://www.marshallsoft.com/see_usr.pdf

2.14 seeEncodeBuffer: Encodes buffer using base64.

SYNTAX

 seeEncodeBuffer(ClearBuf, CodedBuf, Length)

 ClearBuf : (P) Buffer of characters to encode.
 CodedBuf : (P) Buffer to put base-64 encoded.
 Length : (I) Length of above.

REMARKS

The seeEncodeBuffer function encodes 'ClearBuf' into 'CodedBuf' using Base-64 encoding.

The 'ClearBuf' buffer may contain any ASCII or binary data.

The 'CodedBuf' buffer will contain 7-bit ASCII data broken into lines of 76 characters followed by a
carriage return (hex 0D) and line feed (hex 0A). That is, 'CodedBuf' will contain multiple lines.

RETURNS

• Return > 0 : Number of bytes copied to ‘CodedBuf’.
• Return < 0 : An error has occurred. See section 3 “SEE Error Return Code List”.

C/C++ Example

 // BASE64 encode buffer
 char ClearBuffer[] = "MarshallSoft";
 char CodedBuffer[50];
 ClearLength = strlen(CodedBuffer)
 CodedLength = seeEncodeBuffer(ClearBuffer, CodedBuffer, ClearLength);

BASIC Example

 ' BASE64 encode buffer
 ClearBuffer = "MarshallSoft\r\n"
 CodedBuffer = Space$(50)
 ClearLength = LEN(ClearBuffer)
 CodedLength = seeEncodeBuffer(ClearBuffer, CodedBuffer, ClearLength)

ALSO REFER TO

seeQuoteBuffer and the CODESTEST example program.

 21

2.15 seeEncodeUTF8: Encodes Unicode to UTF8.

SYNTAX

 seeEncodeUTF8(UnicodeValue, UTF8Buffer)

 UnicodeValue : (I) 16-bit unicode character.
 UTF8Buffer : (P) Buffer for UTF8 string.

REMARKS

The seeEncodeUTF8 function encodes the 16-bit Unicode value ‘UnicodeValue’ into a UTF8 string.

Upon return, the 'UTF8Buffer' buffer will contain the UTF8 string corresponding to the Unicode value.
The length of this string is returned.

More information on Unicode can be found at http://www.unicode.org

RETURNS

• Return > 0 : Number of bytes in ‘UTF8Buffer’, which will be 1, 2, or 3.
• Return < 0 : An error has occurred. See section 3 “SEE Error Return Code List”.

EXAMPLES

C/C++ Example

See CODETEST.C

BASIC Example

See CODETEST.FRM

ALSO REFER TO

SeeDecodeUTF8 and the CODESTEST example program.

 22

http://www.unicode.org/

2.16 seeErrorText: Get text associated with error code.

SYNTAX

 seeErrorText(Chan, ErrCode, Buffer, BufLen)

 Chan : (I) Channel number.
 ErrCode: (I) Error code returned by SEE function.
 Buffer : (P) Buffer to place error text into.
 BufLen : (I) Length of above Buffer.

REMARKS

The seeErrorText function is used to get the error text associated with an error code as returned by one of
the other SEE functions.

When an error occurs, seeErrorText can be used to get the error text so that it can be displayed for the
user. See Section 3 “SEE Error Return Code List.” The file, ERRORS.TXT, contains a list of all error
codes and their corresponding numeric value.

RETURNS

• Return > 0 : Length of text message copied into 'Buffer'.
• Return < 0 : An error has occurred. See section 3 “SEE Error Return Code List”.

EXAMPLES

C/C++ Example

 // get text associated with ErrCode
 char Buffer[80];
 Code = seeErrorText(0, ErrCode, (char *)Buffer, 80)

BASIC Example

 ' // get text associated with ErrCode
 Dim Buffer As String * 80
 Code = seeErrorText(0, ErrCode, Buffer, 80)

Most example programs call seeErrorText.

 23

2.17 seeExtractLine: Extract specified line from buffer.

SYNTAX

 seeExtractLine(Src, Line, Buffer, BufSize)

 Src : (P) Text buffer to search.
 Line : (I) Line number (1,2,...) wanted.
 Buffer : (P) Buffer for line if found.
 BufSize : (I) Size of 'Buffer'.

REMARKS

The seeExtractLine function is used to extract line 'Line' from buffer 'Src'. If the specified line number is
found, then the entire line, up to a maximum of 'BufSize' bytes, is copied to 'Buffer'.
The primary purpose of seeExtractLine is to extract header lines (by line number) from the buffer after
calling seeGetEmailLines. Recall that all lines returned by seeGetEmailLines are terminated by a
carriage return, linefeed pair. Lines are numbered from 1 rather than 0.

The seeExtractLine does not require a connection to an SMTP or POP3 server.

RETURNS

• Return > 0 : Number of bytes placed in 'Buffer'.
• Return < 0 : An error has occurred. See section 3 “SEE Error Return Code List”.

EXAMPLES

C/C++ Example

 // extract line # 4 from (multi-line) buffer ListBuffer
 char LineBuffer[128];
 seeExtractLine((char *)ListBuffer, 4, (char *)LineBuffer, 128);

BASIC Example

 ' extract line # 4 from (multi-line) buffer ListBuffer
 Dim LineBuffer As String * 128
 seeExtractLine(ListBuffer, 4, LineBuffer, 128)

ALSO REFER TO

seeGetEmailLines and seeExtractText.; STATUS example program.

 24

2.18 seeExtractText: Extract specified text from buffer.

SYNTAX

 seeExtractText(Src, Text, Buffer, BufSize)

 Src : (P) Text buffer to search.
 Text : (P) Text searching for.
 Buffer : (P) Buffer for line if found.
 BufSize : (I) Size of 'Buffer'.

REMARKS

The seeExtractText function is used to search the text buffer 'Src' for text 'Text'. If the specified text is
found, then the entire line, up to a maximum of 'BufSize' bytes, is copied to 'Buffer'.

The primary purpose of seeExtractText is to extract header lines from the buffer after calling
seeGetEmailLines. Recall that all lines returned by seeGetEmailLines are terminated by a carriage
return, linefeed pair.

The seeExtractText does not require a connection to a SMTP or POP3 server.

RETURNS

• Return > 0 : Number of bytes placed in 'Buffer'.
• Return < 0 : An error has occurred. See section 3 “SEE Error Return Code List”.

EXAMPLES

C/C++ Example

 // extract line from Buffer containing "Reply-To: "
 char Buffer[255];
 n = seeExtractText(Buffer, (char *)"Reply-To: ", Buffer, 255)

BASIC Example

 ' extract line from Buffer containing "Reply-To: "
 ExString = "Reply-To: "
 Dim Buffer As String * 255
 n = seeExtractText(Buffer, ExString, Buffer, 255)

ALSO REFER TO

seeGetEmailLines, seeExtractLine; STATUS and FROM example programs.

 25

2.19 seeForwardEmail: Forward email.

SYNTAX

 seeForward(Chan, To, CC, BCC, Subj, Msg, Forward)

 Chan : (I) Channel number.
 To : (P) Recipient, separated by semi-colons.
 CC : (P) CC list, separated by semi-colons.
 BCC : (P) BCC list, separated by semi-colons.
 Subj : (P) Subject text.
 Msg : (P) Message or message filename.
 Forward: (P) Filename (of undecoded email) to forward.

REMARKS

The seeForward function is used to forward an email to a new recipient. The filename of the (undecoded)
email to be forwarded must be attached as the last argument, and is encoded as a message/rfc822 MIME
part.

For an explanation of how to download an undecoded copy of an email, refer to the REMARKS section
provided for the seeGetEmailFile function.

The seeForwardEmail function is used with SMTP servers only.

RETURNS

• Return > 0 : The number of bytes read.
• Return < 0 : An error has occurred. See section 3 “SEE Error Return Code List”.

EXAMPLES

C/C++ Example

 // forward (undecoded) email file Email2Forward to <info@yourisp.com>
 Code = seeForwardEmail(0, (char *)"<info@yourisp.com>",
 (char *)NULL, (char *)NULL, (char *)"Test",
 (char *)"Forwarding test", Email2Forward);

BASIC Example

 ' forward (undecoded) email file Email2Forward to <info@yourisp.com>
 To = "<info@yourisp.com>"
 CC = Chr$(0)
 BCC = Chr$(0)
 Subject = "Test"
 Message = "Forwarding test"
 Code = seeForwardEmail(0, To, CC, BCC, Subject, Message, Email2Forward)

Refer to the FORWARD example program.

ALSO REFER TO

seeGetEmailFile; FORWARD example program.

 26

2.20 seeGetEmailCount: Get number of email messages on server.

SYNTAX

 seeGetEmailCount(Chan)

 Chan : (I) Channel number.

REMARKS

The seeGetEmailCount function returns the number of messages waiting on the server, independent of
whether they have been previously read.

If you have disabled the driver AUTO_CALL capability, the message count must be found by calling

 seeStatistics(0, SEE_GET_MSG_COUNT)

after calling seeDriver until it returns 0.

The seeGetEmailCount function is used with POP3 and IMAP servers only.

RETURNS

• Return > 0 : The number of email messages waiting.
• Return < 0 : An error has occurred. See section 3 “SEE Error Return Code List”.

EXAMPLES

C/C++ Example

 // get # messages waiting on server
 NbrMsg = seeGetEmailCount(0);

BASIC Example

 ' get # messages waiting on server
 NbrMsg = seeGetEmailCount(0)

ALSO REFER TO

seeGetEmailLines; STATUS example program.

 27

2.21 seeGetEmailFile: Read email message and save to a file.

SYNTAX

 seeGetEmailFile(Chan, MsgNbr, EmailName, EmailDir, AttachDir)

 Chan : (I) Channel number.
 MsgNbr : (I) Message #.
 EmailName : (P) Email filename.
 EmailDir : (P) Directory for email.
 AttachDir : (P) Directory for attachments.

REMARKS

The seeGetEmailFile reads the email message 'MsgNbr', saving it to disk as filename 'EmailName' in
directory 'EmailDir', and saving MIME attachments to directory 'AttachDir'. The current directory is
specified as '.'.

Be sure that the specified directories exist before calling this function. Use '.' to specify the current
directory. Also note that an older file of the same name as the newer file will be overwritten.

An undecoded copy of the email being downloaded can be saved to disk by calling

seeIntegerParam(Chan, SEE_SET_RAWFILE_PREFIX, prefix-char)

before calling seeGetEmailFile. For example, if the prefix character is the underscore ‘_’ and the
filename passed to seeGetEmailFile is “mail.txt“, then the undecoded copy will be named
“_mail.txt“.

The seeGetEmailFile function is used with POP3 and IMAP servers only.

RETURNS

• Return < 0 : An error has occurred. See section 3 “SEE Error Return Code List”.

EXAMPLES

C/C++ Example

 char FileName[] = "Email4.txt";
 char EmailDir[] = "\\SEE4C\\APPS";
 char AttachDir[] = "\\SEE4C\\APPS";
 Code = seeGetEmailFile(0, 4, (char *)FileName,(char *)EmailDir,(char
*)AttachDir);

BASIC Example

 Dim FileName, EmailDir, AttachDir As String
 FileName = "Email4.txt"
 EmailDir = "\SEE4C\APPS"
 AttachDir = "\SEE4C\APPS"
 Code = seeGetEmailFile(0, 4, FileName, EmailDir, AttachDir)

ALSO REFER TO

seeGetEmailLines and seePop3Source; READER example program.

 28

2.22 seeGetEmailLines: Read lines from email message.

SYNTAX

 seeGetEmailLines(Chan, MsgNbr, Lines, Buffer, Size)

 Chan : (I) Channel number.
 MsgNbr : (I) Message #.
 Lines : (I) Number of body lines.
 Buffer : (P) Pointer to (static) Buffer.
 Size : (I) Size of buffer.

REMARKS

The seeGetEmailLines function reads all header lines plus the number of body lines specified by the
'Lines' argument into 'Buffer', up to a maximum of 'Size' bytes.

The primary purpose of this function is to read the header lines without having to read the entire message.

If you have disabled the driver AUTO_CALL capability, the size must be found by calling

 seeStatistics(Chan, SEE_GET_BUFFER_COUNT)

after calling seeDriver until it returns 0.

If a 0 is passed as the 4th argument (Buffer), SEE will use an internal buffer, the contents of which can be
accessed by subsequently calling seeDebug(Chan, SEE_COPY_BUFFER,...) or calling
seeStringParam(Chan, SEE_WRITE_BUFFER,...). This technique is ONLY necessary in
direct mode (calling seeDriver directly) from languages (such as Visual Basic, dBase 2000, etc.) that
cannot statically allocate memory. Refer to the SMTP/POP3/IMAP Email Programmer's Manual.

The seeGetEmailLines function is used with POP3 and IMAP servers only.

RETURNS

• Return > 0 : The number of bytes read.
• Return < 0 : An error has occurred. See section 3 “SEE Error Return Code List”.

EXAMPLES

C/C++ Example

 // read email message 5 (headers only) w/o decoding
 char Buffer[10000];
 Code = seeGetEmailLines(0, 5, 0, (char *)Buffer, 10000);

BASIC Example

 ' read email message 5 (headers only) w/o decoding
 Dim Buffer As String * 10000
 Code = seeGetEmailLines(0, 5, 0, Buffer, 10000)

ALSO REFER TO

seeGetEmailFile; STATUS example program.

 29

2.23 seeGetEmailSize: Get size of email message in bytes.

SYNTAX

 seeGetEmailSize(Chan, MsgNbr)

 Chan : (I) Channel number.
 MsgNbr : (I) Message number

REMARKS

The seeGetEmailSize function returns the size in bytes of the specified message 'MsgNbr'.

seeGetEmailSize returns the size of the entire email message, including any attachments. Note that
attachments will be encoded (MIME, UUENCODE, etc.), and thus take up more room than after they are
decoded.

If you have disabled the driver AUTO_CALL capability, the size must be found by calling

 seeStatistics(0, SEE_GET_MSG_SIZE)

after calling seeDriver until it returns 0.

The seeGetEmailSize function is used with POP3 and IMAP servers only.

RETURNS

• Return > 0 : The size of the email in bytes on the server.
• Return < 0 : An error has occurred. See section 3 “SEE Error Return Code List”.

EXAMPLES

C/C++ Example

 // get the size of email message # 2
 MsgSize = seeGetEmailSize(0, 2);

BASIC Example

 ' get the size of email message # 2
 MsgSize = seeGetEmailSize(0, 2)

ALSO REFER TO

seeGetEmailCount.; STATUS and READER example programs

 30

2.24 seeGetEmailUID: Get user ID from the server.

SYNTAX

 seeGetEmailUID(Chan, MsgNbr, Buffer, Size)

 Chan : (I) Channel number.
 MsgNbr : (I) Message (-1 for all) number.
 Buffer : (P) Pointer to Buffer.
 Size : (I) Size of buffer.

REMARKS

The seeGetEmailUID function is used to ask the POP3 server for the unique user ID string for a particular
email message, or for all email messages on the server.

The UID string is always unique for a particular email message, regardless of the email message number or
when it was received. The purpose of the UID is to allow the client to determine if a particular email has
been seen by it previously. The UID is useful is situations in which mail is left on the server and is
accessed by more than one email client program.

Most POP3 servers can provide such a unique ID string. A few POP3 servers do not provide ID strings.

The seeGetEmailUID function is used with POP3 and IMAP servers only.

RETURNS

• Return > 0 : The number of bytes in moved into 'Buffer'.
• Return < 0 : An error has occurred. See section 3 “SEE Error Return Code List”.

EXAMPLES

C/C++ Example

 // get UID string for email message # 1
 char Buffer[256];
 n = seeGetEmailUID(0, 1, (char *)Buffer, 256);

BASIC Example

 ' get UID string for email message # 1
 Dim Buffer As String * 256
 n = seeGetEmailUID(0, 1, Buffer, 256)

ALSO REFER TO

seeGetEmailCount; STATUS example program.

 31

2.25 seeGetHeader: Get Header

SYNTAX

 seeGetHeader(Chan, Param)

 Chan : (I) Channel number.
 Param : (I) Parameter (see below).
 Buffer : (P) Pointer to Buffer.
 Size : (I) Size of buffer.

REMARKS

The seeGetHeader function returns the selected header once an email has been read.

Parameter Description
SEE_GET_DATE Get "Date:" header.
SEE_GET_FROM Get "From:" header.
SEE_GET_REPLY_TO Get "Reply-To:" header.
SEE_GET_SUBJECT Get "Subject:" header.
SEE_GET_TO Get "To:" header.

RETURNS

• Return > 0 : The number of character in the returned header
• Return -1 : Parameter is not recognized.

EXAMPLES

C/C++ Example

 char Buffer[256];
 // get "Subject:" header
 Code = seeGetHeader(0, SEE_GET_SUBJECT, (char *)Buffer, 255);
 if(Code>0) printf("Subject: %s\n", Buffer);

BASIC Example

 Dim Buffer As String
 ' get "Subject:" header
 Buffer = SPACE{256)
 Code = seeGetHeader(0, SEE_GET_SUBJECT, Buffer, 255)

 32

2.26 seeGetTicks: Get System Ticks.

SYNTAX

 seeGetTicks(Divisor)

 Divisor : (I) Divisor

REMARKS

The seeGetTicks function returns the number of milliseconds since the system was booted, divided by the
divisor.

For example; to get milliseconds, call seeGetTicks(1). To get seconds, call seeGetTicks(1000).

RETURNS

• Return > 0 : The number of milliseconds since the system was booted, divided by the divisor.
• Return = 0 : If Divisor < 1

EXAMPLES

C/C++ Example

 // get ticks in units of 1/100 second.
 n = seeGetTicks(10);

BASIC Example

 ' get ticks in units of 1/100 second
 n = seeGetTicks(10)

 33

2.27 seeImapConnect: Connects to IMAP server.

SYNTAX

 seeImapConnect(Chan, Pop3Ptr, UserPtr, PassPtr)

 Chan : (I) Channel number
 Pop3Ptr : (P) IMAP server name
 UserPtr : (P) Sender's email address
 PassPtr : (P) Reply-To header

REMARKS

The seeImapConnect function is used to connect to an IMAP server. Note that seeImapConnect uses the
same arguments as seePop3Connect.

The well-known IMAP (default) port is 143 but can be changed by calling

seeIntegerParam(Chan, SEE_IMAP_PORT, new-port-to-use)

RETURNS

• Return < 0 : An error has occurred. See section 3 "SEE Error Return Code List".

EXAMPLES

C/C++ Example

 // connect to POP3 server "mail.yourisp.com"
 char ImapHost[] = "mail.yourisp.com";
 char ImapUser[] = "bill";
 char ImapPass[] = "abc";
 Code = seeImapConnect(0, (char *)ImapHost, (char *)ImapUser,
 (char *)ImapPass);

BASIC Example

 ' connect to Imap server "mail.yourisp.com"
 Dim ImapHost, ImapUser. ImapPass As String
 ImapHost = "mail.yourisp.com"
 ImapUser = "bill"
 ImapPass = "abc"
 Code = seeImapConnect(0, ImapHost, ImapUser, ImapPass)

ALSO REFER TO

seeImapConnectSSL

 34

2.28 seeImapConnectSSL: Connects to IMAP Server with SSL

SYNTAX

 seeImapConnectSSL(Chan, ProxyPort, ImapPort, ImapServer,
 ImapUser, ImapPass, ProxyIP)

 Chan : (I) Channel number
 ProxyPort : (I) Port to connect to proxy on
 ImapPort : (I) IMAP port (normally 993)
 ImapServer : (P) IMAP server name
 ImapUser : (P) Sender's email address
 ImapPass : (P) Reply-To header
 ProxyIP : (P) Host name or IP address of proxy server

REMARKS

The seeImapConnectSSL function is used to connect to an IMAP server with SSL. Note that
seeSetProxySSL must be called before calling seeImapConnectSSL.

'ProxyPort' can be an unused port. 'ImapPort' for SSL will normally be 993. 'ImapServer' is the name or IP
address of the IMAP server. 'ImapUser' is the user name and 'ImapPass' is the password. 'ProxyIP' is the
host name or IP address of the proxy server. Pass NULL or an empty string to specify this computer
(127.0.0.1).

Stunnel must first be installed. seeImapConnectSSL will automatically start and stop Stunnel as needed.
To set up Stunnel, see "Using Stunnel" in the SEE User's Manual (SEE_USR.PDF) or online at
http://www.marshallsoft.com/stunnel.htm.

RETURNS

• Return < 0 : An error has occurred. See section 3 "SEE Error Return Code List".

EXAMPLES

C/C++ Example

 // connect to IMAP server "imap.gmail.com"
 char *ImapServer = "imap.gmail.com";
 char *ImapUser = "bill@gmail.com";
 char *ImapPass = "abc";
 Code = seeImapConnectSSL(0,8803,993,ImapServer,ImapUser,ImapPass,NULL);

BASIC Example
 ' connect to IMAP server "imap.gmail.com"
 Dim ImapHost, ImapUser. ImapPass As String
 ImapServer = "imap.gmail.com"
 ImapUser = "bill@gmail.com"
 ImapPass = "abc"
 Code = seeImapConnectSSL(0,8803,993,ImapServer,ImapUser,ImapPass,Chr(0))

ALSO REFER TO

seeImapConnect

 35

http://www.marshallsoft.com/see_usr.pdf
http://www.marshallsoft.com/stunnel.htm

2.29 seeImapCopyMBmail: Copy messages to specified mailbox.

SYNTAX

 seeImapCopyMBmail(Chan, Message, Mailbox)

 Chan : (I) Channel (0, 1, 2, ...)
 Message : (I) Message number to copy (1, 2, ...)
 Mailbox : (P) Name of destination mailbox

 Note: seeImapCopyMBmail() is a "copy to", not a "copy from".

REMARKS

The seeImapCopyMBmail function is used to copy messages from the selected mailbox to the specified
mailbox. That is, an email message is copied from the currently selected mailbox to the mailbox specified
by the argument "Mailbox".

The seeImapCopyMBmail function is used with IMAP servers only.

RETURNS

• Return < 0 : An error has occurred. See section 3 "SEE Error Return Code List".

EXAMPLES

C/C++ Example

 char SavedBox[128];
 strcpy((char *)SavedBox, "SavedBox");
 Code = seeImapCopyMBmail(0, 7, SavedBox);

BASIC Example

 Dim SavedBox As String
 SavedBox = "SavedBox"
 Code = seeImapCopyMBmail(0, 7, SavedBox)

 36

2.30 seeImapCreateMB: Create a new mailbox.

SYNTAX

 seeImapCreateMB(Chan, Mailbox)

 Chan : (I) Channel (0, 1, 2, ...)
 Mailbox : (P) Name of mailbox to create

REMARKS

The seeImapCreateMB function is used to create a new mailbox (MB). Once created, mail can be
transferred between the new mailbox, the InBox, and any other previously created mailbox.

The seeImapCreateMB function is used with IMAP servers only.

RETURNS

• Return < 0 : An error has occurred. See section 3 "SEE Error Return Code List".

EXAMPLES

C/C++ Example

 char SavedBox[128];
 strcpy((char *)SavedBox, "SavedBox");
 Code = seeImapCreateMB(0, SavedBox);

BASIC Example

 Dim SavedBox As String
 SavedBox = "SavedBox"
 Code = seeImapCreateMB(0, SavedBox)

 37

2.31 seeImapDeleteMB: Delete a mailbox.

SYNTAX

 seeImapDeleteMB(Chan, Mailbox)

 Chan : (I) Channel (0, 1, 2, ...)
 Mailbox : (P) Name of mailbox to delete

REMARKS

The seeImapDeleteMB function is used to delete a mailbox (MB) previously created. However, the InBox
cannot be deleted.

The seeImapDeleteMB function is used with IMAP servers only.

RETURNS

• Return < 0 : An error has occurred. See section 3 "SEE Error Return Code List".

EXAMPLES

C/C++ Example

 char SavedBox[128];
 strcpy((char *)SavedBox, "SavedBox");
 Code = seeImapDeleteMB(0, SavedBox);

BASIC Example

 Dim SavedBox As String
 SavedBox = "SavedBox"
 Code = seeImapDeleteMB(0, SavedBox)

 38

2.32: seeImapFlags: Get, set, or delete IMAP message flags.

SYNTAX

seeImapFlags(Chan, MsgNbr, Command, FlagsMask)

 Chan : (I) Channel (0, 1, 2, ...)
 MsgNbr : (I) Message Number (1, 2, 3, ...)
 Command : (I) Command (see below)
 FlagsMask : (I) Flag mask. May be combined. (see below)

 Command Symbol : Value, Meaning
 IMAP_GET_FLAGS : 1, Get message flags
 IMAP_SET_FLAGS : 2, Set message flags
 IMAP_DEL_FLAGS : 3, Delete message flags

 FlagsMask Symbol : Value, Meaning
 IMAP_FLAG_SEEN : 1, Message has been read
 IMAP_FLAG_ANSWERED : 2, Message has been answered
 IMAP_FLAG_FLAGGED : 4, Message is "flagged" for special attention
 IMAP_FLAG_DELETED : 8, Message is "deleted" for removal
 IMAP_FLAG_DRAFT : 16, Message has been marked as a draft
 IMAP_FLAG_RECENT : 32, Message has arrived since the previous
 time this mailbox was selected.

 IMAP_FLAG_SEEN refers to "\Seen" flag.
 IMAP_FLAG_ANSWERED refers to "\Answered" flag.
 IMAP_FLAG_FLAGGED refers to "\Flagged" flag.
 IMAP_FLAG_DELETED refers to "\Deleted" flag.
 IMAP_FLAG_DRAFT refers to "\Draft" flag.
 IMAP_FLAG_RECENT refers to "\Recent" flag.

 Note "\Recent" may be fetched but not stored.

REMARKS

The seeImapFlags function is used to get, set, or delete message flags.

The seeImapFlags function is used with IMAP servers only.

RETURNS

• Return < 0 : An error has occurred. See section 3 "SEE Error Return Code List".
• Return > 0 : IMAP flags that are set. Refer to the ImapFlags example program.

EXAMPLES

C/C++ Example

 Flags = IMAP_FLAG_ANSWERED | IMAP_FLAG_FLAGGED;
 Code = seeImapFlags(0, 1, IMAP_SET_FLAGS, Flags);

BASIC Example

 Flags = IMAP_FLAG_ANSWERED + IMAP_FLAG_FLAGGED
 Code = seeImapFlags(0, 1, IMAP_SET_FLAGS, Flags)

 39

2.33 seeImapListMB: List all available mailboxes on IMAP server

SYNTAX

 seeImapListMB(Chan, Buffer, BufLen)

 Chan : (I) Channel (0, 1, 2, ...)
 Buffer : (P) Buffer into which the list of mailboxes are copied.
 BufLen : (I) Length of above buffer.

REMARKS

The seeImapListMB function is used to ask for a full list of all mailboxes. The exact format of the list will
vary according to the server's operating system.

Under normal circumstances, the user will already know which mailboxes have been created.

The seeImapListMB function is used with IMAP servers only.

RETURNS

• Return < 0 : An error has occurred. See section 3 "SEE Error Return Code List".

EXAMPLES

C/C++ Example

 char Buffer[3000];
 Code = seeImapListMB(0, (char *)Buffer, 3000);

BASIC Example

 Dim Buffer As String
 Buffer = SPACE(3000)
 Code = seeImapListMB(0, Buffer, 3000)

 40

2.34 seeImapMsgNumber: Gets message #’s filled by seeImapSearch.

SYNTAX

 seeImapMsgNumber(Chan, Command)

 Chan : (I) Channel (0, 1, 2, ...)
 Command : (I) Command (see below)

 Command Symbol : Value, Meaning
 IMAP_SEARCH_MSG_COUNT : 1, Get # messages found by seeImapSearch
 IMAP_SEARCH_FIRST_MSG : 2, Get first message of set found.
 IMAP_SEARCH_NEXT_MSG : 3, Get next message of set found.

REMARKS

The seeImapMsgNumber function called immediately after seeImapSearch and is used to return:

 (1) the number of messages found by seeImapSearch
 (2) the first message found by seeImapSearch
 (3) the next message found by seeImapSearch (call iteratively)

See the ImapSearch example program.

The seeImapMsgNumber function is used with IMAP servers only.

RETURNS

• Return < 0 : An error has occurred. See section 3 "SEE Error Return Code List".
• Return > 0 : # messages found (if passed IMAP_SEARCH_MSG_COUNT)
• First message number found (if passed IMAP_SEARCH_FIRST_MSG)
• Next message number found (if passed IMAP_SEARCH_NEXT_MSG)

EXAMPLES

C/C++ Example

 NbrMsg = seeImapMsgNumber(0, IMAP_SEARCH_MSG_COUNT);

BASIC Example

 NbrMsg = seeImapMsgNumber(0, IMAP_SEARCH_MSG_COUNT)

ALSO REFER TO

ImapSearch example program.

 41

2.35 seeImapRenameMB: Rename IMAP mailbox.

SYNTAX

 seeImapRenameMB(Chan, FromName, ToName)

 Chan : (I) Channel (0, 1, 2, ...)
 FromName : (P) Existing name of mailbox
 ToName : (P) New name of mailbox

REMARKS

The seeImapRenameMB function is used to rename a new mailbox (MB).

The seeImapRenameMB function is used with IMAP servers only.

RETURNS

• Return < 0 : An error has occurred. See section 3 "SEE Error Return Code List".

EXAMPLES

C/C++ Example

 char SourceBox[128];
 char TargetBox[128];
 strcpy((char *)SourceBox, "SavedBox");
 strcpy((char *)TargetBox, "ArchiveBox");
 Code = seeImapRenameMB(0, SourceBox, TargetBox);

BASIC Example

 Dim SourceBox As String
 Dim TargetBox As String
 SourceBox = "SavedBox"
 TargetBox = "ArchiveBox"
 Code = seeImapRenameMB(0, SourceBox, TargetBox)

 42

2.36 seeImapSearch: Search for IMAP messages with specified flags.

SYNTAX

 seeImapSearch(Chan, SearchArgs, Buffer, BufLen)

 Chan : (I) Channel (0, 1, 2, ...)
 SearchArgs : (P) Search string.
 Buffer : (P) Result buffer where message numbers are copied.
 BufLen : (I) Size of result buffer.

REMARKS

The seeImapSearch function is used to search for messages with specified strings.

Example search strings as passed to seeImapSearch():

 SEEN
 SEEN NOT ANSWERED
 FLAGGED SINCE 1-Feb-2008 NOT FROM "Smith"
 LARGER 10000 NOT SEEN

Refer to ImapSearch.txt, RFC 1730, or http://www.marshallsoft.com/ImapSearch.htm
for a complete list.

After calling seeImapSearch, the function seeImapMsgNumber must be called in order to get the
message numbers that seeImapSearch found that match the search criteria.

The seeImapSearch function is used with IMAP servers only.

RETURNS

• Return < 0 : An error has occurred. See section 3 "SEE Error Return Code List".

EXAMPLES

C/C++ Example

 strcpy((char *)SearchArgs, (char *)"LARGER 10000 NOT SEEN");
 Code = seeImapSearch(0, SearchArgs, (char *)Buffer, 128);

BASIC Example

 DIM SearchArgs As String
 SearchArgs = "LARGER 10000 NOT SEEN"
 Code = seeImapSearch(0, SearchArgs, Buffer, 128)

ALSO REFER TO

ImapSearch example program.

 43

http://www.marshallsoft.com/ImapSearch.htm

2.37 seeImapSelectMB: Selects IMAP mailbox.

SYNTAX

 seeImapSelectMB(Chan, Mailbox)

 Chan : (I) Channel (0, 1, 2, ...)
 Mailbox : (P) Name of mailbox to select

REMARKS

The seeImapSelectMB function is used to select a mailbox (MB) for processing. The standard inbox is
"InBox".

The seeImapSelectMB function is used with IMAP servers only.

RETURNS

• Return < 0 : An error has occurred. See section 3 "SEE Error Return Code List".

EXAMPLES

C/C++ Example

 char SavedBox[128];
 strcpy((char *)SavedBox, "SavedBox");
 Code = seeImapSelectMB(0, SavedBox);

BASIC Example

 Dim SavedBox As String
 SavedBox = "SavedBox"
 Code = seeImapSelectMB(0, SavedBox)

 44

2.38 seeImapSource: Specified file from which to read IMAP email

SYNTAX

 seeImapSource(Chan, ImapFilename)

 Chan : (I) Channel number.
 Filename : (P) IMAP filename.

REMARKS

The seeImapSource function is used to specify the path to a file containing an undecoded email. After
calling this function, seeGetEmailFile can be called to decode the email as if it were being downloaded
from an IMAP server.

Note that there is no IMAP connection. The email is read directly from a file.

The seeImapSource function is used with IMAP servers only.

RETURNS

• Return < 0 : An error has occurred. See section 3 "SEE Error Return Code List".

EXAMPLES

C/C++ Example

 // decode email file
 char Source[] = "c:\\see4c\\apps\\raw_email.txt";
 Code = seeImapSource(0, (char *)Source);

BASIC Example

 'decode email file
 Dim Source As String
 Source = "c:\see4c\apps\raw_email.txt"
 Code = seeImapSource(0, Source)

ALSO REFER TO

seeImapConnect and the POP3PRD example program.

 45

2.39 seeIntegerParam: Sets numeric parameter to control email
processing.

SYNTAX

 seeIntegerParam(Chan, ParamIndex, ParamValue)

 Chan : (I) Channel number.
 ParamIndex : (I) Parameter name (see below).
 ParamValue : (L) Value of parameter to set.

REMARKS

The seeIntegerParam function is used to set an integer parameter that is passed to the SEE library to
provide additional control of email processing. The numeric value for each of the integer parameters is
defined in the SEE declaration files. Section 1.3 “Declaration Files” provides a list the "Declaration
Files". All times are in milliseconds. Defaults values are as follows:

 Parameter Name Value
 SEE_ADDRESS_DELIMITER : ';' [semicolon]
 SEE_ALLOW_8BITS : 0 [FALSE]
 SEE_ATTACH_DELIMITER : ';' [semicolon]
 SEE_ATTACH_BASE_NUMBER : 0 [FALSE]
 SEE_AUTHENTICATE_PROTOCOL : 1 [CRAM-MD5 authentication]
 SEE_AUTO_CALL_DRIVER : 1 [TRUE]
 SEE_BLOCKING_MODE : 1
 SEE_CONNECT_WAIT : 60000
 SEE_DECODE_UNNAMED : 0 [FALSE]
 SEE_ENABLE_APOP : 0 [FALSE]
 SEE_ENABLE_ESMTP : 0 [FALSE]
 SEE_ENABLE_IMAGE : 1 [TRUE]
 SEE_FILE_PREFIX : 0 [FALSE]
 SEE_FORCE_INLINE : 0 [FALSE]
 SEE_GUT_ATTACHMENTS : 0 [FALSE]
 SEE_HIDE_HEADERS : 0 [FALSE]
 SEE_HIDE_SAVED_MSG : 0 [FALSE]
 SEE_HIDE_TO_ADDR : 0 [FALSE]
 SEE_IGNORE_REJECTED : 0 [FALSE]
 SEE_IMAP_PORT : 143
 SEE_KEEP_RFC822_INTACT : 0 [FALSE]
 SEE_MAX_LINE_LENGTH : 76
 SEE_MAX_RESPONSE_WAIT : 25000
 SEE_MIN_RESPONSE_WAIT : 250
 SEE_PATH_DELIMITER : ';' [semicolon]
 SEE_POP3_PORT : 110
 SEE_QUOTED_PRINTABLE : 0 [FALSE]
 SEE_RAW_MODE : 0 [FALSE]
 SEE_REPLACE_UNDERSCORES : 1 [TRUE]
 SEE_REPLACE_WITH_COMMAS : 1 [TRUE]
 SEE_SET_CONNECT_ATTEMPTS : 5
 SEE_SET_RAWFILE_PREFIX : 0
 SEE_SLEEP_TIME : 50
 SEE_SMTP_PORT : 25
 SEE_WRITE_CONTENT_TYPE : 0 [FALSE]
 SEE_WSACLEANUP : 1 [TRUE]

 46

SEE_ADDRESS_DELIMITER sets the delimiter to use for separating multiple email addresses.

SEE_ALLOW_8BITS will allow 8-bit data inside an email message. Note that 7-bit ASCII is the RFC822
standard. Not recommended!

SEE_ATTACH_BASE_NUMBER sets the first numeric value to be used as the prefix for attachments.
Use 0 to not prefix attachment filenames.

SEE_ATTACH_DELIMITER is the character that delimits attachment name from file name (used to
specify an attachment name different from the filename). For example, “FileName.txt|AttachName.txt”.

SEE_AUTHENTICATE_PROTOCOL specifies the protocol to use in performing SMTP authentication.
Values are AUTHENTICATE_CRAM (value 1), AUTHENTICATE_LOGIN (value 2), and
AUTHENTICATE_PLAIN (value 4).

SEE_AUTO_CALL_DRIVER controls whether seeDriver is called automatically (to completion) after a
SEE function has been called.

SEE_BLOCKING_MODE allows connect attempts to block waiting for the server response.

SEE_CONNECT_WAIT is the maximum time allowed to complete a connection to the email server.

SEE_DECODE_UNNAMED will force (if non-zero) decoding of all base64 attachments which do not
have names.

SEE_ENABLE_APOP directs that the APOP command will be used for authenticating POP3 connections
rather than USER and PASS. Requires that POP3 server recognizes the APOP command.

SEE_ENABLE_ESMTP enables ESMTP (rather than SMTP) connections when calling seeSmtpConnect.

SEE_ENABLE_IMAGE allows (if non-zero) files ending with ".GIF", ".BMP", ".JPG", or ".TIF" to be
attached as image types so that they can be displayed by the recipient's email client.

SEE_FILE_PREFIX controls whether "1-", "2-", etc. is prefixed to the filename of each attachment. If two
attachments are named FILEONE.ZIP and FILETWO.ZIP, they will be saved as 1-FILEONE.ZIP and 2-
FILETWO.ZIP. This feature should always be used unless you are downloading to a directory specifically
for downloaded attachments. Pass an integer >= 1 to specify the first prefix.

SEE_FORCE_INLINE specifies if text attachments are inline or not. Possible values are
INLINE_TEXT_OFF (0, not forced inline), INLINE_TEXT_INLINE (1, text attachments coded inline),
or INLINE_TEXT_ATTACHMENT (2, text attachments attached as file).

SEE_GUT_ATTACHMENTS specifies that the contents of all attachments should be removed. Pass 1 to
enable, 0 to disable [default).

SEE_HIDE_HEADERS causes headers (such as “From:”, “Subject:”, etc.) to not be written to the email
output file. This flag overrides any conflicting flags.

SEE_HIDE_SAVED_MSG is used to hide the "Attachment saved to " message in incoming email.

SEE_HIDE_TO_ADDR is used to hide the "To:" field in outgoing email.

 47

SEE_IGNORE_REJECTED directs SEE to ignore error returned if recipient is rejected.

SEE_IMAP_PORT changes the IMAP port.

SEE_KEEP_RFC822_INTACT causes SEE to keep RFC822 messages intact (not decoded) when
downloaded. The RFC822 message will be saved to disk as a text attachment.

SEE_MAX_LINE_LENGTH specifies the maximum length of the lines sent to the SMTP server. Note
that the RFC822 standard specifies 76 characters.

SEE_MAX_RESPONSE_WAIT is the time after which a "timeout" error occurs if the server has not
responded.

SEE_MIN_RESPONSE_WAIT is the delay before looking for the server's response.

SEE_PATH_DELIMITER is the character that delimits multiple file paths.

SEE_POP3_PORT changes the POP3 port.

SEE_QUOTED_PRINTABLE controls whether messages are or are not encoded as quoted-printable. The
3rd parameter should be one of :

 QUOTED_HTML QUOTED_ISO_8859_1 QUOTED_ISO_8859_2
 QUOTED_ISO_8859_3 QUOTED_ISO_8859_4 QUOTED_ISO_8859_7
 QUOTED_ISO_8859_8 QUOTED_OFF QUOTED_PLAIN
 QUOTED_RICH QUOTED_USER QUOTED_UTF8
 QUOTED_WIN_1250 QUOTED_WIN_1252 QUOTED_WIN_1255

SEE_RAW_MODE disables all decoding of email when downloaded by seeGetEmailFile.

SEE_REPLACE_UNDERSCORES directs SEE to replace underscore with spaces (if ParamValue =
TRUE) or not (if ParamValue = FALSE) in incoming email attachment filenames. The default is TRUE (as
per RFC 2047).

SEE_REPLACE_WITH_COMMAS causes the replacement of address delimiters in TO, CC, and BCC
headers with commas.

SEE_SET_RAWFILE_PREFIX causes an undecoded copy of an email downloaded by seeGetEmailFile
to be saved with the same name as the decoded copy except prefixed by the specified prefix character.

SEE_SET_CONNECT_ATTEMPTS sets the number of time SEE will attempt to connect to a server.
Valid values are 1 to 12.

SEE_SLEEP_TIME is the time SEE sleeps when waiting on a Winsock.

SEE_SMTP_PORT changes the SMTP port.

SEE_WRITE_CONTENT_TYPE causes (if ParamValue not 0) the Content-Type header to be written
to the output email file (POP3 connections). Normally, this header is not written. Also refer to
SEE_SET_CONTENT_TYPE_PREFIX.

 48

RETURNS

• Return > 0 : Integer parameter requested.
• Return < 0 : An error has occurred. See section 3 “SEE Error Return Code List”.

EXAMPLES

C/C++ Example

 //enable Extended SMTP (needed for SMTP authentication)
 Code = seeIntegerParam(0, SEE_ENABLE_ESMTP, 1);

BASIC Example

 ' enable Extended SMTP (needed for SMTP authentication)
 Code = seeIntegerParam(0, SEE_ENABLE_ESMTP, 1)

 49

2.40 seeIsConnected: Determine if still connected to server.

SYNTAX

 seeIsConnected(Chan)

 Chan : (I) Channel number.

REMARKS

The seeIsConnected function tests to see if there is a live connection to the email server.

RETURNS

• Return = 0 : No connectivity to server.

EXAMPLES

C/C++ Example

 if(seeIsConnected(0)) printf("Connection is live");
 else printf("Connection has been dropped");

BASIC Example

 If seeIsConnected(0) <> 0 Then
 PRINT "Connection is live"
 Else
 PRINT "Connection has been dropped"
 End If

 50

2.41 seeKillProgram: Terminates External Program.

SYNTAX

 seeKillProgran(ProcessID, ExitCode)

 ProcessID : (I) Process ID (returned from seeStartProgram)
 ExitCode : (P) Exit code.

REMARKS

The seeKillProgram function kills (terminates) the external program (process) that was started by
seeStartProgram. The ProcessID is the process returned by seeStartProgram.

RETURNS

• Return < 0 : Cannot kill program.

EXAMPLES

C/C++ Example

 int hProcess;
 // kill STUNNEL
 Code = seeKillProgram(hProcess, 0);

BASIC Example

 Dim hProcess As Long
 ' kill STUNNEL
 Code = seeKillProgram(hProcess, 0)

ALSO REFER TO

seeStartProgram

 51

2.42 seePop3Connect: Connects to POP3 Server.

SYNTAX

 seePop3Connect(Chan, Pop3Ptr, UserPtr, PassPtr)

 Chan : (I) Channel number.
 Pop3Ptr : (P) POP3 server name.
 UserPtr : (P) POP3 user name.
 PassPtr : (P) POP3 password.

REMARKS

The seePop3Connect function establishes a connection with the POP3 server as specified by the Server
argument.

The POP3 server name will typically be named "mail.XXX.com" where XXX is your email address, such
as name@XXX.com. Your POP3 server name can also be found in the setup information for your normal
email client, such as Eudora or Microsoft Outlook.

The POP3 server name can also be specified in dotted decimal notation. For example, "10.23.231.1".

SEE can not be connected to both the SMTP server and the POP3 server at the same time. Call seeClose
to terminate the connection before connecting again

RETURNS

• Return < 0 : An error has occurred. See section 3 “SEE Error Return Code List”.

EXAMPLES

C/C++ Example

 // connect to POP3 server "mail.yourisp.com"
 char Pop3Host[] = "mail.yourisp.com";
 char Pop3User[] = "bill";
 char Pop3Pass[] = "abc";
 Code = seePop3Connect(0, (char *)Pop3Host, (char *)Pop3User, (char *)Pop3Pass);

BASIC Example

 ' connect to POP3 server "mail.yourisp.com"
 Dim Pop3Host, Pop3User, Pop3Pass As String
 Pop3Host = "mail.yourisp.com"
 Pop3User = "bill"
 Pop3Pass = "abc"
 Code = seePop3Connect(0, Pop3Host, Pop3User, Pop3Pass)

ALSO REFER TO

seeSmtpConnect and seeClose; STATUS and READER example programs.

 52

2.43 seePop3ConnectSSL: Connects to POP3 Server with SSL

SYNTAX

 seePop3ConnectSSL(Chan, ProxyPort, Pop3Port, Pop3Server,
 Pop3User, Pop3Pass, ProxyIP)

 Chan : (I) Channel number.
 ProxyPort : (I) Proxy port (to contact proxy on).
 Pop3Port : (I) POP3 port (normally 995)
 Pop3Server : (P) POP3 Server name
 Pop3User : (P) POP3 user name.
 Pop3Pass : (P) POP3 password.
 ProxyIP : (P) Host name or IP address of proxy server

REMARKS

The seePop3ConnectSSL function is used to connect to a POP3 server with SSL. Note that
seePop3ConnectSSL uses the same arguments as seeImapConnectSSL.

'ProxyPort' can be an unused port. 'Pop3Port' variable will normally be 995. 'Pop3Server' is the name or IP
address of the POP3 server. 'Pop3User' is the user name and 'Pop3Pass' is the password. 'ProxyIP' is the
host name or IP address of the proxy server. Pass NULL or an empty string to specify this computer
(127.0.0.1).

seeSetProxySSL must be called before calling seePop3ConnectSSL.

Stunnel must first be installed. seePop3ConnectSSL will automatically start and stop Stunnel as needed.
To set up Stunnel, see "Using Stunnel" in the SEE User's Manual (SEE_USR.PDF) or online at
http://www.marshallsoft.com/stunnel.htm.

RETURNS

• Return < 0 : An error has occurred. See section 3 “SEE Error Return Code List”.

EXAMPLES

C/C++ Example

 // connect to POP3 server "pop.gmail.com"
 char *Pop3Server = "pop.gmail.com"
 char *Pop3User = "superman@gmail.com";
 char *Pop3Pass = "sorry";
 Code = seePop3ConnectSSL(0, 8802, 995,Pop3Server,Pop3User, Pop3Pass,NULL);

BASIC Example

 ' connect to POP3 server "pop.gmail.com"
 Dim Pop3Server,Pop3User,Pop3Pass As String
 Pop3Server = "pop.gmail.com"
 Pop3User = "superman@gmail.com"
 Pop3Pass = "sorry"
 Code = seePop3ConnectSSL(0, 8802,995, Pop3Server,Pop3User, Pop3Pass,Chr(0))

ALSO REFER TO

seeSmtpConnectSSL and ReadSSL example program.

 53

http://www.marshallsoft.com/see_usr.pdf
http://www.marshallsoft.com/stunnel.htm

2.44 seePop3Source: Specified file from which to read undecoded email

SYNTAX

 seePop3Source(Chan, Pop3Filename)

 Chan : (I) Channel number.
 Pop3Filename : (P) POP3 filename.

REMARKS

The seePop3Source function is used to specify the path to a file containing an undecoded email. After
calling this function, seeGetEmailFile can be called to decode the email as if it were being downloaded
from a POP3 server.

Note that there is no POP3 connection.

RETURNS

• Return < 0 : An error has occurred. See section 3 “SEE Error Return Code List”.

EXAMPLES

C/C++ Example

 // decode email file
 char Source[] = "c:\\see4c\\apps\\raw_email.txt";
 Code = seePop3Source(0, (char *)Source);

BASIC Example

 'decode email file
 Dim Source As String
 Source = "c:\see4c\apps\raw_email.txt"
 Code = seePop3Source(0, Source)

ALSO REFER TO

seePop3Connect; POP3RD example program.

 54

2.45 seeQuoteBuffer: Constructs ISO-8859 String.

SYNTAX

 seeQuoteBuffer(String, Buffer, BufLen)

 String : (P) ISO 8859 text.
 Buffer : (P) Buffer for ISO-8859 encoded string.
 BufLen : (I) Size of above buffer.

REMARKS

The seeQuoteBuffer function creates an ISO-8859 encoded string in 'Buffer' from the ISO-8859 (8-bit
character) ISO 8859 text in 'String'. The buffer length (3rd parameter) should be twice the size of the
length of the string (1st parameter).

The primary use for the seeQuoteBuffer function is in constructing ISO-8859 compliant "Subject:"
headers.

The default delimiter used to separate email addresses and path names was changed from a comma to a
semi-colon in Version 3.6 of SEE.

RETURNS

• Return > 0 : The number of characters copied to ‘Buffer’
• Return < 0 : An error has occurred. See section 3 “SEE Error Return Code List”.

EXAMPLES

C/C++ Example

 // construct quoted subject string, identifying it as quoted iso-8859-1
 char Text[] = "Ce message est écrit en français";
 char Buffer[128];
 Code = seeQuoteBuffer((char *)Text, (char *)Buffer, 128)

BASIC Example

 ' construct quoted subject string, identifying it as quoted iso-8859-1
 Dim Text As String
 Dim Buffer As Buffer
 Text = "Ce message est écrit en français"
 Buffer = Space(128)
 Code = seeQuoteBuffer(Text, Buffer, 128)

ALSO REFER TO

seeUnQuoteBuffer and ISO8859 example program.

 55

2.46 seeReadQuoted: Quotes File Contents.

SYNTAX

 seeReadQuoted(PathName, Buffer, BufLen, Width)

 PathName : (P) Pathname of file to be read.
 Buffer : (P) Buffer into which data is written.
 BufLen : (I) Size of above buffer.
 Width : (I) Width of quoted lines.

REMARKS

The seeReadQuoted function reads the file specified by 'PathName' and creates a quoted text string in
'Buffer' The resulting quoted string will consists of multiple (quoted) lines of the length specified by
'Width'. The value of 'Width' must be less than 254. Use 0 to specify that the default width (73 chars) be
used.

The primary use for the seeReadQuoted function is in the construction of non-standard email messages
that must be quoted, such as EDIFACT (Electronic Data Interchange for Administration, Commerce, and
Transport) email.

RETURNS

• Return > 0 : The number of characters copied to ‘Buffer’
• Return < 0 : An error has occurred. See section 3 “SEE Error Return Code List”.

EXAMPLES

C/C++ Example

 // read file & write (quoted) to 'Buffer'
 char FileName[] = "EDIFACT.txt";
 char Buffer[128];
 Code = seeReadQuoted((char *)FileName, (char *)Buffer, 128, 0)

BASIC Example

 ' read file & write (quoted) to 'Buffer'
 Dim FileName As String
 Dim Buffer As String
 FileName = "EDIFACT.txt"
 Buffer = Space(128)
 Code = seeReadQuoted(FileName, Buffer, 128, 0)

ALSO REFER TO

seeEncodeBuffer

 56

2.47 seeRelease: Releases SEE.

SYNTAX

 seeRelease

REMARKS

The seeRelease function releases the SEE system. SeeRelease is called only once and should be the very
last SEE function called.

seeClose should be called for all channels before calling seeRelease.

RETURNS

• Return < 0 : An error has occurred. See section 3 “SEE Error Return Code List”.

EXAMPLES

C/C++ Example

 // release SEE
 seeRelease();

BASIC Example

 ' release SEE
 Code = seeRelease()

Most of the example programs call seeRelease.

ALSO REFER TO

seeAttach.

 57

2.48 seeSendEmail: Sends email and attachments.

SYNTAX

 seeSendEmail(Chan, To, CC, BCC, Subj, Msg, Attach)

 Chan : (I) Channel number.
 To : (P) Recipient, separated by semi-colons.
 CC : (P) CC list, separated by semi-colons.
 BCC : (P) BCC list, separated by semi-colons.
 Subj : (P) Subject text.
 Msg : (P) Message or message filename.
 Attach : (P) File attachment list.

REMARKS

The seeSendEmail function is used to send email once a connection has been made to your SMTP server
after calling seeSmtpConnect. Note that all email addresses (in To, CC, and BCC strings) must be
bracketed, and the CC and BCC strings may contain multiple email addresses, separated by semi-colons.
For example:

 <info@marshallsoft.com>
 "Billy Bob<bbob@isp.com>;Buster<bm@isp.com>"

If the first character of the message (sixth argument) is a '@', then it is considered as the filename which
contains the message to send.

'Attach' may contain one or more attachments, separated by semi-colons, with no embedded spaces. For
example,

 "file1.zip;file2.doc;file3.bmp"

The default delimiter used to separate email addresses and path names was changed from a comma to a
semi-colon in Version 3.6 of SEE. The semi-colon delimiter can be changed to any character with:

 seeIntegerParam(Chan, SEE_ATTACH_DELIMITER, new-character)

If the function

 seeIntegerParam(Chan, SEE_ENABLE_IMAGE, 1)

has been called previously, attachment files ending with ".GIF", ".BMP", or ".TIF" are attached as image
types rather than regular images. This allows some email clients to display the images.

The seeSendEmail function is used with SMTP servers only.

 58

RETURNS

• Return < 0 : An error has occurred. See section 3 “SEE Error Return Code List”.

EXAMPLES

C/C++ Example

 // email file Message.txt to info@yourisp.com
 char To[] = "<info@yourisp.com>"
 char CC[] = "";
 char BCC[] = "";
 char Subject[] = "Test"
 char Message[] = "@Message.txt"
 char Attach[] = "";
 Code = seeSendEmail(0, (char *)To, (char *)CC, (char *)BCC,
 (char *)Subject, (char *)Message, (char *)Attach);

BASIC Example

 ' email file Message.txt to info@yourisp.com
 Dim To, CC, BCC, Subject, Message, Attach
 To = "<info@yourisp.com>"
 CC = Chr$(0)
 BCC = Chr$(0)
 Subject = "Test"
 Message = "@Message.txt"
 Attach = Chr$(0)
 Code = seeSendEmail(0, To, CC, BCC, Subject, Message, Attach)

ALSO REFER TO

seeSendHTML; MAILER example program.

 59

mailto:info@yourisp.com
mailto:info@yourisp.com

2.49 seeSendHTML: Sends HTML encoded email and attachments.

SYNTAX

 seeSendHTML(Chan, To, CC, BCC, Subject, Message,
 Images, AltText, Attach)

 Chan : (I) Channel number.
 To : (P) Recipient, separated by semi-colons.
 CC : (P) CC list, separated by semi-colons.
 BCC : (P) BCC list, separated by semi-colons.
 Subject: (P) Subject text.
 HTML : (P) HTML message text or [@filename]
 Images : (P) List of embedded images
 AltText: (P) Alternate text
 Attach : (P) File attachment list.

REMARKS

The seeSendHTML function is used to send HTML encoded email. See the entry for ‘seeSendEmail’ for
an explanation of the To, CC, and BCC fields.

If the first character of the message (6th argument) or alternate text (8th argument) is a '@', then it is
considered as the filename which contains the message to send.

The ‘Images’ field contains the filenames of images that are to be embedded in the email message. The
first image must be referenced in the text of the HTML encode email message as

The second image (if any) must be referenced as

Continue in this way for all embedded images.

‘AltText’ is used to provide a plain ASCII text equivalent of the message for those email clients that
cannot decode HTML.

'Attach' may contain one or more attachments, separated by semicolons, with no embedded spaces. For example,

 "file1.zip;file2.doc;file3.bmp"

The semi-colon delimiter used above can be changed to a new character with:

 seeIntegerParam(Chan, SEE_PATH_DELIMITER, new-character)

The seeSendHTML function is used with SMTP servers only.

 60

RETURNS

• Return < 0 : An error has occurred. See section 3 “SEE Error Return Code List”.

C/C++ Example

 // email file html.htm to <info@yourisp.com>
 char To[] = "<info@yourisp.com>"
 char CC[] = "";
 char BCC[] = "";
 char Subject[] = "HTML Test"
 char File[] = "@html.htm"
 char Images[] = "image1.gif;image2.gif"
 char AltText[] = "@AltText.txt";
 char Attach[] = "";
 Code = seeSendHTML(0, (char *)To, (char *)CC, (char *)BCC,
 (char *)Subject, (char *)File, (char *)Images,
 (char *)AltText, (char *)Attach);

BASIC Example

 ' email file html.htm to <info@yourisp.com>
 Dim To, CC, BCC, Subject, Message, Images, AltText, Attach
 To = "<info@yourisp.com>"
 CC = Chr$(0)
 BCC = Chr$(0)
 Subject = "HTML Test"
 File = "@html.htm"
 Images = "image1.gif;image2.gif"
 AltText = "@AltText.txt"
 Attach = Chr$(0)
 Code = seeSendHTML(0, To, CC, BCC, Subject, File, Attach)

ALSO REFER TO

SENDHTML (C/C++) or HTML example program.

 61

2.50 seeSetErrorText:: Specifies Text of Error Messages

SYNTAX

 seeSetErrorText(Chan, ErrorCode, ErrorText)

 Chan : (I) Channel number.
 ErrorCode : (I) Error code.
 ErrorText : (P) Error text.

REMARKS

The seeSetErrorText function specifies the text to be used for a particular error code. The primary reason
for this function is to support error messages in a language other than English.

RETURNS

• Return < 0 : An error has occurred. See section 3 “SEE Error Return Code List”.

C/C++ Example

seeSetErrorText(SEE_NO_ERROR, (char *)"pas d'erreur");

BASIC Example

Dim Text As String
Text = "pas d'erreur"
Code = seeSetErrorText(SEE_NO_ERROR, Text)

 62

2.51 seeSetProxySSL:: Specifies Proxy Server Parameters

SYNTAX

 seeSetProxyAutoSSL(ProxyCode, ProxyFlags, ProxyDir, ProxyCert,
 ProxyExe)

 ProxyCode : (I) proxy code (not used)
 ProxyFlags: (I) proxy server flags
 ProxyDir : (P) proxy directory (on this machine)
 ProxyCert : (P) proxy certificate
 ProxyExe : (P) proxy executable (STUNNEL.EXE)

REMARKS

The seeSetProxySSL program sets parameters for the proxy server (Stunnel.exe) and must be called
before calling seeImapConnectSSL, seePop3ConnectSSL, or seeSmtpConnectSSL.

Pass STUNNEL_TASKBAR_ICON (value 1) for 'ProxyFlags' if you want an icon for the proxy server
displayed on the task bar. Pass STUNNEL_DISABLE_LOGGING (value 2) if you do not want a Stunnel
log file created at runtime. For both, pass the sum STUNNEL_TASKBAR_ICON
+STUNNEL_DISABLE_LOGGING (value 3).

The 'ProxyDir' argument is the path to the directory containing the proxy server.

 'ProxyCert' is the X509 certificate in PEM format to use. Use the included certificate STUNNEL.PEM if
you do not have your own PEM certificate.

'ProxyExe' is the name of the proxy executable (STUNNEL.EXE in this version of SEE).

RETURNS

• Return < 0 : An error has occurred. See section 3 “SEE Error Return Code List”.

 63

EXAMPLES

C/C++ Example

 char *ProxyDir = "c:\\SEE4C\\SSL\\"; // proxy server directory
 char *ProxyExe = "stunnel.exe"; // proxy server executable
 char *ProxyCert = "stunnel.pem"; // proxy certificate (PEM format)

 Code = seeSetProxySSL(0, // proxy code (always 0)
 STUNNEL_TASKBAR_ICON, // display Stunnel icon on task bar
 ProxyDir, // directory containing proxy server
 ProxyCert, // proxy certificate
 ProxyExe); // proxy program (executable)

BASIC Example

 ProxyDir = "c:\SEE4VB\SSL\" ' proxy server directory
 ProxyExe = "stunnel.exe" ' proxy server executable

 Code = seeSetProxySSL(0, ' proxy code (always 0)
 STUNNEL_TASKBAR_ICON, ' display Stunnel icon on task bar
 ProxyDir, ' directory containing proxy server
 ProxyCert, ' proxy certificate
 ProxyExe); ' proxy program (executable)

ALSO SEE

 seeImapConnectSSL, seePop3ConnectSSL, and seeSmtpConnectSSL.

 64

2.52 seeShortToByte :: Converts 16-bit ASCII character buffer to 8-bit

SYNTAX

 seeShortToByte(Buffer)

 Buffer : (P) character buffer

REMARKS

The seeShortToByte function converts the (null terminated) character buffer 'Buffer' from 16-bit Unicode
ASCII characters to 8-bit ASCII characters.

The buffer must be null terminated (last character is a hex 00).

This function is only necessary when working with 16-bit Unicode ASCII characters in C# and Delphi
2005.

RETURNS

• Length of string in words.

EXAMPLES

C/C++ Example

 int Code;
 // define 16-bit ASCII string
 wchar_t UnicodeString[] = L"MarshallSoft";

 // Convert 16-bit ASCII string to 8-bit ASCII
 Code = seeShortToByte((char *)UnicodeString);

ALSO SEE

seeByteToShort

 65

2.53 seeSleep: Sleeps Specified Milliseconds

SYNTAX

 seeSleep(MilliSecs)

 MilliSecs : (I) Number of milliseconds to sleep

REMARKS

seeSleep is intended primarily for programming in languages that do not have a native Sleep function.

RETURNS

• Milliseconds slept.

EXAMPLES

C/C++ Example

// sleep 1 second
seeSleep(1000);

BASIC Example

' sleep 1 second
Code = seeSleep(1000)

 66

2.54 seeSmtpConnect: Connects to SMTP server.

SYNTAX

 seeSmtpConnect(Chan, Server, From, ReplyTo)

 Chan : (I) Channel number.
 Server : (P) SMTP server.
 From : (P) Your email address in brackets.
 ReplyTo : (P) Email address to reply to.

REMARKS

The seeSmtpConnect function establishes a connection with the SMTP server as specified by the 'Server'
argument.

Your SMTP server name will typically be named "mail.XXX.com" where XXX is your email address,
such as name@XXX.com. Your SMTP server name can also be found in the setup information for your
normal email client, such as Eudora or Microsoft Outlook.

The SMTP server name can also be specified in dotted decimal notation. For example, "10.23.231.1".

The 'From' string is required and must be enclosed in "<>" brackets, such as <you@yourisp.com>.

The 'ReplyTo' string is optional and is used for the "Reply-To:" header line. If used, the email address
must be enclosed in "<>" brackets.

SEE can not be connected to both the SMTP server and the POP3 server at the same time. Call seeClose
to terminate the connection before connecting again.

RETURNS

• Return < 0 : An error has occurred. See section 3 “SEE Error Return Code List”.

EXAMPLES

C/C++ Example

 // connect to SMTP server
 char Server[] = "smtp.yourisp.com"
 char From[] = "<you@yourisp.com>"
 char Reply[] = ""
 Code = seeSmtpConnect(0, (char *)Server, (char *)From, (char *)Reply)

BASIC Example

 ' connect to SMTP server
 Server = "smtp.yourisp.com"
 From = "<you@yourisp.com>"
 Reply = Chr$(0)
 Code = seeSmtpConnect(0, Server, From, Reply)

ALSO REFER TO

seeClose; MAILER example program.

 67

2.55 seeSmtpConnectSSL: Connects to SMTP Server with SSL.

SYNTAX

 seeSmtpConnectSSL(Chan, ProxyPort, SmtpPort, SmtpServer,
 SmtpUser, SmtpPass, SmtpFrom, SmtpReply, ProxyIP)

 Chan : (I) Channel number
 ProxyPort : (I) Port to connect to proxy on
 SmtpPort : (I) SMTP port(normally 465 or 587)
 SmtpServer : (P) SMTP server name
 SmtpUser : (P) User name
 SmtpPass : (P) Password
 SmtpFrom : (P) Sender's email address
 SmtpReply : (P) Reply-To email address
 ProxyIP : (P) Host name or IP address of proxy server

REMARKS

The seeSmtpConnectSSL function is used to connect to an SMTP server with SSL.

seeSetProxySSL must be called before calling seeSmtpConnectSSL.

'ProxyPort' can be an unused port. 'SmtpPort' for SSL will normally be 465 or 587. 'SmtpServer' is the
name or IP address of the SMTP server. 'SmtpUser' is the user name and 'SmtpPass' is the password. The
'SmtpFrom' string is required and must be enclosed in "<>" brackets, such as <you@yourisp.com>. The
'SmtpReply' string is optional and is used for the "Reply-To:" header line. If used, the email address must
be enclosed in "<>" brackets. 'ProxyIP' is the host name or IP address of the proxy server. Pass NULL or
an empty string to specify this computer (127.0.0.1).

Stunnel must first be installed. seeSmtpConnectSSL will automatically start and stop Stunnel as needed.
To set up Stunnel, see "Using Stunnel" in the SEE User's Manual (SEE_USR.PDF) or online at
http://www.marshallsoft.com/stunnel.htm.

RETURNS

• Return < 0 : An error has occurred. See section 3 “SEE Error Return Code List”.

EXAMPLES

C/C++ Example

 // connect to SMTP server "smtp.gmail.com" via port 8801
 char *Server = "smtp.gmail.com"
 char *User = "BillyBob@gmail.com";
 char *Pass = "sorry";
 char *From = "<BillyBob@gmail.com>"
 char *Reply = ""
 Code = seeSmtpConnectSSL(0,8801,465,Server,User,Pass,From,Reply,NULL)

BASIC Example
 ' connect to SMTP server "smtp.gmail.com" via port 8801
 Server = "smtp.gmail.com"
 User = "BillyBob@gmail.com"
 Pass = "sorry"
 From = "<BillyBob@gmail.com>"
 Reply = Chr$(0)
 Code = seeSmtpConnectSSL(0,8801,465,Server,User,Pass,From,Reply, Chr(0))

 68

http://www.marshallsoft.com/see_usr.pdf
http://www.marshallsoft.com/stunnel.htm

2.56 seeSmtpTarget: Specifies SMTP output file.

SYNTAX

 seeSmtpTarget(FileName, EmailAddr, ReplyAddr)

 FileName : (I) File to write SMTP output to
 EmailAddr : (I) Return email address
 ReplyAddr : (I) Reply-To address

REMARKS

seeSmtpTarget is called instead of seeSmtpConnect so that when seeSendEmail or seeSendHTML is
called, the email is written to the specified file in RFC822 compliant format rather than sent to the server.

seeSmtpTarget is called instead of seeSmtpConnect.

RETURNS

• Return < 0 : An error has occurred. See section 3 “SEE Error Return Code List”.

EXAMPLES

C/C++ Example

 Code = seeSmtpTarget(0,
 (char *)"MyFile.txt",
 (char *)"<you@yourisp.com>",
 (char *)"<you@yourisp.com>");

BASIC Example

 Code = seeSmtpTarget(0, "MyFile.txt",
 "<you@yourisp.com>",
 "<you@yourisp.com>")

ALSO REFER TO

seePop3Source

 69

2.57 seeStartProgram: Starts External Program.

SYNTAX

 seeStartProgram(CommandLine)

 CommandLine : (I) Command line for external program.

REMARKS

The seeStartProgram function starts the specified external program. The command line contains the
pathname of the executable plus any additional command line arguments, if any. seeStartProgram can
start any Win32 program.

The primary purpose of seeStartProgram is to start external programs such as proxy servers.

C/C++ Example

 char Stunnel[]= "c:\\stunnel\\stunnel.exe c:\\stunnel\\SMTPgmail.txt";
 int hProcess;
 // Starting STUNNEL
 hProcess = seeStartProgram((char *)Stunnel);

BASIC Example

 Dim Stunnel As String
 Dim hProcess As Integer
 Stunnel = "c:\stunnel\stunnel.exe c:\stunnel\SMTPgmail.txt"
 ' Starting STUNNEL
 hProcess = seeStartProgram(Stunnel)

RETURNS

• Return = -1 : Cannot start process.
• Return > 0 : Process ID

ALSO REFER TO

seeKillProgram

 70

2.58 seeStatistics: Returns runtime statistics.

SYNTAX

 seeStatistics(Chan, Index)

 Chan : (I) Channel number.
 Index : (I) Specifies which statistic.

REMARKS

The seeStatistics function is used to return runtime statistics in the SEE DLL. The values of 'Index' are
defined in the SEE declaration file (see Section 1.3 “Declaration Files”) as follows.

 SEE_GET_ATTACH_BYTES_READ : Gets attachment bytes read.
 SEE_GET_ATTACH_BYTES_SENT : Gets attachment bytes sent.
 SEE_GET_ATTACH_COUNT : Gets attachments received.
 SEE_GET_BUFFER_COUNT : Gets bytes in buffer for seeGetEmailLines.
 SEE_GET_BUILD : Gets version build number.
 SEE_GET_CONNECT_STATUS : Returns positive number if connected.
 SEE_GET_COUNTER : Gets times driver called.
 SEE_GET_LAST_RECIPIENT : Gets last recipient ack'd by server.
 SEE_GET_MESSAGE_BYTES_READ : Gets message bytes read.
 SEE_GET_MESSAGE_BYTES_SENT : Gets message bytes sent.
 SEE_GET_MSG_COUNT : Gets emails waiting.
 SEE_GET_MSG_SIZE : Gets size of email.
 SEE_GET_RESPONSE : Gets last SMTP response code.
 SEE_GET_SOCK_ERROR : Gets last socket error.
 SEE_GET_SOCKET : Gets socket number.
 SEE_GET_TOTAL_BYTES_READ : Gets total bytes read.
 SEE_GET_TOTAL_BYTES_SENT : Gets total bytes sent.
 SEE_GET_VERSION : Gets the SEE version number.

The number of message bytes sent will usually be larger than your message size because of SMTP protocol
overhead.

The number of attachment bytes sent will be at least one-third larger than the actual attachment since every
three (3) bytes are encoded as four (4) 7-bit ASCII bytes before being transmitted.

The purpose of "BYTES_READ" and "BYTES_SENT" is to provide the ability to track the transmission
progress of large messages and attachments.

SEE_GET_ATTACH_BYTES_READ gets the number of attachment bytes read.

SEE_GET_ATTACH_BYTES_SENT gets the number of attachment bytes sent.

SEE_GET_ATTACH_COUNT gets the number of attachments received.

SEE_GET_BUFFER_COUNT gets the bytes in the buffer after calling seeGetEmailLines.

SEE_GET_BUILD gets the version build number.

 71

REMARKS (continued)

SEE_GET_CONNECT_STATUS returns a positive number if currently connected.

SEE_GET_COUNTER gets the number of times that the driver has been called.

SEE_GET_LAST_RECIPIENT gets last recipient (1, 2,...) acknowledged by server.

SEE_GET_MESSAGE_BYTES_READ gets the number of message bytes read.

SEE_GET_MESSAGE_BYTES_SENT gets the number of message bytes sent.

SEE_GET_MSG_COUNT gets the number of emails waiting on the server.

SEE_GET_MSG_SIZE gets the size of an email message.

SEE_GET_RESPONSE gets the last server response code.

SEE_GET_SOCK_ERROR gets the last socket error.

SEE_GET_SOCKET gets the socket number.

SEE_GET_TOTAL_BYTES_READ gets the total number of bytes read.

SEE_GET_TOTAL_BYTES_SENT gets the total number of bytes sent.

SEE_GET_VERSION gets the SEE version number (see SEEVER example).

RETURNS

• Return < 0 : An error has occurred. See section 3 “SEE Error Return Code List”.

EXAMPLES

C/C++ Example

 ' get SEE version
 Code = seeStatistics(0, SEE_GET_VERSION);

BASIC Example

 ' get SEE version
 Code = seeStatistics(0, SEE_GET_VERSION)

ALSO REFER TO

seeDebug, seeIntegerParam, and seeStringParam; READER, MAILER, BCAST, STATUS examples.

 72

2.59 seeStringParam: Sets SEE string parameter to control email
processing.

SYNTAX

 seeStringParam(Chan, ParamName, ParamString)

 Chan : (I) Channel number.
 ParamName : (I) Parameter.
 ParamString: (P) Parameter string.

REMARKS

The seeStringParam is used to set an string (text) parameter that is passed to the SEE library. The
numeric value for each of the integer parameters is defined in the SEE declaration files. Section 1.3
“Declaration Files” provides a list the "Declaration Files".

 SEE_ADD_HEADER : Adds header.
 SEE_LOG_FILE : Specifies the log filename.
 SEE_SET_CONTENT_TYPE : Sets user defined content.
 SEE_SET_CONTENT_TYPE_PREFIX : Write prefix to Content-Type header.
 SEE_SET_FILE_PREFIX : Specifies file prefix character.
 SEE_SET_FROM : Sets "From:" header after connecting.
 SEE_SET_HEADER : Sets header line.
 SEE_SET_IMAP_LIST_ARG : Species the IMAP list command.
 SEE_SET_REPLY : Sets the "Reply To" string.
 SEE_SET_SECRET : Sets password for SMTP authentication
 SEE_SET_TRANSFER_ENCODING : Sets user defined transfer encoding.
 SEE_SET_USER : Sets user for SMTP authentication.
 SEE_WRITE_BUFFER : Writes internal buffer to disk.
 SEE_WRITE_TO_LOG : Write string to LOG file.
 SEE_SET_FOOTER : Append footer to all outgoing email.
 SEE_SET_HELO_STRING : Sets custom HELO / EHLO string.

SEE_IMAP_LIST_ARGUMENT is used to specify the IMAP argument used to request a list. The default
is ["" "*"] (without the brackets). A common alternative is [~/ *] (without the brackets).

SEE_ADD_HEADER is used to add a user specified header line.

SEE_LOG_FILE specifies the name of the LOG file to create. The log file is used to debug a SMTP or
POP3 session. Be advised that log files can be quite large. Don't use them unless necessary.

SEE_SET_CONTENT_TYPE is used to specify the content type string to use when enabling quoting with
seeIntegerParam(Chan, SEE_QUOTED_PRINTABLE, QUOTED_USER)

SEE_SET_FROM is used to specify the "From:" header line after connecting to the SMTP server.

SEE_SET_HEADER is used to set one or more header lines. Each header line except the last should end
with a carriage return line feed pair.

 73

SEE_SET_REPLY to change the "Reply-To:" header after connecting to the server, just before sending an
email.

SEE_SET_SECRET is used to specify the user's password for ESMTP authentication.

SEE_SET_TRANSFER_ENCODING is used to specify the content transfer encoding to use when
enabling quoting with SeeIntegerParam(Chan, SEE_QUOTED_PRINTABLE, QUOTED_USER)

SEE_SET_USER is used to specify the user name for ESMTP authentication.

SEE_WRITE_BUFFER is used to write the internal buffer (created by seeGetEmailLines) to disk. See
the GETRAW example program.

SEE_WRITE_TO_LOG is used to write text to the LOG file.

SEE_SET_CONTENT_TYPE_PREFIX specifies a string that is prefixed to the Content-Type header line
that is written to the email output file (POP3 connection) provided that SEE_WRITE_CONTENT_TYPE
is set to TRUE.

SEE_SET_FILE_PREFIX is used to specify the character (default value ‘@’) that is used to specify (in the
seeSendEmail function) that the message text is a filename rather than the actual text of the email message.
Pass an empty string (null character) to disable (message text is never a filename).

SEE_SET_FOOTER is used to append footer text (up to 256 chars) to all outgoing email.

SEE_SET_HELO_STRING is used to set a custom HELO / EHLO string used when connecting to a
SMTP server.

RETURNS

• Return < 0 : An error has occurred. See section 3 “SEE Error Return Code List”.

EXAMPLES

C/C++ Example

 ' specify SEE log file name
 char LogFile[] = "log.txt";
 Code = seeStringParam(0, SEE_LOG_FILE, (char *)LogFile)

BASIC Example

 ' specify SEE log file name
 Dim LogFile As String
 LogFile = "log.txt"
 Code = seeStringParam(0, SEE_LOG_FILE, LogFile)

ALSO REFER TO

seeIntegerParam.

 74

2.60 seeTestFileSet: Test Files for Existence.

SYNTAX

 seeTestFileSet(FileSet, Buffer, BufLen)

 FileSet : (P) List of files to test.
 Buffer : (P) Buffer for filename if it cannot be opened.
 BufLen : (I) Size of above buffer (should be >= 256 bytes)

REMARKS

The seeTestFileSet function is used to verify that each file in the (comma or semicolon delimited) list of
files can be opened for read access. This function provides an easy way to test that message and
attachment files exist and can be opened by SEE.

If all the files in the string 'FileSet' can be opened, then seeTestFileSet returns a 0. Otherwise, the
filename of the first file that cannot be opened is copied to 'Buffer' and the length of the filename is
returned.

Filenames in 'FileSet' must be separated by either commas or semicolons.

RETURNS

=0 : All files can be opened.
>0 : Length of filename in 'Buffer' that cannot be opened.

EXAMPLES

C/C++ Example

 int Code;
 char Buffer[256];
 char *FileSet= "c:\\see4c\\apps\\image1.gif;c:\\see4c\\apps\\image2.gif";
 Code = seeTestFileSet(FileSet, (char *)Buffer, 256);
 if(Code>0) printf("%s cannot be opened\n", Buffer);

BASIC Example

 Dim Code As Integer;
 Dim Buffer As String
 Dim FileSet As String
 FileSet= "c:\see4vb\apps\image1.gif;c:\see4vb\apps\image2.gif"
 Buffer = Space(256)
 Code = seeTestFileSet(FileSet, Buffer, 256)
 If Code > 0 Then
 Buffer = Left(Buffer, Code)
 MsgBox(Buffer + " cannot be opened");

 75

2.61 seeUnquoteBuffer: Unquote Buffer

SYNTAX

 seeUnquoteBuffer(SrcBuffer, DstBuffer, DstLength)

 SrcBuffer : (P) Source string (to unquote).
 DstBuffer : (P) Destination buffer
 DstLength : (I) Size of DstBuffer

REMARKS

The seeUnquoteBuffer function "unquotes" quoted strings in email messages. Although "unquoting" is
done automatically by SEE, there are situations where an unquote function may be needed.

The size of the destination buffer (DstBuffer) should be at least as big as the size of the source string
(SrcBuffer).

RETURNS

TRUE (non zero) if verified by server.

EXAMPLES

C/C++ Example

 char *Quoted = "Ce message est =E9crit en fran=E7ais.";
 char Buffer[256];
 Code = seeUnQuoteBuffer(Quoted, (char *)Buffer, 255);

BASIC Example

 Dim Quoted As String
 Dim Buffer As String
 Quoted = "Ce message est =E9crit en fran=E7ais."
 Buffer = SPACE(256)
 Code = seeUnQuoteBuffer(Quoted, Buffer, 255)

ALSO REFER TO

seeQuoteBuffer and the iso8859 example program.

 76

2.62 seeVerifyFormat: Check email address format.

SYNTAX

 seeVerifyFormat(String)

 String : (P) Email address to check.

REMARKS

The seeVerifyFormat function is used to test an individual email address for proper formatting. If this
function returns 0 or greater, then the email address is properly formatted. But, if this function returns a
negative value, then the email address is either badly formatted, or it uses characters (such as '%') that are
not normally used as part of an email address.

Note that left and right brackets ('<' and '>') must surround the email address.

RETURNS

TRUE (non zero) if verified.

EXAMPLES

C/C++ Example

 // verify email address format
 char EmailAddr[] = "<you@yourisp.com>";
 Code = seeVerifyFormat((char *)EmailAddr);

BASIC Example

 ' verify email address format
 Dim EmailAddr As String
 EmailAddr = "<you@yourisp.com>"
 Code = seeVerifyFormat(EmailAddr)

ALSO REFER TO

seeErrorText and seeVerifyUser; VERUSR example program.

 77

mailto:you@yourisp.com
mailto:you@yourisp.com

2.63 seeVerifyUser: Verify email address with SMTP server.

SYNTAX

 seeVerifyUser(Chan, String)

 Chan : (I) Channel number.
 String : (P) Email address to verify.

REMARKS

The seeVerifyUser function is used to verify an individual email address with the email server which
"owns" the email address.

seeVerify will connect to the specified server and request verification of the user. Many SMTP servers
may refuse connection of any client not directly connected to them or may refuse all "verify user" requests.
Web based email servers (hotmail, gmail, yahoo mail, etc.) typically will not honor any "verify user"
requests.

Note that the connection must be to the SMTP server that owns the email address rather than the SMTP
server normally used to send email.

The seeVerifyUser function is used with SMTP servers only.

RETURNS

TRUE (non zero) if verified by server.

EXAMPLES

C/C++ Example

 // verify user "billy" on connected POP3 server "yourisp.com"
 char User[] = "billy";
 Code = seeVerifyUser(0, (char *)User);

BASIC Example

 ' verify user "billy" on connected POP3 server "yourisp.com"
 Dim User As String
 User = "billy"
 Code = seeVerifyUser(0, User)

ALSO REFER TO

seeErrorText and seeDebug; VERUSR example program.

 78

3. SEE Error Return Code List

The complete list of SEE error codes follows. These error messages can also be found by calling the
seeErrorText function.

 0 SEE_CANNOT_COMPLY Cannot comply. Not always an error.
 1 SEE_NO_ERROR No error.
 -1 SEE_EOF End of file (socket has been closed).
 -4 SEE_IS_BLOCKING Socket is currently blocking.
 -7 SEE_INVALID_SOCKET Invalid socket.
 -8 SEE_TIMED_OUT Socket timed out awaiting data.
 -9 SEE_NO_SOCK_ADDR No socket address.
-12 SEE_NO_HOST No host name.
-14 SEE_ABORTED The DLL has been corrupted.
-18 SEE_CANNOT_CREATE_SOCK Cannot create socket.
-30 SEE_ALREADY_CONNECTED Already connected to server.
-31 SEE_BACK_OVERFLOW Response buffer has overflowed.
-32 SEE_BAD_ADDRESS_CHAR Bad character in email address.
-34 SEE_CANNOT_ATTACH Cannot access DLL.
-35 SEE_CANNOT_OPEN Cannot open file (for read).
-36 SEE_CONNECT_ERROR Error attempting to connect.
-37 SEE_EMPTY_ADDRESS EMPTY email address.
-38 SEE_FROM_NULL_ARG Required 'From:' argument is NULL.
-39 SEE_MISSING_AT_CHAR Missing '@' character in email address.
-40 SEE_MISSING_FROM Missing 'From:' email address.
-41 SEE_MISSING_LEFT Missing '<' delimiter in email address.
-43 SEE_MISSING_RIGHT Missing '>' terminating email address.
-44 SEE_NOT_CONNECTED Not connected to server.
-45 SEE_NO_RECIPIENTS Must have at least one recipient.
-46 SEE_NO_SERVER Cannot find SMTP/POP3/IMAP server.
-47 SEE_NULL_POINTER Unexpected NULL pointer.
-49 SEE_SMTP_ERROR SMTP returned error.
-50 SEE_EMAIL_NULL_ARG SMTP/POP3/IMAP server not specified.
-51 SEE_SOCK_READ_ERROR Socket read error.
-52 SEE_SOCK_WRITE_ERROR Socket write error.
-53 SEE_TOO_MANY_AT_CHARS Too many '@' symbols in email address.
-55 SEE_CANNOT_ALLOC Cannot allocate memory.
-56 SEE_NOT_SERVER, Illegal chars in server name.
-57 SEE_NO_APOP_TIMESTAMP POP3 server did not provide a timestamp.
-58 SEE_SMTP_ONLY Must be connected to SMTP server.
-59 SEE_POP3_ONLY Must be connected to POP3 server.
-60 SEE_OBSOLETE_PARAMETER Parameter is obsolete.
-61 SEE_USER_NULL_ARG Expected USER name not specified.
-62 SEE_PASS_NULL_ARG Required POP3 password argument missing.
-63 SEE_POP3_ERROR Error returned by POP3 server.
-64 SEE_MSG_NBR_RANGE Message number out of range.
-65 SEE_FILENAME_NULL_ARG Required filename is missing.
-66 SEE_EMAIL_PATH_NULL_ARG Required file path is missing.
-67 SEE_CANNOT_CREATE Cannot create file.
-68 SEE_BUFFER_NULL_ARG Required buffer is missing.
-69 SEE_BUFFER_SIZE_ARG Buffer size argument is not positive.

 79

SEE Error Return Code List = continued

-70 SEE_ATTACH_PATH_NULL_ARG Attachment argument is missing.
-71 SEE_NOT_ATTACHED Must call seeAttach first.
-72 SEE_ALREADY_ATTACHED seeAttach already called.
-73 SEE_CHAN_OUT_OF_RANGE Channel number out of range.
-74 SEE_BAD_KEY_CODE Bad keycode (2nd argument in seeAttach)
-75 SEE_NO_SUCH_FILE No such file.
-76 SEE_PATH_NOT_ALLOWED Filename only - path not allowed.
-77 SEE_NO_SUCH_PATH No such path.
-78 SEE_IMAP_ERROR, IMAP returned error.
-79 SEE_IMAP_ONLY, IMAP function ONLY.
-80 SEE_POP3_IMAP_ONLY, POP3 or IMAP function ONLY.
-81 SEE_IMAP_FLAG_ERROR, IMAP flag error.
-82 SEE_IMAP_SEARCH_ERROR, IMAP search error.
-83 SEE_BUFFER_OVERFLOW Buffer overflow.
-84 SEE_PROXY_START_FAILS Could not start proxy server.
-85 SEE_PROXY_NOT_CONFIGURED Proxy server not configured.
-86 SEE_NO_SUCH_OPTION No such option.
-98 SEE_EXPIRED Evaluation version expired.
-99 SEE_INTERNAL_ERROR Internal SEE error.

 80

