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CHAPTER I

INTRODUCTION

Software systems are subject to maintenance changes during their lifetime. Main-

tenance changes can be classi�ed into the following three subgroups [Lientz and

Swanson, 80; Schach, 90]:

� Corrective changes

These are the changes required to remove the residual faults from a system

without changing the system's speci�cation.

� Perfective changes

These are the changes needed to enhance a system's e�ectiveness by improving

its functionality or e�ciency. The need for such changes usually arises because

users of the system have new needs or ask for changes that speed up the system.

� Adaptive changes

These are the changes required in response to changes in the environment

in which the system runs. For instance, if a new operating system is being

acquired, the continued use of an existing software system requires adapting it

to the new operating system.

System maintenance involves changes to the system's speci�cation, design, code,

and other documents. Though all changes are important, in this thesis, we concen-

trate on changes to the code of the system. One major reason for this choice is that

1
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code sections dictate the overall behavior of the system, and any changes to them

have the potential to change the system's behavior substantially. Unless a change is

carried out carefully, the system could be in a worse state. Another reason is that

code is formal and therefore, it is possible to automatically support change analysis.

Code changes are therefore our main concern, and from now on, we will refer to them

as system changes.

Changing a software system is expensive. It has been estimated that between

50% to 80% of all software costs are related to maintenance [Lientz and Swanson, 80;

Boehm, 81; Schach, 90]. The cost runs into billions of dollars worldwide [Parikh, 86].

The �gure is high because a considerable amount of work, especially by programmers,

is required to implement even a simple change. Next, we give two examples of changes

to a Pascal program [Jensen and Wirth, 85] to illustrate the amount of work involved

in carrying out a system change.

Example 1 : Consider deleting a parameter p of a procedure q. Deleting p changes

q's interface, making every call to q syntactically wrong, and in order to correct

it, the actual parameter that corresponds to the deleted one must be deleted

from each call. Also, deleting p may change q's functionality. If another proce-

dure r calls q, then r itself may require changes. This means that not only does

every call to q within r have to be modi�ed, but also that if any action of r

depends on the modi�ed calls, then r's functionality is going to be di�erent and

r may have to be modi�ed. Changing r may then cause subsequent changes.

One seemingly minor change could trigger a long chain of other changes that

could be fairly di�cult to trace manually. In a multiple-�le program, this chain

may extend beyond �le limits, making it even more di�cult to trace. If even

one of these changes goes undetected, the �nal system ends up in an incorrect

state.

Example 2 : Consider renaming a record type p as q. This change appears to be
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minor; but it might be very expensive to implement. Using a conventional text

editor, this change is easy to do. However, renaming p as q could cause many

side e�ects, such as multiple declarations or referencing con
icts. Restoring

the program to an acceptable state may require extensive search, repeated

compilations, and many runs.

The most critical activity in carrying out a system change is change analysis, a

fundamental process during which a maintenance programmer builds an understand-

ing of the software system, �nds what sections of the system are targeted for change,

what these changes are, and the impact (or side e�ects) of the projected changes.

Software maintainers spend between 50% to 80% of their time in building an under-

standing of the software system alone [Parikh, 88]. Since software understanding is

only one of the activities during change analysis, overall cost of change analysis is

even higher.

Change analysis accounts for a substantial portion of the overall software life-cycle

cost. Assuming that, on the average, maintenance costs 66% of the total cost of the

life-cycle of a software system, and change analysis costs 66% of the maintenance

cost, then change analysis costs about 45% of the total cost of the software life-cycle.

Analyzing a system change all too often depends on the state of the system's

code. After going through several maintenance changes, a systemmay become poorly

documented or inconsistently con�gured, leaving the maintenance programmer with

only one choice for doing change analysis: to depend only on the information available

from the code. Doing change analysis becomes even more di�cult if, in addition to

the lack of good documentation, the system is badly structured, knowledge about

the system is unavailable, and there is no automatic support from the development

environment.

The development of computer assistants to support the human analyst and ease

his burden can alleviate change analysis problems. Program development environ-
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ments of today lack e�ective automatic aids for software change analysis. Unless

we develop such tools, program maintenance, in general, and change analysis, in

particular, will remain a major problem.

E�orts are being made to develop computer aids to improve software change

analysis [Ambras and O'Day, 88; Calliss et al., 88; Chen et al., 90; Wilde and The-

baut, 89]. Careful study of such e�orts shows that the e�ectiveness and e�ciency of

any tool depend directly on the software representation on which the tool is based.

In this thesis, we �rst discuss the e�orts that have been made to improve change

analysis; next, we introduce a graph-based representation for software systems; and

�nally, we describe a computer system we have designed (using this graph-based

representation) to assist a change analyst.

This thesis is organized as follows.

In Chapter 2, we brie
y discuss the main factors that complicate change analysis.

We also describe several tools that have been suggested to improve change analysis.

We classify these tools according to the underlying software representation used by

the tool and comment on the problems of each class.

In Chapter 3, we discuss our approach to the development of automated aids to

improve software understanding and impact analysis. This approach is based on the

use of special attributed program dependency graphs (APDGs) to represent system

information relevant to change analysis.

In Chapter 4, we de�ne APDGs. These are directed graphs whose nodes rep-

resent the entities of the program and whose edges represent relationships between

these entities. The nodes and edges of the graph are attributed. A node attribute

describes a characteristic of the entity corresponding to this node. An edge attribute

speci�es the type of the relationship that the edge represents. We also show how to

represent Standard Pascal programs using these graphs. We use Pascal to illustrate

our approach because �rst, software understanding and impact analysis are language-



5

sensitive, and second, Pascal is a high-level language that shares many characteristics

with other high-level languages.

In Chapter 5, we describe one way to automatically generate an APDG for any

program. We illustrate the generation technique by applying it to syntactically

correct single-�le Pascal programs. For this, we describe several action routines that

incrementally build an APDG from the code of a Pascal program.

In Chapter 6, we describe an extension of the graph-based representation to

multiple-�le programs. We use Berkeley Pascal [Joy et al., 83] to illustrate this

extension. Berkeley Pascal is an extension of Standard Pascal and allows the division

of a program among many �les.

In Chapter 7, we study a set of rules that describe the structure of an APDG.

These rules are re
ections of the valid relationships that exist between the entities

of the graph's corresponding program. These rules play a major role in de�ning

graph-oriented operations that manipulate the APDGs.

In Chapter 8, we elaborate on how APDGs can ease an analyst's understanding

of the software corresponding to these graphs. We give several examples of program

views that are derivable from these graphs and explain how to derive them. We

also discuss how such views can be used to answer many user queries about the

corresponding software system.

In Chapter 9, we de�ne several program-editing operations that analyze changes

to the program code. For instance, we de�ne operations to analyze the e�ect of

deleting an entity from the program, adding an entity to the program, and renaming

an entity of the program. These operations are structure-oriented and designed to

analyze a proposed editing action and alert the user about any possible side-e�ect

of that action. For a maintenance programmer who prefers to use a text editor, we

de�ne an operation to contrast graphs corresponding to two versions of a program

�le and point out the discrepancies between them.
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In Chapter 10, we evaluate our graph-based approach. We report our experience

with the design and implementation of a prototype change analyzer that we have

built according to this graph-based approach.

In Chapter 11, we discuss future work.



CHAPTER II

CHANGE ANALYSIS: A CRITICAL ACTIVITY OF

SOFTWARE MAINTENANCE

A software system change is a change to the code of the system1. As mentioned in

Chapter 1, a system change may have side e�ects; these side-e�ects are the properties

of the system a�ected by the change. In this thesis, we refer to the set of side e�ects

of a system change as the impact of the change; we also refer to the process of �nding

the impact of a change as impact analysis. Di�erent changes have di�erent impact.

For instance, deleting the de�nition of an unused constant c has side e�ects that are

di�erent from those of renaming procedure p as q. The impact of a system change

depends on the change itself and the context in which the change occurs.

In this chapter, we de�ne change analysis, discuss its importance during software

maintenance, and study the reasons that make it di�cult to carry out. We also

investigate related work.

Software Change Analysis

Implementing a system change is a mini-cycle of four phases [Glass and Noiseux,

81; Schach, 90]:

1 Since we are limiting our research to changes to the code of a system, we
consider a \system change" and a \maintenance change" to be equivalent.

7
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1. Analyze the change requirements

2. Design a change plan

3. Carry out this plan

4. Test the resulting modi�ed system

These phases are similar to the phases of the life-cycle of software development; how-

ever, unlike development, changing an existing software system is usually restricted

by the system's constraints.

The �rst phase of this mini-cycle (namely, change analysis) is a process of several

steps:

1. Study the speci�cations of the desired maintenance change.

2. Build an understanding of the existing software system. A change analyst must

understand how the system is organized into parts and subparts, the action of

each part, the method of doing this action, and the interconnections between

these parts.

3. Find all changes needed to implement the maintenance change.

4. Find the impact of all changes found in the third step; that is, �nd all the side

e�ects triggered by these changes.

As hinted before, change analysis has a iterative nature: step 4 may initiate new

passes through this process. For instance, new system changes may be needed to

eliminate undesired side e�ects. New changes, in turn, must be analyzed and may

cause additional side e�ects. The iteration normally goes on until all side e�ects are

accounted for.

Software understanding (step 2) and impact analysis (step 4) are the main ac-

tivities during change analysis. Unless mentioned otherwise, we will use the term

change analysis to mean these two interleaving activities.
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The Importance of Change Analysis

Among all phases of a system change, change analysis is the �rst, implying that

the success of this phase is a necessary condition for the success of the following

phases. In other words, the design of a successful change plan and its implementation

and testing depend directly on the success of its change analysis (which in turn

depends on the success of software understanding and impact analysis).

There is another aspect of change analysis: an incomplete or incorrect change

analysis might lead to the wrong changes or to fewer or more changes than actually

needed. There are three ways to handle this unfortunate situation:

� Apply a new round of changes to the software system; this choice costs extra

overhead.

� Leave the system in an undesired state; this choice may lead to unexpected

behavior.

� Abandon the new changes and retain a previous version of the system; this

choice wastes all the e�ort made.

Accordingly, change analysis failures are costly.

Change analysis is an important phase of software maintenance. It is costly and

its failures are costly, too. We believe that we can achieve considerable savings by

improving its activities.

Why is Change Analysis Di�cult?

As of today, many factors make it di�cult to analyze a system change. These

factors are as follows:
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� The quality of the software structure

� The appropriateness of the software representation

� The quality of the system con�guration

� The experience and quali�cations of the analyst

� The availability of automated aids to support change analysis

. In the following subsections, we brie
y discuss these factors.

Factor # 1: The Quality of the Software Structure

The structure of a software system speci�es the organization of its parts and their

interactions. Such structural information is invaluable for the success of the impact

analysis; a change analyst must understand how the system is organized into parts

and subparts, what action each part does, how it does it, and �nally the interconnec-

tions between these parts. Generally speaking, systems that have an unstructured

nature or complicated interfaces are di�cult to analyze; meanwhile, well-structured

systems are considerably simpler to analyze and even easier to change. Since high-

level languages, such as Pascal and Ada [Ada Reference Manual, 80; Barnes, 90],

force a uniform hierarchical structure into their programs, these programs are easier

to analyze than programs written in low-level languages such as assembly language.

Even when a system is written in a high level language, it may have bad cohesion

and coupling factors, making it harder to analyze.

Change analysis is structure-directed. Thus, the simplicity, uniformity, and appli-

cability of a structuring mechanism are major factors that determine the e�ectiveness

of any approach to change analysis.
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Factor # 2: The Appropriateness of the Software Representation

A software system can be represented in many ways, such as object code, syntax

trees, or source code in one of many programming languages. Broadly, these ways can

be classi�ed into textual and graphical representations. In textual representations,

systems are coded in one or more programming languages; meanwhile, in graphical

representations, systems are represented by means of syntax trees or graphs.

Textual representations are widely used but have a costly drawback: the struc-

tural information of the corresponding software system is hidden and must be derived

each time it is needed. A graphical representation, on the other hand, can reveal

structural information of its corresponding system. However, it does not have as

much expressive power as textual representation; it is hard to write programs using

these representations.

Due to the importance of structural information for a system analyst, it must

be readily available. The purpose of this is to eliminate the excessive overhead

that is needed for repeating the structural analysis of the updated text. So keeping

a graphical representation of a system as part of the system documentation can

improve change analysis.

Factor # 3: The Quality of the System Con�guration

A software con�guration is a collection of all of its documentation. This normally

includes descriptions of the system speci�cation, design, and implementation as well

as debugging information and test audits. In addition to that, there might be many

versions of each document. These documents are written separately in di�erent

languages. There are speci�cation languages, design languages, and one or more

programming languages. These languages are needed to describe the system from

di�erent viewpoints.
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During change analysis, the analyst may want, for example, to review the speci�-

cation or the design of a module. Unless these related documents are easy to access,

consistent with each other, complete, and up-to-date, the analyst may misunder-

stand this module and may accordingly make bad judgements the consequences of

which may be disastrous. On the other hand, a �ne-quality con�guration reduces

the probability of such failures and decreases the e�ort required for change analysis.

Current trends to software con�guration management are to use special software

systems to manage all documents of a system con�guration and answer queries about

it [Leblang and Chase, 87; Ramamoorthy et al., 90]. There is no doubt that this

improves the state of a con�guration and improves change analysis.

Factor # 4: The Experience and Quali�cations of the Human Analyst

A computer program normally consists of a large number of entities with compli-

cated interrelationships. A system analyst must visualize this information during the

analysis process. Human analysts have limited memory capabilities, and, in order to

overcome this obstacle, automatic tools must be developed to support them.

Furthermore, a change analyst has to work on code which may be badly designed,

written, and documented. This is frustrating, especially to junior analysts. However,

senior programmers can, due to their experience, overcome the di�culties of change

analysis faster than others.

Factor # 5: The Availability of Automated Aids to Support Change Analysis

Most program development environments lack facilities to support the impact

analysis. Neither the text editor, the compiler, the loader, nor the debugger has

the capability to answer, for example, the question of what procedures are called

by a given procedure. So analysts have depended on their intuition and experience
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to gather the necessary information to analyze and plan a system change. Experi-

ence has shown that humans make mistakes and bad judgements; accordingly, the

reliability of this approach to change analysis is questionable.

Attempts are being made to develop new tools that could be added to the de-

velopment environments to support the change analysis. In the next section, we

introduce many of these and discuss their performance. However, acceptable tools

are hard to create because of the nature of the analysis process, the set of circum-

stances in which the tool must operate, and the requirements that the tools must

satisfy.

Let us summarize the ideas of this section. When a maintenance programmer

is given a program to maintain, his performance and e�ort depend on many factors

that include the software representation, the software structure, the quality of the

software con�guration, and so forth. In real life, there are no guarantees that all

factors are ideal. After going through several maintenance changes, a software sys-

tem may become poorly documented, badly structured, or inconsistently con�gured.

To change such a system, the programmers have no choice but to work only with

what the code o�ers in order to change this code. Unless programmers have system-

atic support from the development environment, change analysis becomes di�cult,

frustrating, and costly.

Our research is aimed at developing automated aids that extract information

from the code of the system and use this information to support analysts during

change analysis of this code. There are two aspects to this approach:

1. Derive the information vital for change analysis from the code of a program

and retain it.

2. Develop a system of software tools that uses this information to support change

analysis.
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In Chapter 3, we elaborate further on this approach.

Related Work

There is a wide variety of tools that relate to change analysis. According to the

software representation that the tool is based on, we divide these tools into four

groups: text-based, tree-based, relational-based, and knowledge-based tools. In the

following subsections, we give examples of each group and comment on them:

Text-Based Systems

Currently, most software tools treat code as unstructured text. Software devel-

opment life-cycle and software development tools are geared towards this textual

representation. In text-based environments, there are text editors, pretty printers,

parsers, cross referencers, and so forth. These tools o�er very little help during

change analysis.

A) Editors

General-purpose text editors allow the analysts to examine any section of code,

search for patterns, and modify this code, without knowledge of the contents

of the code. Multi-window editors at best enable the users to examine many

sections of code at the same time. Text editors are, thus, considered primitive

view generators.

B) Parsers

A parser is a language-oriented component of a compiler that checks the syntax

and static-semantics validity of a given piece of code and reports any unacceptable

constructs or unresolved references. So a change analyst can change the code of a
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software system and run a parser to check the new version of the system for any

syntactical con
icts. This process is repeated until the programmer is satis�ed.

Parsers can also be considered change analysis aids; however, they are not suitable

for change analysis because they are batch-oriented tools, and the change analysts

need interactive support during change analysis.

C) Cross referencers

A cross referencer (normally a component of a compiler) collects referencing re-

lationships among the entities of a program and dumps a complete listing of

these cross references. Change analysts may then examine such lists manually.

Change analysts are, usually, interested in selective cross references and prefer to

get them automatically.

D) Con�guration management systems (CMS)

Understanding a piece of code of a software system may require examining other

documents, such as the system's requirement speci�cation, designs, test audits,

and other versions [Schach,90]. (The set of these documents is known collectively

as the software con�guration.) The success of this examination depends directly

on the quality, completeness, consistency, and correctness of these documents.

RCS (Revision Control System) [Tichy, 85] and SCCS (Source Code Control

System) [Rochkind, 75] are well-known version control tools.

Managing a set of di�erent versions of a software system is not the only service

needed from a con�guration management system. Recently suggested software

development environments such as the DOMAIN Software Engineering Environ-

ment (DSEE) [Leblang and Chase, 87] and the Evolution Support Environment

(ESE) [Ramamoorthy et al., 90] have automated tools that manage the informa-

tion of a software con�guration. Also ESE system has proposed tools that help

users trace all information relevant to the evolution (including maintenance) of
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a software system. These capabilities not only help software developers to man-

age software documentation, but they also help software maintainers navigate

through them.

The textual representation of a software system is not an ideal basis for building

view generators and change analyzers. In part, this is because some, especially

structural, information of a represented system is buried in its text and must be

derived each time it is needed; this information is invaluable for the construction

of e�ective and e�cient change analysis aids. The repeated costs of derivation can

be saved if the structural information is explicitly retained as part of the software

con�guration.

Tree-Based Systems

Tree-oriented tools [Habermann and Notkins, 86; Reps, 84] are interactive tools

that use their knowledge of the structure of the program to edit and modify it. Such

tools depend on the premise that programs are not text; programs are compositions

of computational structures. In the following two items we discuss two tree-oriented

systems and comment on how and to what extent their tools support change analysis.

A) The Cornell Program Synthesizer (CPS)

CPS [Reps, 84] is an interactive, structure-oriented software writing system that

supports the incremental development of programs. CPS is based on attributed

context-free grammars. The context-free grammatical rules of the language are

embodied in a prede�ned set of templates that are used by the tools of the

environment to guide program construction and modi�cation. A template is

inserted into the skeleton of a previously derived program by a special command

that guarantees the syntactical validity and typographical correctness of this
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insertion. User de�ned phrases such as expressions and assignment statements

are �lled in by a text editor; they are also checked immediately for possible

syntax errors by a special parser. Any detected errors are highlighted and could

be corrected at entry time. Thus, partially created programs are always well-

formed.

Existing programs are modi�ed the same way: structural changes are accom-

plished by deleting and inserting templates while phrases are changed by the

text editor. Also, programs are checked for possible errors after every change.

Due to the immutability of the templates and the synthesizer intolerance of ill-

formed programs this mode of modi�cation is syntactically safe.

The conceptual representation of a program is an attributed syntax tree. The

nodes of the tree are augmented with attributes that specify non-structural in-

formation of the corresponding program. The attributes are always consistent.

Modifying a tree usually a�ects its attribute values. After a valid subtree re-

placement, an attribute evaluator searches the attributed tree for those a�ected

attributes and renews them. This evaluator propagates the changes incremen-

tally using a dependency graph. The search for such attribute values through

that directed graph is very expensive, especially if it is performed after every

change.

Currently, CPS is considered a programming-in-the-small system; it does not

work with multiple-�le programs. Other disadvantage of CPS are �rst, in order

to use it, a user must know, in advance, the structure of a program to be created

or modi�ed, and second, it does not provide view-generating capabilities.

B) PECAN

PECAN program development systems [Reiss, 84] are environments that were

suggested to support multiple views of a user's program. These views are visual
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representations of abstract syntax trees. The majority of these views are graphi-

cal. They include a syntax-directed editor, a Nasi-Shneiderman structured charts,

and a declaration view. Other views that show the internal forms of the program

are supported, also. These include a symbol table view, data type views, ex-

pression trees, 
ow-of-control graphs (or 
owcharts), and module interconnection

diagrams. PECAN environments can automatically generate such views from a

program's syntax trees and make them available to users either to read or to edit

them. For this, they are considered tree-oriented and programming-in-the-small

environments.

PECAN environments try to make full use of the computing power and graphics

of modern computers. They support the construction or display of many views

simultaneously on one screen.

Relational-Based Systems

Several systems view a program as a collection of relations, derive these relations

from the code of the program, and save them in a general-purpose or special-purpose

relational database. A set of database queries can be used to answer many questions

about the program using this repository of relations.

A) OMEGA System

OMEGA [Linton, 84] is one of the earliest relational-based systems that has

view-generating capabilities. The basic idea behind this system is to extract re-

lational information about a program, store it in a relational database, and use

the database system for examining this information. In a prototype model of

the OMEGA system, the general-purpose relational database system INGRES

[Stonebraker et al., 76] was used to manage the relations that correspond to pro-

grams written in a Pascal-like language called Model. One tool of this prototype
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takes in the source code of these programs, translates it into a collection of pre-

de�ned relations, and stores them in the database. A second tool allows users to

browse the content of the database and answer queries about it. If a user makes a

query to �nd all statements that reference a variable or procedures that are used

by a module, this tool answers this query by gathering the necessary information

from various relations and presenting the results to the user.

A major goal of OMEGA was to use the relational database as the sole repre-

sentation of a program. Therefore, the database had to be loaded with low-level

details about variables, expressions, statements and relationships among these

entities. As [Linton, 84] admitted, generating views out of this database was

very slow.

B) The C Information Abstraction System (CIAS)

CIAS [Chen et al., 90] is another system that, like OMEGA, has view generat-

ing capabilities. However, unlike OMEGA, CIAS extracts only global relational

information about C programs [Kernighan and Ritchie, 88]. In this system, a C

program is conceptually viewed as a collection of objects and a set of relations

between them. There are �ve kinds of objects: �les, macros, global variables,

data types, and functions. As for the relations, there are mainly two of them:

the \includes" relationship between two �le objects and the general \refers to"

relationship between any two objects of the program. All objects are attributed.

CIAS has three major components: the C Abstractor, the Information Viewer,

and the Software Investigator. The C Abstractor collects high-level information

about a program and stores it in the database. The Information Viewer has op-

erations to generate many views of the C system, and answer queries from this

database. The Software Investigator has operations to provide more higher-level

capabilities, such as generating graphical views, extracting subsystems, eliminat-
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ing dead code, and doing binding analysis.

Because CIAS only stores global information, the CIAS tools are faster and more

e�ective than those of OMEGA. However, it is not currently designed to �nd side

e�ects of a proposed change.

C) Visual Interactive Fortran (VIFOR)

VIFOR [Rajlich et al., 88 ] is an experimental graphical user interface designed

to help a user visualize Fortran programs. It is based on a combination of code

and a simple entity-relational graph that is derived from the code. The most

notable tools of VIFOR are browsers; these are special windows that allow a

user to examine a few pre-de�ned program views such as a call graph, local

entities of a function, or a backlog interface [Rajlich, 85]. It is yet to be shown

whether VIFOR can be scaled up to large programs or whether it can generate

any program view.

Relational-based systems are good for view generation; however, they have short-

comings. First, if, as is normal, the collection of relations is huge, then their opera-

tions are slow. Second, queries that require transitive closure search are not easy to

formulate. Third, it is hard to de�ne change analysis tools using such relations.

Knowledge-Based Systems

A knowledge-based system consists of a set of integrated tools that supports

many activities of change analysis, especially view generation and impact analysis.

These systems are normally built around a database of program information that is

collected by analyzing the program's code or executing it.
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A) MicroScope

MicroScope [Ambras and O'Day, 88] was a part of an e�ort at Hewlett-Packard

Laboratories to improve the quality and productivity of software development.

It is a system of tools designed around a knowledge base of program information

that includes the source code of the program, data-
ow and control-
ow anal-

ysis results, and run-time annotations. A prototype of MicroScope was written

in Common Lisp and analyzed code written in this language. The system did

not seem to address issues of scalability or information representation for large

programs.

B) The Arizona State University Maintenance Environment

[Collofello and Orn, 88] report a research project to develop a system of tools

for maintaining Pascal programs. In this system, a program is considered to

be a set of modules. For each module, information such as module speci�cation,

design, code, and relations with other modules is collected and stored for program

analysis. The tools of this system are used to manage this information and

retrieve it for examination. In contrast, we store relations in a graph-based

structure for ease of processing and e�ciency.

C) A Knowledge-Based System for Software Maintenance

[Calliss et al., 88] suggest a knowledge-based system to aid maintenance program-

mers in understanding a software system in a short time. This system is based

on program plans [Letovsky and Soloway, 86]. The limitations of this approach

include what plans to consider, how to handle the large number of plans that

are normally associated with large software systems, and how to derive plans,

especially if they are distributed.
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D) REFINE System

REFINE [Re�ne, 85] is a knowledge-based software development environment

that provides facilities for �rst, creating abstract syntax trees from language

speci�cations and second, browsing through these trees. The syntax trees can also

be analyzed or manipulated through the tools provided in REFINE. Compared

to our system, REFINE is more of a powerful programming environment to help

build language-speci�c software tools than a provider of such tools.

E) The Maintenance Assistant

[Wilde and Thebaut, 89] report a project at the Florida/Purdue Software Engi-

neering Research Center the purpose of which is to explore and test methodologies

that may be useful for the development of computer assistants to aid in changing

a software system. Three approaches are being investigated. These approaches

are dependency analysis, reverse engineering, and program change analysis. De-

pendency graphs are being used as a major representation of a software system.

Current work in this project focuses on developing prototype tools and studying

them.

In this section, we discussed several tools that can support the activities of change

analysis and pointed out their shortcomings. The majority of these tools support pro-

gram understanding by generating program views, but they do not support impact

analysis. Few other tools do impact analysis but do not support view generation.

However, improving change analysis requires supporting both program understand-

ing and impact analysis. What is needed then, is a system of tools that is capable

of supporting both program understanding and impact analysis. We designed a sys-

tem of integrated tools, called SCAN , for this purpose. In Chapter 3, we discuss

SCAN 's approach to change analysis and SCAN 's architecture. We also compare

this system with several of those mentioned in this section.



CHAPTER III

A FRAMEWORK FOR SOFTWARE CHANGE

ANALYSIS

Change analysis has two types of problems:

� Intrinsic problems

Intrinsic problems include the inappropriateness of the code of a software sys-

tem for change analysis, the limited memory of a human analyst, and the

complicated nature of the interactions of program components.

� Extrinsic problems

These problems include poor program documentation, inadequate program

structuring, and inconsistency of program con�guration. Change analysis will

bene�t when we improve these factors. In practice, after a software system goes

through several maintenance changes, the quality of the program documenta-

tion, structure, and con�guration decline. The change analysts then have no

choice but to rely on the code of the software system in order to maintain it.

In our work, we suggest an approach to alleviate these problems. The main idea

behind this approach is to develop a computer-assistant system to aid a human ana-

lyst during change analysis. We call this assistant system Software Change ANalyzer

(SCAN).

23
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SCAN tools can support the analyst in two ways: �rst, by generating views of

the software system and answering queries about it, and second, by analyzing the

impact of proposed changes to the system. A view generator helps a user develop an

understanding of the program being analyzed, and an impact analyzer guides him

to all sections that may be a�ected by the change.

SCAN is based on the following approach:

1. Choose a structure-based software representation

Considered as a sequence of characters, sequence of words, or sequence of lines,

the code of a software system is not ideal for the construction of SCAN tools.

These tools must be based on a structured representation of this code. The

structural information (that this representation includes) depends on the func-

tions provided by SCAN tools. In our approach, we use a special class of

attributed dependency graphs to represent information vital for view genera-

tion and impact analysis.

2. Derive the structure-based representation

From the code of a software system, derive the information necessary to con-

struct the new representation, build this representation, and save it together

with the code as twin representations.

3. Develop view generators and impact analyzers

Develop software tools that use the new representation to support change anal-

ysis. SCAN tools can support the analyst by doing the drudge work of change

analysis, leaving the intelligent decisions to the human analyst.

Let us emphasize some important aspects of this approach.

� SCAN is not a tool that solves the problems of change analysis; it is a com-

bination of loosely integrated tools that improve program understanding and

impact analysis.
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� SCAN tools do not rewrite a program's internal or external documentation

or automatically restructure a poorly structured program; instead, these tools

derive information from the code of a software system and use it to support a

maintenance programmer who is trying to maintain this code. This approach

does not depend on the state of the internal documentation or external docu-

mentation.

� Although this approach does not currently deal with other related documen-

tation (such as a software design and speci�cation) or other tools (such as a

compiler or a con�guration management system), it does not exclude the use

of any such information or tools. We hope ultimately to incorporate SCAN in

a program development environment that includes all of these tools so as to

support software development, in general, and software maintenance, in par-

ticular.

A Structure-Based Representation for Software Systems

The code of a software system is not ideal for the development of computer aids

to support change analysis. In part, this is because some, especially structural, in-

formation of a represented system is buried in its text and must be derived each time

it is needed. The repeated costs of derivation can be saved if the structural informa-

tion is explicitly retained as part of the software con�guration. For a structure-based

representation, we use, as mentioned earlier, special attributed program dependency

graphs; these are directed graphs whose nodes represent entities of a program and

whose edges represent relationships between these entities. Both nodes and edges are

attributed; a node attribute describes a characteristic of the node's corresponding

entity, and an edge attribute describes the type of relationship between the edge's
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nodes. The information that an APDG contains is at the granularity level of �les,

procedures, types, and variables. Currently, APDGs do not include any information

about individual statements or expressions.

The attributed dependency graph corresponding to a software system is not an

alternative representation to the code of the system; actually, it complements this

code, and it must be saved as a part of the software con�guration. We use the

combination of code and its APDG to represent a software system, and often refer

to this combination as graph-based representation.

APGDs can be general enough to represent software systems regardless of the

programming language in which the system is written. Since e�ective change analy-

sis ought to be structure-oriented, an APDG must also have language-speci�c infor-

mation. The language-speci�c information controls the construction (and thus the

structure) of any APDG of a software system written in a given language.

An Overview of the SCAN Software Change Analyzer

Figure 3.1 illustrates the architecture of SCAN , a computer assistant for change

analysis. In this �gure, we recognize three repositories of information:

� Program Code

This is the code of the software system.

� Program Graphs

A set of attributed program dependency graphs that are used to support change

analysis. The only SCAN subsystem that has access to these graphs is Graph

Operations.

� Rules Base

A set of constraints that must hold when an APDG represents a syntactically
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Figure 3.1: The Architecture of SCAN

correct piece of code. These rules must be checked after graph modi�cations in

order to analyze the e�ect of these modi�cations. There are two types of rules:

general rules and special rules. General rules hold for any APDG regardless of

the programming language in which the program is written. Special rules are

language-speci�c.

As illustrated in Figure 3.1, SCAN has the following tools:

� Graph Generator

The Graph Generator is a tool to read the code of a software system, extract

information necessary for the construction of an attributed program depen-

dency graph, and build this graph. The Graph Generator must have parsing
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capabilities so as to collect structural information of the software system and to

include this information in the graph. It is preferable that this graph generator

support incremental graph construction.

� Interface Manager

The Interface Manager is a tool that interacts with all other components. It

supports interactive and multi-window user interfaces.

Note that a user interface manager must have access to both the text of a

software system and its corresponding attributed program dependency graphs

in order to use the APDG information to support the analysis of any code

changes.

� View Generator

The View Generator is a tool to show some selective information of a software

system using its APDGs. This facility is needed to help the analyst develop

an understanding of the code of a software system. The nature of the infor-

mation included in these graphs and the graph's uniform structure allow the

construction of e�ective software view generators.

� Graph Operations

This is a set of low-level operations that edit the graph representation. Other

SCAN components interact with APDGs using these graph operations. These

operations enforce the structural constraints of the software system (these are

found in the Rules Base) while manipulating the graph representation. Exam-

ples of these operations include add a node to the graph, delete a node from

the graph, add an edge, and delete an edge.

� Graph Editor

A set of high-level operations that allow a user to carry out system changes.
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Examples of these operations include add a given entity at a given location,

rename an entity, and delete an entity.

� Impact Analyzer

The Impact Analyzer is a tool that analyzes the impact of a proposed change

to the code of a program. It checks whether any language-speci�c constraints

are violated by the proposed change. A set of rules is kept in a rules base. The

Impact Analyzer's only function is to �nd what rules would be violated if a

proposed change were implemented.

We elaborate on the function of each component in the following chapters.

Through our work, we have developed prototypes of SCAN tools. We often refer

to these prototypes in later chapters and borrow some examples from them. We

apply our approach to programs written in Pascal. Pascal is a high-level language

that shares many features with other languages such as Ada and C. Similar tools

can be developed for such languages.

Advantages of the Graph-Based Approach

Basing our approach to change analysis on a graph-based representation has many

advantages. Prominent among them are the following:

� In the graph-based representation, code is a primary representation.

SCAN tools are designed to help the analyst maintain the code of software

systems. Although these tools are graph-based, the primary representation of

a software system is its code. Graphs are used to ease the analysis of this code.

� The graph-based representation eases view generation.

The combination of the code of a software system and its corresponding
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APDGs is quite suitable for program view generation. Actually, the infor-

mation included in an APDG is chosen, in part, for this purpose. There is

information about every entity of a program and the interconnections between

such entities. This information is retained in a form that makes view generation

easier and e�ective.

A wide variety of views can be generated from a graph-based representation,

such as cross references, structure charts, and call graphs.

� The graph-based representation eases impact analysis.

A graph is a natural speci�cation tool for the structure of software programs.

The structure of a program describes the organization of its entities and the

interactions between them. Such interactions are speci�ed by one or more

relations that are de�ned on the set of entities of the program. Since graphs

can represent relations, graphs can be used to specify program structures.

The choice of the interactions normally determines the type of the structur-

ing graph and its properties. If the interactions describe nesting relationships

between the parts of a block structured program, then their corresponding

structuring graphs are trees, the simplest forms of structures. However, these

structuring trees are inadequate to specify more general interactions. For ex-

ample, if the interactions include imported or exported data between the pro-

cedures of the program or include procedure calls, the structuring graph might

have cycles. This violates the de�nition of a tree.

Using graphs to specify the structure of programs allows the construction of

structure-oriented tools that �nd the impact of proposed changes, communicate

that to the analyst, and guide them during change analysis.

� An APDG represents di�erent program information uniformly.

The representation of any entity of a program (whether this entity is a �le, a
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procedure, a type, or a constant) and the relationships between this entity and

other entities is a subgraph of the APDG; this subgraph consists of nodes and

arcs. In this sense, the representation of a �le entity and that of a type or a

constant are similar. Even if these entities are written in di�erent languages,

they still can be represented in the same way. In addition, the representation

of a single-�le program is similar to that of a multiple-�le program. So di�erent

program information is represented uniformly in an APDG.

� SCAN tools can be incorporated into many software development environ-

ments.

In a software development environment, a compiler could be modi�ed to create

an APDG corresponding to the compiled program, a text editor could run

the Impact Analyzer in the background to analyze changes to the code of a

program, a cross-referencer could utilize the View Generator to interactively

generate cross references, and so on.

� The graph-based approach can be supported by a relational database system.

Several development environments utilize relational database systems [Ullman,

82] to manage relational information of software systems. Some environments

such as OMEGA [Linton, 84] use general-purpose database systems; many

others [Engles et al., 87; Chen et al., 90] use more specialized databases.

Attributed dependency graphs can be expressed directly as relations. So, if

desired, a relational database system can support the graph-based approach

easily and with few interfaces. In this way, a graph-based system can have

capabilities similar to those of relational-based approaches.

� The graph-based approach eases subsystem identi�cation.

Subsystem identi�cation refers to determining whether a subsystem is indepen-

dent from others (that is, whether it references any entities outside its bound-
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aries) and �nding references to outside entities. Subsystem identi�cation is

required when a subsystem is reused or replaced.

Subsystem identi�cation is a reachability problem on APDGs. All that is

needed is to �nd all nodes that are reachable from the graph node corresponding

to a subsystem. After that, the two sets of nodes (the set of nodes of the

subsystem and the set of reachable nodes) are compared for equality; if these

sets are equal, the subsystem is independent.

� The graph-based approach eases dead-code elimination

A simple traversal through an APDG determines which entities are not refer-

enced; these are unused entities. A user can then decide whether to eliminate

their corresponding dead code.

Contrasting the Graph-Based Approach and Sample Related Work

In this section, we compare our graph-based system with a sample of other related

work. We limit the comparison to two aspects of change analysis; namely, view

generation and impact analysis. Recall that we classi�ed the related systems into

four classes to the program representation on which the system is based: text-based

systems, tree-based systems, relational-based systems, and knowledge-based systems.

Text-Based Systems Versus SCAN Graph-Based System

� Traditional text-based software development systems have primitive view-

generation and impact-analysis capabilities.



33

� The graph-based system is not an alternative to these systems; it complements

any of them in order to provide view generation and impact analysis. In other

words, SCAN is designed to improve text-based systems.

The Cornell Program Synthesizer Versus SCAN Graph-Based System

� The Cornell Program Synthesizer is a tree-based system that has impact-

analysis capabilities. However, due to the limited descriptive powers of trees,

these capabilities are limited to small programs.

� The Cornell Program Synthesizer does not provide view-generation capabilities.

� SCAN has both capabilities, and due to the fact that graphs are more powerful

than trees, this system can be used to handle large programs as well as small

programs.

The C Information Abstractor Versus SCAN Graph-Based System

� Due to the use of relational database systems, the C Information Abstractor

has good view-generation capabilities.

� The C information Abstractor does not support impact analysis, probably be-

cause the relational representation is not ideal for this analysis.

� Since graphs can be expressed as relations, the graph-based approach can have

view-generation capabilities similar to those of the C Information Abstractor.

� Using graphs rather than relations saves the structural information that is

vital for change analysis. The APDG contains context-free as well as context-

sensitive information.
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� In our graph-based approach, multiple-�le programs are represented by multi-

ple graphs. This allows the e�cient use of the internal memory of a computer

system.

Knowledge-Based Systems Versus SCAN Graph-Based System

� Knowledge-based systems support program comprehension and impact analysis

by collecting program information and using it to support analysts.

� The graph-based system has similar objectives, but it is di�erent in that it uses

an APDG as a primary base on which all tools of the system are built.

In this chapter, we brie
y described SCAN , a system of tools to support change

analysis. We also discussed SCAN 's merits and compared it with several systems

we described in the Chapter 2. In the following chapters, we thoroughly discuss

SCAN 's components. We developed a prototype for each component; in Chapter 9,

we describe these prototypes and report the experience gained during their imple-

mentation.



CHAPTER IV

A GRAPH-BASED REPRESENTATION FOR

SOFTWARE PROGRAMS

Program Dependency Graphs

A program1 consists of a �nite set of entities (nameable components) such as

variables, procedures, functions, and types. These entities are either primitive (i.e,

language-de�ned) or user-de�ned. User-de�ned entities are, language permitting,

constructed using other entities, and in turn, these latter entities may be constructed

using others, and so on. For example, a record entity may consist of several �eld

objects each of which is another entity; a procedure may use other locally de�ned

procedures, types, or parameters each of which is a di�erent entity. In this respect, if

an entity (p) uses, within its de�nition/declaration, another entity (q), then we say

that p depends on q; we denote this by the ordered pair (p; q). The set of ordered

pairs (p; q) such that program entity p depends on program entity q is a mathematical

binary relation that is de�ned on the set of entities; we call this relation a dependency

relation.

1 We only consider single-�le systems here. In Chapter 6, we discuss how to
extend this representation to multi-�le systems.
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Program book ( � � � );
All entities shown in this code are italicized.
Const

first = � � �
last = � � �

Type
...
class = Array [ first .. last] of Real;
...

Var
list : class;

Procedure sort ( first; last : Integer );
Var

i, j: Integer;
Procedure swap (Var p, q: Real ) ;

Var
temp: Real;

Begin
temp := p;
p := q;
q := temp

End;
Begin

For i := first To last-1 Do
For j := i+ 1 To last Do

If list [ i ] > list [ j ]
Then swap( list [ i ] ; list [ j ] )

End;
Begin

...
sort(first; last);
...

End.

Figure 4.1: Example of a Standard Pascal Subprogram
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Figure 4.1 shows a partially de�ned Pascal program named book. It consists of

many entities such as the types Integer, Real, and class; the procedures swap and

sort; and the objects list, i, and j. There are many dependencies between these

entities. For instance, the object list is of type class, the procedure sort calls swap,

and the type class references first and last. Such dependencies are determined

during the analysis of the code of the program.

Naturally, the set of entities of a program p and the dependency relation are

represented by a directed graph; a vertex2 of the graph represents an entity of the

program, and an arc represents a dependency relationship between the entities cor-

responding to the arc's vertices. For instance, if entity a depends on entity b and the

vertices a0 and b0 are their corresponding node representations, then the arc a0
e
!b0

represents the relationship (a; b). If N is the set of vertices representing the entities

of program p and E is the set of arcs representing the dependency relation, then

G = (N ; E) is a directed-graph representation of program p. We call G a program

dependency graph (PDG).

As remarked above, we denote the dependency relationship between the entity p

and entity q by the ordered pair (p; q). This representation does not depend on how

many times p uses q. For instance, if p is a procedure statement that references the

global variable q ten times, then this relation is represented by the unique ordered

pair (p; q). As a result, if p0 and q0 are the nodes representing p and q, respectively,

then there is exactly one arc p0
e
!q0 in the PDG. In general, we can say: if p0 and q0

are two nodes of the PDG, then there is at most one directed edge from one to the

other.

The directed graph of Figure 4.2 is a subgraph of the PDG that represents pro-

gram book. The nodes n4, n5, and n6 represent the program entities class, list, and

sort, respectively. The arc n6
e
!n12 represents (sort; swap), a relationship between

2 We use the terms \node" and \vertex" alternatively.
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the procedures sort and swap. Also the arc n5
e
!n4 represents (list; class), the

relationship between the object list and its type class.

Embodied in this representation is the correspondence between the entities of the

program and the nodes of the graph. This correspondence is de�ned during graph

construction. If F is a function that designates the node associated with each entity,

then F is a one-to-one function from the set of entities of the program onto the set

of nodes of the PDG. Normally, each program entity is identi�ed by a name, for

instance, procedure sort, type entry, or object last. We use such names to identify

the nodes of the graph by labeling each node with the name of the entity to which

it corresponds. When the distinction between the node and the entity is obvious, we

use such names to identify the nodes of the graph as well. Thus, one label of a node

n is going to be F�1(n).

The identi�cation technique we just described has a problem: there may exist

many di�erent nodes that have the same label. In Figure 4.1, program book depends

on a pair of constants named first and last, and procedure sort depends on a pair

of parameters named similarly. So, the corresponding PDG (Figure 4.2) has two

di�erent nodes (n2 and n8) that are labeled first and another similar set of nodes

(n3 and n9) that are labeled last. In Pascal programs, the problem is solved easily,

because within a particular context, only one of those similarly named entities is

known to exist. If a PDG preserves the structure of the programs they represent, we

can solve the naming problem in such a graph by specifying the context of the name.

Attributed Program Dependency Graphs

A PDG is an abstract view of a program without su�cient details to generate

useful program views or to solve the problem of change analysis. Therefore, we keep

additional information as attributes of the nodes and arcs of the PDG. The level
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of change analysis to be conducted determines the information to be retained. In

our approach, we choose information at the granularity level of procedures, func-

tions, types, and variables. Although other information (such as the condition of a

while-do statement, the components of an if-then-else statement, or the structure of

an expression) is important for change analysis, we are leaving out such localized

information, with the hope that human analysts can easily get it from the textual

code. We would like to emphasize that an APDG is not an alternative to the code

of a program; an APDG complements its corresponding code. Thus, many times

we refer to the combination of the two representations of a program as the program's

graph-based representation.

An attributed program dependency graph (APDG) is a PDG whose elements

(nodes and edges) are attributed. In the following subsections, we describe the

attributes we assign to the nodes and edges of an APDG and discuss the reasons for

this assignment.

Node Attributes

A node attribute speci�es a characteristic of the corresponding node's entity. For

Pascal programs, for instance, the following attributes can be used for the nodes of

the APDG:

A. Entity name

We use the name of the entity to label the entity's node; this label is one

attribute of the node.

B. Entity class

Another attribute of a node is the class of the node's entity. The entities of

the program di�er in declaration/de�nition and use. In Pascal, we classify the

entities into four mutually disjoint classes:
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� A class of PROCEDURE entities (P)

P consists of the following subclasses:

{ programs,

{ procedures,

{ functions, and

{ procedure and function parameters.

� A class of OBJECT entities (O)

O consists of four subclasses of entities:

{ constants (including values of enumerated types);

{ labels;

{ value, variable, and �le parameters; and

{ variables.

� A class of TYPE entities (T )

T consists of all of the following subclasses:

{ primitive types, integer, real, char, boolean, string, and �le;

{ index types;

{ enumerated types;

{ sets;

{ arrays;

{ records; and

{ pointers.

� A class of STATEMENT entities (S)

S consists of entities each of which corresponds to the statement part of

a subprogram. In this thesis, we consider the outermost begin-end com-

pound statement of a procedure, a function, or the program as its state-
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ment entity. We name this entity as the name of its parent subprogram

concatenated with the string \.st".

Entities of a class have similar characteristics, but entities of di�erent classes

di�er in de�nition and purpose. To preserve the properties of these classes, the

nodes of the corresponding APDG are similarly divided into four classes. Let

G(N;E) be an APDG and F its de�ning function.

Let also,

No = F(O),

Np = F(P),

Ns = F(S), and

Nt = F(T )

then

N = No [Np [Ns [Nt and

No, Np, Ns, and Nt are pairwise disjoint.

We call the nodes of No, o nodes; the nodes of Np, p nodes; the nodes of

Ns, s nodes; and the nodes of Nt, t nodes. In this thesis, we use icons of

di�erent shapes to distinguish between nodes of di�erent classes. We use oval

icons for o nodes, parallelogram icons for p nodes, square icons for s nodes,

and triangular icons for t nodes.

In Figure 4.2, the nodes n2; n8, and n14 are in No; they are o nodes. The nodes

n1; n6, and n12 are in Np; they are p nodes. The nodes n7; n13, and n17 are in

Ns; they are s nodes. The node n4 is in Nt; it is a t node.

C. Entity context

Many languages allow the use of di�erent entities of the same name in di�erent
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contexts; they provide scope rules to resolve references to these names. (The

scope rules usually describe what entities can be referenced at a particular

point of the program.) To apply the scope rules, the context has to be made

available. We have to use additional node attributes to describe the contextual

information of the corresponding entity. This information will then be used

not only to solve the naming problem, but also for change analysis.

In high-level languages, the order in which the entities of a program are de-

clared/de�ned is very important. For example, one procedure cannot call an-

other unless the latter is declared �rst. It is possible to include this ordering

in the graph representation of programs. Let n1, n2, n3, : : :, nk be a sequence

of entities of a given program that are declared at the same level of nesting

within the block of entity n and in this given order. Then one way to preserve

this ordering is to link their corresponding graph nodes n01, n
0

2, n
0

3, : : :, n
0

k into

the parent node n0 (that represents n) in the same order. The order of the

siblings n01, n
0

2, n
0

3, : : :, n
0

k will be the same as the order in which the given

entities are declared within n. We keep the original position of a sibling as

a node attribute. This ordering preserves the static organization of the enti-

ties of the programs being represented, which in turn is very important to the

interpretation of scope rules of the language.

D. Entity locations

An APDG complements the code of its program. The linkage between the two

representations must be available so as to access one representation from the

other. We keep the locations where an entity is declared/de�ned and referenced

as node attributes.
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Edge Attributes

The dependency relation between the entities of the program is an abstraction of

several di�erent relations. Subprograms de�ne their own local entities, use parame-

ters to communicate with others, and reference other global entities. Record types

use �eld selectors to identify the components of their values. Objects are declared

to be of previously de�ned types. These relations have di�erent semantics. It is

logical to partition the dependency relation into several distinct classes. For Pascal,

we partition this relation into three classes:

� A class of LOCAL dependencies (L)

L consists of all pairs (p; q) such that either p is a record type and q is one of

its components, or q is an entity that is declared within the block of p and p is

a procedure, a function, or a program entity.

� A class of PARAMETRIC dependencies (C)

C consists of all (p; q) such that p is either a procedure or a function or a

program and q is one of p's formal parameters. That is, C includes all pairs

(p; q) such that q is a formal parameter of p, where p 2 P.

� A class of REFERENCING dependencies (R)

R consists of all (p; q) such that

{ p is an object or a function and q is p's type;

{ p is a type that references type q; or

{ p is a statement entity that references q, where q is an object variable, a

procedure, or a function.

If desired, references to variables can be further re�ned into two subclasses:

read references and write references. This helps data-
ow analysis.
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The three classes L, C, and R are mutually disjoint.

In Figure 4.1, the pairs (i; Integer), (sort:st; list) and (p;Real) are in R. Mean-

while, the pairs (sort; last) and (swap; p) are in C; and the pairs (sort; i), (sort; swap)

and (book; class) are in L.

The elements of a dependency relation are represented by the arcs of the APDG.

Hence, we partition these arcs into three subsets as well.

Let

E1 = fF(p) e!F(q) j (p; q) 2 Lg,

Er = fF(p)
e
!F(q) j (p; q) 2 Rg, and

Ep = fF(p)
e
!F(q) j (p; q) 2 Cg,

then

E = El [ Ep [ Er and

El \ Ep, El \ Er, and Ep \ Er are empty sets.

We label each arc of the graph using the initial of the relation it belongs to. So, if

a
e
!b is in El, Ep, or Er then its label is going to be l, p, or r, respectively, and we

refer to this arc as a
l
!b; a

p
!b, or a

r
!b. In Figure 4.2, the edges n1

e
!n2, n6

e
!n10,

and n12
e!n17 are l edges; the edges n5

e!n4, n13
e!n9, and n17

e!n14 are r edges; and

the edges n6
e
!n8; n12

e
!n14, and n12

e
!n15 are p edges. Notice that we use arrows of

di�erent widths to di�erentiate between these edges; we use thin arrows to represent

p edges, thick arrows to represent l edges, and dotted arrows to represent r edges.

The class of the edge is an attribute of this edge.

Graph Operations

Graph operations are the only operations that can manipulate the APDG G.
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Their implementation depends on the way the APDG is represented. Following is a

sample list of these operations and their usage:

� CreateNewNode(n; c)

This operation creates a new graph node of class c for entity n.

� AddNode(G; n; l)

This operation adds node n to a given graph G at a given location l.

� DeleteNode(G; n)

This operation deletes the given node n from the graph G.

� GetNode(G; e; c)

This operation �nds the node corresponding to entity e in the context of entity

c in the APDG G. This function returns n = F�1(e), where F is the de�ning

function of the APDG G.

� AddEdge(G; u; v; c)

This operation adds an arc u
c
!v to the APDG containing the nodes u and v.

� DeleteEdge(G; u; v)

This operation deletes the arc u
e
!v from the APDG containing the nodes u

and v.

� IsEdge(G; u; v)

This Boolean function checks whether there is an arc u
e
! v in the APDG

containing the nodes u and v.

Other operations are used to assign attributes to the nodes of an APDG, get infor-

mation about a given node, and so forth.

As shown in Figure 3.1, all SCAN operations interact with an APDG using these

graph operations. Thus SCAN components do not depend on the way an APDG is

implemented.



CHAPTER V

GENERATING ATTRIBUTED PROGRAM

DEPENDENCY GRAPHS

The APDG Generator is a set of operations that generates the APDG repre-

sentation of a program from the program's code. These operations are similar to

a compiler's operations: they syntactically analyze the program's code. However,

instead of generating a syntax tree, they generate an APDG. We have implemented

a prototype Graph Generator for syntactically correct Pascal programs. The pro-

totype's operations are based on high-level algorithms several of which are given in

this chapter.

Notations Used in the Graph Generator Algorithms

Before describing the graph-generating algorithms, we describe the notations used

in these algorithms. These notations are C-like, since the prototype graph generator

was implemented in C. We use while statements, if-then-else statements, repeat-until

statements, functions, return statements, and so forth. However, because we are

describing high-level algorithms, mathematical set notations are used as well. Also,

for convenience and clarity, we use square brackets instead of curly brackets. All

comments end with end-of-line marks.

47
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Most algorithms are described in a way that makes them easy to understand.

However, these descriptions are not detailed enough to include descriptions of prim-

itive processes, especially those that are related to graph implementations.

In addition to the operations listed in Chapter 4, we use a queue data type with

three operations:

� EmptyQueue(L)

This Boolean function checks if the queue L is empty.

� AddQueue(L; u)

This operation adds u to the tail of queue L.

� DeleteQueue(L)

This function returns the head of the queue L and deletes that element from

the queue.

Lexical Analysis

A lexical analyzer is a fundamental operation of graph generation. Given the code

of a program, the lexical analyzer reads the text characters and produces a sequence

of meaningful tokens according to the speci�cations of the programming language.

For each token, the lexical analyzer speci�es the token's name, type, and location;

these are valuable for later analysis.

In the graph generating algorithms, we use the function NextIdentifier, a func-

tion that extracts the next identi�er from the code of a program using a lexical

analyzer. NextIdentifier searches through the sequence of tokens of the program

that is generated by the lexical analyzer, until it �nds an identi�er and returns the

combination of the identi�er's name and location as its value.
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Generating APDGs for Pascal Programs

The structure of a program and that of a procedure are similar. A program or

procedure consists of two parts: a heading part and a block part. The name of

the program/procedure and its parameters are described within the heading part;

meanwhile, local entities, such as types, objects, and procedures, are declared in the

block part. The block also includes the statement part of the procedure, where many

entities are referenced. The same syntax rules1 are used to declare any entity, whether

it is a component of a procedure or a component of a program. Thus, programs and

procedures have similar graph generators. We describe here one process to construct

the APDG representation for any procedure.

In the following subsections, we describe GraphProcedure, a process for generat-

ing an APDG representation of a syntactically correct procedure. GraphProcedure,

incrementally constructs the subgraph and adds it to the APDG at a speci�ed loca-

tion. For this we assume the existence of an APDG G = (N ; E), where N is the set

of the graph nodes and E is the set of its arcs.

The de�nition of GraphProcedure is a direct result of the syntax rules of Pascal.

We develop this de�nition in a top-down manner that mirrors the way these rules

are speci�ed. Two points should be emphasized here:

� We are not describing a new approach to syntactical analysis of Pascal pro-

grams; we are discussing the actions that accompany the analysis process.

� We are not writing a complete design for an APDG generator; we are de-

scribing, in a high-level-like language, how to generate the APDG for major

constructs of Pascal.

1 All relevant syntax rules are listed in the Appendix in BNF notation.
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Let us start with the top-most rule that describes the structure of a procedure

h procedure declaration i ::= h procedure heading i h block i:

In abstract terms, GraphProcedure (we are not including a de�nition of it here)

consists of two main modules: GraphProcedureHeading and GraphProcedureBlock.

As the names may suggest, the �rst module creates the subgraph of the procedure

heading and the second module creates that of the procedure block. GraphProce-

dureHeading adds all nodes that represent the procedure identi�er and its formal

parameters to the evolving APDG. It also adds the necessary arcs to the APDG.

GraphProcedureBlock adds more nodes (such as those representing local entities) and

more arcs (such as those representing local or global references) to the APDG.

Generating an APDG for a Procedure Heading

A procedure heading (see the Appendix for related syntax rules ) consists of a

procedure identi�er and a list of formal parameter sections. There are two types of

parameters: object parameters and subprogram parameters. Type parameters are

not allowed in Pascal. We do not intend to completely de�ne GraphProcedure here;

instead we describe its major components.

As the syntax rules suggest, there are two components to consider: StartProce-

dureHeading and FinishProcedureHeading. The �rst deals with the procedure iden-

ti�er, and the second deals with the procedure parameters.

StartProcedueHeading extracts the procedure identi�er from Pascal code, creates

a node representation for this procedure, and appends this node to the APDG.

Assume that a procedure v is declared within the block of procedure u and that u0

represents u. StartProcedureHeading creates a p node (v0) to represent v and links v0

to u0 by the arc u0
l
!v0.
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FinishProcedureHeading(G; u )
APDG G = (N ; E); GraphNode u;
/* This algorithm completes processing the heading part of the procedure u;
/* it processes the formal parameter list. For each procedure parameter s, it
/* adds one p node to the graph G and links this node with u by a p edge.
/* Otherwise, it adds an o node and two edges: a p edge to link the
/* parameter to u and an r edge to link the parameter to its type.
/* Function parameters are represented by p nodes and are linked to
/* their corresponding types by r edges.
[[
GraphNode s; t; Identifier id;
String NodeClass; Queue of Identi�ers L;

For each parameter section in a parameter list
[[
If parameters are procedures/functions

NodeClass=\p node";
Else NodeClass=\o node";

L = ;;
Repeat

id= NextIdenti�er(); /* id of a parameter
s = CreateNewNode (id;NodeClass); /* N = N [ fsg
AddEdge (G; u; s; p); /* E = E [ fu

p
!s g

AddQueue(L; s) /* Save ordering of declarations
Until end of identi�ers list;

If parameters are not procedures
[[ /* Get the type of the parameters' section.

t = GetType();
/* Link all parameters in this section to their type q
Repeat
s = DeleteQueue(L); /* Get them in order of declaration

AddEdge(G; s; t; r); /* E=E [ f s r!tg
Until EmptyQueue(L) /* L == ;

]]
]]

]]

Algorithm 5.1: FinishProcedureHeading
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FinishProcedureHeading (Algorithm 5.1) extracts the formal parameters of a

procedure and builds their subgraph representation. Two types of nodes could be

added to this graph. The �rst type consists of o nodes that represent object pa-

rameters. Each node is linked to the procedure node by a p edge, and linked to the

object type node by an r edge. The second type consists of p nodes that represent

procedure parameters. Each one is to be linked to that of the node of the parent

procedure by a p edge. A function parameter is represented by p node. But, un-

like a procedure parameter, it has a type. So the node representation of a function

parameter must be linked to its type node by an r edge.

As an example, consider the heading of the following procedure sort: ( This is

declared in the main block of program book, Figure 4.1.)

procedure sort ( first ; last : Integer);

StartProcedureHeading adds a p node to represent procedure sort and links the node

to book by the arc book
l
!sort. Then FinishProcedureHeading creates two other

o nodes to represent the parameters first and last, and links them to sort by two

p edges sort
p
!first and sort

p
!last. It also adds two r edges, first

r
!Integer and

last
r!Integer, to represent the relationships between first and last and their type

Integer. These additions are illustrated in Figure 5.1.
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Integer

book

sort

lastfirst

Figure 5.1: An APDG of a Procedure Heading

Generating an APDG for a Procedure Block

The top-most syntax rule of a procedure block is as follows:

h block i ::= h label declaration part i h constant declaration part i

h type de�nition i h variable declaration part i

h procedure declaration part i h statement part i

As shown, the block of a procedure contains the declarations of any new local types,

variables, and procedures. It also contains the statement of the procedure. We de-

�ne GraphProcedureBlock to create the corresponding subgraph of any block. Since

the parts of a procedure block are not similar, the block component of a procedure

is more complicated to graph than its heading. So GraphProcedureBlock is longer
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and has more components than its twin algorithm GraphProcedureHeading. These

components are GraphLabel, GraphConstant, GraphType, GraphVariable, GraphPro-

cedure, and GraphStatement. To concentrate on the components themselves, we are

not including any sketches of GraphProcedureBlock. Instead, we describe an algo-

rithm to create the subgraphs of major parts of a procedure block independently

from the other parts. We describe one algorithm to graph array-type de�nitions,

a second to graph record-type de�nitions, a third to process variable declarations,

and a fourth to complete the subgraph by processing the procedure statement. As

for new local procedures, we use, recursively, the algorithm GraphProcedure that is

being de�ned.

Type Subgraphs

As described by Pascal syntax rules, types in Pascal may be standard or user-

de�ned. Standard types are integer, real, char, and boolean. The properties of

these types are determined by the Pascal language implementation. We will therefore

assume that there is no need to rede�ne them, and that they are local entities of the

standard environment of the whole program. (This is the �rst instance of a multi-

�le program.) Such standard entities are used by other entities, implying that their

corresponding graph nodes are leaf nodes; i.e., the out degree of each node is zero.

Users can rede�ne such identi�ers. In such a case the rede�ned entity gets a new

meaning. The corresponding graph node is not going to be a leaf node. Its direct

successors will describe its new structure.

User-de�ned types are classi�ed into two groups. The �rst group includes sub-

ranges, sets and scalar types. The second group includes the structured types;

namely, arrays and records. These types are among the most important features

of high level languages including Pascal. In the following subsections, we describe
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two algorithms, GraphArrayType and GraphRecordType, to construct the subgraphs

of array and record types respectively.

Array Subgraphs

The syntax rules of an array type de�nition are as follows:

h array type i ::= array [ h index type i ] of h component type i

h index type i ::= h simple type i

h component type i ::= h type i

GraphArrayType (Algorithm 5.2) creates the subgraph that corresponds to any

array type de�nition. The structure of this algorithm is a direct result of the above

rules. It always adds references from the array node to all indexes and to the com-

ponents' type.

As an example, consider the following declaration of the array type list: ( This is

declared in the main block of program book, Figure 4.1.)

list = array [first::last] of Real

where list is the array type, �rst..last is an index range which implements a type,

and Real is the component type. GraphArrayType creates a t node to represent the

array list, then it calls GraphType to draw, in this case, the subgraph of the index

type first::last. GraphType will create a t node, name it \list:index", and add it

as a local entity of book. In this case, GraphType adds the arcs book
l
!list:index,

list:index
r! first, and list:index

r! last to the graph G. GraphArrayType also

adds the arcs list
r
!list:index and list

r
!Real to the program graph G. Figure 5.2

illustrates the resulting subgraph.

Notice that array types are de�ned by referencing other types.
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GraphArrayType (G; u)

APDG G = (N ; E)

GraphNode u; /* Parent of the entity being de�ned

/* This algorithm gets the array identi�er, all index types,

/* and the components' type. It then, adds referencing edges

/* from the array node to all nodes of referenced types.

[[

GraphNode t; s;

Identi�er id;

/* Get the array identi�er and create its node representation.

id = NextIdenti�er();

t = CreateNewNode(id; t node); /* N = N [ ftg

AddEdge(G; u; t; l); /* E= E [ fu
l
!t g

/* Get (or create) the node representation of each index and reference it.

For each array index

[[ s = GetType(); /* Get the index type.

AddEdge(G; t; s; r); ]] /* E=E [ f t r!s g;

/* Get the node representation of the components' type and link

/* the new array node (t) to this node by an r edge.

s = GetType(); /* Get the components' type.

AddEdge(G; t; s; r); /* E= E [ f t
r
!s g;

]]

Algorithm 5.2: GraphArrayType
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Real

first last listlist.index

book

Figure 5.2: An APDG of an Array Type

Record Subgraphs

A record entity consists of several �elds the types of which are not necessarily

the same. Here are the syntax rules of those record types.

h record type i ::= record h �eld list i end

h �eld list i ::= h record section i f ; h record section i g

h record section i ::= h �eld identi�er i f ; h �eld identi�er i g : h �eld type i

h �eld type i ::= h type i
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A record entity consists of many record sections; within each section, a group of

one or more �eld identi�ers are declared to be of the same type. GraphRecordType

(Algorithm 5.3) constructs the subgraph associated with any record type. For each

section, it collects the �eld identi�ers, keeps them in a queue, and then �nds their type

entity. Then, GraphRecordType creates their corresponding node representations and

links each of these nodes to the record type node by l edges. Finally, it links these

nodes again to their type node by r edges. The use of the queue here saves the order

of the declarations of the �elds so as to link them in that order.

As an example, consider the declaration of the record type entry as a local entity

of the program book:

entry =record

name, address : String;

grades : scores;

total : Integer;

end;

This record consists of three record sections, the �rst of which has two �eld

identi�ers while each of the others has only one �eld identi�er. GraphRecordType

creates a t node to represent entry itself and links this node to book's node by an

l edge. It creates also four o nodes to represent the �eld selectors name, address,

grades, and total, respectively, and links these nodes to node entry by the edges

entry
l!name, entry

l!address, entry
l!grades, and entry

l!total. GraphRecordType

links also the four �eld nodes to their corresponding types by the arcs name
r
!String,

address
r
!String, grades

r
!scores, and total

r
!Integer. Figure 5.3 illustrates the

resulting APDG of the record entry.
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GraphRecordType(G; u);

GraphNode u; APDG G = (N ; E);

/* For each declaration section of a record type t, this process gets a

/* queue L of all �eld selectors in a this section and their type s.

/* Then, it creates an o node for each �eld selector and links

/* this node with two arcs to the procedure node u and the type node s.

/* Th queue is used to reserve the ordering of the �elds of the record.

[[

GraphNode p; s; t;

Identifier id; Queue of identi�ers L;

/* Represent the record type entity.

id = NextIdenti�er();

t = CreateNewNode( id; t node ); /* N =N [ ftg

AddEdge(G; u; t; l); /* E = E [ fu l!t g

Repeat /* Process each identi�ers list

/* Get the identi�ers list of this section.

L = ;;

Repeat

id = NextIdenti�er();

p = CreateNewNode(id; o node); /* N = N [ fpg;

AddQueue (L; p);

Until all �eld identi�ers are processed;

/* Get the type of all �elds in this section

s = GetType();

/* Create the subgraph representation of this section.

Repeat

p = DeleteQueue(L );

AddEdge(G; t; p; l); /* E = E [ f t
l
!p g

AddEdge(G; p; s; r); /* E = E [ f p r!s g

Until EmptyQueue(L ); /* L == ;

Until end of the current declaration part;

]]

Algorithm 5.3: GraphRecordType
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book

Integer

String

scores

entry

name address grades total

Figure 5.3: An APDG of a Record Type

Variable Subgraphs

In any block, the variable declaration part consists of many sections. In each

section a group of identi�ers are declared to be of the same type. Here are their

syntax rules:

h variable declaration i ::= empty

j var hdeclaration section i f ; hdeclaration section i g

hdeclaration section i ::= h identi�er i f ; h identi�er i g : h type i
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When compared to the declaration sections of a record type, one �nds that al-

though the names of the constructs are di�erent their meanings are the same. Assum-

ing that GraphVariable is a process that builds the graph representation correspond-

ing to any variable declaration section, it is going to be similar to GraphRecordType

(Algorithm 5.3). (Actually, this latter algorithm is built using GraphVariable.) The

only di�erence is that all variable nodes are linked to a p node rather than to a

t node as in record types. We shall not write this algorithm; however, we would like

to emphasize that GraphVariable constructs the graphs associated with the declara-

tion sections and appends them to the APDG. For each variable identi�er an o node

and two arcs are added, one arc to represent the local relationship between the block

and the identi�er, and the other to represent the referencing relationship between

the identi�er and its presumed global type.

Procedure Subgraphs

If the procedure declaration part of a block is not empty, then for each procedure

within it, GraphProcedure is called recursively. The recursive calling sequence is

�nite because procedure nesting is �nite in Pascal.

Statement Subgraphs

Normally, the statement part of a procedure is a compound statement. It con-

sists of a combination of simpler statements that are constructed from assignment

statements and procedure (or function) calls. No declarative statements are allowed

here, which means that no new entities are declared in a statement part. Entities

referenced by a statement are either previously de�ned by the programmer or by the

language implementation.
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In APDGs, the statement part of a procedure is considered a STATEMENT

entity that references all entities used in this part. A STATEMENT entity is rep-

resented by an s node, and all references in its corresponding statement part are

represented by r edges incident from this s node. All nodes adjacent to an s node

are either o nodes or p nodes.

To complete the subgraph of a procedure, the operation GraphStatement (Al-

gorithm 5.4) creates an s node to represent the statement part and adds it to the

graph by linking it to the procedure node by an r edge. The name given to this

node is the name of the parent procedure concatenated with the string \.st". After

this, the process goes through the statement, iteratively, looking for all entities being

referenced. For each of them, GraphStatement adds one r edge from the s node to

the referenced node.

As an example, consider the statement of procedure sort as de�ned in Fig-

ure 4.1:

Begin

For i := first to last� 1 do

For j :=i+1 to last do

If list[i] > list[j]

Then swap(list[i]; list[j])

End;

GraphStatement �rst creates an s node to represent sort statement, names it as

sort:st, and links it to the node sort by the arc sort
l
!sort:st. Then, GraphStatement

iterates through the sequence of tokens searching for program entities, and when it

�nds an entity t, it adds a referencing arc from s to t (if it is not already there)

and updates the list of locations of t. Figure 5.4 illustrates these additions to the

evolving APDG.
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GraphStatement(G; u);

GraphNode u; G = (N ; E);

/* This algorithm creates a s node representation (s) for the statement part

/* of procedure u. It then iterates through the statements of this part

/* looking for references to other entities. GraphStatement links the

/* node s to each of them by an r edge.

[[

GraphNode s; p; /* s is the statement node.

Identifier id;

/* First, create a node representation for this statement.

id:name= u.name+\.st"; /* Make a statement name

s = CreateNewNode(id; s node); /* N = N [ fsg;

AddEdge(G; u; s; l); /* E = E [ fu
l
!sg;

/* Second, for each referenced entity inside this statement part,

/* add a reference from the statement node to referenced node and

/* update locations list of the referenced node to incorporate the

/* new locations.

Repeat

id= NextIdenti�er();

p= F(id); /* p is a previously de�ned entity.

AddEdge(G; s; p; r); /* E = E [ f s
r
!p g

Until the end of the statement;

End

Algorithm 5.4: GraphStatement
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1 list

sort.stfirst last i j swap

sort

Figure 5.4: An APDG of a Statement



CHAPTER VI

A GRAPH-BASED REPRESENTATION FOR

MULTIPLE-FILE PROGRAMS

Many programming languages allow the division of programs into several �les

that can be separately compiled and later linked together. In these multiple-�le

programs, entities of one �le may depend on entities de�ned in another �le. For

example, procedure p in �le a may call procedure q that is de�ned in �le b. In this

example, procedure p references q; �le b depends on procedure q; and �le a indirectly

interacts with �le b. We summarize these interactions by saying that �le a imports

procedure q from �le b (or �le b exports procedure q to �le a). To be of practical

use, a software change analyzer must handle such inter-�le interactions in addition

to the intra-�le interactions that we discussed earlier. In this chapter, we extend the

graph-based representation of our approach to accommodate inter-�le interactions.

We carry out this extension in two steps:

1. Extend the APDG representation to retain information about interactions be-

tween di�erent �les of a multiple-�le program and their entities. This may

require introducing new entities, graph nodes, attributes, or relationships. We

refer to the resulting graph as an extended APDG.

2. Modify the graph generation process so that it collects inter-�le information
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(in addition to the intra-�le information), and saves it in the extended repre-

sentation.

APDGs for Multiple-File Programs

A typical large software system normally consists of many �les each of which can

be separately compiled. A compiler (of the programming language used in writing

the system) analyzes the structure of a �le by getting speci�c information about

all entities imported by this �le. Although each programming language has its own

strategy for specifying how a �le can import entities from other �les (or export entities

to them), all languages require that every �le that imports an entity must include a

mimic declaration of this entity. Using this information, the compiler checks whether

all references to the imported entity are consistent with this mimic declaration. The

linking loader checks whether all mimic declarations of an entity in di�erent �les are

consistent with its actual declaration/de�nition.

To analyze multiple-�le programs, we modify the graph-based representation that

we described in Chapters 4 and 5 as follows:

� Introduce a new class of FILE entities.

We consider each �le of a program as an entity of this program and de�ne a

new class (FILES) of these new entities. We represent each FILE entity by a

graph node whose class is an f node. Accordingly, the graph representation of

a multiple-�le program will have as many f nodes as it has separate �les.

� De�ne the relationships between a FILE entity and its components.

Consider all declarations (even declarations of imported entities) local to the

FILE entity that contains them. This means that the relationship between

a FILE entity and its major components (i.e., the program entities that are
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declared/de�ned at the top-most level of this �le) are LOCAL relationships.

Thus, all arcs incident from an f node are l edges. Notice that the node

representation of any FILE entity is the top node of the APDG of the �le and

it will be the only entrance to access this graph.

� Represent each �le by a separate APDG.

Since all references within a �le are resolved by intra-�le information (especially

after declaring every imported entity in the �le), this �le can be represented

independently from others by an APDG. The set of all APDGs is the nu-

cleus of the graph-based representation of any multiple-�le program. This

multiple-graph representation inherits the advantages of dividing a program

among multiple �les. So instead of constructing a gigantic graph, we construct

a set of easy to create, easy to manage, and easy to access subgraphs. Another

advantage of this multiple-graph representation is that not all graphs need to

be kept in internal memory at one time.

Let us emphasize that a global entity must have a corresponding node repre-

sentation in each APDG of the �le that imports or exports this entity.

� Use a node attribute to specify the �le from which the entity is imported.

An optional node attribute that describes the �le where an imported entity is

actually declared can be used. If, for instance, variable a is imported from �le

b, then b is the value of the �le attribute of node a. The �le attribute is not

necessary for local entities that are not exported from the �le; this is the name

of the top node of the graph that includes the local node.

Given an extended APDG1 of a �le a, it is possible to determine the set of

�les that �le a imports from, by checking the �le attributes of the nodes of APDG.

However, to answer the question \which �les does �le a export to" is time-consuming,

1 We will drop the term extended from now on.
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because we have to repeatedly check the �le attributes of each APDG and �nd

which �les import from a. However, considerable cost reductions can be achieved by

keeping, for each �le, a listing of all �les that import from it. Similar reductions can

be achieved if, in addition, a listing of all exported entities and the �les where they

are de�ned {each entity is de�ned in exactly one �le{ is kept. For later use, we refer

to these two listings as export-to and de�ned-in tables.

Since export-to and de�ned-in table listings describe binary relations among the

entities of a multiple-�le program, they could be represented by graphs in the same

way that dependency relations were represented. However, this makes all APDGs

look connected and appear as a gigantic graph, which we wish to avoid for scalability

reasons.

Generating APDGs for Multiple-File Programs

The process of generating the APDG of a �le of a multiple-�le program is a

slightly modi�ed version of the graph generator that we described in Chapter 5. The

modi�cations are necessary to generate the extended forms of the APDG. These

modi�cations are as follows:

� The �rst step of graph generation is to retrieve the relations export-to and

de�ned-in; these tables can be updated if the program �le being graphed im-

ports entities from other �les.

� The graph generator must create an f node for each �le it graphs. The node

representation of every major construct of this �le must be linked to this f node

by an l edge.

� Graph generation then proceeds as described in the previous chapter except

when an import declaration is encountered; the graph generator must then add
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an entry that characterizes this inter-�le relationship to the export-to table.

� When the graph generator processes the declaration/de�nition of an exported

entity, it must add an entry, that describes the association between this entity

and its �le, to the de�ned-in table.

� When the �le ends, the graph generator must save the APDG and the two

updated versions of the relations export-to and de�ned-in.

We call the combination of the APDGs, export-to and de�ned-in tables, and

the code of a multiple-�le program, a graph-based representation. We illustrate

the graph-based representation of a multiple-�le program and the method of its

generation using Berkeley Pascal [Joy et al., 83].

Multiple-File Programs in Berkeley Pascal

Berkeley Pascal is an extension of Standard Pascal in which a program consists

of one or more �les. In a multiple-�le program, one �le must be the main �le (this

�le contains the main program), and the other �les are either header �les or unit

�les. Global entities (such as constants and types), are de�ned in header �les; also,

global variables and external procedure or function interfaces are declared in header

�les. An external procedure or function must be de�ned in one unit �le only. To

use a global entity in �le a, a must include (using an include-statement) the header

�le that contains the entity's declaration/de�nition. The header �le that contains

an external procedure declaration must be included in every �le that references this

procedure and in the unit �le that de�nes procedure. The same rule must also hold

for functions. This set of rules speci�es how a �le can import entities from other

�les.

Figure 6.1 illustrates a multiple-�le program in Berkeley Pascal. It is similar
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| a.h |

Const
�rst= � � �
last = � � �

Type
class=Array[�rst..last] of Real;

| unit.p |

#include \b.h"
Procedure swap;
Var
temp: Real;

Begin
temp :=p;
p := q ;
q := temp

End;

| b.h |

Procedure swap(Var p; q :Real);
External;

| main.p |

Program book ( � � � );
#include \a.h"
#include \b.h"
Var
list : class;

Procedure sort (�rst,last:Integer );
Var
i; j: Integer;

Begin
For i:=�rst To last-1 Do
For j := i+ 1 To last Do
If list[i] >list[j]
Then swap (list[i];list[j])

End;
Begin
...
sort(�rst,last);
...

End.

Figure 6.1: A Multiple-File Program in Berkeley Pascal
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to program book as described in Chapter 3; but it is divided among four �les: two

header �les, a unit �le, and the main �le. In this program, the entities �rst, last and

list are global entities; these are de�ned in the header �le a.h. The procedure swap

is external to the main program �le and is de�ned in the unit �le unit.p. The Swap

interface is de�ned in the header �le b.h which is included in both �les unit.p and

main.p.

Example APDG of a Berkeley Pascal Program

Let us discuss the major steps that a graph generator must take to construct

the APDGs of program book. These steps are applications of the guideline rules we

described for graphing multiple-�le programs.

� Get the inter-�le tables import-to and de�ned-in. These could be empty if no

graphs have been generated yet or no imports have been declared. For Berkeley

Pascal, we de�ne an alternative table to the export-to table; this new table lists

all �les that include a given one. We call this new alternative the included-in

table. By doing so, we ease the construction of the included-in table without

losing any information that an export-to table could contain.

� For each program �le, the graph generator must create a new f node and assign

the available attributes (such as the node's name and class) to this node.

� If �le a includes �le b, then after interpolating a copy of b into a and generating

the APDG of the extended �le a, we must be able to recognize the entities of

the graph of a that are declared/de�ned in b. This is done by assigning b to

the �le attribute of each of b's entities.

Moreover, the relationship between b and a must be saved; this is done by

adding an entry that describes this relationship to the included-in table.



72

� If �le a is a unit �le that contains the de�nition of the external procedure b

and �le c is the header �le that contains the declaration of b, then �le a must

contain a mimic declaration of b and its actual de�nition. Recall that �le amust

include �le c so that �le a can export b. The mimic declaration of procedure

b results from processing �le inclusions. We represent both declarations in the

APDG of the unit �le a.

Also, the relationship between �le a and procedure b must be kept in the table

de�ned-in table.

� Other than these special cases, graph generation proceeds as if the program is

a single-�le one. Recall that all references are resolved internally.

Applying these guidelines to the program book shown in Figure 6.1, there will be

a set of four di�erent APDGs that correspond to the four �les of book. Figure 6.2

shows the APDGs of the �les a.h, b.h, and unit.p, respectively. The APDG of the

main program �le is not shown here. It is similar the graph shown in Figure 4.2.

The APDGs of Figure 6.2 has the following characteristics:

� The APDGs are mutually disjoint.

� The new �le entities are represented by pentagons. These nodes are the top

nodes of their corresponding graphs.

� All edges from top nodes are l edges.

� The APDG of the unit �le unit.p includes a subgraph that is similar to the

APDG of the header �le b.h: both graphs have the nodes swap, p, q and Real

and the edges swap
e!p; swap

e! q; p
e!Real, and q

e!Real. Also, copies of

the graphs of a.h and b.h must appear as subgraphs of the graph of main �le

main.p.
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Figure 6.2: The APDGs of a Multiple-File Program



74

The inter-�le relationships are not shown in those graphs, though such informa-

tion is contained in them. Instead of deriving such information (and taking advantage

of its small size), we save it in tabular forms as shown in Table 6:1.

global entity de�ned-in

�rst a.h

last a.h

class a.h

swap b.h

header �le included-in

a.h main

b.h main

b.h unit

Table 6.1: Sample Inter-File Relationships

This extended representation describes all entities of the program and the inter-

actions between them whether these interactions are between local entities of a single

�le or between entities of di�erent �les. We base the construction of the computer

assistant for change analysis on this information.



CHAPTER VII

CONSTRAINTS OF ATTRIBUTED PROGRAM

DEPENDENCY GRAPHS

An attributed program dependency graph has special properties that constrain

the graph's structure. We call these properties graph rules and keep them in a special

Rules Base. (See Figure 3.1.) There are two types of rules: general rules (that hold for

any APDG regardless of the programming language used to implement a program)

and speci�c rules (that hold for only APDGs corresponding to programs written in

a particular language). In this chapter, we discuss many examples of these rules.

Since we applying our approach to Pascal programs, we mark Pascal-speci�c rules

by an asterisk that precedes any of these speci�c rules.

In the following sections, we present many rules that hold for one APDG. To

study these rules, we assume the existence of a set of APDGs corresponding to

a multiple-�le software program and generated according to the graph-generating

strategy we described in the previous two chapters. We assume also that each graph

G is (N ; E), where N is a set of nodes and E is the set of arcs/directed edges. The

set of nodes N is partitioned into �ve subclasses: Nf , No, Np, Ns, and Nt. This

classi�cation is done according to the class attribute of the entities of the program.

The set of edges E is also partitioned into three subclasses: El, Ep, and Er. This

classi�cation is done according to the type of the relationship (if any) that exists

between any two entities of the program.
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Sample Attribute-Related Rules of APDGs

Following is a sample of the properties that hold for the attributes of any APDG:

A:1 The subclasses Nf , No, Np, Ns, and Nt are mutually disjoint.

The corresponding entity of each node has exactly one class attribute that the

node inherits. Since nodes are classi�ed according to this attribute, each node

belongs to exactly one class.

A:2 The subclasses El, Ep, and Er are mutually disjoint.

As for nodes, each arc has exactly one attribute that characterizes the rela-

tionship between the arc's source and target nodes.

A:3 * If n 2 N and 9v 2 N such that v
e!n 2 Ep, then 8m;m 2 N ;m 6= n, and

v
e
!m 2 Ep, name(n) 6= name(m).

(Ifm and n are parameters of p, then they must have di�erent name attributes.)

No two parameters of the same procedure have the same name attribute.

A:4 * If n 2 N and 9v 2 N such that v
e!n 2 El and 9m 2 N ;m 6= n such that

v
e
!m 2 El and name(n) = name(m); then

(1) v 2 Nf ;

(2) n;m 2 Np; and

(3) 6 9u 2 N u 6= m;u 6= n such that v
e
!u 2 E and name(n) = name(m) =

name(u).

(If n;m are two siblings | LOCAL components | of a node p and have the

same name attribute, then p must be a f node, n and m are p nodes, and no

other siblings have the same name.)

This is one constraint on de�ning an external PROCEDURE entity.

The following sections include other attribute-related properties.
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Adjacency-Related Rules of APDGs

By analyzing the adjacency relations between the nodes of an APDG, one realizes

that nodes of some classes cannot be adjacent to1 nodes of other particular classes.

For instance, an o node cannot be adjacent to another o node, a p node cannot be

adjacent to another t node, and any node can be adjacent to a p node. The following

properties describe many relationships that hold between the nodes of an APDG:

Adjacency Relationships of an f node

A f node corresponds to a FILE entity. The following properties describe what nodes

can be adjacent to a f node and the types of these adjacency relationships.

B:1 9n 2 Nf ; that is, Nf 6= ;.

(Each APDG has at least one f node.)

When generating an APDG for any program �le, the �rst action a graph

generator does is to create an f node and associates it with this �le.

B:2 If n 2 Nf and 9n0; n0 2 Nf , then n = n0

(There is at most one f node in every APDG.)

There is only one f node associated with each FILE entity of a multiple-�le

program.

Actually, there is exactly one f node in every APDG.

B:3 If n 2 Nf , then 6 9m 2 N such that m
e
!n 2 E.

( A f node cannot be adjacent to any other node.)

Since n is a f node, it is not a local entity or a formal parameter of any

1 If p; q 2 N and p
e
!q 2 E, then we say that p is adjacent to q, p

e
!q is incident

from p, and p
e
!q is incident to q [Cormen et al., 90].
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other entity of the program. Actually, other nodes are either linked di-

rectly to this node or to one of its successors. So there is no m such that

m
e
!n 2 Ep [ El. Moreover, n cannot be referenced by any node representing

an entity in the �le n. As for references from other �les, they are kept in the

export-to table. So, there is no m such that m
e
!n 2 Er.

As a result of these �ndings, n is not adjacent to any other node of the graph;

this means that in degree(n) = 0. Thus, n is a top node of its APDG, and

since n is unique (Property B/2), n is the only top node of its APDG. We

often refer to this node as top.

B:4 If n 2 Nf and 9m 2 N such that n
e!m 2 E, then n

e!m 2 El.

(Every arc incident from an f node is an l edge).

This is true because a �le of a multiple-�le program does not reference any of

its own entities and does not have parameters. When we de�ned a FILE entity,

we assumed that all immediate components (that is, entities at the �rst level

of nesting in this �le) are LOCAL to this �le. So their node representations

are adjacent to the f node by l edges.

Adjacency Relationships of an o node

An o node is a node corresponding to an OBJECT entity. The following properties

hold for any o node in APDG:

C:1 If n 2 No, then 9m 2 N such that n
e
!m 2 E.

(There is at least one node adjacent from an o node n).

An OBJECT entity (say n) must have a type (say m). Such relationship

between n and m is represented by the arc n
e
!m. So for any o node, there is

an arc incident from it.
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C:2 If n 2 No and 9m 2 N such that n
e
!m 2 E, then n

e
!m 2 Er.

(Any arc incident from an o node n is a r edge.)

OBJECT entities are always simple; they do not have components or parame-

ters. So, neither p edges nor l edges can be incident from an o node.

C:3 If n 2 No and 9m 2 N such that n
e
!m 2 Er, 6 9t; t 6= m; t 2 N such that

n
e
!t 2 Er.

(There is at most one node adjacent to an o node n by a r edge.)

Actually, there is exactly one node adjacent to n.

C:4 If n 2 No and 9m 2 N such that n
e
!m 2 Er, then m 2 Nt.

(An o node n can only reference t nodes.)

Normally, objects do not reference any entities other than type entities. This

implies that m is the only node such that n
e!m 2 E. The out degree(n) is

one.

Adjacency Relationships of a p node

A p node is a node corresponding to a PROCEDURE entity. The following properties

hold for any p node in an APDG:

D:1 If n 2 Np and 9m 2 Ns such that n
e
!m 2 E, then n

e
!m 2 El.

(Given a p node n and there exists an s node m that is adjacent to n by the

edge n
e
!m, then n

e
!m is a l edge.)

This is a result of the fact that a statement of a procedure or a function entity

n is considered a local entity of n.

D:2 If n 2 Np and 9m 2 Ns such that n
l!m 2 El, then 6 9o; o 6= m; o 2 Ns such

that n
l
!o 2 El.
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(There is at most one s node that is adjacent to the p node n.)

A procedure or function has only one statement component.

D:3 If n 2 Np and 9m 2 N such that n
e!m 2 Er, then m 2 Nt

(A p node can only reference a t node.)

By convention, PROCEDURE entities do not reference any other entities; their

components do the referencing. However a function entity can reference another

type entity when the type of the function is to be de�ned. This is the only case

when a PROCEDURE entity can reference another entity.

D:4 If n 2 Np and 9m 2 N such that n
e
!m 2 Er, then 6 9o; o 2 N , and o 6= m such

that n
e!o 2 Er.

(If a p node n references the nodem, then n does not reference any other node.)

If a PROCEDURE entity has a type, then this type is unique.

Adjacency Relationships of an s node

A s node is a node corresponding to a STATEMENT entity. The following properties

hold for any s node in the graph:

E:1 If n 2 Ns, then 9m 2 N such that m
e
!n 2 El.

(A s node is always incident from a l edge.)

Statements are always local entities of other entities.

E:2 * If n 2 Ns, and 9m 2 N such that m
e!n 2 El, then m 2 Np.

(A s node can be only adjacent to a p node.)

In Pascal, no entity but a PROCEDURE entity has a statement component.

E:3 * If n 2 Ns and 9p; p 2 N such that n
e
!p 2 E, then n

e
!p 2 Er.

(An arc incident from a s node n is a r edge.)
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In Pascal, a statement does not have locally de�ned components. Statements

are de�ned by referencing others.

E:4 If n 2 Ns and 9p 2 N such that n
e!p 2 E, then p 62 Nt.

(If n references p, then p cannot be a t node.)

A STATEMENT entity cannot reference a TYPE entity.

Adjacency Relationships of a t node

A t node is a graph node that is associated with a TYPE entity. The following

relationships describe what nodes can be adjacent to a t node and the classes of

these relations.

F :1 * If n 2 Nt and 9m;m 2 N such that n
e
!m 2 E, then n

e
!m =2 Ep.

(A t node cannot have parameters.)

In Pascal, a TYPE entity cannot have parameters; it can have local components

such as a record type and it can reference other entities such as an array type.

F :2 * If n 2 Nt and 9m 2 N such that n
e
!m 2 E, then m 62 Np [ Ns.

(A t node n cannot be adjacent to a p node or an s node.)

In Pascal, types are de�ned by either de�ning local entities such as in records

or by referencing other objects or types such as in enumerated types and array

types.

Adjacency Relationships of a Generic Node

The following properties and relationships hold for any node in the graph:
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G:1 If n 2 N and n =2 Nf , then 9m 2 N such that m
e
!n 2 Ep [ El

(For every n 6= top, there exists another node m such that n is adjacent to m

by either a r edge or p edge.)

The entity n is either de�ned/declared as a local entity of the �le containing

n or as a local entity of another. In any case there is an entity m that de�nes

n. Either n is a locally de�ned entity of procedure m, n is a parameter of

procedure m, or n is a �eld selector of the structure type m. These are the

only ways of introducing entities into any program. So, there exists a node m

such that m
e
!n 2 E. But n is nested within m, so m

e
!n 2 El [ Ep.

G:2 If n 2 N ; n 6= top then, in degree(n) > 0.

This equivalent to the fact that there is only one top node for each APDG.

G:3 If n 2 N and 9m;m 2 N such that m
e
!n 2 El, then 6 9o; o 6= m; o 2 N and

o
e
!n 2 El.

(A node n cannot be adjacent to two di�erent nodes by l edges.)

An entity n can de�ned/declared once inm, and cannot be rede�ned/redeclared

by any other entity. So node n is linked by only one edge to m as a local entity.

G:4 If n 2 N and 9m;m 2 N such that m
e
!n 2 Ep, then 6 9o; o 6= m; o 2 N and

o
e
!n 2 Ep.

(A node n cannot be adjacent to two di�erent nodes by p edges.)

Let us assume that 9o; o 6= n, and o
p
!n 2 E, then the edges m

p
!n and o

p
!n

suggest that the entity n is a parameter of two di�erent subprograms; namely,

m and o. But this is not allowed in programming languages: when two di�erent

subprograms try to de�ne and use similar parameters, even with similar names,

these parameters are considered to be di�erent. Such parameters are, then,

represented by two di�erent nodes in the corresponding APDG.

G:5 If n 2 N and 9m;m 2 N such that m
e
!n 2 El [ Ep, then 6 9o; o 6= m; o 2 N
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and n
e
!o 2 El [ Ep.

(If node n is adjacent to another node by an l edge or p edge, then n cannot

be adjacent to a di�erent node by a l edge or p edge.)

This is a result of the fact that once one tries to rede�ne an entity within a

third one, the new de�nition introduces a new di�erent fourth one.

G:6 If m 6= n;m
e
!r 2 Ep [ El; and n

e
!r 2 E then n

e
!r 2 Er.

If n
e!r 62 Er, then n

e!r 2 Ep [ El, and according to Property G:5 m = n.

Obviously, this is not the case.

G:7 Let q 6= top and the in degree(q) = n; n > 0.

Let also that p1
e
!q; p2

e
!q; : : : ; pn

e
!q are all arcs incident to q.

Then there is exactly one k, 1 � k � n such that

pk
e
!q 2 El [ Ep and 8i 6= k; 1 � i � n; pi

e
!q 2 Er:

According to Property G:1, there is at least one node pk, 1 � k � n such that

pk
e
!q 2 El [ Ep, and according Property G:6, there is no j; j 6= k; 1 � j � n,

such that pj
e!q 2 El [ Ep. This means that, of all arcs incident to q, pk

e!q is

the only edge in El [ Ep and all other edges are in Er; i.e., So,

8j; j 6= k; 1 � j � n; pj
e
!q 2 Er

.

Connectivity-Related Properties

Considered as an undirected graph, any program graph is connected. We will

show that every node is reachable from the top node and this is su�cient to prove

that for any two nodes there is an undirected path between them that passes through
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the top node. We want to �nd when it is (or it is not) possible to �nd a directed

path between two given nodes. We want to �nd connected components of the graph

and check what sound properties of the corresponding program such components

represent. For example, all nodes that represent local entities of a block are reachable

from the node that represent that block. Moreover, those nodes are connected by

paths of edges that belong only to El [ Ep.

H:1 Let p 2 N , p 6= top(= p0), then there exists a path2

p0
e
!p1

e
!p2

e
!p3 : : : pn�1

e
!pn(= p)

from the top node p0 to the node p such that

8i; 0 � i � n� 1; pi
e
!pi+1 2 El [ Ep:

Since each node represents an entity of the program, we will use induction on

the level of nesting of those entities. An entity p is considered nested within q

if q declares p within its block, p is a parameter of the subprogram q, or p is a

�eld of the record type q. The only dependency relation that is not considered

a nesting case is referencing: if entity p references q, we do not consider p

nested within q according to this relationship.

Let p be an entity at level one of a �le, then this entity is de�ned locally to this

�le entity. Therefore, the node p is linked to the top f node p0 directly. That

is, p0
e
!p 2 E. This implies that there is a path from the top p0 to p. Since p

is local to p0, then the edge p0
e
!p that represents this relationship is a l edge

(Property B:4). This means that p0
e!p 2 El [ Ep. Property H:1 holds for any

node that represents an entity at level one.

Assume that the Property H:1 is true for all nodes that represent entities at

level n. Assume also, that q is an entity at level n + 1. This entity q has at

2 A path from node p to node q is a sequence of edges p0
e
!p1

e
!p2

e
!p3 : : : pn�1

e
!

pn(= p) that starts at p and ends at q.
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least one direct predecessor at level n. It is the node pn that represents the

entity that de�nes q. In other words q is nested within pn. The edge pn
e!q

must represent that fact which means pn
e
!q 2 El [ Ep.

If p0
e
!p1

e
!p2

e
!p3 : : : pn�1

e
!pn is a path from top(= p0) to p(= pn) whose

elements belong to El [ Ep, then by adding the edge pn
e
!q to this path we will

get a path from the top node p0 to q. All the edges of this path are in El [ Ep.

So, Property H:1 holds for entities de�ned at level n + 1.

H:2 If p 2 N , then p is reachable from the top node p0.

A vertex v is reachable from vertex u if there exists a path from u to v.

H:3 There is exactly one path

p0
e
!p1

e
!p2

e
!p3 : : : pn�1

e
!pn

from the top node p0 to the node pn such that

8i; 0 � i � n� 1; pi
e!pi+1 2 El [ Ep:

According to the previous property, there is at least one path from top node p0

to pn whose edges are either l edges or p edges. Let us assume that this path

is

p0
e
!p1

e
!p2

e
!p3 : : : pn�1

e
!pn

where

8i; 0 � i � n� 1; pi
e
!pi+1 2 El [ Ep:

Assume that there is another path

q0
e!q1

e!q2
e!q3 : : : qm�1

e!qm

from the top node q0(= p0) to the node qm(= pn) such that

8j; 0 � j � m� 1; qj
e
!qj+1 2 El [ Ep:
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Tracing back through both paths, there exists a number j such that

pn�1
e
!pn = qm�1

e
!qm

pn�2
e
!pn�1 = qm�2

e
!qm�1

pn�3
e
!pn�2 = qm�3

e
!qm�2

...

pn�j
e
!pn�j+1 = qm�j

e
!qm�j+1

pn�j�1
e
!pn�j 6= qm�j�1

e
!qm�j

In this case there are two di�erent edges: pn�j�1
e
!pn�j and qm�j�1

e
!qm�j that

belong to El [ Ep and incident to pn�j = qm�j . This contradicts Property G:5.

So, the two paths must be the same.

De�nition:

The path

p0
e
!p1

e
!p2

e
!p3 : : : pn�1

e
!pn

from the top node p0 to the node pn where

pi
e
!pi+1 2 El [ Ep; 8i; 0 � i � n� 1

is called the de�ning path of the node pn.

H:4 The de�ning path of node n has at most one p edge.

If the de�ning path of node n has a p edge, then it is the last edge of this path.

This is a result of the fact that formal parameters do not have components

themselves.

H:5 The length of the de�ning path of the node pn equals the level of nesting of the

corresponding entity pn in the �le p0.
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The length of the de�ning path from the top node to a node that represents an

entity at level one is one. The length of that path from the top node to any of

those that represent entities at level two is two, and so on. Using mathematical

induction on the level of nesting as we did in Property G:1, we can justify this

property.

H:6 The subgraph G0(N ; E 0), where E 0 = El [ Ep is a directed tree.

We showed that there is a node p such that the in degree(p) = 0. This node

is the top node p0. We showed also that for each other node q there exists a

unique arc p
e
!q that belongs to E 0. This implies that the in degree(q) = 1. In

addition to this, we showed that

8pn; pn 6= p0; there exists a unique path p0
e
!p1

e
!p2

e
!p3 : : : pn�1

e
!pn

such that

8i; 1 � i � n; pi�1
e!pi 2 E

0

According to graph theory (see [Even, 79]), these facts imply that this subgraph

is a tree.

De�nition:

We call the directed tree G0 = (N ; El [ Ep) the structure tree of the graph G.

Scope-Related Properties

In many high level languages, such as Pascal, the entities of a program are not

referenced before they are declared. It is not possible, for example, to use a variable

before it is declared, and to declare it, its type must be declared �rst. A procedure

could not be called before its declaration. Moreover, an entity is only known inside

the block that de�nes it. These constraints are known as the scope rules of Pascal.



88

Scope rules usually describe the portions of the program where an entity is accessible.

The scope of a variable starts at the position where it is declared and extends to the

end of the block that contains this declaration. If another variable with the same

name is declared within this section of the program, then the original variable scope

does not include the scope of the new variable.

It is obvious that the order of declarations of the entities of a block controls which

entities can be referenced by a speci�ed one. This makes the ordering of declarations

very important for the interpretation of all nested structures of a subprogram. A

minor change of this ordering is enough to turn a correct program into an incorrect

one, or to change the whole meaning of the relevant subprograms. For this reason,

we include similar ordering among the corresponding nodes of the APDG.

In programming terms, the ordering we are talking about is the order in which

the entities of a block, the parameters of a subprogram, or the �elds of a record type

are declared. The order of references is important in an array de�nition. Because the

nodes that represent the component entities of another n are always the children of

the node n0 representing n in the tree G0(N ; El [ Ep), we will assume that the graph

generating process links the children nodes such that a left to right traversal of these

children yields an ordering that matches the ordering in which their corresponding

entities are declared within the entity n. This means that if a, b, and c are program

entities that are declared in this given order within the block of the entity d and

on the same level of nesting, then the nodes a, b, and c are linked as three ordered

children of the node d. The node a is a left sibling of b and c is b's right sibling. The

node b is the right sibling of a and the left sibling of c. If those entities were declared

in the order b, a, and c then the siblings b, a, and c are ordered similarly.

Given an APDG, how do we �nd the nodes of N that represent entities in the

scope of a given entity p? The answer is a result of scope rules of the language.

For instance, according to the method that is suggested to construct an APDG for
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programs written in Pascal, a node that represents an entry in the scope of p is

either a right sibling of p, a descendent of p, or a descendent of a right sibling of

p. The descendents of p represent entities that are declared within the block of p3.

The right siblings of p represent entities that are declared in the same block as p,

at the same level as p, and after it in the text of the program. The descendents of

the right siblings represent entities declared within those entities at the same level

as p and within its scope. In a structured graph, those nodes are the only nodes that

could represent entities in the scope of p. When a variable q is in the scope of p, it

can reference p by an r edge. Recall that p must be declared before q in order that

p
e!q 2 Er. The next property follows as a result of the above mentioned facts.

J :1 * If p; q 2 N ; and p
e
!q 2 Er then, in the tree G0(N ; El [ Ep), either p is a

descendent of q, p is a right sibling q, or there is a right sibling r of q such that

p is a descendent of r.

J :2 If both p; q 2 N and

(p =)p0
e
!p1

e
!p2

e
!p3 : : : pn�1

e
!pn(= q)

is a path from the node p(= p0) and the node q(= pn) such that

8i; 1 � i � n; pi�1
e
!pi 2 El [ Ep;

then p is on the de�ning path of q.

Let

p00
e!p01

e!p02
e
!p03 : : : p

0

m�1

e!p0m

be the de�ning path of p = p0m, then

p00
e!p01

e!p02 : : : p
0

m�1

e!p
e!p1

e!p2 : : : pn�1
e!pn

3 There is an exception to this rule. The de�nition of a pointer type can
reference a record that yet to be declared
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is a path from the top node p00 to q(= pn) whose edges are in El [ Ep. Because

such a path is unique, it is the de�ning path of q and p is on it.

J :3 * If p; q 2 N ; and p
e!q 2 Er then,

(1) q is one the de�ning path of p and

(2) 6 9r; r 2 N and r is on the de�ning path between q and p such that

Name(q)=Name(r).

This follows from the previous discussions of scope rules of Pascal.

J :4 If s 2 Np and s
e
!t 2 El [ Ep, then s dom4 t.

No entity outside the entity s can reference t. If t is a locally de�ned entity of

s. then it can only be referenced by entities de�ned within s. This means that

every path from top goes through s. So s dominates t.

J :5 If p is the parent of q in the structure tree and r 2 scope(q) then p dom r.

This is a direct result of the de�nition of the scope of the entity q. If r is a

right sibling of q in the structure tree, then it is dominated by its parent p as

well as q does. That is, p dom r. Moreover, If r is the child of q or the child of

one of its right siblings, then it is dominated by its parent which is dominated

by p. So, p dominates this second generation of descendents. Such argument

could be carried on. This induction proves the theorem.

J :6 If p; q 2 N and q 2 scope(p) then depth(p) � depth(q) in the structure tree

G0(N ; El [ Ep).

If p is a direct descendent of r in the structure tree, and p, q are siblings

then q is a direct descendent of r too. So, r dominates both p and q. This

implies depth(p) = depth(q). If q is a descendent of p, then p dom q and

4 If s; n 2 N , s dom t means that every path from the top node of the graph
to t passes through s.
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depth(p) < depth(q). Otherwise, q is a descendent of a right sibling of p. If

this sibling is called s, then depth(p) = depth(s) � depth(q).

J :7 The shortest path from the top node p0 to the node pn is the de�ning path of

pn.

Let the de�ning path of pn be

p0
e!p1

e!p2
e!p3 : : : pn�1

e!pn

such that

8i; 1 � i � n; pi�1
e!pi 2 El [ Ep:

Let also, q0
e!q1

e!q2
e!q3 : : : qm�1

e!qm be another di�erent path from the top

node p0 = q0 to the node qm(= pn). Tracing back through both paths there

exists at least one joint point o = pi = qj such that pi�1
e
!o, qj�1

e
!o are both

in E. Since both can not belong to the set El[Ep at the same time and pi�1
e
!o

is there, then qj�1
e
!o 62 El [ Eg. This implies that qj�1 2 scope(o) and pi�1

dominates both o and qj�1. The edge pi�1
e
!o is the shortest path between pi�1

and o. It is of length one. So, the de�ning path is shorter than the other path.

Actually, the �rst is the shortest one of all.

The Implementation of APDG Rules

The rules we have presented can be implemented using relational algebra on sets.

In this section, we express many of the mentioned rules using a limited number of

adjacency sets of nodes. Special graph operations can be de�ned to calculate any

adjacency set for a given node n using only the information stored in n.

The adjacency sets are de�ned as follows:
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� At(n) is the set of all graph nodes that are Adjacent to n;

that is,

At(n) = fm j m 2 N and n
e
!m 2 Eg

� Af (n) is the set of all graph nodes from which n is Adjacent to;

that is,

Af (n) = fm j m 2 N and m
e
!n 2 Eg

� Alt(n) is the set of all graph nodes that are Adjacent to n by l edges;

that is,

Alt(n) = fm j m 2 N and n
l
!m 2 Eg

� Alf (n) is the set of all graph nodes that n is Adjacent to by l edges;

that is,

Alf (n) = fm j m 2 N and m
l!n 2 Eg

� Similarly, we de�ne the following sets:

A
p
t (n) = fm : m 2 N and n

p
!m 2 Eg

A
p
f (n) = fm : m 2 N and m

p
!n 2 Eg

Art (n) = fm : m 2 N and n
r
!m 2 Eg

Arf (n) = fm : m 2 N and m
r
!n 2 Eg

In the following tables, we rewrite the constraints of an APDG using the adja-

cency sets we just de�ned. In each table, we mention the rule number and rewrite it

using these adjacency sets.

A set implementation of the

adjacency relationships re-

lated to a f node

B:1 Nf 6= ;; thus, j Nf j> 0

B:2 j Nf j� 1

B:1^B:2 j Nf j= 1

B:3 n 2 Nf ) Af (n) = ;

B:4 n 2 Nf ) At(n) � Alt(n)
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A set implementation of the

adjacency relationships re-

lated to an o node

C:1 n 2 No ) Af (n) 6= ;

C:2 n 2 No ) Af (n) � Art (n)

C:3 n 2 No )j Art (n) j� 1

C:1^C:2^C:3 n 2 No )j Art (n) j= 1

C:4 n 2 No ) Arf (n) � Nt

A set implementation of the

adjacency relationships re-

lated to a p node

D:1 n 2 Np )At(n) \Ns � Alt(n)

D:2 n 2 Np )j Alt(n) \Ns j� 1

D:3 n 2 Np )Art (n) � Nt

D:4 n 2 Np )j Art (n) j� 1

A set implementation of the

adjacency relationships re-

lated to a s node

E:1 n 2 Ns )Alf (n) 6= ;

E:2 n 2 Ns )Alf (n) � Np

E:3 n 2 Ns )At(n) � Arf (n)

E:1^E:2 n 2 Ns )At(n) = Art (n)

E:1 n 2 Ns )At(s) \Nt = ;

A set implementation of the

adjacency relationships re-

lated to a t node

F :1 n 2 Nt ) Apt (n) = ;

F :2 n 2 Nt ) At(n) \ (Np [ Ns) = ;

A set implementation of the

adjacency relationships re-

lated to any node n 6= top

Note that N 0 = N �Nf

G:1 n 2 N 0 ) Alf (n) [ A
p
f (n) 6= ;

G:2 n 2 N 0 )j Af (n) j> 0

G:3 n 2 N 0 )j Alf (n) j� 1

G:3 n 2 N 0 )j A
p
f (n) j� 1

G:4 n 2 N 0 )j Alf (n) [ A
p
f (n) j� 1

G:1^G:4 n 2 N 0 )j Alf (q) [ A
p
f (q) j= 1
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It is worthy to mention that any adjacency set related to a given node is either

an attribute or contained in an attribute of this node. This makes the derivation of

adjacency sets easy and fast. In addition, checking the emptiness of an adjacency

set or how many elements are in it or whether a particular node is an element of it

is easy and fast. So we believe that checking the validity of a rule for a given node

in a given APDG is easy to implement and e�cient to run.



CHAPTER VIII

GENERATING PROGRAM VIEWS USING

ATTRIBUTED PROGRAM DEPENDENCY GRAPHS

A major goal of SCAN is to support a maintenance programmer in program

understanding. In this chapter, we discuss SCAN 's approach to provide this sup-

port. First, we brie
y discuss common approaches to program understanding and

explain the importance of automatic view generation for each approach. Second, we

provide a sample list of views that can be generated by SCAN from the graph-based

representation of the program. Third, we describe algorithms to derive several views

of this list, one algorithm for each view. Finally, we discuss the importance of a user

interface for view generation and program understanding.

Understanding Software Systems

How much of a software system must an analyst comprehend before changing

it? We consider two approaches to answer this question [Littman et al., 86]. The

�rst is a systematic approach, where the analyst understands the whole program.

This is an ideal approach for the analysis of small programs. This approach fails

for large programs, because it is unlikely that an analyst needs to understand the

whole program in order to analyze a change to a section of this program. The second

95
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approach is an as-needed approach, where the analyst understands selected sections

of the program. The analyst locates sections of the program to be analyzed and

builds an understanding of them, and if this understanding requires the analysis of

other sections, the analyst will try to understand them, and so forth. A disadvantage

of this approach is that, without automatic support, the user may spend considerable

time looking for relevant sections to examine.

There are three prominent approaches to program understanding [Robson et al.,

91]:

� Code-driven approach

This is a bottom-up approach [Basili and Mills, 82]. An analyst starts reading

the source code, associates few related statements together, and gives them

higher level interpretations. Then, he groups these interpretations together and

gives them a higher interpretation. This bottom-up process continues until the

analyst achieves an understanding of the related sections of the source code.

� Problem-driven approach

This is a top-down approach [Brooks, 83]. The analyst starts by forming an

overall hypothesis about the code using whatever information is available, such

as the statement of the problem. Then he re�nes this hypothesis into lower-

level hypotheses and tries to match them to section of the source code. The

processes of re�nement and testing hypothesis continues until every statement

is understood. If, during this process, the hypothesis does not agree with the

code, the user can back up one step in this top-down process and try another

re�nement. This trial-and-error process continues until the analyst �nds an

interpretation of the source code.

� Cognitive approach

This is a mixture of top-down and bottom-up approaches. [Letovsky, 86] argues
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that an analyst uses, during program comprehension, any top-down or bottom-

up cues as they become available. In this approach, the analyst tries to connect

the top layer of a program (the program's speci�cation) to the bottom layer

(the program's implementation) to form an understanding of the program.

As it appears, whether the analyst uses a top-down, bottom-up, or a mixed

approach to examine the source code of a program, he may need information about

other related sections. Such pieces of information are called program views. In the

following section, we give examples of these views and elaborate on their importance

for program understanding and the need for automatic tools to ease their generation.

The Importance of Program Views

The following scenario demonstrates the importance of program views during

change analysis. Assume that an analyst is trying to understand the source code of

a module m. He might �nd that m has a call to procedure p and decide to examine

the actual code of this procedure. While browsing the code of p he might �nd that

p has a parameter q and q is of type t. The analyst might then decide to investigate

type t. He �nds that t is a global entity that is de�ned in �le f . He might ask for t's

de�nition. Given this de�nition, he might �nd a reference to another type s which

he is familiar with. The analyst might ask for all variables of type t which might be

scattered around several �les. The analyst could decide to go back and concentrate

on p. He might be interested in all procedures called by p. The analyst might ask

whether it is possible for p to call, for example, procedure r. He might ask for all

sentences that use a particular variable. Other requests are also possible.

The answer to any of these requests is a view of the program containing m.

For instance, the source code listings of the de�nitions of m, p, and t are program

views; the parameters of p, the type of q, and the �le where t is de�ned are program
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views; the procedures called by p and the locations where an entity is referenced are

also program views. The scope of an entity, a procedure-call graph, and a list of

unreferenced entities are all program views. The ability to retrieve these views fast

and easily can help substantially in program understanding.

Automatic view generation is important for many reasons:

� Automatic view generation is more e�cient than manual schemes.

� The view generator can do the drudge work of program structural analysis

leaving the intelligent decisions to the user.

� A suitable user interface may allow the presentation of various views of a pro-

gram simultaneously; thus, helping the user to visualize the relationships be-

tween the corresponding entities of the program.

SCAN tools are capable of automatically generating a variety of views of the

program being comprehended. Such views can be used to answer questions about

the program, regardless of its size. Actually, SCAN tools are more useful for under-

standing large programs consisting of many entities interacting in complex ways.

Views that Can be Generated From APDGs

The list of program views that can be generated from the graph-based represen-

tation is long; it includes the following ones:

� Views providing structural information

These include:

{ Maps of structured types

{ Local components of procedures/functions
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{ Values of a user-de�ned type

{ Parameters of a given procedure

� Views providing cross-referencing information

These include:

{ Variables or functions of a given type

{ Statements that use a given variable

{ Variables, procedures, and functions used within a procedure statement

{ Locations where a given entity is referenced

{ Procedures that directly call a given procedure

{ Procedures that are directly called by a given one

{ Files that are included in a given �le

{ Global entities (such as procedures, constants types, and variables) that

are de�ned/used in a given �le

{ Entities that are in the scope of a given entity

� Miscellaneous views

The following program views can be generated using APDGs:

{ Program metrics

{ Call graphs

{ Program anomalies

{ Structure charts

{ Unused entities
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How do APDGs Facilitate View Generation?

The ready-to-use information contained in a set of APDGs eases automatic view

generation. One reason for this is that the graphs contain structural information

necessary for view construction. All of the views listed in the previous section can be

generated by directly manipulating the attributes of the graph's components. The

attributes associated with each node can be used to generate simple views that are

related to the node's corresponding entity and the entity's context. Meanwhile, node

links can be used to generate complex program views, these involve more than one

program entity.

The formal properties of APDGs can be used to make the design of view gener-

ating operations more e�cient. To illustrate this, we choose several views from the

above list and describe their design.

The notations we use to describe the view-generating operations are same as

those we have been using in the previous chapters, in addition to the following:

� A program subgraph (ProgramSubgraph) is an abstract data type of subgraphs;

each subgraph G is (N ; E), where N is a set of APDG nodes and E is a set of

APDG arcs.

Notice that, although we use the N and E as we do for APDGs, a program

subgraph is not necessarily an APDG.

� If G1 = (N1; E1) and G2 = (N2; E2) are two ProgramSubgraphs, then

G1
L
G2 = G3, where, G3 = (N1 [N2; E1 [ E2).

� We use the terms SetOfGraphNodes and SetOfProgramEntities to denote a

set of GraphNodes and a set of ProgramEntities, respectively. To manipulate

objects of these two sets, we use regular set notations, such as fg;2;[, etc.
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� We use the following primitive graph functions. Each function has exactly one

graph node parameter (p). All functions, except the last, return a graph node;

the last function returns a node attribute. Let p represents the program entity

e; i.e., p = F(e).

{ Statement() returns the s node adjacent to the parameter p, where p is

p node. The returned node represents the statement of e.

{ LeftmostChild() returns the leftmost child of p in the structure tree. The

returned node represents the �rst component of e.

{ RightSibling() returns the right sibling of p in the structure tree. The

returned node represents the entity that is de�ned after e and at the same

level of nesting.

{ Class() returns the class attribute of p. The returned value speci�es the

class of e.

View # 1: Files Including a Particular File

This view can be constructed by fetching the necessary information from the

Included-In table of the graph-based representation of a given program. As de�ned

in Chapter 6, this table consists of a collection of records (f; f 0), where �le f 0 includes

�le f . Finding these records depends on the operations de�ned to implement this

table. Algorithm 8.1 outlines the steps of generating this view.

View # 2: Type of an Entity

Given an entity t, it is easy to �nd whether t can have a type, whether it has a

type, and the type itself (if there). In Pascal, for example, only an OBJECT entity
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SetOfProgamEntitiesViewIncludedInFiles( f )
ProgramEntity f ; /* f is a FILE entity.

[[
SetOfProgramEntities S;
S = ff 0 j (f; f 0) 2 Included-In table g;
Return (S)

]]

Algorithm 8.1: ViewIncludedInFiles

or a PROCEDURE entity can have a type. If t has type s, t0 = F(t) and s0 = F(s)

(t0 and s0 are the nodes representing the entities t and s, respectively), then, s0 is the

only node referenced by t0. (For explanation, see rules C:3 and D:4, in Chapter 7.)

Algorithm 8.2 �nds �rst, the node t0 representing t; then, the node referenced by

t0 (if any); and �nally, returns the entity corresponding to the node referenced by

t0. Notice that, in terms of graph operations, �nding the type of an entity takes few

steps.

ProgamEntityViewEntityType( t )
ProgramEntity t;

[[
SetOfGraphNodes S; /* S is a set of graph nodes.
GraphNode t0, s0;
t0 = F(t); /* t0 is the node representing entity t.
If ((Class(t0) 6= p node) && (Class(t0) 6= o node)) Error;
S=Art (t

0); /* S is the set of all nodes referenced by t0.
If j S j6= 1 Error;
Let s0 2 S; /* s0 corresponds to t's type.
Return(F�1(s0)); /* Return t's type.

]]

Algorithm 8.2: ViewEntityType
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View # 3: Procedures Called by a Given Procedure

By careful examination of each APDG, we �nd that all procedures called by a

given procedure p are represented by arcs incident from the node representing p's

statement (p0) to the nodes representing called procedures. So, to construct this view

(let us call it \called procedures"), the generating process can iterate through the

list of all nodes adjacent to p0, identify the nodes of all referenced procedures, and

return a set of these procedures as the value of this view. Algorithm 8.3 generates

the \called procedures" view, accordingly.

SetOfProgramEntities ViewCalledProcedures( p )
ProgramEntity p; /* Assume that p is a PROCEDURE entity.

[[
SetOfGraphNodes S; /* S is a set of graph nodes.
GraphNode s0, p0;

p0 =Statement(F(p)); /* Let p0 be the node of p's statement.
S =Art (p

0) ; /* S is the set of nodes referenced from p0.
8s0 2 S,

If (Class(s0) 6= p node)
S = S � fs0g; /* If s0 is not a procedure, remove it from S.

Return (F�1(S)); /* All procedures called by p.
]]

Algorithm 8.3: ViewCalledProcedures

The most costly steps of Algorithm 8.3 are �nding p0 (which can be done by iter-

ating once through the adjacency lists A
p
t (p) and A

l
t(p)) and identifying procedures

among the Art (p
0). This implies that the time required by this algorithm is linearly

dependent on the number of local components of p and the number of references

made within p's statement p0; i.e., the number j A
p
t (p) j + j Alt(p) j + j Art (p

0) j.

Roughly, this number is equal to the number of nodes adjacent to both p and p0 (

j At(p) [ At(p
0) j ).
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View # 4: Procedure-Calls Graph in a Given File

This \procedure-calls" view includes information about all procedure calls in a

program �le, say f . For each procedure p declared or de�ned in f , this view includes

a set of all procedures called by p. Obviously, this information can be collected

incrementally by traversing the structure tree embedded in the APDG corresponding

to �le f , and for each p node p0 = F(p), �nding all referenced nodes corresponding

to procedures called by p. Algorithm 8.4 is de�ned, accordingly.

ProgramGraph ViewProcedureCalls( p )
GraphNode p;
[[
GraphNode s; t;
ProgramSubgraph G = (N ; E); /* G is as de�ned before, in this chapter.
SetOfProgramNodes S;

N = ;; E = ;; /* Initial empty program subgraph
If (Class(p) == p node) /* p represents a procedure.
[[ t=Statement(p); /* To get procedure calls from p, get all
S = Art (t); /* nodes referenced by its statement t.
8s 2 S,
If (Class(s) == p node) /* To choose procedure calls, only.

[[N = N [ fsg; /* Add s to the subgraph G.
E = E [ fp

r
!sg; /* Add a procedure call from p to s.

]]
/* Get the \procedure-calls" view of left subtree and add to G.
/* This subtree view represents all calls made from local procedures
/* of the procedure represented by p.
If (LeftmostChild(p) 6= NULL)
G = G

L
ViewProcedureCalls(LeftmostChild(p));

]]
/* Get the \procedure-calls" view of right subtree and add to G.
If (RightSibling(p) 6= NULL)
G = G

L
ViewProcedureCalls(RightSibling(p));

Return(G);
]]

Algorithm 8.4: ViewProcedureCalls
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Algorithm 8.4 traverses a structure subtree (a binary tree) in inorder, and collects

all procedure calls. For each node n, this algorithm adds, to the \procedure-calls"

view, an arc corresponding to any procedure call from n. Then it traverses the left

subtree of n (through its leftmost-child link) and the right subtree of n (through the

right-sibling link) to collect all arcs representing procedure calls in these subtrees,

and add them to the \procedure-calls" view. Calling this algorithm with the actual

parameter p = LeftmostChild(top), where top is the top node of the graph, will

construct the call graph for the �le corresponding to this top node.

Algorithm 8.4 is similar to �rst-depth traversal of an APDG starting at the top

node. So the time requirement of this algorithm is linearly dependent on the number

of nodes plus the number of edges of the graph. Actually, the time may be less than

that of �rst-depth because Algorithm 8.4 skips any subgraphs that do not include

arcs representing procedure calls.

View # 5: Unused Code

An unused program entity n is either an unreferenced entity or an entity that is

only referenced by unused entities. In APDG terms, let n0 = F(n) then n is unused

i�

1. Arf (n
0) = ; or

2. If Arf (n
0) 6= ;, then 8m 2 Arf (n

0), m corresponds to an unused entity.

The code of unused an entity is dead because while a program is running, this code

can never be executed. The maintenance programmer should be informed of any

dead code so tat he can consider removing it.

Given a program p, how can unused entities be identi�ed? The answer to this

question is easy if the set of used entities (U) is known. If so, the set of unused
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entities (U) is the complement of U ; that is, the set of program entities that do not

belong to U . APDGs can be used to identify all used entities, and thus, to identify

the unused entities, also. A Garbage collection technique, such as mark and collect

[Tenenbaum et al., 90], can be employed to de�ne an operation that �nds all nodes

of an APDG corresponding to the elements of U and U . Clearly, such an operation

would have two phases: the �rst phase is to mark all nodes of APDGs reachable

from the node of main program, and the second is to collect the unmarked nodes.

The unmarked nodes in an APDG designate unused entities.

The strategy we have just outlined requires the existence of all of the APDGs

of a multiple-�le system in order to mark all reachable nodes from the node of the

main program. But, in many cases, a maintenance programmer is interested in

unused entities in a given �le (f , for example). This leads to the following question:

is it possible to classify the nodes of a single APDG to used and unused entities

independent of other graphs? Even otherwise, the answer is, unfortunately, no. No

operation can classify the nodes of a given APDG without used/unused information

about the nodes of global (exported or imported) entities. However, if we assume

that all global entities are used somewhere else in the program, the classi�cation is

still possible, This allows the marking phase to start with the nodes of the exported

entities and proceed locally in f . Algorithm 8.5 can �nd the unused entities of a

given �le according to this assumption. Although it approximates the set of unused

entities, it needs less space and time than accessing all APDGs.

Algorithm 8.5 has two phases: a phase to mark all nodes accessible from the

nodes of the global entities or the main program, and another to collect unmarked

nodes. A node n is marked as used if one of the following conditions is satis�ed:

� n is a statement of a used procedure

� n is referenced by a used entity
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Notice that a local component of a used procedure p (other than the statement of p)

is not automatically used: it is used only if it is directly or indirectly referenced by

the statement of p.

Algorithm 8.5 uses the following functions:

� AaddQueue, DeleteQueue, and EmptyQueue to manipulate a queue of graph

nodes. We discussed these functions in Chapter 5.

� Mark: to mark a graph node as a used node.

� IsUnmarked: to return true if a node is unmarked

� IsGlobal: to return true if a given node corresponds to an global entity or to

the main program.

The Importance of a User Interface for View Generation

It is generally recognized that a user interface is critical for the success of a

software system [Sommerville, 89]; SCAN is no exception. Without a well-designed

interface, an analyst will not be able to use SCAN to its full potential. Also, poorly

designed interface may increase the probability of errors.

The design of a SCAN user interface was guided by several principles.

� The user interface must suit a maintenance programmer. The programmer

must be able to ask questions, browse selected sections of code, ask for program

views, and so on.

� It must be consistent, where interface consistency means that all commands to

all components of SCAN must be similar.
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� It must enable the user to investigate related views at the same time. A multi-

window user interface allows many views to be visible simultaneously. However,

if badly presented, these views can confuse the analyst rather than help him.

� The user interface must provide an intelligent cursor that is aware of the type

of entity it is pointing at. That way, a user can be guided to generate more

information about this entity

As we will discuss in Chapter 10, we have implemented a prototype interface

manager that supports menu-driven and multi-window user interfaces and uses an

intelligent cursor. This prototype supports the generation of a number of the views

mentioned in this chapter.
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SetOfProgramEntities ViewUnusedEntities( f )
ProgramEntity f ; /* f is a FILE entity.

[[
GraphNode s, f 0;
QueueOfGrapNodes Q; /* Frontier of marking phase
SetOfGrapNodes U ;

/* Phase One: marking phase
f 0=F(f); /* Get top node corresponding to f .
For ( s=LeftmostChild(f 0); s 6= NULL; s=RightSibling(s))

If (IsGlobal(s)) /* Identify nodes of exported entities,
[[ Mark(s); AddQueue(Q; s); ]] /* mark them, and add them to Q.

While (not EmptyQueue(Q))
[[ s = DeleteQueue(Q); /* Get a node from the queue Q.
U = Art (s); /* Get all referenced nodes from s;

/* these correspond to used entities.
If (Class(s) == p node) /*The statement of a used procedure

U = U [ fStatement(s)g; /* is a used entity.

For each s 2 U
If IsUnmarked(s) /* Mark s and add to Q.
[[ Mark(s); AddQueue(Q; s); ]]

]]
/* Phase two: collecting phase
U = ;; /* U is empty set of unused nodes.
For each node s of the APDG f 0 /* Collect unmarked nodes.

If IsUnmarked(s), U = U [ fsg;
return(F�1(U));

]]

Algorithm 8.5: ViewUnusedEntities



CHAPTER IX

IMPACT ANALYSIS USING ATTRIBUTED PROGRAM

DEPENDENCY GRAPHS

In Chapter 2, we de�ned a system change as a change to the source code of

the system { an action that normally a�ects the structure of the system as well

as its text. For examples, consider the source code of book1 shown in Figure 9.1.

Deleting the formal parameter first from the parameters section of procedure sort

removes the string \first" from line 9 and also removes an entity from the program.

Substituting classbook for class in the types de�nition section of book (line 8) replaces

the �rst string by the second and assigns a new name to an entity of the program. In

addition, deleting swap's de�nition means the deletion of lines 12{19 from the text

code and the removal of several entities and several relationships from the program.

These changes modify book's text as well as its structure. Accordingly, we say that

a system change has two components: a textual change and a structural change.

A system change normally causes side e�ects; these are properties of the sys-

tem e�ected by the change. Side e�ects are of two types: textual side e�ects and

structural side e�ects. Textual side e�ects are modi�cations to the layout of the

1 This �gure is a copy of Figure 4.1; all examples in this chapter are related
to it.

110
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1 Program book ( � � � );
2 Const
3 first = � � �
4 last = � � �
5 Type

...
6 class = Array [ first .. last] of Real;

...
7 Var
8 list : class;
9 Procedure sort ( first; last : Integer );
10 Var
11 i, j, k : Integer;
12 Procedure swap (Var p, q : Real );
13 Var
14 temp : Real;
15 Begin
16 temp := p;
17 p := q;
18 q := temp
19 End;
20 Begin
21 For i := first To last-1 Do
22 For j := i+ 1 To last Do
23 If list[ i ] > list [ j ]
24 Then swap( list[ i ] ; list[ j ])
25 End;
26 Begin

...
27 sort(first; last);

...
28 End.

Figure 9.1: An Example of a Pascal Program (Revisited)
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source code of the system; meanwhile, structural side e�ects are modi�cations to the

structural constraints of the system. In Figure 9.1, for instance, deleting the formal

parameter p of procedure swap (line 12) has one textual and several structural side

e�ects. The textual side e�ect of this deletion is that all characters (originally to the

right of p in line 12) change their positions: those characters are shifted one place to

the left. The structural side e�ects of this change include incorrect swap invocation

by sort's statement (line 24) and the referencing of an undeclared identi�er p by

swap's statement (lines 16{17). Undoing this change reverses these side e�ects.

In Chapter 2, we de�ned the impact of a system change as the set of side e�ects

of the change; we also de�ned impact analysis as the process of �nding the impact of

a change. We pointed out that structural side e�ects are more important to analyze

than textual side e�ects. Analyzing structural changes is our main concern in this

chapter.

Di�erent system changes have di�erent structural components and thus, have

di�erent impacts. The impact of a change depends on the context where the change

occurs and whether the change a�ects a de�nition, reference, or both. In Figure 9.1,

deleting the declaration of the unused variable k (line 11) changes mainly the layout

of the text code; it does not have any structural side e�ects. Meanwhile, renaming

last (line 9) as list has more than location-dependent side e�ects. One such side

e�ect is that, after the replacement, the reference to list in line 23 (which is now

interpreted as a reference to the newly named parameter) is syntactically incorrect:

the parameter list is now of type Integer while the reference list is still referencing

an array object.

APDGs contain various types of structural information necessary to support im-

pact analysis of many system changes. The entities of the program and various types

of interrelations between them are retained in these graphs; the graph properties re-


ect the structural constraints of the system. Thus, if the structural component of a
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system change is given in terms of changes to the APDGs (that is, to the set of nodes

of a graph or the set of the arcs of the graph or both sets), then impact analysis can

detect what graph properties are a�ected by the graph changes, and so indicate what

side e�ects the original system change would have. Actually, one major purpose of

APDGs is to use them for specifying structural components of system changes and

�nding the impact of these changes. SCAN 's components are designed accordingly.

Impact Analysis in SCAN

In SCAN , a graph-based representation consists of two major parts: the source

code and its corresponding APDGs. If any part is modi�ed, the other must be

modi�ed in order to keep both representations consistent and thus, improve the

reliability of further impact analysis.

There are two issues relevant to impact analysis using SCAN . The �rst issue is

the question of how to carry out a system change. Does the programmer carry out

both components of the system change; that is, does the programmer change the

source code of the program as well as its corresponding APDGs? Or does a change

to one representation automatically change the other? In SCAN , system changes

are carried out by editing the source code, while structural changes are carried out

automatically. This approach was chosen because �rst, text editing is more natural

than graph editing; second, suitable graph-editing tools are scarce; and �nally, some

changes have null structural components.

The second issue is the frequency with which impact analysis is to be performed.

Is it performed after each system change, after each second change, after each �fth

change, or after a whole editing session? Any strategy to perform impact analysis

must take into consideration both the necessity for impact analysis and its cost. The

maintenance programmer must play a major role in any chosen strategy.
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In SCAN we di�erentiate between two steps of a system change: the impact anal-

ysis phase and the change phase. The impact analysis phase predicts the side e�ects

of a proposed change and reports them to the maintenance programmer, who can

�nalize the change. To carry out system changes and control their impact analysis,

SCAN has two types of system changes: changes carried out through structure-

oriented operations and changes carried out through text-oriented operations. In the

following sections, we describe the changes of each type, give examples of them, and

show how SCAN evaluates their impact.

Changes Through Structure-Oriented Operations

The following changes can be carried out using structure-oriented operations on

the source text:

� Replacing an entity name by another

� Deleting an entity reference

� Increasing/decreasing the size of an array type

� Adding/deleting a �eld to/from a record type

� Adding/deleting a formal parameter to/from a procedure or a function

� Renaming an entity

� Adding/deleting a subprogram de�nition

� Adding/deleting a type de�nition

These changes may be simple or composite. Simple changes do not, initially,

require major modi�cations to the code of the system and have few structural com-

ponents. The �rst �ve changes in the above list are simple changes. A composite
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change can be de�ned as a sequence of simple changes. Composite changes involve

major constructs of the program where many entities and many interrelationships

between them are added or deleted.

The system changes listed above tend to be error prone [Freedman and Wein-

berg 81]. On the surface, they look easy to do, but it is very probable that any of

these changes could have a large impact and probably leave the system in an in-

correct state. In SCAN , these changes can be carried out using structure-oriented

text-editing operations. Since the structural component of each change is known

apriori, its impact can be found immediately after the change is carried out.

We next describe several structure-oriented operations including a replace op-

eration, a rename operation, a delete operation, and an add operation. For each

operation, we describe the two components of the system change that the operation

implements and the properties that may be a�ected by the change. Recall that the

structural component of a system change is to be speci�ed in terms of changes to

the APDGs.

Since these operations are performed on program text, the supporting user inter-

face must have an intelligent cursor that knows whether it is pointing at an entity

of the program, and if it is, whether this occurrence of the entity is a de�nition

or a reference. An interface manager can get such information and more from the

program's APDGs.

The Replace Operation

With the cursor pointing at an entity name (say name1), this operation replaces

name1 by another (say name2); all other occurrences of this entity name remain

unchanged. Textually, this operation changes the designated occurrence of the string

\name1" in the text code by the string \name2". Structurally, this change has one of

two meanings: either it assigns a new name (name2) to entity name1 or it replaces
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a reference to entity name1 by a reference to entity name2. In the following two

subsections we explain these two cases, give examples of each, and discuss their

possible structural side e�ects.

Side E�ects of Replacing an Entity Name (name1) by Another (name2)

If name1 is the name of an entity being de�ned in the place where the change is

taking place, then Replace assigns name2 to the entity name1, leaving all references

to name1 unchanged. In this case all references to the entity being renamed become

references to an entity named name1 which must (after the replacement) be di�erent

from the entity name2. For example, replacing the word sort (line 9) by the word

sort list renames the procedure sort as sort list. Although all existing references to

sort remain unchanged, these are not references to the renamed entity. Accordingly,

their arc representations (in the corresponding APDG) must be modi�ed in order

that the graph re
ects the new structure of the program.

More speci�cally, assume that n is the node corresponding to entity name1 (before

the replacement), then the structural component of the Replace system change is to

assign name2 to the name attribute of the node n. As a result of this, all arcs incident

to n are obsolete; and to �nalize the change, the programmer must decide their fate.

The following rules may be a�ected by this change:

� Rule A:1

This rule is violated if there is a name con
ict; that is, there exists another

sibling of n named name2 and n is not an exported procedure. For example,

replacing sort (line 9) by list causes a naming con
ict: two entities (the variable

list (line 8) and the procedure list (line 9)) are named similarly at the same

nesting level.

Algorithm 9.1 searches the siblings of a given node n for nodes named x. If
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this function is called and its actual parameters are the renamed node n and

its new name name2, and the function returns a nonempty set, then Rule A:1

may be violated. Replace can check this condition easily.

SetOfGraphNodes SiblingsWithGivenName(n; x )
GraphNode n; /* To get all siblings of n that
String x; /* are named x

[[
SetOfGraphNodes S; /* S is a set of graph nodes.
GraphNode s;

S = ;;
/* Search right siblings of n for nodes with name x.
For (s = n; s 6=NULL; s=RightSibling(s))

If (Name(s)==x)
S = S [ fsg;

/* Search right siblings of n for nodes with name x.
For (s = n; s 6=NULL; s=LeftSibling(s))

If (Name(s)==x)
S = S [ fsg;

Return(S);
]]

Algorithm 9.1: SiblingsWithGivenName

Rule A:1 may be a�ected in an opposite way. Assume that nodes n1 and

n2 have a name con
ict (both nodes violate Rule A:1) then, assigning a new

name to n1 or n2 validates this rule for both nodes. Algorithm 9.1 can be used

to check this condition and Replace can update the state of the nodes after

carrying out the change.

� Rule J :3

This rule is violated if there exists a REFERENCING arc incident to n in the

APDG. After replacing the name of node n by name2, all such arcs become
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inconsistent with the code: these arcs must represent references to an entity

named name1 whose node representation must be di�erent from n. According

to the properties of APDGs, if a node named name1 exists, it must belong to

the de�ning path of n. The structure of the graph must be modi�ed to re
ect

the new relationships.

Replacing first (line 9) by front a�ects the relationship between sort:st and

this entity. Although sort:st is still referencing first, first is now a di�erent

entity from the one that has been just renamed. Accordingly, the arc sort:st
r
!

front must be replaced by the arc sort:st
r!first, where the entity first may

be the one de�ned in line 3.

GraphNodes SearchDe�ningPath( start; x )
GraphNode start;
String x;

[[
While start 6= top /* Top is the f node of a graph.
[[ If (Name(start)==x)

Return(start);

If LeftSibling(start) 6=NULL
start=LeftSibling(start); /* Continue search to left

Else start=Parent(start); /* Search in a higher level
]]

Return (NULL);
]]

Algorithm 9.2: SearchDe�ningPath

Algorithm 9.2 can be used to search the de�ning path of n for a node named

x. Assume that node n is renamed name2 as described before, this function

can be used to �nd whether there is a node named name1 on the de�ning path

of n. If so, then all references to the node n may be switched to this new
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node leaving the system in a valid state. This structural modi�cation can be

carried automatically if �rst, there is an entitym named name1 on the de�ning

path of n; second, m and n are of the same entity class; and third, the user

acknowledges this change. The Replace operations can study the existence of

m and its compatibility with n and consult the user for further actions.

� Rule G:1

This rule is violated if renaming an entity leaves its old reference referencing an

undeclared entity. Replacing sort (line 9) by sort list leaves book.st referencing

the undeclared entity sort (line 27). Algorithm 9.2 can be used to check this

condition in a similar way to checking Rule J :3 as described before.

Assigning a new name to an entity may validate this rule. This happens if,

in the scope of the new name, the new name has been referenced without

declaration. The introduction of this name removes the undeclared condition,

and thus validates Rule G:1.

� Rule J :3

If an entity name name1 is to be replaced by name2 then, unless changed,

some references to name2 in the scope of old name1 may be interpreted as

references to the renamed entity name2. For example, replacing the parameter

last (line 9) by list invalidates all references from sort:st to object list (line

8). In this case, these references are considered references to the newly named

parameter list, because the new scope of object list (line 8) excludes the scope

of parameter list (originally last). Notice that these two entities (the object

list and the parameter list) are not of the same entity class, which causes more

side e�ects.

Algorithm 9.3 searches a structure subtree n for nodes referencing global entity

x; that is, x is one the de�ning path of n. (References to a locally de�ned x do
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SetOfGraphNodes TraverseScopeForGivenReference(n; x )
GraphNode n; /* A subtree to be traversed for nodes
String x; /* referencing another node named x
[[
GraphNode s;
SetOfGraphNodes S;

S = ;; /* Initial empty set of references
If ((p==NULL) jj (Name(n) == x))
return(S); /* No entity can reference a global x, here.

If (9s 2 Art (n) such that Name(s)==x)
S = S [ fsg;

S = S [ TraverseScopForGivenReference(LeftmostChild(n));
S = S [ TraverseScopForGivenReference(RightSibling(n));
Return(S);
]]

Algorithm 9.3: TraverseScopeForGivenReference

not a�ect Rule J :3.) This algorithm considers the binary view of this subtree

and uses a preorder traversal to �nd all required nodes. When it visits a node,

this algorithm checks whether this node references another node named x and,

if it does, saves this node. The algorithm then traverses the subtree using the

leftmost child and right sibling links.

To �nalize renaming node n as name2, the function 9.3 can be used to �nd the

set of entities in the subtree n that reference an entity named name2. If this

set is not empty Rule J :3 may be invalidated.

Side E�ects of Replacing Reference to Entity name1 by a Reference to name2

If the cursor is pointing at a reference to entity name1, then replacing name1

by name2 means switching a reference from the �rst entity to the second. For
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example, replacing the word swap (line 24) by the word exchange replaces the

REFERENCING relationship (sort:st; swap) by the relationship (sort:st; exchange);

exchange is not declared in Figure 9.1. Graphically, this change means the deletion

of sort:st
r!swap and the addition of sort:st

r!exchange. Also, replacing the �rst

word list in line 23 by the word last replaces the relationship (swap:st; list) (list is

de�ned at line 8) by the relationship (swap:st; last) (last may be interpreted as that

entity de�ned in line 4). Notice that, in this case, the entity classes of list and last

are not the same.

The side e�ects of replacing the arc n
r
!name1 by the arc n

r
!name2 depend on

the existence of a node named name2 on the de�ning path of n and the similarity of

the entity classes of name1 and name2. Rules G:1 and J :3 may be a�ected by this

change and can be checked in the same way as described above.

The Rename Operation

With the cursor pointing at name1, renaming entity name1 as name2 is de�ned as

replacing every occurrence of the name1 in the text code by name2. Structurally, this

operation renames entity name1 as name2 leaving all relationships between this entity

and others the same. In terms of changes to the graph, this operation replaces the

name attribute of name1 by name2 leaving all arcs incident to this node unchanged.

For instance, renaming parameter sort (line 9) as sort list textually means replacing

all occurrences of sort (lines 9 and 27) by sort list. The structural component of

this system change is assigning a new name to the graph node corresponding to the

procedure sort.

The Rename operation can be de�ned as a sequence of replacements of an entity

name and its references by a new name. So the side e�ects of Rename are similar

to those of Replace; that is, rules A:3, G:1, and J :3 can be a�ected by the Rename
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system change. These side e�ects of this change can be collected by getting all of

the side e�ects of each replacement, individually.

The Delete Operation

This operation is de�ned to delete an entity de�nition/declaration or an entity

reference. The textual and structural components of this operation depends on the

entity's class. For example, consider the deletion of the OBJECT i (line 11). The

textual component of this deletion is the removal of this character from line 11;

meanwhile, its structural component includes the removal of the node i, the arc

book
l
!i, and the arc i

r
!Integer from the APDG. As another example, consider the

deletion of the PROCEDURE swap (line 12). The textual component of this system

change is the deletion of lines 12 through 19 from the text code. The structural

component of this change includes the following deletions:

� The deletion of the graph nodes corresponding to swap, p, q, temp, and swap:st

� The deletion of the arcs sort
l
! swap, swap

p
! p, swap

p
! q, swap

l
! temp,

swap
l
!swap:st, p

r
!Real, swap:st

r
!temp, etc.

The structural component of the Delete system change consists of the deletion of a

whole structure subtree and all references originated from the nodes of this subtree.

The side e�ects of deleting an entity de�nition/declaration are as follows:

� First, Delete may leave some entities of the program unused. For example,

the deletion of the OBJECT list leaves the TYPE class unused. No rules are

violated in this case.

� Secondly, Delete may leave some entities used but undeclared; thus, invalidat-

ing Rule G:1. For example, deleting the de�nition of the TYPE class (line 6)

leaves a reference by list (line 8) to an undeclared entity class.
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� Lastly, other side e�ects depend on the class of the entity being deleted.

{ Deleting a parameter of a procedure p leaves all p calls incorrect.

{ Deleting a STATEMENT entity of a procedure p leaves p without state-

ment, thus, invalidating Rule D:1

{ Deleting a FILE entity may leave some exported entities undeclared or

unde�ned.

The Add Operation

This system change is de�ned to add a de�nition/declaration of an entity or a

reference to an entity to the system. The following additions (to program book in

Figure 9.1) are examples of this system change:

� The addition of a third constant de�nition (say in a new line between line 3

and line 4)

� The addition of a new OBJECT variable after last in line 8

� The addition of a second index after the only array index of type class (line 6)

� The addition of a new procedure local to sort and before procedure swap (say

between, currently, lines 11 and 12)

� The addition of a write statement (this is a procedure call) to book's statement,

say after line 27

Notice that all additions are suggested at speci�c locations. The addition must

not violate the order of de�nitions assumed in the syntax rules of Pascal. For exam-

ple, no type de�nitions are allowed in a parameter's section of a Pascal procedure.
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Also, no procedure calls or procedure declarations can be inserted in a types de�-

nition section. The Add operation must reject any out-of-position insertions. The

cursor must be used to direct the steps of this operation.

As suggested before, each system change has two components: a textual compo-

nent and a structural component. The textual component of adding a de�nition of

a new entity is the insertion of a string of characters in a designated place in the

text code. The structural component of this addition is the insertion of a set of new

nodes and another set of arcs to the APDG corresponding to this code. Consider

the addition of a declaration of a new variable v after line 15 and v is of type char.

The textual component of this addition may be the addition of the line

v : char;

to the program book. As for the structural component, it consists of adding one

node (corresponding to v) and the arcs swap
l
!v and v

r
!char to the corresponding

APDG.

There are many possible side e�ects of an addition. These side e�ects are similar

to those mentioned in the previous sections. Following is a list of possible side e�ects

of the Add operation:

� Rules A:3, G:2, and J :3 may be a�ected by the addition of a new entity

de�nition/declaration. The detection of this violation is exactly the same as

described for the Rename operation

� Other additions may have di�erent side e�ects. For example, the addition of

a new formal parameter to the parameters' list of a procedure p, leaves all p

calls incorrect. Similarly, the addition of a new dimension to an array type t

may a�ect all references to objects of type t.
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Changes Through Text-Oriented Operations

For many reasons a maintenance programmer may prefer to textually edit a

program source �le without individually analyzing each change as the case is in

structure-oriented system changes. Among such reasons are the following:

� The programmer may feel uncomfortable with a structure-oriented operation

and prefer to use a more natural text-editing operation.

� The programmer may wish to suspend impact analysis of a change because he

may know the impact of the change or may be interested in the �nal state of

the �le.

� The programmer may not know the structural component of a change prior to

carrying it out.

The textual component of the system change in these cases is the only component of

interest to the programmer. Consider for example, changing the main data structure

of a module from a static array to a dynamic tree. Because each section of the related

submodule is going to be changed, it is easier to rewrite the whole module rather

than changing it. The structural components of such changes are not well-de�ned

and are not needed when the changes are carried out; the programmer changes the

text of the program �rst, and then may ask for the overall impact of all changes on

the �le. A supporting automatic aid must be able to sum up the structural changes

that are made and analyze them, accordingly.

SCAN allows the user to arbitrarily edit a �le and summarizes the impact of

the whole set of changes upon request. It does that by generating an APDG for the

new version of the edited �le and contrasting the old graph and the new graph; any

discrepancies can be then analyzed to �nd the resultant impact of the changes made.
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How do we contrast two APDGs? To answer this question, we have to answer

another one: when are two APDGs similar? The de�nition of graph similarity

determines the rules of contrasting two APDGs.

Two graphs, G1 and G2, can be thought of as similar if the components of G1

represent the same structural information as the components of G2. This requires

the existence of a correspondence between the nodes of G1 and G2 such that each two

corresponding nodes have the same attributes. (Recall that node attributes include

the entity name, class, context, and references.) So to contrast two graphs, one must

check whether for each node of the �rst, there exists a node of the second such that

the two nodes represent the same entity, in the same context, and have the same

references.

Contrasting two graphs according to this strict de�nition of graph similarity is

expensive and rarely used. In SCAN , graph similarity is de�ned more loosely. The

similarity of two nodes depends upon their class attribute. In the following subsec-

tions, we recursively de�ne the similarity of two graph nodes and explain how to

check this similarity. We �rst discuss the similarity of nodes corresponding to simple

entities and then discuss the similarity of nodes corresponding to composite entities.

The Similarity of o nodes

OBJECT entities are the simplest entities of a program; these include constants,

variables, enumerated-type values, and value or variable parameters. In an APDG,

OBJECTs are represented by o nodes.

Two o nodes are similar if they have the same name and class attributes and

reference similar entities. (In an APDG, a constant entity references its value, a

variable or parameter references its type, and an enumerated-type constant does not

reference any entity.) Two nodes that represent the same language-de�ned object

are always similar.
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To check the similarity of two o nodes, it is su�cient to check that they have the

same name and subclass and reference similar nodes (if any). If all these conditions

are met, the two o nodes are similar.
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The Similarity of t nodes

In APDGs, t nodes represent TYPE entities. According to the way these TYPE

entities are de�ned, they can be classi�ed into three subgroups:

� Language-de�ned types

This subgroup includes all types de�ned by the programming language. In

Pascal, for instance, this subgroup include the types integer, real, char. Nodes

(of di�erent graphs) that represent the same language-de�ned type are always

similar, unless a type is rede�ned by the programmer.

� Record types

A record type is de�ned by listing its �elds. These �elds are considered LOCAL

entities of the record type. The �elds of a record are represented by OBJECT

nodes that are adjacent to the record node by l edges.

Two nodes n1 and n2 (corresponding to record types) are similar if, in addition

to having the same name, they have similar �eld selectors. In other words,

every �eld of the �rst corresponds to a similar �eld of the second and vice

versa. The order of �elds is not important in this de�nition.

In SCAN , the similarity of two nodes n1 and n2 (corresponding to record

types) can be checked as follows:

1. Compare the name attributes of n1 and n2.

If Name(n1) 6= Name(n2) then n1 and n2 are not similar.

2. Compare the class attributes of n1 and n2.

If Class(n1) 6= Class(n2) then n1 and n2 are not similar.

3. Compare the sets Alt(n1) and A
l
t(n2).

(These two adjacency sets specify the �elds of the record types corre-

sponding to n1 and n2, respectively.)
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If there exists a node of one set that does not have a similar correspondent

in the other set then, n1 and n2 are not similar.

Checking set similarity is the same as checking set equality. An operation

can check if for every element of a set, there is a similar node in the other

set. Recall that record �elds are represented by o nodes whose similarity

can be checked as described before, in this section.

� Other types

This subgroup includes types de�ned by referencing other entities. It includes

types de�ned to be the same as previously de�ned types, subrange types, enu-

merated types, set types, pointer types, and array types. For example, consider

the following Pascal type de�nitions:

index1 = 1 .. 10;
index2 = 'a' .. 'z';
list = array [index1, index2 ] of integer;

The subrange type index1 is de�ned by referencing the constants 1 and 10;

the subrange index2 is de�ned by referencing the constants 'a' and 'z'; and

the array type list is de�ned by referencing the types index1, index2, and

integer. Except for enumerated types, the order of references is important in

these de�nitions and must be taken into consideration when contrasting two

nodes representing entities of this subgroup.

Two nodes n1 and n2 are similar if

1. n1 and n2 have the same name and subclass attributes and

2. if < r1; r2; � � � ; rn > is the sequence of nodes adjacent to n1 by r edges

and < r
0

1; r
0

2; � � � ; r
0

m > is the sequence of nodes adjacent to n2 by r edges

then, m = n and 8i; 1 � i � n, ri is similar to r0i.

In SCAN , a contrasting operation can check these conditions as follows:
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1. Compare the name and class attributes of n1 and n2.

This can be done in the same way as described above.

2. Compare the sequences of nodes referenced by n1 and n2.

If an element of the �rst sequence is not similar to its corresponding

element of the second then n1 and n2 are not similar.

The only remaining issue here is how to contrast these two sequences? It

is su�cient to iterate through the two lists of references and contrast their

corresponding nodes, and if there exists two dissimilar nodes, n1 and n2

are not similar.

The structure of an APDG eases this comparison. A list of all nodes

adjacent to a given node by r edges is kept as an attribute of this node;

the nodes of the list are given in the desired order. The comparison can

proceed accordingly.

The Similarity of p nodes

In APDGs, p nodes represent PROCEDURE entities. Two p nodes n1 and n2

are similar if they represent similar procedures. In this case, the following conditions

must be satis�ed:

� The two nodes must have the same name and subclass attributes; that is, both

nodes must represent either procedures, functions, procedure parameters, or

function parameters.

This condition can be checked by comparing the class attributes of n1 and n2.

� If n1 references node n then, n2 must reference a node similar to n. This means

that if the two nodes represent functions, the functions must have similar types.

To check this condition,
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(1) get Art (n1) and A
r
t (n2), and

(2) if (Art (n1) = ; and Art (n2) 6= ;) k

(Art (n1) 6= ; and Art (n2) = ;) k

(9x 2 Art (n1) and 9y 2 A
r
t (n2) and x is not similar to y)

then, n1 is not similar to n2.

� The sequences A
p
t (n1) and A

p
t (n2) must be similar; that is, corresponding

parameters of the two PROCEDURE entities associated with n1 and n2 must

be similar.

Checking this condition can be done be iterating through the lists A
p
t (n1) and

A
p
t (n2) and contrasting each pair of corresponding nodes for similarity.

� The sets Alt(n1) and A
l
t(n2) must be similar; that is, local components of the

two PROCEDURE entities associated with n1 and n2 must be similar.

The Similarity of f nodes

An APDG has exactly one f node; it is the top node of the graph. An f node

represents a FILE entity.

As mentioned at the beginning of this section, we contrast two versions of one

�le to �nd what �le interrelationships may be a�ected by changes to the old version.

It is important to decide whether the e�ects of changes made to this �le extend

beyond �le boundaries. For example, assume that procedure p is de�ned in �le f1

and is used in �le f2 and one of its parameters is deleted. This change a�ects all p

calls in f2 and, before running the program, these calls must be updated. Currently,

SCAN 's priority is to �nd as many global side e�ects as possible. It �nds whether a

new version of a �le has newly de�ned entities, deleted entities, or modi�ed entities.

SCAN can be modi�ed to search for more local discrepancies between the two �le

versions.
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Two f nodes n1 and n2 are similar if they have the same name attributes and

their adjacent nodes corresponding to global entities are similar. (Recall that (1)

the components of a FILE entity are considered local entities of this entity, (2) a

FILE entity does not have parameters, and (3) a FILE entity does not reference

any entities.) According to this de�nition, contrasting two �le nodes can proceed as

follows:

1. Check if n1 and n2 have the same name attributes.

2. Get the adjacency sets At(n1) and At(n2).

All global entities de�ned or used in the �le n1 are represented by nodes be-

longing to At(n1). Those nodes have a di�erent �le attribute from that of n1.

The global entities of n2 are characterized similarly.

3. Check the similarity of the two adjacency sets At(n1) and At(n2).

We discussed how to do this before, in this section.

Now we can answer the similarity of graphs question: how do we contrast two

graphs G1 and G2? The answer is: contrast their corresponding top f nodes. Due

to the recursive nature of the contrasting process, it will proceed to contrast the

adjacency sets of the two top nodes; contrasting two elements of these two sets may

require contrasting other sets of nodes; and so forth. The contrasting process can

decide whether two nodes are similar; if not, the process can point out the reasons

behind this decision. These reasons can be analyzed and if any have global e�ects

they can be reported.

There are two major di�culties that a�ect the design of a contrasting process:

� Two nodes may be contrasted several times.

Assume that node m1 is in G1 whose root is n1 and there are several paths from

n1 to m1. Assume also that m2 is G2 and there are several paths from n2 to
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m2. Then, m1 may be contrasted with m2 many times. To solve this problem,

the contrasting process can save lists of all similar and dissimilar nodes and

use them before any node comparisons.

� The contrasting process may, unnecessarily, traverse all nodes of a graph.

In deeply nested graphs (graphs corresponding to deeply nested �les), deep

nodes normally represent local entities. Since we compare two graphs to �nd

any discrepancies of global e�ects, contrasting deep nodes is unlikely desired.

Considerable time can be saved by contrasting only the �rst few levels of the

graph; that is, the highest levels of the structure tree embedded in the graph.

This comparison �nds the majority of wanted changes.

The implementation of a contrasting operation is one of the major priorities of future

work.



CHAPTER X

OVERVIEW OF A SCAN PROTOTYPE

During our research, we have implemented a prototype of SCAN in C; it runs on

SUN SPARC stations. In this chapter, we describe the components of this prototype.

We �rst describe an implementation of APDGs; this is the nucleus of SCAN . Then,

we describe a graph generator, a view generator, and the other prototype's compo-

nents. Finally, we report our experiences in developing and using the prototype.

Data Classes of the APDG Prototype

The APDG implementation is the nucleus of SCAN . This implementation con-

sists of several integrated classes of data objects, each of which characterizes a di�er-

ent data type. We implemented each class by choosing a convenient data structure

and de�ning a set of operations to manipulate this structure. These operations can

access the contents of another data object by using only the latter's public operations.

As mentioned in Chapter 6, a multiple-�le software system is represented by a

set of APDGs; each graph corresponds to a �le of the system. This representation

involves two types of information: information that describes global relationships

(that is, relationships between entities of di�erent �les of the system) and information

that describes local relationships (that is, relationships between entities of one �le).

134
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We implemented many classes of data objects to manage each of these two types of

information. The global information is managed by the De�ned In, Included In, and

Graph Index tables. The local information of each graph is managed by two classes

of objects: a class (Node Index) of indexes of graph nodes, and a class (Graph Node)

of graph nodes. Each graph node has information about an entity of the program.

Each abstract data type has its own operations. In the following subsections,

we informally describe the operations of each data type and describe brie
y how we

implemented each of it.

Included In Tables

An Included In table consists of a collection of records of the form (file1; file2),

where file1 and file2 are two FILE entities. Each record (file1; file2) represents

the relationship between file1 and file2 when the �rst is included in the second;

that is, when file2 has the Pascal statement \#include 0file01". There is only one

Included In table for each multiple-�le program.

� Included In operations

{ Create(table): to create an empty (Included In) table

{ Add(table; file1; file2): to add the given record (file1; file2) to the given

(Included In) table

{ Delete(table; file1; file2): to delete the given record (file1; file2) from

table

{ Search(table; file1; file2): to search table for a given record (file1; file2)

{ Save(table): to write the given table into external memory (disk)

{ Retrieve(table): to read the desired table from external memory (disk)
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� Included In implementation

We implemented an Included In table as a hash table of buckets each consisting

of a linearly linked list of records of two �le names. The hash function is de�ned

on �le1. We implemented the above list of operations, accordingly.

The De�ned In Table

A De�ned In table consists of a collection of records; each record (entity; file)

represents the relationship between a program entity and the �le that includes the

entity's de�nition. This table is similar to an Included In table; both are of the same

data type. The only di�erence is in the sizes of these two tables: the size of the

De�ned In table is larger than the size of an Included In table. Each program has

exactly one De�ned In table associated with it.

Graph Index Tables

A Graph Index table is a collection of records that speci�es which graphs are

active in internal memory. Each record is of the form (name; graph) and speci�es

the graph's name and the graph's root address. Each multiple-�le program has

exactly one Graph Index associated with it.

� Graph Index operations

{ Create Graph Index(table): to create a new empty (Graph Index) table

table

{ Add To Graph Index(name): to insert a record corresponding to the

graph name into the Graph Index table

{ Delete From Graph Index(name): to remove the record corresponding to

the given name from the Graph Index table
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{ Search Graph Index(name): to �nd the record corresponding to the given

graph name in the Graph Index table

� Graph Index implementation

We implemented a Graph Index table as an array of records of the form

(name; graph). Due to the small size of this table, we used linear search to

implement the Search operation. We used simple array and record operations

to implement the other Graph Index operations.

Node Index Tables

A Node Index table is a collection of nodes; each node represents a vertex of

an APDG G = (N ; E). A Node Index table is an implementation of one APDG.

The information in each node describes the relationships between this node and its

neighboring nodes. A multiple-�le program may have several (Node Index) tables.

� Node Index operations

{ Create(index): to create a new empty Node Index table (index)

{ Add(index; node): to insert a given node into the given index

{ Delete(index; node): to remove the given node from the given index

{ Find(index; identification number): to �nd the node address corre-

sponding to the given identi�cation number in the given index

{ Number of nodes(index): to �nd the number of nodes in this index

� Node Index implementation

We implemented each table as an array of pointers to graph nodes. The index

of a node's pointer is the identi�cation number of this node. All operation are

implemented using normal array operations.
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The Graph Node Data Type

An APDG node is a record of information related to one entity of a program.

Due to the nature of this information, this record has many di�erent �elds.

� Graph Node operations

The following is a sample list of the Graph Node operations. The actual list is

longer and some of them are primitive. We shall not mention all of them here.

{ Create New Node(node): to create a new graph node

{ Print(node): to display the contents of a given node of a graph

{ Add Location(node; location): to add a location to the list of locations of

a given node

{ Add Reference(node; reference): to add a reference to an adjacency list

of a given node

� Graph Node implementation

Figure 10.1 describes the actual data type de�nition of the class of graph nodes

in C. Several attributes are assigned to each node. Recall that a node's at-

tributes are characteristics of the program entity corresponding to this node.

We mention this de�nition here so as to give an overview of the information

that a prototype APDG has.

The �elds of a node can be classi�ed into four groups:

{ Identi�cation number, Entity name, and Entity Class

Each node is given an identi�cation number (such as the order in which

the node is created), a name (the name of node's corresponding entity),

and a node class (the class of the entity).
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typedef struct Graph Node /* Node attributes */

f

int IdNo; /* Identi�cation number */

char Name[MaxIdentLen]; /* Entity name */

int NodeClass; /* Entity Class */

struct GraphNode

*LeftmostChild, /* Links to represent */

*Parent, /* the context of the */

*LeftSibling, /* corresponding entity */

*RightSibling;

struct Adjacent /* Cross references */

f struct Adjacent *Next;

struct GraphNode *Reference;

g

*InEdges,

*OutEdges;

struct O�set /* Locations where the */

f struct O�set *Next; /* entity is de�ned or */

int loc; /* referenced */

g

*Locations;

g Graph Node ;

Figure 10.1: The De�nition of the Type Graph Node in C
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{ Parent, LeftmostChild, RightSibling, and LeftSibling

These �elds describe the parent-children relationships of the structure

tree of any APDG. The LeftSibling and RightSibling links are used to

link the children of one parent in the same order as the declaration of

their corresponding entities. Actually, this is a leftmost child right sibling

implementation of the structure tree embodied in an APDG. Structure

trees are generalized trees.

{ Adjacency lists

Each node n has two adjacency lists of pointers. The �rst consists of all

pointers to nodes adjacent to n by r edges; that is, all nodes m, such that

m
r
!n 2 E. The second consists of all pointers to nodes adjacent from n by

r edges; that is, all nodes m, such that n
r
!m 2 E. These �elds describe

the reference relationships between the entities of a �le of a program.

{ Locations

This a list of locations that specify where the entity is declared/de�ned

and where it is used in the source �le. We include this data so as to relate

an APDG with its corresponding source code.

A Prototype Graph Generator

We programmed a prototype graph generator that accepts syntactically correct

Pascal programs and constructs their corresponding attributed program dependency

graphs. It mainly consists of two components: a lexical analyzer and a graph con-

structor.
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The Lexical Analyzer

Using LEX, we generated a lexical analyzer for the Pascal language. This analyzer

reads a source �le as a sequence of characters and breaks it into a sequence of tokens.

For each token, this lexical analyzer returns the token's name and the token's class.

We modi�ed this analyzer so that it also returns the token's location in the source

�le.

The Graph Constructor

This is the major component of the Graph Generator. The purpose of this con-

structor is to generate an APDG representation for Pascal programs. It is similar

to a parser, but instead of generating a parse tree, it generates a set of APDGs.

We programmed a prototype graph constructor for the majority of the declarative

constructs of Pascal. Currently, the only statement-related information we store is

referencing information; that is, program entities referenced by a statement. This

information can be collected by scanning the statement part of each block.

When implementing a prototype graph constructor, we followed the same strategy

as outlined in Chapters 5 and 6. For each major construct of Pascal, we implemented

a procedure/operation that uses the construct's syntax rules to build the correspond-

ing subgraph of each instance of this structure. We are not giving any examples of

these processes here, because they are exact implementations of the algorithms men-

tioned in Chapters 5 and 6.

The advantage of having di�erent operations for di�erent constructs is that it

is possible to graph partially constructed programs and add major constructs to

existing programs.
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A Prototype Interface Manager

By extending Epoch, a version of UNIX GNU Emacs [Stallman, 88], we imple-

mented a prototype interface manager that interacts with the View Generator. GNU

Emacs is written in Lisp, and one of its nice features is that it allows the addition

of user-de�ned functions to its own. The Interface Manager can be used to generate

any of several program views and display them.

In SCAN , each entity class has a special menu of options that can be used to

generate meaningful views of the entities of this class. For example, the list of menu

items of a PROCEDURE-oriented menu includes the procedure listing, parameters,

local variables, global references, called procedures, and other calling procedures.

A TYPE-oriented menu may show the following items: the de�nition of the type,

where it is de�ned, and variables of this type. Entity subclasses may have their own

menus, also. An array-oriented menu can be de�ned to display (in addition to the

options given in the type menu) the dimensions of an array variable and the type of

the variable components.

The Interface Manager uses an intelligent cursor that knows whether it points at

an entity of the program or not. The maintenance programmer can move this cursor

to any occurrence of an entity and click it to generate the menu corresponding to the

entity's class and choose any of the items displayed. The Interface Manager creates

another window in which it displays the desired view.

Figure 10.2 shows a snapshot of a user interface taken when a user was running

both Emacs and SCAN . (Assume that, prior to this shot, the user generated the

APDG of this code.) He was browsing the source code shown in the upper-most left

window. The user wanted to get acquainted with procedure PrintList. He moved

the cursor to a character of the string \PrintList" and clicked it. As a result, a

menu (not shown here) appeared on the screen showing the information that can
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Figure 10.2: A Snapshot of a Multi-Window User Interface

be requested about a PROCEDURE entity. The user chose to examine the source

code of PrintList; it is shown in the left middle window. The choice of other menu

items would display di�erent information. In another action, the user wanted to

know what procedures call procedure Swap. He moved the cursor to an occurrence

of Swap, brought up the PROCEDURE menu by clicking any of its characters, and

chose the \calling procedures" item. As a result, a new window (a middle right

window) appeared showing a list of all procedures calling Swap. The other windows

had been generated in the same way.
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A Prototype View Generator

We programmed a large number of individual operations that generate a set of

a program views using the information available in the program's APDGs. These

operations interact with the objects of the APDG classes using the operations of

these classes. Following is a list of requests that the prototype View Generator

accepts and the responses to them. The majority of these requests consist of the

request name (one of the doubly quoted strings), a graph name (graph), and a node

identi�cation number (node). Other requests may have less or more parameters.

Normally, the requested information is related to the given node. All requests are

initiated at the given graph.

� A request for all procedures calling a given procedure

Request : \calls in" <graph> <node>

Response : (\Failure" <message> ) j (\Success" f<entity info>g )

� A request for all procedures called by a given procedure

Request : \calls out" <graph> <node>

Response : (\Failure" <message> ) j (\Success" f<entity info>g)

� A request for all external entities referenced by a given entity

Request : \externals" <graph> <node>

Response : (\Failure" <message> ) j (\Success" f<entity info>g )

� A request for information about the entity corresponding to a given node

Request : \getinfo" <graph> <node>

Response : (\Failure" <message> ) j (\Success" f<entity info>g )

� A request for all components of a given entity

Request : \locals" <graph> <node>

Response : (\Failure" <message> ) j (\Success" f<entity info>g)

� A request for all parameters of a given procedure/function

Request : \parameters" <graph> <node>

Response : (\Failure" <message> ) j (\Success" f<entity info>g )
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� A request for the node corresponding to a given entity (name) that is local to

a given entity/node in a given graph

Request : \searchdown" <graph> <node> <name>

Response : (\Failure" <message> ) j (\Success" f<entity info>g )

� A request for the node corresponding to a given entity (name) that is on the

de�ning path of a given entity (node) in a given graph

Request : \searchup" <graph> <node> >name>

Response : (\Failure" <message> ) j (\Success" f<entity info>g )

� A request for all entities of particular classes that are local to a given entity

(node)

Request : \traverse" <graph> <node> <class> ... <class>

Response : (\Failure" <message> ) j (\Success" f<entity info>g )

� A request for the type of a given entity (node) in the given graph

Request : \type" <graph> <node>

Response : (\Failure" <message> ) j (\Success" f<entity info>g )

� A request for information about the entity occupying a given location in a given

source �le

Request : \whatisat " <graph> <location>

Response : (\Failure" <message> ) j

(\Success" \De�nition" f<entity info>g ) j

(\Success" \Reference" f<entity info>g)

A response to a request is either a failure message (if the request is erroneous)

or a sequence of zero or more \entity info"s (entity information). The information

of each entity is represented by a �ve-tuple (node, class, name, �le, location), where

node is a node identi�cation number, name is the name of an entity corresponding to

this node, �le is the name of the �le this entity is de�ned/declared in, and location

is where (in this �le) the entity is de�ned/declared. Notice that each response has

information about the entity itself and its graph node.

Figure 10.3 illustrates how these requests can be used. It is an actual copy of

a snapshot of a protocol between the Interface Manager and the View Generator

while editing the same example we have been using in this thesis. This �gure is a
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) getinfo test2
( Failure \NODE IDENTIFICATION NUMBER IS MISSING.")

) getinfo test2 33
( Success (33 Procedure Sort test2 1342) )

) parameters test2 33
( Success (34 VarParam List test2 1352))

) type test2 34
( Success (15 Array ClassList test2 499) )

) calls in test2 33
( Success (1 Program Distribute test2 12) )

) calls out test2 33
( Success (37 Procedure Swap test2 1421) )

) viewtype test2 15
( Success (15 Array ClassList test2 499)
((((6 IntConstant 1 test2 0)(17 IntConstant 50 test2 0)))
(9 Record Entry test2 344)))

Figure 10.3: A Sample \Interface Manager" and \View Generator"
Protocol

sequence of requests (those are preceded by right arrows) made by the �rst and the

responses by the second. Each request consists of three components: the request's

name, the graph's name, and the node's identi�cation number. The third request,

for instance, is \parameters test2 33"; it is a request for the parameters of the 33rd

node (this node presumably corresponds to a PROCEDURE entity) in the APDG

corresponding to �le test2. The Interface Manager must know the requests it issues

to the View Generator and how to interpret the the latter's responses.

All responses of the View Generator are in Lisp-like lists; this choice was made

because the Interface Manger is implemented in Lisp. These responses are generic;

the Interface Manager can display selective information about any of them.
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A Prototype Graph Editor

We implemented a few graph-editing operations. Mainly, these operations are for

destroying a graph, saving a graph in an external �le, retrieving a graph from an

external �le, and removing a graph from internal memory.

� Save(graph): to write the given graph into an external �le without removing it

from internal memory

� Destroy(graph): to remove the active copy of the graph from internal memory

without saving it

� Remove(graph): to write the given graph into an external �le and remove it

from internal memory

� Retrieve(graph): to reconstruct the graph from its external �le; that is, from

where it was saved

Performance Evaluation

In this section, we describe the results of a performance experiment on SCAN 's

prototype. We chose a sample of Pascal programs, used this prototype to generate

their APDGs, and measured the APDG sizes and the time of their generation. We

also used the prototype to generate a sample of program views and measured the

time of their generation. We conducted the study for two groups of �les: a group of

small �les and a group of large �les. All results are included in Tables 10.1 { 10.3.

In the following subsections, we elaborate on this study.
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Performance Data for a Sample of Small Files

In this study, a small �le contains up-to 1,000 lines of source code. We chose a

sample of �les, the smallest of which contains 125 lines and the largest contains 925

lines. Some of the �les in this sample are single-�le programs; others are parts of a

multiple-�le program. All �les are commentless.

Table 10.1 contains the data we collected during this study. A row of this table

includes data associated with one �le; a column includes speci�c data about APDGs

of all �les. In the following paragraphs, we describe the nature of the data in each

column and the method we used to collect and analyze this data

Size of Time of

File Graph Graphing Graphing and Saving Compilation

3247 5401 0.10 0.13 2.65

4571 4656 0.10 0.12 2.3

6973 9902 0.20 0.28 2.4

7075 8183 0.20 0.23 3.2

7436 11690 0.24 0.36 2.8

8256 11763 0.23 0.37 2.8

10558 14573 0.35 0.46 3.5

13398 16901 0.50 0.60 4.4

13446 19998 0.50 0.67 5.8

14138 15838 0.40 0.56 5.1

16691 26401 0.65 0.90 7.35

20513 29548 0.75 0.98 7.85

Sizes are in bytes. Times are in seconds.

Table 10.1: Performance Data for a Sample of Small Files

Column 1 : This column contains the sizes of the source �les in bytes. The number

of lines of a �le f is not adequate to measure the size of f . In this study, we

preprocessed all sample �les in order to replace the \include statements" by the
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actual code of the included �le. If f 0 is the preprocessed version of f , then we

used the size of f 0 (in bytes) as a measure of the size of the program included

in f .

Column 2 : This column contains the sizes of the APDGs corresponding to the

�les in column 1. Since an exact copy of a graph can be saved in an external

�le using the Save graph-editing operation, the size of this �le can be used to

measure the size of the graph. (When written to external �les, node pointers

are replaced by node indices and null pointers are replaced by zeros. Dynamic

lists are terminated by a sentinel value.) We used this scheme to approximate

the sizes of APDGs corresponding to all �les in our sample; these sizes are

shown in column 2.

Column 3 : This column contains times of generating the APDGs. We used the

time command on UNIX platforms to approximate the CPU time taken during

graph generation. Column 3 contains the average time of many runs. This

data is important to indicate the speed of graph generation.

Column 4 : This column contains the times of generating and saving the APDGs

of the sample �les. It is important to estimate the time of saving a graph in an

external �le in order to decide whether storing a graph is a preferable choice

during SCAN runs.

Column 5 : This column contains the times of compiling the source �les. We

compare this time with the time of generating graphs in order to judge the

e�ciency of graph generation.

To analyze the data in Table 10.1, we drew the line graph of each column (except

column 4) versus column 1 (�le sizes). These line graphs are shown in Figures 10.4

and 10.5.
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Figure 10.4: Graph Sizes of a Sample of Small Files
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Figure 10.4 shows the line graph of the sizes of the APDGs versus the sizes of

their source �les. In this �gure, we notice that the size of the APDG corresponding

to a �le f is, approximately, 50% more than the size of f . The size of an APDG can

be considerably reduced by partitioning the header �les.

Figure 10.5 shows two line graphs showing the graphing and compilation times

versus �le sizes. By careful examination of these graphs we �nd that the time of

generating a graph corresponding to a �le f is not only small but also less than

20% of the required time to compile f . This indicates that APDGs are e�cient to

generate.

We also studied the e�ciency of view generation using APDGs. For this study,

we selected a set of 200 queries (like those shown in Figure 10.3) and found the time

SCAN takes to answer them using the APDGs corresponding to the �les in Table

10.1. The queries are of three types: queries that are answered by direct access to

speci�c information retained in the APDG, queries that require searching a limited

section of the APDG, and queries that require traversing the whole APDG. In this

study, all searches were limited to one graph at a time. The results are shown in

Table 10.2, and a line graph of these results is shown in Figure 10.6.

Studying the times in Table 10.3 shows the following:

� It takes a few milliseconds to answer a query using an APDG.

� The average time of answering a query is larger for large APDGs. One reason

for this increase is that many queries require graph traversal, the time of which

depends on the number of the graph components.

� The time of answering a query that requires traversal of several graphs depends

on whether these graphs are present in internal memory at the time of querying.

If a graph is needed and it is not present, it must be generated (or retrieved if

it had been saved). This causes extra overhead.
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File Size Time of Answering 200 Queries using one APDG

3247 0.35

6973 0.40

7436 0.45

8256 0.47

10558 0.50

13398 0.50

13446 0.65

16691 0.65

20513 0.70

Sizes are in bytes. Times are in seconds.

Table 10.2: Querying Times for a Sample of Small Files
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Figure 10.6: Querying Times for a Sample of Small Files
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Performance Data for a Sample of Large Files

In this study, a large program consists of thousands of lines of source code. We

used a sample of �ve single-�le large programs to complete the evaluation of the

performance of SCAN . The sizes of these programs are between 900 and 10,000

lines of source code. As we did for small programs, we generated their graphs, saved

these graphs in external �les, and measured the sizes of these �les. We also measured

the graphing times, graphing and saving times, and compilation times associated with

these �les. All results are shown in Table 10.3. Various line graphs of these results

are shown in Figures 10.7, 10.8 and 10.9.

Size of Time of

File Graph Graphing Graphing and saving Compiling Querying

16691 26401 0.65 0.90 7.35 0.65

20513 29548 0.75 0.98 7.85 0.70

61509 84485 2.7 3.4 10.3 1.10

122960 176246 6.6 8.1 27.4 1.95

184415 272074 11.7 14.0 51.3 2.65

Sizes are in bytes. Times are in seconds.

Table 10.3: Performance Data for a Sample of Large Files

By examining the line graphs of Figures 10.7, 10.8, and 10.9, we �nd that the

results are similar to those corresponding to smaller �les. More speci�cally, the size

of an APDG corresponding to a �le f is about 150% of the size of f , the time

of generating this graph is about 20% of the time of compiling f , and the time of

answering a query about a program is few milliseconds. This indicates that APDGs

are scalable to large programs and so is SCAN . However, more work is needed to

decide this scalability issue, especially, when dealing with multiple-�le programs.
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Experience Gained from the Prototype Implementation

Our experience in developing and using the SCAN prototype shows the following:

� An APDG complements the source code of a software system.

An APDG incorporates a variety of information, most notably, the structural

information of the program. This information is automatically derivable from

the code of the program and its integrity is preserved by the graph-editing

operations. As we did show, this information can be used to support software

understanding and impact analysis.

A related point is that an APDG cannot replace the source code of its corre-

sponding program. Some program information (such as comments, data-
ow

information control-
ow information, and semantic-related information) are
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not included in APDGs. Even if we include large sections of this information

in any representation, the code remains invaluable. Thus, we retain the source

code of a program as a primary component of a software representation and

the program's APDGs as a complementary component.

� An APDG can be e�ciently stored in external memory.

The size of the graph corresponding to source �le f depends on the number

of entities of the program de�ned in f and in any �le included in f and their

interactions. (Recall that an entity is represented by a graph node and a

relationship is represented by two adjacency-list nodes.)

As we showed in the previous section, the size of a graph corresponding to a

�le f is, approximately, 150% of the size of f . Ths size of an APDG can be

considerably reduced by partitioning the header �les. Moreover, the size of an

APDG external copy can be reduced by improving the format of the saved

information.

In any case, we believe that the size of a graph corresponding to any �le is not

large and encourages the use of such representations to alleviate the problems

of change analysis.

� Graph generation is easy and e�cient.

APDG generation is similar to parsing; the time of graph generation depends

on the size of the �le and the information to be collected and retained in the

graph. Unsurprisingly, we found that the the time required to generate the

APDG of a given Pascal �le f (by SCAN 's graph generator) is considerably

less than the time of compiling f (by UNIX pc compiler).

Considering the small time of generating an APDG, one might ask whether it

is necessary to save an APDG permanently in external memory and retrieve it

when needed. Generating a graph, in its current form, seems to be the better
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choice. However, this choice will not be so if an APDG is loaded with other

program information that needs longer times to derive or cannot be derived

automatically.

A problem of graph generation is that it is language dependent. For instance,

generating APDGs from C programs requires a graph generator that knows the

syntax rules of C. Automatic derivation of a generator or any of its components

from the grammar speci�cation of a programming language could solve this

problem.

� Generating program views seems fast.

Generating program views as described in Chapter 8 is fast. The graph-based

representation of a software system contains a wide variety of information nec-

essary for view generation. The availability of such information and the way

in which it is retained make view generation a fast process.

� APDGs can be used to represent large-scale programs.

We showed that APDGs can represent multiple-�le programs. This illustrates

one way in which APDGs can represent large-scale programs. We also showed

that APDGs can represent single-�le large-scale programs. Both facts indi-

cate that APDGs are applicable to large-scale programs as well as small-scale

programs.



CHAPTER XI

CONCLUSIONS AND DIRECTIONS FOR FUTURE

WORK

Conclusions

Among all software representations, the source code of a software system is the

most widely used. However, due to many reasons, changing code is di�cult and

costly; one reason is that a change analyst �nds it very di�cult and time-consuming

to do change analysis, especially to understand the code or �nd the impact of pro-

posed changes to it. Since there is no alternative representation in sight, we can

support the analyst by developing automatic aids to do the drudge work of software

understanding and impact analysis, leaving intelligent decisions to him. The main

goal of our research is to study the basis for the development of such aids.

In our research, we accomplished the following:

� We selected an approach to support software maintenance.

E�ective and e�cient change analysis aids must know the structure of the pro-

gram being examined. Since the code of a software system obscures the system's

structural information, it is not ideal for the construction of the maintenance

aids. So we suggest deriving vital structural information from the source code,

158



159

retaining it in a suitable information base, using this base to generate program

views (to support code understanding), and �nding the impact of proposed

changes to this code. The derivation of such information and its manipulation

should be automatically supported.

� We de�ned APDGs to model program information vital for change analysis and

implemented them.

The structural information we considered in our research describes the entities

of the system and the use relationships between them. We represented this

information using APDGs; one graph for each �le of the system. We used

these graphs to represent multiple-�le programs written in Berkeley Pascal.

We believe that these graphs are general enough to represent programs written

in several other languages.

� We developed an APDG generator.

We designed a graph generator for (Berkeley) Pascal programs; it takes the

source code of any �le and builds its corresponding APDG. We implemented

a prototype graph generator to handle the majority of constructs of Pascal.

We also showed that generating graphs is e�cient. Graph generators for other

languages can be developed similarly.

� We designed a program view generator and implemented a prototype of it.

APDGs are a repository of well-structured program information that can be

used to generate a wide variety of program views. The availability of such

views helps the programmer understand the program being changed. We imple-

mented a prototype view generator that can be used to generate many program

views. Each view has textual and structural information about an entity or a

set of related entities and can be displayed in di�erent forms. View generation

is language independent.
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� We de�ned a rule base and implemented several rule checkers.

APDGs play another rule in supporting a maintenance programmer. The

structural information contained in them and the constraints on this informa-

tion can be used to predict the impact of any change to their corresponding

program code. We built a rule base that contains many constraints of any

APDG corresponding to a Pascal program �le and justi�ed every rule. Al-

though the rule base is incomplete, we showed how to collect these rules and

how to check for their validity.

� We designed many system-change operations and implemented several of them.

We designed several graph-editing operations to destroy, save, and retrieve

any graph. We designed several structure-oriented operations that required

an intelligent cursor while editing the text of the program. These operations

include a rename, replace, delete, and add operations. We also designed an

operation to contrast the graphs of two versions of a source �le and �nd any

changes of global impact.

We have not yet completed the implementation of some of SCAN 's components.

One of these components is the Impact Analyzer. As we demonstrated in Chap-

ter 9, checking whether a rule is satis�ed for a given node can be done using set

operations on the attributes of graph nodes. The Interface Manager is another

component that needs improvement. We would like to have a multi-window user

interface that supports text-oriented and structure-oriented editing of program �les

using SCAN components e�ectively. With this we could combine text editing and

impact analysis together in the same editing session.

During our work on the design of SCAN and the implementation of its prototype,

we have done enough work to conclude that basing SCAN on APDGs eases its

development and improves its functionality. We conclude also that the approach we

have pursued to support a maintenance programmer is promising.
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Limitations of SCAN

The analytical capabilities of SCAN depend on the program information retained

in its APDGs. As we de�ned them, APDGs retain program declarative information

at the granularity level of �les, procedures, types, and variables; APDGs do not, for

example, retain any information on the structure of an expression or the structure of

a while-do statement. On one hand, the absence of this information economizes the

the use of APDGs. On the other hand, this absence limits the analytical capabilities

of the system using these graphs. Following is a sample of the limitations of SCAN in

its current state:

� SCAN does not perform control-
ow or data-
ow analysis.

As just mentioned, APDGs do not have information that is necessary to

�nd the impact of a change on the 
ow of control of the system. Thus,

SCAN cannot �nd whether a statement is dead because the condition of its

execution is always false; SCAN cannot �nd if assigning a new value to vari-

able x will ever a�ect the value of another variable y. However, we like to

emphasize here that SCAN can be extended to perform such analysis.

� SCAN does not handle run-time information.

The main idea behind SCAN 's approach to software change analysis is to

employ structural information derivable from the source code of the system to

support the analysis process. In its current state, SCAN does not handle run-

time annotations. Although this information is necessary for change analysis,

the management of this information is not an objective of SCAN .

� SCAN does not analyze the e�ect of a change on the semantics of a software

system.



162

This is a result of the lack of semantic information about the statements of the

system.

Directions for Future Work

We intend to continue SCAN -related work in the future. There are many direc-

tions in which we can pursue this work. In the following items we describe several

of these directions:

� Using APDGs to represent systems in other languages

Although all examples in this thesis are in Pascal, we believe that APDGs can

be used to represent systems written in other languages such as C. A system in

C consists of one or more �les each of which consists of a sequence of variable,

type, or function declarations that interact with each other according to C scope

rules. Each function has a list of parameters and a block; this block consists

of local declarations and a statement part. Generally speaking, a C program

consists of entities such as �les, functions, constants, and types. These entities

interact with each other in ways that are similar to those found in a Pascal

program. For instance, functions call functions, enumerated types are de�ned

by listing their constants, structure types consist of �elds, and arrays have

dimensions and a component's type. These are the relationships represented

in an APDG.
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As an example, consider the following de�nition of the function swap in C:

void swap (p; q)
int � p; �q;

f
int temp;

temp :=�p;
�p := �q ;
�q := temp;

g

This de�nition is similar to the Pascal de�nition of Swap shown in Figure 4.1.

Swap has two parameters (namely, p and q) of type int �. It has a local variable

(temp) and a statement part that references the objects p, q, and temp.

int * p q temp swap.st

swap

int

Figure 11.1: An Example APDG of a C Function

Using the same conventions we used to graph Pascal programs, we get an
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APDG representation of this piece of C code. The resulting graph could look

like Figure 11.1. Notice that there are three o nodes, two t nodes, one p node,

and one s node. Notice also that the arcs representing the relationships be-

tween swap and its parameters p and q are p edges (narrow edges), the arc

representing the relationship between swap and temp is an l edge (wide edge),

and the arcs representing the relationships between p and q and their type are

r edges (dotted edges). This graph is similar to graph of Swap in Figure 4.2

with the exception of the t node corresponding to the type (int�).

The possibility of representing programs written in C using APDGs implies

the application of the graph-based approach to these systems. In this case, we

have to build a C-speci�c graph generator that can use the graph operations

(see Figure 3.1) to build APDGs according to structuring mechanisms of C.

These new graphs may have their own constraints that are di�erent from the

constraints of Pascal-related graphs. In other words, the Rules Base must be

modi�ed to acquire new rules that apply to graphs of systems written in C. If

necessary, the Impact Analyzer would be modi�ed to check the validity of any

new rules.

The generality of the graph-based approach is a desirable characteristic of any

change-analysis system of tools. Because of this property, it is possible to

apply the approach to systems written in di�erent languages or to apply it to

a system written in many languages.

� Studying the formal properties of the APDGs

In Chapter 7, we listed many constraints that must hold in order that a set of

APDGs represent a valid Pascal program. We divided these constraints into

two classes: a class of constraints that are true for Pascal-related graphs and
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another class of constraints that are true for graphs related to all languages.

We emphasized the importance of these constraints for impact analysis.

The set of constraints we have just mentioned, is incomplete; we have not

included all constraints in the Rule Base. The Rule Base does not include any

constraints that specify the relationships between a record type and its �eld

selectors, the relationships between an array entity and its dimensions, the

relationships between a procedure or function parameter and its references,

and so forth. The completion of this base is a requirement for building a

powerful impact analyzer for Pascal programs.

We also illustrated how to use these constraints to show overall properties of

any APDG. These properties are important to the de�nition of special graph

operations. For instance, a function that �nds the nodes corresponding to

entities in the scope of a given entity can be de�ned to search a particular

subgraph of the whole APDG. The study of these properties needs to be

completed, also.

Another aspect of this branch of study is to list the constraints of APDGs

related to several languages. The size of each list depends on the size and

complexity of the programming language. Given a set of listings, we can �nd

all constraints common to all of them; these are general constraints. All others

will be language speci�c. This study is needed to build a change analyzer that

can handle systems of di�erent languages and reason about them.

� Automatic generation of individual SCAN components

SCAN consists of many components some of which (such as the graph gen-

erator and the impact analyzer) are language dependent. Using SCAN for

di�erent languages requires the development of the language-dependent com-
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ponents for each language. Automatic generation of such components from

appropriate speci�cations saves precious times and resources. We believe that

a graph generator can be generated from the grammar of a programming lan-

guage. We also believe that rule checkers can be generated from appropriately

de�ned graph rules. We like to study these possibilities.

� Program restructuring and redocumenting

APDGs are derived from the source code of a software system in order to de-

scribe the structure of the system. An APDG can be considered an abstract

view of the system implying that APDG generation is a redocumentation pro-

cess. Also, APDGs can be analyzed to study the quality of a software structure.

Accordingly, these graphs can be considered restructuring tools.

We like to study the possibility of modifying SCAN to to support program

restructuring and redocumentation.
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APPENDIX

Syntax Rules of Major Constructs of Standard Pascal

This subset of syntax rules describes the major constructs of standard Pascal

that we will represent as labeled program graphs. It include the rules that de�ne

procedures, arrays, and records. All rules are written in simple BNF notation.

hprocedure declaration i ::=hprocedure heading i hblock i

hprocedure heading i ::= h identi�er i ( h formal parameter section i

f; h formal parameter section i g );

hformal parameter sectioni ::= hparameter group i

j var hparameter group i

j procedure h identi�er i

j function hparameter group i

hparameter group i ::= h identi�er i f ; h identi�er i g : htype identi�eri

hblock i ::= h type de�nition part i h variable declaration part i

hprocedure declaration part i h statement part i

htype de�nition parti ::= empty

j type h type de�nition i f ; h type de�nition i g;

h type de�nition i ::= h identi�er i = h type i
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h type i ::= h simple type i

j h structured type i

h structured type i ::= h array type i

j h record type i

j h set type i

j h�le type i

h array type i ::= array [ h index type i ] of h component type i

h index type i ::= h simple type i

h component type i ::= h type i

h simple type i ::= h scalar type i

j h subrange type i

h record type i ::= record h�eld list i end

h�eld list i ::= h record section i f ; h record section i g

h record section i ::= h�eld identi�er i f ; h�eld identi�er i g : h�eld type i

h�eld type i ::= h type i

h variable declaration i ::= empty

j var hdeclaration section i f ; hdeclaration sectioni g;

hdeclaration section i ::= h identi�er i f ; h identi�er i g : h type i



BIBLIOGRAPHY

169



170

BIBLIOGRAPHY

[Ada Reference Manual, 80] Department of Defense, Reference Manual for the Ada

Programming Language, July 1980.

[Aho et al., 86] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles,

Techniques, and Tools, Addison-Wesley, Reading, MA, 1986.

[Ambras and O'Day, 88] J. Ambras and V. O'Day, \MicroScope: A Knowledge-Based

Programming Environment," IEEE Software 5 (May 1988), pp. 50{58.

[Basili and Mills, 82] V. R. Basili and H. D. Mills, \Understanding and Documenting

Programs," IEEE Transactions on Software Engineering, vl. SE-8, no 3 (May

1982), pp. 270{283.

[Barnes, 90] J. G. P. Barnes, Programming in Ada, Third Edition, Addison-Wesley,

Reading, MA, 1990.

[Boehm, 81] B. W. Boehm, Software Engineering Economics, Prentice-Hall, Engle-

wood Cli�s, NJ, 1981.

[Brandes and Lewerentz, 85] T. Brandes and C. Lewerentz, \GRAS: A Non-Standard

Data Base SystemWithin a Software DevelopmentEnvironment," Proceedings

of the Workshop on Software Engineering Environments for Programming-in-

the-Large, Harwichport, MA, (June 9{12, 1985), pp. 113{121.

[Brooks, 83] R. Brooks, \Towards a Theory of the Comprehension of Computer

Programs," Int. J. Man-Mach Stud., 18, 1983, pp. 543{554.

[Calliss et al., 88] F. W. Calliss, M. Khalil, M. Munro, and M. Ward, \A Knowledge{

Based System for Software Maintenance," Proceedings of the 1988 Conference

on Software Maintenance, Phoenix, AZ, (Oct.24{27 1988), pp. 319{324.

[Chen et al., 90] Y. F. Chen, M. Nishimoto, and C. V. Ramamoorthy, \ The C In-

formation Abstractor System," IEEE Transactions on Software Engineering,

Vol. SE-16, No. 3 (March 1990), pp. 325{334.

[Collofello and Orn, 88] J. S. Collofello and M. Orn, \A Practical Software Mainte-

nance Environment," Proceedings of the 1988 Conference on Software Main-



171

tenance, Phoenix, AZ, (Oct 24{27, 1988), pp. 45{51.

[Corman et al., 90] T. H. Corman, C. E. Leiserson, and R. L. Rivest, Introduction to

Algorithms, MIT Press, Cambridge, MA, 1990.

[Engels et al., 87] G. Engels, M. Nagl, W. Schefer, \On the Structure of Structure-

Oriented Editors for Di�erent Applications," Proceedings of the ACM SIG-

SOFT/SIGPLAN Software Engineering Symposium on Practical Software De-

velopment Environments, Palo Alto, CA, (Dec. 9{11, 1986), pp. 190{198,

SIGPLAN Notices, 22:1 (Jan. 1987).

[Even, 79] S. Even, Graph Algorithms, Computer Science Press, Potomac, MD, 1979.

[Freedman and Weinberg, 81] D. P. Freedman and G. M. Weinberg, \A Checklist for

Potential Side E�ects of Maintenance Change," Techniques of Program and

System Maintenance, G. Parikh, (ed.), Winthrop Publishers, 1981, 57{64.

[Garlan et al., 87] D. Garlan, C. W. Krueger, B. J. Staudt, \A Structured Ap-

proach to the Maintenance of Structure-Oriented Environments," Proceedings

of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Prac-

tical Software Development Environments, Palo Alto, CA, (Dec. 9{11, 1986),

pp. 190{198, SIGPLAN Notices, 22:1 (Jan. 1987).

[Glass and Noiseux, 81] R. L. Glass and R. A. Noiseux, Software Maintenance Guide-

book, Prentice-Hall, Englewood Cli�s, NJ, 1981.

[Habermann and Notkins, 86] A. N. Habermann and D. Notkins, \Gandalf: Soft-

ware Development Environment," IEEE Transactions on Software Engineer-

ing, Vol. SE-12, No. 12 (Dec. 1986), pp. 1117{1127.

[Hood et al., 87] R. Hood, K. Kennedy, H. A. Muller, \E�cient Recompilation of

Module Interfaces in a Software Development Environment," Proceedings of

the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical

Software Development Environments. Palo Alto, CA, (Dec. 9{11, 1986), pp.

180{187, SIGPLAN Notices, 22:1 (Jan. 1987).

[Jensen and Wirth, 85] K. Jensen and N. Wirth, Pascal User Manual and Report,

Third Edition, (prepared by A. B. Mickel and J. F. Miner), Springer-Verlag,

New York, NY, 1985.

[Joy et al., 83] W. N. Joy, S. L. Graham, C. B. Haley, M. K. McKusick, and P. B.

Kessler, Berkeley Pascal User's Manual, Version 3.0, Computer Science Divi-



172

sion, Department of Electrical Engineering and Computer Science, University

of California, Berkeley, CA, July 1983.

[Kernighan and Ritchie, 88] B. W. Kernighan and D. M. Ritchie,The C Programming

Language, Second Edition, Prentice-Hall, Englewood Cli�s, NJ, 1988.

[Leblang and Chase, 87] D. Leblang and R. P. Chase, Jr., \Parallel Software Con-

�guration Management in a Network Environment," IEEE Software 4 (Nov.

1987), pp. 28{35.

[Letovsky, 86] S. Letovsky, \Cognitive Process in Program Comprehension," In, E.

Soloway and Iyengar, Empirical Studies of Programmers, Albex, Norwood,

NJ, 1986, pp. 58{79.

[Letovsky and Soloway, 86] S. Letovsky and E. Soloway, \Delocalized Plans and

Program Comprehension," IEEE Software 3 (May 1986), pp. 41{49.

[Lewerentz, 88] C. Lewerentz, \ Extended Programming in the Large in a Software

Development Environment," Proceedings of the ACM SIGSOFT/SIGPLAN

Software Engineering Symposium on Practical Development Environments,

Boston, MA, (Nov. 28{30, 88), pp. 173{182, SIGPLAN Notices, 23:7 (July

1988).

[Lientz and Swanson, 80] B. P. Lientz and E. B. Swanson, Software Maintenance

Management: A Study of the Maintenance of Computer Application Software

in 487 Data Processing Organizations, Addison-Wesley, Reading, MA, 1980.

[Linton, 84] M.A.Linton, \Implementing Relational Views of Programs," Proceed-

ings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on

Practical Software Development Environments. Pittsburgh, PA, (April 23{25,

1984), pp. 132{140, SIGPLAN Notices, 19:5 (May 1984).

[Littman et al.], 86] D. C. Littman, J. Pinto, S. Letovsky, and E. Soloway, \Men-

tal Models and Software maintenance," In E. Soloway and S. Iyengar (eds.),

Empirical Studies of Programmers, Albex, Norwood, NJ, 1986, pp. 80{98.

[Moser, 90] L. E. Moser, \Data Dependency Graphs for Ada Programs," IEEE Trans-

actions on Software Engineering Vol. SE-16, No. 5 (May 1990), pp. 498{507.

[Munro and Robson, 87] M. Munro and D. J. Robson, \An Interactive Cross Refer-

ence Tool for Use in Software Maintenance," Proceedings of the Twentieth An-

nual Hawaii International Conference on System Sciences, Vol. 2, Software,



173

B. D. Shriver (ed.), Western Periodicals Company, CA, 1987, pp. 64{70.

[Parikh, 88] G. Parikh, \ Software Maintenance: Penny Wise, Program Foolish,"

Techniques of Program and System Maintenance, G. Parikh (ed.), QED In-

formation Sciences, Wellesly, MA, 1988, pp. 29-32.

[Rajlich, 85] V. Rajlich, "Stepwise Re�nement Revisited," Journal of Systems and

Software, Vol. 5, No. 1 (March 1985) , pp. 80-88.

[Rajlich et al., 88] V. Rajlich, N. Damaskinos, P. Linos, J. Silva, and W. Khor-

shide, \Visual Support for Programming-in-the-Large," Proceedings of the

1988 Conferance on Software Maintenance, Phoenix, AZ, (Oct 24-27, 1988)

pp. 92-99.

[Ramamoorthy et al., 90] C. V. Ramamoorthy, Y. Usuda, A. Prakash, and W. T.

Tsai, \The Evolution Support Environment System," IEEE Transactions on

Software Engineering, Vol. SE-16, No. 11 (Nov. 1990), pp. 1125-1134.

[Re�ne, 85] REFINE User's Guide, Reasoning Systems, Inc., Palo Alto, CA, 1985.

[Reiss, 84] S. P. Reiss, \Graphical Program Development with PECAN Program De-

velopment Systems," Proceedings of the ACM SIGSOFT/SIGPLAN Software

Engineering Symposium on Practical Software Development Environments,

ACM SIGPLAN Notices 19 (May 1984), pp. 30{41.

[Reps, 84] T. Reps, Generating Language-Based Environments. MIT Press, Cam-

bridge, MA, 1984.

[Rochkind, 75] M. J. Rochkind, \The Source Code Control System," IEEE Transac-

tions on Software Engineering, Vol. SE-13, No. 10 (Oct. 1975), pp. 255-265.

[Robson et al., 91] D. J. Robson, K. H. Bennet, B. J. Cornelius, and M. Munro,

\Approaches to Program Comprehension," Journal os Systems Software, 14,

1991, pp. 79{84.

[Schach, 90] S. R. Schach, Software Engineering, Aksen Associates, Homewood, IL,

1990.

[Sommerville, 89] I. Sommerville, Software Engineering, Third Edition, Addison-

Wesley, Reading, MA, 1989.

[Stallman, 88] R. M. Stallman, GNU Emacs Manual for Unix Users, Sixth Edition,

Feb. 1988.



174

[Standish, 84] T. A. Standish, \An Essay on Software Reuse," IEEE Transactions

on Software Engineering, Vol. SE-10, No. 5 (May 1984), pp. 494{497.

[Stonebraker et al., 76] M. Stonebraker, E. Wong, and P. Kreps, \The Design and

Implementation of INGRES," ACM Transactions on Database Systems, Vol.

1, No. 3 (Sept. 1976), pp. 189{222.

[Teitelbaum and Reps, 81] T. Teitelbaum and T. Reps, \The Cornell Program Syn-

thesizer: A syntax-directed programming environment," Commun. of the

ACM, 24:9 (Sept. 1981), pp. 563{573.

[Tenenbaum it et al., 90] A. M. Tenenbaum, Y. Langsam, M. J. Augenstein, Data

Structures Using C, Prentice-Hall, Englewood Cli�s, NJ, 1990.

[Tichy, 85] W. F. Tichy, Software{Practice and Experience, 15 (July 1985), pp. 637-

654.

[Ullman, 82] J. D. Ullman,Principles of Database Systems, second Edition, Computer

Science Press, Potomac, MD, 1982.

[Wilde and Thebaut, 89] N. Wilde and S. M. Thebaut, \The Maintenance Assistant:

Work in Progress," Journal of Systems and Software, Vol. 9, No. 1 (Jan.

1989), pp. 3{17.


