
.

ExpEYES Programmer's Manual

Ajith Kumar B.P

Inter-University Accelerator Centre

New Delhi 110 067

Version 1 (May, 2011)

http://expeyes.in

1

Contents

1 Introduction 4

1.1 Software . 5

2 Hardware Communication 6

2.1 Digital Inputs (ID0 and ID1) . 6

2.1.1 read_inputs . 6

2.2 Digital Outputs (OD0 and OD1) . 7

2.2.1 write_outputs . 7

2.3 Analog Outputs . 7

2.3.1 set_upv . 7

2.3.2 set_current . 7

2.3.3 set_bpv . 8

2.4 Analog Inputs . 8

2.4.1 get_voltage . 8

2.4.2 capture . 8

2.4.3 capture01 . 9

2.5 Capture modi�ers . 9

2.5.1 disable_actions, enable_wait_high, (low, falling or rising) 10

2.5.2 enable_set_high, enable_set_low . 10

2.5.3 enable_pulse_high, enable_pulse_low 10

2.6 Waveform Generation . 11

2.6.1 set_sqr1 . 11

2.6.2 set_sqr2 . 11

2.6.3 set_pulse . 12

2.7 Frequency Counters . 12

2.7.1 digin_frequency . 12

2.7.2 ampin_frequency . 12

2.7.3 sensor_frequency . 13

2.8 Passive Time Interval Measurements . 13

2.8.1 r2ftime, f2rtime, r2rtime, f2ftime . 13

2.8.2 multi_r2rtime . 13

2.9 Active Time Interval Measurements . 14

2

2.9.0.1 set2rtime, set2ftime, clr2rtime, clr2ftime 14

2.9.0.2 pulse2rtime, pulse2ftime . 14

2.9.0.3 set_pulse_width . 14

2.9.0.4 set_pulsepol . 15

2.10 Disk Writing . 15

2.10.1 save_data . 15

3 Data processing 16

3.0.2 �t_sine . 16

3.0.3 �t_dsine . 16

3.0.4 �t_exp . 17

3.0.4.1 �t . 17

4 Experiments 18

4.1 IV curve of a resistor . 18

4.2 Transient response of RC circuits . 19

3

Chapter 1

Introduction

The design of expEYES is shown schematically in the block diagram below. Python functions

are available for accessing every feature of the expEYES hardware, like measuring a voltage

or frequency, setting a voltage or frequency, measuring time intervals etc. Data analysis and

graphics functions are given in two separate modules. Application programs are developed

using these modules.

The top panel showing the 32 Input/Output connectors.

4

1.1 Software

There are mainly three modules under the expeyes package:

• eyes.py : hardware communication

• eyeplot.py : Graphics using using Tkinter module

• eyemath.py : data analysis using modules numpy and scipy

They can be installed by using the .tgz �les or the .deb packages provided on http://expeyes.in.

5

Chapter 2

Hardware Communication

The module expeyes.py contains all the functions required for communicating to the hardware

in addition to some utility functions. The functions are inside a class and the open() function

returns an object of this class if expEYES hardware is detected. After that the function calls

to access expEYES are done using this object, as shown in the example below.

import expeyes.eyes # import the eyes library

p = expeyes.eyes.open() # returns an object if hardware is found

print p.get_voltage(0) # print the voltage at input A0

The hardware communication functions can be broadly grouped into analog inputs, analog

outputs, digital inputs, digital outputs, time interval measurements, waveform generation etc.

For making plots using the data from expEYES, we will use the matplotlib package1.

2.1 Digital Inputs (ID0 and ID1)

You can connect them externally to ground or 5 volts , to make the voltage level HIGH or

LOW. The software can read the voltage level present the inputs. A voltage less than 1 volt is

taken as a LOW or 0. Anything greater than 2 volts is treated as a HIGH or 1.

One of the powerful feature of digital inputs is the ability to measure the time between level

transitions with microsecond resolution.

2.1.1 read_inputs

Returns an integer whose 2 LSBs represents the voltage level present at the Digital Inputs ID0

& ID1.

print p.read_inputs() & 3 # print only the 2 LSBs

will print the number 3 (11bin) if nothing is connected to the sockets, they are all internally

pulled up to 5 volts. With only ID0 grounded, the result will be 2, (10bin).

1You can learn more about this package from http://matplotlib.sourceforge.net . The python book at
http://expeyes.in/sites/default/�les/mapy.pdf gives an introduction to matplotlib.

6

2.2 Digital Outputs (OD0 and OD1)

You can set the voltage level on them to LOW or HIGH volts using software. The �rst Digital

Output, OD0 is transistor bu�ered and capable of driving up to 100 mA current but OD1 can

drive only 5 mA. If you connect LEDs to them, use a 1KΩ series resistor for current limiting.

2.2.1 write_outputs

The function takes an integer as argument whose 2 LSBs are used for setting the voltage level

on the four Digital Output sockets.

p.write_outputs(1) # Sets OD0 HIGH

p.write_outputs(2) # Sets OD1 HIGH

p.write_outputs(3) # sets both HIGH

Measure the outputs with a voltmeter or by connecting an LED from the terminal to ground

with a 1kΩ resistor in series.

2.3 Analog Outputs

ExpEYES has two Programmable Voltage Sources, the Unipolar Programmable Voltage (UPV)

and the Bipolar Programmable Voltage (BPV). The voltage level on UPV can be set from 0

to 5V. The resolution is 12 bits, means the minimum step is around 1.25 mV. The voltage at

BPV can be set from -5 volts to +5 volts.

UPV is the direct output of a DAC. BPV is made from a unipolar signal using summing

circuits that may give some o�set. If the requirement is only from 0 to 5 volts, use UPV.

2.3.1 set_upv

Set the output voltage of the UPV. The value of V should be from 0 to 5 volts

p.set_upv(2.5) # Sets 2.5 volts on UPV

2.3.2 set_current

Set the output current at CS, between 0.05 mA to 1 mA. This function returns the voltage

at the current source output, that will be decided by the value of the external load resistor

connected. For example, setting 1 mA and connecting a 1kΩ resistor from CS to Ground, the

voltage read will be 1 volt (0.001A× 1000Ω) . The load and the current should be chosen such

that the product is less than 2 volts.

print p.set_current(1.0) # prints the IR drop across the load.

Note: You can use either UPV ot CS at a time, since they share the same DAC output.

7

2.3.3 set_bpv

Set the output voltage of the BPV. The value of V should between -5 and +5 volts

p.set_bpv(-2.5) # Sets -2.5 volts on BPV

2.4 Analog Inputs

There are four analog input channels: A0,A1,A2 and the SENsor input. We can read the

voltage level at any of this inputs, either as single reads or multiple reads in a single function

call, normally to capture a waveform. The time gap between consecutive reads inside a capture

can be set with microsecond resolution.

2.4.1 get_voltage

print p.get_voltage(0) # prints the voltage at A0

print p.get_voltage(2) # prints the voltage at A2

Connect BPV to A0 using a piece of wire and run the following program several times.

import expeyes.eyes

p = expeyes.eyes.open()

v = input('Enter V (-5 to 5)')

p.set_bpv(v)

print p.get_voltage(0)

2.4.2 capture

t,v = capture(ch, NP, tg)

where ch is the input channel number, NP is the number of measurements and tg is the time

between two measurements in microseconds. Two lists containing the time (milliseconds) and

voltage (volts) coordinates are returned by this function.

Connect SINE to A0 and run the following program.

from pylab import *

import expeyes.eyes

p = expeyes.eyes.open()

t,v = p.capture(0,300,100)

plot(t,v) # from pylab

show() # from pylab

8

Terminal Channel # Range(V)

A0 0 -5 to +5

A1 1 -5 to +5

A2 2 0 to 5

SEN 4 0 to 5

CS 6 0 to 5

If the voltage to be measured is in the 0 to 5V range, use A2, that will give a better resolution

than A0 or A1. The SEN input is capable of measuring the value of a resistance connected

from it to GND.

2.4.3 capture01

This function captures A0 and A1 together, with timing correlation.

t,v,tt,vv = capture01(NP, tg)

NP is the number of measurements and tg is the time between two measurements in microsec-

onds. Four lists containing the two pairs of time (milliseconds) and voltage (volts) coordinates

are returned.

Connect SINE to A0 and SQR1 to A1. Run the following program.

from pylab import *

import expeyes.eyes

p = expeyes.eyes.open()

p.set_sqr1(100)

t,v,tt,vv = p.capture01(300,100)

plot(t,v)

plot(tt,vv)

show()

2.5 Capture modi�ers

The behavior of capture calls can be modi�ed in several ways to enhance their �exibility.

They can be made to start only when the input is between some speci�ed limits, this feature

is essential for getting a stable trace for CRO applications.

You can also synchronize the beginning of digitization process with some external logical

signal. Digitization is made to wait for speci�ed level changes on a digital input.

This feature is useful for digitizing transient waveforms. The synchronizing signal is derived

from the waveform itself and applied to a digital input.

It is also possible to SET, CLEAR or PULSE one of the digital outputs just before starting

the digitization process. The control functions only changes the settings at the micro-controller

end, the actions are visible only during the subsequent capture calls.

9

2.5.1 disable_actions, enable_wait_high, (low, falling or rising)

Calling this function makes all the subsequent capture and capture01 calls to wait for the

speci�ed digital input socket to go HIGH / LOW before starting digitization. If that does not

happen, a timeout error will happen. Connect SQR1 to both A0 and ID0 and run the following

program.

from pylab import *

import expeyes.eyes

p = expeyes.eyes.open()

p.set_sqr1(100)

p.enable_wait_rising(0) # wait for a LOW on ID0

t,v = p.capture(0,200,100) # start at a rising edge

plot(t,v)

p.disable_actions() # removes all modifiers

t,v = p.capture(0,200,100) # can start from anywhere

plot(t,v)

show()

2.5.2 enable_set_high, enable_set_low

In some applications, it would be necessary to make a digital output socket go high/low before

digitization starts. This function, when called with a digital output socket number as argument,

makes the subsequent capture function set/clear OD0 or OD1 before it begins the capture

process. Action can be de�ned on only one digital output at a time.

Capturing the voltage across a capacitor while charging / discharging is a typical application

of this feature. Connect a 1uF capacitor between A0 and GND. Connect a 1KΩ resistor from

OD1 to A0 and run the following code.

from pylab import *

import expeyes.eyes

p = expeyes.eyes.open()

p.write_outputs(2) # Take OD1 HIGH

p.enable_set_low(1) # OD1 go LOW before capture

t,v = p.capture(0,200,20)

plot(t,v)

show()

The enable_set_low(2) makes OD1 to be taken HIGH just before digitizing the voltage on A0.

2.5.3 enable_pulse_high, enable_pulse_low

In some applications, it would be useful to send a PULSE on a digital output before digitization

starts. The enable_pulse_high() makes the speci�ed output HIGH for some duration and then

10

makes it LOW. The duration is set by the set_pulsewidth() function. The calling program

should make sure that the socket is set to LOW before calling capture, else a HIGH to LOW

transition will result instead of a pulse. The enable_pulse_low() takes the output LOW and

then HIGH after some duration.

This function can be used to capture a waveform that is triggered by an input signal. For

example, connect the digital output OD1 to the input of a IC555 mono-shot circuit and connect

the 555 output to A0. Set the mono-shot delay to around a millisecond and run the following

code.

from pylab import *

import expeyes.eyes

p.write_outputs(2) # OD1 to HIGH

p.set_pulse_width(1)

p.enable_pulse_low(1) # LOW TRUE pulse

t,v = p.capture(0,300, 10)

plot(t,v)

show()

2.6 Waveform Generation

ExpEYES can generate square waves on SQR1 and SQR2. Variable duty cycle pulse of 488 Hz

can be generated on the PULSE output. The output SQR2 require an external variable resistor

for its operation.

2.6.1 set_sqr1

Generates a square waveform, having 50% duty cycle, on SQR1. The frequency can vary from

15Hz to 4MHz, but all intermediate values are not possible. The function returns the actual

frequency set.

import expeyes.eyes

p = expeyes.eyes.open()

print p.set_sqr1(1000)

print p.set_sqr1(1005)

The �rst line will print '1000.0' but the second line will print '1008.06', that is the possible

frequency just above the requested one.

2.6.2 set_sqr2

Generates a square waveform on SQR2. The frequency can vary from .7Hz to 90 kHz in four

ranges. Setting the desired frequency will automatically select that range. Then you need to

11

adjust the external 22kΩ potentiometer to get the desired frequency. The actual value can be

read through software.

p.set_sqr2(10)

print p.get_sqr2()

p.set_sqr2(0) # sets SQR2 to HIGH

p.set_sqr2(-1) # sets SQR2 to LOW

will print anything between .7 to 25, depending on the position of the external potentiometer.

If no external resistor is connected, result will be zero. Setting 0 will make SQR2 HIGH and

-1 will make it LOW.

2.6.3 set_pulse

Sets the dutycycle of the 488.3 Hz pulse on the PULSE output, from 0 to 100%. Returns the

actual value set

print p.set_pulse(30) # duty cycle to 30%

Even though the requested value is 30, the actual value set will be 29.8% since it is done in 255

steps.

2.7 Frequency Counters

2.7.1 digin_frequency

Measure the frequency of a 0 to 5V square wave at ID0 or ID1. Connect SQR1 to ID0 and run

the following code

import expeyes.eyes

p = expeyes.eyes.open()

p.set_sqr1(500)

print p.digin_frequency(0)

2.7.2 ampin_frequency

Measure the frequency of a bipolar signal, amplitude > 100 mV, connected to Terminal 15.

Connect SINE to T15 and run the following code

import expeyes.eyes

p = expeyes.eyes.open()

print p.ampin_frequency()

The frequency of the sinewave will be printed.

12

2.7.3 sensor_frequency

Measure the frequency of voltage �uctuations at SEN input. Connect SQR1 to SEN and run

the following code

import expeyes.eyes

p = expeyes.eyes.open()

p.set_sqr1(100)

print p.sensor_frequency()

2.8 Passive Time Interval Measurements

Digital Inputs can be used for measuring time intervals between level transitions on the digital

inputs with microsecond resolution. The transitions de�ning the start and �nish could be on

the same terminal or on di�erent ones.

2.8.1 r2ftime, f2rtime, r2rtime, f2ftime

r2ftime(in1, in2)

r2ftime returns delay in microseconds from a rising edge on in1 to a falling edge on in2. The

arguments (0 or 1) indicate digital inputs ID0 and ID1. Similarly f2rtime() measures time

from a falling edge to a riding edge.

Connect SQR1 to ID0 and run the following code, should print around 500 usecs.

import expeyes.eyes

p = expeyes.eyes.open()

p.set_sqr1(1000) # half period = 500 usecs

print p.r2ftime(0,0)

2.8.2 multi_r2rtime

Measures time interval between two rising edges of a waveform applied to a digital input. The

second argument is the number of rising edges to be skipped between the two measured rising

edges. This way we can decide the number of cycles to be measured.

Connect SQ1to ID0 and run the following code.

import expeyes.eyes

p = expeyes.eyes.open()

p.set_sqr1(1000)

a = p.multi_r2rtime(0,9) # time for 10 cycles in usecs

print 10.0e6/a # frequency in Hz

13

For a periodic waveform input, the �rst line returns the time for one cycle and the second one

returns the time for 10 cycles (9 rising edges in between skipped). This call can be used for

frequency measurement. The accuracy can be improved by measuring larges number of cycles.

2.9 Active Time Interval Measurements

During some experiments, we need to initiate some action and measure the time interval to the

result of it. The actions are initiated by setting, clearing or by sending pulses on the Digital

Outputs. The results will generate voltage transitions on Digital Inputs.

2.9.0.1 set2rtime, set2ftime, clr2rtime, clr2ftime

int set2rtime(out, in)

(remaining functions have similar prototypes)

These functions SET/CLEAR a digital output socket speci�ed by out and wait for the digital

input speci�ed by in to go HIGH /LOW.

USAGE

p.set2rtime(0, 1)

2.9.0.2 pulse2rtime, pulse2ftime

int pulse2rtime(int out, in)

int pulse2rtime(int out, in)

Sends out a single pulse on out (OD0 or OD1) and waits for a rising/falling edge on in (ID0 or

ID1). The duration and the polarity of the pulse is set by set_pulsewidth() and set_pulsepol()

functions. On powerup the width is 13 microseconds and polarity is positive (voltage goes

from 0V to 5V and comes back to 0V). The initial level of out should be set according to the

polarity setting. If the polarity is LOW TRUE, the level must be set high beforehand and it

should be set low for HIGH TRUE pulse.

p.set_pulse_width(1)

p.set_pulsepol(1)

print p.pulse2rtime(0, 1)

measures the time from a pulse on OD0 to a rising edge on ID1.

2.9.0.3 set_pulse_width

Sets the pulse width, in microseconds, to be used by the pulse2ftime() and pulse2rtime() func-

tions.

p.set_pulse_width(10)

14

2.9.0.4 set_pulsepol

Sets the pulse polarity to be used by the pulse2ftime() and pulse2rtime() functions. pol = 0

means a HIGH TRUE pulse and pol=1 means a LOW TRUE pulse.

p.set_pulsepol(1)

2.10 Disk Writing

2.10.1 save_data

Input data is of the form, [[x1,y1], [x2,y2],....] where x and y are vectors, are save to a text

�le.

Save the data returned by the capture functions into a text �le. Default �lename is `plot.dat',

that can be overriden by the second argument. Connect SINE to A0 and run the following code.

import expeyes.eyes

p = expeyes.eyes.open()

t,v = p.capture(0, 200, 100)

p.save([[t,v]], 'sine.dat')

open the �le using the command

$xmgrace sine.dat

15

Chapter 3

Data processing

The data acquired from expEYES hardware is analyzed using various mathematical techniques

like least-square �tting, Fourier transform etc. The module named eyemath.py does this with

the help of functions from the 'scipy' package. Most of the functions accepts the data format

returned by capture functions.

3.0.2 �t_sine

Accepts two vectors [x] and [y] and tries to do a least-square �tting of the data with the equation

A sin (2πft+ θ) +C. Returns the �tted data and the parameter list[A, f, θ, C]. Connect SINE

to A0 and run the following code.

from pylab import *

import expeyes.eyes, expeyes.eyemath as em

p = expeyes.eyes.open()

t,v= p.capture(0,400,100)

vfit, par = em.fit_sine(t,v)

print par # A, f, θ, C

plot(t,v) # The raw data

plot(t,vfit) # data calculated from par

show()

par[1] is frequency in kHz, since the time is given in milliseconds.

3.0.3 �t_dsine

Accepts two vectors [x] and [y] and tries to do a least-square �tting of the data with the

equation A = A0 sin (2πft+ θ) × exp(−dt) + C. Returns the �tted data and the parameter

list[A, f, θ, C, d]. par[1] is frequency in kHz, since the time is given in milliseconds and 'd' is

the damping factor.

16

3.0.4 �t_exp

Accepts two vectors [x] and [y] and tries to do a least-square �tting of the data with the equation

A = A0 exp (kt) + C. Returns the �tted data and the parameter list[A, k, C]. Connect a 1uF

capacitor from A0 to GND, 1kΩ resistor from OD1 to A0 and run the following code.

from pylab import *

import expeyes.eyes, expeyes.eyemath as em

p = expeyes.eyes.open()

p.write_outputs(2) # Take OD1 HIGH

p.enable_set_low(1) # OD1 go LOW before capture

t,v = p.capture(0,200,20)

plot(t,v)

vfit, par = em.fit_exp(t,v)

print par

plot(t,v) # The raw data

plot(t,vfit) # data calculated from par

show()

par[1] is the time constant RC in milliseconds.

3.0.4.1 �t

Does a Fourier transform of a given data set. The sampling interval in milliseconds is the

second argument. Returns the frequency spectrum, ie. the relative strength of each frequency

component. Connect SINE to A0 and run the following code.

from pylab import *

import expeyes.eyes, expeyes.eyemath as em

ns = 1000 # number of points to be captured

tg = 100 # time between reads in usecs

p = expeyes.eyes.open()

t,v= capture(0, ns, tg)

x,y = em.fft(t, tg * 0.001) # tg in millisecs

plot(t,v) # The raw data

plot(x,y) # data calculated from par

show()

Modify this program to show the frequency spectrum of a square wave.

17

Chapter 4

Experiments

Most of the experiments described in the user manual can be done by writing few lines of

Python code.

4.1 IV curve of a resistor

Make an array of current values and another one with same size �lled with zeros. The

voltage at the CS terminal, returned by set_current(), is �lled in to the second array. Both are

from pylab import *

import expeyes.eyes, expeyes.eyemath as em

p = expeyes.eyes.open()

NP = 20

current = linspace(.1, 2.0, NP)

voltage = zeros(NP)

for k in range(NP):

voltage[k] = p.set_current(current[k])

plot(current, voltage, 'x')

vf, par = em.fit_line(current,voltage)

plot(current, vf)

print 'R = %5.3f kOhm'%par[0]

show()

18

4.2 Transient response of RC circuits

We need to apply a voltage step at OD1 and immediately start capturing the voltage at A0.

NP = 200 # number of readings

tg = 10 # time gap between them, keep NP*tg around 3*RC

from pylab import *

import expeyes.eyes, expeyes.eyemath as em

p = expeyes.eyes.open()

p.write_outputs(2)

p.enable_set_low(1) # OD1 go LOW before capture

t,v = p.capture(0,NP,tg) # choose NP*tg according to RC

plot(t,v)

vf, par = em.fit_exp(t,v) # exponential fit

plot(t, vf,'r')

print abs(1./par[1]) # print RC value

show()

19

