
Parameter Selection using Evolutionary Strategies in ImageJ

Roland Bärtschi

Advisor: Janick Cardinale, Prof. Dr. Ivo Sbalzarini

04.07.2011

Abstract

ImageJ is an open source image processing tool written in Java which

is extendible through macros as well as through plug-ins. There exists a

large collection of both kinds of extensions for various tasks such as image

segmentation. Plug-ins often have various arguments and complex macros a

lot of parameters. These need usually be selected by hand which is a task

that often depends on prior knowledge for what values produce the expected

results. In the absence of this knowledge the parameters are usually found by

trying a few values until the results approximately match the expectations.

The Plug-in developed in this thesis aims at automating this process with

an intuitive user interface using Evolution Strategies such that the work on

the user side mostly consists of ranking a few results in comparison to one

another until a satisfying result has been reached.

Contents

1 Introduction 2

2 ImageJ 2

2.1 ImageJ 1.4x and Fiji . 2
2.1.1 Core classes of ImageJ . 2
2.1.2 Plug-ins . 3
2.1.3 Macros . 3
2.1.4 Fiji is just ImageJ . 3

2.2 ImageJ 2.0 . 3

3 Evolution Strategies 3

4 The Parameter Optimization Plug-in 4

4.1 View . 4
4.1.1 The Selection UI . 4
4.1.2 The Ranking UI . 4

4.2 Controller . 5
4.3 Model . 6

4.3.1 Parameterized Macro . 6
4.3.2 Evolution Strategies . 7

5 Future Work 8

Appendix A. User Manual 9

References 14

1

1 Introduction

Images of all sorts have become an important data
source for various �elds of academia as well as for in-
dustrial applications. With the ever increasing amount
of images which are being produced the task of process-
ing them becomes more and more important. ImageJ is
an open source image processing tool which is written
in Java and is therefore very portable. ImageJ o�ers the
essential image processing tools as its basic features and
allows for extensions through plug-ins as well as through
macros. Macros can even be produced by recording
the users interaction with ImageJ which makes it rather
easy to automate complex processing steps. Typical im-
age processing tasks such as image segmentation often
involve many parameters which have to be chosen by
hand. In some cases one might have prior knowledge
about what might be good values for a speci�c param-
eter and in other cases one has to try one value after
an other in order to �nd one which is suitable for the
purpose of the task at hand.

The aim of this thesis is to create a Plug-in for Im-
ageJ which automates this process in such a way that
it guides the user through an optimization procedure
where they are only required to select the parameters
which need to be optimized and to rank results based
on their mutual quality. The idea is to use Evolution
Strategies such that the resulting images become better
in each iteration based on the user's ranking until they
are satis�ed with one of the results and choose to apply
the selected parameter values on the original image.

2 ImageJ

2.1 ImageJ 1.4x and Fiji

ImageJ is an open source image processing toolkit which
is implemented in Java. It supports many �le formats
such as PNG, JPEG, BMP, GIF etc. and images in the
following data formats: 8-bit grayscale, 8-bit indexed
color, 16-bit unsigned integer, 32-bit �oating-point and
32-bit RGB color. It is extendibe through macros and
plug-ins. Macros can be used for automation of process-
ing steps or complex processing pipelines. It is possible
to record the actions performed by the user on ImageJ
in the form of a macro. Macros can be edited, saved
and run at any time. Plug-ins are an even more power-
full extension because they can contain arbitrary Java
code which can interact with ImageJ through a speci�ed
interface. There are plug-ins available for download on
various websites and ImageJ even contains a text edi-
tor and java compiler for writing plug-ins. ImageJ can
be used as an application or as a toolkit. ImageJ is
one of the fastest Java image processing tools available.
Basic editing and processing features are already imple-
mented as tools. There are for example various selection
tools for rectangular, elliptical etc. shapes which can be
combined and make it possible to apply other tools and
operations just to the selected area.

2.1.1 Core classes of ImageJ

As a �rst step towards this thesis the current implemen-
tation of ImageJ has been analyzed in order to make
use of the existing code as much as possible. Unfortu-
nately it turned out to be much more di�cult to do so
than expected because of the architecture and the spe-
ci�c implementation of the core classes of ImageJ. Many
methods and �elds in the core classes have default visi-
bility which makes them visible to other classes within
the same package which unfortunately is of no use when
developing a plug-in which is being loaded by a di�er-
ent class loader which makes it impossible to access any
of those �elds or methods no matter what package the
accessing class is in.

Lets never the less take a look at some of the core
classes of ImageJ which matter for the implementation
of this plug-in.

IJ

This class is the core or ImageJ and all its �elds and
methods are static. It contains a lot of utility meth-
ods which are used by other classes and is the center of
interaction with ImageJ.

ImagePlus

The ImagePlus class is basically a wrapper for the im-
age. It can either contain a single image or a whole
stack of images. Besides the image/stack data it also
contains some meta data on the image such as width
and height. It also contains the ImageProcessor which
is used to manipulate the image and for images which
are more than 2 dimensional it contains an ImageStack
which basically consists of an array of images.

ImageStack

An ImageStack is an expandable array of slices which
are arrays of pixels. The pixels of the current slice can
then be used to create a new ImageProcessor. Slices
can be added or removed and some meta data can be
retrieved and set using methods of this class.

ImageProcessor

ImageProcessor is used to operate on images and is the
basic container holding the pixels of an image. Image-
Processor is an abstract class which is extended by the
classes ByteProcessor, ColorProcessor, FloatProcessor
and ShortProcessor which implement the basic data ma-
nipulation operations based on the type of the pixels.

ImageWindow

This class extends the AWT Frame class and is the ba-
sic window which is used to display images in ImageJ.
It contains an instance of ImageCanvas which is where
the image is actually painted on the UI.

2

ImageCanvas

This is an extension of the AWT Canvas class which
is used to draw an image in ImageJ. It is associated
with an instance of ImagePlus from which it retrieves
the AWT Image which it draws. This class implements
mouse and keyboard listener interfaces which are being
used for interacting with the image. Based on the tool
which is selected in the tool bar of the main window
of ImageJ a click or turn of the mouse wheel can have
di�erent e�ects on how the image is being displayed. It
is also creating the region of interest selections on the
ImagePlus instance that is being displayed.

These core classes are strongly interlinked and it is
di�cult to extend one without having to extend others
due that strong dependency and the visibility of some
�elds and methods.

One more class is worth being mentioned here and
that is WindowManager. This class is as its name sug-
gests a manager for the windows in ImageJ but it has
also a role in ImageJ which is important for the process-
ing of the images in the plug-in developed in this thesis.
ImageJ uses the WindowManager to determine on which
image a macro is going to be run. This is usually the
image contained in the instance of ImageWindow which
was last in focus but it can also temporarily be set to
a di�erent ImagePlus instance with a call to setTem-
pCurrentImage. This is important because it makes it
possible to run a macro on an image which is not dis-
played in an instance of ImageWindow as it will be the
case in the plug-in.

2.1.2 Plug-ins

Plug-ins in ImageJ can be anything from an analysis tool
to an image generator and it need not even have to do
anything with ImageJ. All that's required for a plug-in
to be used in ImageJ is that its main class implements
the PlugIn interface or if the plug-in is supposed to ma-
nipulate the currently focused image then it can also
implement the PlugInFilter interface. Just one more
detail needs to be taken into account and that is that
the name needs to contain an underscore in order for
ImageJ to recognize it as a plug-in. But besides that it
can contain arbitrary libraries and can have a user inter-
face implemented using a framework other than AWT
or Swing.

2.1.3 Macros

As mentioned in the introduction ImageJ also o�ers the
possibility to automate processes with macros which can
even be recorded from actions performed in ImageJ.
This makes automation quite easy but macros can also
be written by hand. Macros have a Java like syntax and
can basically run all features which are also available in
the user interface.

2.1.4 Fiji is just ImageJ

As the maintainers of Fiji put it:

�Fiji is an image processing package. It
can be described as a distribution of Im-
ageJ together with Java, Java 3D and a
lot of plug-ins organized into a coherent
menu structure. Fiji compares to ImageJ as
Ubuntu compares to Linux.�1

As stated in this quote Fiji is based on ImageJ and ex-
tends it with useful features such as an updating mech-
anism and a large collection of plug-ins. Fiji also intro-
duced ImgLib which will be used for image representa-
tion in ImageJ2. The plug-in accordingly works both in
a basic build of ImageJ as well as in Fiji.

2.2 ImageJ 2.0

The release of the next major version of ImageJ is due
in October2 and a �rst beta version should be released
in June. ImageJ 2.0 is being redesigned from ground up
using modern Software Engineering principles to make it
more modular and extendible. One of the many changes
is about the representation of the data. In previous ver-
sions data was represented as an image or as a stack
of Images organized in slices. Although this basically
allows for arbitrary dimensional data by arranging the
slices in a particular order it can become very ine�cient
for high dimensional data in terms of memory access.

This issue has been addressed by Preibisch,
Toman£ák and Saalfel who developed ImgLib[3], a
generic Java Image Processing library which is already
in use in Fiji. ImgLib allows to implement image pro-
cessing algorithms independent of the type of data that
is being processed. This is achieved through the Cur-
sor which de�nes an access strategy for the data, Type
which de�nes a data type and the operations on it and
Container which addresses the storage of the data. Due
to the generic structure of ImgLib some performance
issues have appeared for various plug-ins using it but
many of them have been addressed and resolved with
ImgLib2 which is now the basic data library in ImageJ2.

Through the extensive use of interfaces in ImageJ2
many of the before mentioned problems of extending
an existing class of ImageJ have basically been elimi-
nated. There is for example now an interface ImageCan-
vas which can be implemented to draw images and that
implementation could then be used to replace an exist-
ing implementation such as AWTImageCanvas which is
the basic AWT implementation of said interface without
any problems.

3 Evolution Strategies

Evolution Strategies are one subclass of Evolutionary
Algorithms which are often used for optimization prob-
lems. Evolutionary Algorithms mimic Darwin's natural

1O�cial website: http://�ji.sc/wiki/index.php/Fiji
2See roadmap of the development project on http://imagejdev.org

3

selection principle in that they consist of a mutation, re-
combination and selection operators which are applied
to individuals of a generation which leads to a next gen-
eration.

One kind of Evolution Strategies are so called (µ, λ)-
ES which consider a parent generation of µ individuals
from which an o�spring generation of λ individuals is
created. The selection operation is based on the �t-
ness which is associated with each individual and selects
those individuals which have the largest �tness. An indi-
vidual of the population consists of an object parameter
value y, a set of strategy parameters s and its �tness
F (y).

4 The Parameter Optimization

Plug-in

Before the plug-in can be used the user needs to open
the image on which the optimization is supposed to be
performed. The macro which is to be applied on the
image needs to be written to a �le in order to load it
into the plug-in. Once these conditions are met the user
can use the plug-in.

The macro has been implemented with a focus on the
MVC pattern so in the following sub sections the model,
view and controller are being discussed separately.

4.1 View

One of the main goals of this thesis is to make the pro-
cess of �nding good parameters for a macro an easy
task. Therefore the user interface needs to be intuitive
and should only require a minimal amount of work by
the user. To guide the user through the process each
step has been labeled accordingly. You can see a walk
through with each step of the procedure in the user man-
ual in Appendix A.

4.1.1 The Selection UI

The selection UI is where all necessary con�gurations
for the optimization process are made. It contains

• a button which opens a �le dialog to select the
macro,

• a drop down box to select the strategy,

• a check box to select whether or not to generate a
history of the optimization process which can then
be imported into MATLAB,

• a table for the selection and con�guration of the
parameters which are found in the macro,

• a text plane where the macro is displayed and
the line containing the currently selected macro
is highlighted,

• a button to save the con�guration

• and a button to start the optimization process
once all necessary settings have been made.

The UI has been implemented using Swing and uses only
standard components and containers.

4.1.2 The Ranking UI

This UI is used to select and rank the images which have
been produced by applying the macro with the parame-
ters set to the values of the individuals of the evolution
strategy. But it is not restricted to displaying images
from the evolution process as it is possible to set arbi-
trary ImagePlus resources for the images.

The constructor of the UI takes three arguments.
The �rst one is the number of images which will be dis-
played in this window. The second is the minimal num-
ber of images which need to be selected to make a step
of the evolution process and the third is the maximal
number of images which are to be selected. By selecting
an image it is being assigned the next rank starting from
1. This rank is then passed back to the controller which
uses it to compute the �tness of each individual.

The UI consists of 4 main areas:

• On the top there is a small information area which
displays the instruction of how many images need
to be selected and it also contains a small info icon
which expands a hidden label if the user hovers the
mouse over it. In this hidden label are further in-
structions on how to use the ui and which tools of
ImageJ work on the displayed images.

• In the center is the main panel which contains the
images. Using the scroll wheel of the mouse one
can scroll through the slices of the image if it is a
stack. If the hand tool is selected in the ImageJ
toolbar then one can pan the images if they are
zoomed in. If the zoom tool is enabled then a left
mouse click zooms all images in and a right mouse
click zooms all images out. It is also possible to
pan the images if the hand tool is not selected but
if the space bar is held down. The last manipula-
tion of the display is possible by holding the shift
key and scrolling the mouse wheel. This changes
the opacity of the overlay image which is the orig-
inal image before the macro has been applied to
it.

• On the bottom left there are controls for manip-
ulating the image display with scroll bars instead
of the scroll wheel. This is also where the current
slice or zoom factor is displayed along with the
opacity of the overlay image.

• On the bottom right there is an area containing
4 buttons along with a short description of what
their purpose is. There is

� a 'clear selection' button which clears the se-
lection that has been made,

� a 'Next' botton which is enabled as soon as
the required number of images has been se-
lected/ranked and which calls the controller
to make a next optimization step,

4

Figure 1: The Selection UI with a simple segmentation macro.

� a 'Repeat' button which can be used to re-
sample the current population without select-
ing/ranking any images and it is only enabled
as long as no images are currently selected

� and a 'Finish' button which completes the
optimization and calls the controller to ap-
ply the macro with the value of the selected
image on the input image. If more than one
image is selected then the controller will �rst
compute the mean of the selected values and
then apply the macro with the mean to the
input image.

The controls in the bottom left are synchronized with
the displayed images such that a click zoom also changes
the value of the zoom scroll bar.

The slice selection scroll bar is only displayed if the
image is a stack such that the user only sees controls
which he can actually use.

In order to display the images a customized Canvas
subclass has been implemented which contains a few
lines of code from the ImageCanvas class which ImageJ
uses in the standard image displaying windows.

4.2 Controller

The main class of the plug-in is the Parame-
ter_Optimization_Plugin class which implements the
PluginFilter interface and the two internally used con-
troller interfaces. Those internal interfaces are used to
separate the controller from the user interface such that

implementations of either the controller or the user in-
terface can be changed without changes to the other. It
also allows to hide methods of the controller intended
to be used by the selection UI from the ranking UI and
vice versa.

The con�guration of the plug-in which includes

• the selected �le containing the macro,

• the �ag for whether or not the history of the val-
ues and assigned �tnesses is being exported at the
end of the optimization process,

• the selected Evolution Strategy,

• and the settings for the parameters in the param-
eterized macro

is being stored in an instance of class Con�guration
which can be written to a �le and later again loaded
from a �le to avoid having to con�gure the same pa-
rameters again and again for each image on which the
optimization plug-in is being run.

The controller creates both an instance of Param-
eterRankingUI and of ParameterSelectionUI which are
being used for interaction with the user. These instances
are being created at the point where they are �rst re-
quired. For the ParameterSelectionUI this is already
upon start of the plug-in and the ParameterRankingUI
is being created when the con�guration is complete and
the optimization has been started.

Besides the use of ImagePlus in the Ranking UI the
class Parameter_Optimization_Plugin is the only class
which directly interacts with ImageJ so the classes for

5

Figure 2: Ranking UI with one ranked image. (Slice scroll bar hidden because image is not a stack)

the user interface are independent of ImageJ and could
be used with other libraries through a di�erent con-
troller class.

4.3 Model

The model in this application consists of the parameter-
ized macro and the Evolution Strategies.

4.3.1 Parameterized Macro

In order to detect parameters in a macro script a simple
macro parser has been implemented which recognizes
possible parameters in function calls. The parameters
which can be detected need either be numbers or be con-
tained in a constant string argument having the form
�name=value�. Numbers in other places such as loops
and if-statements are ignored and treated as static code.

The macro parsing is implemented in the Parame-
terizedMacro class which needs to be instantiated with
a string containing the macro code. This code is then
split into tokens by

Tokenizer tk = new Tokenizer () ;
Program pgm = tk . t oken i z e (macroStr ing) ;

where the Tokenizer and Program classes of ImageJ
are used. This is basically the same step that the macro
interpreter of ImageJ makes before actually interpreting
the code. The instance of Program which is being cre-
ated here contains a list of of tokens such as an �if�-token
or a opening bracket token. Unfortunately the current
version of ImageJ does not actually parse these tokens
into an AST3 but rather sequentially process the tokens
and evaluate the statements which are being recognized
and run the plug-ins which are being called. Given an
AST it would have been much easier to �nd possible pa-
rameters. Given the lack of said AST the tokens are be-
ing processed sequentially and when a token is reached
which stands for a function name then an attempt is
made to parse a parameterized method. This attempt
succeeds if either a number is found as an argument or
a constant string which contains at least one substring
matching the before mentioned �name=value� pattern

3Abstract Syntax Tree which is a tree like representation of the code.

6

where name consists of letters and numbers and value
can be parsed as an instance of type double. If no po-
tential parameter is found in the function call or if an
unexpected token appears in the argument list of the
function call then the whole sequence of tokens making
up the function call is treated as static code and written
into a string. But if at least one potential parameter
is found then an instance of Parameter is being created
and instantiated with the value of the parameter in the
macro.

This way at the end of the parsing step we get a list
of Strings and Doubles which are being referred to by
instances of Parameter with corresponding Parameter-
Settings which make up the whole macro. Whenever a
new instance of Parameter is being created a reference
to this instance is added to the list of parameters such
that it is possible to directly manipulate the values of
the parameters within the macro.

In order to run the macro the code list containing the
Strings and instances of Parameter are simply being con-
catenated and then this new macro string is passed to
the runMacro method of ImageJ. In the concatenation
process the toString method is called on each instance
of Parameter which inserts the current values into the
right positions within the macro string and thus runs
the macro with the current values for the parameters.

4.3.2 Evolution Strategies

The plug-in uses the interface EvolutionStrategy to in-
teract with strategy implementations during the opti-
mization process.

Following are the methods which a strategy needs to
implement with a description of what the purpose of the
method is.

public void setDimension (int dim) ;

Set the dimension of the optimization space which
equals the number of parameters which have been
enabled for optimization.

public void setDimensionBounds (
Double [] lower , Double [] upper) ;

Set the bounds for the dimensions. These are the
bounds which have been de�ned by the user for
the parameters.

public void setDimensionBounds (int dim ,
Double lower , Double upper) ;

Set the bounds for one individual dimension.

public void s e tO f f s p r i n gS i z e (
int o f f s p r i n g s) ;

Set the number of o�springs of each generation.
This must be set to the number of images which
will be displayed in the ranking UI.

public int ge tMinSe l e c t i onS i z e () ;

Retrieve the minimal number of individuals which
need to have positive �tness. This value is then
set in the ranking UI as the minimal number of
images which need to be ranked before a next step
can be made.

public int getMaxSe l ec t ionS ize () ;

Retrieve the maximal number of individuals whose
assigned �tness will be used in the evolution step.
This value is then set in the ranking UI as the
maximal number of images which can be ranked
in each step.

public void s e t I n i t i a l X (double [] x) ;

Set the initial value from which the �rst popula-
tion is created.

public void i n i t i a l i z e () ;

Initialize the strategy. Once the strategy has been
initialized there will always be a current popula-
tion available.

public void s e tF i t n e s s (double [] f i t n e s s) ;

Set the �tness of the individuals of the population.
The �tness is determined by the ranks which have
been assigned to the images and set to be the in-
verse of the rank for all non-zero ranks.

public void makeEvolutionStep () ;

Makes one evolution step based on the �tness
which has been set and creates a new population.

public void repeatEvo lut ionStep () ;

Repeats an evolution step which usually corre-
sponds to resampling from the same distribution
with a slightly smaller step size. This method is
used if the user decides that none of the images is
worth ranking it.

public double [] [] getCurrentPopulat ion () ;

Retrieves the current population from the strat-
egy. The values of the population are then used to
run the macro with the di�erent values to produce
the resulting images.

The plug-in currently contains two strategy imple-
mentations. One is a simple (µ, λ)-Strategy and the
other is a CMA implementation by Hansen and Alumni.

The simple (µ, λ)-Strategy just takes the µ individ-
uals with highest �tness and computes the new mean
of their values and their strategy parameters σ. The λ
new individuals are then sampled from a normal distri-
bution with the computed mean and step size σ. For
each individual a strategy parameter σi is sampled from
a di�erent distribution around σ.

7

5 Future Work

ImageJ 2.0

As a major release of ImageJ - namely ImageJ 2.0 -
is due in October 2011 it is suggested that the plug-in
will be adapted to follow the new design principles of
the completely refactored version. Note that due to the
backwards compatibility of the new version which will
basically include the old version as a library it should
be possible to run the plug-in with only minor changes
or maybe even without any changes at all. But the new
version of ImageJ o�ers quite a few opportunities for
a better integration especially on the side of the user
interface.

More Strategies

The current implementation of the plug-in includes just
2 strategies. It would be nice to have a larger collection
of strategies such that if one strategy works slow on a
particular optimization problem then an other might be
chosen which could work better.

Adding a new strategy currently requires a small
change in the code of the main plug-in class where the
class of the new strategy needs to be added to the list
of available strategies. One possible improvement would
be to implement a discovery procedure which checks the
plug-in directory and/or some subdirectories for imple-
mentations of the EvolutionStrategy interface and then
dynamically loads them into the plug-in.

Macro Parser

The current macro parser has quite a few limitations.
It is only able to detect parameters in function calls on
the deepest level. If a function call is nested in an other
function call then only parameters in the nested func-
tion call can be detected. This is due to the scanning
procedure which was chosen for this simple parser as the
focus was on �nding parameters in function calls.

One improvement could be to just slightly modify
the existing parser to make it consider the nesting func-
tions as well but a more suitable attempt to resolve the
issue would be to completely rewrite the parser such
that its output would be a parameterized AST instead
of a sequence of static code in the form of a String in-
terleaved with Parameter objects.

Method awareness

The comfort of the con�guration for the user could be
taken much further by explicitly analyzing in which
method the parameter appears. In this case one could
restrict the range of parameters for example for the
'makeRectangle' method automatically because the we
know the dimension of the image in which the selection
is to be made.

Right now the plug-in always uses doubles for the
values when they are replaced in the macro. But some

methods only work for integers which can be circum-
vented by wrapping the values into a �oor or ceil func-
tion. In the current version of the plug-in it is necessary
to do this by hand before the macro is loaded. A simple
type selection in the selection table could avoid this and
as mentioned before one could even automatically wrap
the arguments of ImageJ methods for which the type is
known.

Visualization of evolution path

The values of the individuals of each generation are be-
ing recorded along with their assigned �tness and this
data can be exported as a simple MATLAB �le. The
standard user probably hasn't got any interests in this
data but it could be quite useful for the analysis of the
evolution strategy if an advanced user could see a visu-
alization of the evolution path during the optimization
process.

History

The values and �tnesses of individuals are kept in a his-
tory data structure which can then be used for the data
export as mentioned in the previous paragraph. One
idea to improve the usability of the plug-in could be to
make this history available such that the user can take a
few steps back and take an other direction at some point
if he realizes that he has taken some sort of a dead end.

8

Appendix A. User Manual

Parameter Optimization Plug-in

What's the purpose of this plug-in?

If you're working with complex macros that are calling plug-ins and have various parameters for which you need to
�nd good values then you often had to just try over and over again with di�erent values until you got a result which
was approximately what you wanted it to be.

This is where this plug-in enters the stage. Instead of setting di�erent values in the macro by hand and applying the
di�erent macros on the same image/stack you can now simply select the image and start the Parameter Optimization
Plug-in.

How does the plug-in work?

First you need to make sure that the macro you want to run is written to a �le and that you know its location.
Then you just open the image or stack you want to run the macro on (like the cell colony image in the samples).

9

Then navigate to the Plug-ins menu and choose the Parameter Optimization plug-in

Now you should see the following window. This is the con�guration window where you set everything up for the
optimization. The �rst step is now to select the �le which contains the macro code which is to be run on the image.

When you click on the 'select �le...' button a standard �le dialog should pop up. By default it opens the macros
folder of ImageJ for the macro selection.

10

In the next step you need to select the strategy which you want to use for the optimization. In this example you
have the choice between a simple (µ,λ) strategy with step size adaption and a CMA strategy.

In the above step you can also select the checkbox for the export of a history �le if you are interested in analyzing
the optimization process.

Once you have selected a strategy you can con�gure the parameters which have been detected in the plug-in. You
can enable or disable a parameter, set its initial value and the bounds which it has to satisfy. It is highly recommended
that you insert the correct bounds for the parameter if they are known because this can have an impact on the quality
of the results and the performance of the optimization.

11

Once you have selected at least one parameter for the optimization you can click on the 'start optimization' button
to start the optimization process.

Note that there is also a possibility to save the current con�guration to a con�guration �le by clicking on the 'save
con�guration' button. This con�guration can later be opened in the �rst step instead of a macro �le.

After a click on the 'start optimization' button you should see a window similar to the following.

12

On the bottom left you have an area with 3 sliders which can be used to zoom in, change the currently displayed
slice and change the opacity of the overlay image which is the original image.

Use these controls to examine the di�erent images.
Next you have to rank the images by holding the shift key and clicking on them starting with the one you rate best.

A number should appear in the top right corner of each ranked image depicting the rank which has been assigned to
the image.

As you rank images you will notice that the controls on the bottom right either become enabled or disabled based
on the number of images you have ranked. If you made a mistake while ranking you can clean the current selection
and try again. If the images are so di�erent from what you expect them to be that you are not able to rank them
then you can try to repeat the evolution step and hope that better results are being produces in that trial.

Once you have ranked the number of images which is being displayed in the info �eld on top then you can click on
the 'Next' button to generate the next set of images based on your ranking.

When you made a few optimization steps and arrived at a point where one or several images ful�ll you expectations
then you can �nish the optimization process by clicking on the 'Finish' button. This applies the macro with the value
of the selected image on the original image.

If you checked the box for the export of the evolution data then a �le dialog will pop up asking you for the �le
name to which the values will be written.

You should now see your image on which the macro has been applied with the optimized values.

13

References

[1] J. Cardinale. Bachelor thesis description - Parameter Selection using Evolutionary Strategies in ImageJ

(unpublished)

[2] ImageJ Features. http://rsbweb.nih.gov/ij/features.html

[3] S. Preibisch, P. Toman£ák, and S. Saalfel. Into ImgLib - Generic Image Processing in Java.
http://�y.mpi-cbg.de/~preibisch/pubs/imagejpaper2010.pdf

[4] M. D. Abramo�, P. J. Magelhaes, and S.J. Ram. Image processing with ImageJ. Biophotonics Int,
11(7):36-42, 2004.

[5] Dirk V. Arnold and Hans-Gregor Beyer. Noisy Local Optimization with Evolution Strategies. Kluwer
Academic Publishers, Norwell, MA, USA, 2002.

[6] Hans-Georg Beyer. Theory of Evolution Strategies. Springer, 2001.

[7] Stephen B. Chrisholm, Dirk V. Arnold, and Stephen Brooks. Tone mapping by interactive evolution. In
Proceedings of the 11th Annual conference on Genetic and evolutionary computation, GECCO '09, pages
515-522, New York, NY, USA, 2009. ACM.

[8] Hans-Georg Beyer (2007) Evolution strategies. Scholarpedia, 2(8):1965

14

