

M ic rocont ro l le rs

XC16x
I n t e r f a c i n g t h e X C 1 6 x M i c r o c
S e r i a l S P I E E P R O M

App l i ca t i on No te , V1 .0 , Ju l . 2006

A
P16095
o n t r o l l e r t o a

Edition 2006-07-10
Published by
Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 2006.
All Rights Reserved.

LEGAL DISCLAIMER
THE INFORMATION GIVEN IN THIS APPLICATION NOTE IS GIVEN AS A HINT FOR THE
IMPLEMENTATION OF THE INFINEON TECHNOLOGIES COMPONENT ONLY AND SHALL NOT BE
REGARDED AS ANY DESCRIPTION OR WARRANTY OF A CERTAIN FUNCTIONALITY, CONDITION OR
QUALITY OF THE INFINEON TECHNOLOGIES COMPONENT. THE RECIPIENT OF THIS APPLICATION
NOTE MUST VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE REAL APPLICATION. INFINEON
TECHNOLOGIES HEREBY DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND
(INCLUDING WITHOUT LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL
PROPERTY RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO ANY AND ALL INFORMATION GIVEN
IN THIS APPLICATION NOTE.

Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office (www.infineon.com).

Warnings
Due to technical requirements components may contain dangerous substances. For information on the types
in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or
system. Life support devices or systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.

 AP16095
 XC16x SPI EEPROM

Application Note 3 V1.0, 2006-07

AP16095
Revision History: 2006-07 V1.0
Previous Version: none
V1.0 Initial release

We Listen to Your Comments
Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
mcdocu.comments@infineon.com

 AP16095
XC16x SPI EEPROM

Table of Contents Page

Application Note 4 V1.0, 2006-07

1 Introduction ...5
1.1 Overview ...5
2 Hardware Overview...6
2.1 XC16x Starter Kit and EEPROM Connections..6
2.2 SSC Microcontroller Peripheral...6
2.2.1 SSCx_CON Register...8
2.2.2 SSC Baud Rate Register ..9
2.2.3 SSC I/O Configuration...10
2.2.4 SSC Configuration Sequence ...11
2.3 EEPROM IC ..11
2.3.1 SPI Timing Diagram..12
2.3.2 Read Instruction ..12
2.3.3 Write Instruction ..13
2.3.4 Read Status Register Instruction ..14
3 Software Implementation ...15
3.1 Application Layer...15
3.2 EEPROM Layer...15
3.2.1 EEPROM Layer Interface..15
3.2.1.1 InitEEPROM..15
3.2.1.2 WriteEEPROM ..15
3.2.1.3 ReadEEPROM ..16
3.2.1.4 ReadEEPROMStatus..16
3.2.1.5 PollEEPROMBusy...16
3.3 SPI Layer...16
3.3.1 SSC Configuration ..16
3.3.2 Peripheral Event Controller (PEC) ..17
3.3.3 SPI Transmit and Receive Operations..17
3.3.3.1 SPI Transmit Only Operations ..18
3.3.3.2 SPI Transmit and Receive Operations..19
3.3.4 SPI Layer Interface ...20
3.3.4.1 InitSPI..21
3.3.4.2 Tx_SPI...21
3.3.4.3 Tx_Rx_SPI ..21
3.3.4.4 SPI_Dev_Busy ..21
4 Additional Application Considerations...22
4.1 EEPROM IC AC Characteristics ...22
4.2 Microcontroller Interrupt Suppression ...22
4.3 Memory model and pointers used in example code ...22
5 Conclusion...23

 AP16095
XC16x SPI EEPROM

 Hardware Overview

Application Note 5 V1.0, 2006-07

1 Introduction
Embedded microcontroller applications may require data to be stored and maintained, even in the case of
complete power loss. One method for providing this type of non-volatile data storage is through the use of
an Electronically Erasable Programmable ROM (EEPROM). To store and retrieve data from the EEPROM
IC, a communication bus is required. One commonly used interface is referred to as a Serial Peripheral
Interface (SPI). Infineon starter kits for the XC16x series of microcontrollers include a SPI EEPROM, which
may be used as a development platform for SPI EEPROM software. This document describes the steps
necessary to interface to the SPI EEPROM IC. Example code is provided, which demonstrates read and
write operations to the EEPROM, using efficient methods such as the PEC data transfer feature of the
XC16x microcontrollers.

1.1 Overview

The overall objective is to provide functionality to read and write data to the EEPROM IC. In order to achieve
this, both the command set of the EEPROM IC, as well as the SPI bus interface must be implemented. One
possible implementation is shown in the block diagram of Figure 1.

Figure 1 EEPROM Functional Interface

This implementation uses a layered approach. At the application layer, the software interface provides
functionality to read and write data to any arbitrary location in the EEPROM. At the EEPROM layer, the
command set of the EEPROM IC is supported. And finally, at the SPI layer, support is provided to transmit
and receive data across the SPI bus. The software is layered in such a way to provide flexibility. For
example, the EEPROM layer can be modified to support other EEPROM ICs and instruction sets, without the
need to modify the other layers. Similarly, the SPI layer can be expanded upon to support other SPI devices
(for example, shift registers, power devices, etc.).

 AP16095
XC16x SPI EEPROM

 Hardware Overview

Application Note 6 V1.0, 2006-07

2 Hardware Overview

2.1 XC16x Starter Kit and EEPROM Connections

The XC16x starter kit comes with an Atmel AT25128 SPI serial EEPROM installed. The EEPROM is
connected to Synchronous Serial Channel 0 (SSC0), which is a SPI compatible peripheral of the XC16x
microcontroller. The EEPROM connections are shown in Figure 2.

Figure 2 EEPROM IC Connections

Port pin P3.6 is a general purpose I/O pin, which is used to control the chip select signal to the EEPROM IC.
Port pins P3.8, P3.9, and P3.13 are associated with the SSC0 peripheral. The naming convention for SPI
signals varies, and so the SPI signal names used by the XC16x microcontroller and Atmel EEPROM IC are
shown in Table 1.

Table 1 SPI Signal Naming
Microcontroller
Port Pin

Microcontroller Name EEPROM IC Name

P3.8 Master Receive Slave Transmit (MRST0) Serial Output (SO)
P3.9 Master Transmit Slave Receive (MTSR0) Serial Input (SI)
P3.13 Serial Clock (SCLK0) Serial Clock (SCK)

2.2 SSC Microcontroller Peripheral

The Synchronous Serial Channel (SSC) peripheral provides a SPI compatible interface. The microcontroller
may contain more than one SSC peripheral, and so the SSC peripheral name is followed by a sequential
number, beginning with zero. In this particular case, the EEPROM IC is connected to the first SSC

 AP16095
XC16x SPI EEPROM

 Hardware Overview

Application Note 7 V1.0, 2006-07

peripheral, and so only port pins related to SSC0 are discussed. Other than I/O connections, the features of
SSC0 and SSC1 are identical.

The SSC peripheral offers a large number of features, which allows connection to a wide variety of SPI
devices:
• Master and Slave Mode operation

− Full-duplex or half-duplex operation
• Flexible data format

− Programmable number of data bits: 2 to 16 bits
− Programmable shift direction: LSB or MSB shift first
− Programmable clock polarity: idle low or high state for the shift clock
− Programmable clock/data phase: data shift with leading or trailing edge of the shift clock

• Baudrate generation from 20 Mbit/s to 306.6 bit/s (@ 40 MHz module clock)
• Interrupt generation

− On a Transmitter-Empty condition
− On a Receiver-Full condition
− On an Error condition (receive, phase, baudrate, transmit error)

A block diagram of the SSC is shown in Figure 3.

fPD = fPLL/NfPD = fPLL/N

16-Bit Shift
Register

Transmit
Buffer

Receive
Buffer

SSC Control Block

Clock
Control

Baudrate
Generator

Pin
Control

SS_CLK
MS_CLK

Receive Int. Request

Error Int. Request
Transmit Int. Request

ControlStatus TxD (Master)
RxD (Slave)

TxD (Slave)
RxD (Master)

Shift Clock

Internal Bus

Figure 3 Synchronous Serial Channel (SSC) Block Diagram

For communication with an EEPROM, the microcontroller always acts as the master device on the SPI bus,
supplying the serial clock. Commands are shifted out of the microcontroller into the EEPROM. In the case
that data is to be received by the microcontroller, the microcontroller must deliver the serial clock pulses to
shift the data out of the EEPROM.

For the Atmel AT25128 EEPROM, the following SSC configuration is required:

 AP16095
XC16x SPI EEPROM

 Hardware Overview

Application Note 8 V1.0, 2006-07

Table 2 SSC Configuration for EEPROM
SPI Characteristic SSC Configuration Required for EEPROM
Master/Slave Operating Mode Master
Data Width 8 bits
Shift Direction Most Significant Bit (MSB) First
Clock Polarity Idle LOW
Clock Phase Latch receive data on leading clock edge, shift on trailing edge
Baud Rate 3MHz maximum

The SSC peripheral is configured through two registers: the control register (SSCx_CON) and the baud rate
register (SSCx_BR).

2.2.1 SSCx_CON Register

The operating mode of the SSC peripheral is determined by the values written to the control register
SSCx_CON (x = the sequential number for the SSC peripheral of interest). The control register defines all of
the SPI characteristics except for the baud rate.

Attention: Please note that the SSC control register is dual purpose, serving both as control register
when the SSC is disabled, and as a status register with the SSC is enabled. Therefore, the
user must ensure the SSC is disabled before attempting to modify the control register
settings. Once the SSC is enabled, the register provides status flags that should only be
read by the user.

 Figure 4 is an excerpt from the XC161 user manual, which describes the bitfields of the SSC control register
when the SSC is disabled (enable bitfield EN = 0).

 AP16095
XC16x SPI EEPROM

 Hardware Overview

Application Note 9 V1.0, 2006-07

Figure 4 SSC Control Register

The clock polarity and clock phase bitfields allow the SPI clock signal to be adjusted to meet the
requirements of the device connected to the microcontroller. The data sheets of SPI devices typically list the
required settings, but the exact definition of these bitfields may vary between microcontroller manufactures.
These settings should be checked carefully to ensure they meet the requirements of the interfacing device.
The definition of these bitfields for the SSC peripheral is shown in Figure 5.

Clock PhaseClock Polarity

SCLK

MTSR/
MRST

Bus Timing = Shift = Latch

SCLK

MTSR/
MRST

0 0

0 1

SCLK

MTSR/
MRST

SCLK

MTSR/
MRST

1

1

0

1

Figure 5 SSC Clock Phase and Polarity Settings

2.2.2 SSC Baud Rate Register

The SSC baud rate register controls the SPI clock rate. The baud rate register is 16-bits wide, and is used
as a reload value for a baud rate counter, as shown in Figure 6.

 AP16095
XC16x SPI EEPROM

 Hardware Overview

Application Note 10 V1.0, 2006-07

Figure 6 SSC Baud Rate Generation

The baud rate is calculated as:

() 1
2

−
×

=
BaudRate
fsscBR

where
• BR represents the contents of the baud rate register, taken as an unsigned 16-bit integer
• fSSC represents the internal frequency of the SSC peripheral (which is equal to fSYS)
• BaudRate is the desired baud rate

2.2.3 SSC I/O Configuration

The I/O associated with the SSC peripheral must be configured to route the signals through the appropriate
microcontroller pins. The master receive slave transmit (MRST) pin must be configured as an input. The
chip select (CS), SPI clock (SCLK), and master transmit slave receive (MTSR) pins must all be configured as
outputs. The port direction is controlled by register DPx, where x is the port number. Setting a bit to “0”
within the port direction register configures it as an input, and “1” configures it as an output.

In addition, the output pins which will be driven directly by the SSC peripheral (SCLK and MTSR) require that
the port be configured to use the alternate output functionality, in place of the general purpose I/O. The
alternate output functionality is controlled by the alternate select registers ALTSELnPx, where n selects the
appropriate control register (0 or 1), and x is the port number. The alternate select registers should be
configured as described in the parallel ports section of the user manual. Figure 7 is an excerpt from the
parallel ports section of the XC161 user manual, which summarizes the required I/O configuration for using
SSC0.

It should also be noted that for SSC0, the outputs are routed to port 3, which has a special output structure
for alternate outputs. Alternate outputs of port 3 are logically “ANDed” with the port latch data. Therefore, to
achieve the alternate functionality at the port pin, the corresponding bits of the port latch register P3 should
be set to “1”.

 AP16095
XC16x SPI EEPROM

 Hardware Overview

Application Note 11 V1.0, 2006-07

Figure 7 SSC0 I/O Configuration

2.2.4 SSC Configuration Sequence

In order to ensure proper SSC configuration, the following sequence is recommended:
1. Disable SSC (SSCx_CON bitfield EN = 0)
2. Program the desired baud rate (SSCx_BR = desired value)
3. Program control register with desired SPI settings, and enable SSC (note that enable bitfield is part of

SSCx_CON)
4. Configure the I/O by programming the alternate select, port latch, and port direction registers

2.3 EEPROM IC

As previously mentioned, the XC16x starter kit includes an Atmel AT25128 EEPROM. This EEPROM
provides 16KB of byte-addressable data storage. Instructions are given from the microcontroller to the
EEPROM through the SPI interface. The microcontroller always initiates the SPI communications, and must

 AP16095
XC16x SPI EEPROM

 Hardware Overview

Application Note 12 V1.0, 2006-07

provide the SPI clock signal for any data transmitted to or from the EEPROM IC. The complete details of the
EEPROM IC are given in the Atmel AT25128 data sheet, but some highlights are provided here.

2.3.1 SPI Timing Diagram

The general format for an SPI transmission to the EEPROM IC is shown below.

Figure 8 General SPI Timing for EEPROM IC

All communications to the EEPROM IC are started by asserting the chip select line, which is accomplished
by bringing the chip select signal to a low level. SPI traffic is ignored by the EEPROM IC while the chip
select signal is high. Data at the serial input (SI) to the EEPROM IC is latched with the rising edge of the SPI
clock, and therefore, the SI data is presented by the microcontroller a half clock cycle ahead of the rising
clock edge.

Following the chip selection, the first SI data clocked into the EEPROM IC is the instruction. The EEPROM
IC instructions include READ, WRITE ENABLE, WRITE, and READ STATUS REGISTER, as well as others.
The instructions are all 8 bits in length.

The SI data that follows the instruction is dependent on the type of instruction executed. For example, for
READ and WRITE instructions, the next two bytes represent an address within the EEPROM. In some
cases, there may even be no data following the instruction, such as the WRITE ENABLE instruction.

SO data may be clocked out of the EEPROM IC, again depending upon the type of instruction. To clock the
data out of the EEPROM, the microcontroller must deliver the SPI clock pulses. During this time, the SI data
bits clocked into the EEPROM IC are “don’t care” values.

Finally, the chip selection is deasserted by bringing signal to a high level. This completes the instruction
sequence.

2.3.2 Read Instruction

Data can be read one byte at a time, or for any arbitrary number of bytes as long as the chip select signal
remains asserted and SPI clock pulses are delivered to the EEPROM IC. The two data bytes following the
READ instruction represent the address to be read. An internal address counter is automatically
incremented after each byte is read, allowing multiple bytes to be read with a single READ instruction.

 AP16095
XC16x SPI EEPROM

 Hardware Overview

Application Note 13 V1.0, 2006-07

Figure 9 Read instruction Timing

2.3.3 Write Instruction

Data can be written one byte at a time, or up to 64 bytes at a time using page mode. The two data bytes
following the WRITE instruction represent the address to be written. Note that when page mode is used,
each byte of data that is received causes an internal address counter to be automatically increment by one.
The internal address counter is only 6 bits wide, and so the address will “wrap around” when reaching a 64
byte boundary. The user must ensure that this “wrap around” effect is handled properly.

Before writing data to the EEPROM, the EEPROM must be placed in the “write enable” state. The write
sequence is therefore typically composed of two instructions in succession: a WRITE ENABLE instruction,
followed immediately by a WRITE instruction. The “write enable” state is cleared by the write operation, and
a new WRITE ENABLE instruction is required before each write operation.

Figure 10 Write Enable instruction timing

 AP16095
XC16x SPI EEPROM

 Software Implementation

Application Note 14 V1.0, 2006-07

Figure 11 Write Instruction Timing

2.3.4 Read Status Register Instruction

Following the WRITE instruction sequence, the EEPROM begins a self-timed write cycle which commits the
data to memory. During the write cycle, only the read status register command is recognized. The user can
poll the status register to determine when the write cycle is complete.

Figure 12 Read Status Register Instruction Timing

 AP16095
XC16x SPI EEPROM

 Software Implementation

Application Note 15 V1.0, 2006-07

3 Software Implementation
This application note includes example software which demonstrates an SPI EEPROM interface. The
example software was developed for use with the Altium Tasking C166 v8.6r1 compiler, and an XC16x
starter kit. The starter kit includes an Atmel 25128 SPI EEPROM, which is exercised by the example
software.

3.1 Application Layer

The application layer makes use of the EEPROM data, and must manage the initialization and requests
made to the EEPROM layer. In the example code included with this application note, a RAM copy of the
EEPROM data is maintained by the application layer. During initialization, data is read from the EEPROM
and copied to RAM. A special initialization value (0xAA55) is stored in the EEPROM to indicate the
EEPROM has been initialized. If a read of the EEPROM indicates this value is not present, it is assumed
that this is the first time the program has been run, and all EEPROM values are initialized by writing default
values.

For the purposes of an example, the application layer which has been implemented is very simplistic. After
initializing the EEPROM data, the application code simply increments a cycle counter, and writes it back to
the EEPROM. After this operation, the code enters an endless loop.

As mentioned previously, a layered approach was used for the software implementation. The application
layer interacts with the EEPROM layer, but not directly with the SPI layer. From the point of view of the
application layer, function calls are made to the EEPROM layer to perform read, write, and status operations,
without any knowledge of how the lower layers perform these operations.

3.2 EEPROM Layer

The EEPROM layer is responsible for processing EEPROM requests from the application layer. The
EEPROM layer translates these application requests into the required instruction sequences required by the
EEPROM IC. The EEPROM instruction set is contained within this layer. The EEPROM layer relies upon
the SPI layer to perform the actual SPI transmit and receive operations.

3.2.1 EEPROM Layer Interface

The EEPROM layer provides the following interface functions for communicating with the application layer.

3.2.1.1 InitEEPROM
Function name: InitEEPROM
Syntax: void InitEEPROM(void)
Parameters (in): None
Parameters (out): None
Description: Performs any initialization required by EEPROM

3.2.1.2 WriteEEPROM
Function name: WriteEEPROM
Syntax: void WriteEEPROM(U16 address, U16 numBytes, U8 *src)

address EEPROM address to be written
numBytes the number of bytes to be written

Parameters (in):

src pointer to address of data to be written

 AP16095
XC16x SPI EEPROM

 Software Implementation

Application Note 16 V1.0, 2006-07

Parameters (out): None
Description: Writes a number of bytes to EEPROM

IMPORTANT NOTE - a page-write operation is used. The EEPROM address will
wrap-around, using only the lower 6 bits of the address. It is the user's responsibility
to ensure that this wrap-around addressing mode of the EEPROM is used correctly.

3.2.1.3 ReadEEPROM
Function name: ReadEEPROM
Syntax: void ReadEEPROM(U16 address, U16 numBytes, U8 *dst)

address EEPROM address to be read
numBytes the number of bytes to be read

Parameters (in):

dst pointer to address where data will be copied to
Parameters (out): None
Description: Reads a number of bytes from EEPROM

3.2.1.4 ReadEEPROMStatus
Function name: ReadEEPROMStatus
Syntax: U8 ReadEEPROMStatus(void)

Parameters (in): None
Parameters (out): Status Returns EEPROM status byte
Description: Reads the EEPROM status register

3.2.1.5 PollEEPROMBusy
Function name: PollEEPROMBusy
Syntax: U8 PollEEPROMBusy(void)

Parameters (in): None
Parameters (out): Status Returns EEPROM busy status
Description: Reads the EEPROM status register, and returns "true" if EEPROM is busy

3.3 SPI Layer

The SPI layer is responsible for processing SPI requests from higher layers. In the example code, only the
EEPROM layer makes requests of the SPI layer, but the software has been written in a generalized way to
support additional SPI devices. Requests could potentially come from other higher level layers. The SPI
layer translates the SPI requests into the required SPI bus signals, including the chip select of SPI devices,
as well as the SCLK, MTSR, and MRST signals. The example code uses the SSC0 peripheral to implement
these SPI features. To make efficient data transfers, the peripheral event controller (PEC) feature of the
XC16x microcontroller is used.

3.3.1 SSC Configuration

The SPI layer performs the necessary SSC configuration to match the SPI characteristics of the SPI devices
connected to the microcontroller. The example code includes macro definitions to assist in the configuration.
The user simply enters the desired SSC values, and the macros convert this into the required control register
settings. The user must also specify the rate of the hardware clock used in the system (8MHz in the
example), along with the desire SPI baud rate (1MHz in the example). The user may also adapt the

 AP16095
XC16x SPI EEPROM

 Software Implementation

Application Note 17 V1.0, 2006-07

functions which are called before and after an SPI transfer (function names pre_transfer_config and
post_transfer_config). These functions perform any necessary I/O configuration needed for the SPI transfer,
such as the assertion and deassertion of chip select signals.

3.3.2 Peripheral Event Controller (PEC)

To provide efficient data transfers, the peripheral event controller (PEC) is used. PEC performs a single
word or byte data transfer between any two locations within the microcontroller memory. The XC16x
microcontroller provides 8 PEC channels. PEC transfers are triggered by an interrupt request, and perform a
data transfer in place of calling an interrupt service routine. PEC transfers are quicker than an interrupt
service routine, because they “steal” cycles from the CPU to make the data move. PEC transfers do not
require the overhead of an interrupt routine, such as jumping and returning, pushing and popping registers,
or switching the context of the register set.

Each PEC channels has a set of control registers, which select how the channel will operate. The most
commonly used features are described below.

Table 3 PEC Configuration Features
PEC Feature Description
Source Pointer 24-bit address indicating source of PEC data move
Destination Pointer 24-bit address indicating destination of PEC data move
Count Number of transfers to be performed
Byte/Word Transfer Width of data to be transferred (8-bit or 16-bit)
Increment Control Selects automatic increment of source pointer, destination pointer, both, or neither

after each transfer

Each PEC channel is also associated with a specific interrupt priority level and group. The default setting
associates PEC channels 0-3 with interrupt level 14, groups 0-3, and PEC channels 4-7 with interrupt level
15, groups 0-3. Assuming that the PEC channel has been configured, an interrupt request occurring at one
of these interrupt levels will trigger the corresponding PEC transfer, and clear the interrupt request. When
performing the data transfer, the PEC count is decremented by one. When the last data transfer occurs, the
count decrements from 1 to 0, and not only does the data transfer occur, but additionally, the interrupt
service routine is called. This provides a convenient way to take any necessary actions after all data has
been transferred, such as reconfiguration of a peripheral or modifying software flags.

The operation of a PEC channels can be understood better with the following example. Consider that a PEC
channel will be used to transfer bytes received over SPI. It is desired to move the received bytes from the
SSC receive buffer to a buffer in RAM. In this example, the source pointer would be configured to point to
the SSC receive buffer register. The destination pointer would be configured to point to the buffer in RAM.
The PEC count would be configured for the number of bytes which will be received. The byte/word transfer
setting would be configured for byte-width in this case, since we are interested in byte-oriented SPI transfers.
Finally, the increment control would be set to increment only the destination pointer, so that received bytes
would always be pulled from the same address of the receive buffer, but then written sequentially into the
RAM buffer.

Each time a byte has been received, it generates an SSC receive buffer interrupt request, which triggers the
PEC data transfer. As the bytes are received, the PEC counter decrements. The counter will eventually
transition from 1 to 0, causing the SSC receive interrupt routine to be called.

3.3.3 SPI Transmit and Receive Operations

Since the microcontroller is always the master in the example code, all SPI communications will always
include at least a transmit operation. In the case that data must be read from a device, the SPI
communications will require both a transmit and receive operation. These two operations must be handled
slightly differently in software, to accommodate the additionally received data in the second case.

 AP16095
XC16x SPI EEPROM

 Software Implementation

Application Note 18 V1.0, 2006-07

The example software has been implemented using two PEC channels. The first PEC channel is dedicated
to reloading the SSC transmit buffer every time it is emptied by a byte being transmitted across the SPI bus.
The second PEC channel is dedicated to unloading the SSC receive buffer every time it is filled by a byte
being received over the SPI bus. To facilitate chip select control, the receive PEC channel is used in all
cases (even when the received data is not needed), in order to generate an interrupt request, and call to an
interrupt service routine which deasserts the chip select signal.

3.3.3.1 SPI Transmit Only Operations

For transmit only operations, one PEC channel is configured to load the SSC transmit buffer. The source
pointer is set to a user defined RAM buffer which holds the data to be transmitted, and the destination
pointer is set to the SSC transmit buffer register. Each time the transmit buffer is emptied, the PEC channel
refills it with a new byte. In this way, data is always ready to be transmitted, eliminating gaps between
transmitted bytes, and producing nearly 100% SPI bus utilization. The source pointer for the PEC channel is
incremented after each byte transfer to step through all bytes of the RAM buffer. After all bytes have been
loaded by PEC into the transmit buffer, a transmit interrupt service routine is called. In this case, there is no
special action required, so the interrupt service routine is simply an empty function. It merely provides a
mechanism to clear the interrupt request, which is cleared automatically in hardware when the interrupt
service routine is called.

A second PEC channel is configured to unload the SSC receive buffer. Although there is no meaningful data
to be received in this case, the receive PEC channel is used to count the bytes transferred across the SPI
bus, and will generate a call to a receive interrupt service routine after the last byte has been received. The
source pointer is set to the SSC receive buffer register. The destination pointer is set to a “dummy” register
(in the example, the ZEROS register), which effectively discards the received data. Once the last byte has
been received, the receive interrupt service routine is called. Within the receive interrupt service routine, the
chip select signal to the SPI device is deasserted. The transmit interrupt service routine can not be used for
this purpose, because this interrupt service routine occurs at the time when the last transmit buffer byte has
been loaded, which is before the last byte has actually been transferred across the SPI bus.

 AP16095
XC16x SPI EEPROM

 Software Implementation

Application Note 19 V1.0, 2006-07

Start of SPI Tx,
chip select set
low, Tx PEC

triggered by s/w

Rx PEC
unloads

receive buffer

Rx interrupt called
due to last Rx PEC,
chip select set high

Tx PEC loads
transmit buffer

Figure 13 SPI Transmit Only Timing

3.3.3.2 SPI Transmit and Receive Operations

Transmit and receive operations are handled in two halves: a transmit operation, followed by a receive
operation. The transmit operation occurs as described above in the proceeding section regarding SPI
transmit only operations. One PEC channel reloads the SSC transmit buffer, while another PEC channel
unloads (and discards) received bytes. At the completion of the last transmitted byte, the receive interrupt
routine is called. But, in this case, the receive interrupt routine reconfigures the PEC channels to prepare for
the second half of the operation.

The receive half of the operation begins in the receive interrupt service routine. The PEC channels are
reconfigured, and take on a new role. The first PEC channel is reconfigured to reload the SSC transmit
buffer register with “dummy” data (in the example, zeros), simply to generate the necessary SPI clock pulses
to shift data out of the SPI device. The second PEC channel is reconfigured to again unload the SSC
receive buffer register, but this time, the data is no longer discarded. The PEC destination pointer is now set
to a user defined RAM buffer which will hold the received data.

 AP16095
XC16x SPI EEPROM

 Software Implementation

Application Note 20 V1.0, 2006-07

The receive half of the operation continues until all bytes have been received. As before, the reception of
the last bytes causes the receive interrupt service routine is called. A software state variable is used to track
the fact that this is the second entry into the receive interrupt service routine, and therefore, the entire
transfer is complete, and the chip select signal to the SPI device is deasserted.

Start of SPI
Tx, chip

select set
low, Tx PEC
triggered by

s/w

Tx PEC
loads

transmit
buffer

Rx interrupt called
due to last Rx

PEC, chip select
set high

Tx PEC
loads

transmit
buffer

Rx interrupt called
due to last Rx PEC,

PEC reconfigured for
receiving data

Rx PEC
unloads
receive
buffer

Rx PEC
unloads
receive
buffer

Figure 14 SPI Transmit and Receive Timing

3.3.4 SPI Layer Interface

The SPI layer provides the following interface functions.

 AP16095
XC16x SPI EEPROM

 Additional Application Considerations

Application Note 21 V1.0, 2006-07

3.3.4.1 InitSPI
Function name: InitSPI
Syntax: void InitSPI(void)
Parameters (in): None
Parameters (out): None
Description: Performs initialization for SPI

3.3.4.2 Tx_SPI
Function name: Tx_SPI
Syntax: void Tx_SPI(SPI_DEVICE_TYPE dev, U8 TxCount, U8* src)

dev SPI device to be selected
TxCount number of bytes to transmit

Parameters (in):

src pointer to source data
Parameters (out): None
Description: Transmits a number of bytes over SPI bus

NOTE: Function initiates transmit, and continues transmission in the background.

3.3.4.3 Tx_Rx_SPI
Function name: Tx_Rx_SPI
Syntax: void Tx_Rx_SPI(SPI_DEVICE_TYPE dev, U8 TxCount, U8* src, U8 RxCount, U8* dst)

dev SPI device to be selected
TxCount number of bytes to transmit
src pointer to source data
RxCount number of bytes to receiver (after transmit)

Parameters (in):

dst pointer to address where received data will be stored
Parameters (out): None
Description: Transmits and receives a number of bytes over SPI bus

NOTE: Function initiates transfer, and continues transfer in the background

3.3.4.4 SPI_Dev_Busy
Function name: SPI_Dev_Busy
Syntax: U8 SPI_Dev_Busy(SPI_DEVICE_TYPE dev)

Parameters (in): None
Parameters (out): Status Returns busy status
Description: Provides indication if SPI device is busy (SPI transfer in progress)

 AP16095
XC16x SPI EEPROM

 Conclusion

Application Note 22 V1.0, 2006-07

4 Additional Application Considerations
Although the example code provided with this application note was constructed in a generalized way, it
obviously can not meet the needs of every application. This section provides some comments on areas that
should be considered when integrating similar code into an application.

4.1 EEPROM IC AC Characteristics

The EEPROM IC AC characteristics should be reviewed when implementing an SPI interface into an
application. These characteristics include such things as maximum allowed SPI clock frequency, and setup
and hold times. The example code was implemented assuming an 8MHz operating frequency for the
microcontroller, and 1MHz SPI clock frequency. The EEPROM IC timing requirements can be met when
operating at these frequencies. But, when operating at higher frequencies, particular attention should be
paid to the signal timing. In particular, the chip select setup and hold timing values are directly influenced by
the microcontroller operating frequency. Adjustments may be required to remain within the EEPROM IC
specifications.

4.2 Microcontroller Interrupt Suppression

The example code has been constructed assuming that PEC data transfers will occur without significant
delays. But, in the case that an application globally disables interrupts, or uses high priority interrupts (above
the PEC interrupt level), it is possible that PEC transfers could be delayed for a significant amount of time. In
the case that PEC transfers are delayed for more than one SPI byte transfer time, it is possible to overrun
the SSC receive buffer. In such a case, although the SSC transmit buffer is no longer being reloaded by
PEC transfers, the SSC hardware will continue to transmit the byte within the transmit shift register. In
addition, if another byte has already been loaded into the transmit buffer, it will also be transferred to the shift
register and transmitted. In this way, it is possible to transmit two bytes while PEC transfers have been
delayed. The SSC receive hardware can only buffer one receive byte, and so the second byte would be lost
in this scenario.

In case the application has interrupt suppression that exceeds one SPI byte transfer time, it is recommended
to implement an SSC receive interrupt routine without the use of PEC channels. The receive interrupt
routine should then process received bytes before loading the next byte into the transmit buffer. Using this
approach, it is not possible to overrun the receive buffer, even with very long interrupt suppression times.

4.3 Memory model and pointers used in example code

The example code uses a small memory model, and assumes that all pointer references can be made using
near addressing (a 16-bit address pointer). The XC16x microcontroller is capable of using longer addresses
(such as 24-bit or 32-bit) for pointers and PEC transfers, but this is not accommodated in the example code.
Adjustments to the example code would be required if larger addresses are required.

 AP16095
XC16x SPI EEPROM

 Conclusion

Application Note 23 V1.0, 2006-07

5 Conclusion
This application note described the steps necessary to interface the XC16x series of microcontrollers to an
SPI EEPROM IC. The example code demonstrates how this EEPROM interface can be implemented on the
Infineon XC16x starter kits, which include an SPI EEPROM. The example code also demonstrates the use
of the PEC data transfer mechanism, providing an efficient data transfer with minimal CPU overhead and
maximum SPI bus utilization. The flexible SSC peripheral, along with efficient PEC transfers, provide a
convenient, yet powerful, interface to SPI devices.

http://www.inf ineon.com

Published by Infineon Technologies AG

	Introduction
	Overview

	Hardware Overview
	XC16x Starter Kit and EEPROM Connections
	SSC Microcontroller Peripheral
	SSCx_CON Register
	SSC Baud Rate Register
	SSC I/O Configuration
	SSC Configuration Sequence

	EEPROM IC
	SPI Timing Diagram
	Read Instruction
	Write Instruction
	Read Status Register Instruction

	Software Implementation
	Application Layer
	EEPROM Layer
	EEPROM Layer Interface
	InitEEPROM
	WriteEEPROM
	ReadEEPROM
	ReadEEPROMStatus
	PollEEPROMBusy

	SPI Layer
	SSC Configuration
	Peripheral Event Controller (PEC)
	SPI Transmit and Receive Operations
	SPI Transmit Only Operations
	SPI Transmit and Receive Operations

	SPI Layer Interface
	InitSPI
	Tx_SPI
	Tx_Rx_SPI
	SPI_Dev_Busy

	Additional Application Considerations
	EEPROM IC AC Characteristics
	Microcontroller Interrupt Suppression
	Memory model and pointers used in example code

	Conclusion

