GSM Library

Version 3.0

©O OO0 oK
H Rk B R O

User Manual

; enterprises
www.dizzy.co.za

http://www.dizzy.co.za/

IMEPOAUCEION ...t 3
QIUICK SEAIPE ..ottt eb st 4
ROUBINES @NA EVENES......coeiiii ettt 8
THE EVENE IMIECNANISI ...ttt 8
POWVET <. 9
DAt/ TIME [BTEE]. ... ceeeeeereeeeereeeseeseiseetsessse et ssssssess st ss sttt 9
IIMIED COE ... oottt 10
PIN BOGE -.eoetrcereeieeeseeieeeseesssess st bbb 10
IMISSEA CAI1.....coeeeiieieiet bbbt 11
NEEWOIrK BEGISEPATION ..ceuveeeiecieieieereeieise sttt sss st sss s ssess st ssessessssssssessesssnssnssessansons 11
TEXE MIEBSSAGING ...ttt bbb 11
B RS bR 12
IS ottt bbb SRR 13
DIBIAYS ..ottt ARt 13
MUIEIPIE UARTS ..ottt es st 17
EXBIMIPIES ..ot 18
DISCIAIMIEBT ..t 19

www.dizzy.co.za Page 2 of 19

http://www.dizzy.co.za/

INntroduction

GSM modules have made it easy for embedded developers to add hardware capable of
connecting to cellular networks to their project.

These GSM modules communicate via simple AT commands. Whilst the AT commands
are easy to understand and use, writing reliable embedded code for interfacing with them
can be challenging.

We have spent hundreds of hours developing and testing our GSM Library. It is designed to
be easy to use, fast, and reliable - with fail-safes and retry mechanisms built in at every
step.

Functionality provided by the library includes:
Base Library

v Read/write the GSM modules RTCC (real-time calendar and clock).
Since most GSM modules have a facility for connecting a small backup battery to
maintain the RTCC, this can be a convenient feature for keeping track of the date
and time in the event of power [0ss.

v Receive the date/time from the GSM network.
Most GSM networks can send the current date/time to the GSM module upon
registration on the network. The module can use this information to set its own
internal RTCC. This feature is currently available for SIMCom, Telit and Luectel
modules.

v Read the modules unique IMEI code.
The IMEI can be used to uniquely identify the unit.

v Enter SIM card PIN code (optional).

v" Detect a missed call (including the caller ID).

Text Messaging (SMS) Extension

v Receive text messages.
v/ Send text messages.

GPRS Extension

v' HTTP GET.

This feature is currently only available for SIMCom modules.
v' HTTP POST.

This feature is currently only available for SIMCom modules.

www.dizzy.co.za Page 3 of 19

http://www.dizzy.co.za/

The GSM Library (and extensions) are provided as mikroElektronika compiler library
packages. Assuming that the relevant mikroElektronika compiler is already installed, the
library can be easily added to it by using the Package Manager
(http://www.mikroe.com/package-manager/]. Once installed, the library (and extensions,

if applicable] will be listed within Library Manager in the compiler.

|| Library Manager 1 [

i W |] 5] (3| 8 ubstok

= GSM ~
o [v] GsM

G- [] GSM_Ms_Quectel

G- [¥] GSM_MS_SIMCom

m- [GsM_Ms_Telit

&] Str

[=} GSM_Msg

&] GSM_Msg

=l GSM_GPRS_SIMCom

& [¥] GSM_GPRS_SIMCom v

GSM Library requires the following in order to operate:

1. Select/deselect the relevant library components in the Library Manager.

GSM Required Main GSM Library component.
Str Required GSM Library string support functions.
GSM_MS_x Optional / required | Manufacturer specific code (select appropriate
for some modules | GSM module manufacturer). Required for Telit
modules.

GSM_Msg Optional Text message (SMS) functionality.
GSM_GPRS_x Optional GPRS functionality.

2. Declare alias for the GSM modules Power_Key (Reset on Telit modules) as well as
Status pins.
mikraC

sbit GSM Pwr Key at LATE2 bit;

sbit GSM Pwr Key Dir at TRISE2 bit;
sbit GSM Stat at PORTE.BO;

sbit GSM Stat Dir at TRISEO bit;

mikroBasic

dim GSM Pwr Key as sbit at LATE2 bit

dim GSM Pwr Key Dir as sbit at TRISE2 bit
dim GSM Stat as sbit at REO bit

dim GSM Stat Dir as sbit at TRISEQO bit

mikroPascal

var GSM Pwr Key : sbit at LATE2Z bit;
var GSM Pwr Key Dir : sbit at TRISE2 bit;
var GSM Stat : sbit at REO bit;

www.dizzy.co.za Page 4 of 19

http://www.dizzy.co.za/
http://www.mikroe.com/package-manager/

var GSM Stat Dir : sbit at TRISEO bit;

3. Call initialisation routines at startup.

mikroC

UART1 Init(9600); // GSM Lib is designed to work at 9600 baud
gsmInit () ;

gsm MS Init();

gsm Msg Init(); // Only if GSM Msg extension is available

gsm GPRS Init(); // Only if GSM GPRS extension is available

mikroBasic

UART1 Init(9600) ' GSM Lib is designed to work at 9600 baud
gsmInit ()

gsm MS Init ()

gsm Msg Init() ' Only if GSM Msg extension is available

gsm GPRS Init() ' Only if GSM GPRS extension is available

mikroPascal

UART1 Init (9600); // GSM Lib is designed to work at 9600 baud
gsmInit () ;

gsm MS Init();

gsm Msg Init(); // Only if GSM Msg extension is available

gsm GPRS Init(); // Only if GSM GPRS extension is available

4. Setup a Tms timer interrupt, and call gsm1msPing() from within the interrupt.
Timer Calculator (www.mikroe.com/timer-calculator] can be very helpful for setting

up the interrupt.

mikroC

gsmlmsPing (); // Call from within Ilms timer interrupt
mikroBasic

gsmlmsPing () ' Call from within Ims timer interrupt
mikroPascal

gsmlmsPing (); // Call from within Ilms timer interrupt

9. Call gsmPall() from within your main program loop as often as possible.

mikroC
gsmPoll (); // Call from within Ims timer interrupt
mikroBasic
gsmPoll () ' Call from within lms timer interrupt
mikroPascal
gsmPoll (); // Call from within Ims timer interrupt

6. Create a routine called gsmEvent(] to handle events from the GSM Library.
mikroC

void gsmEvent (char GsmEventType) {
// Handle GSM Library events here
}

mikroBasic

sub procedure gsmEvent (dim GsmEventType as char)
' Handle GSM Library events here
end sub

mikroPascal

procedure gsmEvent (GsmEventType : char);
begin

// Handle GSM Library events here
end;

www.dizzy.co.za Page 5 of 19

http://www.dizzy.co.za/
http://www.mikroe.com/timer-calculator

That's it! The basic program structure should now be something like the following:

mikroC

sbit GSM Pwr Key at LATEQO bit;

sbit GSM Pwr Key Dir at TRISEO bit;
sbit GSM Stat at PORTE.B2;

sbit GSM Stat Dir at TRISE2 bit;

void interrupt () {
// <Timer(O Interrupt>
if (TOIF bit) { // 1lms Interrupt
TMROH = 0xD1;
TMROL = 0x20;
gsmlmsPing () ;
TOIF bit = 0; // Clear interrupt flag

}
// </Timer0 Interrupt>

}

void gsmEvent (char GsmEventType) {
// Handle GSM Library events here

}

void main () {
UART1 Init(9600); // GSM Lib is designed to work at 9600 baud
gsmInit () ;
gsm MS Init();
gsm Msg Init(); // Only if GSM Msg extension is available
gsm_GPRS Init(); // Only if GSM GPRS extension is available
TOCON = 0b10001000; // Set up interrupt timer
GIE bit = 1; // Global interrupt enable
TOIE bit = 1; // Enable Timer0O overflow interrupts
while (1) {
gsmPoll () ;
// Add your code here
}
}

mikroBasic

dim GSM Pwr Key as sbit at LATEZ bit

dim GSM Pwr Key Dir as sbit at TRISEZ bit
dim GSM Stat as sbit at REO bit

dim GSM Stat Dir as sbit at TRISEO bit

sub procedure interrupt ()
' <Timer0 Interrupt>
if (TOIF bit) then ' 1ms Interrupt
TMROH = 0xD1
TMROL = 0x20

gsmlmsPing ()
TOIF bit = 0 ' Clear interrupt flag
end if
' </Timer0 Interrupt>
end sub

sub procedure gsmEvent (dim GsmEventType as char)

www.dizzy.co.za Page 6 of 19

http://www.dizzy.co.za/

' Handle GSM Library events here
end sub

main:
UART1 Init (9600) ' GSM Lib is designed to work at 9600 baud
gsmInit ()
gsm MS Init ()
gsm Msg Init() ' Only if GSM Msg extension is available
gsm GPRS Init() ' Only if GSM GPRS extension is available
TOCON = %$10001000 ' Set up interrupt timer
GIE bit = 1 ' Global interrupt enable
TOIE bit = 1 ' Enable Timer(O overflow interrupts
while true
gsmPoll ()
' Add your code here
wend
end.

mikroPascal

var GSM Pwr Key : sbit at LATE2 bit;

var GSM Pwr Key Dir : sbit at TRISE2 bit;
var GSM Stat : sbit at REO bit;

var GSM Stat Dir : sbit at TRISEO bit;

procedure interrupt ()
begin
// <Timer(O Interrupt>
if (TOIF bit) then begin // 1lms Interrupt
TMROH := 0xD1;
TMROL := 0x20;
gsmlmsPing() ;
TOIF bit := 0; // Clear interrupt flag
end;
// </Timer0 Interrupt>
end;

procedure gsmEvent (GsmEventType : char);
begin

// Handle GSM Library events here
end;

procedure main () ;

begin
UART1 Init(9600); // GSM Lib is designed to work at 9600 baud
gsmInit () ;
gsm MS Init();

gsm Msg Init(); // Only if GSM Msg extension is available
gsm_GPRS Init(); // Only if GSM GPRS extension is available
TOCON := %10001000; // Set up interrupt timer
GIE bit := 1; // Global interrupt enable
TOIE bit := 1; // Enable Timer0O overflow interrupts
while (1) do begin
gsmPoll () ;
// Add your code here
end;
end.

www.dizzy.co.za Page 7 of 19

http://www.dizzy.co.za/

Routines and BEvents

The BEvent Mechanism
GSM Library uses the gsmEvent() routine to both report and request information. The
GsmEventType parameter contains the event type (please see the sections below for

details on the various types of events). There are 3 global variables which are used to pass
data back and forth with the GSM Library:

Variable Type

pstrGsmEventData Pointer to a string (char)
pstrGsmEventOriginatorID Pointer to a string (char)

dtmGsmEvent DateTime Structure (more information below])

The use of these variables is event-specific (details in the sections below). Not all of the
variables are used by all of the events, and some events may use no variables at all.

dtmGsmEvent consists of the following structure:

mikroC

typedef struct DateTime ({
char Year, Month, Day, Hour, Minute, Second;
} TDhateTime;

mikroBasic

structure DateTime

dim Year, Month, Day, Hour, Minute, Second as char
end structure
typedef TDateTime as DateTime

mikroPascal
type TDateTime = record

Year, Month, Day, Hour, Minute, Second : char;
end;

If you are not familiar with structures, then please see the mikroC / mikroBasic /
mikroPascal help file for detailed information.

For mikroBasic / mikroPascal users not familiar with pointers, these can be thought of as
function parameters passed “by reference” (byref]. Pointers can in fact be passed to a
function which requires parameters by reference, and this can be an easy way to “work
around” the pointer:

mikroBasic

sub procedure gsmMissedCall (dim byref OriginatorID as string)
' OriginatorID is a string, and pointers can be forgotten about :)
LCD Cmd(LCD Clear)
LCD Out (1,1,0riginatorID)
LCD Out(2,1," (Missed call)")
end sub

sub procedure gsmEvent (dim GsmEventType as char)
select case GsmEventType

www.dizzy.co.za Page 8 of 19

http://www.dizzy.co.za/

case gsmevntMissedCall
' pstrGsmEventOriginatorID is a string pointer
' pstrGsmEventOriginatorID” (carat symbol at end) defers
' to the string pointed to by pstrGsmEventOriginatorID
' See the mikroBasic help file for more information
gsmMissedCall (pstrGsmEventOriginatorID)
end select
end sub

mikroPascal

procedure gsmMissedCall (var OriginatorID : string);
begin
//OriginatorID is a string, and pointers can be forgotten about :)
LCD Cmd(LCD Clear);
LCD Out(1l,1,0riginatorID);
LCD Out (2,1, "' (Missed call)"');
end;

procedure gsmEvent (GsmEventType : char);
begin
case (GsmEventType) of
gsmevntMissedCall: begin
// pstrGsmEventOriginatorID is a string pointer
// pstrGsmEventOriginatorID” (carat symbol at end) defers
// to the string pointed to by pstrGsmEventOriginatorID
// See the mikroBasic help file for more information
gsmMissedCall (pstrGsmEventOriginatorID) ;
end;
end;

Powenr
The gsmPowerSetOnOff routine can be used to instruct the GSM Library to power the
GSM module on or off (GSM Library will power the module on by default).

Routines

mikroC

void gsmPowerSetOnOff (char power on)

mikroBasic

sub procedure gsmPowerSetOnOff (dim power on as char)

mikroPascal

procedure gsmPowerSetOnOff (power on : char);

Date/Time (RTCC)

The date/time routines can be used to read from / write to the GSM modules internal
RTCC (realtime calendar and clock]). Since most GSM modules have a facility for
connecting a small backup battery to maintain the RTCC, this can be a convenient feature
for keeping track of the date and time in the event of power loss. Additionally, GSM Library
will automatically try to obtain the date/time from the GSM network - if it does, then the
GSM module will set its RTCC using the data obtained from the network.

Tip
When the event gsmevntMsgRcvd occurs (please see the Text Messaging section for more

www.dizzy.co.za Page 9 of 19

http://www.dizzy.co.za/

information), the gsmMsgJustArrived() routine can be used to determine if the text message has
just arrived (the message could also possibly be an old one retrieved from the SIM card memory, in
which case gsmMsgdustArrived will return false/0). If a text message has just arrived, then its
date/time stamp are probably current, and can be used to set the GSM modules RTCC (this must
be initiated manually using gsmDateTimeWrite(]).

Routines

mikroC

void gsmDateTimeRead ()

void gsmDateTimeWrite ()

mikroBasic

sub procedure gsmDateTimeRead ()

sub procedure gsmDateTimeWrite ()

mikroPascal

procedure gsmDateTimeRead() ;

procedure gsmDateTimeWrite () ;

Events

gsmevntDateTimeRead
This event occurs after a read of the GSM modules RTCC, initiated by the
gsmDateTimeRead() routine, is completed. dtmGsmEvent contains the date/time read.

gsmevntDate TimeVWrite

This event occurs just before a write to the GSM modules RTCC, initiated by the
gsmDateTimeWrite() routine. dtmGsmEvent should be loaded with the date/time to be
written.

INMEI Code

GSM library will automatically read the modules IMEI code. This can be used as a unique
identifier.

Events

gsmevntiIMEI_Read
pstrGsmEventData points to the read IMEL

FPIN Code
GSM library can optionally enter a PIN code for the SIM card.

Events

gsmevntPIN_Request
pstrGsmEventData should be pointed to the PIN code. If the event is ignored or
pstrGsmEventData is pointed to a blank string, then a PIN code will not be entered.

gsmevntPIN_Fail
The entered pin code was incorrect.

www.dizzy.co.za Page 10 of 19

http://www.dizzy.co.za/

Missed Call

Events

gsmevntMissedCall
pstrGsmEventOriginatoriD points to a string containing the Caller ID from which the
missed call originated.

Network Registration

The gsmReady(] routine can be used to determine if the GSM module is registered on the
GSM network.

Routines

mikroC

void gsmReady ()

mikroBasic

sub procedure gsmReady ()

mikroPascal

procedure gsmReady () ;

Text Messaging
Text Messaging routines and events require the GSM_Msg extension.

Warning

GSM Library uses the SIM card memory for drafting and reading messages. This is done in order
to maximise reliability. If the SIM card message memory is not currently empty, then any messages
stored on the SIM card will be processed and deleted, and any drafts saved on the SIM card will be
sent. Please check that this will not cause any problems before using GSM Library with your SIM
card. (Perhaps copy any relevant messages from SIM card memory to phone memaory.)

gsmMsgSend() can be used to send a text message, gsmMsgSendPending() can be used
to determine if the operation has been processed yet and gsmMsgSendCancel() can be
used to cancel the operation.

Messages are first drafted into the SIM card memory before being sent. This is done in
order to maximise reliability, and also allows multiple messages to be “qued up” in the SIM
card memory before being sent. Once gsmMsgSend() has been called, then the message
and DestinationlD parameters should not be changed until the message has been drafted
(gsmevntMsgDrafted event, gsmMsgSendPending will return false/0), as these
parameters are passed as pointers (“by reference”).

gsmMsgdustArrived(]) can be called during a gsmevntMsgRcvd event in order to determine
if the message just arrived. If gsmMsgdJustArrived(]) returns false, then the message was
read from the SIM card memory and could possibly be old (but not definitely).

Routines

mikroC

void gsmMsgSend (char *Message, char *DestinationID)

char gsmMsgSendPending ()

www.dizzy.co.za Page 11 of 19

http://www.dizzy.co.za/

void gsmMsgSendCancel ()

char gsmMsgJustArrived ()

mikroBasic

sub procedure gsmMsgSend(dim byref Message as string,
dim byref DestinationID as string)

sub function gsmMsgSendPending () as char

sub procedure gsmMsgSendCancel ()

sub function gsmMsgJdustArrived() as char

mikroPascal
procedure gsmMsgSend (var Message : string;
var DestinationID : string);
function gsmMsgSendPending () : char;
procedure gsmMsgSendCancel () ;
function gsmMsgJustArrived() : char;
Events
gsmevntMsgRcvd

Occurs when a GSM message is received. pstrGsmEventData points to a string containing
the message text. pstrGsmEventOriginatoriD points to a string containing the Caller ID
from which the message originated.

gsmevntMsgDrafted
Occurs after a message to be sent has been drafted to the SIM card memory (initiated by
gsmMsgSend()). pstrGsmEventData points to a string containing the message ID.

gsmevntMsgDiscarded
Occurs if drafting of a message to the SIM card memory (initiated by gsmMsgSend(]) has
failed. This could possibly occur if the SIM card memory is full.

gsmevntMsgSent
Occurs when sending of a message is completed. pstrGsmEventData points to a string
containing the message ID.

gsmevntiMsgSendFailed

Occurs if sending of a message has failed. This could possibly occur if there is no
credit/"airtime” loaded on the SIM card. pstrGsmEventData points to a string containing
the message ID.

GPRS
GPRS routines and events require the GSM_GPRS extension. Currently, only HTTP GET and
POST operations are supported, and only for SIMCom modules.

gsmGprsHttpGet() and gsmGprsHttpPost() can be used to initiate an HTTP GET or POST
operation respectively. The result is returned via one or more
gsmevntGprsHttpResponselLine events (one event for each line of the response). If the
HTTP server returns a result code other than 200 (e.g. “404 - Page not found”) then the

www.dizzy.co.za Page 12 of 19

http://www.dizzy.co.za/

gsmevntGprsHttpResultErr event will occur. If the GPRS operation fails for any other
reason (e.g. no signal), then the gsmevntGprsFailed event will occur.

Routines

mikroC

void gsmGprsHttpGet (char* url)

void gsmGprsHttpPost (char* url, char* postdata)

char gsmGprsPending ()

void gsmGprsCancel ()

mikroBasic

sub procedure gsmGprsHttpGet (dim byref url as string)

sub procedure gsmGprsHttpPost (dim byref url as string,
dim byref postdata as string)

sub function gsmGprsPending () as char

sub procedure gsmGprsCancel ()

mikroPascal

procedure gsmGprsHttpGet (var url : string);

procedure gsmGprsHttpPost (var url : string, var postdata : string);
function gsmGprsPending () : char;

procedure gsmGprsCancel () ;

Events

gsmevntGprsHttpResponseline

This event will occur for each line of the HTTP response received (request initiated by
gsmGprsHttpGet() or gsmGprsHttpPost()). pstrGsmEventData points to a string
containing the line of data.

gsmevntGprsHttpResultErr

Occurs if the HTTP server returned a result code other than 200 (e.g. “404 - Page not
found”) as a result of an HTTP GET or POST operation (initiated by gsmGprsHttpGet() or
gsmGprsHttpPost()). pstrGsmEventData points to a string containing the result code
returned from the HTTP server.

gsmevntGprskFailed
Occurs if the GPRS operation failed (e.g. no signal).

Delays
gsmPall() should be called as often as possible. This means that the use of delay_ms(] (or
similar) in your code should be avoided. There are however ways to work around this:

Example 1 (Recommended)
Use a timer variable, incremented during the 1ms timer interrupt, to time the delay.

| mikroC

www.dizzy.co.za Page 13 of 18

http://www.dizzy.co.za/

sbit GSM Pwr Key at LATEO bit;

sbit GSM Pwr Key Dir at TRISEO bit;
sbit GSM Stat at PORTE.B2;

sbit GSM Stat Dir at TRISE2 bit;

unsigned int wrdDelayTmr;

void interrupt () {
// <TimerO Interrupt>
if (TOIF bit) { // 1lms Interrupt
TMROH = 0xD1;
TMROL = 0x20;
gsmlmsPing () ;
wrdDelayTmr++;
TOIF bit = 0; // Clear interrupt flag
}
// </Timer0 Interrupt>
}

void do_delay(unsigned int delaytime ms) {
// Delay for a certain amount of time,
// whilst still allowing the GSM Library to operate
wrdDelayTmr = 0;
while (wrdDelayTmr < delaytime ms) {
gsmPoll () ;
}
}

void gsmEvent (char GsmEventType) ({
// Handle GSM Library events here
}

void main () {
UART1 Init(9600); // GSM Lib is designed to work at 9600 baud
gsmInit () ;
gsm MS Init();
gsm Msg Init(); // Only if GSM Msg extension is available
gsm GPRS Init(); // Only if GSM GPRS extension is available

TOCON = 0b10001000; // Set up interrupt timer
GIE bit = 1; // Global interrupt enable
TOIE bit = 1; // Enable Timer0 overflow interrupts
while (1) {
gsmPoll () ;
// Add your code here

}

mikroBasic

dim GSM Pwr Key as sbit at LATEZ bit

dim GSM Pwr Key Dir as sbit at TRISE2 bit
dim GSM Stat as sbit at REO bit

dim GSM Stat Dir as sbit at TRISEO bit

dim wrdDelayTmr as word

sub procedure interrupt ()

www.dizzy.co.za Page 14 of 18

http://www.dizzy.co.za/

' <Timer(O Interrupt>

if (TOIF bit) then ' Ims Interrupt
TMROH = 0xD1
TMROL = 0x20

gsmlmsPing ()
Inc (wrdDelayTmr)
TOIF bit = 0 ' Clear interrupt flag
end if
' </Timer0 Interrupt>
end sub

sub procedure do delay(dim delaytime ms as word)
' Delay for a certain amount of time,
' whilst still allowing the GSM Library to operate
wrdDelayTmr = 0
while (wrdDelayTmr < delaytime ms)
gsmPoll ()
wend
end sub

sub procedure gsmEvent (dim GsmEventType as char)
' Handle GSM Library events here

end sub
main:
UART1 Init (9600) ' GSM Lib is designed to work at 9600 baud
gsmInit ()
gsm MS Init ()
gsm Msg Init() ' Only if GSM Msg extension is available
gsm GPRS Init() ' Only if GSM GPRS extension is available

TOCON = $10001000 ' Set up interrupt timer
GIE bit = 1 ' Global interrupt enable
TOIE bit = 1 ' Enable Timer0O overflow interrupts
while true
gsmPoll ()
' Add your code here
wend
end.

mikroPascal

var GSM Pwr Key : sbit at LATE2 bit;

var GSM Pwr Key Dir : sbit at TRISE2 bit;
var GSM Stat : sbit at REO bit;

var GSM Stat Dir : sbit at TRISEO bit;

var wrdDelayTmr : word;

procedure interrupt () ;
begin
// <Timer(Q Interrupt>
if (TOIF bit) then begin // 1lms Interrupt
TMROH := 0xD1;
TMROL := 0x20;
gsmlmsPing () ;
Inc (wrdDelayTmr) ;
TOIF bit := 0; // Clear interrupt flag

www.dizzy.co.za

Page 15 0of 19

http://www.dizzy.co.za/

end;
// </Timer0 Interrupt>
end;

procedure do delay(delaytime ms : word);
begin
// Delay for a certain amount of time,
// whilst still allowing the GSM Library to operate
wrdDelayTmr := O;
while (wrdDelayTmr < delaytime ms) do begin
gsmPoll () ;
end;
end;

procedure gsmEvent (GsmEventType : char);
begin

// Handle GSM Library events here
end;

procedure main() ;

begin
UART1 Init(9600); // GSM Lib is designed to work at 9600 baud
gsmInit (),
gsm MS Init();

gsm Msg Init(); // Only if GSM Msg extension is available
gsm _GPRS Init(); // Only if GSM GPRS extension is available
TOCON := %$10001000; // Set up interrupt timer
GIE bit := 1; // Global interrupt enable
TOIE bit := 1; // Enable Timer0O overflow interrupts
while (1) do begin
gsmPoll () ;
// Add your code here
end;
end.
Example 2

Break the delay up into smaller pieces, calling gsmPoll() between each piece. This could
result in the delay being slightly longer than desired.

mikroC

void do delay(unsigned int delaytime ms) {
// Delay for a certain amount of time,
// whilst still allowing the GSM Library to operate
unsigned int ctr;
for (ctr=0;ctr<delaytime ms;ctr++) {
gsmPoll () ;
delay ms (1) ;
}
}

mikroBasic

sub procedure do delay(dim delaytime ms as word)
' Delay for a certain amount of time,
' whilst still allowing the GSM Library to operate
dim ctr as word
for ctr = 0 to delaytime ms

www.dizzy.co.za Page 16 of 19

http://www.dizzy.co.za/

gsmPoll ()
delay ms (1)
next ctr
end sub

mikroPascal

procedure do delay(delaytime ms : word);
begin
// Delay for a certain amount of time,
// whilst still allowing the GSM Library to operate

var ctr : word;

for ctr := 0 to delaytime ms do begin
gsmPoll () ;
delay ms (1) ;

Multiple UARTs

GSM Library uses the last UART which was initialised or set active ([UART_Set_Active(),
please see the compiler help file] in order to communicate. If you wish to use multiple
UARTS in your project, then you may need to set the UART function pointers to the correct
functions before calling gsmPoll() or gsm1msPing()

mikroC

UART Wr Ptr
UART Rdy Ptr
UART Tx Idle

UART Rd_Ptr =

&UART1 Read;

&UART1 Write;
= &UART1 Data Ready;
Ptr = &UART1 Tx Idle;

mikroBasic

UART Rdy Ptr
UART Tx Idle

UART Rd_Ptr =
UART Wr Ptr = @UART1 Write

@UART1 Read

= QUART1 Data Ready
Ptr = QUART1 Tx Idle

mikroPascal

UART Rd Ptr
UART Wr Ptr
UART Rdy Ptr
UART Tx Idle

@UART1 Read;

:= @UART1 Write;

:= (@UART1 Data Ready;
Ptr := QUART]1 Tx Idle;

www.dizzy.co.za

Page 17 of 19

http://www.dizzy.co.za/

Various examples of how to use the GSM Library Manager s
Library are included with the library package. W FE A I‘; LibStod
Once the package has been installed, these E GSM ~
. . FEE V] e -
examples can be found in the compilers : Hel
, B [63 P
packages\ GSM\ Examples folder, or by right- &[] GE| Examples
clicking on the GSM Library in Library .. P Iarin it
Manager and then clicking “Examples”. &[] st
= GSM_Msg Copy
The examples are also downloadable from our -] GSM_Msg
website at www.dizzy.co.za. = GEM_GPRS_SIMCom
#- [] G5M_GPRS_SIMCom v

www.dizzy.co.za Page 18 of 19

http://www.dizzy.co.za/
http://www.dizzy.co.za/

Disclaimer

This part says that you cannot sue us because we accept no responsibility for any
damages whatsoever that may be caused in connection with our products. \We've
designed them the best we can, but please, use your common sense.

www.dizzy.co.za Page 19 of 19

http://www.dizzy.co.za/

