
- 1 - 
 

 
 

Model-based and component-based 

development of embedded systems 

 

 
Master Thesis, D-Level 

 

Author:  

Rumen Vladimirov Kyusakov 

 

Mälardalen University 

School of Innovation, Design and Engineering 

 

 

Supervisor:      Examiner:  

Tomas Bures      Ivica Crnkovic 

tomas.bures@mdh.se     ivica.crnkovic@mdh.se 

 

 

June 19, 2008 

mailto:tomas.bures@mdh.se
mailto:ivica.crnkovic@mdh.se


- 2 - 
 

 

Abstract 

 

 Although the component-based software engineering is proven to be very 

successful in enterprise and desktop applications, it encounters some difficulties when 

applied to development of embedded systems.  Specific requirements like execution 

time, memory footprints, predictability etc., also known as extra-functional system 

properties, makes it difficult to use available component models for real-time and safety-

critical applications. That arouses a need of domain specific, software-component 

approach for developing embedded systems.  Defining methods and tools for utilizing 

this approach is one of the main goals of the PROGRESS research centre. 

          This thesis is focused on building a repository for reusable components as part of 

ProSave Integrated Development Environment (IDE) – a framework containing 

developed within PROGRESS tools. The primary goal of this repository is to advance 

components’ reuse by providing features like storage, versioning and support for 

multiple clients and concurrent connections. Different technologies can be selected for 

actual implementation of the repository and even different architectures within the same 

technology. Each of these scenarios leads to particular constraints and limitation on the 

system more or less concerning fulfillment of its required functionality. After evaluation 

of these design scenarios regarding our repository concept, a version control system was 

chosen for data storage; in particular Subversion and for a persistent layer 

implementation a Java library SvnClientAdapter was used.  

 

 

 

 

 

 

 

 

 



- 3 - 
 

Table of Contents 
 

1. Introduction ....................................................................... - 4 - 

1.1. Purpose ........................................................................................ - 5 - 

1.2. Conventions and thesis organization ............................................ - 5 - 

2. Background ........................................................................ - 7 - 

2.1. ProSave component model ........................................................... - 7 - 

2.2. Eclipse platform ........................................................................... - 8 - 

2.3. General version control concepts ................................................. - 9 - 

3. Software requirement specification of the component 

repository. Problem formulation .......................................... - 10 - 

3.1. Functional specification .............................................................. - 11 - 

3.2. Implementation requirements and constraints .......................... - 12 - 

4. Repository versioning policy ............................................ - 13 - 

5. System architecture ......................................................... - 14 - 

5.1. Data tier ..................................................................................... - 14 - 

5.2. Application tier .......................................................................... - 15 - 

5.3. Presentation tier ........................................................................ - 16 - 

5.4. Summary ................................................................................... - 16 - 

6. Implementation process ................................................... - 17 - 

6.1. System design ............................................................................ - 17 - 

6.2. Project structure prerequisites and conventions ........................ - 22 - 

6.3. Repository business logic. Mapping between operations on 

components and SVN commands ....................................................... - 24 - 

7. Overview of the implemented system ............................... - 29 - 

8. Related work .................................................................... - 32 - 

9. Conclusion and future work ............................................. - 33 - 

References ............................................................................ - 35 - 

Appendix A: Use cases ........................................................... - 37 - 

Appendix B: User manual...................................................... - 43 - 



- 4 - 
 

 

1. Introduction 
 

Traditional practice in software development denotes the compiling of a complex, 

coupled source code with built-in dependencies. As a result, the process of changing 

program logic, or adding new capabilities, becomes factual trouble. Developers have to 

modify the primary source code, go over testing again to ensure correctness of changes 

and recompile application. Drawbacks of this approach are best described in one 

prominent example [2] – imagine if the car axis had to be modified and because of that 

some other parts of the chassis, too, just because the tires need changing with high-

performance ones. That would cost a lot of money and efforts in conjunction with 

unpredictable behavior. However the car tires, as well as all other machine parts, are 

standardized. This allows a specific tire model to be used in a wide variety of vehicles 

and vice versa – a specific vehicle can use different tire models without the need of 

modifications.  Like their mechanic analogues, software components reduce the 

complexity of the software systems and provide means for reusing the existing source 

code. Contrary to the traditional approach, component-based development separates 

development of components from development of systems. This way a software system is 

being built using pre-existing components. The same as the machine parts example, 

component-based development requires all components in the system to be well-

specified and to comply with a common standard – that is a formal set of rules defining 

interactions and composition principles [3] also known as component model. For 

different software domains, different component models must be applied. Having a 

suitable component model and a set of well specified components on hand is in fact not 

sufficient to facilitate component-based development process. Looking back on the 

machine parts analogy, imagine that a bolt must be removed; a specific tool is certainly 

needed i.e. a wrench, and both of them the bolt and the wrench have to comply with 

common standard for example metric or ―English standard.‖ So the moral of this 

comparison is that in order to take advantage of component-based software 

development there is a need of a right tool or better the right set of tools. This set should 

include tools for assisting the component creation like text editors, graphical designers, 

testing tools etc. as well as tools for assembling the components into a system like 

architecture viewers, model viewers and editors, and analysis tools. Another important 

tool is a component repository which is storage area for components providing sharing, 

addition and browsing of the saved components. It promotes components reusability 

and facilitates the development process. 

In order to successfully apply the component-based software engineering to a particular 

domain e.g. desktop, enterprise, web applications, embedded systems, a specific 



- 5 - 
 

component technology should be used. It includes a component model and a set of tools 

which have to fulfill the requirements derived from the software domain. Since the 

embedded systems are very important for Swedish industrial sectors, a strategic research 

centre PROGRESS [13] has been established by Mälardalen Real-Time Research Centre. 

The key objective of POGRESS is to apply a software-component approach to 

engineering and re-engineering of embedded software systems by providing theories, 

methods and tools. As part of the PROGRESS research, ProSave Integrated 

Development Environment is being developed. It is a programming environment 

containing variety of tools for development of real-time software systems. One such tool 

is a component repository – a means for storing and sharing components.  

 

1.1. Purpose 

Promoting reusability of the real-time components is the cornerstone of today’s efforts in 

embedded software engineering. In order to address this issue, common standards and a 

dedicated component model are created within the PROGRESS project. Another area 

where the reusability can be enhanced is in the component-based development process 

which ProSave IDE is designed to facilitate. Besides tools for assisting components 

creation, ProSave IDE is supposed to provide means for storing and sharing them. This 

functionality is presented by a component repository which creation is the aim of this 

thesis. When designing and implementing the repository, the thesis investigation should 

take into consideration the following aspects: 

- The repository must be available for remote and concurrent access 

- The components can have many versions which need to be stored 

- Integration with the ProSave IDE should be provided 

 

 

1.2. Conventions and thesis organization 

This section covers the various conventions used throughout this paper.  

Typographic conventions: 

Constant width font is used for source code. 

Italic fond is used for terms, when they are defined. 

Italic bold font is used for diagrams’ captions. 

Acronyms: 

PROGRESS – strategic research centre funded by the Swedish Foundation for Strategic 

Research 



- 6 - 
 

IDE – Integrated development environment  

API – Application programming interface 

VCS – Version control system 

OSGi – Open Services Gateway Initiative 

OS – Operating system 

The thesis is organized in the following sections: 

1. Introduction – Points the basic advantages of using component-based software 

engineering and the need of tools during the development process. Motivation of 

the thesis investigation is also provided. 

 

2. Background – Provides concise review of the needed theories and technologies 

behind the thesis work. 

  

3. Software requirement specification of the component repository. Problem 

formulation – Describes the expected functionality of the system and the 

constraints concerning its implementation. 

 

4. Repository versioning policy – Explains how the prospective system will handle 

the component versioning process. 

 

5. System architecture – Covers the first steps in the system implementation – 

identifies the system components and their interactions. 

 

6. Implementation process - Describes the most important steps in the system 

implementation along with the problems emerged, and the investigation of 

different methods to solve them. 

 

7. Overview of the implemented system – Describes in details the implemented 

system. 

 

8. Related work – Presents a brief survey of the work done in the area and how this 

thesis fits in it. 

 

9. Conclusion and future work – Summarizes the work done in this thesis and 

provides hints for possible improvements. 

      Appendix A: Use cases – Describes in details the system functionality using UML 

activity diagrams. 

      Appendix B: User manual – Provides instructions for using the system. 



- 7 - 
 

2. Background 

 

As the scope of PROGRESS research is a vehicular, telecom and automation domain, 

specialized component model has been designed – ProSave. It shaped the component 

concept and defines how components can be combined to create a system [4]. The thesis 

work includes a study of the component model, because the relationships and 

dependencies between ProSave components are of prime importance for correct 

implementation of the repository operations on components. 

Based on the ProSave component model, ProSave Integrated Development Environment 

is currently being developed. Like his predecessor SAVE IDE, ProSave IDE uses Eclipse 

platform which is specially designed for building Integrated Development Environments 

(IDEs) and arbitrary tools. Since the component repository must be part of the ProSave 

IDE, the thesis investigation examines the question of Eclipse platform contributions. 

The next sections provide brief descriptions of the ProSave component model, Eclipse 

platform and basic concepts of the version control systems as they are essential for the 

subsequent investigation.  

 

2.1. ProSave component model 

ProSave is a simple component model designed for low-level component-based 

development of vehicular systems. It has been developed from the very beginning to 

facilitate analysis and synthesis [6] hence providing a way to define a system’s extra-

functional properties in design time. ProSave component model is based on a pipes-and-

filters architecture and it strictly separates data transfer and control flow. 

The target system is considered as a set of subsystems which communicate to each other 

asynchronously using messages. A subsystem consists of ProSave components, clocks, 

sensors and actuators. It has its own threads of execution and uses its input and output 

message ports to send and receive data from other subsystems. 

A ProSave component is an encapsulated, reusable piece of functionality. It has input 

and output ports used to connect the component to other components or subsystem 

elements. A port can be used either for data transfer or for control flow, thus it is a data 

port or a trigger port, respectively. Each port is part of exactly one interface and each 

interface is part of exactly one service. Interfaces and services present a component’s 

external view in more comprehensible way. 

Another important aspect of the ProSave components is their attributes. They are used 

to store information about component properties, for example, execution time or 

resource consumption.  

There are two types of ProSave components:  primitive components which provide 



- 8 - 
 

desired functionality using source code and composite components which consist of 

subcomponents, connections and connectors. A connection is a directed link between 

two ports – either input data port to output data port or input trigger port to output 

trigger port. Connectors on the other hand are used to adjust data flow and control flow. 

Some examples of connectors are ―Data fork‖ which splits a data connection to several 

others. ―Selection‖ forwards the incoming trigger to a particular path depending on a 

specific condition etc.  

 

2.2. Eclipse platform 

Eclipse is a Java-based, extensible open source development platform. One of the main 

features of the Eclipse platform is its mechanism for discovering, integrating, and 

running modules called plug-ins, which are in turn represented as bundles based on the 

OSGi [http://osgi.org] specification [5].  Except for a small kernel known as the Platform 

Runtime, all of the Eclipse Platform's functionality is located in plug-ins. 

 

Figure 1 - Eclipse platform 

The above picture shows the major components of the Eclipse Platform. Each 

supplementary tool which adds functionality to the platform is written as single or 

several plug-ins. Plug-ins are coded in Java. A typical plug-in consists of Java code in a 

JAR library, some read-only files, and other resources such as images, web templates, 

message catalogs, native code libraries, etc [7]. The Eclipse platform provides generic 



- 9 - 
 

functionality which can be easily extended as in the ProSave IDE. However not all of its 

components are really needed when working in the ProSave development environment. 

For example Ant tool used for automatic Java builds or Java debugger can confuse 

prospective ProSave users. High quality software should include only this functionality 

which complies with its intended use. Fortunately, Eclipse is flexible enough and it offers 

a mechanism for discarding unused plug-ins. Applications which make use of this 

mechanism is called Rich Client Application and the minimal set of plug-ins needed to 

build them is collectively known as the Rich Client Platform or RCP. The ProSave 

integrated development environment is intended to use RCP in order to provide simple 

and intuitive user interface. 

 

2.3. General version control concepts 

Version control is a system which records changes to arbitrary source files and 

resources, manages releases, and controls access to shared files [9]. It is a mandatory 

part of every big software project where a large number of software developers work on 

the same data. Version tracking means that the version control system makes it possible 

to retrieve any historical version of any stored file or even a state of the files at some 

moment in time. Most VCS rely on a central storage called repository that saves all the 

information about file changes, including the time and users making these changes. The 

repository stores this information in the form of a file system tree — a typical hierarchy 

of files and directories. Any numbers of clients connect to the repository, and then read 

or write to these files. By writing data, a client makes the information available to others; 

by reading data, the client receives information from others [10]. 

In order to start working with the data in the repository a user needs to create a working 

copy on his local machine. This is a directory where the local modifications of the data 

take place. The operation of downloading files and directories from the repository to a 

working copy is called check out. In reverse, operation of publishing user’s changes to 

repository is called check in or commit. Different VCS use different strategies to achieve 

collaborative editing and sharing of data. The main problems when many people work 

with a same set of data are collisions in their changes. There are two ways of addressing 

this – the Lock-Modify-Unlock solution and the Copy-Modify-Merge solution. In the 

first model, the repository allows only one person to change a file at a time. This is 

usually done by creating a lock every time a user starts modifying the file. Other users 

must wait for the editor to release the lock before they can edit the file. On the other 

hand, the Copy-Modify-Merge model allows many users to work simultaneously and 

independently on a same file. Finally, the private copies are merged together into a new, 

final version. If two or more private copies modify the same part of the file in different 

ways a conflict occur. In this situation, the users are responsible for correct file merging. 

This mechanism proves to be very useful in practice and it somehow increases a team’s 



- 10 - 
 

productivity. This is especially true when working with source code files and other line-

based text files. However, files in a binary format like pictures and sound files are almost 

impossible for merging and in this case using locks for ensuring serialized access is 

preferred. 

 

 

3.  Software requirement specification of the 

component repository. Problem formulation 

 

Component-based development of an embedded system is a process which includes 

many activities; starting with the system architecture which draws the big picture of the 

prospective software system and divides it into smaller parts or subsystems; the 

designing phase where all necessary components are identified regarding requested 

functionality and execution environment. Then, the components are being developed, 

either from scratch or reusing existing ones, and assembled together during the 

implementation phase which also includes testing. The development of the system can 

take place in one project or it might be spread across several projects with different 

teams work on them. Against the background of this working environment, the ProSave 

IDE repository must serve as common sharing facility for all concerned with components 

elaboration within the organization. There can be several systems being developed and 

even teams only responsible for development of components. Each team’s collaborative 

work is kept in a regular version control system where the frequent modifications evolve 

the line of development of the ProSave components. When a particular component is 

complete the relevant team can share it with other teams by exporting it to the ProSave 

IDE repository. In this way, the developers from other projects can import and reuse the 

component or they can contribute to its development by modifying it and create a new 

version of it. The next example tries to present the repository system from the user 

perspective in the context of using ProSave IDE for developing an embedded system: 

The work on the system starts when the users create a project, which holds all 

development data. The project meta-data should include parameters of the connection 

with the repository like URL of the server. When the architecture of the system is 

complete and needed components are identified, the users can check for already 

developed components which fit the desired specification by browsing the component 

repository. The components which exactly fulfill the requirements can be imported and 

used out of the box. Some of the components in the repository may need improvements 

in order to be included in the system. The users can import them, make the needed 



- 11 - 
 

modifications –for example implement a better algorithm, and export the components 

back into the repository as a new version. In the case when a specific component from 

the repository can be reused in the system but it needs modifications which change its 

specification – for example adding a new port or changing internal logic, the users can 

create a new branch of this component; that is import the component, implement the 

required changes and instead of exporting it to the repository as a new version, create a 

new component in the repository as derived from the first one. Then the users may 

create a component from scratch using an architecture editor, code generator and other 

assisting tools. While their work on the component is in progress, they can use a version 

control system to keep the data and ensure collaborative modifications. Once the 

component is complete the users can share it by making export to the component 

repository.  

The next sections summarize the requirements and constraints on the repository system 

which are divided into two categories – functional category and implementation specific 

category, as this represents two different views on the system. On one hand the system 

users are only concerned with its functionality while on the other hand prospective 

developers of ProSave IDE are interested in its implementation details. 

 

3.1. Functional specification 

The repository has to be available on the network or on a local machine for potentially 

many users working concurrently. It is required that every modification on components 

is safe and doesn’t affect the work of other users of the repository. The system has to 

support the following operations on components: 

- Browse available components in the repository together with their older versions 

- List all subcomponents of a particular component 

- Export a component made from scratch to the repository 

- Import a component of a specific version from the repository to a project in 

ProSave IDE 

- Export a newer version of existing component 

- Export a modified existing component as a different component and save its 
ancestor’s history 

- Delete(hide when browsing) a component 
 
The diagram below shows a wider look of all ProSave IDE functionality related to 

repository system.   



- 12 - 
 

 

Figure 2: Use case diagram 

 

Each one of these use cases is described in details in Appendix A using activity 

diagrams. For better understanding of what is expected behavior of the repository 

system one is advised to refer to them. 

 

3.2. Implementation requirements and constraints 

First of all, as it is part of the ProSave IDE, all system APIs have to be available for 

Eclipse plug-ins hence implemented as Java interfaces. Then, the components’ data that 

has to be stored in the repository is represented and edited as files. It includes source 

code, documentation, references and binary files. In a file system it corresponds to 

hierarchy folder structure and a collection of files in each folder. For example 

subdirectory ―src‖ which contains source code files, subdirectory ―doc‖ which contains 

component documentation and so on. The description of the parent-child relationships 

is included in the components’ meta-data although the concrete format is not yet known. 

Besides that, a ProSave component can have many versions, and each of its referenced 

subcomponents is also in a specific version. Considering these conditions, the thesis 

investigation should use a version control system for implementation of the server part 

of the system. 

The repository’s APIs have to be independent from actual server implementation. That 



- 13 - 
 

means that if the version control system is changed with a file server or other storage 

system then all interfaces remain the same.  

And last but not least the repository must be reliable, scalable and extensible. 

 

 

4. Repository versioning policy 

 

The presence of parent-child relationships between the ProSave components in addition 

to their number of different versions, sets the pattern for complex hierarchy 

associations. This creates an open problem when it is considered that the ProSave IDE 

users can modify the components stored in the repository. And here is the question: 

What will happen when one modifies a component already used in other composite 

component(s)? Can the system propagate the changes to all concerned composite 

components? 

The answer is ―Depending on the changes.‖ If the modification is safe – documentation 

update, adding code comments etc. then the changes can be propagated, otherwise this 

can lead to errors as in the case of adding/deleting a port, changing internal logic or 

attributes. However, the boundaries of this set of safe changes are not yet known and 

defining methods to determine if a particular modification belongs to this set seems to 

require extended investigation. That is why the thesis examines simple solution to this 

problem. Each modification creates new version of the component. All subcomponents 

are referred using their particular version and the changes are not propagated. In this 

way the users are responsible for upgrading the version of the subcomponents. The next 

example illustrates this matter: 

Components A, B, C and D are in the repository. A is subcomponent of C and D. B is 

subcomponent of C, and C is subcomponent of D as shown in Figure 3.  

 

Figure 3 - Components associations 



- 14 - 
 

The users find out that in order to improve some parameters in component D they have 

to modify its subcomponent A. If the modification is not safe and the system propagates 

the changes to C, then both of the components C and D will not work correctly because 

D depends on C. When the fact, that the hierarchy associations can be much more 

complex, is taken into consideration, it is evident that the effect of this practice is 

completely unacceptable. Because of that, the repository creates a new version of A 

regardless of the modification type. C will contain the old version of A, and D will 

contain both versions of A – the newly created and the version of A from C. Then the 

users have to decide whether the changes to A can be propagated. In the case when the 

characteristics of C will be improved if it uses the new version of A, the users can create 

a new version of C which uses the new version of A. The same procedure has to be 

applied recursively for all dependent components.   

 

 

5. System architecture  
 

This section divides the system into modules and describes their structure.  At first 

glance there are three distinctive tiers which are common to most applications 

containing server part. That is data, application and presentation tier. Each of them 

encapsulates specific functionality and communicates with other tier(s) via public 

interfaces.  

 

5.1. Data tier 

This is the place where all components’ data has to reside. Also, it is required to be 

available for many clients working concurrently and accessing it remotely. As already 

mentioned in system constraints section, this thesis investigation is limited to using 

version control software as a data storage facility. Thus, the capabilities of VCS to 

provide storage and versioning will be reused which will make possible the fulfillment of 

required functionality of the repository system in the frame of this thesis. There are 

many open-source and proprietary products in use these days but they all share similar 

functionality common to all revision systems. They aim at tracking files and directories 

changes over time. This allows clients to examine the history of how their data changed, 

who change it and when. Usually a version control system consists of server side or 

repository, where the data is stored, and many clients situated on the network. They 

work with the same set of data and interact with the server to save their changes, restore 

particular information to previous state, examine the history, resolve any conflicts etc. 



- 15 - 
 

Different revision systems use various ways to support these operations. The most 

appropriate for our data tier implementation is however defined by the need of 

integration with ProSave IDE. There is no doubt that open-source’s best-known revision 

systems are Concurrent Versions System (CVS) and Subversion (SVN.) Both of them 

have their functionality available as Java interfaces and are used in Eclipse plug-ins. 

Designed to be a successor of CVS, the Subversion lacks most of CVS's noticeable flaws 

(for example lack of directory versioning) and it is chosen by ProSave IDE developers for 

default project revision system. That’s why Subversion is selected to be the core of data 

tier implementation in our component repository. 

 

5.2. Application tier 

This part of the system is where components’ operations are realized using basic SVN 

commands and interactions with the data tier. Since Subversion is a collection of C 

libraries there is a need of so called adapter which will allow using these libraries in Java. 

There are three low level Java libraries that provide access to SVN’s API – JavaHL, 

SVNKit and SVN command line client wrapper. JavaHL is a subversion library which 

binds SVN’s binary executables to Java interfaces using Java Native Interface (JNI) and 

is provided by Subversion’s creator CollabNet. SVNKit is pure Java implementation of 

the SVN client and does not use the original C libraries. The last one wraps calls to SVN’s 

command line client. Each one of them can be used as a connection between Subversion 

functionality and our application. However there is another adapter built on top of these 

three which is easier to use. That is a SvnClientAdapter library used in the Subclipse 

project. It can use any of these three low-level SVN API implementations to achieve 

smooth transition between the native C functions and high-level Java interfaces. 

So far there are SVN server situated in the data tier and well-defined Java interfaces 

which allow us to execute remote SVN commands. The other indispensable thing in the 

application tier is implementation of specific logic module which will transform a 

component operation to composition of basic SVN commands. For example: 

Suppose the ProSave IDE user made a component from scratch and now he wants to 

export it to the repository so the other developers can use it. He will probably use the 

IDE’s graphical user interface to achieve this which is built in presentation tier. Once 

received the user request, presentation tier will delegate actual export to application tier 

where implemented logic has to translate the operation to several SVN commands e.g. 

―svn add,‖ ―svn propset,‖ ―svn commit‖ and execute them upon SVN server using the 

adapter library.  

In our work, we have named the module where this logic will be implemented 

―Repository access.‖ 



- 16 - 
 

5.3. Presentation tier 

This tier establishes the actual connection between the ProSave IDE and the repository 

itself. It consists of one or more Eclipse plug-ins which extends the workspace with 

additional GUI and exposes the repository functionality to the end user. 

 

5.4. Summary 

Up to here, three separate tiers constructing our system were outlined, but how do they 

relate to each other in terms of network nodes, communication protocols and 

deployment environment? As shown in Figure 4 the server side of the system consists 

of our data tier implementation. 

 

Figure 4: System architecture – the big picture 

 

On the other hand, application and presentation tiers are both located on the client side. 

The reason why the three tier architecture is not used is because the application tier is 

relatively simple and placing it on an application server will unreasonably increase 

complicity of development, deployment and maintenance of the system. Moreover, 



- 17 - 
 

Subversion initial design is based on client-server model and thus it does not support 

integration of application server. 

The next step is to take closer look on the big picture and our system tiers. The data tier 

is nothing but SVN server with some requirements on data it stores. That means that it 

can be installed on remote or local machine. Depending on its configuration it supports 

five different access methods:                                                          

- Direct repository access (only available for local disk repositories) 

- Access via WebDAV protocol http:// 

- Access via WebDAV protocol with SSL encryption https:// 

- Custom SVN protocol 

- Custom SVN protocol through an SSH tunnel 

All of them represent different sets of tradeoffs concerning security, user accounts 

management, error logging and complicity of maintenance. From our system’s point of 

view the actually chosen access method does not affect repository’s functionality in any 

aspects. It just provides additional flexibility available to ProSave IDE administrators 

and we are not going to examine the details of each protocol. 

Using SVN client, SVN Client Adapter library provides access to SVN server in the form 

of Java interfaces. By their means the Repository access module implements the 

components’ operations already defined in system requirements section. This is assumed 

as an application tier of our system.  

The last part is devoted to integration with ProSave environment. It is implemented as 

Eclipse plug-ins, which extends the graphical user interface of the IDE with repository 

operations.   

 

 

6.  Implementation process 
 

This section describes the most important steps in the system implementation along 

with the problems emerged, and the investigation of different methods to solve them.  

 

6.1. System design 

As already expressed in the above section our system consists of different parts. Some of 

them have to be implemented and the others can be used out of the box. The SVN server 

will be utilized as it is, i.e. a regular installation is needed or even an existing one can be 



- 18 - 
 

reused. The next step is to allocate a tangible directory for our repository on the server’s 

virtual file system. In this directory the components will be stored in separate 

subdirectories. In our work, we have named this directory 

/prosave_repo/components. 

As the only way to uniquely identify a component in the SVN repository is to guarantee 

that its root directory is the only one of its kind, the name convention is needed. An 

assumption is made that as part of the component meta-data there are a unique 

identifier and a human readable label. Thereby a component’s root folder has the 

following format: <short_name>_<id>. 

Now that our server part of the system is configured, the survey can continue with our 

application tier. 

Since the SvnClientAdapter library uses JavaHL or SVNKit or SVN command line client 

wrapper, at least one of the following is needed deployed on the client side: JavaHL’s 

native libraries and svnjavahl.jar in our project’s classpath, svnkit.jar and 

ganymed.jar in our project’s classpath or regular SVN client installation. These 

libraries ensure the connection with SVN server and expose its functionality to our Java 

project. Now it is possible to take advantage of SvnClientAdapter’s high level APIs by 

including svnClientAdapter.jar in our classpath.  

When designing our application tier, it is preferred to provide high level repository 

interfaces to the presentation tier and in the same time to enable replacement of SVN 

repository with another storage type without affecting these interfaces. This ensures 

loose coupling between system ―Storage‖ and ―IDE integration‖ components as 

illustrated in Figure 5.  

 

Figure 5 - The system components 

 

Benefits of this design are easy to understand when one looks in the following example: 

It is assumed that our system is fully implemented and integrated in the ProSave IDE. 

After a comprehensive test process users might notice lack of a very important repository 

feature or even an inappropriate for their work system behavior.  This may brings the 



- 19 - 
 

need of using another version control system or even different type of repository – file 

server, database server etc. If the ―IDE integration‖ component is much coupled with the 

current SVN repository implementation this will enforce the rebuilding of the whole 

system. 

In order to address this issue, the system objects need to be defined. If the repository is 

seen as an autonomous part of our system, then there is an object repository which can 

be of different type – SVN, CVS, file server, DB storage. Another entity in our system is a 

ProSave component. Independently from the type of the repository, there is a need of 

unified interface for utilizing its functionality. We can name this interface IRepository 

and attach some operations to it. They can be derived directly from our system 

requirement section (paragraph 3.1.). 

/** 

 * Common interface for accessing the repository  

 */ 

public interface IRepository { 

 /** 

  * List all components available in the repository. 

  */ 

 public IComponent[] getAllComponents; 

  

 /** 

  * List all older versions of particular component 

  */ 

 public IComponent[] getOldVersions(IComponent comp); 

  

 /** 

  * Delete a component 

  */ 

 public void deleteComponent(IComponent comp); 

  

 /** 

  * Import a component from repository to a particular project. 

  */ 

 public void importComponent(IComponent comp, File project_root) 

 

 /** 

  * Export a component from a project to the repository 

  */ 

 public File[] exportComponent(File project_root, IComponent comp) 

 

 … 

 … 

 … 

} 

Then if the application tier can ensure that every type of repository complies with this 

interface, it will be very simple to use different types of repositories even at the same 

time. This is a common problem that the OO designers face and it has a well known 



- 20 - 
 

solution. The Abstract Factory design pattern provides a way to make our ―IDE 

integration‖ component completely independent of actual type of the repository. 

 

Figure 6 - Abstract factory design pattern 

 

As one can see from the UML diagram above, the ―Client‖ does not know which concrete 

objects it receives from each of these internal factories, since it uses only the generic 

interfaces. Objects of a concrete type are indeed created by the factory, but the client 

code accesses such objects only through their abstract interface [11]. This makes the 

―Client‖ independent from the concrete product implementation.  

Now it is possible to apply this pattern to our system design. The first thing needed is a 

mapping between our system’s entities and the pattern’s participants. The ―Client‖ is 

actually our ―IDE integration‖ component, which will use an abstract factory to get the 

generic interface IRepository or so called the abstract product. The Concrete products 

are the different types of repositories in our case there is just one such product - SVN 

server, but later on other types can be easily added. An illustrative example of how this 

pattern directs our design can be seen in Figure 7.   



- 21 - 
 

 

Figure 7 - System class diagram - general view 

 

The ―IDE Integration‖ component does not know what type of repository is actually 

using because it works with the common interface IRepository. Our implementation will 

include only the classes AbstractRepositoryFactory, SvnFactory and SvnRepository. 

The most important is however SvnRepository. It provides implementation of the 

repository operations and communicates with the SVN server using the 

SvnClientAdapter library. Despite the fact that in a certain ProSave project more than 

one SVN repositories can be used, our system needs only one instance of the SVN client 

in order to perform component operations with all of them. That’s why it is suitable to 

create the SvnRepository class as singleton. This way no more than one object of this 

class can be created which will ensure simple and safety usage. Now, thorough 

description of our design can be easily derived. 



- 22 - 
 

 

Figure 8 - System class diagram - detail view 

 

The Component class represents the repository’s view of a ProSave component, i.e. it 

contains only repository specific meta-data like an identification number of the 

component, its current version etc.  

 

6.2. Project structure prerequisites and conventions 

This section describes the system’s procedures and accepted conventions on the file 

structure of a ProSave project. For that purpose a definition of ―a ProSave project‖ is 

needed.  Technically speaking it is a hierarchy of folders and files; some of them contain 

system information and some of them are created by the ProSave IDE users. They store 

all the information about components, subsystems and systems currently being 

developed including: architecture views, attributes, models, relations and connections 

between them. In order to import and export components to and from the project their 

position is fixed in a separate folder beneath the project root folder namely 

\components.  The entire component’s data is bundled as a subfolder of the 

\components folder and it name follows the structure already defined in the above 

section – <short_name>_<id>. 



- 23 - 
 

 A typical repository operation includes interacting with local, temporary folder which in 

the case of a SVN repository will be our working copy folder. All primitive SVN 

commands will be executed upon this folder. Its position is set as a subfolder of the 

project root and it is named rep_working_folder. For example importing a 

component from the repository to the project will be a sequence of the following 

operations: 

- Check out the specified component from the SVN server to the working copy. 

- Copy the component’s data from the working copy to the project location. 

Since a single component can be presented in multiple versions in a particular project, a 

way to distinguish the location of each of these versions is needed. Thereby the final 

format of the component’s root directory is:  

<short_name>_<id>[#<version>], where 

-  <short_name> is a human readable component identification, 

- <id> is a component identification number, 

- <version> is a component version number. The root folder has a version attached 

only if the particular component is in the repository and it is not currently being 

modified. 

The next diagram depicts a simple example of a ProSave project which contains two 

components. 

 

Figure 9 - Sample ProSave IDE project structure 

 

As one can see, the distanceCalc component is presented in two different versions, 

namely 184 and 82, and it is also being modified by the users. The modifications take 

place in the directory components\distanceCalc_4fhd6s and that is why it has 

not attached version. 

Another important assumption is presence of a configuration file for the repository in 

the project root folder. It has a standard properties file format and contains the type and 

the URL address of the repository which is currently being used in the project. At 



- 24 - 
 

presence, only the SVN type is supported. The switching between different repositories is 

accomplished by changing the URL property in the configuration file. 

When the system executes a repository operation, it needs specific information about the 

components which are part of this operation. For example in the case of an import action 

all subcomponents have to be identified so that all dependencies are presented 

consistently in the project.  All this repository-specific meta-data is stored as properties 

file and attached to each component.   

 

6.3. Repository business logic. Mapping between 

operations on components and SVN commands    

Using Subversion for component repository is feasible because there exists a way to 

transform a component operation to a set of SVN commands and a set of file system 

commands. Once having this equivalence, it is just a matter of coding to implement the 

component repository. Firstly, a brief description of the needed SVN commands will be 

provided. 

- svn list – List directory entries in the SVN server virtual file system. It has the 

following syntax:  

svn list <target>, 

where <target> is the URL of the directory being examined. 

 

- svn log – Show the history of the changes which are done on a particular 

directory. The syntax is:  

svn log <target> 

 

- svn propget – Get the value of a property attached to a SVN file or directory. 

The syntax is:   

svn propget <prop_name> <target>,  

where <prop_name> is the name of the property which is inquired. 

 

- svn propset – Set the value of a property. The syntax is:  

svn propset <prop_name> <value> <path>, 

where <path> is an OS path pointing to the working copy. 

 

- svn checkout – Download a directory tree from a SVN server to the local 

working copy. Syntax:  

svn checkout <target> <path> 

 



- 25 - 
 

- svn add – Schedule  files or directories in the working copy for addition to the 

repository. Syntax:  

svn add <path> 

 

- svn delete – Delete an item from a working copy or the repository. Syntax: 

svn delete <target>  or   

svn delete <path>  

 

- svn copy – Copy a file or directory in a working copy or in the repository. Syntax: 

svn copy <source> <destination> , 

where <source> and <destination> can each be either a working copy path or 

server URL. After the command is executed the <destination> is a mirror copy of 

the <source> and moreover the history of changes is also copied. 

 

- svn update – Bring the changes from the repository into the working copy. If 

local modifications are made to the working copy, Subversion will try to merge 

them with the changes from the server. If it fails a conflict occur. Syntax: 

svn update <path> 

 

- svn commit – Send changes from the working copy to the repository. Syntax: 

svn commit <path> 

In order to describe this mapping in a clear way, this paragraph will use the diagram on 

Figure 9 as an example of a ProSave project. The URL of the component repository is 

set to http://sample_server/prosave_repo/components. For simplicity, the 

examples below refer to it as /components. For each of the listed component 

operations, a sequence of SVN and OS commands is given.  

 Browse available components in the repository 

List components’ latest version: 

svn list /components 

Extract the meta-data from each entry: 

svn propget Name /components/distanceCalc_4fhd6s 

svn propget Root /components/distanceCalc_4fhd6s 

… 

Obtain the old versions of a pointed component:  

svn log /components/distanceCalc_4fhd6s 

Extract the meta-data from each version: 

… 

 

 List all subcomponents of a particular component 

Get a list of names and versions of the root directories of the subcomponents: 



- 26 - 
 

svn propget Subcomponents /components/distanceCalc_4fhd6s 

Extract the meta-data from each subcomponent: 

svn propget Name /components/distCalsSubcomponent1 

… 

 

 Export a component made from scratch to the repository 

OS copy the component folder tree from the project to the working copy: 

copy /test_project/components/distanceCalc_4fhd6s     

/test_project/rep_working_copy/distanceCalc_4fhd6s 

Schedule the component’s working copy folder for addition: 

svn add /test_project/rep_working_copy/distanceCalc_4fhd6s 

Read the meta-data of the component from the properties file and attach it to the 

working copy: 

svn propset Name “Distance to obstacle” 

/test_project/rep_working_copy/distanceCalc_4fhd6s 

… 

Commit the new component to the repository: 

svn commit /rep_working_copy/distanceCalc_4fhd6s 

Read the revision number after the commit operation and set the version of the 

new component in its properties file and attach it to the root folder. 

 

 Import a component of a specific version from the repository to a 

project in ProSave IDE 

Get a list of names and versions of the root directories of the subcomponents: 

svn propget Subcomponents /components/distanceCalc_4fhd6s 

For each subcomponent, if it’s version is not in the project yet: 

Check out the correct version to the working copy: 

svn checkout /components/distCalsSubcomponent1 

/rep_working_copy/distCalsSubcomponent1 

OS copy its folder to the project path: 

copy /rep_working_copy/distCalsSubcomponent1 

/test_project/components/distCalsSubcomponent1 

Create a properties file with the meta-data in the component’s project folder and 

fill it in using: 

svn propget Name /components/distCalsSubcomponent1 

… 

After all subcomponents are imported to the project, repeat the same procedure 

for their ancestor. 

 

 Export a newer version of existing component 



- 27 - 
 

Read the number of the pristine version from the component’s properties file and 

check out that version from the repository to the working copy: 

svn checkout /components/distanceCalc_4fhd6s 

/rep_working_copy/distanceCalc_4fhd6s 

Synchronize the component’s working copy and project folders. Detailed 

description of this procedure is provided in the end of the section. 

Bring the latest changes made to this component from the repository: 

svn update /rep_working_copy/distanceCalc_4fhd6s 

If a conflict occurs, the export stops here and the ProSave IDE users are 

responsible for the merging of the files which are in conflict state. After they are 

merged the procedure can continue. 

Read the meta-data of the component from the properties file and attach it to the 

working copy: 

svn propset Name “Distance to obstacle” 

/test_project/rep_working_copy/distanceCalc_4fhd6s 

… 

Commit the new version of the component to the repository: 

svn commit /rep_working_copy/distanceCalc_4fhd6s 

Read the revision number after the commit operation and set the version of the 

new component in its properties file and attach it to the root folder. 

 

 Export a modified existing component as a different component and 

save its ancestor’s history 

OS copy the existing component from its project location to the project again but 

under different name and assign it a new id: 

 copy /test_project/components/distanceCalc_4fhd6s 

/test_project/components/distanceCalcBranch_zqr1oe 

Check out the right version of the existing component from the repository to the 

working copy: 

svn checkout /components/distanceCalc_4fhd6s 

/rep_working_copy/distanceCalc_4fhd6s 

Create SVN copy of the component in the working copy and set its new meta-data 

from the properties file: 

svn copy /rep_working_copy/distanceCalc_4fhd6s 

/rep_working_copy/distanceCalcBranch_zqr1oe 

svn propset Name “Branch of distance to obstacle” 

/rep_working_copy/distanceCalcBranch_zqr1oe 

… 

Commit the new copy of the component to repository: 

svn commit /rep_working_copy/distanceCalcBranch_zqr1oe 



- 28 - 
 

Read the revision number after the commit operation and set the version of the 

new component in its properties file and attach it to the root folder. 

After this procedure is complete, the users can start modifying the newly created 

copy of the component and use the regular export operation to save their changes 

to the repository. 

 

 Delete(hide when browsing) a component 

Hide the component by creating a new revision in the SVN server in which the 

component is removed: 

svn delete /components/distanceCalc_4fhd6s 

That operation does not delete the component from the ProSave project if it exists 

there. 

 

As already stated above, the process of exporting a new version of existing component 

requires synchronization between the component’s working copy and project folders. 

The purpose is to bring the changes made in the project folder tree to the working copy 

in a way that will allow presenting them obtainable for the Subversion. The next bullet 

provides a recursive algorithm for synchronizing the two folder trees: 

 Synchronize( /test_project/components/distanceCalc_4fhd6s, 

/test_project/rep_working_copy/distanceCalc_4fhd6s ) 

 

For every subfolder X of the working copy folder 

/rep_working_copy/distanceCalc_4fhd6s which is not subfolder of the 

component project folder execute: 

svn delete X 

 

For every subfolder Y of the project folder 

/test_project/components/distanceCalc_4fhd6s 

If Y is not subfolder of the working copy folder execute: 

OS copy /test_project/components/distanceCalc_4fhd6s/Y 

 /rep_working_copy/distanceCalc_4fhd6s/Y 

svn add /rep_working_copy/distanceCalc_4fhd6s/Y 

 

Else, there is a folder /rep_working_copy/distanceCalc_4fhd6s/Y: 

Run recursively: 

Synchronize(Y, /rep_working_copy/distanceCalc_4fhd6s/Y) 

 

For every file F in the /rep_working_copy/distanceCalc_4fhd6s/ which 

is not in the project folder run: 



- 29 - 
 

svn delete F 

 

For every file P in the project folder 

/test_project/components/distanceCalc_4fhd6s 

If P does not exist in the working copy folder execute: 

OS copy /test_project/components/distanceCalc_4fhd6s/P 

 /rep_working_copy/distanceCalc_4fhd6s/P 

svn add /rep_working_copy/distanceCalc_4fhd6s/P 

 

Else, there is a file /rep_working_copy/distanceCalc_4fhd6s/P: 

OS replace /rep_working_copy/distanceCalc_4fhd6s/P with the file 

/test_project/components/distanceCalc_4fhd6s/P 

 

 

7. Overview of the implemented system 
 

The system covers the entire functionality described in the requirement section 

(paragraph 3) that is browse the repository, export, import, and delete components, 

create branches of a component. Additionally, it provides mechanisms to attach a 

working copy to a project, change the SVN server dynamically and handle conflicts. The 

import operation is consistent which means that a composite component is imported 

together with all dependant components if they are not already existed in the project. 

Also, the system is responsible for assigning versions – both in the component meta-

data and project directory structure. The repository adopts the Copy-Modify-Merge 

model in order to provide concurrent access. This means it allows simultaneous 

modifications of a component by different users. When the component is exported in the 

repository, the system uses the built-in mechanism of Subversion for merging the 

changes. If conflicts in the modified data occur, the export operation stops and the users 

have to handle the collisions by themselves; then the system completes the export and 

commits the new version of the component. This model is considered as more efficient 

for the collaboration and it provides more flexibility to the repository system. 

The source of the created system is spread out in three projects: a java project containing 

the application tier implementation and two Eclipse plug-in development projects. The 

java project contains a package repository_access where the designed in section 6 

(paragraph 6.1) classes and interfaces are coded together with two subsidiary classes: 

FileSystem, which implements several basic OS operations on files and folders, and 

RepositoryException for handling the exceptions. All the source code is commented 



- 30 - 
 

using JavaDoc tags and conventions. This project also includes an automatic Ant build 

script which is structured as two files – build.properties and build.xml. It compiles the 

source code and creates a Java archive library – RepositoryAccess.jar. Then a 

distribution folder is created which contains RepositoryAccess.jar and all dependant 

libraries namely svnClientAdapter.jar, svnjavahl.jar, svnkit.jar, ganymed.jar together 

with the native JavaHL libraries and compiled JavaDoc API documentation. That way, 

all the needed deployment units are packed together including the low level libraries for 

accessing the SVN server: SVNKit and SVN command line client wrapper. They are only 

used if JavaHL is not available which may be caused by interference with other native 

libraries or deployment on unsupported operating system. The usage of these two 

libraries however brings some limitation on the repository system. For example, SVN 

command line client wrapper does not implement some of the methods for handling the 

conflicts and when used in the repository system the users are not notified about 

occurring conflicts; Using SVNKit on the other hand brings some errors during export 

operations because of the different behavior of some of the svnClientAdapter methods: 

for example getList returns an empty collection when the SVN directory is empty and 

when the JavaHL or the client wrapper are used, but when SVNKit is used on the same 

directory it returns a collection with one dummy element. This behavior is very 

confusing especially when one looks at the svnClientAdapter official web page: ―Besides 

the simpler use, it provides unified adapter to the low-level APIs enabling seamless 

interchange of the underlying library. (e.g. in case JavaHL is not available, command 

line wrapper can be used without any impact to existing code)‖ [quote from 

http://subclipse.tigris.org/svnClientAdapter.html]. So far this statement is misleading 

and not true, but the svnClientAdapter project is still in progress and the next versions 

could fix these flaws. 

The second project packs all libraries from the distribution folder into a single Eclipse 

plug-in. That way our application tier APIs are made available for GUI contributions to 

the Eclipse workbench which the ProSave IDE extends. 

The third project is an Eclipse plug-in which depends on the plug-in created in the 

second project. It makes use of the Common Navigator Framework (CNF) [14] and 

exposes the repository operations to the ProSave IDE user interface. The CNF is 

designed to facilitate content integration of arbitrary resources into an all-purpose 

navigator view. The framework is available in Eclipse Platform 3.2 and above. It provides 

mechanisms for programmers to create their own viewer based on the CNF as well as 

means to extend the Project Explorer which is a navigator presenting the resources in 

the Workbench in a hierarchical view. The Project Explorer implements all of the needed 

operations on projects, folders and files like open and close projects; copy, move and 

delete files and folders and so on. It supports addition of other resource types and 

operations through CNF extension points. By their means our plug-in contributes two 

http://subclipse.tigris.org/svnClientAdapter.html


- 31 - 
 

new resources – ―Repository‖ and ―Component‖ and the following operations available 

as a pop-up menu items: 

 Resource type Operation name Description 

Project Repository 
configuration 

Creates a repository working folder and binds a 
repository resource to the project 

Component root 
folder  

Export component Exports the pointed component from the 
project to the repository 

Component root 
folder 

Make Branch Creates branch of the pointed component in 
the project tree and in the repository 

Component root 
folder 

Resolve and 
commit 

Resolves the conflict state during the export 
and commits the changes to the repository 

Component Import component Imports the pointed component from the 
repository to the project 

Component Delete component Deletes the pointed component 
 

Where ―Resource type‖ is the type of the Project Explorer entry on which the operation is 

available. In other words, when the user right-click on the pointed entry the described 

operations are listed as a pop-up menus.  

 

Figure 10 - Sample project screenshot 



- 32 - 
 

The plug-in also contributes a hierarchy presentation of the new resources. The 

―Repository‖ is attached to the project and it can be unfolded which shows the available 

components in the repository. The Project Explorer displays the components’ name and 

their version in curly brackets as shown on Figure 4. In the appendix B a short user 

manual for the system is provided. 

 

 

8. Related work 

 

This section presents a brief survey of the work done in the area and how this thesis fits 

in it. For that purpose, two examples of component repositories will be examined – one 

from academia and one commercial. Rather than describing them in details, a 

comparison between their features and architectures will be provided. 

The investigation will start with the repository for SAVE components, part of the SAVE 

IDE. It is described in the master thesis ―Building of a component development process 

in an Integrated Development Environment” [15]. The required functionality for the 

SAVE repository is very similar to our system because the ProSave IDE is successor of 

the SAVE IDE and both of them share nearly the same specification. However the work 

in the above master thesis is concentrated on the presentation tier of the system which 

defines the differences between the two repositories. It uses a file server for 

implementation of the repository operations and a simple overwrite mechanism for 

saving the data. The same as our system, a component is stored as a directory tree 

consisting of all relevant to the component files. The SAVE repository provides a remote 

and concurrent access, but lacks any versioning of the components. On the other hand, it 

includes a repository browser which shows the properties and the architecture of the 

available components in a dialog window. 

The other example is Microsoft Windows XP Embedded component database [16]. It is 

used to create images of the Windows XP Embedded by assembling a desired set of 

components. In this way, creating a software system for a particular device (web camera, 

printer, router etc.) is accomplished by first develop an application, then wrap it as a 

component, calculate all dependant components using the component database and in 

the end make an image of the Windows XP Embedded which includes a minimal set of 

components needed to run the application. The usage of this database is oriented to 

development of systems which differs to the intended use of the ProSave repository – to 

facilitate both the systems development and the components development. When 

developing a component for Windows XP Embedded, a certain set of tools is used (MS 



- 33 - 
 

visual studio) but when developing the system by assembling the available components 

the other set is used (Target Designer, Component Designer and Component Database 

Manager). The MS component database uses relational database for storing the data i.e. 

Microsoft SQL Server. Instead of keeping all the files and resources in the database, it 

stores only their definitions in the form of SLD (Source Level Definition) files which is a 

XML based format. The actual location of the component data can be anywhere on the 

network – the SLD files contain just a reference to it. The database provides remote and 

concurrent access, versioning of the components, and sophisticated search and filter 

features which allow developers to browse through the component database and search 

by category, driver type, design template, footprint estimation and so on. Having in 

mind the number of components in the database (over 10000) it is clear that these are 

indispensable features which make it possible to select the most appropriate 

components for the system being developed. The database uses Lock-Modify-Unlock 

model which allows only one user to modify a component at a time. Another difference 

regarding the ProSave repository is that there is no need of presence of the components 

on a developer’s local machine – each development tool work directly with the database 

without downloading the component data.  

As it was stated in paragraph 6.1, the ProSave repository relays on existence of unique 

identifier in the component meta-data, while the MS component database automatically 

assign two Globally Unique Identifiers (GUID) to each component. The first one is 

Version Independent GUID which allows the system to uniquely identify the component 

and the second one is Version Specific GUID which is used for handling the different 

versions.  

 

 

9. Conclusion and future work 

 

The thesis investigated the problem of implementing a component repository as part of 

the ProSave IDE. The purpose was to enhance reusability of the ProSave components by 

providing a way to store and share them during the component-based development 

process. The study was limited to using version control system as a basis in order to 

endow the component repository with features like remote access and component 

versioning.  

Considering the component dependencies the thesis work applied simple versioning 

policy when a component in the repository is being modified. By this means the changes 

in one component do not affect its dependent components. Future work in this area may 

provide a way for the users to decide whether to propagate the changes or not. When the 



- 34 - 
 

final format of the component data is set, it is also possible to implement an algorithm 

which automatically decides if the modifications are safe and if they can be propagated. 

The thesis proposed flexible architecture of the system which allows using different types 

of data servers without a need to rebuild the whole system. The current implementation 

includes SVN server and uses SvnClientAdapter library as client side SVN service 

provider. It should be mentioned that the usage of SvnClientAdapter library was 

accompanied by many problems stem from the very poor documentation provided. The 

future work may consider removing this library by using only the pure java 

implementation of the SVN client – SVNKit. In addition, other server types can be 

provided – different version control servers, database server etc. 

The repository system does not guarantee the atomicity of export operation in the case of 

network connection breaks or machine crashes and prospective improvements of the 

system could fix this omission.   

Although the implemented system is integrated in the ProSave IDE through the Eclipse 

plug-ins ―Repository Access Plug-in‖ and ―Repository ProSave IDE Integration Plug-

in‖, provided GUI for interacting with the repository is rather limited. The reason is the 

scope of the thesis investigation – it is not possible to implement complete, fully-

functional set of menus, filter, viewers and other GUIs in the frame of this thesis. 

Moreover the format of the component data is not completely defined yet. Further 

investigations in this area may include implementation of a component viewer which 

shows the component data when the users browse the repository. Also, as the number of 

expected components in the ProSave repository is relatively large, it would be very hard 

for the users to find the most appropriate components for their system just by looking 

over all available ones. There is a need of searching mechanism or at least presence of 

filters which allows users to sort out the components regarding some characteristics. For 

example the system should be able to provide results for the queries like this one: ―Show 

all components which have 3 data ports of type Integer and have worst execution time 

less than 0.001 ms, or their attribute Use has value Head-lights.‖ 

 

 

 

 

 

 

 



- 35 - 
 

 

References 

 

[1] Crnkovic I., Larsson M., (2002), Building Reliable Component-Based Software 

Systems, Artech House, Boston 

[2] Robinson S., Krassel A., August 8, 1997, Components – COM General Technical 

Articles  

[3] Crnkovic  I.,  January 28, 2007, Introduction to Component-Based Software 

Engineering 

[4] Hakansson J., Akerholm M., Carlson J., Fredriksson J., Hansson H., Nolin M., 
Nolte T., Pettersson P., The SaveCCM Language Reference Manual 

 
[5] Beaton W., Rivieres J., April 19, 2006, Eclipse Platform Technical Overview 

[6] Bures T., Carlson J., Crnkovic I., Sentilles S., Vulgarakis A., January 29, 2008, 

Prosave reference manual - version 0.5 

[7] Gallardo D., November 1, 2002, Getting started with the Eclipse Platform 

[8] Object Technology International, Inc., February 19, 2003, Eclipse Platform 

Technical Overview 

[9] Purdy G., August 2003, CVS Pocket Reference, Second Edition, O’Reilly 

[10] Sussman B., Fitzpatrick B., Pilato C., 2007, Version Control with Subversion: For 

Subversion 1.4, O'Reilly 

[11] Wikipedia, Abstract factory pattern, 

http://en.wikipedia.org/wiki/Abstract_factory_pattern 

[12] Bolour A., July 3, 2003, Notes on the Eclipse Plug-in Architecture 

[13] About PROGRESS, http://www.mrtc.mdh.se/progress/index.php?choice=about 

[14] Elder M., May 20, 2006, Building a Common Navigator based viewer 

[15] Vu-Huy H., April 10, 2008, Building of a component development process in an 

Integrated Development Environment – Master thesis 

http://en.wikipedia.org/wiki/Abstract_factory_pattern
http://www.mrtc.mdh.se/progress/index.php?choice=about


- 36 - 
 

[16] Windows XP Embedded,  

http://msdn.microsoft.com/en-us/library/ms950428.aspx 

[17] SVNKit, http://svnkit.com/ 

[18] SvnClientAdapter, http://subclipse.tigris.org/svnClientAdapter.html 

[19] Clayberg E., Rubel D., March 22, 2006, Building Commercial-Quality Plug-ins, 

Second Edition, Addison Wesley 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://msdn.microsoft.com/en-us/library/ms950428.aspx
http://svnkit.com/
http://subclipse.tigris.org/svnClientAdapter.html


- 37 - 
 

 

Appendix A: Use cases 
 

This appendix is devoted to detailing the description of system functionality using UML 

activity diagrams. Some of the use-cases are not directly connected to the repository but 

they are included here because of the implicit dependencies and for illustrating the place 

of our system in the ProSave IDE environment. 

 

 

1. Create New Project 

 

 

 

 

 



- 38 - 
 

2. Create new component 

 

 

3. Create new system 

 



- 39 - 
 

4. Create new subsystem 

 

 

5. Import component from repository 

 



- 40 - 
 

6. Copy component 

 

 

7. Open component architectural editor 

 

 



- 41 - 
 

8. Update RW component 

 

 

9. Delete component 

 



- 42 - 
 

10. Export component to repository 

 

11. Unlock component 

 



- 43 - 
 

 

Appendix B: User manual 
 

This section presumes that the system is executed in standard Eclipse environment as 

the work on the ProSave IDE is still in progress. 

 

1. Prerequisites 

Installation of Eclipse platform version 3.2 or above is needed.  More information and 

downloads are provided on http://www.eclipse.org/downloads/. Then the two plug-ins 

―Repository Access Plug-in‖ and ―Repository ProSave IDE Integration Plug-in‖ must be 

placed in /plugins folder located beneath the Eclipse installation folder. 

In order to connect to a SVN repository a reachable SVN server should be available along 

with a dedicated folder on its virtual file system. More information on how to set up a 

SVN server can be found here http://svnbook.red-bean.com/ , downloads and release 

information are available on http://subversion.tigris.org/ .   

 

2. Working with the system 

After the Eclipse is started, the Project Explorer view can be shown using the menus 

Window > Show View > Other… > General > Project Explorer. The general use 

information for the Project Explorer can be found here 

http://help.eclipse.org/stable/index.jsp?topic=/org.eclipse.platform.doc.user/reference

/ref-27.htm . Before the work with the repository to begin, a properly created project is 

needed. The structure of the project must conform to the rules stated in paragraph 6.2.  

That is the project root must contain /components folder, where all of the components 

are placed as a subfolders, and a file named repository.properties. The file has the 

following format: 

RepositoryType=SVN 

URL=<repository_url> 

Where <repository_url> is the URL address of the dedicated folder on server’s 

virtual files system. After this, the project must be configured by right-clicking on it and 

select ―Repository config‖ command from the pop-up menu. Once the command is 

executed a new resource ―Repository‖ is shown in the project. The resource can be 

unfolded which displays the available components in the repository regarding their latest 

http://www.eclipse.org/downloads/
http://svnbook.red-bean.com/
http://subversion.tigris.org/
http://help.eclipse.org/stable/index.jsp?topic=/org.eclipse.platform.doc.user/reference/ref-27.htm
http://help.eclipse.org/stable/index.jsp?topic=/org.eclipse.platform.doc.user/reference/ref-27.htm


- 44 - 
 

version – Figure 10. All versions of a particular component can be seen by expanding 

the component tree. A component can be imported in the project by right-clicking on it 

and select ―Import Component‖. The command ―Delete component‖ hides the 

component when the repository is being browsed. 

In order to export a component from the project to the repository, its root folder must be 

placed beneath the /components folder and it must contain info.properties file which 

holds the repository-specific meta-data. The file has the following format: 

Name=<component_name> 

Id=<component_id> 

VersionDesc=<version_description>  

Children=<children_list> 

Version=<version_number> 

Subcomponents=<subcomponents_list> 

Root=<root_folder> 

Where:  

<component_name> is the component full name,  

<component_id> is the unique identifier, 

<version_description> is short description of the changes in this particular 

version,  

<children_list> is list of all children components in the following format 

<child01_root>;<child01_version>,<child02_root>; 

<child02_version>,<child03_root>;<child03_version>, … 

<version_number> is automatically set by the system,  

<subcomponents_list> is list of all dependant components in the same format as the 

<children_list>,  

<root_folder> is the name of the component’s root folder. 

When a component already existing in the repository is exported from the project, its 

state as being modified must be represented in its root folder. For example the 

component with root folder /airbagVtype_a1oid#20 is not in modification state, 

because it has attached version and hence it cannot be exported. The state of the 

component can be changed by renaming the root folder. 

During the export operation it is possible that the conflicts occur between the local 

modifications and the changes in the repository. The repository system shows dialog 

window with a list of files which are in conflict state – Figure 11. The users have to 

merge the files by themselves and then to right-click on the same component and select 

the command ―Resolve and commit‖ which concludes the begun operation. 



- 45 - 
 

 

Figure 11 - Conflicts during export operation 

 

The command ―Make Branch‖ can be executed only on components which are already in 

the repository and are not in modification state. 


