
2.2
M I G R AT I O N G U I D E

Tornado®

Copyright 2002 Wind River Systems, Inc.

ALL RIGHTS RESERVED. No part of this publication may be copied in any form, by photocopy,
microfilm, retrieval system, or by any other means now known or hereafter invented without the prior
written permission of Wind River Systems, Inc.

AutoCode, Embedded Internet, Epilogue, ESp, FastJ, IxWorks, MATRIXX, pRISM, pRISM+, pSOS,
RouterWare, Tornado, VxWorks, wind, WindNavigator, Wind River Systems, WinRouter, and Xmath are
registered trademarks or service marks of Wind River Systems, Inc. or its subsidiaries.

Attaché Plus, BetterState, Doctor Design, Embedded Desktop, Emissary, Envoy, How Smart Things Think,
HTMLWorks, MotorWorks, OSEKWorks, Personal JWorks, pSOS+, pSOSim, pSOSystem, SingleStep,
SNiFF+, VSPWorks, VxDCOM, VxFusion, VxMP, VxSim, VxVMI, Wind Foundation Classes, WindC++,
WindManage, WindNet, Wind River, WindSurf, and WindView are trademarks or service marks of Wind
River Systems, Inc. or its subsidiaries. This is a partial list. For a complete list of Wind River trademarks
and service marks, see the following URL:

http://www.windriver.com/corporate/html/trademark.html

Use of the above marks without the express written permission of Wind River Systems, Inc. is prohibited.
All other trademarks, registered trademarks, or service marks mentioned herein are the property of their
respective owners.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
U.S.A.

toll free (U.S.): 800/545-WIND
telephone: 510/748-4100
facsimile: 510/749-2010

For additional contact information, please visit the Wind River URL:

http://www.windriver.com

For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

Tornado Migration Guide, 2.2

15 Aug 02
Part #: DOC-14256-ZD-02

Contents
1 Introduction .. 1

Migrating to Tornado 2.2 and VxWorks 5.5 1
Migration Scenarios ... 1
Scope of This Document ... 2

2 Binary Compatibility .. 3

2.1 Introduction .. 3

2.2 Object Module Format ... 3

2.3 Changes in Object Archive Layout .. 4

2.3.1 Archive Layout Prior to VxWorks 5.5 ... 5

2.3.2 VxWorks 5.5 Object Archive Layout ... 6

2.3.3 Link Precedence ... 7

3 VxWorks API Changes ... 9

3.1 Introduction .. 9

Types of API Changes ... 9

3.2 Modified Routines .. 10

3.2.1 Must-Change Routines .. 10

3.2.2 Recommended-Change Routines .. 12
iii

Tornado 2.2
Migration Guide
3.2.3 Minor-Change Routines ... 14

3.3 Retired Libraries ... 16

3.4 Other API Changes .. 18

4 Compiler Migration ... 19

4.1 GNU Migration .. 19

4.2 Diab 5.0a Migration ... 19

Migrating C Code to Diab 5.0a .. 20
Backward Compatibility ... 20
Diab Optimization Technology ... 20
First Impressions .. 21

4.2.1 New Features ... 22

4.2.2 Changes from Previous Versions ... 22

4.2.3 New Compiler Options .. 24

4.2.4 Deprecated Keywords, Options, and Directives 24

Deprecated Keywords ... 25
Deprecated Options ... 25
Deprecated Directives ... 26

4.3 Differences Between GNU and Diab Compilers ... 27

5 Migrating Projects .. 29

5.1 Introduction .. 29

5.2 Using the Project Migration Tool ... 30

Synopsis .. 30
Parameters .. 31
Examples ... 32

6 Migrating BSPs ... 33

6.1 Architecture-Independent Changes to BSPs .. 34

BSP Makefile Changes and the bspCnvtT2_2 Tool 34
iv

Contents
Hex Utilities and objcopy ... 35
New Default Value of WDB_COMM_TYPE 35
Changes in the Shared Memory Subsystem 35
Changes in Other Run-time Facilities ... 36

6.2 Architecture-Dependent BSP Issues .. 37

6.2.1 Migration Changes Common to All Architectures 37

6.2.2 68K/CPU32 ... 37

6.2.3 ARM ... 37

6.2.4 ColdFire ... 38

6.2.5 MIPS ... 38

6.2.6 Pentium ... 39

6.2.7 PowerPC .. 41

6.2.8 XScale/StrongARM ... 42

6.2.9 SuperH ... 43

A Writing Portable C Code .. 45

A.1 Portable C Code .. 46

A.1.1 Data Structures ... 46

A.1.2 In-Line Assembly ... 48

A.1.3 Static Data Alignment ... 49

A.1.4 Runtime Alignment Checking ... 49

A.1.5 Other Issues .. 51

A.2 Tool Implementation .. 57

A.2.1 New Tool Macros File .. 57

A.2.2 New Tool Directories ... 57

A.2.3 BSP Makefile Changes ... 57

A.2.4 Macro Definitions for GNU and Diab ... 58
v

Tornado 2.2
Migration Guide
vi

1

Introduction
Migrating to Tornado 2.2 and VxWorks 5.5

This guide contains information designed to assist VxWorks developers in moving
to Tornado 2.2 and VxWorks 5.5.

This document is particularly aimed at developers moving from Tornado version
2.0.x and VxWorks version 5.4.x, but it also contains information useful for
migrating from other versions of Tornado and VxWorks.

Migration Scenarios

While this guide is focused on providing a smooth migration for Tornado 2.0.x
customers to Tornado 2.2, the information presented here is also useful if you are
migrating from a different Tornado version. In brief, there are several different
migration scenarios:

� New project by Tornado 2.0.x developer(s). This is the focus of this guide. The
information collected here is meant to simplify moving an existing code base
to work with Tornado 2.2 and VxWorks 5.5.

� New project by Tornado 2.1 developer(s). If your code base is written for
Tornado 2.1, it requires less effort to move to Tornado 2.2/VxWorks 5.5 than in
the Tornado 2.0.x migration illustrated in this guide. In particular, the GNU
compiler has changed very little between 2.1 to 2.2. However, other topics,
such as project migration, are relevant to Tornado 2.1 developers.

� New project start by pre-Tornado 2.0 developer(s). It is recommended that
customers migrating from a version prior to Tornado 2.0 and VxWorks 5.4
1

Tornado 2.2
Migration Guide
make extensive use of the Tornado 2.2 documentation, especially the Getting
Started Guide, the Tornado User’s Guide: Projects, and the Tornado 2.2 Release
Notes. Developers using networking facilities should also consult the VxWorks
Network Programmer’s Guide.

� In-progress project by pre-Tornado 2.2 developer(s). This migration guide
contains useful information for this type of project, especially with regard to
project migration and compiler changes. In addition, the Tornado Release Notes,
2.2, includes a list of new features that may be useful in project design.

Scope of This Document

This guide is primarily concerned with the differences between earlier versions of
Tornado/VxWorks and this current release. It does not attempt to cover any new
features introduced in this release, but instead focuses on changed or removed
features that have the highest potential impact on customer code bases. For a
detailed description of new features, see the Tornado Release Notes, 2.2.

This guide does not cover most optional and third-party products, but
concentrates on features that are included with the standard Tornado
2.2/VxWorks 5.5 release. There is one exception to this scope, however:
information is included on changes in the optional Diab compiler.
2

2

Binary Compatibility
2.1 Introduction

Binary compatibility with previous versions of VxWorks is not guaranteed by this
release. Wind River strongly recommends that all source code be recompiled, and
that any third-party code supplied in object form be upgraded. This chapter
describes the enhancements made to the current version of VxWorks that can cause
binary incompatibility and changes to the VxWorks binary archives.

2.2 Object Module Format

For most architectures, the object module format (OMF) that Tornado/VxWorks
now supports is ELF. The debugging information format is DWARF 2. This change
impacts some architectures more than others. Table 2-1 lists the formats that were
used in older versions of Tornado 2, and the corresponding information for the
new release.

For architectures in which the binary file format has changed since the last version,
binary files in the old format must be recompiled.
3

Tornado 2.2
Migration Guide
Some systems may have old boot ROMs installed, which cannot be upgraded to a
VxWorks 5.5 boot ROM. For these, conversion of the fully linked ELF bootable
images into the old format is possible using the objcopyarch utility. Because this
solution has some limitations (listed below), it should only be considered if the
boot ROM cannot be upgraded. The known limitations are as follows:

� Relocatable and .o files cannot be converted. Only fully linked images can be
converted.

� Because no conversion of the debugging information is possible, this
information is lost in the conversion.

� Because the target server cannot read the old OMF, it must be explicitly given
the ELF version of the file as its core file.

2.3 Changes in Object Archive Layout

The arrangement of object file archives has been reorganized in VxWorks 5.5. This
change was made to support both GNU- and Diab-compiled archives, as well as to

Table 2-1 Object Module Format and Debugging Information Format by Architecture and Tornado Version

Architecture Tornado

OMF

2 / 2.0.2 / 2.1

Debug Info Format

Tornado

OMF

2.2

Debug Info Format

68K/CPU32 a.out STABS a.out STABS

ARM/StrongARM/XScale COFF STABS ELF DWARF 2

ColdFire ELF DWARF 2 ELF DWARF 2

Hitachi SuperH ELF DWARF 2 ELF DWARF 2

MIPS ELF STABS ELF DWARF 2

Pentium a.out STABS ELF DWARF 2

PowerPC ELF STABS ELF DWARF 2

Simulator (NT) PE-COFF STABS PE-COFF STABS

Simulator (Solaris) ELF STABS ELF STABS
4

2

2
Binary Compatibility
simplify the addition of CPU variants within a processor family (such as PowerPC
or MIPS). The following sections describe the pre-VxWorks 5.5 archive layout, the
new hierarchical layout, and the link path that determines precedence in link
operations.

2.3.1 Archive Layout Prior to VxWorks 5.5

In VxWorks versions prior to 5.5, the object archive layout was relatively flat, with
archives and objects found in ../target/lib/.1 With the CPU type defined by the
macro CPU, and the toolchain defined by the macro TOOL, this directory was
organized shown in Table 2-2:

As an example, for CPU=PPC604 and TOOL=gnu, ../target/lib would have the
following contents:

../target/lib/libPPC604gnuvx.a

../target/lib/libPPC604gnugcc.a

../target/lib/objPPC604gnuvx/

../target/lib/objPPC604gnutest/

With this earlier method, the BSP makefile included the file
../target/h/make/defs.bsp, which defined the macro LIBS to point at the
appropriate archives in the ../target/lib directory.

NOTE: Direct access to the VxWorks archives is not required for most users. In fact,
it is recommended that the VxWorks archives be backed up before any direct
operations are performed on them.

1. All paths are expressed relative to the base of the installed Tornado tree.

Table 2-2 Pre-VxWorks 5.5 Object Archive Directories

Directory Notes

../target/lib/lib(CPU)(TOOL)vx.a VxWorks archives

../target/lib/lib(CPU)(TOOL)gcc.a For TOOL=gnu

../target/lib/lib(CPU)(TOOL)dcc.a For TOOL=diab

../target/lib/obj(CPU)(TOOL)vx/ VxWorks objects directory

../target/lib/obj(CPU)(TOOL)test/ Test routine objects directory
5

Tornado 2.2
Migration Guide
2.3.2 VxWorks 5.5 Object Archive Layout

In VxWorks 5.5, the archives have been arranged hierarchically, with a tree beneath
../target/lib characterized by CPU architecture family, CPU variant, and tool (GNU
or Diab). The old archive layout is also preserved for backward compatibility.

Three macros define the location of all archives and object directories:

� VX_CPU_FAMILY . The CPU architecture family, such as pentium or arm.

� CPU . The specific CPU variant within this family, such as PENTIUM4.

� TOOL . For example, gnu or diab.

Table 2-3 describes the new archive directory tree (not including the pre-VxWorks
5.5 files and directories described in the previous section).

The last two directories in Table 2-3 require further elaboration. Diab C++ support
and GNU C++ support are not 100% interoperable; therefore, when that support is
available for an architecture, VxWorks facilities that require C++ include separate
archives and objects for both toolchains. The remaining objects, found under the

Table 2-3 VxWorks 5.5 Object Archive Directory Structure

Directory Description

../target/lib/VX_CPU_FAMILY/ CPU family (for example, ppc, mips, and arm).
Currently, this directory only contains subdirectories.
For example, ../target/lib/mips.

../target/lib/VX_CPU_FAMILY/CPU/ CPU variant files. Typically, this directory only
contains per-toolchain and common subdirectories.
For example, ../target/lib/ppc/PPC440.

../target/lib/VX_CPU_FAMILY/CPU/commonConfig/*

* The commonConfig, gnuConfig, and diabConfig values depend on the compiler configuration you are
using. For example, commonle indicates a compiler configured for little-endian compilation.

Contains most VxWorks libraries, in archives called
libLibBaseName.a; and objects, in subdirectories
objLibBaseName/. For example, libos.a contains OS
objects compiled with the default toolchain for your
CPU family.

../target/lib/VX_CPU_FAMILY/CPU/gnuConfig/* Contains VxWorks libraries and objects that make use
of C++, compiled with the GNU toolchain.

../target/lib/VX_CPU_FAMILY/CPU/diabConfig/* Contains VxWorks libraries and objects that make use
of C++, compiled with the Diab toolchain.
6

2

2
Binary Compatibility
commonConfig directory, are built with the default toolchain for your architecture.
In cases where Diab and GNU are completely interoperable, applications can be
linked with the common archives, regardless of your choice of compiler, because
they are written in portable C and assembler. Table 2-4 lists the current availability
of the GNU and Diab toolchains for each architecture, as well as the default
compiler used for each architecture.

2.3.3 Link Precedence

Because of the complexity of the new archive layout and the possibility of libraries
and objects inhabiting different levels in the directory hierarchy, a link macro
LD_LINK_PATH has been defined. LD_LINK_PATH sets a precedence for linking
libraries. As the linker executes during a VxWorks build, it looks for the
appropriate objects starting with the first directory in the link path and will only
link the first correct object it finds. LD_LINK_PATH is defined in
../target/h/make/defs.link.

Table 2-4 Toolchain Support Per CPU Family

CPU Family GNU Support? Diab Support? Default Toolchain

PowerPC yes yes GNU

Pentium yes no GNU

ARM/StrongARM/XScale yes yes Diab

MIPS yes yes Diab

SH yes yes GNU

MC68k/CPU32 yes no GNU

Coldfire no yes Diab

Win32 Simulator yes no GNU

Solaris Simulator yes no GNU

! WARNING: Do not modify LD_LINK_PATH.
7

Tornado 2.2
Migration Guide
8

3

VxWorks API Changes
3.1 Introduction

VxWorks 5.5, wherever possible, avoids changes to public interfaces. Application
code written for VxWorks 5.4 produces the same behavior with VxWorks 5.5 and
compiles after only minor changes. This chapter provides details on these changes.

Types of API Changes

The API changes in VxWorks 5.5 are broken down into three categories, each
covered a separate section of this chapter:

� 3.2 Modified Routines, p.10, describes routines that have been modified in
VxWorks 5.5.

� 3.3 Retired Libraries, p.16, lists libraries that have been removed or deprecated
in VxWorks 5.5.

� 3.4 Other API Changes, p.18, notes several facilities that have changed since
Tornado 2.0/VxWorks 5.4 and points to documentation on them.

This chapter does not describe any new routines or libraries in VxWorks 5.5; they
do not create migration issues. These additions are documented in the Tornado
Release Notes, 2.2.
9

Tornado 2.2
Migration Guide
3.2 Modified Routines

The modified routines are divided into the following categories, based on the
severity of the change:

� Must change. Any use of these routines requires modification of your code.

� Recommended change. While these modified routines are
backward-compatible, it is recommended that you change any code that uses
them.

� Minor change. The changes to these routines are relatively small or cosmetic
and, at worst, produce a compiler warning for pre-VxWorks 5.5 code.

For a full description of all of these routines, see the VxWorks API Reference.

3.2.1 Must-Change Routines

A small set of routines changed significantly in VxWorks 5.5. Unmodified use of
these routines either produces different functionality, creates a compile-time error,
or causes a runtime error. As a result, you must change application code that uses
these routines. Complete information about the proper use of these functions in
VxWorks 5.5 can be found in the library and routine entries in the VxWorks API
Reference.

One library in particular has changed significantly: telnetLib has been replaced by
telnetdLib, and the routines in this library and their usage have changed. If you
are using this library, see the VxWorks OS Libraries API Reference for a complete
description of the routines and their use. In addition, there is a code example for
this library in .../target/unsupported/telnet/echoShell.c, which can be used as a
template.

Table 3-1 lists these routines and their corresponding libraries.

Table 3-1 Must-Change Routines

Routine Library

arpAdd() arpLib

bootpParamsGet() bootpLib

cacheR4kLibInit() cacheR4kLib

dhcpcBootInit() dhcpBootLib
10

3

3
VxWorks API Changes
The changes to each routine are summarized below. For more definitive details on
these routines, see the routine and library entries in the VxWorks API Reference.

� arpAdd(). The ATF_USETRAILERS flag is no longer supported.

� bootpParamsGet(). New parameters have been added to this function. The
bootpParams structure has been changed.

� cacheR4kLibInit(). New parameters have been added to this function.

� dhcpcBootInit(). New parameters have been added to this function.

� dhcpcLibInit(). The additional parameter maxSize is now passed to this
function.

� dhcpcOptionSet(). The parameter list has been reduced.

� dhcpsLibInit(). The parameter list has been consolidated to single parameter.

� fppRestore() and fppSave() [x86 only]. A new FP_CONTEXT definition has
been added to support streaming SIMD technology on the Pentium 2, 3, and 4.

There are two kinds of floating-point contexts, each with its set of routines:

– 108-byte context, for older FPUs (i80387, i80487, and Pentium) and older
MMX technology. This context uses fppSave(), fppRestore(),
fppRegsToCtx(), and fppCtxToRegs() to save and restore the context,
and to convert to or from the FPPREG_SET.

dhcpcLibInit() dhcpcLib

dhcpcOptionSet() dhcpcCommonLib

dhcpsLibInit() dhcpsLib

fppRestore()* fppArchLib

fppSave()† fppArchLib

loadModuleAt() loadLib

ripLibInit() ripLib

selectInit() selectLib

* x86 CPUs only.
† x86 CPUs only.

Table 3-1 Must-Change Routines

Routine Library
11

Tornado 2.2
Migration Guide
– 512-byte context, for newer FPUs, newer MMX technology and streaming
SIMD technology (PentiumII, III, 4). This context uses fppXsave(),
fppXrestore(), fppXregsToCtx(), and fppXctxToRegs() to save and
restore the context, and to convert to or from the FPPREG_SET. For more
details on VxWorks support for Pentium 2, 3, and 4 processors, see the
VxWorks for Pentium Architecture Supplement.

� loadModuleAt(). This function now correctly returns NULL on failure.

� ripLibInit(). A new authType parameter has been added to this function.

� selectInit(). A new numFiles parameter has been added to this function.

3.2.2 Recommended-Change Routines

Some routines have changed in VxWorks 5.5, yet retain backward compatibility
with earlier versions of VxWorks. While it is not crucial that code using these
routines be modified in order to run correctly, it is recommended. In many cases,
doing so will ease future migration. For example, the routine muxPollReceive() is
supported in VxWorks 5.5, but is deprecated and will be removed in a future
release of VxWorks.

Table 3-2 lists these routines and their corresponding libraries.

Table 3-2 Recommended-Change Routines

Routine Library

cd() usrFsLib

diskFormat() usrFsLib

diskInit() usrFsLib

fei82557EndLoad() fei82557End

motFecEndLoad() motFecEnd

muxPollReceive() muxLib

netDrv() netDrv

netLibInit() netLib()

proxyNetCreate() proxyArpLib

rm() usrFsLib
12

3

3
VxWorks API Changes
The changes to each routine are summarized below. For more definitive details on
these routines, see the routine and library entries in the VxWorks API Reference.

� cd(). The argument type has changed from char * to const char *, and the
routine has been moved from usrLib to usrFsLib. The header file usrLib.h
may still be included for backward compatibility; changing this file to
usrFsLib.h is optional for now.

� diskFormat(). The argument type has changed from char * to const char *, and
the routine has been moved from usrLib to usrFsLib. The header file usrLib.h
may still be included for backward compatibility; changing this file to
usrFsLib.h is optional for now.

� diskInit(). The argument type has changed from char * to const char *, and the
routine has been moved from usrLib to usrFsLib. The header file usrLib.h
may still be included for backward compatibility; changing this file to
usrFsLib.h is optional for now. This routine is now obsolete; it is
recommended that you use dosFsVolFormat().

� fei82557EndLoad(). The initString now includes a field for deviceId. Although
it is not required, it is recommended that you pass 0 as deviceId if you are not
using this field.

� motFecEndLoad(). The initString now includes a field for clockSpeed. Although
it is not required, it is recommended that you pass 0 as clockSpeed if you are not
using this field.

� muxPollReceive(). This routine has been deprecated. Use
muxTkPollReceive() instead.

� netDrv(). The include macro for this driver has changed from
INCLUDE_NETWORK to INCLUDE_NET_DRV.

� netLibInit(). The include macro for this library has changed from
INCLUDE_NETWORK to INCLUDE_NET_LIB.

rmdir() usrFsLib

symFindByValue()) symLib

symFindByValueAndType() symLib

Table 3-2 Recommended-Change Routines

Routine Library
13

Tornado 2.2
Migration Guide
� proxyNetCreate(). This routine no longer returns the errno value
S_proxyArpLib_INVALID_INTERFACE. Remove any code that checks for
this value.

� rm() and rmdir(). The argument type has changed from char * to const char *,
and the routine has been moved from usrLib to usrFsLib. The header file
usrLib.h may still be included for backward compatibility; changing this file
to usrFsLib.h is optional for now.

� symFindByValue(). This routine has been obsoleted. Use symByValueFind()
instead.

� symFindByValueAndType(). This routine has been obsoleted. Use
symByValueAndTypeFind() instead.

3.2.3 Minor-Change Routines

The routines listed in Table 3-3 retain full backward compatibility with Tornado
2.0/VxWorks 5.4. The changes made to the functions in this category are minor
and do not cause problems in migrating code. Some of these changes are
enhancements for additional functionality (say, additional error reporting) that do
not change the routine’s previous behavior. Any code modifications you make to
accommodate these changed routines are optional.

Table 3-3 Minor-Change Routines

Routine Library

arpDelete() arpLib

copy() usrFsLib

copyStreams() usrFsLib

ll() usrFsLib

ls() usrFsLib

mkdir() usrFsLib

msgQCreate() msgQLib

msgQDelete() msgQLib

msgQSend() msgQLib

pwd() usrFsLib
14

3

3
VxWorks API Changes
The changes to each routine are summarized below (summarized by library). For
more definitive details on these routines, see the routine and library entries in the
VxWorks API Reference.

� arpDelete(). The additional errno macro S_arpLib_INVALID_HOST is now
supported.

� copy(), copyStreams(), ll(), ls(), mkdir(), pwd(). These routines have been
moved from usrLib to usrFsLib; this change is backward-compatible. The new
include macro INCLUDE_DISK_UTIL and the new component File System and
Disk Utilities have been added.

� msgQCreate(), msgQDelete(), msgQSend(). New behavior has been added to
support the event facility. (See the VxWorks API Reference library entries for
eventLib and msgQEvLib.)

� select(). The maximum value for FD_SET has been raised from 256 to 2048
bits.

� semBCreate(), semCCreate(), semGive(), semMCreate(). New behavior has
been added to support the event facility. (See the VxWorks API Reference library
entries for eventLib and semEvLib.)

� setsockopt(). Several new socket options are now supported.

select() selectLib

semBCreate() semBLib

semCCreate() semCLib

semGive() semLib

semMCreate() semMLib

setsockopt() sockLib

Table 3-3 Minor-Change Routines

Routine Library
15

Tornado 2.2
Migration Guide
3.3 Retired Libraries

Table 3-4 lists the libraries that have been removed in VxWorks 5.5.

The changes to each library group are summarized below. For more definitive
details on these libraries, see the corresponding entries in the VxWorks API
Reference.

Table 3-4 Retired Libraries

Libraries Description

cacheI960CxALib
cacheI960CxLib
cacheI960JxALib
cacheI960JxLib

i960 architecture-specific cache libraries

cacheR3kALib MIPS R3000 cache library

etherLib Ethernet hook library

httpmoduleName
(57 total libraries)
For example:
httpFormutilTextfield

Wind Web Server libraries

ideDrv IDE/ATA driver

if_ulip BSD-style driver for ULIP for simulators

ntEnd END driver for Windows ULIP

ospfLib OSPF library

saIoLib
snmpAuxLib
snmpBindLib
snmpEbufLib
snmpIoLib
snmpProcLib
snmpdLib
subagentLib

Envoy SNMP Agent libraries

telnetLib Telnet server library

unixSio
winSio

Simulator serial driver libraries
16

3

3
VxWorks API Changes
� cacheI960CxALib, cacheI960CxLib, cacheI960JxALib, cacheI960JxLib. The i960
architecture is not supported in Tornado 2.2/VxWorks 5.5.

� cacheR3kALib. This library is no longer part of the VxWorks public API. The
public interface for MIPS R3000 caching can be found in cacheR3kLib.

� etherLib. This library, which provided access to raw Ethernet frames, has been
obsoleted. Several good alternatives exist:

– bpfLib, the Berkeley Packet Filter library.

– Use of a snarfing protocol to intercept all Ethernet frames.

– Use of a user-written protocol to more selectively intercept frames.

For details, see the VxWorks Network Programmer’s Guide.

� httpmoduleName. The 57 libraries in this group made up an obsoleted version of
the Wind Web Server. A up-to-date version is available as an upgrade for prior
users of Wind Web Server. Please contact your Wind River account
representative for details on the availability of this upgrade.

� ideDrv. This library has been obsoleted by ataDrv. See the corresponding entry
in the VxWorks API Reference for details.

� if_ulip, ntEnd, unixSio, winSio. These driver libraries are used by the Windows
and Solaris simulators, but are no longer part of the public VxWorks API.

� ospfLib. This library is an older version of OSPF and has been obsoleted by
WindNet OSPF 2.0. This newer version of OSPF is available as an upgrade for
existing OSPF customers. Please contact your Wind River account
representative for details on the availability of this upgrade.

� saIoLib, snmpAuxLib, snmpBindLib, snmpEbufLib, snmpIoLib, snmpProcLib,
snmpdLib, subagentLib. These libraries are an older version of the Envoy
SNMP agent. A newer version of Envoy for VxWorks 5.5 is available as an
upgrade for existing Envoy customers. Please contact your Wind River
account representative for details on the availability of this upgrade.

� telnetLib. This library has been replaced by telnetdLib. See the VxWorks API
Reference for details.
17

Tornado 2.2
Migration Guide
3.4 Other API Changes

Several sizeable facilities have experienced sweeping changes since the
introduction of Tornado 2.0/VxWorks 5.4. Code using earlier versions of the
following facilities requires extensive revision.

� dosFsLib. A new version of this library, DosFS 2.0, was released in 1999. If you
use an earlier version of this library, it is recommended that you upgrade.
DosFS 2.0 has support for FAT32 and retains compatibility with more recent
Microsoft operating systems.

� True Flash File System (TrueFFS). The underlying configuration of this
optional product has changed significantly in this release. See the VxWorks API
Reference for further details.

� USB Developer’s Kit. Version 1.1.2 of the USB Developer’s Kit is an upgraded
version for developers writing code for USB devices. See the USB Developer’s
Kit Programmer’s Guide and the USB Developer’s Kit Release Notes for details.
18

4

Compiler Migration
4.1 GNU Migration

If you are migrating from a Tornado version earlier than 2.1, the GNU toolchain
version has changed. The latest GNU toolchain version (identified by the compiler
version number) is 2.96+.

This change is most noticeable for C++ users. C++ code compiled with the Tornado
2.0 compiler is not compatible with code produced by the current version of the
compiler. Existing C++ code must be rebuilt with the new compiler.

For detailed information on using the GNU toolchain 2.96+ with Tornado 2.2, see
the GNU Toolchain Release Notes for Tornado 2.2.

4.2 Diab 5.0a Migration

The 5.0x release of the Diab Compiler introduces a new C++ front end and new
C++ libraries. With this release, the Diab compiler will be compatible with the
latest ISO/IEC 14882:1988(E) C++ standard. In moving to this new release, current
users will notice several changes related to providing enhanced C++ support. This
chapter outlines the differences between the 4.4x releases and the new 5.0x release.
19

Tornado 2.2
Migration Guide
Related Documentation

This chapter is only intended to provide a brief overview of the expected behavior
of the new compiler version. It is strongly recommended that the user consult the
following manuals and papers for a complete explanation of options and
differences:

� The Diab C/C++ Compiler User’s Manual is included with the compiler and is
available in print, PDF and HTML formats.

� The Diab 5.0 Release Notes is included with the compiler. It can be found in the
file installDir/diab/5.0a/relnote.htm.

Migrating C Code to Diab 5.0a

C users will find few differences when moving from 4.4x to the 5.0a release. The
existing C-language front end remains unchanged from previous versions. C++
users will find numerous differences when moving from 4.x to 5.0a. The changes
made to the C++ compiler greatly improve its ANSI compliance and also fix a few
serious deficiencies in the previous versions of the compiler.

Backward Compatibility

Current C++ users who do not need or want the new C++ front end can continue
to use the front end from the older 4.4x version by using the following compiler
command line option:

-Xc++-old

Diab Optimization Technology

Figure 4-1 illustrates that Wind River's optimization technology and support for
current back end target architectures remains intact.
20

4

4
Compiler Migration
First Impressions

When you move to the 5.0a release, you will likely see warnings and error
messages on code that compiled cleanly with previous versions of the compiler. In
general, the new compiler is stricter in both type-checking and syntax-checking,
which results in more diagnostic, warning, and error messages. While at first these
messages may be troublesome, they can prove quite helpful and instructive on
closer inspection.

As stated above, the 5.0a C++ front end expects and demands adherence to ANSI
C++ coding standards.

Figure 4-1 Diab Migration
21

Tornado 2.2
Migration Guide
4.2.1 New Features

The 5.0a release includes the following new features:

� Updated compliance with the latest ANSI C++ standard, especially in the
areas of templates, STL, and exception handling.

� New C++ libraries including STL.

� Support for pre-compiled headers. (See the Diab documentation for
instructions on using pre-compiled headers.)

� Support for DWARF 2:

– In 5.0a, DWARF 1.1 is the default.

– Use compiler option -Xdebug-dwarf2 to generate DWARF 2.

– In a later release of the 5.0x compiler, DWARF 2 will be the default.

4.2.2 Changes from Previous Versions

� Version 5.0a checks for illegal access to protected and private class members.

� For template processing, comdat is now the default.

– Previous versions of the compiler required -Xcomdat.

– In the comdat approach, the compiler instantiates every template instance.

– The linker removes all but one of the multiple instantiations.

� Exceptions and runtime type information are enabled by default.

– Previous versions of the compiler required the following options:

-Xexceptions (-X200)
-Xrtti (-X205=1)

– Exceptions and RTTI can be disabled by using the following options:

-Xexceptions-off (-X200=0)
-Xrtti-off (-X205=0)
22

4

4
Compiler Migration
� The new front end compiler is called etoa. The 4.4x version of the compiler
(dtoa) is still present and is used if the -Xc++-old option is specified. The driver
names (dplus, dcc) remain unchanged.

� The C++ compiler no longer supports direct assembler functions.

– Assembly macros, which are more functional, are still supported.

� The C++ libraries do not support locales, wide characters, or the long double
type.

� Some header files have new names. For example, exception.h replaces
except.h.

� The C++ compiler uses a new error message output format. For example, the
following line of code generates an error message:

cout << "Hello, world" << endl //missing semicolon

For the above line of code, the 4.4b error format produced the following
message:

"main.cc", line 6: error (dplus:1247): syntax error after endl, expecting
;

For the same line of code, the 5.0a error format produces the following
message:

"main.cc", line 6: error #4065: expected a ";"
}
^

Although the wording has changed and a caret ("^") is used to identify the
location of the error, the filename and line number remain the same; therefore,
5.0a can continue its interoperability with other programs.

NOTE: Do not invoke ctoa, dtoa, or etoa directly. Use the driver programs dcc or
dplus.
23

Tornado 2.2
Migration Guide
4.2.3 New Compiler Options

The options listed in Table 4-1 are new to the 5.0x compiler:

4.2.4 Deprecated Keywords, Options, and Directives

Support for several keywords, compiler options, and directives that are rarely, if
ever, used in C++ programming has been dropped in the 5.0a C++ compiler. All
the keywords, options, and directives are still supported in the 5.0a C compiler and
in C++ if the -Xc++-old option is used.

While the items below are listed as deprecated, they may be reinstated in future
releases, depending upon customer demand.

Table 4-1 New Options to Diab

Option Language(s) Description

-? C and C++ Shows commonly used compiler options.

-?? C and C++ Shows less frequently used options.

-?X C and C++ Shows compiler X options.

-?W C and C++ Shows compiler W options.

-Xcomdat C++ Not a new option, but it is now the default.

-Xpch-automatic C++ Generates and uses pre-compiled headers (PCHs).

-Xpch-create=filename C++ Generates a PCH with the specified name.

-Xpch-diagnostics C++ Generates a message for each PCH found but unable to be used.

-Xpch-directory=directory C++ Looks for PCHs in the specified directory.

-Xpch-messages C++ Generates a message each time a PCH is created and used.

-Xpch-use=filename C++ Uses the specified PCH file.

-Xusing-std-on C++ Operates as if using namespace std; had been specified in the
code.

-Xusing-std-off C++ Searches in global scope.
24

4

4
Compiler Migration
Deprecated Keywords

Table 4-2 shows the keywords that are not supported in the 5.0a C++ compiler. See
the “Alternative/Comment” column for equivalent solutions.

Deprecated Options

Table 4-3 shows the options that are not supported in the 5.0a C++ compiler. Many
of these options were originally offered to provide compatibility for older,
outdated programming styles. In other cases, the options are now incompatible
with the standards expected by the new front end. In consideration of the new
front end’s ANSI compliance, it is recommended that you analyze your
application and build system to determine an alternative solution more in keeping
with the C++ standard, rather than relying on possibly outdated compiler options.

The 5.0a compiler issues a warning whenever unsupported options are used. This
makes it easier to locate them in makefiles or other build systems.

Table 4-2 Keywords Deprecated in 5.0a C++ Compiler

Keyword Alternative/Comment

extended Same as long double.

interrupt,
__interrupt__

interrupt, __interrupt__, and #pragma interrupt are not supported
in the 5.0a release.

packed,
__packed__

packed and __packed__ are not supported in the Tornado 2.2
release. (However, they are supported in Diab 5.0a.)
-Xmember-max-align is supported.

pascal Reverses the argument list.

Table 4-3 Options Deprecated in 5.0a C++ Compiler

Option Alternative/Comment

-I@ Searches for user-defined include files in the order specified.
The -I option is still supported.

-Xold-function-decls-... Permits the use of old-style function definitions.

-Xpostfix-inc-dec-... Specifies that the parser should look for an operator++() or
operator--() in either the prefix or postfix position.
25

Tornado 2.2
Migration Guide
Deprecated Directives

Table 4-4 shows the directives that are not supported in the 5.0a C++ compiler.

-Xvtbl-... Controls how vtables are implemented.

-Xcall-MAIN Generates a call to _MAIN() at the beginning of main().

-Xshow-inst Prints all template instantiations to stderr.

-Xclass-type-name-visible Uses old for scope rules.

-Xstruct-arg-warning Issues a warning if a structure argument is larger than the
specified number of bytes.

-Xbottom-up-init Controls how structure and array initializations are made
(ANSI specifies top-down).

-Xcpp-no-space Does not insert spaces around macro names and arguments
during preprocessing.

-Xswap-cr-nl Swaps \n and \r.

-Xbit-fields-unsigned,
-Xunsigned-bitfields

Treats bit fields as unsigned. In 5.0a, bit fields retain the sign
of their defined type.

-Xbit-fields-signed,
-Xsigned-bitfields

Treats bit fields as signed. In 5.0a, bit fields retain the sign of
their defined type.

-Xbit-fields-compress,
-Xbitfield-compress

If possible, changes the type of bit fields in order to save
space.

-Xdouble-... Controls the use of the double type.

Table 4-4 Directives Deprecated in 5.0a C++ Compiler

Directive Alternative/Comment

#ident Inserts a comment into the object file.

#assert, #unassert Supported, but with slight changes in syntax.

Table 4-3 Options Deprecated in 5.0a C++ Compiler

Option Alternative/Comment
26

4

4
Compiler Migration
4.3 Differences Between GNU and Diab Compilers

The executable names for Diab tools do not vary according to the target as the
GNU names do. Diab tools make use of table files to generate target-dependent
code and other target-dependent actions. This greatly reduces the number of
executables that must be built on a particular host. Table 4-5 lists the tool names for
each compiler.

The command to munch C++ source varies between the two tools.

Table 4-5 Tool Names

GNU Tool Name Diab Tool Name

cc* dcc (use the -t switch to set a target)

as das (use the -t switch to set a target)

ld dld (the -t switch selects a target and libraries)

nm* ddump

ar dar

Table 4-6 Munch Commands

GNU Munch Diab Munch

wtxtcl * ddump -M
27

Tornado 2.2
Migration Guide
28

5

Migrating Projects
5.1 Introduction

Wind River provides a project migration tool, prjMigrate, to aid in updating your
Tornado project to work with Tornado 2.2/VxWorks 5.5.

A Tornado 2.x project consists of a .wpj file, generated files (including a makefile
and configuration files), and your source files. prjMigrate acts on the .wpj file and
the generated files. Your source files should not require migration if the APIs they
use have not changed. For a list of changed APIs, see 3. VxWorks API Changes. If the
APIs have changed, source code must be migrated. Migration of user source code
is beyond the scope of the project migration tool.

Because user modification of makefiles is a common practice, the project migration
tool determines whether the makefile has been modified. If so, the tool makes a
backup of the makefile, and issues a message explaining that any changes must be
manually replicated in the newly generated makefile. The other generated files are
simply regenerated.

The project migration tool performs the following tasks:

� Copies the project into the context of the new Tornado tree.

� Makes a backup of the makefile, if it has been modified, and issues a message
explaining the need to manually replicate its changes.

� Migrates the .wpj file.

� Regenerates the makefile.
29

Tornado 2.2
Migration Guide
� Regenerates the configuration files from the migrated .wpj file.

� Provides an interface for interactive query on build macros and components,
if you created your project using the command line.

5.2 Using the Project Migration Tool

The prjMigrate tool is a data-driven tool that helps you migrate a project created
in one version of Tornado to a project in another version of Tornado. It is built on
the Tornado project facility.

The tool can work in two modes: AUTO and QUERY. When run in AUTO mode, the
tool copies the project into the destination Tornado installation, backs up the
makefile if it has been manually modified, migrates the .wpj file, and regenerates
the makefile and configuration files. QUERY mode allows you to discover what
equivalent value should be used for build macros and components in the new
environment.

Synopsis

To use the project migration tool, enter the following at a command-line prompt:

% prjMigrate -h[elp]

For AUTO mode, enter the following:

% prjMigrate -windbase oldInstallDir {-type projectType [-newproject
prjDirMigrated] oldPrjDir }

NOTE: Before using this tool, it is strongly recommended that you read the help
information. You can access the help information at a command line by entering
prjMigrate -h.
30

5

5
Migrating Projects
For QUERY mode, enter the following:

% prjMigrate -bsp bspName {-tool toolchain [-component "componentList"] }

or

% prjMigrate -bsp bspName {-tool toolchain [-macro buildMacro -value
"macroValue"] }

The parameters used in the command-line sequences above are explained in
Parameters, p.31, and Examples, p.32.

Parameters

The project migration tool takes the parameters described in Table 5-1.

Table 5-1 prjMigrate Parameters

Parameter Description

-h[elp] Displays prjMigrate usage information.

-windbase oldInstallDir The installation directory of the old Tornado installation, from which the
project is being migrated.

-type projType The type of project being migrated. Using -type causes prjMigrate to work in
AUTO mode. The possible types are vxWorks and vxApp.

-newproject prjDirMigrated Optional. The destination directory of the project to be migrated. The default
is installDir/targetproj/oldNameMigrated.

oldPrjDir The directory of the project being migrated.

-bsp bspName The BSP for the project being migrated.

-tool toolchain The toolchain used; either GNU or Diab.

-macro buildMacro Optional. The build macro you wish to query.

-value "macroValue" Optional. The current value of the macro to query. This consists of your
changes to the default value of the old Tornado installation’s macro. The
query result is the default value of the new Tornado installation’s macro,
with your changes applied. If this parameter is omitted, the query result is
the default value of the new Tornado installation’s macro.

-component "componentList" A list of components. The query output is the list of equivalent components
of the new Tornado installation.
31

Tornado 2.2
Migration Guide
Examples

Example 5-1 Convert a Project Using AUTO Mode

This command-line sequence converts a Tornado 2.0 project, Project0, located in
installDir/target/proj, to a Tornado 2.2 bootable project. installDir is /tmp/t20.

% prjMigrate -windbase /tmp/t20 -type vxWorks target/proj/Project0

As result of this operation, the directory target/proj/Project0 is copied to the
target/proj/Project0Migrated directory of the Tornado 2.2 installation. The
makefile is backed up if it has been modified manually. .wpj is migrated to work
with Tornado 2.2. The makefile and configuration files are regenerated, but the
source files remain unchanged.

Example 5-2 Generate a List of Build Macros Using QUERY Mode

This command-line sequence generates a list of build macros that are available to
be queried.

% prjMigrate -windbase /tmp/t20 -bsp ads860 -tool gnu

Example 5-3 Build Macro Query Using QUERY Mode

This command-line sequence generates a list of the values of the build macro
CFLAGS for the ads860 BSP with the GNU compiler in both Tornado 2.0 and 2.2.

% prjMigrate -windbase /tmp/t20 -bsp ads860 -tool gnu -macro CFLAGS
-value "-mcpu=860"
32

6

Migrating BSPs
This chapter discusses the migration of a BSP to VxWorks 5.5. It includes
information on both architecture-independent and architecture-dependent issues.

NOTE: This chapter discusses changing a pre-VxWorks 5.5 BSP so that it will be
compatible with VxWorks 5.5. The strategy implied here for BSP migration is to
make small changes to an existing BSP to make it operational and compatible. In
some cases, however, a different strategy may be called for.

VxWorks 5.5 includes enhanced CPU architecture support for several processor
families, especially Intel architectures (see section 6.2.6 Pentium, p.39). Very
extensive migration may be required to make these architecture enhancements
available to an existing pre-VxWorks-5.5 BSP. An alternate strategy is to use a
VxWorks 5.5 BSP that most closely matches your target hardware as a base for your
BSP. Board-specific changes could be rolled into this updated BSP, much as they
were when the BSP was first written.

For many boards, this second strategy entails a more time-consuming process than
the simple changes described below, and this cost should be weighed against the
benefits of the VxWorks 5.5 enhancements. For a detailed description of the
architecture-specific features available in VxWorks 5.5, see the VxWorks
Architecture Supplement for your CPU architecture.
33

Tornado 2.2
Migration Guide
6.1 Architecture-Independent Changes to BSPs

BSP Makefile Changes and the bspCnvtT2_2 Tool

The BSP makefile has been simplified by minimizing the number of include
statements needed. In particular, prior to Tornado 2.2, a makefile needed several
includes, as shown in Example 6-1.

Example 6-1 Makefile includes Prior to Tornado 2.2

...
include $(TGT_DIR)/h/make/defs.bsp
include $(TGT_DIR)/h/make/make.$(CPU)$(TOOL)
include $(TGT_DIR)/h/make/defs.$(WIND_HOST_TYPE)
...
include $(TGT_DIR)/h/make/rules.bsp
include $(TGT_DIR)/h/make/rules.$(WIND_HOST_TYPE)
...

In Tornado 2.2, only two of these include statements are necessary:

...
include $(TGT_DIR)/h/make/defs.bsp
...
include $(TGT_DIR)/h/make/rules.bsp
...

The defs.bsp and rules.bsp files now include any other files necessary to build
your BSP. To modify your BSP, simply comment out the unnecessary includes in
your makefile.

In addition, a makefile conversion tool, bspCnvtT2_2, has been provided in the
installDir/host/$(WIND_HOST_TYPE)/bin directory. You can invoke
bspCnvtT2_2 with the following syntax:

% bspCnvtT2_2 bspName1 bspName2 ...

bspCnvtT2_2 converts your makefile by performing the following actions:

� Saving your old makefile to a file named Makefile.old in your BSP directory.

� Commenting out the unnecessary includes.

� Warning you about the use of any hex build flags. (See Hex Utilities and objcopy,
p.35.)
34

6

6
Migrating BSPs
Hex Utilities and objcopy

The use of Wind River-provided hex and binary utilities, such as aoutToBinDec or
coffHexArm, has been deprecated in favor of the GNU utility objcopy. See the
GNU Toolkit User’s Guide chapter on binary utilities for details. It is recommended
that you modify your BSP build settings as necessary to use objcopy.

New Default Value of WDB_COMM_TYPE

The WDB_COMM_TYPE default value has been changed from
WDB_COMM_NETWORK to WDB_COMM_END. If you plan to use a different
communication mode, define it explicitly in config.h. For example, if by default
your BSP sets up WDB communication on a serial line, you should include the
following line in config.h:

...
/* make sure this appears after inclusion of configAll.h */
#define WDB_COMM_TYPE WDB_COMM_SERIAL
...

Changes in the Shared Memory Subsystem

A BSP for VxWorks 5.5 requires several modest changes to config.h and possibly
to sysLib.c in order to support the shared memory network and the optional
component VxMP. In past releases of VxWorks, you could ensure that the shared
memory components were included simply by verifying the inclusion of the
shared memory backplane network. But in VxWorks 5.5, VxMP can be configured
without support for the shared memory network.

A new component with the inclusion macro INCLUDE_SM_COMMON has been
added to VxWorks 5.5. Use this macro to test for shared memory support. The
majority of BSPs that support shared memory use conditional compilation
statements such as the following:

#ifdef INCLUDE_SM_NET
/* shared memory-specific code */

#endif

For VxWorks 5.5, these statements must be updated to test for
INCLUDE_SM_COMMON:

#ifdef INCLUDE_SM_COMMON
/* shared memory-specific code */

#endif
35

Tornado 2.2
Migration Guide
When you modify sysLib.c, follow the simple rule of replacing all instances of
INCLUDE_SM_NET with INCLUDE_SM_COMMON.

With a few exceptions, you can use the same rule in changing config.h. A test for
INCLUDE_SM_NET is still valid in network-related statements, but is not valid as
a test for the common shared memory parameters:

These shared memory parameters do not require conditional compilation and can
be left defined at all times. (Note that some are defined by default in configAll.h
and must be undefined before being redefined in config.h.)

The definition of INCLUDE_SM_NET in config.h may also bring in components
that have changed in VxWorks 5.5, such as INCLUDE_NET_SHOW and
INCLUDE_BSD. These components are no longer needed; the smNetShow()
routine is now in a separate component, called INCLUDE_SM_NET_SHOW, and
proper BSD or other network configuration is contained in other files.

Changes in Other Run-time Facilities

Several optional products for Tornado 2.2/VxWorks 5.5 have undergone changes
that necessitate BSP modifications:

� True Flash File System (TrueFFS). For details, see the VxWorks Programmer’s
Guide chapter on the Flash Memory Device Interface. Also consult the library
entries for tffsConfig and tffsDrv in the VxWorks API Reference.

� DosFs 2.0. This updated version of the DOS file system support for VxWorks
necessitates changes to your BSP. Because dosFsNLib version 2.0 has been
available since shortly after the Tornado 2.0 release, many Tornado 2.0.x and
later BSPs may already support it, and do not require modification. Full details
and examples of DOS version 2 can be found in the VxWorks Programmer’s
Guide and the VxWorks API Reference.

SM_ANCHOR_ADRS SM_ANCHOR_OFFSET SM_CPUS_MAX
SM_INT_ARG1 SM_INT_ARG2 SM_INT_ARG3
SM_INT_TYPE SM_MASTER SM_MAX_WAIT
SM_MEM_ADRS SM_MEM_SIZE SM_OBJ_MEM_SIZE
SM_OFF_BOARD SM_TAS_TYPE
36

6

6
Migrating BSPs
6.2 Architecture-Dependent BSP Issues

The following sections provide the specific steps required to upgrade your BSP to
Tornado 2.2/VxWorks 5.5 as well as architecture-specific information related to
upgrading a BSP. For additional architecture-specific information, refer to the
appropriate Architecture Supplement manual for your target architecture (available
on WindSurf).

6.2.1 Migration Changes Common to All Architectures

The following changes are required for all BSPs, regardless of architecture:

� Makefile update. This step is required for all users. Use the bspCnvtT2_2
script to update the BSP makefile. This script will comment out unnecessary
include lines and any existing HEX_FLAGS value.

� TFFS support. This step is required for BSPs with TFFS support. Remove the
inclusion of sysTffs.c from the syslib.c file.

6.2.2 68K/CPU32

All Wind River-supplied BSPs for the 68K/CPU32 architecture released with the
Tornado 2.2 product have been upgraded for use with VxWorks 5.5. Custom
VxWorks 5.4-based BSPs require only the modifications described in
6.2.1 Migration Changes Common to All Architectures, p.37 to upgrade to VxWorks
5.5. No architecture-specific modifications are required.

For more information on using VxWorks with 68K/CPU32 targets, see the
VxWorks for 68K/CPU32 Architecture Supplement.

6.2.3 ARM

NOTE: Some material in this section overlaps with the information in
6.1 Architecture-Independent Changes to BSPs, p.34.

NOTE: This section describes BSP migration from Tornado 2.1\VxWorks 5.4 to
Tornado 2.2\VxWorks 5.5. For information on migrating a BSP from Tornado 2.0.x
to Tornado 2.1, see the Tornado for ARM Release Notes and Architecture Supplement
manual available on WindSurf.
37

Tornado 2.2
Migration Guide
In addition to the steps described in 6.2.1 Migration Changes Common to All
Architectures, p.37, the following ARM-specific migration changes are required:

� For assembly files only. The new macros GTEXT, GDATA, FUNC, and
FUNC_LABEL have been added to assist in porting assembly files. The leading
underscores in global assembly label names should be removed. Using these
macros allows source compatibility between Tornado 2.1.x and Tornado 2.2.

� Diab support. Due to differences in assembler syntax between the GNU and
Diab toolchains, you need to change any GNU assembly macros to Diab
syntax. For more information on Diab assembly syntax, see the Diab C/C++
Compiler for ARM User’s Guide.

For more information on using VxWorks with ARM targets, see the VxWorks for
ARM Architecture Supplement.

6.2.4 ColdFire

In addition to the steps described in 6.2.1 Migration Changes Common to All
Architectures, p.37, the following ColdFire-specific issues should be considered
when migrating your custom BSP:

� Diab support. This release of VxWorks for ColdFire includes the same basic
layout and functionality included with the previous Tornado 2.1/VxWorks 5.4
release. However, the GNU toolchain is no longer supported.

For more information on using VxWorks with ColdFire targets, see the VxWorks for
ColdFire Architecture Supplement.

6.2.5 MIPS

In addition to the steps described in 6.2.1 Migration Changes Common to All
Architectures, p.37, the following MIPS-specific issues should be considered when
migrating your custom BSP to Tornado 2.2/VxWorks 5.5:

� CPU variants. MIPS CPUs are now organized by CPU variant. This allows the
VxWorks kernel to take advantage of the specific architecture characteristics of

NOTE: This section describes BSP migration from Tornado 2.1\VxWorks 5.4 to
Tornado 2.2\VxWorks 5.5. For information on migrating a BSP from Tornado 2.0.x
to Tornado 2.1, see the Tornado for MIPS Release Notes and Architecture Supplement
manual available on WindSurf.
38

6

6
Migrating BSPs
one variant without negatively impacting another. As a result, all MIPS BSPs
must now include a CPU_VARIANT line in the Makefile after the
MACH_EXTRA line. For example, CPUs which fall into the category of Vr54xx
variants, use the following line:

CPU_VARIANT =_vr54xx

See the VxWorks for MIPS Architecture Supplement for a list of MIPS CPUs and
their respective CPU_VARIANT values.

� MIPS64 Libraries. The MIPS64 libraries (MIPS64gnu, MIPS64diab,
MIPS64gnule, and MIPS64diable) now support 64-bit MIPS devices with ISA
Level III and above. In previous versions of VxWorks, these libraries only
supported MIPS devices with ISA Level IV and above. For more information
on compiler options for MIPS libraries, refer to the Architecture Supplement.

� Alchemy Semiconductor BSPs. The Alchemy Semiconductor BSP, pb1000, has
been altered to provide additional support to the pb1500 BSP. As a result, some
changes have been made to the API of the common support for these two BSPs.
All macro, driver, and file names previously using au1000 have been changed
to simply au. For example, the cache library cacheAu1000Lib is now known as
cacheAuLib. For more details on these changes, refer to the BSP and its
supporting drivers.

For more information on using VxWorks with MIPS targets, see the VxWorks for
MIPS Architecture Supplement.

6.2.6 Pentium

Support for Intel architectures has been greatly enhanced in VxWorks 5.5 as
compared with previous versions. In order to take advantage of all of these
changes, you may want to use a Wind River-supported VxWorks 5.5 BSP as the
basis for your BSP, and backfit existing customizations (such as custom devices or
driver extensions) to this new BSP. For a complete description of the
architecture-specific enhancements, see the VxWorks for Pentium Architecture
Supplement and the BSP reference documentation for a target similar to your board.
(for example, pcPentium, pcPentium2, and so on).

The following steps outline the individual changes required to support VxWorks
5.5 on an existing BSP. This information enables you to migrate your BSP step by
step, as opposed to the approach described above.
39

Tornado 2.2
Migration Guide
In addition to the steps described in 6.2.1 Migration Changes Common to All
Architectures, p.37, the following Pentium-specific issues should be considered
when migrating your custom BSP to Tornado 2.2/VxWorks 5.5:

� The new CPU types PENTIUM2, PENTIUM3, and PENTIUM4 have been added
and CPU_VARIANT has been removed. Thus, CPU_VARIANT should be
replaced with a new CPU type that is appropriate for your processor.

� Three new code selectors, sysCsSuper, sysCsExc, and sysCsInt, have been
added for this release, and sysCodeSelector has been removed. In existing
BSPs, sysCodeSelector should be replaced with sysCsSuper.

� The ROM_IDTR, ROM_GDTR, ROM_GDT, ROM_INIT2 offset macros have
been removed due to improvements in the GNU assembler (GAS). These
macros are no longer used by romInit.s.

� For assembly files only: the new macros GTEXT, GDATA, FUNC, and
FUNC_LABEL have been added to assist in porting assembly files. The leading
underscores in global assembly label names should be removed. Using these
macros allows source compatibility between Tornado 2.0.2 and Tornado 2.2.

� For assembly files only: replace .align with .balign.

� Boot images from earlier releases of VxWorks no longer function with
VxWorks 5.5 images and must be rebuilt.

� The PC host utility mkboot now works with known VxWorks names, but may
not work with user-provided names unless they are of type binary (*.bin). For
all other images, there are two options:

� Rename your image to bootrom.dat before running mkboot.
� Modify mkboot.dat to support your names. Follow the examples given in

the mkboot.bat file.

� Power management is enabled by default. To disable it, modify config.h:

#undef VX_POWER_MANAGEMENT

� The default console is now set to COM1. In prior versions of VxWorks, x86
targets set the default console to the VGA console. To use the VGA console,
change config.h:

#define INCLUDE_PC_CONSOLE
40

6

6
Migrating BSPs
� The configuration parameters for the IDE driver, ideDrv, have been removed
in favor of the ATA driver, ataDrv, that is already used as the default
configuration in Tornado 2.0.

� The CPUID structure (sysCpuId) has been updated to support Pentium III and
Pentium 4 processors. sysCpuId.version, sysCpuId.vendor, and
sysCpuId.feature are replaced respectively with sysCpuId.signature,
sysCpuId.vendorId, and sysCpuId.featuresEdx.

� INT_VEC_GET()/XXX_INT_VEC have been replaced with
INT_NUM_GET()/INT_NUM_XXX, respectively. Although older macros are
available in this release for backward compatibility, they will be removed in
the next release.

� The routine sysCpuProbe() now understands Pentium III and Pentium 4
processors.

� The routine sysIntEoiGet() has been updated.

� The local and IO APIC/xAPIC drivers, loApicIntr.c, ioApicIntr.c, and
loApicTimer.c, now support the xAPIC in Pentium 4. The show routines for
these drivers have been separated and contained in loApicIntrShow.c and
ioApicIntrShow.c, respectively.

For more information on using VxWorks with Pentium targets, see the VxWorks for
Pentium Architecture Supplement.

6.2.7 PowerPC

In addition to the steps described in 6.2.1 Migration Changes Common to All
Architectures, p.37, the following PowerPC-specific changes are required to
migrate your custom BSP to Tornado 2.2/VxWorks 5.5:

� Use of the vxImmrGet() routine is deprecated. Existing BSPs implement this
routine differently; some return the entire IMMR register, while others mask
off the PARTNUM bits. BSPs’ existing behavior is unchanged.

The preferred replacements for this routine are vxImmrIsbGet() and
vxImmrDevGet(), which are implemented in vxALib.s and should not be
overridden by the BSP. Standard Wind River drivers use the new interface.
41

Tornado 2.2
Migration Guide
� Some early MPC74xx/AltiVec support included a routine, typically
vmxExcLoad(), to initialize the AltiVec exception vectors. For example:

{
bcopy ((char*)(LOCAL_MEM_LOCAL_ADRS + 0x0100),

(char*)(LOCAL_MEM_LOCAL_ADRS + _EXC_VMX_UNAVAIL),
SIZEOF_EXCEPTION);

bcopy ((char*)(LOCAL_MEM_LOCAL_ADRS + 0x0100),
(char*)(LOCAL_MEM_LOCAL_ADRS + _EXC_VMX_ASSIST),
SIZEOF_EXCEPTION);

}

Such code must be removed. AltiVec exception vectors are initialized by
altivecInit().

The following change is optional for PowerPC BSPs:

� Assembly files can be converted to use the Wind River standard macros
defined in installDir/target/h/arch/ppc/toolsPpc.h:

FUNC_EXPORT
FUNC_IMPORT
_WRS_TEXT_SEG_START
FUNC_BEGIN
FUNC_LABEL
FUNC_END

Converting assembly files in this way is not generally required. However,
conversion (especially to _WRS_TEXT_SEG_START) occasionally fixes a silent
bug.

For more information on using VxWorks with PowerPC targets, see the VxWorks
for PowerPC Architecture Supplement.

6.2.8 XScale/StrongARM

In addition to the steps described in 6.2.1 Migration Changes Common to All
Architectures, p.37, the following XScale/StrongARM-specific changes are required
to migrate your custom BSP to Tornado 2.2/VxWorks 5.5:

NOTE: This section describes BSP migration from Tornado 2.1\VxWorks 5.4 to
Tornado 2.2\VxWorks 5.5. For information on migrating a BSP from Tornado 2.0.x
to Tornado 2.1, see the Tornado for StrongARM/XScale Release Notes and Architecture
Supplement manual available on WindSurf.
42

6

6
Migrating BSPs
� For assembly files only: the new macros GTEXT, GDATA, FUNC, and
FUNC_LABEL have been added to assist in porting assembly files. The leading
underscores in global assembly label names should be removed. Using these
macros allows source compatibility between Tornado 2.1.x and Tornado 2.2.

� Diab support. Due to differences in assembler syntax between the GNU and
Diab toolchains, you need to change any GNU assembly macros to Diab
syntax. For more information on Diab assembly syntax, see the Diab C/C++
Compiler for ARM User’s Guide.

For more information on using VxWorks with XScale/StrongARM targets, see the
VxWorks for Intel XScale/StrongARM Architecture Supplement.

6.2.9 SuperH

In addition to the steps described in 6.2.1 Migration Changes Common to All
Architectures, p.37, the following SuperH-specific changes are required to migrate
your custom BSP to Tornado 2.2/VxWorks 5.5:

� Power management setup. This step is required for BSPs where processor
power management is enabled. In the sysHwInit() routine in sysLib.c.
initialize the vxPowerModeRegs structure depending on the SuperH
processor used.

� Diab support. This step is only required if the BSP will be built with the Diab
toolchain. Assembler files should be updated to use the .short directive instead
of the .word directive.

� Use of NULL. In previous releases, NULL was defined as integer zero. This
definition has been changed to match the C standard to a void pointer. To
avoid compiler warnings, make sure NULL is only used for pointer
assignments.

For more information on using VxWorks with SuperH targets, see the VxWorks for
Hitachi SuperH Architecture Supplement.
43

Tornado 2.2
Migration Guide
44

A

Writing Portable C Code
This chapter describes how to write compiler-independent portable C code. The
goal is to write code that does not require changes in order to work correctly with
different compilers.

Wind River has conducted an analysis of its own VxWorks code base, with an eye
to compiler independence issues. This chapter is based on the findings of that
analysis.

The code changes proposed in this chapter do not cover the native host tools,
including VxSim and any other tools that are compiled both by native compilers
and by cross-compilation.

This chapter also does not cover C++ portability; there are fundamental differences
in the GNU and Diab C++ implementations. Future editions of this document will
address the portability of C++ code.

Background

While the ANSI C and compiler specifications are detailed, they still allow each
compiler to implement the standard differently. The result is that much source
code is not truly portable among compiler systems. In order for the compiler to
generate code in a specific manner, engineers must insert special
non-ANSI-defined instructions into the code.

The information in this chapter is part of Wind River’s effort to support multiple
compiler systems without requiring major source changes, and to add support for
new compiler systems in the future without creating compatibility conflicts.
45

Tornado 2.2
Migration Guide
Analysis of Wind River’s existing code base reveals three main areas where
non-ANSI compiler features are used to generate runtime code:

� packed structure definitions
� in-line assembly code
� alignment of data elements

A.1 Portable C Code

A.1.1 Data Structures

Some structure definitions are bound by external restrictions. It is common
practice to use a structure definition to document the register layout of hardware
devices. Using a structure to define the layout of data packet contents received
from another system is also common. This can create problems because the ANSI
specification allows compilers to insert padding elements within structure
definitions in order to optimize data element accesses. In these situations, doing so
would make the structure declaration incompatible with the expectations and
restrictions of the outside world. The compiler offsets from the start of the structure
to the start of the data element would not match what is expected. A method is
required for identifying certain structures as requiring special compiler treatment,
while allowing other structures to be optimized for efficiency.

The common term for a structure definition without any padding is packed. Each of
the major compilers has a means to specify packing for a structure, but there is no
single recognized standard. GNU and Diab use an attribute statement as part of
the declaration. Microsoft compilers use #pragma statements.

To specify packing in a compiler-independent manner a macro has been created for
use when defining the structure. The _WRS_PACK_ALIGN(x) macro is used as an

NOTE: This chapter is limited in scope to insuring that code is portable specifically
between the GNU and Diab compilers.

NOTE: The scope of this chapter is further limited to specify GCC version 2.96 and
Diab version 5.0 as the baseline compilers. Earlier versions are not truly compatible
with each other and may not have all the necessary support to implement the
conventions introduced here.
46

A

A
Writing Portable C Code
attribute declaration. It is placed after the closing curly brace, but before any
instance declarations or initializers. By including the vxWorks.h header file in your
compilation, a toolchain specific header file is included to define this macro
appropriately for the compiler tool being used.

For example:

struct aPackedStruct {
UINT32 int1;
INT16 aShort;
INT8 aByte;

} _WRS_PACK_ALIGN(1);

struct aPackedStruct {
UINT32 int1;
INT16 aShort;
INT8 aByte;

} _WRS_PACK_ALIGN(1) anInstance = {0x1, 2,3};

typedef struct {
UINT8 aByte;
UINT16 aShort;
UINT32 aLong;

} _WRS_PACK_ALIGN(1) myPackedStruct;

Specify Field Widths

Always use specific field widths within a packed structure declaration. The basic
data type int does not have a specific size and should be avoided. The same rule
applies for long, unsigned, and char. The vxWorks.h header file defines basic data
types with explicit sizes. Use these data types in any packed structure (INT8,
INT16, INT32, UINT8, and so on). In general, think ahead to architectures with
more than a 32-bit native integer.

Avoid Bit Fields

Do not include bit field definitions within a packed structure. Compilers are
permitted to start labeling bits with either the least significant bit or the most
significant bit. This issue can be dealt with easily by using macro constants to
define the specific bit pattern within the data field.
47

Tornado 2.2
Migration Guide
For example:

struct aPackedStruct {
UINT32 int1;
INT16 aShort;
INT8 aByte;

} _WRS_PACK_ALIGN(1) anInstance={0x1,2,3};

/* Bits in the aByte field */

#define ABYTE_ERROR 0x01
#define ABYTE_OFLOW 0x02
#define ABYTE_UFLOW 0x04
#define ABYTE_DMA 0x08
#define ABYTE_POLL 0x10

A.1.2 In-Line Assembly

In-line assembly is a more difficult issue because it involves both the compiler and
the assembler. In Wind River’s case, the code base fortunately uses MIT assembler
syntax throughout, which many assemblers are compatible with. In-line assembly
in portable C code is by its nature not portable across architectures. Thus, the real
question for in-line assembly is compiler portability.

The current compilers differ significantly about how to include assembly
instructions without interfering with, or suffering interference from, the
compiler’s optimization efforts. In the absence of an ideal solution, in-line
assembly should only be used if it does not interact with the surrounding C code.
This means that acceptable in-line assembly will not interact with C variables or
return values. Code that cannot meet this limitation should be written entirely in
assembly language.

The vxWorks.h header file defines a _WRS_ASM macro to be used to insert in-line
assembly instructions in a C function.

For example (PowerPC):

VOID foo (void)
{
routineA (args);
_WRS_ASM(" eieio; isync;");
routineB (args);
}

Assume that the compiler is not free to optimize or reorder in-line assembly code
with respect to surrounding C code.
48

A

A
Writing Portable C Code
A.1.3 Static Data Alignment

Sometimes it is necessary to align a global static data element or structure on a
specific boundary type. This typically happens with CPU-specific data structures
that need cache boundary alignment.

To handle this situation, another toolchain-specific macro has been introduced.
The macro _WRS_DATA_ALIGN_BYTES(bytes) aligns the following data
element with the byte alignment specified.

For example:

_WRS_DATA_ALIGN_BYTES(16) int myData = 0xFE00235F;

This alignment macro should only be used with global data that has been
initialized. Uninitialized data may not be placed in the data section, and the macro
may not have the desired effect. Uninitialized data can be handled at runtime
using memalign() or other suitable functions.

A.1.4 Runtime Alignment Checking

Checking the Alignment of a Data Item

You may need to know the alignment of a particular data item at runtime. Most
compilers provide an extension for accessing this information, but there is no
recognized standard for it. In the case of Wind River source code, the macro
_WRS_ALIGNOF(x) is used to return the alignment of an item in byte units.

if (WRS_ALIGNOF(itemA) < 4)
{
printf ("Error: itemA is not longword aligned");
}

Verifying Pointer Alignment

Pointers can be deliberately cast to be a pointer to a different type of object with
different alignment requirements. Strict type checking at compile time is beneficial,
but there are situations in which this checking must be performed at runtime. For
this purpose, the macro _WRS_ALIGN_CHECK(ptr, type) is provided. This macro
evaluates to either TRUE or FALSE. TRUE is returned if the pointer ptr is aligned
49

Tornado 2.2
Migration Guide
sufficiently for an item of type type. The test is normally done by examining
low-order bits of the pointer’s value.

void * pVoid;

if (!WRS_ALIGN_CHECK(pVoid, long))
{
printf ("Error: pVoid is not longword aligned");
}

Unaligned Accesses and Copying

You may need to access data that may not be correctly aligned at runtime. It is
recommended in this situation that you copy the data to a structure or other area
that is properly aligned. After the data has been copied, it can be accessed without
the possibility of causing unaligned access exceptions. The macro provided for this
purpose is _WRS_UNALIGNED_COPY(pSrc, pDst, size). While the standard
VxWorks bcopy() function could be used for this purpose, most compilers can do
short copies more efficiently on their own. Using the macro is therefore desirable
for performance reasons.

The following example shows both _WRS_ALIGN_CHECK and
_WRS_UNALIGNED_COPY used together to check an unknown pointer. If it is
sufficiently aligned, the pointer can be cast to some other type and the item can be
accessed directly. If the pointer is not aligned, the unaligned macro is used to copy
the data element to a usable variable location.

struct structA {
long item1;
long item2;
char item3;

} itemA;

void * pVoid;
long aLong;

if (WRS_ALIGN_CHECK(pVoid, (struct structA)))
{
/* Alignment is okay, reference directly */
aLongItem = ((struct structA *)pVoid)->item2;
}

else
{
/* alignment is not okay, use unaligned copy */
_WRS_UNALIGNED_COPY(pVoid,&aLong,sizeof(aLong));
}

50

A

A
Writing Portable C Code
A.1.5 Other Issues

Follow Strict ANSI Compilation

Compilation units should be compiled with strict ANSI protocols in effect. This
requires detailed prototype declarations. For the GNU compiler system, the
compiler flags should include the following:

-Wall -W -Wmissing-declarations -Wstrict-prototypes -Wmissing-prototypes

Remove Compiler Warnings

Portable code must be as free of warnings as possible. Apply the strictest possible
code checking and fix all reported warning situations. Compilers identify
non-portable code issues well when doing error checking.

Avoid Use of Casts

Each and every cast represents a potential error. It is a common practice to use a
cast to fix warnings reported by the compiler. However, each instance must be
examined carefully to insure that a cast is the appropriate action. Often a warning
indicates an actual error in argument passing that must be corrected. Using a cast
overrides the compiler’s ability to detect an actual error in data usage that may
prove to be significant.

Avoid inline Keyword

The C inline keyword is to be avoided until the GNU and Diab compilers can
implement it in a consistent manner. The current ANSI Specification, C99, does call
for an inline keyword. However, at this time, neither compiler fully supports this
specification. Although each accepts the inline keyword, there are subtle but
significant differences in the implementation. An update to this document will be
issued when support for the inline keyword is available.
51

Tornado 2.2
Migration Guide
Avoid alloca() Function

Many compilers support the alloca() function as an extension to the C language.
This normally allocates storage from the stack, as any declared variable would.
Since the storage area is on the stack, this area does not need to be freed, as the
stack is restored upon exiting the function.

While alloca() is widely used in code from other OS programming models, it does
not suit VxWorks very well. While other OSs may support automatic stack
expansion and stack checking, VxWorks does not. In embedded programming,
predictable timing and stack usage can be very important. Code for VxWorks
should definitely avoid the use of the alloca() function. Allocate the storage
directly on the stack, or use malloc() and free() if necessary.

Take Care with void Pointer Arithmetic

It is common to use pointer arithmetic on void pointer data types. Because the size
of a void item should be unspecified, the ANSI standard does not allow this
practice. The GNU compiler, however, did allow it and assumed the data size to be
one byte, the same as a char data type.

For example, the following code fragment is faulty:

{
void * pVoid;

pVoid += 1; /* WRONG */
pVoid++; /* WRONG */
pVoid = pVoid + sizeof(char); /* WRONG */
}

The example above is faulty because ANSI pointer arithmetic is based on the size
of the object pointed to. In the case of a pointer to a void, the size is undefined. For
the first faulty statement in the example above, the only correct implementation is
as follows:

{
void * pVoid;

pVoid = (char *)pVoid + 1; /* RIGHT */

(char *)pVoid++; /* WRONG */
(char *)pVoid += 1 /* WRONG */
}

52

A

A
Writing Portable C Code
The last two statements in the example above are still faulty because ANSI does
not allow casts to be used for an lval type expression.

Use volatile and const Attributes

Proper use of the volatile and const attributes can result in better error detection
by the compiler. The volatile keyword is essential for all data elements whose
value can be changed by an agent outside of the current thread of execution. (For
example, a device performing DMA, another task sharing the data, or an interrupt
routine sharing the data.) Failure to tag a shared data element with volatile can
generate intermittent system faults that are difficult to track.

VxWorks 5.4 and earlier always used the –fvolatile compiler option to force all
pointers to be treated as pointing to a volatile data item. Portable code should not
rely on this mechanism in the future. The compiler can optimize much more
effectively when the correct attributes of all data elements are known.

The const attribute should be used to indicate to the compiler that an argument is
strictly an input argument, and that its value is unchanged by this routine. This
helps the compiler to perform error detection and allows it to better optimize the
code.

Misuse of the register Attribute

The misuse of the register (that is, FAST) attribute is quite common. In Wind
River’s case, analysis of the code base revealed that a number of subroutines have
been coded where the input arguments were all labeled with the FAST attribute, as
well as a number of local routine values. The current compilers are able to do very
good optimization of routines without requiring any use of the FAST attribute in
the code base. Overuse of the attribute can actually prevent the compiler from
performing effective optimization of the code. For the large majority of code now,
the FAST attribute is simply unnecessary. It should only be used sparingly in
situations where there is a large number of local variables, only a few of which are
referenced often.

Avoid vector Name

A Motorola extension to the ANSI C specification makes the word vector a
keyword. Runtime code should not use vector as a variable name. This change in
53

Tornado 2.2
Migration Guide
the compilers supports the Altivec processor and the built-in DSP functions it
provides. Your code should avoid the use of vector as a variable name.

Statement Labels

The ANSI specification requires labels to be associated with statements. It is not
uncommon to place labels at the end of a code block without any associated
statement at all. With strict ANSI checking this is an error. In the code below the
default label is not connected to a statement. To correct this problem, either remove
the label or add a null statement to give the label a proper point of connection.

switch (xxx)
{
case X: statement;
case Y: statement;
default: /* WRONG – no statement here */
}

Summary of Compiler Macros

For each supported C toolchain, the macros described in this section are defined
when vxWorks.h is included in your compilation.

_WRS_PACK_ALIGN(n)

This macro is used to specify the packing and alignment attributes for a structure.
Packing insures that no padding will be inserted and that the minimum field
alignment within the structure is one byte. The user can specify the assumed
alignment for the structure as a whole with the argument x, in bytes. The value x
is expected to be a power of two value (1,2,4,8,…). The size of the structure is then
a multiple of this value. If the overall structure alignment is 1, the compiler
assumes that this structure, and any pointer to this structure, can exist on any
possible alignment. For an architecture that cannot handle misaligned data
transfers, the compiler is forced to generate code to access each byte separately and
then to assemble the data into larger word and longword units.

The macro is placed after the closing brace of the structure field description and
before any variable item declarations, or typedef name declarations.
54

A

A
Writing Portable C Code
Always specify fields with explicit widths, such as UINT8, UINT16, INT32, and so
on. Do not use bitfields in a packed structure.

_WRS_ASM(“X”)

This macro is used to insert assembly code within a C function declaration. The
inserted code must not interact with C variables or try to alter the return value of
the function. The code uses the MIT assembly-language mnemonics and syntax.

It is assumed that the compiler does not optimize or reorder any specified in-line
assembly code. The insertion of a null in-line assembly statement can be used to
prevent the compiler from reordering C code before the statement with C code that
follows the statement.

_WRS_DATA_ALIGN_BYTES(n)

This macro is used in prefix notation to declare an initialized C data element with
a special alignment. The argument n is the alignment in byte units (1, 2, 4, 8, 16, and
so on). This is normally used only with initialized global data elements. Use this
macro with caution: overuse of this macro can result in poor memory utilization.
If large numbers of variables require special alignment, it may be best to declare
them in separate sections directly in assembler. The linker loader could then fit
them together in an optimal fashion.

_WRS_GNU_VAR_MACROS

The GNU compiler system created a means to pass a variable number of
arguments to pre-processor macro functions, and there are a few special instances
in the VxWorks code base that use the GNU-defined syntax. Since then, the ANSI
standards committee has defined an ANSI standard that is different from this
practice. Currently, the GNU compiler 2.96 does not yet support the ANSI
standard, and the Diab compiler supports only the ANSI standard.

Code that does use variadic macros should define them both for GNU and for the
ANSI standard (Diab). Rather than select upon the toolchain or compiler name, a
new macro feature name, _WRS_GNU_VAR_MACROS, has been created. The
GNU toolchain defines this macro; the Diab toolchain does not.

If you want to port your code to another toolchain, you must choose between
supporting the GNU-style syntax or the ANSI standard syntax. For example, the
following code fragment demonstrates the use of an #ifdef statement to make this
choice between GNU and ANSI:
55

Tornado 2.2
Migration Guide
#ifdef _WRS_GNU_VAR_MACROS /* GNU Syntax */
#define MY_MACRO(x, y, args...) printf (x, y, args)

#else /* ANSI Syntax */

#define MY_MACRO(x, y, ...) printf (x, y, __VA_ARG__)

#endif

In the future, when the GNU toolchain does support the ANSI standard, the
#ifdefs based on this macro can be removed from the code base.

_WRS_ALIGNOF(item)

This macro returns the alignment of the specified item, or item type, in byte units.
Most structures have alignment values of 4, which is the normal alignment of a
longword data value. Data items or types with greater alignment values return an
appropriate alignment value, which is expected to be a power of two (1, 2, 4, 8, 16,
and so on).

_WRS_ALIGN_CHECK(ptr, type)

This macro returns a boolean value, either TRUE or FALSE. A return of TRUE
indicates that the pointer value is sufficiently aligned to be a valid pointer to the
data item or type. The expected implementation is to examine the low-order bits
of the pointer value to see whether it is a proper modulo of the alignment for the
given type.

_WRS_UNALIGNED_COPY(pSrc, pDst, size)

This macro is a compiler-optimized version of the standard Wind River bcopy
operation. It moves a data block from the source location to the destination
location. This macro allows the compiler to optimize the copy operation based on
the data types of the pointers and the size of the block. This macro is designed to
be used in high-performance situations; the size of the block is expected to be
small. Misuse of the macro for other situations should be avoided.
56

A

A
Writing Portable C Code
A.2 Tool Implementation

This section discusses how the current VxWorks runtime code is organized to
facilitate the addition and maintenance of new compiler tools.

A.2.1 New Tool Macros File

The definition of the new tool-based macros must be placed into the compilation
units. This has been achieved by modifying the target/h/vxWorks.h file to include
a new toolMacros.h file. This file defines the new macros and any other tool-based
options that apply globally to runtime compilations. All runtime-compiled files
must include vxWorks.h so that they will also include the new tool macro
definitions.

A.2.2 New Tool Directories

Each toolchain provides the toolMacros.h file in a separate directory. Changes
have been made in vxWorks.h to find the toolMacros.h file based on the
preprocessor variable TOOL_FAMILY. For backward compatibility, if
TOOL_FAMILY is not explicitly defined, its value is generated from the value of the
build macro TOOL.

This new toolchain-specific directory structure is intended to make it easy for all
tool-related files to be located in a common directory separate from other tool
system files. It also makes it unnecessary to modify any common files in the system
just to add a new tool system. Add the new tool directory target/h/tool/newTool and
then perform a system build; this triggers the system to reanalyze all toolchains
and rebuild the toolchain database.

A.2.3 BSP Makefile Changes

All VxWorks 5.5 (Tornado 2.2) BSP makefiles require modification to replace the
old make tool include file path with the new tool-based path. For this release, all
changes are made to the platform release files.

Comment out the following lines from each BSP makefile by inserting a # in front
of them. The remaining include lines pull in all the needed make files.
57

Tornado 2.2
Migration Guide
#include $(TGT_DIR)/h/make/make.$(CPU)$(TOOL)
#include $(TGT_DIR)/h/make/defs.$(WIND_HOST_TYPE)
#include $(TGT_DIR)/h/make/rules.$(WIND_HOST_TYPE)

A.2.4 Macro Definitions for GNU and Diab

The current implementation of the required macros for the GNU toolchain is as
follows (this assumes GCC 2.96):

#define _WRS_PACK_ALIGN(x) __attribute__((packed,aligned(x)))
#define _WRS_ASM(x) __asm__ volatile (x)
#define _WRS_DATA_ALIGN_BYTES(x) __attribute__((aligned(x)))
#define _WRS_GNU_VAR_MACROS
#define _WRS_ALIGNOF(x) __alignof__(x)
#define _WRS_ALIGN_CHECK(ptr,type) \

(((int)(ptr) & (WRS_ALIGNOF(type) – 1)) == 0 ? TRUE : FALSE)
#define WRS_UNALIGNED_COPY(pSrc,pDst,size) \

(__builtin_memcpy((pDst, (void *)(pSrc), size))

The current implementation of the required macros for the Diab toolchain is as
follows (this assumes Diab 5.0):

#define _WRS_PACK_ALIGN(x) __attribute__((packed,aligned(x)))
#define _WRS_ASM(x) __asm volatile (x)
#define _WRS_DATA_ALIGN_BYTES(x) __attribute__((aligned(x)))
#undef _WRS_GNU_VAR_MACROS
#define _WRS_ALIGNOF(x) sizeof(x,1)
#define _WRS_ALIGN_CHECK(ptr,type) \

(((int)(ptr) & (WRS_ALIGNOF(type) – 1)) == 0 ? TRUE : FALSE)
#define _WRS_UNALIGNED_COPY(pSrc,pDst,size) \

(memcpy((pDst), (pSrc), size))
58

	Tornado Migration Guide
	Contents
	1 Introduction
	Migrating to Tornado 2.2 and VxWorks 5.5
	Migration Scenarios
	Scope of This Document

	2 Binary Compatibility
	2.1� Introduction
	2.2� Object Module Format
	2.3� Changes in Object Archive Layout
	2.3.1� Archive Layout Prior to VxWorks 5.5
	2.3.2� VxWorks 5.5 Object Archive Layout
	2.3.3� Link Precedence

	3 VxWorks API Changes
	3.1� Introduction
	Types of API Changes

	3.2� Modified Routines
	3.2.1� Must-Change Routines
	3.2.2� Recommended-Change Routines
	3.2.3� Minor-Change Routines

	3.3� Retired Libraries
	3.4� Other API Changes

	4 Compiler Migration
	4.1� GNU Migration
	4.2� Diab 5.0a Migration
	Migrating C Code to Diab 5.0a
	Backward Compatibility
	Diab Optimization Technology
	First Impressions
	4.2.1� New Features
	4.2.2� Changes from Previous Versions
	4.2.3� New Compiler Options
	4.2.4� Deprecated Keywords, Options, and Directives
	Deprecated Keywords
	Deprecated Options
	Deprecated Directives

	4.3� Differences Between GNU and Diab Compilers

	5 Migrating Projects
	5.1� Introduction
	5.2� Using the Project Migration Tool
	Synopsis
	Parameters
	Examples

	6 Migrating BSPs
	6.1� Architecture-Independent Changes to BSPs
	BSP Makefile Changes and the bspCnvtT2_2 Tool
	Hex Utilities and objcopy
	New Default Value of WDB_COMM_TYPE
	Changes in the Shared Memory Subsystem
	Changes in Other Run-time Facilities

	6.2� Architecture-Dependent BSP Issues
	6.2.1� Migration Changes Common to All Architectures
	6.2.2� 68K/CPU32
	6.2.3� ARM
	6.2.4� ColdFire
	6.2.5� MIPS
	6.2.6� Pentium
	6.2.7� PowerPC
	6.2.8� XScale/StrongARM
	6.2.9� SuperH

	A Writing Portable C Code
	Background
	A.1� Portable C Code
	A.1.1� Data Structures
	Specify Field Widths
	Avoid Bit Fields

	A.1.2� In-Line Assembly
	A.1.3� Static Data Alignment
	A.1.4� Runtime Alignment Checking
	Checking the Alignment of a Data Item
	Verifying Pointer Alignment
	Unaligned Accesses and Copying

	A.1.5� Other Issues
	Follow Strict ANSI Compilation
	Remove Compiler Warnings
	Avoid Use of Casts
	Avoid inline Keyword
	Avoid alloca(�) Function
	Take Care with void Pointer Arithmetic
	Use volatile and const Attributes
	Misuse of the register Attribute
	Avoid vector Name
	Statement Labels
	Summary of Compiler Macros

	A.2� Tool Implementation
	A.2.1� New Tool Macros File
	A.2.2� New Tool Directories
	A.2.3� BSP Makefile Changes
	A.2.4� Macro Definitions for GNU and Diab

