Communications Options User's Guide # **Communications Options** User's Guide 916-115_5 Rev. A February 2009 [no content intended for this page - proceed to next page] # Chapter 1. Modbus Communications 1.1 Introduction | 1.1 | Introdu | uction | 1 | |------------------|-----------|---|----| | 1.2 | Installi | ng the MODBUS Option Card | 2 | | 1.3 | Setting | Up MODBUS Communications | 2 | | 1.4 | MODB | JS Register Map | 4 | | | 1.4.1 | Notes: | 8 | | 1.5 | Swapp | ing the Floating Point | 10 | | Cha _l | oter 2. N | 1odbus Over Ethernet Communications 1 | | | 2.1 | Introdu | uction | 15 | | 2.2 | Setup . | | 16 | | | 2.2.1 | Finding the Assigned IP Address | 16 | | | 2.2.2 | Changing the Password | 17 | | | 2.2.3 | Changing IP Parameters | 18 | | Cha | oter 3. N | 1odbus Over Ethernet Communications 2 | | | 3.1 | Introdu | uction | 21 | | 3.2 | Setup. | | 22 | | | 3.2.1 | Downloading the Digi Device Discovery Program | | | | 3.2.2 | Module LED Behaviors | | | | 3.2.3 | Default Parameters | 22 | | | 3.2.4 | Finding the Assigned IP Address | 23 | | | 3.2.5 | Changing IP Parameters | | | | 3.2.6 | Changing Modbus/TCP Network Parameters | | | | 3.2.7 | Changing User's Information | | | Cha _l | oter 4. E | thernet Only Communications | | | 4.1 | Introdu | ıction | 29 | | 4.2 | | | | | | • | Downloading the Digi Device Discovery Program | | | | 4.2.2 | Module LED Behaviors | | | | 4.2.3 | Default Parameters | | | | 4.2.4 | Finding the Assigned IP Address | | | | 4.2.5 | Changing IP Parameters | | | | 4.2.6 | Changing User's Information | | # Chapter 5. Modbus Over WI-FI Communications | 5.1 | Introduction | | | | | |-----|------------------|---|----|--|--| | 5.2 | WI-FI Components | | | | | | 5.3 | Setup. | | 37 | | | | | 5.3.1 | Downloading the Digi Device Discovery Program | 37 | | | | | 5.3.2 | Module LED Behaviors | 37 | | | | | 5.3.3 | Default Parameters | 37 | | | | | 5.3.4 | Finding the Assigned IP Address | 38 | | | | | 5.3.5 | Changing IP Parameters | 39 | | | | | 5.3.6 | Changing Modbus/TCP Network Parameters | 40 | | | | | 5.3.7 | Changing User's Information | 41 | | | | 5.4 | Tips fo | r Improving Wireless Data Communications | 43 | | | | Cha | oter 6. V | VI-FI Only Communications | | | | | 6.1 | Introdu | uction | 45 | | | | 6.2 | WI-FI | Components | 45 | | | | 6.3 | Setup. | · · · · · · · · · · · · · · · · · · · | 47 | | | | | 6.3.1 | Downloading the Digi Device Discovery Program | 47 | | | | | 6.3.2 | Module LED Behaviors | 47 | | | | | 6.3.3 | Default Parameters | 47 | | | | | 6.3.4 | Finding the Assigned IP Address | 48 | | | | | 6.3.5 | Changing IP Parameters | 49 | | | | | 6.3.6 | Changing User's Information | 50 | | | | 6.4 | Tips fo | r Improving Wireless Data Communications | 52 | | | | Cha | oter 7. F | oundation Fieldbus Communications | | | | | 7.1 | Option | al Measurements | 53 | | | | 7.2 | • | uration Utility Setup | | | | | 7.3 | Selecti | ng the Desired Measurements | 54 | | | | 7.4 | 5 | | | | | | 7.5 | Resetti | ng Instrument Totalizers | 57 | | | | 7.6 | Function | on Block Application | 58 | | | | Cha | pter 8. H | HART Communications | | | | | 8.1 | Introdu | ıction | 59 | | | | 8.2 | | | | | | | 8.3 | | | | | | | 8.4 | | he HART Interface | | | | | | 8.4.1 | Unit Types | | | | | | 8.4.2 | HART Functions | 62 | | | | 8.5 | List of | Programmable Variables | 62 | | | # Information Paragraphs - Note paragraphs provide information that provides a deeper understanding of the situation, but is not essential to the proper completion of the instructions. - **Important** paragraphs provide information that emphasizes instructions that are essential to proper setup of the equipment. Failure to follow these instructions carefully may cause unreliable performance. - Caution! paragraphs provide information that alerts the operator to a hazardous situation that can cause damage to property or equipment. - Warning! paragraphs provide information that alerts the operator to a hazardous situation that can cause injury to personnel. Cautionary information is also included, when applicable. # Safety Issues WARNING! It is the responsibility of the user to make sure all local, county, state and national codes, regulations, rules and laws related to safety and safe operating conditions are met for each installation. # **Auxiliary Equipment** Local Safety Standards The user must make sure that he operates all auxiliary equipment in accordance with local codes, standards, regulations, or laws applicable to safety. # **Working Area** WARNING! Auxiliary equipment may have both manual and automatic modes of operation. As equipment can move suddenly and without warning, do not enter the work cell of this equipment during automatic operation, and do not enter the work envelope of this equipment during manual operation. If you do, serious injury can result. WARNING! Make sure that power to the auxiliary equipment is turned OFF and locked out before you perform maintenance procedures on the equipment. # Qualification of Personnel Make sure that all personnel have manufacturer-approved training applicable to the auxiliary equipment. # Personal Safety Equipment Make sure that operators and maintenance personnel have all safety equipment applicable to the auxiliary equipment. Examples include safety glasses, protective headgear, safety shoes, etc. # **Unauthorized Operation** Make sure that unauthorized personnel cannot gain access to the operation of the equipment. # **Chapter 1. Modbus Communications** # 1.1 Introduction Your flowmeter hardware and software (GC3E.MBS) have been modified to provide improved MODBUS communications. The MODBUS option card provides an RS485 interface with a host system, while the main circuit board continues to support RS232 communications for use with a PC running PanaViewTM software. **Note:** PanaViewTM does not support Modbus. To properly set up the instrument, use this addendum along with the standard flowmeter *User's Manual*. This document shows how to install the MODBUS option card and how to program the modified flowmeter to access this special feature. When equipped with the optional MODBUS output card, the flow transmitter can send flow data and diagnostic information to a flow computer (or SCADA) serially, using a Gould-type RTU protocol. In this case, only the MODBUS function command, 3 (read multiple registers), 6 (write multiple registers) is valid. The format for the data exchange is as follows: - The send command (initiated by the host flow computer or controller) comes in the form: [time delimiter]<Addr><3><First Register MSB></First Register LSB><Register Count MSB></Register Count LSB><CRC Low><CRC High>[time delimiter] - The response (initiated by the host flow computer or controller) comes in the form: [time delimiter]<Addr><3><Byte count><Data......> </RC Low><CRC High>[time delimiter] The format for the returned data types is as follows: - Integer (16 bit Integer) <MSB><LSB> 1 Register 16 bit integer - Integer (32 bit IntegerI) <MSB><LSB><LSB><LSB></LSB> 2 Registers 32 bit long integer - Floating Point (FP) <EXP><MAN><MAN><MAN> 2 Registers 32 bit IEEE floating point number # 1.2 Installing the MODBUS Option Card **IMPORTANT:** The installation information presented here supersedes the information in the standard flowmeter User's Manual. The modified flowmeter uses the RS485 standard for MODBUS communications. This standard allows up to 32 nodes (drivers and receivers) on one multidrop network, at distances up to 4,000 ft (1,200 m). To connect the instrument(s) to the host system, GE Sensing recommends using a 24-gauge (24 AWG) twisted-pair cable with a characteristic impedance of 120 ohms and a 120-ohm termination at each end of the communications line. The MODBUS option card must be plugged into either slot 5 or slot 6 of the flowmeter. On the option card, pin 1 is the [TMT-] inverting or negative connection and pin 2 is the [TMT+] non-inverting or positive connection. To link the flowmeter to the control system, connect the two wires of the twisted-pair cable from these terminals to the corresponding terminals at the control system. **Note:** If two MODBUS option cards are installed in the flowmeter, only the card in slot 5 is activated. # 1.3 Setting Up MODBUS Communications To set up MODBUS communications, enter the *User Program* as described in your *Programming Manual*. Then, refer to the *menu map* in Figure 1 on page 9 and complete the following steps: **Note:** Any time the following settings are changed, the flowmeter must be rebooted to load the new settings into the option card. Press the $[\rightarrow]$ key and then the [F3] key to select the *COMM* submenu. (On a two-channel flowmeter, pressing the $[\rightarrow]$ key and the [F3] key accesses the *GLOBL* menu. Then press [F4] to select the *COMM* submenu.) **IMPORTANT:** The serial port settings of the flowmeter <u>must</u> match those of the MODBUS control system. [This baud rate applies only to the RS232 serial port.] Press the [→] until the desired RS232 baud rate appears on the option bar and press the appropriate [Fx] function key to select it. The available RS232 baud rates are 300, 600, 1200, 2400, 4800, 9600, and 19200. # 1.3 Setting Up MODBUS Communications (cont.) [The UART bits setting applies only to the RS232 serial port.] Press the [→] until the desired RS232 UART bits setting appears on the option bar and then press the appropriate [Fx] function key to select it. See Table 1 below for a description of the options available at the above prompt. **Table 1: UART Bits Options** | 1 days = 1 d 1 d 1 d 2 d 4 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 | | | | | |--|-------------|-------------|--------|--| | Option Bar | # Data Bits | # Stop Bits | Parity | | | 8,no | 8 | 0 | None | | | 8,odd | 8 | 0 | Odd | | | 8even | 8 | 0 | Even
 | | 7,odd | 7 | 1 | Odd | | | 7even | 7 | 1 | Even | | COMM PROGRAM UART bits current setting appears here Network I.D.? current number appears here [The Network ID number is used by the IDM software only.] Enter a Network ID number between 1 and 254 and then press [ENT]. The default ID number is 1. **Note:** If more than one meter is connected to a network, each meter must have a unique Network I.D. Press the appropriate [Fx] function key to select [2400], [4800], or [9600] for the MODBUS baud rate. COMM PROGRAM MODBUS BAUD RATE current value appears here MODBUS PARITY current setting appears here none odd even Press the appropriate [Fx] function key to select [NONE], [ODD], or [EVEN] for the MODBUS parity setting. # 1.3 Setting Up MODBUS Communications (cont.) Press the appropriate [Fx] function key to select [1] or [2] for the MODBUS stop bits setting. Enter a MODBUS Address number between 1 and 247. Then, press [ENT]. Press [EXIT] until you return to RUN mode and the screen resumes the display of data measurements. Then reboot the meter to load the new settings into memory. # 1.4 MODBUS Register Map To request specific parameters from the flowmeter using MODBUS, the control system must enter the appropriate register number. Only registers 1 through 90 are available for MODBUS communications, while registers 508 through 512 are used by the flowmeter to store the MODBUS parameters. For details, see Table 2 on page 5 for a 1-Channel meter or Table 3 on page 6 for a 2-Channel meter. Refer to **Notes** on page 6 for information about the numerical references. **Note:** If you request Ch2 or AVE data from a 1-Channel meter, the values will all be zero. Table 2: MODBUS Registers for a 1-Channel Flowmeter | MODBUS | DPR | lable 1.1100000 Registers for a 1 | Scaling | | |----------|----------|-------------------------------------|---------------|-------------------------| | Reg # | Hex Addr | Description | (dec. places) | Size in Bytes | | 1 | 0 | ¹ "Clear Ch1 Totalizers" | | 2 (16 bit signed int) | | 2 | 2 | Not Used | | 2 (16 bit signed int) | | 3, 4** | 4 | Velocity | 2 | 4 (32 bit Long Integer) | | 5, 6* | 8 | ² Act Volumetric | #Q DIGITS | 4 (IEEE 32 bit Float) | | 7, 8* | С | ² Std Volumetric | #Q DIGITS | 4 (IEEE 32 bit Float) | | 9, 10** | 10 | ³ Fwd Totals | #T DIGITS | 4 (32 bit Long Integer) | | 11, 12** | 14 | ³ Rev Totals | #T DIGITS | 4 (32 bit Long Integer) | | 13 | 18 | #Tot Digits | 0 | 2 | | 14, 15* | 1A | ² Mass Flow | #M DIGITS | 4 (IEEE 32 bit Float) | | 16, 17** | 1E | ⁴ Fwd Mass Totals | #MT DIGITS | 4 (32 bit Long Integer) | | 18, 19** | 22 | ⁴ Rev Mass Totals | #MT DIGITS | 4 (32 bit Long Integer) | | 20 | 26 | #MT DIGITS (Mass Tot Digits) | 0 | 2 | | 21, 22** | 28 | Timer | 2 | 4 (32 bit Long Integer) | | 23 | 2C | Error Code | 0 | 2 | | 24, 25** | 2E | Sound Speed | 3 | 4 (32 bit Long Integer) | | 26, 27** | 32 | Density | 4 | 4 (32 bit Long Integer) | | 28, 29** | 36 | Signal Strength Upstream | 1 | 4 (32 bit Long Integer) | | 30, 31** | 3A | Signal Strength Downstream | 1 | 4 (32 bit Long Integer) | | 32, 33** | 3E | Temperature | 2 | 4 (32 bit Long Integer) | | 34, 35** | 42 | Pressure | 3 | 4 (32 bit Long Integer) | | 36, 37* | 46 | Signal Quality Up | | 4 (IEEE 32 bit Float) | | 38, 39* | 4A | Signal Quality Down | | 4 (IEEE 32 bit Float) | | 40, 41* | 4E | Amp Discriminator Up | | 4 (IEEE 32 bit Float) | | 42, 43* | 52 | Amp Discriminator Down | | 4 (IEEE 32 bit Float) | | 44, 45* | 56 | SNR Up | | 4 (IEEE 32 bit Float) | | 46, 47* | 5A | SNR Down | | 4 (IEEE 32 bit Float) | | 508 | 3F6 | ⁶ MODBUS baud rate | 0 | 2 | | 509 | 3F8 | ⁷ MODBUS parity | 0 | 2 | | 510 | 3FA | ⁸ MODBUS stop bits | 0 | 2 | | 511 | 3FC | MODBUS meter addr | 0 | 2 | | 512 | 3FE | RESERVED | | | ^{*}The complete floating point value is constructed by combining readings from the first register with a second register. An eight Hex digits number will represent the IEEE-754 hexadecimal floating point value. 32-bit Hexadecimal Representation To Decimal Floating-Point conversion can be performed if needed. Example: Reg 14 reading is 44d7, Reg 15 reading is 4000, Mass Flow is 44d74000, which corresponds to 1722. Example: Reg 24 is 0019, Reg 25 is ED30, Hexadecimal Sound Speed is 0019ED30, which is converted to 1699120 decimal. Taking into account that Sound Speed has 3 decimal places (from the map), it corresponds to a value of 1699.120. ^{**}The complete Long integer value is constructed by combining readings from the first register with the second register. Eight Hex digits will represent the Long interger value. Table 3: MODBUS Registers for a 2-Channel Flowmeter | MODBUS | DPR | Table 3: MODBUS Registers for a 2- | Scaling | | |----------|----------|-------------------------------------|---------------|-------------------------| | Reg # | Hex Addr | Description | (dec. places) | Size in Bytes | | 1 | 0 | ¹ "Clear Ch1 Totalizers" | | 2 (16 bit signed int) | | 2 | 2 | ¹ "Clear Ch2 Totalizers" | | 2 (16 bit signed int) | | 3, 4** | 4 | Ch1 Velocity | 2 | 4 (32 bit Long Integer) | | 5, 6* | 8 | ² Ch1 Act Volumetric | #Q DIGITS | 4 (IEEE 32 bit Float) | | 7, 8* | С | ² Ch1 Std Volumetric | #Q DIGITS | 4 (IEEE 32 bit Float) | | 9, 10** | 10 | ³ Ch1 Fwd Totals | #T DIGITS | 4 (32 bit Long Integer) | | 11, 12** | 14 | ³ Ch1 Rev Totals | #T DIGITS | 4 (32 bit Long Integer) | | 13 | 18 | Ch1 #Tot Digits | 0 | 2 | | 14, 15* | 1A | ² Ch1 Mass Flow | #M DIGITS | 4 (IEEE 32 bit Float) | | 16, 17** | 1E | ⁴ Ch1 Fwd Mass Totals | #MT DIGITS | 4 (32 bit Long Integer) | | 18, 19** | 22 | ⁴ Ch1 Rev Mass Totals | #MT DIGITS | 4 (32 bit Long Integer) | | 20 | 26 | Ch1 #MT DIGITS (Mass Tot Digits) | 0 | 2 | | 21, 22** | 28 | Ch1 Timer | 2 | 4 (32 bit Long Integer) | | 23 | 2C | Ch1 Error Code | 0 | 2 | | 24, 25** | 2E | Ch1 Sound Speed | 3 | 4 (32 bit Long Integer) | | 26, 27** | 32 | Ch1 Density | 4 | 4 (32 bit Long Integer) | | 28, 29** | 36 | Ch1 Sig Strength Upstream | 1 | 4 (32 bit Long Integer) | | 30, 31** | 3A | Ch1 Sig Strength Downstream | 1 | 4 (32 bit Long Integer) | | 32, 33** | 3E | Ch1 Temperature | 2 | 4 (32 bit Long Integer) | | 34, 35** | 42 | Ch1 Pressure | 3 | 4 (32 bit Long Integer) | | 36, 37** | 46 | Ch2 Velocity | 2 | 4 (32 bit Long Integer) | | 38, 39* | 4A | Ch2 Act Volumetric | #Q DIGITS | 4 (IEEE 32 bit Float) | | 40, 41* | 4E | Ch2 Std Volumetric | #Q DIGITS | 4 (IEEE 32 bit Float) | | 42, 43** | 52 | Ch2 Fwd Totals | #T DIGITS | 4 (32 bit Long Integer) | | 44, 45** | 56 | Ch2 Rev Totals | #T DIGITS | 4 (32 bit Long Integer) | | 46 | 5A | Ch2 #Tot Digits | 0 | 2 | | 47, 48* | 5C | Ch2 Mass Flow | #M DIGITS | 4 (IEEE 32 bit Float) | | 49, 50** | 60 | Ch2 Fwd Mass Totals | #MT DIGITS | 4 (32 bit Long Integer) | | 51, 52** | 64 | Ch2 Rev Mass Totals | #MT DIGITS | 4 (32 bit Long Integer) | | 53 | 68 | Ch2 #Mass Tot Digits | 0 | 2 | | 54, 55** | 6A | Ch2 Timer | 2 | 4 (32 bit Long Integer) | | 56 | 6E | Ch2 Error Code | 0 | 2 | | 57, 58** | 70 | Ch2 Sound Speed | 3 | 4 (32 bit Long Integer) | | 59, 60** | 74 | Ch2 Density | 4 | 4 (32 bit Long Integer) | | 61, 62** | 78 | Ch2 Sig Strength Upstream | 1 | 4 (32 bit Long Integer) | | 63, 64** | 7C | Ch2 Sig Strength Downstream | 1 | 4 (32 bit Long Integer) | | 65, 66** | 80 | Ch2 Temperature | 2 | 4 (32 bit Long Integer) | | 67, 68** | 84 | Ch2 Pressure | 3 | 4 (32 bit Long Integer) | | • | <u> </u> | <u>l</u> | | ` ' ' ' ' ' | Table 3: MODBUS Registers for a 2-Channel Flowmeter (cont.) | MODBUS | DPR | lole 5.1100003 Registers for a 2 em | Scaling | | |-----------|----------|-------------------------------------|---------------|-------------------------| | Reg # | Hex Addr | Description | (dec. places) | Size in Bytes | | 69, 70** | 88 | Avg Velocity | 2 | 4 (32 bit Long Integer) | | 71, 72* | 8C | Avg Act Volumetric | #Q DIGITS | 4 (IEEE 32 bit Float) | | 73, 74* | 90 | Avg Std Volumetric | #Q DIGITS | 4 (IEEE 32 bit Float) | | 75, 76** | 94 | Avg Fwd Totals | #T DIGITS | 4 (32 bit Long Integer) | | 77, 78** | 98 | Avg Rev Totals | #T DIGITS | 4 (32 bit Long Integer) | | 79 | 9C | Avg #Tot Digits | 0 | 2 | | 80, 81* | 9E | Avg Mass Flow | #M DIGITS | 4 (IEEE 32 bit Float) | | 82, 83** | A2 | Avg Fwd Mass Totals | #MT DIGITS | 4 (32 bit Long Integer) | | 84, 85** | A6 | Avg Rev Mass Totals | #MT DIGITS | 4 (32 bit Long Integer) | | 86 | AA | Avg #Mass Tot Digits | 0 | 2 | | 87, 88** | AC | Avg Timer | 2 | 4 (32 bit Long Integer) | | 89 | В0 | ⁵ Avg Error Code | 0 | 2 | | 90, 91** | B2 | Avg Sound Speed | 3 | 4 (32 bit Long Integer) | | 92, 93* | В6 | CH1 Signal Quality Up | | 4 (IEEE 32 bit Float) | | 94, 95* | BA | CH1 Signal Quality Down | | 4 (IEEE 32 bit Float) | | 96, 97* | BE | CH1 Amp Discriminator Up | | 4 (IEEE 32 bit Float) | | 98, 98* | C2 | CH1 Amp Discriminator Down | | 4 (IEEE 32 bit Float) | | 100, 101* | C6 | CH1 SNR Up | | 4 (IEEE 32 bit Float) | | 102, 103* | CA | CH1 SNR Down | | 4 (IEEE 32 bit Float) | | 104, 105* | CE | CH2 Signal Quality Up | | 4 (IEEE 32 bit Float) | | 106, 107* | D2 | CH2 Signal Quality Down | | 4 (IEEE 32 bit Float) | | 108, 109* | D6 | CH2 Amp Discriminator Up | | 4 (IEEE 32 bit Float) | | 110, 111* | DA | CH2 Amp Discriminator Down | | 4 (IEEE 32 bit Float) | | 112, 113* | DE | CH2 SNR Up | | 4 (IEEE 32 bit Float) | | 114, 115* | E2 | CH2 SNR Down | | 4 (IEEE 32 bit Float) | | 508 | 3F6 | ⁶ MODBUS baud rate | 0 | 2 | | 509 | 3F8 | ⁷ MODBUS parity | 0 | 2 | | 510 | 3FA | ⁸ MODBUS stop bits | 0 | 2 | | 511 | 3FC | MODBUS meter addr | 0 | 2 | | 512 | 3FE | RESERVED | | | ^{*}The complete floating point value is constructed by combining readings from the first register with a second register. An eight Hex digits number will represent the IEEE-754 hexadecimal floating point value. 32-bit Hexadecimal Representation To Decimal Floating-Point conversion can be performed if needed. Example: Reg 14 reading is 44d7, Reg 15 reading is 4000, Mass Flow is 44d74000, which corresponds to 1722. Example: Reg 24 is 0019, Reg 25 is
ED30, Hexadecimal Sound Speed is 0019ED30, which is converted to 1699120 decimal. Taking into account that Sound Speed has 3 decimal places (from the map), it corresponds to a value of 1699.120. ^{**}The complete Long integer value is constructed by combining readings from the first register with the second register. Eight Hex digits will represent the Long interger value. ### 1.4.1 Notes: ### 1. Clear Totalizers: flag from the 8051 to clear either the Channel 1 or Channel 2 totalizers. - 2. Values in these registers are floating point numbers and require no scaling. The number of decimal digits is set in meter programming. - 3. Require scaling by value in register 13. - 4. Require scaling by value in register 20. - 5. AVG Error Code: 0=Both Ch1 and Ch2 are in error. 1=Ch1 only is in error 2=Ch2 only is in error 3=Both channels are error free 6. MODBUS baud rate: 5 = 2400, 6 = 4800, 7 = 9600 7. MODBUS parity: 0 = none, 1 = odd, 2 = even 8. MODBUS stop bits: 1 = 1 stop bit, 2 = 2 stop bits **IMPORTANT:** If the unit is reading over range, an error condition will occur and output 20mA (for a 0-20mA range) or 21.10mA (for a 4-20mA range). Figure 1: MODBUS Menu Map # 1.5 Swapping the Floating Point To represent a correct floating point value, you may need to swap the reading from two registers. Some applications allow you to swap the registers. Some do not. When using the Modscan32 utility in order to monitor register values, you need to select **03: HOLDING REGISTER** (see Figure 2 below), select the corresponding communications parameters in the menu item **Connection-Connect**, and hit **OK** to make a connection. Figure 2: Selecting the Holding Register # 1.5 Swapping the Floating Point (cont.) To see all the register readings in Hexadecimal form, select **Menu-Setup-Display Options-Hex** (see Figure 3 below). Figure 3: Finding the Hex Values # 1.5 Swapping Floating Point (cont.) To monitor the floating point variable, enter the first register of the variable in the Address (see Figure 6 below), and set the Length to "2". Figure 4: The Mass Flow Register # 1.5 Swapping the Floating Point (cont.) Then select **Menu-Setup-Display Options-Swapped FP** (see Figure 5 below). Modscan32 will swap the register and display the floating point variable correctly. **Figure 5: Swapped Floating Point** # 1.5 Swapping the Floating Point (cont.) Web utilities can also be used to convert hexadecimal register readings into floating point values (see Figure 6 below). **Note:** How to construct an 8-digit hexadecimal value from two registers is explained at the bottom of the Modbus Register tables, Table 2 on page 5 for 1-Channel flowmeters and Table 3 on page 6 for 2-Channel flowmeters. # http://babbage.cs.qc.edu/IEEE-754/32bit.html IEEE-754 Floating-Point Conversion From 32-bit Hexadecimal Representation To Decimal Floating-Point Along with the Equivalent 64-bit Hexadecimal and Binary Patterns Enter the 32-bit hexadecimal representation of a floating-point number here, then click the Compute button. Hexadecimal Representation: 3e23d70a Clear Compute Results: Decimal Value Entered: 0.1599999964237213 Figure 6: Converting Hexadecimal Register Readings into Floating Point Values # Chapter 2. Modbus Over Ethernet Communications 1 **IMPORTANT:** These setup instructions apply only when using option card 703-1476-05, rev. A, or option card 703-1477-03, rev. C and lower. # 2.1 Introduction This document provides instructions for setting up a flowmeter equipped with *Modbus Over Ethernet* (Modbus/TCP) communications. To apply these procedures, the flowmeter must have the option card installed. The option card, based on the features that were ordered, will have many components. (See the examples in Figure 7 and Figure 8 below). Figure 7: DF/GX Ethernet Option Card Figure 8: XMT Ethernet Option Card **Note:** To install an option card, consult the user's manual(s) which apply to your instrument. # 2.2 Setup The default IP address in setting up the Ethernet option card is Dynamic (DHCP). If it has to be changed to a static IP address, the instrument must first be connected to the DHCP network. **Note:** *The following are setup procedure examples.* # 2.2.1 Finding the Assigned IP Address # **Example:** Find the IP address of a module with Media Access Control (MAC) address 00409d25da0b. - 1. Open a DOS command prompt. Go to the directory containing the executable *ruiping.exe*. - 2. Type ruiping -e and hit Enter. **Note:** Once the module containing the MAC address has been found, it will be displayed along with the assigned IP address (see Figure 9 below). In this example the assigned address is 3.112.161.79. **3.** Stop the process by hitting the **Esc** key. Figure 9: Finding the Assigned IP Address # 2.2.2 Changing the Password ## **Example:** Change the Password for the module with IP address 3.112.161.79 (see Figure 10 below). - **1.** Open a DOS command prompt. - 2. Type telnet 3.112.161.79 10000 and hit Enter. - **3.** Enter the current Login and Password. The factory defaults are *root* and *Netsilicon*. **Note:** The Login and Password are case sensitive. - **4.** Enter Selection number 2. - **5.** Enter the current Password and the new Password when prompted. Figure 10: Changing the Password # 2.2.3 Changing IP Parameters ### **Example:** Change the DHCP-assigned IP address to static address 192.168.2.225 and disable DHCP for the module with IP-assigned address 3.112.161.79 (see Figure 11 on page 19 and Figure 12 on page 20). - 1. Open a DOS command prompt. - 2. Type telnet 3.112.161.79 10000 and hit Enter. - **3.** Enter the current Login and Password. **Note:** The Login and Password are case sensitive. - **4.** From the Main Menu select 1. IP Parameters. - **5.** From the IP Parameters menu select 1. IP Address. - **6.** Enter the new static IP address 192.168.2.225. **Note:** If necessary, change the Subnet Main and a default Gateway by entering 2 and 3 in the IP parameters menu. - 7. Select 4 to return to the Main Menu. - **8.** From the Main Menu select 3. *Enable DHCP Client*. - **9.** Enter 2 to disable the DHCP. Once the update has taken place, the new IP address will be shown. - 10. Select 4. Main Menu and Quit. - **11.** Cycle the power on the unit. # 2.2.3 Changing IP Parameters (cont.) ``` Welcome to Net+Works Configuration Utility 1.0 Enable DHCP Server: N99999999 login: root Password: ************************** Hello root Main Menu: 1.) IP Parameters 2.) Change Password 3.) Enable DHCP Client 4.) Quit Enter Selection: 1 IP Parameters: 1.) IP Address 192.168.2.207 2.) Subnet Mask 255.255.255.0 3.) Default Gateway 4.) Main Menu Enter Selection: 1 Enter IP address: 192.168.2.225 New IP address: 192.168.2.225 New IP address: 192.168.2.225 New IP address 1.) ``` Figure 11: Changing IP Parameters - 1 # 2.2.3 Changing IP Parameters (cont.) ``` Enter IP address: 192.168.2.225 New IP Parameters: 1.) IP Address 192.168.2.227 2.) Subnet Mask 255.255.25 3.) Default Gateway 192.168.2.1 Enter Selection: 4 Main Menu: 1.) IP Parameters 2.) Change Password 3.) Enable DHCP Client 4.) Quit Enter Selection: 3 Enable DHCP Client [Y = 1 or N = 2]: 2 DHCP is Disabled Enter Static IP Address IP Parameters: 1.) IP Address 1.) IP Address 1.) IP Address 2.) Subnet Mask 255.255.255.0 3.) Default Gateway 192.168.2.1 4.) Main Menu Enter Selection: ``` Figure 12: Changing IP Parameters - 2 # Chapter 3. Modbus Over Ethernet Communications 2 IMPORTANT: These setup instructions apply only when using option card 703-1476-05, rev. B and higher, or option card 703-1477-03, rev. D and higher. # 3.1 Introduction This document provides instructions for setting up a flowmeter equipped with *Modbus Over Ethernet* (Modbus/TCP) communications. To apply these procedures, the flowmeter must have the option card installed. See the option card examples in Figure 13 and Figure 14 below. **Note:** To install an option card, consult the user's manual(s) which apply to your instrument. Figure 13: DF Modbus Over Ethernet Option Card Figure 14: XMT Modbus Over Ethernet Option Card # 3.2 Setup The *Digi Device Discovery Program* is required to set up Ethernet parameters. To download the program, proceed with the following steps: # 3.2.1 Downloading the Digi Device Discovery Program - **1.** Go to www.digi.com on the internet. - 2. Move the cursor to the SUPPORT button and select *Diagnostics, Utilities and MIBs* from the menu. - 3. Open the Select Your Product for Support menu and select *Digi Connect ME*. Then click on Submit. - **4.** From the OS Specific Diagnostics, Utilities and MIBs menu select *Microsoft Windows NT 4.0, 2000* or *XP*. Then, under the window, select *Device Discovery Utility for Windows*, and the File Download window appears. - **5.** Select Save this file to a disk, click on OK, and save the file to your computer. - **6.** Install the program from the downloaded file. ### 3.2.2 Module LED Behaviors - Yellow ON: a link has been detected - Yellow OFF: no link has been detected # 3.2.3 Default Parameters - Baud Rate: 9600 bps - Data Bits: 8 - Parity: None - Stop Bits: 1 - Flow Control: None - TCP/UDP Port: 502 **IMPORTANT:** The option card is shipped with DHCP (not static) IP addressing which may not work in your LAN network. If your network requires static IP, you must follow the procedure on page 4. Otherwise, this card will not be operational. # 3.2.4 Finding the Assigned IP Address **Note:** *The following are setup procedure examples.* # **Example:** Find the IP address of the module with Media Access Control (MAC) address 00409d24ded5. 1. Run the *Digi Device Discovery Program* (see Figure 15 below). Note: To access the Digi Device Discovery Program, see page 22. **Note:** The MAC address of all found units and the assigned IP address will be displayed. In this example the assigned address is 3.112.162.129. **Note:** Refresh the display to find the MAC address of all units. Figure 15: Finding the Assigned IP Address # 3.2.5 Changing IP
Parameters **Example:** (to change the dynamic DHCP IP address to static). Change the DHCP-assigned IP address to static address 192.168.2.207 and disable DHCP for the unit with IP assigned address 3.112.162.129 (see Figure 16 below). - 1. Plug the option card into the DHCP network. The DHCP network server has to assign an IP address to this card. - 2. Under Device Task at Digi Device Discovery Program (page 23), highlight the corresponding device and select *Open web interface*. - **3.** Enter Username and Password. Factory defaults are *root* and *dbps*. **Note:** The username and password are case sensitive. - 4. Click on Login. - **5.** Select *Configuration / Network*. - **6.** Select *Use the following IP address:* and enter IP address 192.168.2.207. - Click on Apply. **Note:** Changes will require a reboot to take effect. Select Administration / Reboot, then wait for the reboot to complete. Figure 16: Changing IP Parameters # 3.2.6 Changing Modbus/TCP Network Parameters - 1. Select Configuration \rightarrow Serial Ports \rightarrow Port 1 \rightarrow Modbus/TCP Network Setting - 2. Accept incoming Modbus/TCP connection: TCP Port: XXX - 3. Accept incoming Modbus/TCP in UDP/IP: UDP Port: XXX - **4.** \rightarrow Apply Figure 17: Changing Modbus/TCP Port # 3.2.7 Changing User's Information To change the user name and/or password: - **1.** Under Device Task select *Open web interface*. - **2.** Enter the Username and Password. The factory defaults are *root* and *dbps*. **Note:** The username and password are case sensitive. - 3. Click on Login. Figure 18 below appears. - **4.** Select *Configuration / Users*. - **5.** Click on **New...**. Figure 19 on page 27 appears. Figure 18: User's Configuration Menu # 3.2.7 Changing User's Information (cont.) - 6. To change the User Name, click in the box, delete the current name, and type in the new name. - 7. To create a New Password, click in the box, delete the current password, and type in the new password. - 8. To Confirm the new Password, click in the box, delete the current password and type in the new password. **Note:** For the password to be changed, the New Password and Confirm Password must be identical. 9. Click on Apply. **Note:** Changes will require a reboot to take effect. Select Administration / Reboot, then wait for the reboot to be completed. Figure 19: Changing the User Name and/or Password # Chapter 4. Ethernet Only Communications ## 4.1 Introduction This document provides instructions for setting up a flowmeter equipped with *Ethernet Only* communications. To apply these procedures, the flowmeter must have the option card installed. See the option card examples in Figure 20 and Figure 21 below. **Note:** *To install an option card, consult the user's manual(s) which apply to your instrument.* Figure 20: DF/GX Ethernet Only Option Card Figure 21: XMT Ethernet Only Option Card ## 4.2 Setup The *Digi Device Discovery Program* is required to set up Ethernet parameters for the *Ethernet Only* board. To download the program, proceed with the following steps: ### 4.2.1 Downloading the Digi Device Discovery Program - **1.** Go to www.digi.com on the internet. - 2. Move the cursor to the SUPPORT button and select *Diagnostics, Utilities and MIBs* from the menu. - 3. Open the Select Your Product for Support menu and select *Digi Connect ME*. Then click on Submit. - **4.** From the OS Specific Diagnostics, Utilities and MIBs menu select *Microsoft Windows NT 4.0, 2000* or *XP*. Then, under the window, select *Device Discovery Utility for Windows*, and the File Download window appears. - **5.** Select Save this file to a disk, click on OK, and save the file to your computer. - **6.** Install the program from the downloaded file. #### 4.2.2 Module LED Behaviors - Yellow ON: a link has been detected - Yellow OFF: no link has been detected #### 4.2.3 Default Parameters - Baud Rate: 9600 bps - Data Bits: 8 - Parity: None - Stop Bits: 1 - Flow Control: None ## 4.2.4 Finding the Assigned IP Address **Note:** The following are setup procedure examples. #### **Example:** Find the IP address of the module with Media Access Control (MAC) address 00409d24ded5. 1. Run the *Digi Device Discovery Program* (see Figure 22 below). **Note:** To access the Digi Device Discovery Program, refer to page 30. **Note:** The MAC address of all found units and the assigned IP address will be displayed. In this example the assigned address is 3.112.162.129. **Note:** Refresh the display to find the MAC address of all units. Figure 22: Finding the Assigned IP Address ### 4.2.5 Changing IP Parameters #### **Example:** Change the DHCP-assigned IP address to static address 192.168.2.207 and disable DHCP for the unit with IP assigned address 3.112.162.129 (see Figure 23 below). - 1. Under Device Task select Open web interface. - 2. Enter the Username and Password. The factory defaults are *root* and *dbps*. **Note:** The username and password are case sensitive. - 3. Click on Login. - **4.** Select Configuration / Network. - **5.** Select *Use the following IP address:* and enter IP address 192.168.2.207. - Click on Apply. Note: Changes will require a reboot to take effect. Select Administration / Reboot, then wait for the reboot to complete. Figure 23: Changing IP Parameters ## 4.2.6 Changing User's Information To change the user name and/or password: - **1.** Under Device Task select *Open web interface*. - **2.** Enter the Username and Password. The factory defaults are *root* and *dbps*. **Note:** The username and password are case sensitive. - **3.** Click on **Login**. Figure 24 below appears. - **4.** Select *Configuration / Users*. - **5.** Click on **New...**. Figure 25 on page 34 appears. Figure 24: User's Configuration Menu ## 4.2.6 Changing User's Information (cont.) - **6.** To change the User Name, click in the box, delete the current name, and type in the new name. - 7. To create a New Password, click in the box, delete the current password, and type in the new password. - 8. To Confirm the new Password, click in the box, delete the current password and type in the new password. **Note:** For the password to be changed, the New Password and Confirm Password must be identical. 9. Click on Apply. **Note:** Changes will require a reboot to take effect. Select Administration / Reboot, then wait for the reboot to be completed. Figure 25: Changing the User Name and/or Password # Chapter 5. Modbus Over WI-FI Communications ## 5.1 Introduction This document provides instructions for setting up a flowmeter equipped with *Modbus Over WI-FI* communications. To apply these procedures, the flowmeter must have the option card installed (see the example in Figure 26 below) and connected to a WI-FI antenna. **Note:** To install an option card, consult the user's manual(s) which apply to your instrument. Figure 26: Modbus Over WI-FI Option Card # 5.2 WI-FI Components The WI-FI antenna should be mounted on top of the flowmeter enclosure (see Figure 27 below) and connected to the *Modbus Over WI-FI* option card as shown in Figure 28 and Figure 29 on page 36. Figure 27: WI-FI Antenna # 5.2 WI-FI Components (cont.) Figure 28: WI-FI Cable Antenna Connection Figure 29: WI-FI Cable PC Board Connection ## 5.3 Setup The default IP address in setting up the Modbus Over WI-FI option card is Dynamic (DHCP). If it has to be changed to a static IP address, the instrument must first be linked to the DHCP network. **Note:** *The following are setup procedure examples.* The *Digi Device Discovery Program* is required to set up WI-FI parameters. To download the program, proceed with the following steps: ### 5.3.1 Downloading the Digi Device Discovery Program - **1.** Go to www.digi.com on the internet. - 2. Move the cursor to the SUPPORT button and select *Diagnostics, Utilities and MIBs* from the menu. - 3. Open the Select Your Product for Support menu and select Digi Connect ME. Then click on Submit. - **4.** From the OS Specific Diagnostics, Utilities and MIBs menu select *Microsoft Windows NT 4.0*, 2000 or *XP*. Then, under the window, select *Device Discovery Utility for Windows*, and the File Download window appears. - 5. Select Save this file to a disk, click on OK, and save the file to your computer. - **6.** Install the program from the downloaded file. #### 5.3.2 Module LED Behaviors - Yellow ON: Associated with Access Point - Yellow Blinking Slowly: Ad hoc mode - Yellow Blinking Quickly: Scanning for a network #### 5.3.3 Default Parameters • Baud Rate: 9600 bps Data Bits: 8 Parity: None Stop Bits: 1 Flow Control: None TCP/UDP Port: 502 **IMPORTANT:** This Modbus over WI-FI option card is shipped with DHCP IP addressing, and all the security options disabled. If your wireless LAN has any security set, it should be disabled to have this card join your wireless network. A solid yellow LED on the card indicates the card is joined to the wireless network. #### 5.3.4 Finding the Assigned IP Address **Note:** The following are setup procedure examples. #### **Example:** Find the IP address of the module with Media Access Control (MAC) address 00409d24ded5. 1. Run the Digi Device Discovery Program (see Figure 30 below). Note: To access the Digi Device Discovery Program, see page 37. **Note:** The MAC address of all found units and the assigned IP address will be displayed. In this example the assigned address is 3.112.162.129. **Note:** Refresh the display to find the MAC address of all units. Figure 30: Finding the Assigned IP Address ### 5.3.5 Changing IP Parameters #### **Example:** Change the DHCP-assigned IP address to static address 192.168.2.207 and disable DHCP for the unit with IP assigned address 3.112.162.129 (see Figure 31 below). - **1.** Have your option card joined to the wireless network. - 2. Under Device Task select Open web interface. - **3.** Enter Username and Password. Factory defaults are *root* and *dbps*. **Note:** The username and password are case sensitive. - 4. Click
on Login. - **5.** Select *Configuration / Network*. - **6.** Select *Use the following IP address:* and enter IP address 192.168.2.207. - 7. Click on Apply. **Note:** Changes will require a reboot to take effect. Select Administration / Reboot, then wait for the reboot to be completed. Figure 31: Changing IP Parameters ## 5.3.6 Changing Modbus/TCP Network Parameters - 1. Select Configuration \rightarrow Serial Ports \rightarrow Port 1 \rightarrow Modbus/TCP Network Setting - 2. Accept incoming Modbus/TCP connection: TCP Port: XXX - 3. Accept incoming Modbus/TCP in UDP/IP: UDP Port: XXX - **4.** \rightarrow Apply Figure 32: Changing Modbus/TCP Port ## 5.3.7 Changing User's Information To change the user name and/or password: - **1.** Under Device Task select *Open web interface*. - **2.** Enter the Username and Password. The factory defaults are *root* and *dbps*. **Note:** The username and password are case sensitive. - **3.** Click on **Login**. Figure 33 below appears. - **4.** Select *Configuration / Users*. - **5.** Click on **New...**. Figure 34 on page 42 appears. Figure 33: User's Configuration Menu ### 5.3.7 Changing User's Information (cont.) - **6.** To change the User Name, click in the box, delete the current name, and type in the new name. - 7. To create a New Password, click in the box, delete the current password, and type in the new password. - 8. To Confirm the new Password, click in the box, delete the current password and type in the new password. **Note:** For the password to be changed, the New Password and Confirm Password must be identical. 9. Click on Apply. **Note:** Changes will require a reboot to take effect. Select Administration / Reboot, then wait for the reboot to be completed. Figure 34: Changing the User Name and/or Password # 5.4 Tips for Improving Wireless Data Communications A suitable installation site should locate the antenna in a transmission path as unobstructed as possible; in the direction of the associated router. When a wireless transducer is linked to a router, a yellow LED on the WI-FI option board remains on. Received Signal Strength Indication (RSSI) is an important indicator of wireless link quality. The higher the RSSI, the stronger the performance a wireless system can provide. Signal Strength is calculated by a wireless transceiver and can be viewed on Administration-System Information - WI-FI LAN - Active Settings of the device home page (see Figure 36 on page 43). If constant interference is present in a particular frequency zone, it might be necessary to change the operational channel in the WI-FI network. If interference problems persist, try reducing the length of data streams by reading less registers in one request. Groups of short data streams have a better chance of getting through in the presence of interference than do long streams. Figure 35: Installation Site Figure 36: System Information Menu - WI-FI Lan # Chapter 6. WI-FI Only Communications ## 6.1 Introduction This document provides instructions for setting up a flowmeter equipped with *WI-FI Only* communications. To apply these procedures, the flowmeter must have the option card installed (see the example in Figure 37 below) and connected to a WI-FI antenna. **Note:** To install an option card, consult the user's manual(s) which apply to your instrument. Figure 37: WI-FI Only Option Card # 6.2 WI-FI Components The WI-FI antenna should be mounted on top of the flowmeter enclosure (see Figure 38 below) and connected to the WI-FI Only option card as shown in Figure 39 and Figure 40 on page 46. Figure 38: WI-FI Antenna # 6.2 WI-FI Components (cont.) Figure 39: WI-FI Cable Antenna Connection Figure 40: WI-FI Cable PC Board Connection ## 6.3 Setup The default IP address in setting up the WI-FI Only option card is Dynamic (DHCP). If it has to be changed to a static IP address, the instrument must first be wirelessly linked to the DHCP network. You may need a WI-FI router in order to activate that. **Note:** *The following are setup procedure examples.* The *Digi Device Discovery Program* is required to change communications parameters if needed. To download the program, proceed with the following steps: ### 6.3.1 Downloading the Digi Device Discovery Program - **1.** Go to www.digi.com on the internet. - 2. Move the cursor to the SUPPORT button and select *Diagnostics, Utilities and MIBs* from the menu. - 3. Open the Select Your Product for Support menu and select Digi Connect ME. Then click on Submit. - **4.** From the OS Specific Diagnostics, Utilities and MIBs menu select *Microsoft Windows NT 4.0*, 2000 or *XP*. Then, under the window, select *Device Discovery Utility for Windows*, and the File Download window appears. - **5.** Select Save this file to a disk, click on OK, and save the file to your computer. - **6.** Install the program from the downloaded file. #### 6.3.2 Module LED Behaviors - Yellow ON: Associated with Access Point - Yellow Blinking Slowly: Ad hoc mode - Yellow Blinking Quickly: Scanning for a network #### 6.3.3 Default Parameters • Baud Rate: 9600 bps Data Bits: 8 Parity: None Stop Bits: 1 Flow Control: None IMPORTANT: This WI-FI Only option card is shipped with DHCP IP addressing, and all the security options disabled. If your wireless LAN has any security set, it should be disabled to have this card join your wireless network. A solid yellow LED on the card indicates the card is joined to the wireless network. #### 6.3.4 Finding the Assigned IP Address **Note:** *The following are setup procedure examples.* #### **Example:** Find the IP address of the module with Media Access Control (MAC) address 00409d24ded5. 1. Run the Digi Device Discovery Program (see Figure 41 below). Note: To access the Digi Device Discovery Program, see page 47. Note: The MAC address of all found units and the assigned IP address will be displayed. In this example the assigned address is 3.112.162.129. **Note:** Refresh the display to find the MAC address of all units. Figure 41: Finding the Assigned IP Address ## 6.3.5 Changing IP Parameters #### **Example:** Change the DHCP-assigned IP address to static address 192.168.2.207 and disable DHCP for the unit with IP assigned address 3.112.162.129 (see Figure 42 below). - **1.** Have your option card joined to the wireless network. - 2. Under Device Task select Open web interface. - 3. Enter Username and Password. Factory defaults are *root* and *dbps*. **Note:** The username and password are case sensitive. - 4. Click on Login. - **5.** Select *Configuration / Network*. - **6.** Select *Use the following IP address:* and enter IP address 192.168.2.207. - 7. Click on Apply. **Note**: *Changes will require a reboot to take effect.* Select Administration / Reboot, then wait for the reboot to be completed. Figure 42: Changing IP Parameters ## 6.3.6 Changing User's Information To change the user name and/or password: - **1.** Under Device Task select *Open web interface*. - **2.** Enter the Username and Password. The factory defaults are *root* and *dbps*. **Note:** The username and password are case sensitive. - **3.** Click on **Login**. Figure 43 below appears. - **4.** Select *Configuration / Users*. - **5.** Click on **New...**. Figure 44 on page 51 appears. Figure 43: User's Configuration Menu ### 6.3.6 Changing User's Information (cont.) - **6.** To change the User Name, click in the box, delete the current name, and type in the new name. - 7. To create a New Password, click in the box, delete the current password, and type in the new password. - 8. To Confirm the new Password, click in the box, delete the current password and type in the new password. Note: For the password to be changed, the New Password and Confirm Password must be identical. #### 9. Click on Apply. **Note:** Changes will require a reboot to take effect. Select Administration / Reboot, then wait for the reboot to be completed. Figure 44: Changing the User Name and/or Password # 6.4 Tips for Improving Wireless Data Communications When a wireless transducer is linked to a router, a yellow LED on the WI-FI option board remains on. Received Signal Strength Indication (RSSI) is an important indicator of wireless link quality. The higher the RSSI, the stronger the performance a wireless system can provide. Signal Strength is calculated by a wireless transceiver and can be viewed on Administration-System Information - WI-FI LAN - Active Settings of the device home page (see Figure 46 below). A suitable installation site should locate the antenna in a transmission path as unobstructed as possible; in the direction of the associated router. If constant interference is present in a particular frequency zone, it might be necessary to change the operational channel in the WI-FI network. If interference problems persist, try reducing the length of data streams. Groups of short data streams have a better chance of getting through in the presence of interference than do long streams. Figure 45: Installation Site Figure 46: System Information Menu - WI-FI Lan # **Chapter 7. Foundation Fieldbus Communications** # 7.1 Optional Measurements Foundation Fieldbus provides a means of communicating with the flowmeter. The patent numbers which apply are 5,909,363 and 6,424,872. This Foundation Fieldbus device supports 2 Analog Input (AI) blocks, which can be configured to supply the following measurements on the network (see Table 4 below). Table 4: Available Measurements for the DF868 | Channel 1 | Units | Channel 2 | Units | Average | Units | |----------------------|--------------|----------------------|--------------|----------------------|--------------| | Ch1 Velocity | ft/s or m/s* | Ch2 Velocity | ft/s or m/s* | Avg Velocity | ft/s or m/s* | | Ch1 Act Volumetric | VOL_U | Ch2 Act Volumetric | VOL_U | Avg Act Volumetric | VOL_U | | Ch1 Std Volumetric | VOL_U | Ch2 Std Volumetric | VOL_U | Avg Std Volumetric | VOL_U | | Ch1 Fwd Totals | TOT_U | Ch2 Fwd Totals | TOT_U | Avg Fwd Totals |
TOT_U | | Ch1 Rev Totals | TOT_U | Ch2 Rev Totals | TOT_U | Avg Rev Totals | TOT_U | | Ch1 #Tot Digits** | none | Ch2 #Tot Digits** | none | Avg #Tot Digits | none | | Ch1 Mass Flow | MASS_U | Ch2 Mass Flow | MASS_U | Avg Mass Flow | MASS_U | | Ch1 Fwd Mass Totals | MTOT_U | Ch2 Fwd Mass Totals | MTOT_U | Avg Fwd Mass Totals | MTOT_U | | Ch1 Rev Mass Totals | MTOT_U | Ch2 Rev Mass Totals | MTOT_U | Avg Rev Mass Totals | MTOT_U | | Ch1 #Mass Tot Digits | none | Ch2 #Mass Tot Digits | none | Avg #Mass Tot Digits | none | | Ch1 Timer | sec | Ch2 Timer | sec | Avg Timer | sec | | Ch1 Error Code | none | Ch2 Error Code | none | Avg Error Code | none | | Ch1 SSUP | none | Ch2 SSUP | none | Avg SSUP | none | | Ch1 SSDN | none | Ch2 SSDN | none | Avg SSDN | none | | Ch1 Sound Speed | ft/s or m/s* | Ch2 Sound Speed | ft/s or m/s* | Avg Sound Speed | ft/s or m/s* | | Ch1 Density*** | see note | Ch2 Density*** | see note | | | | Ch1 Temperature | Deg F or C* | Ch2 Temperature | Deg F or C* | | | | Ch1 Pressure | PRESS_U | Ch2 Pressure | PRESS_U | | | ^{*}Metric or English units are determined by the setup of the flowmeter. ^{**}Totalizer digits are available for informational purposes only. Respective totals are automatically scaled by the Tot Digits value selected in the flowmeter setup. ^{***}If the meter is outputting Mole Weight, the unit is "mw", otherwise it is the programmed pressure unit. VOL_U, TOT_U, MASS_U, MTOT_U and PRESS_U are determined by the units chosen for these measurements in the flowmeter setup. See the instrument User's Manual for the setup of these parameters. # 7.2 Configuration Utility Setup The following is an example setup using National Instruments Configuration Utility v3.1. Figure 47 below shows the Configuration Utility with a flowmeter on the network (GE Flow-XMT). Figure 47: Configuration Utility Setup Example **Note:** The following procedures assume that the device has been placed in the OOS (out-of-service) mode before executing. # 7.3 Selecting the Desired Measurements To set the measurement unit for each AI: - Double click on the FLOW Transducer Block (in the tree under GEFlow-XMT). - 2. Select the **Others** tab and open the drop down list for the PRIMARY_SELECTOR and SECONDARY_SELECTOR (refer to Figure 48 on page 55). - **3.** Choose the unit from the list (see Figure 48 on page 55). This unit will correspond to the unit that is available in the AI block for network connection. The PRIMARY_SELECTOR unit will correspond to ANALOG_INPUT_1 and the SECONDARY_SELECTOR will correspond to ANALOG_INPUT_2. ## 7.3 Selecting the Desired Measurements (cont.) **4.** After the desired measurements have been selected for the PRIMARY and SECONDARY SELECTOR, choose the unit system (UNIT_SELECTOR above the PRIMARY_SELECTOR) that has been programmed in the flowmeter (English or SI). Figure 48: Primary Selector Drop Down List ## 7.4 Selecting Units for AI Blocks To select the units for the individual AI blocks: - 1. Double click on the AI block for which you wish to set the units (ANALOG_INPUT_1 or ANALOG_INPUT_2 in the tree under GEFlow-XMT; see Figure 47 on page 54). - 2. Select the **Scaling** tab and set the unit for the measurement based on the flowmeter settings. For example, if the flowmeter was set to use the metric unit system and the PRIMARY_SELECTOR was set to use VELOCITY you would choose **m/s** for the unit as shown in Figure 49 below. Figure 49: Units Index Drop Down List ## 7.5 Resetting Instrument Totalizers To reset the instrument totalizers: - 1. Double click on the FLOW transducer block (in the tree under GEFlow-XMT; see Figure 47 on page 54). - 2. Select the **Others** tab and scroll down to the CLEAR_TOTALIZERS listing. - 3. Select **Clear** from the drop down list box (see Figure 50 below). - **4.** After the totals have been reset, select **Normal** from the drop down list box to resume total accumulation. Figure 50: Clear Totalizers Drop Down List ## 7.6 Function Block Application Figure 51 below is an example setup using the Function Block Application editor. The flowmeter AI blocks, along with the AO and PID of another device on the network, are displayed. We have connected the Al_1 OUT of the flowmeter to the CAS IN of the AO block. We have also connected the Al_2 OUT of the flowmeter to the CAS IN of the PID block. Figure 51: Function Block Application # **Chapter 8. HART Communications** #### 8.1 Introduction GE Panametrics GF868, XGM868, XGS868 and XMT868 ultrasonic flowmeters may be modified to permit two-way communication with a HART communication device. This requires the installation of a HART option card in the flowmeter. The option card generates a 4-20 mA analog output signal that can be read by the HART device. Proceed to the appropriate section for detailed instructions on installing and using the HART option card. ## 8.2 Installing the HART Option Card To install a HART option card in your flowmeter, complete the following steps: <u>WARNING!</u> This procedure should be performed only by qualified service personnel. 1. Disconnect the main power from the flowmeter. <u>WARNING!</u> Failure to disconnect the power before proceeding may result in serious injury. 2. Refer to your *User's Manual* for step-by-step instructions, and install the HART option card in **Slot 6** for a GF868 flowmeter or in **Slot 2** for an XGM868, XGS868 or XMT868 flowmeter. **IMPORTANT:** If a MODBUS option card is installed in Slot 5 of a GF868 flowmeter, the HART option card in Slot 6 will be ignored. 3. Interconnect the HART option card and the HART device as shown in Figure 1 on the next page. Figure 52: Option Card Wiring For a GF868 flowmeter, the option card connector is mounted on the card, and the HART device leads should go to pins 1 and 2 of this connector. As for other option cards installed in the same meter as the HART option card, the HART device will not recognize any option card installed in Slots 3-5 and it will only recognize option cards installed in Slots 1-2 if they are Analog Input, Analog Output, or RTD option cards. ## 8.2 Installing the HART Option Card (cont.) For XGM868, XGS868 and XMT868 flowmeters, the HART device connections must be made to pins 1 and 2 of the 12-pin terminal block J2 on the terminal board. Therefore, you must make sure that any option card installed in Slot 1 does not use these terminals. **Note:** Refer to your User's Manual for a complete description of the available Slot 1 option cards and their terminal usage. # 8.3 Flowmeter Software Setup GE Panametrics flowmeters that are shipped with a factory-installed HART option card require no special setup procedures by the user. The meter automatically configures itself for HART communication on startup. However, for field-installation of a HART option card, the card must be configured in the factory test menu before it will be recognized by the meter. Thereafter, the initialization will be automatic on startup. Contact the factory for specific instructions. In addition to setting up the HART option card so that it is recognized by the meter, the analog output of the option card may be configured using any of the following methods (if available): - the flowmeter keypad - Instrument Data Manager (IDMTM) software - PanaViewTM graphical user interface software - the HART device To configure your HART option card analog output using any of the first three methods, follow the instructions in the appropriate *User's Manual*. During configuration, the choice of parameter must be limited to those listed in Table 5 on page 61. To use the HART device for configuration of the analog output, refer to the instructions that came with that device. **Note:** Because HART communication is unreliable at analog outputs below 4 mA, the flowmeter automatically changes a HART option card analog output configuration of 0-20 mA or OFF to a 4-20 mA configuration upon startup. ## 8.3 Flowmeter Software Setup (cont.) Some flowmeter parameters can only be read by the HART device during startup. Therefore, it is recommended that both the flowmeter and the HART device be rebooted after any reprogramming of the HART option card analog output. Failure to do so may result in erroneous information or a communication failure between the flowmeter and the HART device. Table 5: Valid HART Parameters and Units | Parameter | English Units | Metric Units | |---------------------|---|---| | Velocity | ft/sec | m/s | | _ | gal/s, gal/m, gal/h, mgal/day, cuf/s, cuf/m, cuf/h, mcf/day, bbls/s, bbl/m, bbl/h, mbl/d, acre-inch/day | l/s, l/m, l/h, ml/d, cum/s, cum/m, cum/h, mcm/d, bbl/s, bbl/m, bbl/h, mbl/d | | Volumetric (gas) | acf/m, acf/h, scf/m, scf/h | acm/h, scm/h, scm/d | | +Tot, -Tot (liquid) | gal, cuf,bbl, acre-in, acre-ft | liter, cum, bbl | | +Tot, -Tot (gas) | acf, scf | acm, scm | | Mass Flow | lb/s, lb/m, lb/h, mlb/d, ton/m, ton/h, mton/d | kg/s, kg/h, mkg/d, tne/m, tne/h, tne/d | | +Mass, -Mass | lb, ton | kg, tne | | Power | kbtu/h, kw | mcal/h, kw | | +Energy, -Energy | btu, kw-hr | mcal, kw-hr | | Temperature | °F | °C | | Pressure | psia | bar, bara | | Mol Weight | none | none | reported as standard units x 10⁶ in HART. For example, 1 mgal is 1x10⁶ gal in HART. # 8.4 Using the HART Interface The HART communications option card installed in GE Panametrics flowmeters has been successfully tested with the Rosemount 275 Hand-Held Communicator and the Rosemount AMS Computer-Based Communications **Software.** Although some flowmeter functions may be performed using the HART device, many other functions (i.e. data logging, site file uploading, site file downloading, printing, etc.) must still be programmed by the methods described in the flowmeter *User's Manual*. This is because the HART protocol was developed for use with simple transmitters and
it cannot handle the multitude of sophisticated functions built into the GE Panametrics flowmeters. ## 8.4.1 Unit Types Due to limitations of the HART protocol, only those unit types listed in Table 5 above are acceptable. If a meter parameter is set to any other measurement units, the HART device displays an "Unknown Enumerator, Can not resolve" error message and may terminate communications entirely. In some cases, both the Hart device and the flowmeter may have to be rebooted to clear the error. To address this potential problem, the flowmeter has been programmed to force all measurement units to HART compliant units if a HART option card is detected upon startup. #### 8.4.2 HART Functions After HART communications has been properly set up, the following flowmeter functions may be accessed using the HART device: static temperature and static pressure **Note:** To view the static temperature or pressure for a channel using the HART device, the fixed value for that parameter must be assigned to that channel at the flowmeter. See your User's Manual for instructions. - tracking windows (XMT868 only) - minimum and maximum soundspeed (XMT868 only) - 2-path error handling - velocity averaging response time - static density - error handling - mA error level (if selected) - clear totals **Note:** Refer to your User's Manual for a complete description of each of the above functions. When information is viewed through the HART device, the input variable always appears as either *Channel 1 Temperature* or *Channel 1 Pressure*. Although these inputs are not necessarily assigned to Channel 1, the HART protocol labels all inputs as channel-specific. For example, a Slot 1 analog input that is programmed at the meter as a temperature input assigned to Channel 1, Channel 2, Both, or Neither is always reported by the HART device as a *Channel 1* Temperature input. **Note:** Inputs cannot be assigned using the HART device. Also, any input assigned as "Special" is always reported as a Channel 1 Temperature input by the HART device In addition to the functions listed on the previous page, the following procedures may be performed through the HART device: - calibration and setup of the HART option card analog output - calibration and some programming of analog inputs, analog outputs, and RTD inputs on option cards installed in Slots 0 (all), 1 (all), and 2 (GF868 only) - viewing some of the flowmeter's diagnostic parameters # 8.5 List of Programmable Variables For convenient reference, all of the programmable variables for the four flowmeter models are listed in Table 6 on page 63. Table 6: Programmable Variables | Description | Format* | R/W/B* | XMT868 | XGS868 | XGM868 | GF868 | |-----------------------------|---------|-------------|-------------|---------|---------|---------| | · | Cha | nnel Proces | s Variables | | | | | Ch1, Ch2, or Ave vel | f.p. | R | Y | Y | Y | Y | | Ch1, Ch2, or Ave vol | f.p. | R | Y | Y | Y | Y | | Ch1, Ch2, or Ave mdot | f.p. | R | Y | Y | if mass | Y | | Ch1, Ch2, or Ave power | f.p. | R | if energy | N | N | N | | Ch1, Ch2, or Ave Temper | f.p. | R | N | Y | Y | Y | | Ch1, Ch2, or Ave Pressure | f.p. | R | N | Y | Y | Y | | Ch1, Ch2, or Ave Mw | f.p. | R | N | N | N | Y | | Ch1, Ch2, or Ave +tot | f.p. | R | Y | Y | Y | Y | | Ch1, Ch2, or Ave -tot | f.p. | R | Y | Y | Y | Y | | Ch1, Ch2, or Ave +mass | f.p. | R | Y | Y | if mass | Y | | Ch1, Ch2, or Ave -mass | f.p. | R | Y | Y | if mass | Y | | Ch1, Ch2, or Ave +energy | f.p. | R | if energy | N | N | N | | Ch1, Ch2, or Ave -energy | f.p. | R | if energy | N | N | N | | Ch1 or Ch2 Ssup | f.p. | R | Y | Y | Y | Y | | Ch1 or Ch2 ssDO | f.p. | R | Y | Y | Y | Y | | Ch1, Ch2, or Ave tUP | f.p. | R | Y | Y | Y | Y | | Ch1, Ch2, or Ave tDO | f.p. | R | Y | Y | Y | Y | | Ch1, Ch2, or Ave deltaT | f.p. | R | Y | Y | Y | Y | | Ch1 or Ch2 peak% | f.p. | R | Y | Y | Y | Y | | Ch1, Ch2, or Ave DeltaT(s) | f.p. | R | N | if meas | if meas | if meas | | Ch1, Ch2, or Ave DeltaT(M) | f.p. | R | N | if meas | if meas | if meas | | Ch1 or Ch2 qUP | f.p. | R | Y | Y | Y | Y | | Ch1 or Ch2 qDOWN | f.p. | R | Y | Y | Y | Y | | Ch1 or Ch2 ampUP | f.p. | R | Y | Y | Y | Y | | Ch1 or Ch2 ampDOWN | f.p. | R | Y | Y | Y | Y | | Ch1 or Ch2 peak#UP | f.p. | R | Y | Y | Y | Y | | Ch1 or Ch2 peak#DOWN | f.p. | R | Y | Y | Y | Y | | Ch1, Ch2, or Ave t.S | f.p. | R | if energy | N | N | N | | Ch1, Ch2, or Ave t.R | f.p. | R | if energy | N | N | N | | Ch1, Ch2, or Ave t.S-t.R | f.p. | R | if energy | N | N | N | | Ch1 or Ch2 inco1 | f.p. | R | if transfl. | N | N | N | | Ch1 or Ch2 onco2 | f.p. | R | if transfl. | N | N | N | | Ch1 or Ch2 Rpowr | f.p. | R | if transfl. | N | N | N | | Ch1 or Ch2 Rqual | f.p. | R | if transfl. | N | N | N | | Ch1 or Ch2 Repp | f.p. | R | if transfl. | N | N | N | | Ch1, Ch2, or Ave c3 | f.p. | R | Y | Y | Y | Y | | Ch1, Ch2, or Ave Temp_super | f.p. | R | N | Y | N | N | | Ch1, Ch2, or Ave Rho | f.p. | R | N | Y | N | N | | Ch1 or Ch2 Err code | int | R | Y | Y | Y | Y | | Ch1 or Ch2 re# | | | Y | N | N | N | Table 6: Programmable Variables (cont.) | Description | Format* | R/W/B* | XMT868 | XGS868 | XGM868 | GF868 | |--|----------------|-------------|--------------|-----------|-----------|-----------| | ' | Glo | bal Meter I | nformation | | | | | MeterType (Model) | int | R | Y | Y | Y | Y | | #Channels | int | R | Y | N | N | N | | 2-Path? | int | В | Y | N | N | N | | Resp_time | int | В | Y | Y | Y | Y | | Static Density? | int | В | Y | Y | Y | Y | | Static Density Value | f.p. | В | Y | Y | Y | Y | | Error Mode | int | В | Y | Y | Y | Y | | Aout Error Level | f.p. | В | Y | Y | Y | Y | | Meter Units (Eng. or Metric) | uchar | В | Y | Y | Y | Y | | EnergyMeter? | uchar | R | Y | N | N | N | | Clear-totals? | int | W | Y | Y | Y | Y | | | | CH1 Inform | | - | - | | | Ch1 Fixed Temp | f.p. | В | N | Y | Y | Y | | Ch1 Fixed Press | f.p. | В | N | Y | Y | Y | | Ch1 Tracking? | int | В | Y | N | N | 1 | | Ch1 Min Sound Spd | f.p. | В | Y | N | N | N | | Ch1 Max Sound Spd | f.p. | В | Y | N | N | N | | Citi Max Bound Spu | | | (if applicab | | 11 | 11 | | Ch2 Fixed Temp | f.p. | В | N N | Y | Y | Y | | Ch2 Fixed Press | f.p. | В | N | Y | Y | Y | | Ch2 Tracking? | int | В | Y | N | N | 1 | | Ch2 Min Sound Spd | f.p. | В | Y | N | N | N | | Ch2 Max Sound Spd | f.p. | В | Y | N | N | N | | CH2 Wax Bound Spu | 1.p. | Slot Inforr | | 11 | 11 | 11 | | Slot 0 A or B Device | uchar | R | Y | Y | Y | Y | | Slot 0 A or B Type | uchar | В | Y | Y | Y | Y | | Slot 0 A or B Chan | uchar | В | if 2-Ch | if 2-Ch | if 2-Ch | if 2-Ch | | Slot 0 A of B Chair | | ot Informat | | II 2-CII | II 2-CII | II 2-CII | | Slot 0 A or B Variable | uchar | В | Y | Y | Y | Y | | Slot 0 A or B Units | uchar | R | Y | Y | Y | Y | | Slot 0 A or B Zero | f.p. | В | Y | Y | Y | Y | | Slot 0 A or B Span | f.p. | В | Y | Y | Y | Y | | Slot 1 or 2 Active | int | R | Y | Y | Y | Y | | Slot 1 or 2 A, B, C, or D Device | uchar | R | if active | if active | if active | if active | | | | | if active | if active | if active | if active | | Slot 1 or 2 A, B, C, or D Type
Slot 1 or 2 A, B, C, or D Chan | uchar
uchar | B
B | if active | if active | if active | if active | | Slot 1 or 2 A, B, C, or D Chan
Slot 1 or 2 A, B, C, or D Variable | uchar | В | if active | if active | if active | if active | | Slot 1 or 2 A, B, C, or D Variable | | R | if active | if active | if active | if active | | Slot 1 or 2 A, B, C, or D Units | uchar
f.p. | В | if active | if active | if active | if active | | Slot 1 or 2 A, B, C, or D Span | | | if active | if active | if active | if active | | Slot I of Z A, B, C, or D Span | f.p. | В | n acuve | n acuve | n acuve | ii active | Table 6: Programmable Variables (cont.) | Description | Format* | R/W/B* | XMT868 | XGS868 | XGM868 | GF868 | | |--------------------|---------|--------|--------|--------|--------|-------|--| | HART Variables | | | | | | | | | Universal Rev | uchar | R | Y | Y | Y | Y | | | Software Rev | uchar | R | Y | Y | Y | Y | | | Transmitter Rev | uchar | R | Y | Y | Y | Y | | | Hardware Rev | uchar | R | Y | Y | Y | Y | | | Device ID | uchar | R | Y | Y | Y | Y | | | PollAddress | uchar | В | Y | Y | Y | Y | | | Message | uchar24 | В | Y | Y | Y | Y | | | Tag | uchar6 | В | Y | Y | Y | Y | | | Descriptor | uchar12 | В | Y | Y | Y | Y | | | Date | uchar3 | В | Y | Y | Y | Y | | | Final Assy No | uchar3 | В | Y | Y | Y | Y | | | Derial No. | uchar3 | R | Y | Y | Y | Y | | | Pvt. Label Dist | uchar | R | Y | Y | Y | Y | | | Pri Var Code | uchar | R | Y | Y | Y | Y | | | Alarm Select | f.p. | В | Y | Y | Y | Y | | | Write Protect Code | uchar | В | Y | Y | Y | Y | | | Config Chgd Flag | uchar | В | Y | Y | Y | Y | | | Response Preambles | uchar | В | Y | Y | Y | Y | | | HART Device | uchar | R | Y | Y | Y | Y | | | HART Type | uchar | В | Y | Y | Y | Y | | | HART Channel | uchar | В | Y | Y | Y | Y | | | HART Variable | uchar | В | Y | Y | Y | Y | | | HART Units | uchar | R | Y | Y | Y | Y | | | HART Zero | f.p. | В | Y | Y | Y | Y | | | HART Span | f.p. | В | Y | Y | Y | Y | | ^{*} Format - f.p. = IEEE floating point, int = integer, uchar = unsigned character ucharX = X bytes of unsigned characters. R/W/B - R = read only, W = write only, B = read or write using HART ## Warranty Each instrument manufactured by GE Sensing is warranted to be free from defects in material and workmanship. Liability under this warranty is limited to restoring the instrument to normal operation or replacing the instrument, at the sole discretion of GE Sensing. Fuses and batteries are specifically excluded from any liability. This warranty is effective from the date of delivery to the original purchaser. If GE Sensing determines that the equipment was defective, the warranty period is: - one year from delivery for electronic or mechanical failures - one year from delivery for sensor
shelf life If GE Sensing determines that the equipment was damaged by misuse, improper installation, the use of unauthorized replacement parts, or operating conditions outside the guidelines specified by GE Sensing, the repairs are not covered under this warranty. The warranties set forth herein are exclusive and are in lieu of all other warranties whether statutory, express or implied (including warranties or merchantability and fitness for a particular purpose, and warranties arising from course of dealing or usage or trade). ## **Return Policy** If a GE Sensing instrument malfunctions within the warranty period, the following procedure must be completed: - Notify GE Sensing, giving full details of the problem, and provide the model number and serial number of the instrument. If the nature of the problem indicates the need for factory service, GE Sensing will issue a RETURN AUTHORIZATION NUMBER (RAN), and shipping instructions for the return of the instrument to a service center will be provided. - 2. If GE Sensing instructs you to send your instrument to a service center, it must be shipped prepaid to the authorized repair station indicated in the shipping instructions. - 3. Upon receipt, GE Sensing will evaluate the instrument to determine the cause of the malfunction. Then, one of the following courses of action will then be taken: - If the damage <u>is</u> covered under the terms of the warranty, the instrument will be repaired at no cost to the owner and returned. - If GE Sensing determines that the damage <u>is not</u> covered under the terms of the warranty, or if the warranty has expired, an estimate for the cost of the repairs at standard rates will be provided. Upon receipt of the owner's approval to proceed, the instrument will be repaired and returned. [no content intended for this page - proceed to next page] # **Customer Support Centers** #### U.S.A. The Boston Center 1100 Technology Park Drive Billerica, MA 01821 U.S.A. Tel: 800 833 9438 (toll-free) 978 437 1000 E-mail: sensing@ge.com #### Ireland Sensing House Shannon Free Zone East Shannon, County Clare Ireland Tel: +353 61 61470291 E-mail: gesensingsnnservices@ge.com www.gesensinginspection.com ISO 9001 REGISTERED COMPANY ©2009 General Electric Company. All rights reserved. Technical content subject to change without notice.