
VANTAGE
A Frame-Based Geometric Modeling System

Programmer/User's Manual V2.0

B. Kumar, J.C. Robert, R. Hoffman, K. Ikeuchi, T. Kanade

CMU-RI-TR-91-31

The Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

December 1991

0 1992 Carnegie Mellon University

a

I

I

Table of Contents

1. Introduction

2. Terminology

3. VANTAGE - Concepts and Design

3.1. Motivations for Developing VANTAGE
3.2. Open Architecture
3.3. Lisp and frame-based Representation
3.4. Solid and Boundary Representation
3.5. Relations Between 2-D and 3-D
3.6. Organization

3.6.1. Solid Definition
3.6.2.3-D Boundary Representation
3.6.3.3-D Face Properties
3.6.4.3-D Scene
3.6.5.2-D Image
3.6.6.2-D Property Regions

4. Invoking the system

5. CSG Definition of a Solid

5.1. Primitives
5.2. Rigid-Motion

5.3. Boolean Operations
5.4. Mirror Operation
5.5. Redefining and Deleting solids
5.6. Information on the CSG-Tree

5.2.1. Moving a solid
5.2.2. Defining a transformation

6. Boundary Representation

7. Sensors

8. Scene and 3-D Properties

1

2

3

3
4
4
5
6
7
7
8

10
10
11
12

13

14

14
15
15
16
17
18
18
19

20

22

24

8.1. Scene 24

11

8.2. 3-D Properties

9. Image and 2-D Properties

9.1. Image
9.2.2-D Properties

10. Miscellaneous Functions and Variables

10.1. Functions dealing with Boundary representation
10.2. Mathematical functions
10.3. Display functions

Appendix A. Primitive Solids

Appendix B. Examples

Appendix C. Standard Frames

Appendix D. Framekit+ functions

D. 1. Frames
D.2. Frame creation
D.3. Update Functions
D.4. Access Functions
D.5. Miscellaneous Functions and Variables

24

26

26
27 e

28

28
29
30

35

38

42

67

67
68
69
71
71

Index 73

...
111

List of Figures
Figure 3-1: Open Architecture of VANTAGE
Figure 3-2: Organization of VANTAGE
Figure 3-3: CSG-Tree
Figure 3-4: Winged-edge representation and associated frame
Figure 3-5: Grouping and Merging Operations
Figure 3-6: 3-D Face Properties for a Light-source
Figure 3-7: Projection of a 3-D scene, and regions of the resulting image
Figure 3-8: Property regions associated to a light-source
Figure B-1: Image i l , plain and with shadows (after window-zooming)
Figure B-2: 11 property-regions projected on i l
Figure C-1: Winged-edge representation

4
7
8
9
9

10
11
12
41
41
51

iv

List of Tables
Table 3-1: Relation between 3-D and 2-D level
Table 3-2: Light-source/Sensor

6
12

1

Abstract

Geometric modeling systems allow users to create, store, and manipulate models of three-
dimensional (3-D) solid objects. These geometric modeling systems have found many applications
in CAD/CAM and robotics areas. Graphic display capability which rivals photographic techniques
allows realistic visualization of design and simulation. Capabilities to compute spatial and physical
properties of objects, such as mass property calculation and static interference check, are used in the
design and analysis of mechanical! parts and assembly. Output from the geometric modelers can be
used for automatic programming of NC machines and robots.

These geometric modeling systems are powerful in many application domains, but have severe
limitations to be used for tasks such as model-based computer vision. Among others,

1. There is no explicit symbolic repmentation of the two-dimensional (2-D) information
obtained by the projection of the 3-D model. The output image displayed on the
screen is a set of pixel intensity values, with no knowledge of the logical grouping of
points, lines and polygons. Also, the relationship between 3-D and 2-D information is
not maintained properly.

2. Most of the current 3-D geometric modeling systems are designed with a closed ar-
chitecture, with a minimum of documentation describing the internal data structures.
Moreover, some of the data svuctures are packed into bit-fields, making understand-
ing and modification difficult.

3. They run as stand-alone interactive systems and cannot easily be interfaced to other
programs.

To address these shortcomings, we have developed the VANTAGE geometric modeling system.
VANTAGE uses a consistent object space representation in both the 3-D and 2-D domains, which
makes it suitable for computer vision and other advanced robotics applications. Its open architec-
ture design allows for easy modification and interface to other software. This paper discusses the
design goals and methodology for the VANTAGE geometric modeler.

a

1

1. Introduction

Geometric modeling systems allow users to create, store, and manipulate models of three-

dimensional (3-D) solid objects. These geometric modeling systems have found many applications

in CAD/CAM and robotics areas. Although powerful in many application domains, there are some

limitations of these geomevic modeling systems, which make them difficult to be used for tasks

such as model-based computer vision. Among others,
1. There is no explicit symbolic representation of the two-dimensional (2-D) information

obtained by the projection of the 3-D model. The image data is a set of pixel intensity
values, with no knowledge of the logical grouping of points, lines and polygons.

2.They are designed with a closed architecture, with a minimum of documentation
describing the internal data structures. Worse, some of the data structures are packed
into bit-fields, making understanding and modification difficult.

3. They run as stand-alone interactive systems and cannot easily be interfaced to other
programs.

To address these shortcomings, we have developed the VANTAGE geometric modeling system.

VANTAGE uses a consistent object space representation in both the 3-D and 2-D domains, which

makes it suitable for computer vision and other advanced robotics applications . Its open architec-

ture design allows for easy modification and interface to other software. The problems involving

model based vision are the main driving force behind this work and VANTAGE has applications in

computer vision and advanced robotics research.

The current version of VANTAGE is reasonably debugged and has decent graphic routines and user

interface. This manual covers the following mas:
General concepts and terminology
Overview of design and implementation
Primitive solids and coordinate transformations
Operations on solids
3-D boundary representation
Light-sources, cameras
Scenes and 3-D properties ~

Images and 2-D properties

VANTAGE is currently supported on SUN running Lucid Common Lisp or Allegro Common Lisp.

Most of the code is portable to other lisp environments except for the graphic and user-interface

routines. VANTAGE can also r m under X-Window system. Please direct all enquires to

vantage@cs.cmu.edu.

2

2. Terminology

0 Primitives:

Boolean Operations:

0 CSG-Definition :

The basic solids provided by the system. They can be
defined by giving required dimensions. The primitives
are cube, cone, truncated-cone, cylinder, sphere,
2.5prism, 2.5cone, triangular-prism and right-angle-
prism.

The operations allowed on the solids to move, modify
or create a resulting solid. The operations defined are
union, intersection and difference.

The definition of solids is stored in the form of a tree
structure. The leaf nodes are either primitives or nil. A
parent node corresponds to a boolean operation applied
to its corresponding children nodes. When creating the
boundary repmentation for a particular node, the
boundary representation for all the children of the node
is also created recursively.

0 Boundary representation: A solid is represented as a collection of faces, a face as
a collection of edges, and an edge is defined by its two
end vertices. The vertices are defined by their x, y and
z coordinates. Topological information is included in
the form of winged-edge representation.

A way of defining the topological relationship. There
are eight slots for each edge which define the two end
vertices (P-vertex, N-vertex), four neighboring edges
(PCW, PCCW, NCW , NCCW) and two adjacent-faces
(P-face, N-face).

In the boundary representation the cylindrical, conical
and spherical faces axe approximated by a finite n u -
ber (user specified) of planar faces. After any se-
quence of boolean operations the faces derived from a
same primitive surface are grouped so that they can be
treated as a single entity. Also there is provision to
group faces that are tangent to each other across a
common edge.

0 Winged-edge representation:

3D-hierarchical structure:

3

3. VANTAGE - Concepts and Design

3.1. Motivations for Developing VANTAGE

Currently available geometric modeling systems have critical limitations to be used in applications

which require flexible, explicit, and user-specified access, attachment, and modification of the in-

formation within the systems. For example, developing a model-based vision system based on an

object model requires analyzing how the object features, such as faces, edges, etc., will appear as

the camera positions vary. However, though the graphic display of the object generates beautiful

"images", usually no explicit symbolic representations of the two-dimensional information are com-

puted in the projection of a 3-D object model. The graphical output image is a set of pixel intensity

or color values, with no knowlkdge of the logical grouping of points, lines, and polygons, or

pointers to the original object features. Humans can interpret the image, but the explicit infor-

mation that a vision program may require is not available.

Rarely do the built-in functions of a geometric modeling system satisfy all the representational and

computational capabilities that a user needs for his own new application. Theoretically, writing or

modifying a few modules to access and manipulate the information hidden in the system or adding

a few representational capabilities to the existing ones will bring about the required capabilities. In

practice, however, such modifications and additions are very difficult and painful, if not impossible.

Most systems are designed with a closed architecture, with a minimum of documentation describing

the internal data structures. Worse, due to their implementation in such languages as Fortran, many

of the data structures are packed into bit-fields, making understanding and modification above a

certain level of sophistication impractical.

Recognizing these limitations of currently available geometric modeling systems, we have decided

to develop a new flexible geometric modeler, VANTAGE, so that
0 Both 3-D and 2-D information of objects can be explicitly represented by symbolic

A user can easily modify the system, add new capabilities, and interface his programs

Our primary application of VANTAGE will be in the area of model-based computer vision, but we

expect the flexibility and modifiability of VANTAGE will allow it to be used as a tool for many other

data structures.

to it.

4

advanced robotics applications.

3.2. Open Architecture
Many existing modelers act as a black box for the application programs and discourage sharing

data. The approach we take emphasizes direct interaction between the modeling system and the

application program. The collection of all data items, such as surface, edge, camera, light-source,

etc., describing objects and their relationships form the ge0mern.c database. The geometric engine,

consisting of both the system-defined and user-defined functions, can access and manipulate it.

This implies that all the system and application programs are at the same level of hierarchy in terms

of accessing information, with minimal distinction between them. figure 3-1 illustrates the open

architecture.

Functions

Figure 3-1: open Architecture of VANTAGE

3.3. Lisp and frame-based Representation
VANTAGE avoids complex and heterogeneous data structures. All data in VANTAGE are represented

in a standardized manner by the use of frames. Frames are analogous to schema or concepts as

defined in other knowledge representation languages. A frame is composed of slots, facets and

fillers. For example, a frame s t r u m defining a face may look like:
(BOTTOM-FACE

(is-a

(area

(face-of

(value 3-D-face))

(value 140)
(i f-added (update-mar -area-face)))

5

(value my-cube))

(value edge-a edge-b edge-c edge-d)))
(edge-list

In this example, BOTTOM-FACE i s the name of the frame. The slots are used to represent various

attributes of a frame, such as is-a, area, face-of, and edge-list. A slot can have multiple facets such

as value and if-added. 3-D-face, 140, update-max-area-face are fillers defining contents of dif-

ferent facets.

Frames are like record structures in conventional programming languages, but have much more

flexibility and features. Frames, slots, facets, and fillers can be added or erased at any time. Frames

also provide a mechanism to automatically select and execute procedures and functions attached to

a frame depending on the operation performed on a particular slot. These functions are called

demons. In the above example, @date-m-area$ace is a demon which is fired automatically to

update, if necessary, the variable maximum-area-face when a value for the slot area is added. The

frame structure is omnipresent throughout the system. The flexibility of frames provides an effec-

tive means to allow smooth interface to user supplied programs.

VANTAGE is implemented in the COMMON LISP language. LISP combines symbolic processing with

features from traditional computing. By writing VANTAGE in LISP, it inherits all the merits of the

LISP language such as interaction, incremental building, symbolic representation etc. We believe

that VANTAGE will have successfd applications in the A.I. world.

3.4. Solid and Boundary Representation
We have selected the Constructive Solid Geometry approach for representing the shapes of objects

in VANTAGE . VANTAGE provides basic solid primitives like cube, cylinder, etc. The user creates

new solids by making boolean operations (union, difference and intersection) on these primitives.

A 3-D boundary representation of each object is maintained within the system. This contains lists

of faces, edges and vertices. Vertices contain their respective coordinate values, and edges join

these vertices. The faces are planu polyhedra and represented by a collection of connected edges.

The neighborhood information or topolugy relates the edges, faces and vertices of the solid. This

information in VANTAGE is stored in the form of winged-edge representation. An edge has two end

vertices, four neighboring edges and two faces defining a strict relationship.

6

3-D level
3-D face
3-D edge

3.5. Relations Between 2-D and 3-D

2-D level
2-D region

2-D arc

A model-based vision system attempts to recognize objects in images by matching features in the

image with those expected from the model of the scene. Many current geometric modelers are

good at synthesizing images of a scene with a given viewing position and lighting condition. It is,

however, very difficult to extract symbolic representations of expected appearances of the object so

that they can be used in designing recognition strategies. One of the VANTAGE design goals is to

provide a capability to explicitly represent the relationships between 3-D information (such as

shape, surface, and lighting) in the scene and 2-D information (such as visibility, shadow, and

projected shape) in the image.

3-D vertex
3-D property

For a particular viewing condition, the 3-D faces are projected on the viewing plane and the visible

portion of the projections result in 2-D face-regions. These 2-D face-regions are a collection of 2-D

arcs and the 2-D arcs connect 2-D joints. The hierarchy of 2-D face-regions, 2-D arcs and 2-D

joints is the same as faces, edges and vertices at the 3-D level.

2-D joint
2-D property-region

Table 3-1: Relation between 3-D and 2-D level

Table 3-1 explains the relation between the two levels. The information at the 2-D and 3-D levels
I

have a correspondence and can be referenced back and forth. In addition, VANTAGE maintains

topological information not only at the 3-D level but also at the 2-D level.

7

3.6. Organization
Figure 3-2 shows the overall organization of VANTAGE.

(-1 INPUT

2-D

3-D

Figure 3-2: Organization of VANTAGE

1. The user creates a solid by applying operations on primitives solids. The defintion of
the solid is stored in a Constructive Solid Geometry (CSG) Tree.

2. The 3-D boundary representation of the solid is generated from the CSG tree in the
3D geometric database. The face properties (e.g. color, shadow, and visibility) are
also maintained in the 3D geometric database.

3. The user defines a 3-D Scene that contains a collection of solids, environmental con-
ditions (e.g. lighting conditions), and a viewing condition.

4. The 3-D scene is projected to generate a 2-D Image, for which VANTAGE creates a
complete explicit representation (2-D boundary repmentation and 2-D Properties),
which contains geometric and topological information for a l l visible regions, as well
as back-pointers to the 3-D boundary representation in the 2D geometric database.

The subsequent sections detail the different parts of the system.

3.6.1. Solid Definition
In Constructive Solid Geometry. an object is generated by applying successive operations (union,

intersection, difference, move, minor) on a set of primitive solids (cube, cylinder, cone, sphere). A

CSG tree represents internally this CSG definition. A leaf node of a CSG tree defines a primitive

solid. An intermediate node specifies an operation to be performed on its descendants, and cor-

responds to the solid resulting from the operation. Figure 3-3 shows m example of a CSG tree.

8

Blodc Cylinder

Figure 3-3: CSG-Tree

3.6.2.3-D Boundary Representation
A 3-D boundary representation of each object is maintained within the system. It consists of a four

level hierarchy of frames: body, face, edge, and vertex. A body is made of faces, a face is defined

by its edges, and an edge has two end vertices. Each element contains some geometric properties

(coordinates of the vertices, equations of the faces, position of the body in space). In addition,

VANTAGE maintains a complete representation of topological relationships in the form of a winged-

edge representation that lists the end vertices, neighboring edges and faces of every edge (see figure

3-4).

Although VANTAGE includes non-polyhedral primitives such as cylinders and cones, all non-planar

surfaces (cylindrical, conical or spherical surfaces) are approximated by a finite number of planar

faces. In the same way, all curves are represented by a collection of linear edges. The number of

planar faces used to represent a non-planar surface is entered by the user.

VANTAGE stores the exact geometric definition of each surface and curve as a separate frame.

VANTAGE also maintains a pointer from every planar face that approximates a non-planar surface to

the corresponding surface, and similarly from the approximating edges to the corresponding curves.

9

3-D-body mycu&
P-vertex vertex-A
N-verter vertex-B
P-face tiice- 1

face-2 Nace P W edge-CA
NCCW edge-AF
NCW edge-EB
PCCW edge-BD

I
Figure 3-4: Winged-edge representation and associated frame

The surface/cuIve frames are used for grouping faces/edges that approximate the same
surface/curve. Also, any operation that requires the exact geometric definition of surfaces and

curves (e.g. generation of parametric equations) can be performed using the surface and curve

frames. - --
- a -

Group

--\
Merge

Figure 3-5: Grouping and Merging Operations

VANTAGE builds two more levels of representation based on surface properties. Figure 3-5 il-

lustrates the grouping and merging operations for this purpose. First, using references to the sur-

face frames, VANTAGE can group a set of adjacent planar faces that approximate the same curved

surface into a curved face frame. Similarly, connected linear edges that approximate the same

curve are also grouped into a curved edge frame. Second, faces that are tangent across an edge, that

is, C1 continuous, are also merged into one. Since detecting the C1 continuity is sometimes am-
biguous due to the finite precision of floating point calculation, VANTAGE provides an interactive

graphic interface that allows the user to select any pair of adjacent faces he desires to merge.

I

10

Importantly, the topological relationships of grouped and merged surfaces are also maintained in a

winged-edge representation. This feature is very useN for computer vision applications, where a

continuous surface must often be treated as a single surface.

3.6.3.3-D Face Properties
Property descriptions of the faces of solids can be attached to the 3-D boundary representation.

There are two types of face properties:
Physical properties inherent to the solid itself (e.g. color, texture).

0 Properties that result from the environment of the solid (e.g. cast shadow for a given
light-source). These properties are computed at the time of projection.

light-so

Figure 3-6: 3-D Face Properties for a Light-source

Figure 3-6 illustrates the 3-D property representations in the case of color and shadow. These

divisions due to different properties are stored in the property frame of the 3-D faces. They are also

classified according to the cause. For example, a particular 3-D face can have shadows due to

different light-sources such as light-source-a and light-source-b.

3.6.4.3-D Scene
A 3-D scene is a portion of the world for which we can create an image. It is composed of:

A collection of solids
A selection of physical properties of the solids (e.g. color).

A set of environmental conditions, that can include:
A set of light-sources (one or several).

.

A sensor, which is used to generate a 2-D image of the scene (e.g. a camera).

Each scene condition (e.g. a light-source) is defined as a separate frame containing all necessary

information: location, color of light, pointlextended light-source, sensor characteristics, etc.

3.6.5.2-D Image
The 2-D representation of a 3-D scene is an explicit symbolic representation of the image that is

obtained by projecting the scene using the specified sensor (see Figure 3-7). VANTAGE provides a

capability to explicitly represent $e relationships between 3-D information (such as shape, surface,

and lighting) in the scene and 2-D infomation (such as visibility, shadow, and projected shape) in

the image. For a particular viewing condition, the 3-D faces are projected on the viewing plane and

the visible portion of the projections result in 2-D face-regions. These 2-D face-regions are a

collection of 2-D arcs and the 2-D am connect 2-D joints. The hierarchy of 2-D face-regions, 2-D

arcs and 2-D joints is the same as faces, edges and vertices at the 3-D level.

camera

\T

3-0 Scene

Face-Reg ions

Figure 3-7: Projection of a 3-D scene, and regions of the resulting image

The algorithm to project a scene f h m 3-D to 2-D in addition generates all topological relationships

among the face-regions (projections of the 3-D faces) of the image something similar to that of the

3-D level.

12

3.6.6.2-D Property Regions
Different lighting conditions interact to produce the final image. To compute whether a face is

illuminated by a light-source or shadowed, we take advantage of the correspondence between a

light-source and a sensor, as shown in table 3-2. When projecting a scene using a light-source as

viewpoint, the 2-D regions obtained represent the illuminate4cast-shadowed parts of the scene.

These 2-D regions are back-projected on the 3-D faces of the solids, and stored as the 3-D face

propemes associated with the light-source. These 3-D face properties are projected on the 2-D

face-regions , which are divided into property-regions.

I Shading I Visibility I
I 4 I illuminated I visible I
I I I cast-shadowed I occluded I
I I I I self-shadowed I back-face 1

I' Pai n ted" I rn age

Table 3-2: Light-source/Sensor

Face-Regions

Property-Regions

ad-

cut-

Figure 3-8: Property regions associated to a light-source

Figure 3-8 explains the property-regions, which are 2-D face properties of the 2-D face regions.

13

4. Invoking the system

The Lisp system should be invoked first. VANTAGE currently runs under LUCID and ALLEGRO com-

mon lisp environments. Then load the file "/usr/van~ge/vantage-init.lisp". This will initialize the

VANTAGE system.

> (load "/usr/vantage/vantage-init .lisp")
;;;;:;:;:;::;:;:;::;:::;;:;:;;:;:;;;;;;;::;;:;;:;;;::;::;:::::::::::::

I VANTAGE SOLID MODELING SYSTEM V1.0

I VISTON AND AUTONOMOUS SYSTEMS CENTER
, THE ROBOTICS INSTITUTE

,

,

,
,
..

,,,,,,, Loading Subsystem - Framekit - Solids
, , , , , , - Windows
t , , , , , , - Utilities

.
8 r S r 8 l P

, , , I I , ,
, , , , , , I

..

I Here you go
,

.............
I

I

Send Comments and Bug reports to vantage@cs.cmu.edu

>

At the end it will open up a new graphic screen called "LISP-Screen". Inside there will be a default

window named "vantage window". By clicking the left mouse button inside the window, a pop-up-

menu interface can be invoked. Users interested in creating other widows on the Lisp screen are

encouraged to go through the Chapter 12 of the "SUN Common Lisp User's Manual" titled "WIN-

DOW TOOL KIT".

14

5. CSG Definition of a Solid

The creation of a CSG-node is performed by the macro csgnode. This macro allows the creation of

primitive solids or the creation of solids by applying boolean operations on existing solids.

The following macm creates a solid:

(csgnode solid-name type parameters)

where type can be either a primitive-type (e.g. cube, cylinder, etc.), or an operation (e.g. union,

move, etc.). The csgnode command can also take optional arguments that are defined below.

5.1. Primitives

They are defined by the macro:

(CSGNODE solid-name primitive-type parameters &key (trans *identity*))

or the function:

(CSGNODE* solid-name primitive-type parameters &key (trans *identity*))

CSGNODE* is like CSGNODE, except that it evaluates its arguments.

primitive-type is one of the following types:

cube cylinder cone truncated-cone sphere iso-prism

righ t-angle-prism 2.5-prism 2.5-cone

or their abbreviated forms:

cu cub cy cy1 co con tru sp sph is0 rt 2 . 5 ~ 2 . 5 ~

parmeters is a list of numbers and depends on the primitive type.
cube
cylinder
cone
truncated-cone
sphere (radius approximation-number)

(x-length y-length z-length)
(radius height number-of-app-faces)
(radius height number-of-app-faces)
(bottomradius top-radius height number-& app-faces)

macro

function

15

0 iso-prism (base side height)
0 right-angle-prism (sidel side2 height)
0 2.5-prism
0 2.5-cone

(height (xl y r) (9 Y Z) (..> ...I
(height (x,.. Y,, 1 (X I Y O (d Y2) (..) ...I

trans is an optional parameter that defaults to the identity transformation. It specifies the rigid-

motion attached to the node. It can be one of the following:
nume : name of an already defined rigid-motion.
list of six float-numbers (x y z roll pitch yaw): the system will generate a motion matrix
and will give a new name for it. The angles roll, pitch, and yaw can be entered in
degrees or radians depending on the current value of the variable *angle-mode* (see
page 29).

0 list (name x y z roll pitch yaw): same as above but the given name is assigned.

See Appendix A for an example of each primitive.

5.2. Rigid-Motion

5.2.1. Moving a solid

(CSGNODE solid-name move sol..! &key (trans *identity*) (fast L))

Defines a new solid obtained by applying to an existing solid the transformation specified by trans.

macro

trans is as defined in the previous section.

fast specifies whether the boundary representation of the child nodes should be destructively af-

fected or not, when generating the boundary representation for the specified node. f a t takes one of

the following values:
NIL: the boundary representation of the child nodes will be copied and not destructed
when generating the boundary representation of the specified node.
T: the boundary representation of the child nodes will be destructed when generating
the boundary representatiai of the specified node. They will not be copied, therefore
saving computation time.
all: all nodes" below" the specified node in the CSG-tree wiU have their fast flag set to
T. Only the boundary representation of the specified node will remain.

(CSGNODE* solid-name move solid &key (trans *identity*) (fmt NIL)

CSGNODE* is like CSGNODE, except that it evaluates its arguments.

function

(MOVE-CSG-NODE node-name trans) macro

,

16

Moves an existing solid by applying to it the rigid-motion transformation specified by trans. The

user is asked to confirm the move command when a boundary-representation exists for the node or

when the node has parent nodes. If the user chooses to move the node anyway, the boundary-

representations of the node and its possible parents are deleted. Note that from now on, the parents

of the moved node will take into account the new location of the node.

(MOVE-CSG-NODE* node-name trans)

MOVE-CSG-NODE* is like MOVE-CSG-NODE, except that it evaluates its arguments.

5.2.2. Defining a transformation

A rigid-motion can be defined at the time it is used, as explained above, or using one of the

following functions:

(MK-MOTION-MATRIX (name x y z roll pitch yaw))

x, y, z define the position of the new origin, and roll, pitch, y a w define the rotations to perform

about the initial z, y and x axis. If name is absent a system-generated name will be assigned.

function

function

macro (MK-ROTATION &key (m e nil) (rpy '(0 0 0)) (axis-angle nil) (center '(0 0 0)))

Creates a rotation transformation, defined by the center of rotation, and either the roll, pitch and

yaw coefficients, or the rotation axis vector plus the rotation angle. If name is absent a system-

generated name will be assigned.

(MK-ROTATION* &key (name nil) (rpy '(0 0 0)) (axis-angle nil) (center '(0 0 0)))

MK-ROTATION* is like MK-ROTATION, except that it evaluates its arguments.

(MK-TRANSLATION &key (name nil) (xyz '(0 0 0)))

Creates a translation transformation, defined by the translation vector. If name is absent a system-

generated name will be assigned.

(MK-TRANSLATION* &key (name nil) (xyz '(0 0 0)))

MK-TRANSLATION* is like h-K-TRANSLATION, except that it evaluates its arguments.

function

macro

function

17

(MK-COMBINED-TRANSFORMATION &key (name NIL) (trans-list nil))

Creates a transformation resulting from several successive transformations. trans-fist is the list of

transformations to combine. The matrix of the new transformation is the product, from left to right,

of the matrices of the transformations of rrans-fist. If nume is absent, a system-generated name will

be assigned.

(MK-COMBINED-TRANSFORMATION* &key (name NIL) (trans-fist nil))

MK-COMBINED-TRANSFORMATION* is l i e MK-COMBINED-TRANSFORMATION, ex-

cept that it evaluates its arguments.

macro

function

5.3. Boolean Operations

Complex solids are created by applying boolean operations on other solids.

(CSGNODE solid-name boolean-operation solids &key (tram *identity*) vast NIL))

A new solid is generated by applying the specified operation to the specified solid(s), and then by

transforming the resulting solid by the specified rigid-motion,

macro

boolean operation is one of the following operations:

union difference intersection inverse

or their abbreviated form:

un uni di dif int inv

soli& is a list of two solids, except for the inverse operation, in which case it is just one solid.

trans is specified as explained in the previous section.

fast is explained in the previous section.

(CSGNODE* solid-name boolean-operation solids &key (tram *identity*) Vast NIL))
CSGNODE* is like CSGNODE, except that it evaluates its arguments.

Example:

function

The following commands create the nodes that appear in the CSG-tree of Figure 3-3.

18

> (csgnode bl cu (5 0 0 300 111.5) : t r a n s (0 -68.1 49.25 0 0 0))
B1
> (csgnode b2 c y 1 (1 2 0 450 1 0) : t r a n s (-130 6.9 6.5 0 0 -90))
B2
> (csgnode b3 m o v b2 : t r a n s (260 0 0 0 0 0))
B3
> (csgnode b4 cu (3000 3000 1 0 0) : t r a n s (0 0 155 0 0 0))
B4
> (csgnode b5 u n i (bl b2))
B5
> (csgnode b6 u n i (b5 b3))
B6
> (csgnode body1 d i f (b6 b4) : f a s t a l l)
BODY 1
>

5.4. Mirror Operation

This operation creates the symmetric solid of a specified solid relatively to a specified plane.

(CSGNODE solid-name mirror parameters &key (trans *identity*) (fast NIL))

parameters is a list (solid normal-x normal-y normal-z distance) specifying the solid and the

mimr-plane. The plane is defined by the x,y,z coordinates of its normal vector, and by its or-

thogonal distance to the origin.

macro

(CSGNODE* solid-name mirror parameters &key (trans *identity*) vast NIL))
CSGNODE* is like CSGNODE, except that it evaluates its arguments.

5.5. Redefining and Deleting solids

The definition of a node can be changed or deleted. If the affected node has ancestor nodes, then

they are all affected as well. When defining a solid using csgnode, if the specified name is already

used, then VANTAGE asks if it should use another name or replace the existing solid by the new one.

function

(DELETE-CSG-NODE node-name) macro

Deletes the node node-name and its boundary-representation (if it exists). Also deletes the parent

csg-nodes of the node (if any), after confirmation from the user.

19

(DELETE-CSG-NODE* node-name) function

DELETE-CSG-NODE* is like DELETE-CSG-NODE, except that it evaluates its argument.

5.6. Information on the CSG-Tree

The CSG-Tree specifies how the solids are created, and stores all the node operations in a tree

structure. Each node will correspond to a 3D-solid. The leaf nodes are primitive solids. The other

nodes are obtained by applying an operation on its child nodes.

(CSG-TREE)

Prints out information on the existing CSG-nodes.

function

(DESCRIBE-CSG-NODE node-name) macro

Prints out all the operations involved in the creation of the solid corresponding to node-nume.

(DESCRIBE-CSG-NODE* t~de-name) function

DESCRIBE-CSG-NODE* is like DESCRIBE-CSG-NODE, except that it evaluates its arguments.

(DESCRIBE-CSG-NODES)

Calls the function describe-csg-node for all the nodes.

function

20

6. Boundary Representation

This chapter describes the functions that generate the boundary-representation of a solid.

(BOUN-REP node-name)
Creates a complete 3d boundary-representation for the solid defined by the node. This represen-

tation consists of frames that repEsent the vertices, the edges, the faces, and the body (the name of

the body-frame is node-namez (with suffix 'z')). If a boundary-representation already exists for the

node, nothing is done.

A boundary-representation is generated for all nodes starting with the leaf-nodes (primitive solids)

and going up the csg-tree until the specified node. AU intermediate nodes that do not have a

boundary-representation yet get one in the process, except those whose parent-node has the fast

flag on, which get only a temporary boundary-representation that is destructively modified in the

process and deleted. If a node already has a boundary representation, the existing representation is

used for that node and VANTAGE does not generate a boundary-representation for the node and its

child-nodes.

(BOUN-REP* node-nume)

BOUN-REP* is like BOW-REP, except that it evaluates its arguments.

(3D-STRUCTURE node-name)

It has the same effect as boun-rep, but in addition the solid gets a 3D-Hierarchical structure

(grouping of faces approximating a same primitive surface...). If a boundary-representation already

exists for the node, only the grouping of faces and edges is performed. If the grouping operations

have also already been done, the function does not do anything.

(3D-STRUCTURE* node-name)
3D-STRUCKJRE* is like 3D-STRUCI'URE, except that it evaluates its arguments.

(3D node-name)

Merges connected faces that are specified by the user. The new faces that are created are at the

macro

function

macro

function

macro

21

top-level in the hierarchy of faces (see Figure 3-5). If a boundary-representation has not been

generated yet, boun-rep is first called.

This main application of this function is to merge connected faces that have a continuous normal

across the connecting edge. Since VANTAGE approximates all the higher order surfaces by planar

polyhedra it is impossible to automatically detect those edges across which the merge should take

place. So it requires interaction from the user through mouse input.

For merging some faces, some small faces may have to be created at the boundary of a surface, due

to the approximation of the surface. Such configurations are first detected, and the user is asked to

confirm any modification. Then the user can enter the faces he wants to merge. Any selected face is

then considered as an approximated face and grouped with its neighbors to create the parent faces.

(3D* node-name)
3D* is like 3D, except that it evaluates its arguments.

The boundary-representation of a node can be deleted using:

(DELETE-BOUN-REP node-name)

Deletes the boundary-representation of the node node-name (if it exists), with all its vertices, edges,

faces.

(DELETE-BOW-REP* node-name)

DELETE-BOW-REP* is like DELETE-BOUN-REP, except that it evaluates its argument.

function

macro

function

22

7. Sensors

The definition of sensor applies to cameras and light-sources. In can also include combinations of

cameras and light-sources (sensor-components) using AND and OR operations.

(CAMERA nume location key (target '(0 0 0)) (focal nil) (limit-angle nil))

Creates a camera that is positioned at location (= (x y z)) and that points toward target, with the

specified focal-length.

limit-angle is the maximum angle (in degrees) between the normal of a face and the viewing direc-

tion, for which the face is visible. The default NIL value for limit-angle corresponds to a limit-angle

of 90 degrees.

(CAMERA* name location key (target '(0 0 0)) (focal nil) (limit-angle NIL))

CAMERA* is like CAMERA, except that it evaluates its arguments.

macro

function

(LIGHT-SOURCE name location key (target '(0 0 0)) (focal nil) (limit-angle NIL))

Creates a light-source that is positioned at location (= (x y z)) and that points toward target, with the

specified focal-length.

limit-angle is the maximum angle (in degrees) between the normal of a face and the lighting direc-

tion, for which the face is lit. The default NIL value for limit-angle corresponds to a limit-angle of

90 degrees.

macro

(LIGHT-SOURCE* name location key (target '(0 0 0)) (focal nil) (limit-angle NIL))
LIGHT-SOURCE* is like LIGHT-SOURCE, except that it evaluates its arguments.

function

(MAKE-SENSOR-COMPONENT name type parums key (focal NIL) (limit-angle NIL))
Creates a camera or a light-source with the given parameters.

type is either camera or light.

parameters is a list of six numbers describing x, y, z, roll, pitch and yaw. The camera points

towards the negative z-axis given by the camera-coordinate system defined by the parameters.

focal specifies the focal distance of the perspective projection, or, when equal to NIL, characterizes

an orthographic projection.

function

23

limit-angle is the maximum angle (in degrees) between the normal of a face and the projection

direction, for which the face is kt. The default NIL, value for limit-angle corresponds to a limit-

angle of 90 degrees.

(ROTATE-C AMERA-AROUND-AXIS camera angle)

Rotates a camera around its viewing direction. The angle unit is given by *angle-mode*.

macro

(ROTATE-CAMERA-AROUND-AXIS* camera angZe) function

ROTATE-CAMERA-AROUND-AXIS* is like ROTATE-CAMERA-AROUND-AXIS, except that

it evaluates its arguments.

24

8. Scene and 3-D Properties

8.1. Scene
The following functions define a 3-D scene. The environmental properties applied to the scene

(lighting conditions) are added to the definition of the scene at the time of calculation of the 3-D

property regions of the scene for given light-sources (see section 8.2 and the IMAGE function, page

26)

(SCENE name csg-node-list) macro

Defines a 3d-scene by a list of csg-nodes. A boundary-representation of all the bodies of the scene

should exist before creating the scene.

(SCENE* name 3d-body-list)

SCENE* is like SCENE, except that it evaluates its arguments.

function

8.2.3-D Properties

(PROJECT-AND-BACK-PROJECT scene sensor optional (merge-shadows T))

Generates the 3-D properties of the specified scene for a given sensor (camera or light-source). A

process of projection and back-projection is performed, as explained in paragraph 3.6.6, page 12.

When the sensor is a camera, the regions generated on the 3-D faces of the scene are the visible,

occluded, or back-oriented areas of the scene for the given camera. For a light-source, the il-

luminated, cast-shadowed and self-shadowed areas of the scene are obtained (see table 3-2). The

names of the properties, which are also the names of the slots of the property-list frames of the

faces (see the defintion of a property-list frame, page 60), are built as in the following example: if

the name of the sensor (camera or light) is S1, the properties will be called visible-S1,

occluded-S1, back-S1. The property frames (see page 61) are automatically created or updated.

merge-shadows specifies whether the cast-shadowed regions corresponding to different occluding

faces should be merged or not before back-projection to the faces of the scene (MERGE-LIGHT-

PROPERTIES does the same merging operations, but after back-projecting to the scene).

macro

25

(PRO JECT-AND-BACK-PROJECT" scene sensor)
PROJECT-AND-BACK-PROJECT* is like PROJECT-AND-BACK-PROJECT, except that it

evaluates its arguments.

function

(MERGE-LIGHT-PROPERTIES scene light-source) macro

The property regions, obtained in a scene for a light-source using the previous function, are com-

puted by a face-to-face technique, and therefore the occluded areas are split into regions charac-

terized by the face that occludes them (the occluding face considered is the closest one to the

sensor).

PROJECT-AND-BACK-PROJECT (see above) and IMAGE (see page 26) allow the user either to

merge these split regions for each face before back-projecting them, or to back-project the split

regions directly. In the latter case, the user can perform the merging operations later, using

MERGE-LIGHT-PROPERTIES. This function makes the union, on every face of the scene, of the

split occluded regions for the light-source, in order to get the full consolidated occluded (cast-

shadowed) area. The old split regions are saved as a new property under a new name (for a

light-source L1, the name is split-occluded-Ll), and the new merged property-regions take their

previous name (occluded-Ll).

An example is showed in page 40

(MERGE-LIGHT-PROPERTIES* scene light-source) function

MERGE-LIGHT-PROPERTIES* is like MERGE-LIGHT-PROPERTIES, except that it evaluates

its arguments.

26

9. Image and 2-D Properties

9.1. Image
Given a 3-D scene and a sensor (camera), a 2-D image can be generated. The 2-D image consists of

2-D regions, arcs and joints. See paragraph 3.6.5, page 11, for a definition of a 2-D image, and page

62 for a description of a 2-D image frame.

(IMAGE scene camera key (lights NIL) (image-name NIL) (merge-shadows T))

Generates a 2-D image for the given scene, ushg the given camera. If no image-nume is given for

the image, a name is automatically generated (e.g. image-1209). The complete 2-D representation

of the image is computed, including regions, arcs, joints, winged-edge relations and back pointers

to 3-D elements.

The generation of 3-D properties (back-face, shadow, illuminated) for the specified lights (if not

NIL) is also performed (as with the PROJECT-AND-BACK-PROJECT function, page 24).

merge-shadows specifies whether the cast-shadowed regions corresponding to different occluding

faces should be merged or not before back-projection to the faces of the scene.

macro

(IMAGE* scene camera key (lights NIL) (image-name 'image))
IMAGE* is like IMAGE, except that it evaluates its arguments.

An image can be deleted using:

(DELETE-IMAGE image-name)

Deletes the image image-name, with all its joints, arcs, regions.

(DELETE-IMAGE* image-name)
DELETE-IMAGE* is like DELETE-IMAGE, except that it evaluates its argument.

funclion

macro

function

27

9.2.2-D Properties

(PAINT-PROPERTY -ON-IMAGE image-name property- nume)

Projects the 3-D areas corresponding to the property property-name onto the 2-D regions of the

image image-name. The property regions are first transformed using the camera that generated the

image, then clipped by the regions of the image. The 2-D properties are stored in the property-list

frames of the regions with the slot name image-name (see page 60: the format of a property-list

frame is identical in 2-D and 3-D). The property frames (see page 61) are automatically updated.

macro

(PAINT-PROPERTY -ON-IMAGE* image-name properry-name) function

PAINT-PROPERTY-ON-IMAGE* is like PAINT-PROPERTY-ON-IMAGE, except that it

evaluates its arguments.

28

10. Miscellaneous Functions and Variables

10.1. Functions dealing with Boundary representation

(PREVIOUS-EDGE edge face)
Returns the edge that comes before edge onface.

(NEXT-EDGE edge face)
Returns the edge that comes after edge onface.

(GET-VERTEX-LIST face)
Returns the list of vertices offace. (The vertices are not ordered).

(GET-ORDERED-VERTICES face)
Returns the ordered list of vertices of the outer boundary of face.

function

function

function

function

(GET-ALL-ORDERED-VERTICES face) function

Return a list that contains the ordered lists of vertices of the boundaries of face (outer boundary

and hole boundaries).

(NEIGHBOR-FACES face)
Returns the list of faces that have at least in edge in common withface.

(FACEL-EDGEL-OF-VERTEX verrex)
Returns a list that contains the list of edges that have vertex as an end and the list of faces that have

vertex as a vertex.

(EDGE-LIST-OF-VERTEX vertex)
Returns the list of edges that have vertex as an end.

function

function

function

29

10.2. Mathematical functions

(D m
Sets the *angle-mode* variable to deg.

(RAD)
Sets the *angle-mode* variable to rad.

ANGLE-MODE

Determines the unit (deg or rad) for the angles.

function

function

variable

(SAVE- ANGLE-MODE) function

Saves the current *angle-node*. To be used in conjunction with the restore-angle-mode function.

(RESTORE-ANGLE-MODE)

Sets the *angle-mode* to the value it had when calling save-angle-mode.

(DEG-TO-RAD deg-angle)

Returns the value in radians of an angle in degrees.

(CROSS-PRODUCT vector1 vector2)

Returns the cross-product vector of vectorl and vector2.

(DOT-PRODUCT vector1 vector2)

Returns the dot-product of vectorl and vector2.

(LENGTH-OF-VECTOR vector)

Retums the length (norm) of vector

function

function

function

function

function

(NORM-OF-VECTOR vector) function

30

Divides vector by its norm. Returns the normalized vector.

(ANGLE-BETWEEN-VECTORS vectorl vector2 direction)

Returns the angle in radians between vectorl and vector2. The vector direction determines the sign

of the angle.

function

(POINT-LJNE-DISTANCE xyz line-xyz- I line-xyz-2)

Returns the orthogonal distance between a point and a line given by the coordinates of two points.

(H OM 0 -PROD &rest transf -matrices)

Returns the mamx obtained by making the matrix-product of the specified transformation matrices.

10.3. Display functions

vantage-window is the default window where all the display actions take place. It has an active

region attached to it. When the LEFT mouse button is clicked any where inside the

vantage-window, the pop-up-menu system is invoked. (Figure 8).

Selection of an item will result in one the following:
0 It will fire a particular function.

Ex: "Erase-Screen" will clear the vantage-window.

0 Further pop-up-menus will show up.

Ex: "choose-body" will list all the solids defined and the chosen value will become the
default for the display system.

It may ask for some input values.

Ex: "show-corres-frame" displays the following message. (Figure 9)

~~~~~~~~~ 

Please respond by clicking: 

Complete description of the frame = Left-mouse-button 

Only the Name = Middle-mouse-button 

function 

function 



31 

DISPLAY-CAMERA 

Name of the frame that defines the camera used for display of a 3-D object. It is defined like any 

other camera in vantage, and can be redefined at will. Its default definition is created by the 

command: 

(camera* 'display-camera '(3000 3oooO 3000)) which defines an orthogonal projection from 

the point (3000 3000 3000) pointing to the origin (0 0 0). 

frame 

(DRAW-BODY body-name ) function 

Draws the specified body on the vantage-window. The body-name should correspond to the bound- 

ary representation. 

(DRAW-FACE face-name ) 
Draws the specified face on the vantage-window. 

(DRAW-EDGE edge-name ) 
Draws the specified edge on the vantage-window. 

(DRAW-VERTEX vertex-name radius ) 

Draws the specified vertex on the vantage-window. 

(SHADE-FACE face-name ) 

Shades the given face depending on the face normal. 

function 

function 

function 

function 

(SHADE-POLYGON ink &rest lists ) 

Shades a region given by the set 3f lists of vertices. The first one correspond to the outer boundary 

and the remaining ones are the holes. 

function 

(VERTEX-MATCH x-position y-position &optional close ) 

Returns the nearest displayed vertex on the vantage-window with respect to the given x and y 

positions. The current position of the mouse is stored in *mouse-x* and *mouse-y*. If more than 

one vertex is encountered within the range given by close, it will return one of them. 

function 



32 

(EDGE-MATCH x-position y-position &optional close ) 

Returns the nearest displayed edge on the vantage-window with respect to the given x and y posi- 

tions. If more than one edge is encountered within the range given by close, it will return one of 

them. 

(FACE-MATCH edgel edge2 ) 

Returns the name of a face that has both edgel and edge2 as edges. 

function 

function 

(FLASH-FACE face-name ) function 

Highlights or erases the existing highlight on the specified face. This is a very useful debugging 

tool. Multiple calls to flash-face results in a blinking effect. 

(FLASH-EDGE edge-name &optional width ) 

Highlights or erases the existing highlight on the specified edge. This is a very useful debugging 

tool. Multiple calls to flash-edge results in a blinking effect. 

(DRAW-IMAGE image-name ) 

Draws the specified 2d-image on the vantage-window. 

(DRAW-REGION region-name ) 

Draws the specified 2d-region on the vantage-window. 

(DRAW-ARC arc-name ) 

Draws the specified 2d-arc on the vantage-window. 

(DRAW-JOINT joint-name radius ) 

Draws the specified 2d-joint on the vantage-window. 

(SHOW-AXIS &optional length ) 

Draws the current x, y and z axis on the screen. 

function 

function 

function 

function 

funclion 

function 



33 

*CURRENT-BODY * 
Name of the last body that has been selected on the choose-body menu. 

*CURRENT-IMAGE* 

Name of the last image that has been selected on the choose-image menu. 

(FIT-SCREEN &optional solid-name *current-body* ) 

Adjusts the display size so that the specified body is entirely inside the window. 

(FIT-SCREEN* &optional solid-nume *current-body* ) 

FIT-SCREEN* is like FIT-SCREEN, except that it evaluates its argument. 

(IMAGE-FIT-SCREEN &optional image-name "current-image* ) 

Adjusts the display size so that the specified image is entirely inside the window. 

(IMAGE-FIT-SCREEN* &optional image-name *current-image* ) 

IMAGE-FIT-SCREEN* is like IMAGE-FIT-SCREEN, except that it evaluates its argument. 

(WINDOW-ZOOM ) 

Redisplays the portion of the window selected by two successive middle-mouse-button clicks. The 

selected region will be enlarged to fit the vantage-widow. 

*ZOOMF* 

Controls the scale of the image. 

variable 

variable 

macro 

function 

macro 

function 

function 

variable 

(ZOOM x ) function 

Changes the scaling factor of the display (variable *zoomF). The current value is multiplied by x. 

The value of x should be greater than 0. 

*DASH-LEVEL* 

Controls the length of the line segments used to draw dashed lines. 

variable 



34 

(DASH x ) 

Changes the *dash-level* variable. The current value is multiplied by x. The value of x should be 

greater than 0. 

*SHADE-LENGTH* 

Controls the vertical distance between two dots used for shading. 

function 

variable 

(SHADEL x ) function 

Changes the *shade-length* variable. The current value is multiplied by x. The value of x should 

be greater than 0. 

*SHADE-WIDTH* 

Controls the horizontal distance between two dots used for shading. 

variable 

(SHADEW x ) function 

Changes the *shade-width* variable. The current value is multiplied by x. The value of x should be 

greater than 0. 

(DISPLAY-SCENE scene sensor ) 

Displays the scene scene as seen from the sensor sensor, with hidden parts hidden. Just paints 

polygons from back to front. 

(DISPLAY-SCENE* scene sensor ) 

DISPLAY-SCENE* is like DISPLAY-SCENE, except that it evaluates its arguments. 

(DISPLAY-PROPERTY image property-name ) 

Displays and shades the property- regions of image for the property property-name. 

(DISPLAY-PROPERTY* image property-name ) 

DISPLAY-PROPERTY* is like DISPLAY-PROPERTY, except that it evaluates its arguments. 

macro 

function 

macro 

funclion 



35 

Appendix A 
Primitive Solids 

(csgnode primitive-1 cub (100 200 150)) 

(csgnode primitive-2 cy1 (50 200 7)) 

- 1 surface 

- 2 curves 

(csgnode primitive-3 con (50 150 7)) 

- 1 surface 

- 1 curve 



36 

(csgnode primitive-4 tru (100 50 150 7 ) )  

- 1 surface 

- 2 curves 

(csgnode primitive-5 sph (80 5)) 

- 1 surface 

(csgnode primitive-6 is0 (100 200 150)) 

z 

z 



37 

(csgnode primitive-7 rt (100 50 1 5 0 ) )  

I 

(csgnode primitive-8 2 . 5 ~  (150 
( -20 -50)  ( 5 0  -30) 
( 1 0  2 5 )  (30 80) ( -25 70))) 

z 

( 0  -70)  ( -20 -50) ( 5 0  -30) 
( 1 0  2 5 )  (30 80) ( -25 70))) 

I 



38 

Appendix B 
Examples 

This first example shows a lisp file which, when loaded, performs the following operations: 
generation of the CSG tree of an object (budyl) from primitives 

0 creation of a boundary-representation of the object from the CSG tree 

display of the solid on the screen 

definition of a scene containing the object 

definition of a camera 

generation of an image of the scene using the camera 

display of the image on the screen 
;; Save current angle unit (degrees or radians) 
( save-angle-mode) 

;; Set angle unit to degrees 
(setq *angle-mode* ‘ deg) 
;; Define csg representation for bodyl 
(csgnode” ‘bl ‘cu ‘ (500 300 111.5) :trans ‘ (0 -68.1 49.25 0 0 0) ) 
(csgnode* ‘b2 ‘cy1 ‘ (120 450 10) :trans ‘ (-130 6.9 6.5 0 0 -90)) 
(csgnode* ‘b3 ‘mov ‘b2 :trans ‘ (260 0 0 0 0 0)) 
(csgnode* ‘b4 ‘cu ‘(3000 3000 100) :trans ‘(0 0 155 0 0 0)) 
(csgnode* ‘b5 ‘uni ‘ (bl b2)) 
(csgnode* ‘b6 ‘uni ‘ (b5 b3)) 
(csgnode* ‘bodyl ‘dif ‘ (b6 b4) :fast ‘all) 
;; Set the angle unit to its previous value 
(restore-angle-mode) 

;; Generate boundary representation for bodyl (called bodylz) 
(boun-rep* ‘bodyl) 

;; Compute scaling and translation factors so that bodyl fits on 
;; the display window, and draw bodyl. The camera is the current 
;; “display-camera“, which has a default definition, but which can be 
;; redefined 
(fit-screen* ‘bodyl) 

;; Define 3d scene 
(scene* ‘my-scene ‘ (bodyl) ) 

;; Define a camera 
(camera* ‘caml ‘ (2000 1000 500) :focal 5) 
;; Generate 2D description 
(image* ‘my-scene ‘caml :image-name ‘my-image) 

;; Compute scaling and translation factors so  that my-image fits on 
;; the display window, and draw my-image 
( image - f i t - s cr een * ‘ my -image ) 

. .  
I t  

.. 
I t  

. .  
, I  

. .  
I t  

. .  
, t  

. .  
I t  

. .  
, I  

. .  
I t  

. .  
* I  

. .  
, I  



39 

This second example shows an interactive session in which operations similar to the ones of the 

previous example are performed, plus the following operations: 
definition of a light-source 

generation of the 3D properties of the scene for the light-source 

generation of the 2D properties of the image by projection of the 3D properties of the 

display of the 2D property regions 
scene 

Figures B-1 and B-2 show the resulting image and the property-regions associated with the light- 

source. 



40 

> (csgnode a1 cu (100 100 100)) 
A1 
> (csgnode a2 cu (80 80 200)) 
A2 
> (csgnode a3 cu (80 200 80)) 
A3 
> (csgnode a4 cu (200 80 80)) 
A4 
> (csgnode a5 dif (a1 a2)) 
A5 
> (csgnode a6 dif (a5 a3)) 
A6 
> (csgnode a7 dif (a6 a4) :fast all) 
A7 
> (csgnode ground cu (1000 1000 10) :trans (0 0 -100 0 0 0)) 
GROUND 
> (boun-rep a7) 
A7 
> (boun-rep ground) 
GROUND 
> (scene sl (a7 ground)) 
s1 
> (camera cl (300 -200 450) :focal 1) 
c1 
> (light-source 11 (-200 300 450) :focal 1) 
L1 
> (image sl cl :lights (11) :image-name il :merge-shadows nil) 
I1 
> (image-fit-screen il) 
I1 
> (paint-property-on-image il back-11) 
BACK-L1 
> (paint-property-on-image il occluded-11) 
OCCLUDED -L1 
> (paint-property-on-image il visible-11) 
VISIBLE-L1 
> (merge-light-properties sl 11) 
L1 
> (paint-property-on-image il occluded-11) 
OCCLUDED-L1 
> (display-property il back-11) 
BACK-L1 
> (display-property il split-occluded-11) 
SPLIT-OCCLUDED-L1 
> (display-property il occluded-11) 
OCCLUDED-L1 
> (display-property il visible-11) 
VISIBLE-L1 



41 

Figure B-1: Image i 1, plain and with shadows 

back-I1 

m 

* window-zooming) 

m 

split-occluded-I1 occluded-I1 visible-I1 

Figure B-2: 11 property-regions projected on i l  



42 

Appendix C 
Standard Frames 

The next pages give the definition of the frames used in VANTAGE. For each type of frame, the 

corresponding slots are listed, along with a brief description of each. Optional slots are marked with 
a ”*”. 



43 

I CSG-NODE I 

Description: Representation of a CSG-node. 

Frame: 
(CSG-NODE-NAME 

(is-a) 
(class) 
(type) 
(parameters) 
(rigid-motion) 
(node-used-by-list) 
(bund ary-EP) 
(groupapproximate) 
(merge) 

* (node-left) 
* (node-right) 
* (fast) 
* (surface-list) 
* (curve-list)) 

Slots: 

is-a 
Value: csg-node. 

class 
Value: either primitive, or operation. 
Specifies whether the node is a leaf-node (primitive solid) or results from an 
operation performed on its child node(s). 

Value: either a primitive type (e.g. cube. cylinder, cyl, erc.) or an operation 
name (e.g. union, dif, move, mir, etc.). 
This slot specifies the type of primitive or the type of operation the node cor- 
responds to. 

parameters 
Value: List of float numbers. 
For a primitive solid, the parameters that define it. 

Value: motion-matrix. 
Defines the coordinate system attached to the node. 

Value: list of csg-nodes. 
The list contains the csg-nodes that are defined using the current node, i.e. the 
parent nodes of the node in the csg-tree. 

Value: 3d-body. 
Inverse: body-csg-node. 
Points to the boundary-representation of the body defined by the node. 

rigid-motion 

node-used-by-list 

boundary-rep 



44 

group-approximate 
Value: T. 
Is T when the grouping of the approximated faces and edges has been done. 

merge - 
Value: T. 
Is T when some faces have been merged. 

node-left 
Value: CSG-NODE. 
For a solid that results from an operation, the left child of the node. 

Value: CSG-NODE. 
For a solid that results from an operation, the right child of the node. 

node-right 

fast 
Value: T. 
When it is T, then the boundary representation of the child nodes of the node 
will not be copied/saved before performing on them the operation that will 
create the boundary representation of the node. 

Value: list of surfaces. 
List of the non-planar surfaces contained in the body. 

Value: list of curves. 
List of the non-linear curves contained in the body. 

sur face-list 

curve-list 



45 

I 3D-BODY 1 

Description: Representation of a solid or body. 

Frame: 
(3D-BODY-NAME 

(is-a) 
(body-csg-node) 
(bod y-rigid-motion) 
(body-face-list) 
(bod y-edge-list) 
(body -vertex-list) 
(bod y-cfg-list) 

* (body-app-grouped-faces) 
* (body-app-grouped-edges) 
* (body-merged-faces)) 

Slots: 

is-a 

body-csg-node 
Value: 3d-body. 

Value: csg-node. 
Inverse: boundary-rep 
Points to the csg-node that defines the body. 

Value: motion-matrix. 
The transformation gives the location of the current body-coordinates frame in 
the world-coordinates. 

Value: list of Sd-faces. 
Inverse: face-body. 
Lists all the faces of the body. 

Value: list of 3d-edges. 
Inverse: edge-body. 
Lists all the edges of the body. 

Value: list of 3d-vertices. 
Inverse: vertex-body. 
Lists all the vertices of the body. 

Value: list of lists of 3d-face.s. 
Lists all the ciosed groups of connected faces (cfg) of the body. 

Value: list of 3d-faces. 
Lists all the faces of the body that have been obtained by grouping a set of 

body-rigid-motion 

body-face-list 

body -edge-list 

body-vertex-list 

body-cfg-list 

body -a p p-gr ouped- faces 



46 

connected faces that approximate a same surface. 

Value: list of 3d-edges. 
Lists all the edges of the body that have been obtained by grouping a set of 
connected edges that approximate a same curve. 

body -merged-faces 
Value: list of 3d-faces. 
Lists all the faces of the body that have been obtained by merging connected 
faces. 

body-app-grouped-edges 



47 

3D-FACE 

Description: Representation of a face of a body. 

Frame: 
(3D-FACE-NAME 

(is-a) 
( face-bod y) 
(face-type) 
( face-geometry ) 
(out-bun-list) 
(hole-bun-list) 

* (face-surface) 
* (face-class) 
* (face-parent) 
* (face-subdivision) 
* (face-children) 
* (face-properties) 
* (app-grouped-out-bun-list) 
* (app-grouped-hole-bun-list)) 

Slots: 

is-a 

face-body 
Value: 3d-face. 

Value: 3d-bOdy. 
Invem: body-face-list. 
Points to the 3d-body that contains the face. 

Value: either plane, cyl, sph, con 
Gives the type of the surface that contains the face. 

Value: list of parameters. 
For a planar face. lists the coordinates of the normal vector of the face and the 
orthogonal distance between the face and the origin. 

Value: list of lists of 3d-edges. 
Lists the outer boundaries of the face. For a planar face, there is only one outer- 
boundary. 

Value: list of lists of 3d-edges. 
Lists the boundaries of the holes of the face. 

Value: surface. 
Points to the surface that contains the face. 

face-type 

face-geometry 

out-boun-list 

hole-bun-list 

face-surface 



48 

face-class 
Value: either global, app, or merge. 
Indicates whether and how this face was combined with other faces to generate 
a parent face. A global face has no parent face. An app face has a parent face 
obtained by grouping a set of connected faces that approximate a same surface. 
A merge face has a parent face obtained by merging a set of connected faces. 

Value: 3d-face. 
Inverse: face-chi1 dren . 
Points to the parent face of this face. 

Value: either merge or app. 
Indicates whether and how this face is divided into children faces. It is app if 
the face was obtained by grouping a set of connected faces that approximate a 
same surface. It is merge if the face was obtained by merging a set of con- 
nected faces. 

Value: list of 3d-faces. 
Inverse: face-parent. 
Points to the list of faces that generated this face. 

Value: property-list. 
Points to the frame that lists the properties of the face. 

app-grouped-out-born-list 
Value: list of lists of 3d-edges. 
Lists the outer boundaries of the face, replacing every set of connected ap- 
proximated edges by their parent edge. 

Value: list of lists of 3d-edges. 
Lists the boundaries of the holes of the face, replacing every set of connected 
approximated edges by their parent edge. 

face-parent 

face-subdivision 

face-children 

face-properties 

app-grouped-hole-bou-list 



49 

I 3D-EDGE I 

Description: Representation of an edge of a body. 

Frame: 
(3D-EDGE-NAME 

(is-a) 
(edge-bdy) 
(edge-type) 
(PfW 
(n-face) 
(Pew) 
(nccw) 
(Pccw) 
(new) 
(pvertex) 
(n-vertex) 

* (edge-curve) 
* (edge-kind) 
* (edge-class) 
* (edge-parent) 
* (edge-subdivision) 
* (edge-children) 
* (app-grouped-p-face) 
* (app-grouped-n-face) 

* (app-grouped-nccw) 
* (app-grouped-pccw) 
* (app-grouped-ncw)) 

* (app-grouped-pcw) 

Slots: 

is-a 

edge-body 
Value: 3d-edge. 

Value: 3d-body. 
Inverse: body-edge-list. 
Points to the 3d body that contains the edge. 

Value: either Pine, cir, or any combination of 2 surfaces chosen among plane, 
cyl, con, sph (e.g. plane-cyl, con-con, cyl-sph, efc). 
Gives the type of the curve that contains the edge, or the types of the 2 surfaces 
whose intersection contains the edge. 

Value: 3d-face. 
Points to the p-face in the winged-edge representation of this edge. 

- Value: 3d-face. 
Points to the n-face in the winged-edge representation of this edge. 

edge-type 

p-face 

n-face 



50 

P- 

nccw 

PCcw 

ncw 

Value: 3d-edge. 
Points to the pcw-edge in the winged-edge representation of this edge. 

Value: 3d-edge. 
Points to the nccw-edge in the winged-edge representation of this edge. 

Value: 3d-edge. 
Points to the pcw-edge in the winged-edge representation of this edge. 

Value: 3d-edge. 
Points to the ncw-edge in the winged-edge representation of this edge. 

Value: 3d-vertex. 
Points to the p-vertex in the winged-edge representation of this edge. 

Value: 3d-vertex. 
Points to the n-vertex in the winged-edge representation of this edge. 

Value: curve. 
Points to the curve that contains the edge. 

p-vertex 

n-vertex 

edge-curve 

edge-kind 
Value: aux. 
aux indicates that the edge is an auxiliary edge which divides a curved surface 
- 
into auxiliary planar surfaces for the purpose of approximation. 

Value: either global or app. 
Indicates whether this face was combined with other faces to generate a parent 
face. A global edge has no parent edge. An app face has a parent face obtained 
by grouping 2. set of connected faces that approximate a same curve. 

Value: 3d-edge. 
Inverse: edge-children. 
Points to the parent edge of this edge. 

Value: app. 
This slot indicates whether this edge is divided into children edges. It is app if 
the edge was obtained by grouping a set of connected edges that approximate a 
same curve. 

Value: list of 3d-edges. 
Inverse: edge-parent. 
Points to the list of edges that generated this edge. 

Value: 3d-face. 
Parent-face or the p-face of the edge. 

edge-class 

edge-parent 

edge-subdivision 

edge-children 

app-grouped-p-face 

app-grouped-n-face - _  - 

Value: 3d-face. 
Parent-face of the n-face of the edge. 



51 

app-gr0uped-m 
Value: 3d-edge. 
Parent-edge of the pcw-edge of the edge. 

Value: 3d-edge. 
Parent-edge of the nccw-edge of the edge. 

Value: 3d-edge. 
Parent-edge of the pccw-edge of the edge. 

Value: 3d-edge. 
Parent-edge of the ncw-edge of the edge. 

app-grouped-nccw 

app-grouped-pccw 

app-grouped-ncw 

N 
'-9- 

NCCW 
N-Face 

Figure C-1: Wmged-edge representation 



52 

I 3D-VERTEX 

Description: Representation of a vertex of a body. 

Frame: 
(3D-VERTEX-NAME 

(is-a) 
(vertex-body) 
(one-of-the-edges) 
(xyz-values) 

* (display-xy)) 

Slots: 

is-a 

vertex-body 
Value: 3d-vertex. 

Value: 3d-body. 
Inverse: body -vertex-list. 
Points to the 3d body that contains the vertex. 

Value: 3d-edge. 
Points to one of the 3d edges that have this point as an end point. 

Value: list of three float numbers. 
Gives the list (x-coordinate, y-coordinate, z-coordinate) of the vertex with 
respect to the body coordinates. 

Value: list of two integers. 
Gives the coordinates of the vertex with respect to the screen coordinates. 

one-o f- the-edges 

xyz-values 

display-xy 



53 

MOTION-MATRIX 1 

Description: Representation of a motion matrix. 

Frame: 
(MOTION-MATRIX-NAME 

(is-a) 
(matrix-name) 
(first-row) 
(second-row) 
(third-row)) 

Slots: 

is-a 

matrix-name 
Value: motion-matrix. 

Value: array (3 4) of float numbers. 
Points to the matrix, defined by the make-array function. 

Value: list of 4 float numbers. 
Lists the elements of the first row of the matrix. 

Value: list of 4 float numbers. 
Lists the elements of the second row of the matrix. 

Value: list of 4 float numbers. 
Lists the elements of the third row of the matrix. 

first-row 

second-row 

third-row 



54 

I SURFACE I 

Description: Definition of a surface. 

Frame: 
(SURFACE-NAME 

(is-a) 
(type) 
(parameters) 
(rigid-motion)) 

or: 

or: 

(SURFACE-NAME 
(is-a) 

(move) 
(rigid-motion)) 

(type) 

(SURFACE-NAME 
(is-a) 
(type) 
(minor) 
(mirror-plane) 
(rigid-motion)) 

Slots: 

is-a 

tme 

Value: surface. 

Value: either q l ,  con, or sph. 
Geometric type of the surface. 

Value: list of float numbers defining the surface. 
The list contains the radius for a cylinder and a sphere, and a radius and a 
height for a cone. 

Value: motion-matrix. 
The motion-matrix gives either the position of the surface in the world coor- 
dinates frame, or, when the move or mirror slot exists, the transformation to 
apply to the specified surface. 

Value: su$ac-.. 
If specified, indicates that the surface is obtained by applying the specified 
rigid-motion to the specified surface. 

parameters 

rigid-motion 

move 



55 

mirror 
Value: surface. 
If specified, indicates that the surface is obtained by applying the specified 
mirror operation to the specified surface, and then by applying the specified 
rigid-motion. 

Value: list of 4 float numbers. 
Defines the mirror plane by listing the coordinates of its normal vector and the 
orthogonal distance between the plane and the origin. 

mirror-plane 



56 

CURVE 

Description: Definition of a curve 

Frame: 
(C URVE-NAME 

(is-a) 
(type) 
(parameters) 
(rigid-motion) 
(inter)) 

or: 
(CURVE-NAME 

(is-a) 
(type) 
(move) 
(rigid-motion)) 

or: 
(CURVE-NAME 

(is-a) 

(minor) 
(mimr-plane) 
(rigid-motion)) 

(type) 

Slots: 

is-a 

m e  

Value: curve. 

Value: either cir or any coni,,,iation of 2 surfaces chosen among plane, cyl, 
con, sph (e.g. plane-cyl, con-con, cyl-sph, etc). 
Gives the type of the curve, or the types of the 2 surfaces whose intersection 
generate the curve. 

Value: list of float numbers defining the curve. 
When the type of the curve is cir, it lists the radius and elevation (z-coordinate) 
of the curve. 

Value: motion-matrix. 
The motion-matrix gives either the position of the curve in the world coor- 
dinates frame, or, when the move or mirror slot exists, the transformation to 
apply to the spcified curve. 

Value: curve. 

parameters 

rigid-motion 

move 



57 

If specified, indicates that the curve is obtained by applying the specified rigid- 
motion to the specified curve. 

mirror 
Value: curve. 
If specified, indicates that the curve is obtained by applying the specified mirror 
operation to :he specified curve, and then by applying the specified rigid- 
motion. 

Value: list of 4 float numbers. 
Defines the mirror plane by listing the coordinates of its normal vector and the 
orthogonal distance between the plane and the origin. 

Value: list containing 2 surfaces or one surface and one plane. 
Points to the 2 surfaces whose intersection defrnes the curve. If one surface is a 
plane, it is specified by a list containing the coordinates of its normal vector and 
the orthogonal distance between the plane and the origin. 

mirror-plane 

inter 



58 

I 3D-SCENE 1 

Description: Definition of a 3d scene. 

Frame: 
(3D-SCENE-NAME 

(is-a) 
(csg-node-list) 
(light-list) 
(x-max) 

(z-max) 
(x-min) 
(y-min) 
(z-min)) 

(Y-max) 

Slots: 

is-a 

csg-node-list 
Value: 3d-scene. 

Value: list of csg-nodes. 
Lists the bodies that are in the scene. 

Value: list of sensors. 
Lists the light-sources that have been used in the scene. 

Value: float numbers. 
Maximum and minimum x, y, z coordinates of the scene. 

light-list 

x-max, y-max, z-max, x-min, y-min, z-min 



59 

SENSOR I 
Description: Definition of a sensor. 

Frame: 
(SENSOR-N AME 

(is-a) 
(type) 
(parameters) 
(rigid-motion) 

* (focal-length) 
* (limit-angle)) 

Slots: 

is-a 

type 

rigid-motion 

Value: Sensor. 

Value: either amera or light. 

Value: rigid-mutiun Defines the frame of coordinates of the sensor. The z-axis 
of this frame is the "viewing" direction, pointing from the object to the sensor. 

Value: list of 6 float numbers. 
Lists the parameters ( x  y z ruZZ pitch yaw) that define the frame of coordinates 
of the sensor. 

Value: float number. 
Focal-length of the sensor. Gives the distance between the projection-plane and 
the sensor. For a Light-source, no specified focal-length means a parallel light- 
source, whereas a specified focal-length Corresponds to a perspective light- 
source. 

Value: float number, or NIL. 
Maximum angle (in degrees) between the normal of a face and the projection 
direction, for which the face is visible. NIL corresponds to a limit-angle of 90 
degrees. 

parameters 

focal 

limit-angle 



60 

PROPERTY-LIST I 

Description: Representation of properties for a particular 3D face or 2D region. 

Frame: 
(PROPERTY -LIST-NAME 

(is-a) 
(property-I) 
(property-2) 

. . .) 

Slots: 

is-a 

property-1, property-2, etc. 
Value: property-list. 

Each slot represents a different property specified by the name of the slot. 
Value: list of polygons, where a polygon is a list of boundaries (outer, then 
hole(s)), and where a boundary is a list of vertices (each one represented by a 
list containing its x and y coordinates (in 2-D), or x, y and z coordinates (3-D)), 
or T. 
Defines the Rgion(s) of the face where the property applies. If T, the property 
applies to the whole face. 



61 

I PROPERTY 1 

Description: Eachpruperty frame has a name that is the name of a property (e.g. occluded-Ll), and 

lists the 3-D faces and the 2-D regions that have that property. 

Frame: 
(PROPERTY-NAME 

(is-a) 
(Jd-faces) 
(2d- regions)) 

Slots: 

is-a 

3d-faces 

2d-regions 

Value: property. 

Value: list of faces (in one or several scene(s)) that have the property. 

Value: list of regions (in one or several image(s)) that have the property. 



62 

I 2D-IMAGE 1 

Description: Definition of a 2d-image. 

Frame: 
(2D-IMAGE-NAME 

(is-a) 
(image-3d-scene) 
(image-camera) 
(image-light-source-list) 
(image-region-list) 
(image-arc-list) 
(image-joint-list) 
(image-bounding-box)) 

Slots: 

is-a 

image-3d-scene 
Value: 2d-image. 

Value: 3d-scene. 
Specifies the 3d scene that is projected on the image. 

Value: sensor. 
Specifies the camera that is used to generate the image. 

Value: list of 2d-regions. 
Inverse: region-image. 
Lists all the regions of the image that result from the projection of a 3d-face. 

Value: list of 2d-arcs. 
Inverse: arc-image. 
Lists all the arcs (line-segments) of the image. 

Value: list of 2d-joints. 
Inverse: joint-image. 
Lists all the joints (vertices) of the image. 

image-bounding-box 
Value: list of 4 float numbers. 
Lists the minimum and maximum coordinates of the image (x-min y-min x-mux 
Y-max). 

image-camera 

image-region-list 

image-arc-list 

image-joint-list 



63 

2D-REGION 1 

Description: Representation of a region of a 2d-image 

Frame: 
(2D-REGION-NAME 

(is-a) 
(region-image) 
(3d-face) 
(region-bounding-box) 
(region-out-bun-list) 
(region-hole-bun-list) 

* (region-properties)) 

Slots: 

is-a 

region-image 
Value: 2d-region. 

Value: 2d-image. 
Inverse: image-region-list. 
Points to the 2d-image that contains the region. 

Value: 3d-face. 
Points to the 3d-face that generated the region. 

region-bounding-box 
Value: list of 4 float numbers. 
Lists the minimum and maximum coordinates of the region on the image (x-min 
y-min x-max y-max). 

Value: list of 2d-arcs. 
Lists the outer boundary of the region. 

Value: list of fists of 2d-arcs. 
Lists the boundaries of the holes of the region. 

Value: properplist. 
Points to the frame that lists the properties of the region. 

3d-face 

region-out-boun-list 

region-hole-boun-list 

region-properties 



64 

2D-ARC I 

Description: Representation of an arc of a 2d-image. 

Frame: 
(2D-ARC-NAME 

(is-a) 
(arc-image) 
(3d-edge) 
(pjoint) 
(n-joint) 
(pregion) 
(n-region) 
(PCW) 
(nccw) 
(PCCW) 
(new>> 

Slots: 

is-a 

arc-image 
Value: 2d-arc. 

Value: 2d-image. 
Inverse: image-arc-list. 
Points to the 2d image that contains the arc. 

Value: 3d-edge. 
Points to the 3d-edge that generated the arc. 

Value: 2d-joint. 
Points to the p-joint in the winged-edge representation of this arc. 

3d-edge 

p-joint 

n-joint 
Value: ad-joint. 
Points to the n-joint in the winged-edge representation of this arc. 

p-region 
Value: 2d-region. 
Points to the p-region in the winged-edge representation of this arc. 

Value: ad-region. 
Points to the n-region in the winged-edge representation of this arc. 

Value: 2d-arc. 
Points to the pcw-arc in the winged-edge representation of this arc. 

Value: 2d-arc. 
Points to the nccw-arc in the winged-edge representation of this arc. 

n-region 

P W  

nccw 



65 

PC- 
Value: 2d-arc. 
Points to the pccw-arc in the winged-edge representation of this arc. 

Value: 2d-arc. 
Points to the ncw-arc in the winged-edge representation of this arc. 

ncw 



66 

I 2D-JOINT I 

Description: Representation of a joint of an image. 

Frame: 
(2D-JOINT-N AME 

(is-a) 
(joint-image) 
(XI 
(Y) * (3d-vertex-list) 

* (display-xy)) 

Slots: 

is-a 

joint-image 
Value: 2d-joint. 

Value: ad-image. 
Inverse: image-joint-list. 
Specifies the ad-image that contains the joint. 

Value: float number. 
Gives the x-coordinate of the joint with respect to the camera coordinates. 

Value: float number. 
Gives the y-coordinate of the joint with respect to the camera coordinates. 

Value: list of 3d-vertices. 
Specifies the 3d-vertex or 3d-vertices that generated the joint. 

Value: list of two integers. 
Gives the coordinates of the joint with respect to the screen coordinates. 

X 

Y 

3d-vertex-list 

display-xy 



67 

Appendix D 
Framekit+ functions 

FRAMEKIT is a frame-based knowledge representation, written in COMMON LISP, that provides the 

basic mechanisms of frames, inheritance, demons and views. It has been developed by Center for 

Machine Translation, Camegie Mellon University. This section explains briefly some of the impor- 

tant and heavily used FRAMEKIT functions. This is by no means a complete description. 

[Warning::Some of the key word arguments to the functions and the like are omitted here.] 

The users are advised to go through the separate document titled "The FRAMEKIT User's 

Guide". 

D.l. Frames 

A frame is a multi-level data structure, much like a record structure in traditional programming 

languages, that is used to store information used by COMMON LISP programs. A large collection of 

frames is sometimes called a knavledge base. Because frames also support demons and inheritance 

they are particularly useful for representing the knowledge in AI programs. 

Frames are abstract data types comprised of slots, facets, views and fillers. Each frame can have 

any number of slots . Each slot can have any number of facets , and each facet can have any number 

of views and each view can have any number of fillers . Frames differ from traditional record 

structures in that slots, facets and views can be allocated and removed at run time. There some 

facets that are pre-defined by FFUMEKIT to handle demons and inheritance. 

The general structure of a frame is as follows. 

(FrameNams 
(Slotlame (VALUE (VIEW list-of -values) 

(IF -ADDED demon-list ) 
(IF -NEEDED demon-list ) 
(IF-ERASED demon-list) 
(IF-ACCESSED demon-list) 
(RESTRICTIONS predicate-list) 
(DEFAULT list-of -values) 

(user-defined .........) 
(... .........)) 

(VIEW list-of -values) ) 

.... 

(SlotNarne .... ) 



68 

Please refer to FRAMEKIT manual for the complete syntax. 

D.2. Frame creation 

(CREATE-FRAME frame ) function 

The argument to CREATE-FRAME must be a symbol. The symbol is checked to see if a frame of 

that name already exists; if not, a new frame is created and added to *--LIST*. The frame 

name is returned if the creation took place, otherwise NIL is returned. 

(CREATE-SLOT frame slot ) function 

If the frame already exists, CREATE-SLOT checks to see if the slot is already present; if not, a new 

slot is created. If the frame doesn't exist, it will either automatically create the frame or print a 

warning message. The slot name is returned if a new slot is created; otherwise NIL is returned. 

(CREATE-FACET frame slot facet ) 
If the frame and slot already exist, CREATE-FACET checks to see if the facet is already present; if 

not, a new facet is created. If either the frame or the slot doesn't exist, it will either automatically 

create them or print a warning message. The facet name is returned if a new facet is created; 

otherwise NIL is returned. 

Examples: 
> (create-f rame ' dog) 
> (create-slot  'dog 'weight) 
> (create-facet ' t i ge r  ' weight ' value) 
> (create-facet ' cat ' race ' i f  -needed) 

(MAKE-FRAME frame-name &rest fullflame ) 

MAKE-FRAME is a macro for defining frames in a file or at the Lisp top-level. The first argument 

is interpreted as the name of the frame to create; the rest of the arguments are interpreted as fully- 

specified slot definitions. The frame name is returned. For example: 

> (make-frame m y - f r a m e  
(slot1 (facet1 ( v i e w 1  f i l ler-listl)  

( v i e w 2  filler-list2)) 

function 

macro 



69 

(facet2 (view3 f i l ler- l ist2)))  

(facet4 (view1 filler-list4) ) ) ) 
(slot2 (facet3 (view4 fi l ler-list3)) 

my-frame 
> 

Any number of slots may be defined, each with any number of facets. Each facet may contain any 

number of views, each with any number of fillers. 

(MAKE-FRAME* frame-name fullframe ) function 

MAKE--* is like MAKE-FRAME, except that it evaluates it arguments, and the slot defini- 

tions must be specified as a single list. 

(MK-FRAME frame-name &rest fulrframe ) 

MK-FRAME is another macro for defining frames in a file or at the Lisp top-level; unlike MAKE- 

FRAME, MK-FRAME accepts slot definitions in abbreviated form: 

macro 

(mk-frame my-frame2 
(slot1 value-listl)  
(slot2 value-list2) 
... 
... 
(slotn value-listn) ) 

Each filler is placed in the COMMON view of the VALUE facet of the specified slot. 

(MK-FRAME*frame-name &rest fullframe ) function 

MK-FRAME* is like MK-FRAME, except that it evaluates it arguments, and the slot definitions 

must be specified as a single list. 

D.3. Update Functions 

(ADD-VALUEframe slotfiller ) 

Adds a filler to the VALUE facet in the specified slot, unless that filler already exists. 

function 

(ADD-VALUES frame slotfiller-list ) function 

ADD-VALUES is just like ADD-VALUE, except that it accepts a list of fillers to add to the 



70 

VALUE facet all at once. 

(ADD-FILLER frame slot facetfiller ) 
Similar to ADD-VALUE but operates on the specified facet instead of the VALUE facet. 

(ADD-FILLERS frame slot facetfiller-list ) 

Similar to ADD-VALUES but operates on the specified facet instead of the VALUE facet. 

(ERASE-VALUES frame slot ) 

Erases all the fillers of the VALUE facet of the specified slot. 

(ERASE-FILLERframe slot facetfiller ) 

Removes the given filler from the specified facet of the slot. 

(ERASE-FACET frame slot facet ) 

Deletes the named FACET from the named SLOT of the frame. 

function 

function 

function 

function 

function 

(ERASE-SLOT frame slot ) function 

The given SLOT is removed from the frame. If the slot is a relation, the inverse link will be erased 

in the corresponding frame. 

(ERASE-FRAME frame ) 

The frame is erased, by erasing slots one by one (thus eliminating any inverse links and then 

erasing the frame itself). Return nil. 

(ERASE-FRAMES frame-list ) 

ERASE-FRAME is applied on each element of the frame-list. 

function 

function 

(REPLACE-VALUE frame slotfiller ) funclion 

A composition of ERASE-VALUES and ADD-VALUE. Erases the VALUE facet fillers for the 

specified view, and adds the given filler to the VALUE facet. 



71 

(REPLACE-FILLER frame slot facetfiller ) function 

A composition of ERASE-FILLER and ADD-FILLER. Erases the facet fillers and adds the given 

filler to that facet. 

Examples: 
> (add-filler ' edge123 ' pcw 'value ' edge86) 
> (add-value 'dog 'color 'white) 
> (replace-value ' dog ' color ' brown) 
> (erase-values ' dog ' color) 
> (erase-facet ' dog ' race ' if-needed) 
> (erase-slot ' edge123 ' pcw) 
> (erase-f rame ' dog) 

D.4. Access Functions 

(GET-VALUESframe slot ) 

Returns a list of fillers of the VALUE facet in the specified slot. 

(GET-FILLERSframe-name slot facet ) 

Returns a list of fillers of the specified facet. 

(SLOT-NAMESframe ) 

Returns a list containing the names of the slots in the specified frame. 

(FACET-NAMES frame slot ) 

Returns a list containing the names of the facets in the specified slot. 

D.5. Miscellaneous Functions and Variables 

(FRAME-P frame ) 

Returns the frame name if it exists otherwise nil. 

function 

function 

function 

function 

function 

*FRAME-LIST* variable 



72 

When FRAMEKIT creates a frame, its name is added to *FRAME-LIST*. When a frame is erased, 

it is removed from *--LIST*. The order of the frames in *--LIST* indicates from 

left to right the order in which they were created. 

*FKTRACE* variable 

If *FKTRACE* is non-NIL, FRAMEKIT will print trace information concerning each FRAMEKIT 

action that is evaluated. Although this results in a lot of output, it is useful for debugging purposes, 

since operations that are not always evident to the user (like demon invocation and automatic 

structure creation) become visible when tracing is enabled. Initial value is NIL. 

*FKWARN* variable 

If *FKWARN* is non-NIL, FRAMEKIT will inform the user about warning conditions that are 

non-fatal, but require some user notification (e.g., trying to add a filer to a facet when that filler is 

already present). Initial value is nil. 

!FRAME, !SLOT, !FACET and !FILLER are the special variables which store the current frame, 

slot, facet and filler respectively at the time a demon mechanism is invoked. They can be used by 

the functions fired at that moment. 



73 

Index 

*ANGLE-MODE* Variable 29 
*CURRENT-BODY* Variable 33 
*CURRENT-IMAGE* Variable 33 
*DASH-LEVEL* Variable 33 
*FKlRACE* Variable 72 
*FKWARN* Variable 72 
*FRAME-LISP Variable 71 
*SHADE-LENGTH* Variable 34 
*SHADE-WIDTH* Variable 34 
*ZOOMF* Variable 33 

2-D-w 27 
25CONE primitive 14 

2D-ARCFrame 64 
25-PRISMpimi t i~  14 

2D-IMAGEFme 62 
2D-JOINTF-c 66 
2D-REGION Frame 63 

3-D-W 24 
3DMacro 20 
3D*Functim 21 
3D-BODY Frame 45 
3D-EDGEFrame 49 

3D-Hierarchical Structure 

3DSCENEFrame 58 
3DS'IRUCl'UREMacro 20 
3DSlRUCl'URE*Function 20 
3D-VERTEXFrme 52 

3D-FACEFme 47 

Mintion 2 

ADD-FILLERFUIXT~ 70 
ADD-FILLERShdon 70 
ADD-VALUE F ~ n c t i ~ ~  69 
ADD-VALUES Function 69 
Angle 15.29 
ANGLE-BETWEEN-VECXDRS Function 30 

B d e a n  Operation 
Defdtion 2 

BOUN-REPMacro 20 
B O U N - R E P F ~ C J I I  20 
Boundq Rcprcsentation 

Mintion 2 

CAMERAMacro 22 
cam- 22 

DISPLAYCAMERA 31 
Frame 59 
Rotate 23 

CAMERA*Fmction 22 
CONEprimiive 14 
CREATE-FACET F ~ c t i ~ ~ l  68 
CREATE-FRAMEFunctim 68 
CREATESLOTFunction 68 
CROSS-PRODUCT FUIW~~W 29 
CSG-Defiition 

Definition 2 
CSG-NODE Frame 43 
CSG-TREEFUII~~~~ 19 
CSGNODE Macro 14,15.17.18 
=NODE* Function 14,15,17,18 

Cubeprimitive 14 
CURVEFrame 56 
Curve 

Amroximation 8 
CYLINDERprimitive 14 

DASHFmction 34 
DEGFunction 29 
DEG-TO-RAD Function 29 
Degree 29 
DELETE-BOUN-REP Macro 2 1 
DELETE-BOUN-REP* Function 21 
DELETE-CSG-NODE Macro 18 
DELETECSG-NODE* Function 19 
DELETE-IMAGE Macro 26 

DESCRIBE-CSG-NODE Macro 19 
DESCRIBECSG-NODE* Function 19 

Display 

DISPLAYCAMERA Frame 3 1 

DISPLAY-PROPERTY* Function 34 
DISPLAYSCENE Macro 34 
DISPLAYSCENE* Function 34 

DELETE-IMAGE* 26 

DESCRIBECSG-NODES Function 19 

DISPLAY-CAMERA 31 

DISPLAY-PROPERTY Macro 34 

DOT-PRODUCT Function 29 
DRAw-ARcFuncti~n 32 
DRAW-BODY Function 31 
DRAW-EDGE Function 31 
DRAW-FACE Functim 3 1 
DRAW-IMAGE Function 32 
DRAW-JOINT Function 32 

DRAW-VERTEX Function 3 1 

EDGE-LIST-OF-VERTEX Function 28 
EDGE-MATCH Function 32 

DRAW-REGION Function 32 

ERASE-FACET Function 70 
ERASE-FILLER Function 70 
ERASE-FRAME Function 70 

ERASESLOT Function 70 
ERASE-FRAMES Function 70 

ERASE-VALUES Funaim 70 

FACE-MATCH Function 32 
FACEL-EDGEL-OF-VERTEX Function 28 
Facet 67 
FACET-NAMES Function 7 1 
Filler 67 
FITsCRJZENMacn, 33 
FITsCREEN*Function 33 
FLASH-EDGE Funaion 32 
FLASH-FACE Function 32 
Frame 67 

2D-ARC 64 
2D-IMAGE 62 
2D-JOINT 66 
2D-REGION 63 
3D-BODY 45 
3D-EDGE 49 
3D-FACE 47 
3D-SCENE 58 



74 

3D-VERTEX 52 
CSG-NODE 43 
CURVE 56 

PROPERTY 61 

SFCNSOR 59 
SURFACE 54 

MOTION-MATRZX 53 

PROPERTY-LIST 60 

F R A M E - P F U ~ ~ ~ ~ U I  71 
Funaion 

3D* 21 
3DSTRUCTURE* 20 
ANGLE-BETWEEN-VECTORS 30 
BOUN-REP' 20 
CAMERA* 22 
CROSS-PRODUCT 29 
CSG-TREE 19 
CSGNODE* 14.15.17.18 
DASH 34 
DEG 29 
DEG-TO-RAD 29 
DELETE-BOUN-REP9 21 
DELETE€%-NODE* 19 
DELETE-IMAGE* 26 
DESCRIBE--NODE* 19 
DESCRIBE--NODES 19 
DISPLAY-PROPERTY* 34 
DISPLAYSCENE* 34 
DOT-PRODUCT 29 
DRAW-ARC 32 
DRAW-BODY 31 
DRAW-EDGE 31 
DRAW-FACE 31 
DRAW-IMAGE 32 
DRAW-JOINT 32 
DRAW-REGION 32 
DRAW-VERTEX 31 
EDGE-LIST-OF-VERTEX 28 
EDGE-MATCH 32 
FACE-MATCH 32 
FACEL-EDGEL-OF-VERTEX 28 
FIT-scREEN* 33 
FLASH-EDGE 32 
FLASH-FACE 32 
GET-ALL-ORDERED-VERTICES 28 
GET-ORDERED-VERTICES 28 
GET-VERTEX-LIST 28 
HOMO-PROD 30 
IMAGE* 26 
IMAGE-FITSCREEN* 33 
LENGTH-OF-VECTOR 29 

MAKESENSOR-COMPONENT 22 
MERGE-LIGHT-PROPERTIES* 25 
MKCOMBINED-TRANSFORMATION* 17 
MK-MOTION-MATRIX 16 
MK-ROTATION* 16 
MK-TRANSLATION* 16 
MOVECSG-NODE* 16 
NEIGHBOR-FACES 28 
NEXT-EDGE 28 
NORM-OF-VECTOR 29 
PAINT-PROPERTY-ON-IMAGE* 27 
POINT-LTNE-DISTANCE 30 
PREVIOUS-EDGE 28 
PROJECT-AND-BACK-PROJEC'P 25 

LIGHTSOURCE* 22 

RAD 29 
RESTORE-ANGLE-MODE 29 
ROTATECAMERA-AROUND-AXIS* 23 
SAVE-ANGLE-MODE 29 

SCENE* 24 
SHADE-FACE 3 1 
SHADE-POLYGON 3 1 
SHADEL 34 
SHADEW 34 
SHOW-AXIS 32 
VERTEX-MATCH 31 
WJNDOW-ZOOM 33 
ZOOM 33 

Function Framekit 
ADD-FILLER 70 
ADD-FILLERS 70 
ADD-VALUE 69 
ADD-VALUES 69 
CREATE-FACET 68 
CREATE-FRAME 68 
CREATESMT 68 
ERASE-FACET 70 
ERASE-FILLER 70 
ERASE-FRAME 70 
ERASE-FRAMES 70 
ERASESLOT 70 
ERASE-VALUES 70 
FACET-NAMES 71 
FRAMEP 71 
GET-FILLERS 71 
GET-VALUES 71 
MAKE-FRAME 68 
MAKE-FRAME* 69 
MK-FRAME 69 
MK-FFAME* 69 
REPLACE-FILLER 71 
REPLACE-VALUE 70 
SLOT-NAMES 71 

GET-ALL-ORDERED-VERTICES Function 28 
GET-FILLERS Function 7 1 
GET-ORDERED-VERTICES Function 28 
GET-VALUES Funaion 7 1 
GET-VERTM-LIST Function 28 

HOMO-PROD Function 30 

IMAGEmacro 26 
Image. 26 
IMAGE*Function 26 

IMAGE-FlT-SCREEN* Function 33 
BO-F'RISM primitive. 14 

LENGTH-OF-VECTOR Function 29 
LIGHTSOURCE Macro 22 

IMAGE-FITSCREEN Macro 33 

Light-soura 22 
Frame. 59 

LIGHTSOURCE* Function 22 

MXXU 
3D 20 
3D-STRUCTURE 20 
BOUN-REP 20 
CAMERA 22 
CSGNODE 14.15.17.18 
DELETE-BOUN-REP 21 
DELETE-CSG-NODE 18 
DELETE-IMAGE 26 
DESCWBE-CSG-NODE 19 
DISPLAY-PROPERTY 34 
DISPLAY-SCENE 34 
FITSCREEN 33 
IMAGE 26 



75 

IMAGE-FJT-SCREEN 33 
LIGHT-SOURCE 22 
MERGE-LIGHT-PROPERTRE3 25 
MK-COMBINED-TRANSFORMATION 17 
MK-ROTATION 16 
MK-TRANSLATION 16 
MOVE-CSG-NODE 15 
PAINT-PROPERTY-ON-IMAGE 27 
PROJECT-AND-BACK-PROJECT 24 
ROTATECAMERA-AROUND-AXIS 23 
SCENE 24 

MAKE-FRAMEFuu~oII 68 
MAKE-FRAME* Function 69 
MAKESENSORCOMPONENT Function 22 
MERGE-LIGHT-PROPERTIES Macro 25 
MERGE-LIGHT-PROPERTIES* Fundion 25 
MKCOMBlNED-TRANSFORMATION Macro 17 
MK-COMBINED-TRANSFORMATION* Function 

MK-FRAMEFunction 69 
MK-FRAME*Fmction 69 
MK-MOTION-MATRIX Function 16 
MK-ROTATION Macro 16 
MK-ROTATION* Function 16 
MK-TRANSLATION Macro 16 
MK-TRANSLATION* Function 16 
MOTION-MATRIX Frame 53 

17 

MOVE-CSG-NODE m c r o  15 
MOVE-CSG-NODE* Functian 16 

NEIGHBOR-FACES Fmcti~n 28 
N E X T - E D G E F ~ ~ ~ ~ O ~  28 
NORM-OF-VE<JTOR F~nction 29 

PAINT-PROPERTY-ON-IMAGE Macro 27 
PAINT-PROPERTY-ON-IMAGE* Function 27 
POINT-LJNJGDISTANCE FUII~OII 30 
PREVIOUS-EDGE Function 28 
Primitive 

2.5CONE 14 

CONE 14 
CUBE 14 
CYLINDER 14 
Defiitim 2 
Example 35 
ISO-PRISM 14 
RIGHT-ANGLE-PRISM 14 

2.5-PRISM 14 

SPHERE 14 
TRUNCATEDCONE 14 

PROJECT-AND-BACK-PROJECT Macro 24 
PROJE(T-AND-BACK-PROJECP Function 25 
Display 34 
PROPERTYFrame 61 
PROPERTY-LIST Frame 60 

RADFunction 29 
Radian 29 
REPLACE-FILLER F~nction 71 
REPLACE-VALUE F ~ n c t i ~ t ~  70 
RESTORE-ANGLE-MODE Function 29 
RIGHT-ANGLE-PRISM primitive 14 
ROTATECAMERA-AROUND-AXIS Macro 23 
ROTATECAMERA-AROUND-AXIS* Functi~n 23 

SAVE-ANGLE-MODE F ~ n c t i ~  29 
SCENEMacro 24 
Scene 24 
Display 34 
SceneFrame 58 

SCENE*Functim 24 
SENSORFrame 59 
SHADE-FACE Function 31 
SHADE-POLYGON Function 31 
SHADEL Function 34 
SHADEW Function 34 
SHOW-AXIS Function 32 
Slot 67 

SPHERE primitive 14 
SURFACEFrame 54 
Surface 

Approximation 8 

SLOT-NAMES F ~ n c t i ~ n  71 

TRUNCATED-CONE primitive 14 

Variable 
*ANGLE-MODE* 29 
*CURRENT-BODY* 33 
*CURRENT-IMAGE* 33 
*DASH-LEVEL* 33 
*SHADE-LENGTH* 34 
*SHADE-WIDTH* 34 
*ZOOMF+ 33 

Variable Framekit 
*FKTRACE* 72 
*FKWARN* 72 
*FRAME-LIST* 71 

VERTEX-MATCH Function 31 
View 67 

WINDOW-ZOOM Function 33 
Winged Edge Representation 

Definition 2 

ZOOMFunction 33 


