
Implementation of an executable graphical

representation of GAPs based on Petri�nets

Sebastian Jekutsch

Project work report

Institute for Algorithms and Cognitive Systems

University Karlsruhe

Contents

� Introduction �

� Prerequisites �

��� Generalized Annotated Programs �

��� Well�founded semantics �

����� Alternating �xpoint �

����� Annotated logic and the well�founded model � � � � � � � � � � � � � 	

��� Coloured Petri�nets �

� An extended Petri�net Model �

��� Negation�free GAPs �

����� Algorithms for the extended Petri�net model � � � � � � � � � � � � � ��

��� Normal GAPs ��

� GAPCAD � Architecture ��

� Further issues �	

��� Control �ow speci�cation �

��� GAPCAD as a knowledge acquisition tool ��

 Conclusion ��

� INTRODUCTION �

� Introduction

The contents of this work is the implementation of the bottom�up evaluation procedure of
Generalized Annotated Programs �GAPs�� A related procedure was presented in ��� �Chap�
ter ���� and ����� The procedure has been formulated in terms of Coloured Petri�nets ����
Also the extension to GAP�clauses with negated body literals has been examined� The
developed tool� called GAPCAD �Generalized Annotated Program Construction And De�
bugging�� allows the interactive graphical entering of the Petri�net representation of GAPs
and therefore serves as an front�end to DAEDALUS ���� GAPCAD also permits the mon�
itoring and step�by�step execution of GAPs� In contrast to DAEDALUS� which performs
a query initiated backward chaining �SLG�resolution�� the forward chaining procedure in
GAPCAD computes the whole model of the GAP based on the �xpoint semantics� To
compute normal GAPs� i�e� clauses with negated literals in the body� an algorithmical pro�
posal for the computation of the well�founded model according to the alternating �xpoint
characterisation ��
� is presented� This will ensure answer compatibility to DAEDALUS�

The implementation uses DAEDALUS routines� a generic graph editor ��� and in�
between code for representing the Petri�net and computing the �xpoint� It was taken care
to de�ne a useful interface between the GAPCAD core and the graph editor for possibly
exchange with a di�erent editor�

The outline of this report is as follows� Firstly� the generalized annotated logic� the
well�founded semantics and the Coloured Petri�net formalisms are described shortly� Next�
the extended Petri�net model is presented� in the �rst instance without negated literals
and subsequently including them� Chapter � addresses the architecture of GAPCAD� and
the �nal chapter discusses some further issues and an outlook� This text does not cover
GAPCADs actual purpose� To serve as a front�end for developing mediatory knowledge
bases for the integration of heterogeneous and inconsistent information sources�

� Prerequisites

��� Generalized Annotated Programs

In this section the generalized annotated logic� introduced by M� Kifer and coworkers �	��
is sketched� It provides an universal language for dealing with temporal� uncertain and
inconsistent information or in general with parametric data with provides the algebraic
structure of a lattice� For a comprehensive description of the language the reader may refer
to ��
� 	��

Salient features of the language are the so�called annotations which are constants� vari�
ables and terms over a complete lattice T �� Figure � presents some examples for complete
lattices� The following de�nitions are from �	��

De�nition ��� An annotation is either an element of T �c�annotation�� an annotation
variable �v�annotation� or a complex annotation term �t�annotation�� Annotation terms are

�A complete lattice �T ��� is a partial ordering with respect to �� a least upper bound �lub� t and a
greatest lower bound �glb� u for every subset of T � A lattice is linear if � is a total ordering�

� PREREQUISITES �

�

t

�
� ��FOUR DEFA ULT

��

�

f

�

�

d�

f t

df dt

�

Figure �� Some lattices used in this report

de�ned recursively as follows� Members of T and variable annotations are annotation terms�
In addition� if ��� � � � � �n are annotation terms� then f���� � � � � �n� is a complex annotation
term�

If A is a usual atomic formula of datalog �in �	� predicate calculus� and � is an annotation�
then A � � is an annotated atom� An annotated atom containing no occurrence of object
variables is ground� A is called the object part and � is called the annotation part of A � ��

De�nition ���
Annotated clause� If A � � is an annotated atom and B� � ��� � � � � Bk �
�k are c� or v� annotated atoms� then

A � �� B� � �� � � � �� Bk � �k

is an annotated clause� A � � is called the head of this clause� whereas B� � ��� � � � � Bk � �k
is called the body� All variables �object or annotation� are implicitly universally quanti�ed�
Any set of annotated clauses is called a Generalized Annotated Program �GAP��

De�nition ���
Strictly ground instance� Suppose that C is an annotated clause� A
strictly ground instance of C is any ground instance of C that contains only c�annotations�

Let H be the Herbrand base of the program� An annotated logic interpretation I is a
mapping I � H � T from the base onto a lattice�

De�nition ���
Satis�ability� Let I be an interpretation� � � T a c�annotation� F� and
F� formulae� and A a ground atom�

�� I j� A � � i� I�A� � ��

�� I j� �A � � i� ���� 	 I�A��

�� I j� F� � F� i� I j� F� and I j� F��

�� I j� F�
 F� i� I j� F� or I j� F��

�� I j� F� � F� i� I j� F� or I �j� F��

� PREREQUISITES �

�� I j� F� � F� i� I j� F� � F� and I j� F� � F��

	� I j� �
x�F i� I j� fx�tgF for all ground terms t where x is an object� or annotation
variable�

� I j� ��x�F i� I j� fx�tgF for some ground term t where x is an object� or annotation
variable�

�� If F is not a closed formula� then I j� F i� I j� �
�F � where �
�F denotes the
universal closure of F �

There are two di�erent kinds of negation in GAP� the so�called epistemic �or explicit�
negation � and the non�monotonic not� � requires symmetry between true and false� e�g�
�A � t � A � f in FOUR� The topic of non�monotonic negation will be discussed in section
���� For GAPs without non�monotonic negation the �xpoint operator has the following
form�

De�nition ���
Fixpoint�operator� Let P be a generalized annotated logic program
�GAP�� I a GAP interpretation and T a complete lattice� Then a �xpoint operator RP �I�
for bottom�up computation of GAPs is de�ned as follows� RP �I��p� �� tf� j p � � � p� �
��� � � �pn � �n is a strict ground instance of a clause in P and I j� p� � ��� � � �pn � �ng�

RP may reach the least �xpoint �lfp� if for all strict ground instances A� lfp�RP �A��
is reached after a �nite number of iterations� This condition� called �xpoint reachability
property �	�� holds for many GAP knowledge bases� If the clause bodies of a program
contain only variable �v�� or only constant �c�� annotations� or if only �nite or decreasing
monotone functions� appear in the program� For instance� if the knowledge base consists
of Rains�Monday� �
�� and Rains�Monday� �
�
 the least upper bound computed by the
�xpoint operator would be Rains�Monday� �
�
 � tf
���
�
g�

��� Well�founded semantics

For simplicity we de�ne the well�founded semantics for classical logic in the �rst case�
according to �����

De�nition ��

Normal program� A normal program is a set of clauses of the form

A� B� � � � ��Bn � not Bn�� � � � �� not Bm

where A�B�� � � �Bm are atoms�

Let P be a normal program and HP its Herbrand base consisting of all atoms that are
grounded in every possible way using all predicates� functions and constants that appear
in P � For a set of literals S the expression � � S denotes the set formed by taking the
complement of each literal in S� Consider as an example the following program P �

p�a� � not q�b�

q�b�

�A function f is �nite if ff�x�jx � DOM�f�g is �nite and f is decreasing if for arbitrary arguments
x�� � � � xn f�x�� � � � xn� � xi for all � � i � n�

� PREREQUISITES �

P is a normal program with HP � fp�a�� p�b�� q�a�� q�b�g and ��fp�a���q�a�g�f�p�a�� q�b�g�

The well�founded model of a normal program P is a partial model�� i�e� a set of literals
which contains not necessarily all atoms of HP � Therefore it can be seen as a three�valued
model� In the above example� an interpretation I � fq�b���q�a�g states that q�b� is true in
I �and therefore �q�b� is false in I�� q�a� is false in I and the truth values of p�a�� p�b� are
unknown in I �

De�nition ���
Greatest unfounded set� Given a partial interpretation I and a nor�
mal program P � A � HP is called an unfounded set of P with respect to I if each atom
p � A satis�es the following condition� Either there is no clause in P whose head is p� or
there exists such a clause c and at least one of the following holds�

�a� some �positive or negative� subgoal of the body of c is false

in I

�b� some positive subgoal of the body of c occurs in A�

The greatest unfounded set of P with respect to I � denoted UP �I�� is the union of all un�
founded sets of P w�r�t I �

In the example program P and interpretation I above� UP �I� is fp�b�� p�a�g� The well�
founded semantics uses UP �I� to draw negative conclusions� The transformations TP � WP

are de�ned as follows�

� TP �I� is the usual �xpoint operator� i�e� p � TP �I� i� there is some instantiated
clause c of P such that c has head p and each subgoal literal in the body of c is true
in interpretation I � TP �I� is called the inner �xpoint�

� WP �I� �� TP �I� � � � UP �I�� WP is monotonic �����

De�nition ���
Well�founded model� Let I� �� �� I��� �� WP �I�� and I� ��
S
� I��

I� � the least �xpoint of WP � also named outer �xpoint � de�nes the well�founded model
of P �

The example program P has the well�founded model fq�b���p�a���q�a���p�b�g which is
not partial� As an example for partial model consider the program which only contains the
clause p�a� � �p�a�� The well�founded model is empty� therefore the truth value of p�a� is
unknown�

����� Alternating �xpoint

In the following the alternating �xpoint characterisation of the well�founded model is pre�
sented shortly� according to ��
�� Let �I be a set of negative literals of atoms known to
be false and P � �� HP � �I� We de�ne SP ��I� �� T�

P � ��� where T�
P � is the least �xpoint of

TP � � which was already de�ned above� SP ��I� is the set of positive facts that are derivable

�An interpretation or model I is seen as the set of all literals that are true in I� i�e� fp � HP ���HP jI j� pg

� PREREQUISITES 	

from P and �I � Let �SP ��I� �� � � �HP n SP ��I��� The iteration steps �I��� � �SP ��I�� alter�
nate between subsets �underestimation� of the positive portion of the partial well�founded
model and supersets �overestimation� of the unde�ned and negative portion� The alterna�
tion converges� Let AP ��I� �� �SP � �SP ��I��� then AP is monotone� therefore �A �� A�

P exists�
Finally SP � �A�� �A is the well�founded model of P� The reader may refer to ��
� for a deeper
treatment�

Consider as an example for the alternating �xpoint computation of the well�founded
model the following program taken from ��
�� It describes a game where one wins if the
opponent has no moves left�

Example �

wins�X� � move�X� Y � � not wins�Y �

move�a� b�

move�b� a�

move�b� c�

move�c� d�

The table shows the sets SP and �SP at consecutive stages of the computation� They are
restricted to the atoms of the wins�predicate� since the move�facts do not change during
computation�

Step t SP ��It� �SP ��It� � �It��

 � f�wins�a���wins�b���wins�c���wins�d�g
� fwins�c�� wins�b�� wins�a�g f�wins�d�g
� fwins�c�g f�wins�a���wins�b���wins�d�g
� fwins�c�� wins�b�� wins�a�g Fixpoint reached

Finally the well founded model is SP ��I��� �SP ��I�� � fwins�c���wins�d�g� restricted to
the wins predicates�

����� Annotated logic and the well�founded model

The semantics of the non�monotonic negation in annotated logic is de�ned as follows�

De�nition ���
Satis�ability of negated atoms� Let I be an interpretation� � � T a
c�annotation and A a ground atom�

I j� not A � � i� I�A� �� �

The well�founded semantics can be generalized to annotated programs� Since the semantics
of the satis�ability relation j� changed in annotated logic� a partial model can have a
di�erent form� Consider the following program with the lattice �
� ���

p �
�	 � not p �
��

p �
��

� PREREQUISITES

The partial well�founded model evaluates to fp �
���not p �
�	g� i�e� p � � is true for all
� 	
��� false for all � �
�	 and unknown for all
�� � � 	
�	� where a � b i� a �	 b�

Example � reviews example � with annotated atoms� In the table� again only the wins
atoms are presented� They are abbreviated in a straightforward manner� e�g� not wins�a� �

�� is represented as �a �
���

Example �
wins�X� � W � move�X� Y � � W � not wins�Y � �
��

move�a� b� �
��

move�b� a� �
��

move�b� c� �
��

move�c� d� �
�	

Step t SP ��It� �SP ��It� � �It��

 fa �
�
� b �
�
� c �
�
� d �
�
g f�a �
�
� �b �
�
� �c �
�
� �d �
�
g
� fa �
��� b �
��� c �
�	� d �
�
g f�a �
��� �b �
��� �c �
�	� �d �
�
g
� fa �
�
� b �
��� c �
�	� d �
�
g f�a �
�
� �b �
��� �c �
�	� �d �
�
g
� fa �
��� b �
��� c �
�	� d �
�
g f�a �
��� �b �
��� �c �
�	� �d �
�
g
� fa �
��� b �
��� c �
�	� d �
�
g Fixpoint reached

The well founded model is SP ��I��� �SP ��I�� � SP ��I��� �SP ��I��� This model is � di�erent
to the one in example � � not partial� Note that the �xpoint was reached� because step �
results in the same sets as step �� leading to a total model� Due to the alternating �xpoint
de�nition� step � needs also be computed� because AP evaluates two �SP �steps at a time�

��� Coloured Petri�nets

A coloured Petri�net is a triple N � �P� T� A� consisting of disjoint sets P �places� and T

�transitions� and a multiset A �arcs� over �P � T � � �T � P � forming a bipartite graph�
Each place p � P is assigned a colourset C�p� and a multiset M�p� of tokens� each of
colour C�p�� Coloursets can be viewed as data types� and tokens are instances having a
speci�c colour� Each arc a � hp� ti � A or ht� pi � A is attached a label L�a� of type C�p��
Note that tokens as well as labels may contain variables of suitable type� A marking is the
distribution of tokens over all places of the net� Each transition t � T is assigned a Boolean
guard G�t� expressing constraints on the variables binded to t� For an extended and more
formal de�nition of coloured Petri�nets� the reader may refer to ����

Let IN�t� �� fhp� ti �A j p � Pg� OUT �t� �� fht� pi �A j p � Pg� �t �� fp jhp� ti �Ag
and t� �� fp jht� pi �Ag denote the vicinity of t�T � A transition t is called enabled i� the
following conditions hold�

� For each incoming arc ai � hp� ti � IN�t� there is at least one variable substitution
�i� such that a token s�M�p� exists with �i�s� � �i�L�ai��� This particular token s

must not serve again as a resource for another substitution �j for j �� i� Recall that
M�p� is a multiset� therefore more than one token of this kind may be present�

� AN EXTENDED PETRI�NET MODEL �

� All substitutions �i �� � i � jIN�t�j� are compatible� �i and �j are compatible if
their concatenation �i�j is de�ned� In other words� there is no assignment of two
di�erent values to the same variable�

� G�t� evaluates to true under � � ���� � � ��m� In this case� � is called an enabling
substitution�

There could be more than one enabling substitution under the same marking� A transition
could �re� if it is enabled under a substitution �� If a transition t �res� the tokens Mi of
the places are updated to Mi�� as follows�

Mi���p� ��

�����
����

Mi�p� n ��L�hp� ti�� if p � �t n t�
Mi�p� � ��L�ht� pi�� if p � t � n � t
fMi�p� n ��L�hp� ti��g� ��L�ht� pi�� if p � �t � t�
Mi�p� otherwise

Given a marking M�� a sequence t�� � � � tn is called a �ring sequence� if for each i �� � i � n��
it holds that ti � T is enabled under the marking Mi�� and ti�s �ring results in the marking
Mi� The �ring sequence changes the marking M� into Mn�

� An extended Petri�net Model

��� Negation�free GAPs

A GAP knowledge base is transformed into an extended Petri�net N � �P� T� A� according
to the subsequent rules �suppose the clauses are enumerated from � to n��

� Each predicate p is a place p � P in the net�

� Each clause c �� � c � n� is a transition c � T in the net�

� Let O be the type of the object part and T the annotational lattice of predicate p�
Then C�p� �� O � T �

� For every clause c of the form

p��o�� � �� � p��o�� � �� � � � �� pm�om� � �m

and � � i � m� the net contains the arcs ai �� hpi� ci with the labels L�ai� �� �oi� ��i��
where ��i is a new variable annotation� If �i is a c�annotation� then �i 	 ��i is added
as a conjunctional condition to the guard of transition c� In addition� the net contains
the arc a� �� hc� p�i with the label L�a�� �� �o�� ����� where

��� ��

���
��

�� if �� is c�annotation
uf ��ij�i is the same variable as ��g if �� is v�annotation
f� ���� � � � ��n� if �� � f���� � � ��n�

The ���� � � � ��n are de�ned recursively in the same way� Note that ufag � a for every
a � T and ufg �� uT �

� AN EXTENDED PETRI�NET MODEL �

� The initial marking is
p � P � M��p� � f�X�uT �g� where X is a new variable for all
p and �X�uT � � C�p��

Queries can be added to the net� as they are headless clauses� The following abstract
example illustrates the transformation in its details� Places are drawn as circles and transi�
tions as rectangles� Typing information is omitted and C�p� � C�q� � C�r� � fag � �
� ���
All uppercase letters are variables�

Example � ��� p�a� �
�� �
��� q�a� �
�� �
��� r�X� � �

�
V � p�a� �V � q�X� �V � q�a� �
��

��� � r�X� �
��

�

�
q

p

�
r

�

�

�

j
�

�
�

�

�a�
���

�a�
���

�a� V��

�a� V��

�X� V��
V� �
��

�X� �
�
ufV�� V�g� �X� V �

V �
��

In the following� a substitution is written as a set of bindings of the form X�t� where X is
a variable and t is a term of appropriate colour� In example �� the answering of the query
r�X� �
�� can be modelled by a �ring sequence �� �� �� �� Transitions � and � are always
enabled since their guards are true and no variable binding is necessary� Their �ring places
the token �a�
��� in p and �a�
��� in q� Consider now transition �� A possible substitution
is � � fV��
��� V��
��� V��
��� X�ag� Due to the fact that the guard V� �
�� evaluates to
true under �� transition � is enabled� Its �ring �see below for problems here� adds the token
���X�
�� � ufV�� V�g�� � �a�
���� to place r� Finally the query transition � is enabled with
� � fX�a� V�
���g� which is also the substitution for the successful query�

We need to extend the model in the following three ways� in order to capture the �xpoint
semantics�

�� In the example above� only one token was in place q after transition � �red� but
transition � needed this token two times to be enabled� one for every arc hq� �i� Unlike
the de�nition in section ���� tokens will not be removed in our model if a transition
�res� This re�ects the fact that the tokens represent knowledge� rather than resources
that cannot be shared� In other words� our Petri�net model caches all facts necessary
for answering a query� which could lead to a large number of tokens to be kept within
the net� Such an extension avoids con�icts between transitions which need the same
token to be enabled� as encountered in the example�

�� The model presented so far only works with linear annotation lattices� Consider the
following example using the non�linear lattice FOUR�

� AN EXTENDED PETRI�NET MODEL ��

Example � ��� buy�yen� � t�
��� buy�yen� � f �
��� � buy�yen� � �

�
�

�

�

�

�

V � �

buy
�yen� t�

�yen� f�

�yen� V �

After the �rings of � and �� buy contains the tokens �yen� t� and �yen� f�� There are
two possible substitutions for V � fV�tg and fV�fg� None of them satis�es the guard
V � �� hence transition � is not enabled� This is a contradiction to the �xpoint
semantics of GAPs� because tft� fg � �� In the example� a token �yen��� should be
in M�p� although none of the incoming transitions � and � delivered it� We call such
derived tokens reductants �	���

De�nition ���
Reductants� Given a set M � f�o�� ���� � � ��on� �n�g of tokens and
a uni�cation � with ��o�� � � � � � ��on�� the token ���o���tf��� � � ��ng� is called a
reductant� The function reductants�M� computes the set of reductants derived from
all subsets of M for which � is de�ned�

For example ��a� b���� is a reductant of the set f��X�b��t�� ��a�Y��f�g� It is important
that every annotation in M is a c�annotation to ensure that the least upper bound t
is de�ned� For markings M�p� this is always the case according to the next theorem�
A proof has appeared in ����

Theorem �
Possible tokens of a place� Let P be a GAP and N its transforma�
tion� At all places p � P of N � �T� P� A�� there are only tokens �o� �� � M�p� with
� � T � if P is �nite�

�� It is also possible to delete tokens from a place� For example� every time �a�
��� �
M�p� serves as a token for an enabling substitution of transition t �with hp� ti � A��
�a�
��� will as well� but not vice versa� We say that �a�
��� subsumes �a�
���� because

�� �
�� in the lattice �
� ��� �a�
��� might be deleted from M�p� without changing
the behaviour of the extended Petri�net�

De�nition ���
Subsumption� Given two tokens �o�� ���� �o�� ��� � M � the �rst
subsumes the second if �� � �� and there exists a substitution � such that o� � ��o���
The function subsumption�M� computes all tokens in M which are subsumed by at
least one other token in M �

For example �a� t� and �a� f� are both subsumed by their reductant �a���� whereas
subsumption�f��X� b�� t�� ��a� Y �� f�� ��a� b����g� is empty�

�Di�erent from the de�nition provided here� in 	
� derived rules are named reductants� Note that tokens
are representations for annotated atoms due to the presented transformation�

� AN EXTENDED PETRI�NET MODEL ��

To summarize the three extensions presented above� we rede�ne the update Mi�� of the
marking Mi due to the �ring of transition t � T �

��� Mup
i���p� ��

�
Mi�p�� ��L�ht� pi�� if p � t�
Mi�p� otherwise

��� M red
i���p� �� Mup

i���p�� reductants�Mup
i���p��

��� Mi���p� �� M red
i���p� n subsumption�M red

i���p��

With this extension� example � works as expected� Transitions � and � place the tokens
�yen� t� and �yen� f� in p respectively� M red�p� evaluates to f�yen� t�� �yen� f�� �yen���g
and M�p� to f�yen���g� which enables transition �� since � � ��

It is worth noting that our model captures the operational semantics of a GAP� which
means that if there is a GAP for which the least �xedpoint reachability property does not
hold �e�g� from fp �
� p � ��x

�
� p � x� q � � � p � �g it is never possible to answer the query

q � �� the corresponding Petri�net cannot answer this query as well and runs forever�

The following theorems have been proven in ��� and capture the soundness and com�
pleteness of the proposed extended Petri�net model with respect to the semantics of GAPs�

Theorem �
Soundness� Let P be a GAP with clauses c�� � � � cn� cn a query and N

the extended Petri�net de�ned on P � If there is a successful �ring sequence in N then
c�� � � �cn�� j� cn�

Theorem �
Completeness� Let P be a GAP with clauses c�� � � � cn� cn a query and N

the extended Petri�net de�ned on P � If c�� � � �cn�� j� cn� then there is a successful �ring
sequence in N �

����� Algorithms for the extended Petri�net model

Before presenting algorithms for the testing for �reability of a transition and updating of
the net marking� some more de�nitions are required�

De�nition ���
Uni�er mgua�� of tokens� Tokens s � �o� �� as well as arc labels con�
sist of two parts� its �rst being the object part sobj � o and its second being the annotation
part sann � �� Let mgu�o�� o�� denote the usual most general uni�er of o� and o�� Given
two tokens�labels s�� s�� the most general annotational uni�er� denoted mgua�s�� s��� is
de�ned as follows�

mgua�s�� s�� ��

�����
����

mgu�sobj� � sobj� � � fsann� �sann� g if sann� is v�annotation

mgu�sobj� � sobj� � if sann� and sann� are c�annotations
and sann� � sann�

undefined otherwise

If mgu�sobj� � sobj� � is not de�ned� mgua�s�� s�� is not de�ned either� Note that mgua�� is not
symmetric� If mgua�s�� s�� is de�ned� then s� and s� are said to be uni�able�

� AN EXTENDED PETRI�NET MODEL ��

For example� mgua���X� a��
���� ��b� Y ��
���� � fX�b� Y�ag and mgua��a� t�� �a� f�� is not
de�ned�

De�nition ���
Compatibility of annotation substitutions� Two substitutions
fV�ag and fV�bg� which assign di�erent c�annotations a and b to the same annotation
variable V � are compatible if a and b are comparable due to the ordering of the underling
lattice� In this case their concatenation fV�agfV�bg is de�ned as fV� ufa� bgg� This
de�nition is easily extended to cases with more than two substitutions�

De�nition ���
Concatenation of mguas� The substitutions in mguas may be divided
in object variable substitutions and annotation variable substitutions� The concatenation
���� � � ��n of n mguas ��� � � ��n is de�ned as the usual concatenation of the object vari�
able substitutions unioned with the above de�ned concatenation of the annotation variable
substitutions�

The following algorithms do not use the notion of transition guards� Instead they are
specialized for the bottom�up evaluation of annotated programs encoded in Petri�nets� The
guards are implicitly checked in the mgua�routine de�ned above�

Testing for �reability of a transition

Input� Extended Petri�net N � �P� T� A��
Transition c � T

Output� Maximal set of mguas each enabling c� c is not enabled if the set is empty�

� �� fg� �� is a set of sets of possible substitutions for c�

for all arcs a � IN�c� do
�Let a be �p� c� � A�

�a �� fg� ��a is the set of all possible substitutions according to a�

for all tokens s �M�p� do
if unifiable�s� L�a�� then �a �� �a �mgua�s� L�a���

if �a � fg then return fg�
� �� � � �a�

�Let � be f��� � � � �j�jg�

� �� fg� �
 is a set of all enabling substitutions for c�

for all permutations ���� � � ��j�j� with �i � �i � � �� � i � j�j� do

if ��� � � ��j�j are compatible in pairs then � �� � � ���� � � ��j�j�
return ��

Firing of a transition

Input� Extended Petri�net N � �P� T� A��
Transition c � T �
Set � of c�enabling substitutions

Output� N with updated marking using every � � �

� AN EXTENDED PETRI�NET MODEL ��

for all arcs a � OUT �c� do
�Let a be �c� p� � A�

for all � � � do
M�p� �� M�p�� f��L�a��g�

M�p� �� M�p� � reductants�M�p���
M�p� �� M�p� n subsumption�M�p���

See ��� for algorithms implementing reductants�� and subsumption��� The algorithms
are based on the rather descriptive than procedural algorithms in ���� which need two minor
corrections� Firstly� in ��� the initial marking is empty� This leads to incompleteness�
because even without any fact� the bottom element P � uT of any predicate p is derivable�
Secondly� the testing for �reability on page �� needs to be modi�ed in step � in the following
way�

�� Compute for all i �� � i � n� sets M j
i � f�tPi� � �

Pi
� � � � ��t

Pi

n
j
i

� �Pi
n
j
i

�g of tokens of the

place Pi �ei � hPi� ki� and a substitution �j
i for every set M j

i such that the following
conditions hold�

�a� �j
i � unifier�ti� t

Pi
� � � � �t

Pi
ni

�

�b� ci � t��Pi� � � � ��
Pi
ni

�

�c� �i � ��
i � � ��

j
i if ��

i � � � ��
j
i are compatible in pairs�

�d� � � �� � � ��i if ��� � � ��i are compatible in pairs�

�e� There is no �� � � which satis�es �a���d��

The main procedure checks in each step for an arbitrary transition t whether any of its
input places p � �t contains new tokens relative to the last step� If not� it checks another
transition and stops� if no transition satis�es this condition� because this means� that no
new useful token was produced in the last step� therefore the �xpoint is reached� If on the
other hand a transition is found� it is �red if it is enabled� Then the next step is taken�
There is an indeterminism in choosing an arbitrary transition in the beginning of each new
step� This choice should be fair� i�e� every transition is checked a �nite count of steps after
it has been checked last� See also section ��� for a discussion of this point�

Main procedure

Input� Extended Petri�net N � �P� T� A� with initial marking
Output� N with marking which represents the �xpoint

iterate through all t � T
if �p � �t with new tokens since last �ring of a transition then

if t is enabled then

�re t�
restart iteration�

� AN EXTENDED PETRI�NET MODEL ��

��� Normal GAPs

This section describes a method how to handle non�monotonic modes of negation based
upon the well�founded semantics in the extended Petri�net formalism� using a direct imple�
mentation of the alternating �xpoint computation� The reader may also refer to �
� for a
similar presentation not based on Petri�nets�

The transformation of a normal GAP to an extended Petri�net N � �P� T� A� is per�
formed as follows� Every negated atom of the form not p is treated as a new� not negated
atom not p � i�e� for every predicate a dual negative predicate is added to the vocabulary�
This transforms the normal GAP into a negation�free GAP� The set of places P is therefore
divided into two sets� P�� containing the positive literals� and P�� containing the previ�
ously negative literals� such that P � P� � P�� The transformation process is similar to
the one described in section ���� but with the following di�erences�

� For every clause c of the form

p��o�� � �� � p��o�� � �� � � � �� pm�om� � �m

and � � i � m� the net contains the arcs ai �� hpi� ci with the labels L�ai� �� �oi� ��i�
where ��i is a new variable annotation� In case that �i is a c�annotation� If pi � P��
then �i 	 ��i is added as a conjunctional condition to the guard of transition c�
otherwise if pi � P�� then �i � ��i is added to the guard� In addition� the net
contains the arc a� �� hc� p�i with the label L�a�� �� �o�� ���� where ��� is de�ned as
in section ����

� The initial marking is
p � P� � M��p� � f�X�uT �g� and
p � P� � M��p� �
f�X�tT �g� where X is a new variable for each p�

Additionally� new transitions T � will be introduced� as shown in example ��

� Given two dual places p � P� and not p � P�� a transition c� � T � is added to T

with an empty guard� The arcs hp� c�i and hc�� not pi� both with labels �X� V � with
new variables X and V � are added to A� If such a transition �res� all tokens from p

are moved to not p�

Example � ��� p�a� �
�� �
��� p�a� �
�	 � not p�a� �
�� � p�a� �
��

�a�
�	�

�a� V �

p

not p

V �
��

c�

W �
��

�

��a�W �

�a�
���

�X� V �

�X� V �

� AN EXTENDED PETRI�NET MODEL ��

The following algorithm schema describes� how to compute the well�founded model�

�� Compute the �xpoint as described in section ��� without �ring any transition from
T �� This realizes SP �

�� Transfer all tokens along the transitions in T �� i�e��

� Delete all tokens out of places in P��

� Fire every transition in T ��

� Delete all tokens out of places in P� and restore the initial marking in these
places�

This performs �SP �

�� Redo these two steps� This results in �SP � �SP ��

�� If the outer �xpoint is not reached� go to step �� To test this� the marking needs to
be saved to compare it to the new marking after step ��

�� The �xpoint is reached� Take step � one more time� The resulting marking represents
the well�founded model�

The following table demonstrates the algorithm referring to example ��

Step Marking

p�X� �
�
� not p�X� � ��
 Initialisation
� p�a� �
��� not p�X� � ��
 ��� �res
� p�X� �
�
� not p�a� �
�� �c�� �res
� p�a� �
�	� not p�a� �
�� ���!��� �re
� p�X� �
�
� not p�a� �
�	 No �xpoint
� p�a� �
��� not p�X� � ��
 The same four steps repeated
� p�X� �
�
� not p�a� �
��
� p�a� �
�	� not p�a� �
��
� p�X� �
�
� not p�a� �
�	 Fixpoint reached
� p�a� �
��� not p�a� �
�	 Well�founded model

This procedure has some problems� Tokens need to be deleted explicitly and two di�erent
�ring semantics need to be observed� Also transitions are locked and unlocked periodically�
After all� this results in something very di�erent from Petri�nets� To check whether the
�xpoint was reached� many tokens need to be remembered and compared� To implement
this� it will be best to divide every place from P� in two parts� one storing �S� the other
�S� �S�� The solution in �
� bares the same disadvantages�

An alternative solution is described in ����� This is more closely to Petri�nets� but adds
inhibitor arcs and requires the explicit computation of the greatest deadlock of the net to
obtain the unfounded set of a program� A non�empty subset S � P of places in a Petri�net
is called a deadlock� if every transition having an output place in S has an input place in S�
Note that in this approach enabling tokens will be removed if a transition �res� according to
the de�nition of the update of markings in ordinary Petri�nets� The greatest disadvantage

� GAPCAD � ARCHITECTURE �	

of the approach in ���� is the translation schema� Every place represents a ground atom
rather than a predicate� which makes it of little use for graphical applications addressed in
this report�

To summarize� there is no known elegant method for Petri�net computation of the well�
founded model of normal programs� In the next section� a tool implementing the routines
in section ��� is presented� It does not allow normal programs and therefore does not
implement the well�founded semantics� due to the problems encountered above�

� GAPCAD � Architecture

GAPCAD is the implementation of the procedures presented in section ���� This chapter
brie�y reviews the concepts behind GAPCAD�

Figure �� Screendump of the GAPCAD user interface� with a well�known problem� The
current tokens in place flies are shown at the right bottom� At the top� a control panel
presents the features described in the text

GAPCAD o�ers the following features�

� One can draw a Petri�net and save it as a kind of painting� or load a GAP�program

� GAPCAD � ARCHITECTURE �

in DAEDALUS syntax� In the latter case the net is automatically being drawn in the
window as a Petri�net� Guards need not be typed� They are automatically derived
from the arc labels�

� After �nishing the drawing� the graph needs to be compiled into the internal extended
Petri�net structure� Syntax errors are located�

� After compiling� one can

� start the bottom�up procedure described in chapter ��

� start DAEDALUS� assuming a query �transitions without outgoing arcs� was
entered�

� save the net as a GAP in DAEDALUS syntax�

� During the bottom�up procedure

� every �ring transition highlights�

� the tokens in any place are shown� if requested�

� a transition can manually be forced to �re�

� The features of the graph editor are preserved�

See the GAPCAD manual included in the distribution for detailed descriptions�

core
GAPCAD-

ui2gapcadgapcad2ui

inheritance

Graph editor
(GraphEd)

(Frames, Menus, etc.)
Gapcad-Extensions

DAEDALUS

Figure �� The GAPCAD architecture

GAPCAD is a graphical user interface to DAEDALUS� Therefore the system can be
divided in three parts as illustrated in �gure ��

�� DAEDALUS ��� provides generic object data classes and lattice classes� and concepts
like predicates� literals� substitutions� etc� GAPCAD uses heavily DAEDALUS�code
for those basic GAP�functions like unifying� computing the least upper bound and so
on�

�� The graph editor provides a front�end for entering Petri�nets� GraphEd ��� was chosen�
because

� GAPCAD � ARCHITECTURE ��

� it is generic in the sense that it provides application interfaces for adding domain
speci�c functionality�

� it is easy to use�

� it is public domain�

Unfortunately some code had to be added in the core of GraphEd to provide an even
easier entering of Petri�nets� for example using the left and right mouse buttons to
create places and transitions or suppressing attempts to connect two places� It was
also important to ensure consistency between the GraphEd� and the GAPCAD data
structures� for example token windows need to be deleted as soon as the corresponding
place is deleted�

�� The GAPCAD�core itself has its own data structure� While running the bottom�up
procedure it needs to be consistent with the GraphEd data structure �for example to
highlight a transition� as well as the DAEDALUS data structure �for example to use
the routines for unifying�� Figure � shows the relevant classes�

Literal

Node

Net

Arc

Xclause Transition

Pred Place

QSolRoot Tokenlist

Graph

Node

Edge

ISA

HAS-A (with cardinality)

Points-to

DAEDALUS GAPCAD-Core

n

n

1

n
1

GraphEd

1

Figure �� The GAPCAD class structure

One goal was to separate the graph editor from the GAPCAD�core as far as possible to
make it easily possible to use another editor� Two interfaces were de�ned�

gapcad�ui� This contains procedures which GAPCAD provides for the editor such as creat�
ing and deleting nets�places�transitions�arcs� �ring of transitions� starting Daedalus�
bottom�up evaluation� loading�saving�printing the GAP� etc�

ui�gapcad� This speci�es services which the editor needs to provide� such as displaying new
nodes and edges� highlighting of a node� setting labels or refreshing token windows�

Some extensions of GAPCAD would be useful�

� FURTHER ISSUES �

� Currently no parallelizing is supported� Every enabled transition is immediately �red�
It would be interesting to compute the con�ict set of transitions which are enabled� see
also chapter ���� It would be easy to implement this� because there are two di�erent
procedures for checking for �reability and �ring of a transition�

� For a more e"cient computation� it would be useful to switch of the graphical repre�
sentation completely�

� It could be interesting to examine the �ring sequence as a list�

� In ���� and ���� a Petri�net based validation check of rule�based programs is described�
Integration in GAPCAD should be easy because of the simple class structure�

� Unfortunately GraphEd provides no graph overview facility� For large GAPs the
graph becomes too complicated� Also the automated graph drawing of a loaded GAP
is far from optimal�

� For more easy entering of graphs� it would be useful to implement hierarchical coloured
Petri nets ����

� Further issues

In this chapter� two further subjects are addressed� �� control �ow speci�cation and ��
GAPCAD as a knowledge acquisition tool�

��� Control �ow speci�cation

From a software engineering point of view� the extended Petri�net model speci�es the data
�ow� The places are data containers and the transitions represent the operations on the
data� especially if the guards contain more complex functions� On the other side no control
�ow speci�cation is given� Each enabled transition may �but need not� �re� which causes
indeterminism� This is sound according to the �xpoint�semantics ���� A speci�cation of
the control �ow� i�e� the determination which of the enabled transition �re in any state of
the net� is not necessary� It could even make the extended Petri�net model incomplete� if
it never allows a particular transition to �re� which contribution to the �xpoint set is not
empty� This shows that a control �ow speci�cation needs to satisfy some conditions� For
example it needs to be fair� i�e� every enabled transition �res sometime until the �xpoint
is reached�

However� explicitly specifying the control �ow has two advantages�

�� E"ciency� Even if a transition is enabled� its �ring does not necessarily enlarge the
�xpoint set� If a query has been stated� the point becomes obvious� Consider as an
example the following program�

p�X� � q�X� ���

q�a�

q�b�

� FURTHER ISSUES ��

q�c�

���

Query � p�a�

The query is answered in two steps� but a pure bottom�up procedure computes the
whole model� A possible way to resolve this overhead is the magic set approach ����
where the clause ��� would be rewritten to p�a� � q�a�� depending on the known
query�

�� Side e�ects� Consider the case where the �ring of a transition causes a side e�ect
output to the screen� In the most cases the user is only interested in the �nal solution�
not in several in�between results� so this transition should �re as late as possible� This
can only be achieved if the control �ow is explicitly speci�ed� Of course� this argument
is not a theoretical but a practical one�

There are at least three possibilities to describe the control �ow�

Firm strategy Production systems� which also work in a bottom�up manner� usually re�
solve the con�ict that arises if more then one rule at the time is ready to �re� via some
heuristics like #Take the most recent enabled rule# or #Take the rule with the largest
number of premises# or so� In GAPCAD a rather simple con�ict resolution is imple�
mented� It iterates through the set of transitions� If the current transition t is enabled
and some new token is in any of the places in �t� it �res and the iteration restarts�
This algorithm terminates because the �xpoint is reachable and its occurrence causes
no new token being in any place�

There is one major disadvantage in completely specifying the control �ow� Two tran�
sitions being enabled at the same time express the possibility to �re them in parallel�
There is not always the need to completely sequentialize the order of �ring� In the
case of Petri�nets� a control speci�cation should be better viewed as a restriction of
freedom� rather than a total sequentialisation� The next two techniques take this into
account�

Petri�nets We used the Petri�net model to de�ne the data �ow� although Petri�nets usually
specify the control �ow� It is possible to unify both applications� Orthogonally to the

data-
place

data-
place

flowcontrol

data
flow

control-

control-

place

place

data �ow we embed the transitions in a second Petri�net where the places contain
control tokens� A transition may be enabled only if its input control�places contain
tokens� In ��� it is shown that as soon as the control �ow gets more complex� Petri�nets

� FURTHER ISSUES ��

tend to be di"cult to survey� so this kind of control �ow speci�cation appears to be
not very natural�

Priorities In ��� it is suggested to express the control �ow through dynamically given
priorities between transitions or temporally locks of transitions� If two transitions are
enabled� the one with the higher priority �res �if it is not locked�� while the other has to
wait� If the two have the same priority they do both �re in parallel� These priorities
may change on certain events like a counter reaching zero� an external condition
becoming true� time constraints� etc� The reader may refer to ��� for more ideas�
This seems to me the most promising approach for control speci�cation� although
dynamically changing priorities may lead to confusion about what state the net is
currently in�

��� GAPCAD as a knowledge acquisition tool

KADS �Knowledge Acquisition and Design Structuring� ���� is a methodology for developing
knowledge�based systems �KBS�� Its emphasis lies on de�ning a language for semi�formal
speci�cation of KBS� Neither any knowledge elicitation technique nor implementational
details are covered� KADS o�ers some abstract templates �called models� which need to
be �lled during the speci�cation phase� A central model is the model of expertise which
describes the contents of the knowledge base of the KBS in �essentially� three parts� called
layers� �� Inference Layer� specifying the data �ow� �� Task Layer� specifying the control
�ow� and �� Domain Layer� specifying the kinds of data� The KADS methodology is widely
used for new developments in the �eld of knowledge based systems� Many knowledge
acquisition tools are based on the KADS methodology� It would be interesting to examine�
how well GAPCAD meets the requirements of KADS�tools� since

� annotated programs form a logic programming language� which are widely used as
prototyping languages for the development of KBS�

� the institute is looking for tools which aid in developing mediatory knowledge bases�

� the Petri�net model is very similar to the description of the inference layer in KADS�
This point is discussed in the sequel�

The inference layer of the model of expertise in KADS contains a description of the data
�ow in the KBS to be developed� Its graphical representation �called inference structure�
contains meta�classes �squares� � the data� and knowledge sources or inference steps �circles�
� the operations on the data� See Figure � as an example for an inference structure� It
shows the data �ow in a generic con�guration task ����� Notice the similarity to Petri�nets�
meta�classes are places and knowledge sources are transitions� but one should notice the
dual graphical syntax� circles are squares and vice versa� The semantics of the inference
structure is not formally speci�ed in KADS� The syntactical equivalence between the two
was used in MoMo �����

However� as our extended Petri�net model represents speci�c program clauses on the
symbol level� the inference structure in KADS describes #only# the very idea� how the
expert performs the �con�guration� task on the knowledge level ����� Further re�nement of

� CONCLUSION ��

propose

verify

revise

init
extended
model

user
specs

skeletal
model extensions

design

violation

Figure �� A top level inference structure

the inference structure leads to more special and �nally to atomic inference steps� In Figure
� a more detailed description of the propose knowledge source from Figure � is shown�
Coloured Petri�nets� on which the extended Petri�net model is based� can also be de�ned as

skeletal
model

extended
model

extensions
design

parameter

specify

select

Figure �� Re�nement of inference step �propose�

hierarchical nets ���� It would be interesting to investigate the possibility of a graphically
and semantically uni�ed top�down�construction of knowledge bases� beginning at the top
�knowledge level� with the inference structure similar to Figure �� applicating some local
re�nements as in Figure �� and ending up with an extended Petri�net as a representation
for GAPs �symbol level�� which can be debugged using GAPCAD and e"ciently executed
by DAEDALUS� Some related issues need to be addressed�

� Are atomic inference steps really clauses$

� Where do the arc labels �t in$ What is their interpretation on the knowledge level$

� How can nets with non�atomic transitions be executed$ ����

� Conclusion

This report described the theory and the implementation of an executable graphical repre�
sentation of generalized annotated programs using the notation and semantic of Petri�nets�
The following topics were addressed the �rst time�

� CONCLUSION ��

� The formalism presented here is based on Coloured Petri�nets� which provide a natural
way to express constraints on the annotations� using the concept of transition guards�
In ��� and ����� predicate�transition nets ��� were used�

� An execution model for the Petri�net based computation of the well�founded model
of normal programs was presented� Another alternative is described in ����� which is
based on classical logic� rather than on annotated logic�

� Finally the GAPCAD implementation provides an interesting graphical user interface
for entering GAPs� and serves as an basis for a more sophisticated tool� Promising
ideas in this direction were also presented in this report�

Three possible future research direction are�

� Development of a better Petri�net based realisation of the well�founded semantics�

� Provision of more support for entering GAPs for DAEDALUS �especially for the sorts
of the predicates��

� Viewing GAPCAD in a more general frame for support of knowledge acquisition along
the lines of ���� and �����

Acknowledgements I�d like to thank Joachim for supervising and supporting this
work� Michael Himsoldt for providing GraphEd and especially Peter for many quick respond�
ings to my never�ending wishes� remarks and misunderstandings concerning DAEDALUS�

REFERENCES ��

References

��� Bancilhon� F�� Maier� D�� Sagiv� Y�� Ullman� D�D� Magic Sets and other strange
ways to implement logic programs Proceedings of ACM Symposium on Principles of
Database Systems	 �
��	 pp
 ����

��� D� Debertin� Parallizing inference in distributed knowledge based systems� Master�s
thesis	 Institute of Algorithms and Cognitive Systems	 University of Karlsruhe �in
German�

��� F� Gebhardt� E� Gro%� H� Vo%� Concurrency constraints as control speci�cations for
the MoMo language FABEL Report No
��	 GMD Sankt Augustin	 �

�

��� H�J� Genrich� Predicate�Transition nets� LNCS ���	 Springer�Verlag	 �
�� pp
 ����
���

��� M� Hemsoldt� GraphEd User Manual� and Sgraph ��� Programmers Manual Included
in GraphEd distribution	 available at ftp
uni�passau
de in pub�local�graphed

��� Kurt Jensen� Coloured Petri Nets� A High Level Language for System Design and
Analysis� in� G
 Rozenberg �Ed
�� Advances in Petri Nets �

�	 pp
 �������

�	� Michael Kifer� V�S� Subrahmanian� Theory of Generalized Annotated Logic� Journal
of Logic Programming ��	 �

�	 pp
 �������

�
� D�B� Kemp� P�J� Stuckey� D� Scrivastava� Magic Sets and the Bottom�up Evalua�
tion of the Well�founded Model� Logic Programming� Proceedings �

� International
Symposium	 San Diego	 pp
 �������

��� Peter Kullmann� SLG�Resolution for Generalized Annotated Logic� Master�s thesis	
Institute for Algorithms and Cognitive Systems	 University of Karlsruhe	 �

� �in
German�

��
� Jim Lu� Anil Nerode� V�S� Subrahmanian� Towards a Theory of Hybrid Knowledge
Bases� To appear in IEEE Transactions on Knowledge and Data Engineering

���� Frank Maurer� Hypermedia�based Knowledge Engineering for Distributed Knowledge
Based Systems� Diss
 thesis �in German�	 in�x Sankt Augustin �

�

���� P� Meseguer� A new method to checking rule bases for inconsistency� a Petri Net
approach� Proceedings of ECAI	 Stockholm	 �

�	 pp
 �������

���� Tadao Murata� V�S� Subrahmanian� Toshiro Wakayama� A Petri Net Model for Rea�
soning in the Presence of Inconsistency� IEEE Transactions on Knowledge and Data
Engineering	 Vol�	 No
�	 September �

�	 pp
�����
�

���� Allen Newell� The Knowledge Level� Arti�cial Intelligence ����
��� pp
������

���� A� Th� Schreiber� P� Terpstra� P� Magni� M� van Velzen� Analysing and Implementing
VT Using CommonKADS� KADS�Workshop

���� T� Shimura� J� Lobo� Tadao Murata� An Extended Petri Net Model for Normal Logic
Programs� IEEE Transactions on Knowledge and Data Engineering	 Vol
 �	 No
 �	
Feb
 �

�

REFERENCES ��

��	� V�S� Subrahmanian� Amalgamating Knowledge Bases� ACM Transactions on
Database Systems �
	�	 �

�	 pp
 �
�����

��
� V�S� Subrahmanian� S� Adali� A� Brink� R� Emery� Jim Lu� Adil Rajput� T�J� Rogers�
R� Ross� C�Ward� HERMES Heterogeneous Reasoning and Mediator System� Draft	
University of Maryland	 �

� Available via WWW�

���� A� van Gelder� K� Ross and J� Schlipf� The Well�founded Semantics for General Logic
Programs� Journal of the ACM	 Vol
 ��	 No
 �	 July �

�	 pp
 �������

��
� A� van Gelder� The Alternating Fixpoint of Logic Programs with Negation �Extended
Abstract� Proc
 �th Symposium on Principles of Database Systems	 March �
���	
Philadelphia �
�

���� J� Walther et� al� MoMo GMD Sankt Augustin �

�	 Germany
 Available via WWW

���� B�J� Wielinga� A�T� Schreiber� J�A� Breuker� KADS� A Modelling Approach to Knowl�
edge Engineering Knowledge Acquisition	 ������	 �

�

���� D� Zhang� D� Nguyen� PREPARE� A Tool for Knowledge Base Veri�cation� IEEE
Transactions on Knowledge and Data Engineering	 December �

�	 Vol
 �	 Number
�	 pp

���
�

