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1 INTRODUCTION 3

1 Introduction

The contents of this work is the implementation of the bottom-up evaluation procedure of
Generalized Annotated Programs (GAPs). A related procedure was presented in [2] (Chap-
ter 3.3) and [13]. The procedure has been formulated in terms of Coloured Petri-nets [6].
Also the extension to GAP-clauses with negated body literals has been examined. The
developed tool, called GAPCAD (Generalized Annotated Program Construction And De-
bugging), allows the interactive graphical entering of the Petri-net representation of GAPs
and therefore serves as an front-end to DAEDALUS [9]. GAPCAD also permits the mon-
itoring and step-by-step execution of GAPs. In contrast to DAEDALUS, which performs
a query initiated backward chaining (SLG-resolution), the forward chaining procedure in
GAPCAD computes the whole model of the GAP based on the fixpoint semantics. To
compute normal GAPs, i.e. clauses with negated literals in the body, an algorithmical pro-
posal for the computation of the well-founded model according to the alternating fixpoint
characterisation [20] is presented. This will ensure answer compatibility to DAEDALUS.

The implementation uses DAEDALUS routines, a generic graph editor [5] and in-
between code for representing the Petri-net and computing the fixpoint. It was taken care
to define a useful interface between the GAPCAD core and the graph editor for possibly
exchange with a different editor.

The outline of this report is as follows: Firstly, the generalized annotated logic, the
well-founded semantics and the Coloured Petri-net formalisms are described shortly. Next,
the extended Petri-net model is presented, in the first instance without negated literals
and subsequently including them. Chapter 4 addresses the architecture of GAPCAD, and
the final chapter discusses some further issues and an outlook. This text does not cover
GAPCADs actual purpose: To serve as a front-end for developing mediatory knowledge
bases for the integration of heterogeneous and inconsistent information sources.

2 Prerequisites

2.1 Generalized Annotated Programs

In this section the generalized annotated logic, introduced by M. Kifer and coworkers [7],
is sketched. It provides an universal language for dealing with temporal, uncertain and
inconsistent information or in general with parametric data with provides the algebraic
structure of a lattice. For a comprehensive description of the language the reader may refer
to [10, 7].

Salient features of the language are the so-called annotations which are constants, vari-
ables and terms over a complete lattice 7'. Figure 1 presents some examples for complete
lattices. The following definitions are from [7]:

Definition 2.1 An annotation is either an element of 7 (c-annotation), an annotation
variable (v-annotation) or a complex annotation term (t-annotation). Annotation terms are

1A complete lattice (7, =) is a partial ordering with respect to <, a least upper bound (lub) LI and a
greatest lower bound (glb) M for every subset of 7. A lattice is linear if < is a total ordering.
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Figure 1: Some lattices used in this report

defined recursively as follows: Members of 7 and variable annotations are annotation terms.
In addition, if y1,.. ., iy, are annotation terms, then f(uq,..., 1, ) is a complex annotation
term.

If A is a usual atomic formula of datalog (in [7] predicate calculus) and u is an annotation,
then A : p is an annotated atom. An annotated atom containing no occurrence of object
variables is ground. A is called the object part and p is called the annotation part of A : .

Definition 2.2 (Annotated clause) If A: pis an annotated atom and By : py,..., B :
1 are c- or v- annotated atoms, then

Aip— DBy Ao AN B g

is an annotated clause. A : p is called the head of this clause, whereas By : p1,..., B : g
is called the body. All variables (object or annotation) are implicitly universally quantified.
Any set of annotated clauses is called a Generalized Annotated Program (GAP).

Definition 2.3 (Strictly ground instance) Suppose that C' is an annotated clause. A
strictly ground instance of C' is any ground instance of C' that contains only c-annotations.

Let H be the Herbrand base of the program. An annotated logic interpretation [ is a
mapping [ : H — 7 from the base onto a lattice.

Definition 2.4 (Satisfiability) Let I be an interpretation, u € 7 a c-annotation, F} and
F; formulae, and A a ground atom:

1. I1EA:piff I(A) = p.
2. I'=—=A:piff =(p) < I(A).

3. IE P AR ff T Fy and I |= .
b TRV EIffIEF ol = Fy.

5I|IF1HFQIHI|IF10TII7£F2
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7. I = (Vo) iff I |={a/t}F for all ground terms ¢ where z is an object- or annotation
variable.

8. I = (Ja)Fiff I = {a/t}F for some ground term ¢ where x is an object- or annotation
variable.

9. If F'is not a closed formula, then [ = F iff I = (V)F, where (V)F denotes the
universal closure of F.

There are two different kinds of negation in GAP, the so-called epistemic (or explicit)
negation = and the non-monotonic not. — requires symmetry between true and false, e.g.
—“A:t=A:fin FOUR. The topic of non-monotonic negation will be discussed in section
2.2. For GAPs without non-monotonic negation the fixpoint operator has the following
form:

Definition 2.5 (Fixpoint-operator) Let P be a generalized annotated logic program
(GAP), I a GAP interpretation and 7 a complete lattice. Then a fixpoint operator Rp([/)
for bottom-up computation of GAPs is defined as follows: Rp(I)(p):=U{p|p:p — p1:
Wiy Pp i ly is a strict ground instance of a clause in P and I |= py @ by, .Pn  fin }-

Rp may reach the least fixpoint ({fp) if for all strict ground instances A, [fp(Rp(A))
is reached after a finite number of iterations. This condition, called fizpoint reachability
property [7], holds for many GAP knowledge bases: If the clause bodies of a program
contain only variable (v-) or only constant (c-) annotations, or if only finite or decreasing
monotone functions? appear in the program. For instance, if the knowledge base consists
of Rains(Monday) : 0.5 and Rains(Monday) : 0.8 the least upper bound computed by the
fixpoint operator would be Rains(Monday) : 0.8 = 1U{0.5,0.8}.

2.2 Well-founded semantics

For simplicity we define the well-founded semantics for classical logic in the first case,
according to [19].

Definition 2.6 (Normal program) A normal program is a set of clauses of the form
A—BiA...ANB,Anot B,;1 A...Anot B,

where A, By,...B,, are atoms.

Let P be a normal program and Hp its Herbrand base consisting of all atoms that are

grounded in every possible way using all predicates, functions and constants that appear

in P. For a set of literals S the expression — -5 denotes the set formed by taking the
complement of each literal in S. Consider as an example the following program P:

pla) < mnot q(b)
q(b)

2A function f is finite if {f(2)|x € DOM(f)} is finite and f is decreasing if for arbitrary arguments
T1,...8n f(z1,...2p) <gziforall 1 <i< n.
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Pis anormal program with Hp = {p(a), p(b), ¢(a), q(b)} and =-{p(a), ~g(a)}={-p(a), q(D)}.

The well-founded model of a normal program P is a partial model?, i.e. a set of literals
which contains not necessarily all atoms of Hp. Therefore it can be seen as a three-valued
model. In the above example, an interpretation I = {q(b), ~¢(a)} states that ¢(b) is true in
I (and therefore —¢(b) is false in I'), ¢(a) is false in I and the truth values of p(a), p(b) are
unknown in 1.

Definition 2.7 (Greatest unfounded set) Given a partial interpretation / and a nor-
mal program P, A C Hp is called an unfounded set of P with respect to I if each atom
p € A satisfies the following condition: FEither there is no clause in P whose head is p, or
there exists such a clause ¢ and at least one of the following holds:

(a) some (positive or negative) subgoal of the body of ¢ is false
in 1
(b) some positive subgoal of the body of ¢ occurs in A.

The greatest unfounded set of P with respect to I, denoted Up(I), is the union of all un-
founded sets of P w.r.t 1.

In the example program P and interpretation I above, Up([l) is {p(b),p(a)}. The well-
founded semantics uses Up([) to draw negative conclusions. The transformations 7p, Wp
are defined as follows:

e T'p(I) is the usual fixpoint operator, i.e. p € Tp(I) iff there is some instantiated
clause ¢ of P such that ¢ has head p and each subgoal literal in the body of ¢ is true
in interpretation [. Tp([l) is called the inner fizpoint.

e Wp(l):=Tp(I)U~-Up(l). Wp is monotonic [19].

Definition 2.8 (Well-founded model) Let Iy := 0, I,41 := Wp(l,) and I = |, I,.
1% — the least fixpoint of Wp, also named outer fixrpoint — defines the well-founded model
of P.

The example program P has the well-founded model {¢(b),—p(a),—q(a),=p(b)} which is
not partial. As an example for partial model consider the program which only contains the
clause p(a) — =p(a). The well-founded model is empty, therefore the truth value of p(a) is
unknown.

2.2.1 Alternating fixpoint

In the following the alternating fixpoint characterisation of the well-founded model is pre-
sented shortly, according to [20]. Let I be a set of negative literals of atoms known to
be false and P’ := Hp U I. We define Sp(I) := T57(0) where T3 is the least fixpoint of

Tpr, which was already defined above. Sp([) is the set of positive facts that are derivable

? An interpretation or model [ is seen as the set of all literals that are truein I, i.e. {p € HpU~-Hp|I |= p}
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from P and I. Let Sp(I):= —-(Hp \ Sp(I)). The iteration steps I,41 = Sp(1,) alter-
nate between subsets (underestimation) of the positive portion of the partial well-founded
model and supersets (overestimation) of the undefined and negative portion. The alterna-
tion converges: Let Ap(I) := Sp(Sp(I)), then Ap is monotone, therefore A := A% exists.
Finally Sp(A)U A is the well-founded model of P. The reader may refer to [20] for a deeper
treatment.

Consider as an example for the alternating fixpoint computation of the well-founded
model the following program taken from [20]. It describes a game where one wins if the
opponent has no moves left.

Example 1

— move(X,Y) A not wins(Y)

The table shows the sets Sp and Sp at consecutive stages of the computation. They are
restricted to the atoms of the wins-predicate, since the mowve-facts do not change during
computation.

Step ¢ ‘ Sp(ly) ‘ Sp(ly) = Ly
0 0 {=wins(a), ~wins(b), ~wins(c), ~wins(d)}
1 {wins(c), wins(b), wins(a)} {~wins(d)}
2 {wins(c)} {~wins(a), ~wins(b), ~wins(d)}
3 {wins(c), wins(b), wins(a)} Fixpoint reached

Finally the well founded model is Sp(14) U Sp(1I3) = {wins(c), ~wins(d)}, restricted to
the wins predicates.

2.2.2 Annotated logic and the well-founded model
The semantics of the non-monotonic negation in annotated logic is defined as follows:

Definition 2.9 (Satisfiability of negated atoms) Let I be an interpretation, p € 7 a
c-annotation and A a ground atom:

I'E not A:piff I(A) %

The well-founded semantics can be generalized to annotated programs. Since the semantics
of the satisfiability relation |= changed in annotated logic, a partial model can have a
different form. Consider the following program with the lattice [0, 1]:

p:0.7 «— mnotp:0.5
p:0.3
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The partial well-founded model evaluates to {p : 0.3,not p : 0.7}, i.e. p : p is true for all
1 = 0.3, false for all g > 0.7 and unknown for all 0.3 < ¢ < 0.7, where a > b iff a« £ b.

Example 2 reviews example 1 with annotated atoms. In the table, again only the wins
atoms are presented. They are abbreviated in a straightforward manner, e.g. not wins(a) :
0.3 is represented as —a : 0.3.

Example 2
wins(X): W — move(X,Y): W Anot wins(Y):0.5
move(a,b): 0.3
move(b,a): 0.4
move(b,c): 0.6
move(c,d): 0.7
Step ¢ Sp(ly) Sp(ly) = I
0 {a:0.0, b:0.0, ¢:0.0, d:0.0} | {-a:0.0, =b:0.0, =¢:0.0, =d : 0.0}
1 {a:0.3,0:06, c:0.7, d: 0.0} | {-~a:0.3, =b:0.6, =c:0.7, =d : 0.0}
2 {@a:0.0,5:04, ¢:0.7, d:0.0} | {-~a:0.0, =b:0.4, =¢:0.7, =d : 0.0}
3 {@¢:03,5:06, ¢:0.7, d:0.0} | {na:0.3, =b:0.4, =c:0.7, =d : 0.0}
4 {@a:0.3,5:0.6, c:0.7, d:0.0} Fixpoint reached

The well founded model is Sp(I5)U Sp(ly) = Sp(I3)U Sp(l3). This model is — different
to the one in example 1 — not partial. Note that the fixpoint was reached, because step 4
results in the same sets as step 3, leading to a total model. Due to the alternating fixpoint
definition, step 5 needs also be computed, because Ap evaluates two Sp-steps at a time.

2.3 Coloured Petri-nets

A coloured Petri-net is a triple N = (P, T, A) consisting of disjoint sets P (places) and T'
(transitions) and a multiset A (arcs) over (P x T') U (T x P) forming a bipartite graph.
Fach place p € P is assigned a colourset C(p) and a multiset M (p) of tokens, each of
colour C(p). Coloursets can be viewed as data types, and tokens are instances having a
specific colour. Each arc a = (p,t) € A or (t,p) € A is attached a label L(a) of type C(p).
Note that tokens as well as labels may contain variables of suitable type. A marking is the
distribution of tokens over all places of the net. Each transition ¢ € T is assigned a Boolean
guard G(t) expressing constraints on the variables binded to ¢. For an extended and more
formal definition of coloured Petri-nets, the reader may refer to [6].

Let IN(t) := {{p,t) € A|p € P}, OUT(t) := {{t,p) € A|p € P}, ot := {p|(p,t) € A}
and te := {p|(t,p) € A} denote the vicinity of t€T. A transition ¢ is called enabled iff the
following conditions hold:

e lor each incoming arc a; = (p,t) € IN(t) there is at least one variable substitution
o;, such that a token s€ M(p) exists with o;(s) = o;(L(a;)). This particular token s
must not serve again as a resource for another substitution o; for j # 7. Recall that
M (p) is a multiset, therefore more than one token of this kind may be present.
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e All substitutions o; (1 < ¢ < [IN(t)|) are compatible. ¢; and o; are compatible if
their concatenation o;0; is defined. In other words, there is no assignment of two
different values to the same variable.

e (/(t) evaluates to true under o = 0102 ---0,,. In this case, o is called an enabling
substitution.

There could be more than one enabling substitution under the same marking. A transition
could fire, if it is enabled under a substitution o. If a transition ¢ fires, the tokens M; of
the places are updated to M;;q as follows:

Mi(p) \ o(L({p,1))) if pcette
Vs i ] VL) fpeiel et
i+ O\ o (L({(p 1))} U o(L({t.p)) if p € ot 110
M;(p) otherwise
Given a marking Mo, a sequence t1,.. .1, is called a firing sequence, if for each ¢ (1 < i < n),

it holds that ¢; € T is enabled under the marking M;_; and ¢;’s firing results in the marking
M;. The firing sequence changes the marking My into M.

3 An extended Petri-net Model

3.1 Negation-free GAPs

A GAP knowledge base is transformed into an extended Petri-net N = (P,T', A) according
to the subsequent rules (suppose the clauses are enumerated from 1 to n):

e Each predicate pis a place p € P in the net.
e Lach clause ¢ (1 < ¢ < n)is a transition ¢ € 7" in the net.

e Let O be the type of the object part and 7 the annotational lattice of predicate p.
Then C(p) =0 x 7.

e lFor every clause ¢ of the form

po(00) : po = p1(01) 1 pr Ao A Pr(0m) T i

and 1 < ¢ < m, the net contains the arcs a; := (p;, ¢) with the labels L(a;) := (o4, i),
where ; is a new variable annotation. If u; is a c-annotation, then u; < f; is added
as a conjunctional condition to the guard of transition ¢. In addition, the net contains
the arc ag := (¢, po) with the label L(ag) := (0g, i), where

1o if pg is c-annotation
to := & M{;|p; is the same variable as po} if pg is v-annotation
f(p1, - pn) if fio = f(p1s---pn)
The py,...p, are defined recursively in the same way. Note that NM{a} = a for every

a €7 and N{} :=nN7.
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e The initial marking is Vp € P : My(p) = {(X,N7)}, where X is a new variable for all
pand (X,N7) € C(p).

Queries can be added to the net, as they are headless clauses. The following abstract
example illustrates the transformation in its details. Places are drawn as circles and transi-
tions as rectangles. Typing information is omitted and C(p) = C(q) = C(r) = {a} x [0, 1].
All uppercase letters are variables.

Example 3 (1) p(a): 0.5 —
(2) q(a):0.6 —
(3) r(X )'1VHp(a):V/\q(X):V/\q(a):O.3
(4) <= r(X):0.2

a05

L @m
(X, 1n{vi, L)) @(X,V)

1 (a,0.6) V?’/'

S (X, Va) V3>03 V=02

In the following, a substitution is written as a set of bindings of the form X /¢, where X is
a variable and ¢ is a term of appropriate colour. In example 3, the answering of the query
7(X):0.2 can be modelled by a firing sequence 1,2,3,4: Transitions 1 and 2 are always
enabled since their guards are true and no variable binding is necessary. Their firing places
the token (a,0.5) in p and (a,0.6) in ¢. Consider now transition 3: A possible substitution
is o = {V1/0.5,V5/0.6,V5/0.6, X/a}. Due to the fact that the guard V5 > 0.3 evaluates to
true under o, transition 3 is enabled. Its firing (see below for problems here) adds the token
o((X,0.5-1{V1,V3})) = (a,0.25) to place r. Finally the query transition 4 is enabled with
0 =4{X/a,V/0.25}, which is also the substitution for the successful query.

We need to extend the model in the following three ways, in order to capture the fixpoint
semantics:

1. In the example above, only one token was in place ¢ after transition 2 fired, but
transition 3 needed this token two times to be enabled, one for every arc (q, 3). Unlike
the definition in section 2.3, tokens will not be removed in our model if a transition
fires. This reflects the fact that the tokens represent knowledge, rather than resources
that cannot be shared. In other words, our Petri-net model caches all facts necessary
for answering a query, which could lead to a large number of tokens to be kept within
the net. Such an extension avoids conflicts between transitions which need the same
token to be enabled, as encountered in the example.

2. The model presented so far only works with linear annotation lattices. Consider the
following example using the non-linear lattice FOUR.
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Example 4 (1) buy(yen) : t —
(2) buy(yen) : £ —
(3) — buy(yen): T

A (yen, t) (yen, V)
- V=T

After the firings of 1 and 2, buy contains the tokens (yen,t) and (yen,f). There are
two possible substitutions for V: {V/t} and {V/f}. None of them satisfies the guard
V > T, hence transition 3 is not enabled. This is a contradiction to the fixpoint
semantics of GAPs, because L{t,f} = T. In the example, a token (yen, T) should be
in M(p) although none of the incoming transitions 1 and 2 delivered it. We call such
derived tokens reductants [7]*.

Definition 3.1 (Reductants) Given aset M = {(o1,p1),...(0n, tts)} of tokens and
a unification o with o(01) = ... = o(0,), the token (o(o01),U{p1,.. .1, }) is called a
reductant. The function reductants(M) computes the set of reductants derived from
all subsets of M for which o is defined.

For example ((a,b), T)is a reductant of the set {((X,b),t), ((a,Y),f)}. It is important
that every annotation in M is a c-annotation to ensure that the least upper bound LI
is defined. For markings M (p) this is always the case according to the next theorem.
A proof has appeared in [2].

Theorem 1 (Possible tokens of a place) Let P be a GAP and N its transforma-
tion. At all places p € P of N = (T, P, A), there are only tokens (o, ) € M(p) with
w € T, if P is finite.

3. It is also possible to delete tokens from a place. For example, every time (a,0.5) €
M (p) serves as a token for an enabling substitution of transition ¢ (with (p,t) € A),
(a,0.6) will as well; but not vice versa. We say that (a,0.6) subsumes (a,0.5), because
0.6 > 0.5 in the lattice [0,1]. (a,0.5) might be deleted from M (p) without changing
the behaviour of the extended Petri-net.

Definition 3.2 (Subsumption) Given two tokens (o1, 1), (02, 2) € M, the first
subsumes the second if pq > po and there exists a substitution o such that oy = o(07).
The function subsumption(M) computes all tokens in M which are subsumed by at
least one other token in M.

For example (a,t) and (a,f) are both subsumed by their reductant (a, T), whereas
subsumption({((X,6),t), (4, V), £), ((a,b),T)}) is empty.

*Different from the definition provided here, in [7] derived rules are named reductants. Note that tokens
are representations for annotated atoms due to the presented transformation.
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To summarize the three extensions presented above, we redefine the update M;,q of the
marking M; due to the firing of transition ¢t € T

(1) MZi(p) = { %zg; Y o(E({E2)) gtiefxii.se
(2) ijcll(p) = M;fl (p) U reductants(M;7,(p))
(3) Mipa(p) = MI(p)\ subsumption(MI{{(p))

With this extension, example 4 works as expected: Transitions 1 and 2 place the tokens
(yen,t) and (yen,f) in p respectively. M7 (p) evaluates to {(yen,t), (yen,f), (yen, T)}
and M(p) to {(yen, T)}, which enables transition 3, since T = T.

It is worth noting that our model captures the operational semantics of a GAP, which
means that if there is a GAP for which the least fixedpoint reachability property does not
14z

hold (e.g. from {p:0,p: 3% — p:a,q:1 < p: 1} it is never possible to answer the query

q : 1) the corresponding Petri-net cannot answer this query as well and runs forever.

The following theorems have been proven in [2] and capture the soundness and com-
pleteness of the proposed extended Petri-net model with respect to the semantics of GAPs:

Theorem 2 (Soundness) Let P be a GAP with clauses ¢y,...¢,, ¢, a query and N
the extended Petri-net defined on P. If there is a successful firing sequence in N then
Cly e Cpyt E Cp-

Theorem 3 (Completeness) Let P be a GAP with clauses ¢y,...¢,, ¢, a query and N
the extended Petri-net defined on P. If ¢y,...¢c,—1 | ¢,, then there is a successful firing
sequence in N.

3.1.1 Algorithms for the extended Petri-net model

Before presenting algorithms for the testing for fireability of a transition and updating of
the net marking, some more definitions are required.

Definition 3.3 (Unifier mgua() of tokens) Tokens s = (o, ) as well as arc labels con-
sist of two parts, its first being the object part s° = o and its second being the annotation
part s*"" = p. Let mgu(o1,02) denote the usual most general unifier of 0y and o,. Given
two tokens/labels s1,s2, the most general annotational unifier, denoted mguga(s1,sz), is
defined as follows:

bj obj : : :
mgu(sy’, sy YU {s§/s{m ) if s§™ is v-annotation

b2 ' :
mgu(s]”’,s57) if s and s3™" are c-annotations

and s > S5

unde fined otherwise

mgua(slv 82) =

If mgu(sibj, sgbj) is not defined, mgua(s1, s2) is not defined either. Note that mgua() is not

symmetric. If mgua(s1,s2) is defined, then s; and sy are said to be unifiable.
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gofli’ e)iiample, mgua(((X,a),0.5),((5,Y),0.4)) = {X/b,Y/a} and mgua((a,t),(a,f)) is not

Definition 3.4 (Compatibility of annotation substitutions) Two substitutions
{V/a} and {V/b}, which assign different c-annotations ¢ and b to the same annotation
variable V| are compatible if @ and b are comparable due to the ordering of the underling
lattice. In this case their concatenation {V/a}{V/b} is defined as {V/ M{a,b}}. This
definition is easily extended to cases with more than two substitutions.

Definition 3.5 (Concatenation of mguas) The substitutions in mguas may be divided
in object variable substitutions and annotation variable substitutions. The concatenation
01090, of n mguas o1,...0, is defined as the usual concatenation of the object vari-
able substitutions unioned with the above defined concatenation of the annotation variable
substitutions.

The following algorithms do not use the notion of transition guards. Instead they are
specialized for the bottom-up evaluation of annotated programs encoded in Petri-nets. The
guards are implicitly checked in the mgua-routine defined above.

Testing for fireability of a transition

Input: Extended Petri-net N = (P, T, A);
Transition ¢ € T
Output: Maximal set of mgugas each enabling c¢. ¢ is not enabled if the set is empty.

0:={} (© is a set of sets of possible substitutions for c)
for all arcs « € IN(c) do
(Let @ be (p,c) € A)
Pq 1= {}, (¢a is the set of all possible substitutions according to a)
for all tokens s € M(p) do
if unifiable(s, L(a)) then ¢, := ¢, U mgua(s, L(a));
if ¢, = {} then return {};

O :=0 Uy
(Let © be {¢1,...0)01})
V= {}; (¥ is a set of all enabling substitutions for c)
for all permutations (oq, .. .O'|®|) with 0, € ¢, € O (1 << |0]) do
if 01,...0)g| are compatible in pairs then ¥ := VU o0y 0jg;
return V;

Firing of a transition

Input: Extended Petri-net N = (P, T, A);
Transition ¢ € T
Set ¥ of c-enabling substitutions
Output: N with updated marking using every ¢ € ¥
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for all arcs a € OUT(c) do
(Let @ be (¢,p) € A)
for all 0 € ¥ do
M(p) = M(p) U {o(L(a))}:
M(p) := M(p) U reductants(M(p));
M(p) := M(p) \ subsumption(M(p));

See [9] for algorithms implementing reductants() and subsumption(). The algorithms
are based on the rather descriptive than procedural algorithms in [2], which need two minor
corrections: Firstly, in [2] the initial marking is empty. This leads to incompleteness,
because even without any fact, the bottom element P : M7 of any predicate p is derivable.
Secondly, the testing for fireability on page 19 needs to be modified in step 2 in the following
way:

2. Compute for all ¢ (1 < 7 < n) sets MZJ = {(tfi,ufi,...(tpj,upj)} of tokens of the

place P; (e; = (P;,k)) and a substitution <I>f for every set MZJ such that the following
conditions hold:

(a) ®7 = unifier(t;, 1", A5

(b) e < I—l(:ul SN

(c) &, = . <I)Z if !, .. <I)Z are compatible in pairs.
(d) &= < ®; if ®q,...P; are compatible in pairs.
(e) There is no ® > & which satisfies (a)-(d).

The main procedure checks in each step for an arbitrary transition ¢ whether any of its
input places p € of contains new tokens relative to the last step. If not, it checks another
transition and stops, if no transition satisfies this condition, because this means, that no
new useful token was produced in the last step, therefore the fixpoint is reached. If on the
other hand a transition is found, it is fired if it is enabled. Then the next step is taken.
There is an indeterminism in choosing an arbitrary transition in the beginning of each new
step. This choice should be fair, i.e. every transition is checked a finite count of steps after
it has been checked last. See also section 5.1 for a discussion of this point.

Main procedure

Input: Extended Petri-net N = (P, T, A) with initial marking
Output: N with marking which represents the fixpoint

iterate through all t € T
if dp € ot with new tokens since last firing of a transition then
if ¢ is enabled then
fire t;
restart iteration;
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3.2 Normal GAPs

This section describes a method how to handle non-monotonic modes of negation based
upon the well-founded semantics in the extended Petri-net formalism, using a direct imple-
mentation of the alternating fixpoint computation. The reader may also refer to [8] for a
similar presentation not based on Petri-nets.

The transformation of a normal GAP to an extended Petri-net N = (P,T,A) is per-
formed as follows: Every negated atom of the form not p is treated as a new, not negated
atom ‘not_p‘, i.e. for every predicate a dual negative predicate is added to the vocabulary.
This transforms the normal GAP into a negation-free GAP. The set of places P is therefore
divided into two sets: PT, containing the positive literals, and P~, containing the previ-
ously negative literals, such that P = PT U P~. The transformation process is similar to
the one described in section 3.1, but with the following differences:

e lFor every clause ¢ of the form

po(00) : po = p1(01) 1 pr Ao A Pr(0m) T i

and 1 < ¢ < m, the net contains the arcs a; := (p;, ¢) with the labels L(a;) := (o, f1;)
where fi; is a new variable annotation. In case that y; is a c-annotation: If p; € PT,
then p; < g; is added as a conjunctional condition to the guard of transition c¢;
otherwise if p; € P7, then pu; > fi; is added to the guard. In addition, the net
contains the arc ag := (¢, po) with the label L(ag) := (o9, fio) where g is defined as
in section 3.1.

e The initial marking is Vp € Pt : My(p) = {(X,n7)}, and Vp € P~ : My(p) =
{(X,UT)}, where X is a new variable for each p.

Additionally, new transitions T will be introduced, as shown in example 5:

e Given two dual places p € PT and not_p € P, a transition ¢* € T* is added to T
with an empty guard. The arcs (p,c*) and (¢*, not_p), both with labels (X, V) with
new variables X and V, are added to A. If such a transition fires, all tokens from p
are moved to not_p.

Example 5 (1) p(a): 0.3 —
(2) p(a) : 0.7 — not_p(a) : 0.5 A p(a):0.2

a/v
T aW I

(X, V) V <05
W =02
(a,0.3) (a,0.7)
_—
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The following algorithm schema describes, how to compute the well-founded model:

1. Compute the fixpoint as described in section 3.1 without firing any transition from
T*. This realizes Sp.

2. Transfer all tokens along the transitions in 7%, i.e.:

e Delete all tokens out of places in P~.
e [ire every transition in 7.

o Delete all tokens out of places in PT and restore the initial marking in these
places.

This performs Sp.
3. Redo these two steps. This results in Sp(Sp).

4. If the outer fixpoint is not reached, go to step 1. To test this, the marking needs to
be saved to compare it to the new marking after step 1.

5. The fixpoint is reached. Take step 1 one more time. The resulting marking represents
the well-founded model.

The following table demonstrates the algorithm referring to example 5:

Step | Marking
p(X):0.0, not_p(X):1.0 | Initialisation
p(a): 0.3, not_p(X):1.0 | (1) fires
X):0.0, not_p(a):0.3 | (c*) fires
a):0.7, not_p(a): 0.3 | (1)+(2) fire
X):0.0, not_p(a):0.7 | No fixpoint

a):0.3, not_p(X):1.0 | The same four steps repeated
X):0.0, not_p(a):0.3
0
X
0

:0.7, not_p(a): 0.3
): 0.0, not_p(a):0.7 | Fixpoint reached
:0.3, not_p(a): 0.7 | Well-founded model

— N = N = N = N
3

This procedure has some problems: Tokens need to be deleted explicitly and two different
firing semantics need to be observed. Also transitions are locked and unlocked periodically.
After all, this results in something very different from Petri-nets. To check whether the
fixpoint was reached, many tokens need to be remembered and compared. To implement
this, it will be best to divide every place from P in two parts, one storing S, the other

S(S). The solution in [8] bares the same disadvantages.

An alternative solution is described in [16]. This is more closely to Petri-nets, but adds
inhibitor arcs and requires the explicit computation of the greatest deadlock of the net to
obtain the unfounded set of a program: A non-empty subset S C P of places in a Petri-net
is called a deadlock, if every transition having an output place in S has an input place in 5.
Note that in this approach enabling tokens will be removed if a transition fires, according to
the definition of the update of markings in ordinary Petri-nets. The greatest disadvantage
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of the approach in [16] is the translation schema: Every place represents a ground atom

rather than a predicate, which makes it of little use for graphical applications addressed in
this report.

To summarize, there is no known elegant method for Petri-net computation of the well-
founded model of normal programs. In the next section, a tool implementing the routines
in section 3.1 is presented. It does not allow normal programs and therefore does not
implement the well-founded semantics, due to the problems encountered above.

4 GAPCAD - Architecture

GAPCAD is the implementation of the procedures presented in section 3.1. This chapter
briefly reviews the concepts behind GAPCAD.

[ F SeerfobelinfusersSje kutsc b prosdgapoad fecamples/gapl g (edited) —— [Edit] [umn:tnlntdﬁ

—
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Figure 2: Screendump of the GAPCAD user interface; with a well-known problem. The

current tokens in place flies are shown at the right bottom. At the top, a control panel
presents the features described in the text

GAPCAD offers the following features:

e One can draw a Petri-net and save it as a kind of painting, or load a GAP-program
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in DAEDALUS syntax. In the latter case the net is automatically being drawn in the
window as a Petri-net. Guards need not be typed. They are automatically derived
from the arc labels.

o After finishing the drawing, the graph needs to be compiled into the internal extended
Petri-net structure. Syntax errors are located.

o After compiling, one can

— start the bottom-up procedure described in chapter 3.

— start DAEDALUS, assuming a query (transitions without outgoing arcs) was
entered.

— save the net as a GAP in DAEDALUS syntax.
e During the bottom-up procedure

— every firing transition highlights.
— the tokens in any place are shown, if requested.

— a transition can manually be forced to fire.

o The features of the graph editor are preserved.

See the GAPCAD manual included in the distribution for detailed descriptions.

i Gapcad-Extensions
Graph editor [
(GraphEd) (Frames, Menus, etc.)

gapcad2ui ui2gapcad

_ -
[ G%g%AD ] inheritance | DAEDALUS

Figure 3: The GAPCAD architecture

GAPCAD is a graphical user interface to DAEDALUS. Therefore the system can be
divided in three parts as illustrated in figure 3:

1. DAEDALUS [9] provides generic object data classes and lattice classes, and concepts
like predicates, literals, substitutions, etc. GAPCAD uses heavily DAEDALUS-code
for those basic GAP-functions like unifying, computing the least upper bound and so
on.

2. The graph editor provides a front-end for entering Petri-nets. GraphEd [5] was chosen,
because
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e it is generic in the sense that it provides application interfaces for adding domain
specific functionality.

e it is easy to use.

e it is public domain.

Unfortunately some code had to be added in the core of GraphEd to provide an even
easier entering of Petri-nets, for example using the left and right mouse buttons to
create places and transitions or suppressing attempts to connect two places. It was
also important to ensure consistency between the Graphkd- and the GAPCAD data
structures, for example token windows need to be deleted as soon as the corresponding
place is deleted.

3. The GAPCAD-core itself has its own data structure. While running the bottom-up
procedure it needs to be consistent with the GraphEd data structure (for example to
highlight a transition) as well as the DAEDALUS data structure (for example to use
the routines for unifying). Figure 4 shows the relevant classes.

—_— |SA
- -—-> HASA (with cardinality)

........ > Points-to
Cha Dy (oD
n/ . ///
£ \\
<— Gt~ ‘
/ ‘
1w/ DRt S =
3N |
n \ )

Gidve—Ga?
\
\

v IR ,,
\\ \\\\ y/ n
D= e TP S
\“1
G
DAEDALUS GAPCAD-Core GraphEd

Figure 4: The GAPCAD class structure

One goal was to separate the graph editor from the GAPCAD-core as far as possible to
make it easily possible to use another editor. Two interfaces were defined:

gapcad2ui: This contains procedures which GAPCAD provides for the editor such as creat-
ing and deleting nets/places/transitions/arcs, firing of transitions, starting Daedalus/
bottom-up evaluation, loading/saving/printing the GAP, etc.

ui2gapcad: This specifies services which the editor needs to provide, such as displaying new
nodes and edges, highlighting of a node, setting labels or refreshing token windows.

Some extensions of GAPCAD would be useful:
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e Currently no parallelizing is supported. Every enabled transition is immediately fired.
It would be interesting to compute the conflict set of transitions which are enabled; see
also chapter 5.1. It would be easy to implement this, because there are two different
procedures for checking for fireability and firing of a transition.

e For a more efficient computation, it would be useful to switch of the graphical repre-
sentation completely.

o [t could be interesting to examine the firing sequence as a list.

e In [23] and [12] a Petri-net based validation check of rule-based programs is described.
Integration in GAPCAD should be easy because of the simple class structure.

e Unfortunately GraphEd provides no graph overview facility. For large GAPs the
graph becomes too complicated. Also the automated graph drawing of a loaded GAP
is far from optimal.

e For more easy entering of graphs, it would be useful to implement hierarchical coloured
Petri nets [6].

5 Further issues

In this chapter, two further subjects are addressed: 1. control flow specification and 2.
GAPCAD as a knowledge acquisition tool.

5.1 Control flow specification

From a software engineering point of view, the extended Petri-net model specifies the data
flow. The places are data containers and the transitions represent the operations on the
data, especially if the guards contain more complex functions. On the other side no control
flow specification is given. Fach enabled transition may (but need not) fire, which causes
indeterminism. This is sound according to the fixpoint-semantics [2]. A specification of
the control flow, i.e. the determination which of the enabled transition fire in any state of
the net, is not necessary. It could even make the extended Petri-net model incomplete, if
it never allows a particular transition to fire, which contribution to the fixpoint set is not
empty. This shows that a control flow specification needs to satisfy some conditions. For
example it needs to be fair, i.e. every enabled transition fires sometime until the fixpoint
is reached.

However, explicitly specifying the control flow has two advantages:

1. Efficiency: Even if a transition is enabled, its firing does not necessarily enlarge the
fixpoint set. If a query has been stated, the point becomes obvious. Consider as an
example the following program:

p(X) — qX) (*)
q(
q(b)
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q(c)

Query = p(a)

The query is answered in two steps, but a pure bottom-up procedure computes the
whole model. A possible way to resolve this overhead is the magic set approach [1],
where the clause (*) would be rewritten to p(a) — ¢(a), depending on the known

query.

2. Side effects: Consider the case where the firing of a transition causes a side effect
output to the screen. In the most cases the user is only interested in the final solution,
not in several in-between results, so this transition should fire as late as possible. This
can only be achieved if the control flow is explicitly specified. Of course, this argument
is not a theoretical but a practical one.

There are at least three possibilities to describe the control flow:

Firm strategy Production systems, which also work in a bottom-up manner, usually re-
solve the conflict that arises if more then one rule at the time is ready to fire, via some
heuristics like " Take the most recent enabled rule” or ”Take the rule with the largest
number of premises” or so. In GAPCAD a rather simple conflict resolution is imple-
mented: It iterates through the set of transitions. If the current transition ¢ is enabled
and some new token is in any of the places in et, it fires and the iteration restarts.
This algorithm terminates because the fixpoint is reachable and its occurrence causes
no new token being in any place.

There is one major disadvantage in completely specifying the control flow: Two tran-
sitions being enabled at the same time express the possibility to fire them in parallel.
There is not always the need to completely sequentialize the order of firing. In the
case of Petri-nets, a control specification should be better viewed as a restriction of
freedom, rather than a total sequentialisation. The next two techniques take this into
account.

Petri-nets We used the Petri-net model to define the data flow, although Petri-nets usually
specify the control flow. It is possible to unify both applications: Orthogonally to the

control -
place
control \yflow

dat

control-
place

data flow we embed the transitions in a second Petri-net where the places contain
control tokens. A transition may be enabled only if its input control-places contain
tokens. In [3] it is shown that as soon as the control flow gets more complex, Petri-nets
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tend to be difficult to survey, so this kind of control flow specification appears to be
not very natural.

Priorities In [3] it is suggested to express the control flow through dynamically given
priorities between transitions or temporally locks of transitions. If two transitions are
enabled, the one with the higher priority fires (if it is not locked ), while the other has to
wait. If the two have the same priority they do both fire in parallel. These priorities
may change on certain events like a counter reaching zero, an external condition
becoming true, time constraints, etc. The reader may refer to [3] for more ideas.
This seems to me the most promising approach for control specification, although
dynamically changing priorities may lead to confusion about what state the net is
currently in.

5.2 GAPCAD as a knowledge acquisition tool

KADS (Knowledge Acquisition and Design Structuring) [22] is a methodology for developing
knowledge-based systems (KBS). Its emphasis lies on defining a language for semi-formal
specification of KBS. Neither any knowledge elicitation technique nor implementational
details are covered. KADS offers some abstract templates (called models) which need to
be filled during the specification phase. A central model is the model of expertise which
describes the contents of the knowledge base of the KBS in (essentially) three parts, called
layers: 1. Inference Layer, specifying the data flow, 2. Task Layer, specifying the control
flow, and 3. Domain Layer, specifying the kinds of data. The KADS methodology is widely
used for new developments in the field of knowledge based systems. Many knowledge
acquisition tools are based on the KADS methodology. It would be interesting to examine,
how well GAPCAD meets the requirements of KADS-tools, since

e annotated programs form a logic programming language, which are widely used as
prototyping languages for the development of KBS,

e the institute is looking for tools which aid in developing mediatory knowledge bases,

e the Petri-net model is very similar to the description of the inference layer in KADS.
This point is discussed in the sequel.

The inference layer of the model of expertise in KADS contains a description of the data
flow in the KBS to be developed. Its graphical representation (called inference structure)
contains meta-classes (squares) — the data; and knowledge sources or inference steps (circles)
— the operations on the data. See Figure 5 as an example for an inference structure. It
shows the data flow in a generic configuration task [15]. Notice the similarity to Petri-nets:
meta-classes are places and knowledge sources are transitions, but one should notice the
dual graphical syntax: circles are squares and vice versa. The semantics of the inference
structure is not formally specified in KADS. The syntactical equivalence between the two
was used in MoMo [21].

However, as our extended Petri-net model represents specific program clauses on the
symbol level, the inference structure in KADS describes ”only” the very idea, how the
expert performs the (configuration) task on the knowledge level [14]. Further refinement of
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skeletal design
model = | extensions
user extended

specs = = model

@ <———| violation

Figure 5: A top level inference structure

the inference structure leads to more special and finally to atomic inference steps. In Figure
6 a more detailed description of the propose knowledge source from Figure 5 is shown.
Coloured Petri-nets, on which the extended Petri-net model is based, can also be defined as

skeletal

parameter | «—— <—| mode
extended

model

des1 gn
extensions

Figure 6: Refinement of inference step 'propose’

hierarchical nets [6]. It would be interesting to investigate the possibility of a graphically
and semantically unified top-down-construction of knowledge bases, beginning at the top
(knowledge level) with the inference structure similar to Figure 5, applicating some local
refinements as in Figure 6, and ending up with an extended Petri-net as a representation
for GAPs (symbol level), which can be debugged using GAPCAD and efficiently executed
by DAEDALUS. Some related issues need to be addressed:

e Are atomic inference steps really clauses?
e Where do the arc labels fit in? What is their interpretation on the knowledge level?

e How can nets with non-atomic transitions be executed? [11]

6 Conclusion

This report described the theory and the implementation of an executable graphical repre-
sentation of generalized annotated programs using the notation and semantic of Petri-nets.
The following topics were addressed the first time:
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e The formalism presented here is based on Coloured Petri-nets, which provide a natural
way to express constraints on the annotations, using the concept of transition guards.
In [2] and [13], predicate/transition nets [4] were used.

e An execution model for the Petri-net based computation of the well-founded model
of normal programs was presented. Another alternative is described in [16], which is
based on classical logic, rather than on annotated logic.

e Finally the GAPCAD implementation provides an interesting graphical user interface
for entering GAPs, and serves as an basis for a more sophisticated tool. Promising
ideas in this direction were also presented in this report.

Three possible future research direction are:

e Development of a better Petri-net based realisation of the well-founded semantics.

e Provision of more support for entering GAPs for DAEDALUS (especially for the sorts
of the predicates).

e Viewing GAPCAD in a more general frame for support of knowledge acquisition along
the lines of [21] and [22].
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