
Micro-checkpointing in Fault Tolerant Runtimes

Pavlos Katsogridakis
Institute of Computer Science

Foundation for Research and Technology – Hellas

katsogr@ics.forth.gr

Polyvios Pratikakis
Institute of Computer Science

Foundation for Research and Technology – Hellas

polyvios@ics.forth.gr

ABSTRACT
Multicore processors are increasingly used in safety-critical
applications. On one hand, their increasing chip density
causes these processors to be more susceptible to transient
faults; on the other hand the existence of many cores offers
a straightforward compartmentalization against permanent
hardware faults. To tackle the first issue and take advan-
tage of the second, we present FT-BDDT, a fault-tolerant
task-parallel runtime system. FT-BDDT extends the BDDT
runtime system that implements the OMP-Ss dataflow pro-
gramming model for spawning and scheduling parallel tasks,
in which, similarly to OpenMP 4.0, a dynamic dependence
analysis detects conflicting tasks and automatically synchro-
nizes them to avoid data races and non-determinism.

FT-BDDT recovers from both transient and permanent
faults. Transient faults during task execution result in sim-
ply re-running the task. To handle transient faults in the
runtime system, FT-BDDT uses fine-grain micro-checkpoint-
ing of the runtime state, so that a recovery is always possible
at the level of rerunning a basic block of code on error. Per-
manent faults are treated in a similar fashion, by having the
master core“steal”the task checkpoint or the runtime micro-
checkpoint and reschedule the task or recover the runtime
state, respectively.

We evaluate FT-BDDT on several benchmarks under var-
ious error conditions, while guiding errors to attain maxi-
mum coverage of the runtime code. We find a 9.5% average
runtime overhead for checkpointing, a constant small space
overhead, and a negligible recovery time per error.

Keywords
Task Parallelism, Fault tolerance, Parallel Scheduling, Lan-
guage Runtime System, Reliability

1. INTRODUCTION
Multicore processors are increasingly used in safety-critical

applications [17]. This causes two sets of problems for these

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

systems: First, the high chip density that allows many pro-
cessing cores to fit in one device, causes these processors to
be more susceptible to transient faults or soft errors [5, 28],
caused by high energy particle strikes, overheating, device
aging, etc. [14, 3], or even permanent faults that cause a
processor to fail. On the other hand, the existence of many
cores offers a straightforward compartmentalization against
permanent hardware faults, as the failure of a processing
core does not affect the remaining cores in the processor [1].

Second, multicore processor programming is difficult; it
requires the programmer to reason about all possible interac-
tions between parallel threads, it introduces non-determinism
and implicit communication among processing cores through
memory. To address these inherent difficulties with low-level
thread parallel programming, task based multicore runtimes
such as Cilk [4], OpenMP [6], and Sequoia [24] or task li-
braries such as TBB [19] and TPL [12], provide a better
abstraction to the programmer over threads. Second gen-
eration task-parallel programming models such as OpenMP
4.0 [2], OMP-Ss [8], Myrmics [13], and BDDT [26, 27], com-
bine dynamic dataflow, tasks, and automatic synchroniza-
tion and offer a high-level abstraction that facilitates paral-
lel programming. Moreover, the task abstraction provides
useful properties such as well-defined memory footprints for
parallel tasks, relaxed yet well-defined points of coherence
and communication, ability to optimize locality, discover de-
pendencies, and sophisticated scheduling optimizations.

Due to these properties, tasks provide a suitable abstrac-
tion for the management of faults in multicore processors;
task boundaries are well-defined points of checkpointing and
recovery, allowing the runtime system to checkpoint task
data before execution so that the task can be restored and
rescheduled on error [7, 29]. Existing runtimes take advan-
tage of this to tolerate faults in application code. However,
tolerance of faults in the runtime system or scheduler itself
remains an issue, as these runtimes use shared-memory data
structures for scheduling and communication and cannot be
easily split into well-defined independent computations.

To address the issue of soft errors or permanent faults
that occur during the execution of runtime code, this paper
presents FT-BDDT, a fault-tolerant task-parallel runtime
system. FT-BDDT implements the BDDT dataflow pro-
gramming model for spawning and scheduling parallel tasks,
in which, similarly to OpenMP 4.0, a dynamic dependence
analysis detects conflicting tasks and automatically synchro-
nizes them to avoid data races and non-determinism.

FT-BDDT recovers from both transient and permanent
faults that may occur during the execution of program tasks,

but also during the execution of the runtime code. Transient
faults during task execution result in simply re-running the
task. To handle transient faults in the runtime system, FT-
BDDT uses fine-grain micro-checkpointing of the runtime
state, so that a recovery is always possible at the level of
rerunning a basic block of code on error. Permanent faults
are treated in a similar fashion, by having the master core
“steal” the task checkpoint or the runtime micro-checkpoint
and reschedule the task or recover the runtime state, respec-
tively.

Overall, the contributions of this work are:

• We propose a micro-checkpointing approach for run-
time system algorithms and shared data structures, as
these parts of the runtime often operate on shared data
structures for scheduling and communication among
worker threads. Our approach checkpoints the state
of basic blocks of code inside the runtime, along with
recovery information for locks and other synchroniza-
tion primitives, so that any part of the runtime can be
recovered seamlessly without interrupting global com-
putation.

• We manually transform the default BDDT rutime code,
using the aforementioned approach to extend the BDDT
runtime with checkpointing, in the FT-BDDT run-
time. FT-BDDT assumes that transient or permanent
faults can occur in any worker core at any time, even
while the scheduler code is running in-between tasks.

• We evaluate FT-BDDT on PARSEC benchmarks un-
der various error conditions, while guiding errors to
attain maximum coverage of the runtime code. We
find a 9.5% average runtime overhead for checkpoint-
ing, a constant small space overhead, and a negligible
recovery time per error.

The remainder of this paper is structured as follows. Sec-
tion 2 motivates and introduces the BDDT programming
model and task-parallel execution runtime. Section 3 presents
the fault model; the possible faults and the fault detec-
tion assumptions made in designing FT-BDDT. Section 4
presents the design of FT-BDDT micro-checkpoints and re-
covery mechanisms. Section 5 presents the benchmarks and
test configurations used to evaluate FT-BDDT and the re-
sults of these experiments. Section 6 discusses related work
and Section 7 concludes.

2. BACKGROUND
BDDT is a task-parallel runtime that dynamically discov-

ers and solves dependencies among parallel tasks. When a
task is created the programmer states its memory footprint,
i.e., the memory locations that the task code will read and
write during task execution. The runtime ensures that the
task will be ready to run when all its input dependencies are
resolved.

Consider the example program shown in Figure 1a, which
demonstrates the BDDT [26, 27] task-parallel programming
model with automatic synchronization. To create data de-
pendencies among tasks, line 2 declares variables A through
F. Lines 4–5 spawn the first parallel task to execute func-
tion T1. Tasks are spawned by an OpenMP-like syntax, us-
ing #pragma annotations that define the memory footprint
of the spawned task. In this case, the spawned task function

1 void main() {
2 int A, B, C, D, E, F;
3

4 #pragma task in(A), in(B), out(C)
5 T1(&A, &B, &C);
6

7 #pragma task in(C), in(A), out(D)
8 T2(&C, &A, &D);
9

10 #pragma task in(A), in(B), out(E)
11 T3(&A, &B, &E);
12

13 #pragma task in(C), in(B), out(F)
14 T4(&C, &B, &F);
15 }

(a) A Task-Parallel Program

(b) Execution example

Figure 1: Runtime execution example

T1 takes three arguments by reference; arguments A and B

are marked in, meaning they will only be read by the task,
whereas argument C is marked out, meaning that it will be
written by the task. The second task spawned (Lines 7–8)
calls function T2 to read from C and A, and write to D. Al-
though both T1 and T2 access A, there is no dependency on
that access, as A is a read-effect in for both tasks. On the
other hand, variable C is written by the first task and read
by the second task, creating a read-after-write dependency.
The runtime dependence analysis uses the task footprints
declared in the #pragma annotations to dynamically detect
such conflicts. In this example, the runtime will schedule the
second task to be executed only after the first task has com-
pleted because variable C is in the footprint of both, written
by the first and read by the second. In the mean time, the
program can continue to spawn the third task (Lines 10–11),
calling function T3 that reads variables A and B and writes E.
Note that T3 can start immediately, because it has no con-
flicting dependencies with the first two tasks. Finally, the
program spawns T4 that reads C and B and writes F. Since
T4 reads C which is written by T1, it also has to wait for the
first task to finish.

Figure 1b shows a possible execution schedule of the pro-
gram in Figure 1a, as run by 1 master and 3 worker cores.
Figure columns demonstrate the execution trace of each

thread, where time progresses downwards. Each thread has
a dequeue of tasks, used to schedule tasks across all workers.
The work distribution is done by work stealing. Initially, the
Master core spawns task T1 and immediately places it on its
dequeue, as there are no dependencies that may cause task
T1 to block. Next, Worker core 3 steals the task from the
masters dequeue and starts executing it, while the Master
core spawns task T2. Note that since task T2 is not ready
to run as it requires ownership of variable C, it is not en-
queued for execution but rather waits for task T1 to finish.
Next, the Master core continues to spawn task T3 which is
ready to run and is immediately enqueued for execution,
while Worker core 3 executes task T1. Next, Worker core 1
steals task T3 from the queue of the Master core, while the
Master core continues to spawn task T4. As with task T2,
task T4 is not ready to be executed, as it requires access
to variable C and must wait for task T1. When task T1

is finished, Worker core 3 releases the task’s dependencies,
causing tasks T2 and T4 to be enqueued for execution in the
queue of Worker core 3. Worker core 2 can then steal task T2

from that queue and proceed with executing it, while Worker
core 3 continues with executing task T4 from its own queue.

The task abstraction summarized in this example offers
clearly-defined boundaries for checkpointing the application
state. Specifically, the programming model guarantees that
each task will not communicate with other tasks during its
execution and that it will only read and write memory de-
clared in the task footprint. These guarantees greatly sim-
plify checkpointing the application state, since it suffices to
checkpoint only the task footprint before running a task and
rerunning failed tasks on the same input. Skarlatos et al. [7]
have shown task-only checkpointing to scale linearly and
perform with minimal overhead, assuming faults only occur
during task execution and not while the runtime system is
scheduling the next task. In contrast, Section 3 presents our
fault model, in which we assume that transient or permanent
faults may occur at any point in the execution —even out-
side application code— while the runtime system performs
scheduling, synchronization, memory management, etc.

3. FAULT MODEL
We make the following assumptions regarding possible

faults:

• We assume that the memory hierarchy is protected
from faults using Error Correcting Code (ECC). Al-
though hardware faults may occur anywhere in the sys-
tem, in this paper we focus on faults occurring within
computing components of the architecture. Specifi-
cally, we assume that on fault, only the CPU state of
the faulty core (registers, program counter, etc.) is
lost.

• We assume two kinds of faults: Transient faults cause
a computation to give the wrong result once, although
a subsequent re-execution of the same operation can
compute the correct result. Permanent faults cause a
processing core to fail and never recover, rendering it
unusable for the rest of the execution.

• We assume that both transient and permanent faults
are detected early before an erroneous result is writ-
ten into memory, so that there is no corruption of unre-
lated memory locations [21]. This is a realistic assump-

tion, as detection can be orthogonally implemented us-
ing several haredware or software techniques proposed
in the literature. For instance, per-core checks [18]
can detect errors in the processor pipeline, DMR or
TMR [16] for processor parts (such as the ALU) can
detect faulty core components, hardware monitors [22]
can detect permanent faults by analyzing the trace of
each component in parallel, etc. Upon detection of
transient faults, we assume that the processing core in-
terrupts its execution and jumps to the recovery code.
On permanent faults, we assume that the processing
core becomes stuck and does nothing else. We believe
these assumptions are reasonable and agree with ex-
isting literature on fault detection.

• We assume that no faults can occur at one of the avail-
able cores, which operates as the “master” core for the
runtime and spawns all tasks executed by the “worker”
cores. This assumption is realistic and can be accom-
plished using e.g., replication (TMR) to detect and
correct faults in the master core, without incurring
the same expensive resource overhead to protect the
remaining cores.

• We assume that atomic operations remain atomic in
the presence of faults.

4. DESIGN
The main operations performed by the original BDDT

runtime at each worker core are Acquiring a task to execute,
Executing a task, and Releasing a finished task’s dependen-
cies. To Acquire a task, the worker core tries to dequeue
a task descriptor from the local dequeue; if there are no
local pending tasks, the worker tries to steal a task from
the dequeue of a different worker or the master. To Exe-
cute a task, the worker core invokes the closure of the task
as stored in the task descriptor. After the execution of a
task, the worker releases all its dependencies. Release is a
complex operation because for each output argument of the
finished task it must traverse a list of tasks waiting for that
memory and remove that dependency. If any of the depen-
dent tasks have no remaining dependencies, then they are
free to run and the worker enqueues their task descriptors
into its dequeue for later execution or to be stolen by other
worker cores.

For instance, in the example of Figure 1, Worker core 3 re-
leases the dependencies of task T1 once it is complete, which
makes tasks T2 and T4 ready to execute. They are then en-
queued into the dequeue of Worker core 3. Task T2 is stolen
and executed by Worker core 2 and task T4 is dequeued and
executed locally by Worker core 3. Figure 2 shows the code
for function g_dequeue, called by Worker core 2 to steal task
T2 and by Worker core 3 to remove task T4, both from the
local dequeue of Worker core 3. Note that the dequeue is
implemented using an array and circular modulo indexing.
To synchronize the two potentially racy calls to g_dequeue

by Worker core 2 and Worker core 3, the function uses a lock
per queue, acquired in line 4. The function then computes
the list size (line 5) and if there is no task to take, it releases
the list lock and returns NULL (lines 11–13). Otherwise,
it takes a task from the list (line 8), updates the top index
(line 9), releases the lock and returns (lines 11-13).

According to the fault model described in Section 3, any
Worker core may fault at any of these points: (i) during

its top-level loop that acquires, runs and releases tasks; (ii)
during the acquiring of a task from the local dequeue or
the stealing of a task from a remote dequeue; (iii) during
the execution of a task; and (iv) during the releasing of a
task’s dependencies. The third case has been addressed by
Skarlatos et al. [7] using the declaration of the task memory
footprint: before running a task, the runtime checkpoints all
writable memory declared in its footprint; if an error occurs
during the execution of the task, the runtime restores the
contents of memory and reruns the task locally, for transient
errors, or allows the task to be stolen for permanent errors.

Unfortunately, the runtime system code cannot be treated
the same way, because it uses shared data structures among
all worker cores to schedule tasks and to perform the de-
pendence analysis. Thus, for the other three possible points
of failure, namely (i), (ii), and (iv), we propose a micro-
checkpointing technique that allows the runtime to seam-
lessly recover from both transient and permanent faults.

4.1 Micro-checkpointing of the Runtime Code
To enable the runtime system to checkpoint every point

during execution, we perform the following changes on the
runtime system code.

1. Allocate a state structure per thread, to hold all the
information necessary to reconstruct the execution from
any point of failure.

2. Divide every function in the runtime code into phases
corresponding to basic blocks, so that every phase con-
tains at most a single write to thread-shared memory,
or a single function call.

3. Insert code in every function so that on entering every
phase, the runtime writes the current phase identifier
in the thread state.

4. Insert code in the previous phase immediately before
every write to shared memory, to store the previous
value into the thread state, e.g., the previous value of
a counter being incremented.

5. Insert code before entering a new phase, to store the
contents of any stack-allocated local variables that are
used from one phase to the next.

We also change the code so that it is possible to restore
the execution to the last micro-checkpoint upon failure. To
do that, we perform the following changes:

1. Extend every function with an additional argument
denoting the phase at which execution should resume
after the fault.

2. Rewrite the function code so that control flow jumps to
the correct phase of execution; this is often straightfor-
ward using a switch statement to jump to the correct
point, similarly to the Cilk [4] source-to-source trans-
formation that enables executing the continuation of a
point in the function code.

For example, consider the code in Figure 2. Function
g_dequeue can be divided into four phases, or basic blocks:
(i) lines 4–7 acquire the lock and the basic block ends with
control-flow via the if statement; (ii) line 8 reads from
shared memory via the Q pointer and writes to a local vari-
able; (iii) line 9 writes to shared memory by incrementing

1 task t∗ g dequeue(g Queue Q) {
2 task t∗ steal task = NULL;
3

4 lock(Q−>lock);
5 if ((Q−>bottom − Q−>top) <= 0) {
6 goto exit ;
7 }
8 steal task = Q−>qEntry[Q−>top % MAX ENTRIES];
9 Q−>top++;

10

11 exit :
12 unlock(Q−>lock);
13 return steal task ;
14 }

Figure 2: Original dequeue function

1 task t∗ g dequeue chkpt(g Queue Q, phase t phase) {
2 task t∗ steal task =NULL;
3

4 switch(phase) {
5 case(PHASE ONE):
6 set shared deqstate (PHASE ONE);
7 lock(Q−>lock);
8 if ((Q−>bottom − Q−>top) <= 0) {
9 goto exit ;

10 }
11 case(PHASE TWO):
12 set shared deqstate (PHASE TWO);
13 steal task = Q−>qEntry[top % MAX ENTRIES];
14 set sqentry (steal task);
15 set backup qtop(Q−>top);
16 case(PHASE THREE):
17 set shared deqstate (PHASE THREE);
18 Q−>top++;
19 case(PHASE FOUR):
20 exit :
21 set shared deqstate (PHASE FOUR);
22 unlock(Q−>lock);
23 return steal task ;
24 }
25 }

Figure 3: Checkpointing dequeue function

a counter; and (iv) lines 11–13 release the lock and return.
Note that even though only the local variable steal_task is
written in phase (ii), phase (iii) needs to be a separate phase.
This occurs because steal_task is also read in phase (iv)
and therefore needs to be checkpointed inside phase (ii). At
the same time, the write to Q->top writes to shared memory
and therefore needs to checkpoint its previous value at the
end of the previous phase. Thus, were phases (ii) and (iii)
to be merged, the two checkpointings would happen with a
different order than in the original program.

Overall, we transform the original g_dequeue function
to its checkpointing equivalent, function g_dequeue_chkpt,
shown in Figure 3. Lines 6–10 correspond to phase (i): at
the start of each phase (line 6) the phase identifier is check-
pointed into the state of the running thread. In this case, the
checkpointing uses function set_shared_deqstate meaning
that if a fault occurs before the next micro-checkpoint, the
program counter should be restored at the first phase of
function g_dequeue. Lines 12–15 correspond to phase (ii):
in addition to setting the phase identifier in line 12, line 14
checkpoints the local variable steal_task because its value
escapes the current phase and may be read in phase (iv).
Moreover, line 15 checkpoints the value of Q->top because

1 void restore dequeue(int cpuid) {
2 deq state t next phase;
3 switch(scheduler state [cpuid]. dequeue state) {
4 case(PHASE ONE):
5 if (lock isowned(Q−>lock, cpuid))
6 next phase = PHASE FOUR;
7 else return ;
8 break;
9 case(PHASE TWO):

10 next phase = PHASE TWO;
11 break;
12 case(PHASE THREE):
13 if (Q−>top == scheduler state[cpuid].qtop) {
14 next phase = PHASE THREE;
15 } else {
16 assert (Q−>top == scheduler state[cpuid].qtop+1);
17 next phase = PHASE FOUR;
18 }
19 break;
20 case(PHASE FOUR):
21 if (lock isowned(Q−>lock, cpuid))
22 next phase = PHASE FOUR;
23 else return ;
24 break;
25 }
26 g dequeue chkpt(Q, next phase);
27 }

Figure 4: Recovery code for the dequeue function

it will be written in the next phase. Lines 17–18 correspond
to phase (iii) that increases Q->top. Finally, Lines 20–23
correspond to phase (iv).

The remaining changes shown in Figure 3, namely the
addition of a second function argument (line 1) and its use
to drive control flow to the start of the appropriate phase
(lines 4–5, 11, 16, 19) are used in the event of a fault, so
that the same thread (for transient faults) or a different
thread (for permanent faults) can resume execution at the
last micro-checkpoint.

4.2 Recovery Code
In addition to the above changes to all runtime code, we

extend the runtime system with recovery code. For each
function in the runtime system we add a new recovery func-
tion. Recovery functions are called on error by the same
core (for transient faults) or a different core (for permanent
faults) and drive execution to the appropriate point in the
runtime code depending on the micro-checkpoint available.
Recovery functions are pure, i.e., they have no visible side-
effects on shared memory or the state of the runtime system
on other cores. This facilitates the recovery process: in the
case of a second fault during the recovery process, recovery
can simply restart.

As described in Section 3, we assume that when a transient
error is detected, the faulty core resets its execution and
jumps to the main recovery function. Each recovery function
fr reads the checkpoint state of the core where the fault
occurred and calls the corresponding runtime function f to
continue execution from the appropriate phase. If the fault
occurred in another function g called by f , then the recovery
function fr will call the recovery function gr, and continue
the execution of f only after g has recovered properly. This
way, the stack at the time of the fault is restored backwards,
effectively executing the continuation of the fault.

For example, Figure 4 shows the corresponding recovery

function restore_dequeue for the function g_dequeue_chkpt

shown in Figure 3. The only argument to the recovery func-
tion is the identifier of the core where the fault occurred, as
all other information can be found in the checkpoint state
of that core. Local variable next_phase (line 2) is used to
call function g_dequeue_chkpt and drive execution to the
appropriate phase. Initially, the recovery function looks up
the last phase that g_dequeue_chkpt checkpointed before
the fault (line 3). Recall that the first phase locks the de-
queue and checks its size, as shown in Figure 3 (lines 6–10).
Therefore, any error during that phase need only restore the
state of the lock, if necessary, as it is always safe for a steal
or local-dequeue operation to fail to dequeue a task. So,
the recovery function checks whether the lock is acquired
by the core where the fault occurred (line 5) and calls the
runtime function g_dequeue_chkpt to continue at the last
phase and release the lock (line 26), or simply ends recovery
if the lock was not acquired before the fault (line 7). Lines 9–
11 of the recovery function simply check whether the fault
occurred anywhere inside the second phase (lines 12–15 of
Figure 3), as it is always safe to execute the second phase
again. The third phase of function g_dequeue_chkpt incre-
ments a shared counter (line 18 of Figure 3), thus the re-
covery code for the third phase (lines 12–19) checks whether
the write to shared memory occurred before the fault and
so the phase does not need to be repeated, otherwise it sets
the phase to be executed. Note that no other thread can
write the counter since the core that faulted still holds the
lock and so it is always safe to compare the current value of
the counter with the checkpointed value to decide whether
it was incremented or not (line 13). Finally, if the fault oc-
curred during the fourth phase (lines 22–23 of Figure 3), the
recovery function checks the ownership and state of the de-
queue lock, as the fourth phase needs to be executed only if
the lock was not released before the fault and is still owned
by the core that faulted.

4.3 Stack Recovery
According to the fault model described in Section 3, the

stack pointer of the faulty core, along with all other registers,
may be corrupted by a transient fault or inaccessible due to a
permanent fault. The recovery process must, then, recreate
the contents of the stack at the checkpointed state in order
to run the continuation of the code at the point where the
fault occurred. To do that, we take advantage of the fact
that the runtime code is not recursive. Figure 5 shows the
main parts of the call tree of the runtime system. Since there
is a recovery function for every function in the runtime code,
the call tree of the recovery functions is similar; in addition,
each recovery function also calls the corresponding runtime
function.

To demonstrate the recovery of the execution stack after
a fault, assume the stack indicated by the bold arrows in
Figure 5. Namely, the main loop of a Worker core calls the
Release function that removes the dependencies of a finished
task. In turn, function Release calls function PushTasks to
find any tasks without remaining dependencies, which calls
function Enqueue to insert each such task to the dequeue for
execution. Assume that a transient fault occurs during the
execution of the Enqueue function. According to the fault
model, the Worker core resets and starts executing the re-
covery code. Recovery always starts with the recovery func-
tion corresponding to the top-level of the worker runtime,

Figure 5: Call tree of the runtime system

Figure 6: Restore call trace

namely function WorkerMain. Figure 6 depicts the call trace
of the recovery, starting with the call to the WorkerMain re-
covery function. The figure shows the stack increasing to
the right as time advances downwards. The WorkerMain
recovery function examines the last checkpointed state of
the core for the WorkerMain function and calls the recov-
ery function for Release, shown as “Restore Release” in the
Figure. Function Restore Release inspects the last check-
pointed state for function Release, infers that Release had
invoked function PushTasks at the point of fault and itself
calls the recovery function for PushTasks, “Restore Push-
tasks”, which similarly calls “Restore Enqueue”. After the
recovery of the function Enqueue as explained in the ex-
ample of the previous section, Enqueue returns to “Restore
Enqueue”, which returns to “Restore PushTasks”. That re-
covery function can then call function PushTasks at the ap-
propriate phase, to finish its execution now that Enqueue has
been recovered and executed. Similarly, PushTasks returns
to “Restore PushTasks” which returns to “Restore Release”.
Function Release can then be called to continue its execu-
tion at the phase after it calls PushTasks. Once the recovery
function “Restore Release” returns to the top-level recovery
function “Restore WorkerMain”, that can call (or longjmp)
to function WorkerMain, to continue with the worker’s top-
level loop as all computations interrupted by the fault have
finished.

4.4 Recoverable Locks
In order to implement the above recovery mechanism,

FT-BDDT requires the recovery code to be able to discern
whether a lock was successfully acquired by the core that
faulted before the fault. In general, atomic operations pose

1 void spinlock acquire (int32 t∗ lock) {
2 int cpuid = runtime get worker id ();
3 int i , delay = MIN DELAY;
4 while (!CAS(lock, UNLOCKED, ((cpuid)<<16) | 0x1)) {
5 do{
6 delay <<= 1;
7 for (i = 0; i < delay; i++){ pause(); }
8 } while(spinlock islocked (∗lock));
9 }

10 }

(a) Lock acquiring

1 int spinlock isowned (int32 t∗ lock , uint32 t cpuid) {
2 uint32 t var = (LOCKED | (cpuid << 16)) ;
3 return (lock == var);
4 }

(b) Lock ownership

Figure 7: Lock implementation

a difficulty in checkpointing as it is not always possible to
checkpoint the result of an atomic operation or differentiate
the effects of the faulty core with the effects of concurrent
code. For example, synchronization via atomic increment of
shared counters is not possible to checkpoint and recover, as
there is no way for the recovery code to know if an atomic
increment instruction was executed before the fault by com-
paring with the previous known value of the counter.

To address this issue, we have implemented a custom, re-
coverable lock primitive and used it to replace other ways
of synchronization used in the original BDDT code. By de-
fault, BDDT uses atomic primitives when possible and TAS
locks to synchronize concurrent accesses to memory not ac-
cessible by atomic primitives. We replaced all these synchro-
nization operations with recoverable locks in FT-BDDT, so
that the recovery code can safely query the status and own-
ership of all locks to recreate lock state information after a
fault. Figure 7 presents the implementation of recoverable
locks. We implement each lock using 32-bit word; the least
significant bit represents the state of the lock, while the 16
most significant bits store the core identifier of the owner
core. Recoverable locks are acquired and released using the
compare-and-swap (CAS) atomic primitive.

Figure 7a shows how the lock is acquired. Line 2 looks up
the core identifier using the runtime API. We assume that
the runtime system is able to initialize itself correctly, so that
each worker core has a unique identifier. Line 4 attempts
to acquire the lock using a CAS atomic operation to write
both the state of the lock and the identifier of the owner
core, if the lock is released. Lines 5–8 implement a simple
exponential back-off to reduce contention among competing
cores. Note that a fault at any point in the process does not
cause recovery to suffer, as the CAS operation is atomic; it
is easy to decide if the recovering core succeeded in acquiring
the lock during recovery, as shown in Figure 7b. Here, we
assume that the load instruction of a 32-bit word that runs
before the comparison at line 3 is atomic.

5. EXPERIMENTS
We evaluate the cost of micro-checkpointing using six rep-

resentative benchmarks: HPL, Multisort, FFT, Jacobi, Black-

(a) HPL (b) Multisort

(c) FFT (d) Jacobi

(e) Black-Scholes (f) Cholesky

Figure 8: Comparison between FT-BDDT and default BDDT

Scholes and Cholesky. We ran all experiments on a NUMA-
cc 4-CPU machine with 64 AMD Opteron(TM) Processor
6272 cores and 256GB total RAM, running Linux 2.6.32. All
benchmarks were compiled using GCC 4.6.3 with optimiza-
tion level -O3. All reported running times are the average of
3 executions. All plots omit variance or deviation for clarity,
as the execution times showed minimal variance of less than

10 milliseconds for all benchmarks. The y axis shows the
time in milliseconds, the x axis the number of cores.

5.1 Overhead of Micro-Checkpointing
To measure the cost of micro-checkpointing in the run-

time system we have compared FT-BDDT where both task
checkpointing and runtime checkpointing are enabled, with

the original non-fault-tolerant BDDT runtime. Figure 8
presents the results for all benchmarks.

HPL.
HPL solves a random dense linear system in double preci-

sion arithmetic. It is part of the High-Performance Linpack
Benchmark. Figure 8a shows the execution times in mil-
liseconds of BDDT and FT-BDDT for a grid size of 8MB
and block size of 64 doubles. Checkpointing in FT-BDDT
incurs 13.7% overhead for 1 thread, which drops to 11% for
32 threads and 8% for 64 threads.

Multisort.
The Multisort kernel is a parallel version of the Mergesort

algorithm, originating from the Cilk distribution. Multisort
is a divide and conquer algorithm with two phases. The
first phase divides the data into chunks and sorts each, and
the second phase merges them. Figure 8b shows the result-
ing execution times for an array of 256M elements, using a
threshold of 128K elements for stopping recursive subdivi-
sion. The FT-BDDT checkpointing in Multisort results into
the largest overhead over BDDT, namely 1% for 1 core, 20%
for 32 and 30% for 64 cores. This overhead is caused by two
factors; (i) the large size of the task footprints increases the
copying overhead of task checkpoints and (ii) the large num-
ber of task dependencies causes the runtime code to execute
more often and perform more computations, resulting in a
larger number of micro-checkpoints.

FFT.
The FFT benchmark is a task-parallel implementation of a

2-dimensional Fast Fourier Transform algorithm. This FFT
implementation is part of the SMP-Ss distribution [25], and
consists of five parallel loops that alternate in transposing
the input array and performing 1-dimensional FFT on each
row. Each task created in the FFT calculation loop operates
on an entire row of the array, while transposition phases
break the array into tiles and create a task to transpose a
group of tiles. Figure 8c shows the execution times for FT-
BDDT and BDDT, using a 2-D array of 64M elements and
32×32 transpose tile size. The overhead of checkpointing
the runtime state is 1% for 1 thread and increases to 6% for
32 and 64 threads.

Jacobi.
The Jacobi kernel is a 5 point stencil computation used to

solve linear equations. We use the Jacobi kernel implemen-
tation from the SMP-Ss distribution which uses row-major
array layout. Each task in Jacobi works on a tile of the ar-
ray. Figure 8d shows the execution times of FT-BDDT and
BDDT for an array of 8192×8192 elements using a task tile
size of 128×128. The kernel is communication bound and
memory intensive so in Jacobi the state-keeping overhead
is large: FT-BDDT incurs 17% overhead for 1 thread, 14%
for 32 threads and 16% for 64 threads. This is also caused
by the large number of task dependencies, as in the case of
Multisort. BDDT and FT-BDDTalso do not scale, as the
maximum speedup is 2×.

Black-Scholes.
The Black-Scholes application is a parallel implementa-

tion of a mathematical model for price variations in financial

markets with derivative investment instruments. It decom-
poses and processes the data in rows. Black-Scholes was
tested for 30000 options, split into chunks of 128. The over-
head of FT-BDDT over BDDT is negligible for all numbers
of cores, as shown in Figure 8e.

Cholesky.
The Cholesky factorization kernel is used for LU decom-

position in symmetric positive definite arrays. Figure 8f
shows the performance for a 4096×4096 double precision
matrix, with 64×64 tiles. The difference between the exe-
cution time of BDDT and FT-BDDT is in the noise. Both
versions achieve a top speedup of 25× on 64 cores.

5.2 Correctness Testing via Fault Injection
We tested the correctness and reliability of FT-BDDT in

the presence of transient and permanent faults using both
systematic and randomized fault-injection.

To test FT-BDDT in the presence of transient faults, we
inserted fault emulation code before and after every load
and store of a shared memory location. The emulation code
causes a transient fault according to a uniform probability
model and immediately jumps the “faulty” core to the re-
covery code. We tested FT-BDDT for all benchmarks and
various probabilities of error of up to 5%, resulting in 1 up to
65536 faults for each worker. We found that recovery from
transient faults in runtime code did not affect the total ex-
ecution time in a statistically significant way, i.e., the effect
of fault recovery is always in the noise of the execution time
variation, which is always less than 10 milliseconds of total
execution time. The zero effect on total execution time oc-
curs because the computation that is redone is negligible and
the caches are already warm. In addition to random tran-
sient faults, we performed a systematic test of all emulated
transient error points failing exactly once.

To emulate permanent faults we use pthread_kill to send
signals from the Master thread to random Worker threads.
To emulate permanent fault detection, the Master thread
periodically checks the state of all Worker threads and calls
recovery code for any Workers found not running. We tested
all benchmarks running on 64 cores with one permanent
fault during the first second of execution and found negligi-
ble variation in total execution time. We believe that fault
emulation using kill signals is a reliable method of emulating
permanent faults, as the signals can be delivered between the
execution of any two instructions of the receiving thread.

6. RELATED WORK

Task Parallel Programming.
Task parallel languages and runtimes such as Cilk [4],

OpenMP [6], and Sequoia [24] or task libraries such as Intel
TBB [19] and Microsoft TPL [12], provide a better abstrac-
tion to the programmer over threads. Second generation
task-parallel programming models such as OpenMP 4.0 [2],
OMP-Ss [8], Myrmics [13], and BDDT [26, 27], combine dy-
namic dataflow, tasks, and automatic synchronization and
offer a high-level abstraction that facilitates parallel pro-
gramming.

BDDT [26, 27] is a task parallel runtime that implements
the OpenMP-Ss task parallel language. BDDT uses a cus-
tom memory allocator to view memory in terms of fixed-

sized memory blocks and detects task dependencies in terms
of the memory blocks included in task footprints. This en-
ables BDDT to support arbitrary memory references and
pointer arithmetic, tiling and re-tiling of arrays into arbi-
trary tasks without re-allocation, and changing access pat-
terns during the many phases of an application.

Fault Detection and Recovery.
There are several methods of fault detection that fit the

FT-BDDTfault model. RAFT [28] is a fault detection and
recovery system for single-threaded programs. RAFT spawns
a second instance of the running process and wraps all sys-
tem calls in order to check that argument values match. To
avoid synchronization RAFT speculates the return values of
system calls, avoids synchronization barriers and only ver-
ifies values that escape the user space. The reported over-
head for RAFT is 2.83% on average. Reinhardt et al. [20]
propose an architectural method for fault detection by us-
ing hardware multithreading to run the same instance of the
program simultaneously using lockstepping and compare the
store instructions of each execution. The authors measure
the overhead of the multithreaded version versus the sin-
gle threaded using simulation and report it to be less than
2%. An alternative approach is to verify each stage in the
hardware pipeline, correcting faults that have propagated in
subsequent stages [18]. Similar approaches can be used to
detect transient faults and implement the fault model we as-
sume in FT-BDDT, forcing the processor to a reliable state
in the recovery code as soon as a fault is detected in the
core.

SWIFT [21] is a compiler-based way of detecting and re-
covering from transient faults in single-theaded applications.
The compiler inserts extra assembly instructions that dupli-
cate the ALU operations and one compare instruction to
check whether the two results match, or create 3 instances
and vote to get the correct result. Shoestring [9] uses a com-
piler analysis to detect the error prone code and inserts in-
struction duplication in a more efficient way than SWIFT,
reducing unecessary duplication. Although these systems
target single processor applications, the same fault-detection
methods can be used to detect faults for FT-BDDT. Our
generic recovery solution can then take advantage of the
fault detection result and recover the state of the applica-
tion, without further need for compiler support or constraint
to single-threaded applications.

Napper et al. [15] model the JVM as a state machine and
replicate some states to make it fault resistant. In order
to handle multithreaded applications, the authors suggest a
mechanism to keep a log of the lock acquisitions and repli-
cate them. However, this mechanism works only for unipros-
essor systems and does not directly translate to concurrent
JVM executions.

The idea of checkpointing the data and rollback after a
failure also occurs in Transactional Memory [11]. Software
transactional memory runtimes often use checkpointing or
similar techniques to save and restore the state of trans-
actional variables to consistent points in the program exe-
cution. However, Transactional Memory checkpointing tar-
gets well-defined transactions of the application and does
not consider the concurrency of the TM system itself. FT-
BDDT on the other hand transfers these ideas to the fault-
tolerance of the runtime system, not just the application
executed.

Stodghill et al. [10] have developed a way to checkpoint
OpenMP applications by saving the stack of every thread
and the heap to a safe location. This approach requires from
the programmer to set checkpoint calls in the programm,
which might not be straightforward to do. Moreover, check-
point calls may not always be atomic actions with respect to
faults or interleaving of threads. Finaly, the representation
and alignment of stack, or the value of the stack pointer may
itself be a point of failure, or not easy to restore to its orig-
inal representation on some architectures. FT-BDDT uses
a portable method of reconstructing the stack that does not
rely on the previous contents of the stack or a saved value
of the stack pointer.

Similar techniques can be applied in distributed systems
without shared memory. FTC-Charm++ [29] stores remote,
coarse-grain checkpoints in a distributed system, using peer
nodes, while Schulz et al. [23] construct a global checkpoint
that includes messages and reconstruct program state from
the global checkpoint by replaying messages as necessary.

7. CONCLUSIONS
This paper presents FT-BDDT, a fault-tolerant execution

runtime system for task-parallel programs. FT-BDDT im-
plements micro-checkpointing that enables the runtime sys-
tem to use shared memory data structures seamlessly to
schedule tasks to threads, and recover from transient and
permanent faults, without the need for global checkpoint-
ing. This method incurs little overhead for checkpointing
as all checkpoints are small and can be done in parallel.
We have tested FT-BDDT by emulating faults using vari-
ous methods and found that it is able to recover seamlessly.
We found the cost of recovery for transient and permanent
faults to be negligible.

Acknowledgements
This work has been supported in part by the Seventh Frame-
work Programme of the European Commission under the
DeSyRe Project (http://www.desyre.eu), grant agreement
No 287611.

8. REFERENCES
[1] Nidhi Aggarwal, Parthasarathy Ranganathan,

Norman P. Jouppi, and James E. Smith. Configurable
isolation: Building high availability systems with
commodity multi-core processors. In Proceedings of
the International Symposium on Computer
Architecture, 2007.

[2] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger,
Y. Lin, F. Massaioli, X. Teruel, P. Unnikrishnan, and
G. Zhang. The design of OpenMP tasks. IEEE
Transactions on Parallel and Distributed Systems,
20(3):404–418, 2009.

[3] Baumann. Soft errors in advanced semiconductor
devices-part i: the three radiation sources. IEEE
Transactions on Device and Materials Reliability,
2001.

[4] Robert D. Blumofe, Christopher F. Joerg, Bradley C.
Kuszmaul, Charles E. Leiserson, Keith H. Randall,
and Yuli Zhou. Cilk: an efficient multithreaded
runtime system. In Proceedings of the ACM
symposium on Principles and Practice of Parallel
Programming, 1995.

[5] Shekhar Borkar et al. Microarchitecture and design
challenges for gigascale integration. In Proceedings of
the IEEE/ACM International Symposium on
Microarchitecture, 2004.

[6] Leonardo Dagum and Ramesh Menon. OpenMP: An
industry-standard API for shared-memory
programming. IEEE Comput. Sci. Eng., 5, January
1998.

[7] Skarlatos Dimitrios, Pratikakis Polyvios, and
Pnevmatikatos Dionisios. Towards reliable task
parallel programs. In HiPEAC Workshop on Design
for Reliability, 2013.

[8] Alejandro Duran, Eduard Ayguade, Rosa M Badia,
Jesus Labarta, Luis Martinell, Xavier Martorell, and
Judit Planas. OmpSs: a proposal for programming
heterogeneous multi-core architectures. Parallel
Processing Letters, 21(02):173–193, 2011.

[9] Shuguang Feng, Shantanu Gupta, Amin Ansari, and
Scott Mahlke. Shoestring: probabilistic soft error
reliability on the cheap. In International Conference
on Architectural Support for Programming Languages
and Operating Systems, 2010.

[10] Paul Stodghill Greg Bronevetsky, Keshav Pingali.
Application-level checkpointing for openmp programs.
In International Conference on Supercomputing, 2006.

[11] Maurice Herlihy and J. Eliot B. Moss. Transactional
memory: architectural support for lock-free data
structures. In Proceedings of the International
Symposium on Computer Architecture, 1993.

[12] Daan Leijen, Wolfram Schulte, and Sebastian
Burckhardt. The design of a task parallel library. In
Proceedings of the ACM conference on Object-Oriented
Programming, Systems, Languages, and Applications,
2009.

[13] Spyros Lyberis. Myrmics: A Scalable Runtime System
for Global Address Spaces. PhD thesis, University of
Crete, August 2013.

[14] Sarah E. Michalak, Kevin W. Harris, Nicolas W.
Hengartner, Bruce E. Takala, and Stephen A. Wender.
Predicting the number of fatal soft errors in Los
Alamos National Labratory’s ASC Q computer. IEEE
Transactions on Device and Materials Reliability,
5:329–335, 2005.

[15] Jeff Napper, Lorenzo Alvisi, and Harrick Vin. A
fault-tolerant java virtual machine. In Annual
IEEE/IFIP International Conference on Dependable
Systems and Networks, 2002.

[16] S. Nomura, M.D. Sinclair, Chen-Han Ho,
V. Govindaraju, M. de Kruijf, and K. Sankaralingam.
Sampling + DMR: Practical and low-overhead
permanent fault detection. In Proceedings of the
International Symposium on Computer Architecture,
2011.

[17] J. Nowotsch and M. Paulitsch. Leveraging multi-core
computing architectures in avionics. In European
Dependable Computing Conference (EDCC), pages
132–143, 2012.

[18] Joydeep Ray, James C. Hoe, and Babak Falsafi. Dual
use of superscalar datapath for transient-fault
detection and recovery. In Proceedings of the
IEEE/ACM International Symposium on
Microarchitecture, 2001.

[19] James Reinders. Intel threading building blocks.
O’Reilly & Associates, Inc., Sebastopol, CA, USA,
first edition, 2007.

[20] Steven K. Reinhardt and Shubhendu S. Mukherjee.
Transient fault detection via simultaneous
multithreading. In Proceedings of the International
Symposium on Computer Architecture, 2000.

[21] George A. Reis, Jonathan Chang, Neil Vachharajani,
Ram Rangan, and David I. August. SWIFT: Software
implemented fault tolerance. In Proceedings of the
International Symposium on Code Generation and
Optimization, 2005.

[22] Siva Kumar Sastry Hari, Man-Lap Li, Pradeep
Ramachandran, Byn Choi, and Sarita V. Adve.
mSWAT: Low-cost hardware fault detection and
diagnosis for multicore systems. In Proceedings of the
IEEE/ACM International Symposium on
Microarchitecture, 2009.

[23] Martin Schulz, Greg Bronevetsky, Rohit Fernandes,
Daniel Marques, Keshav Pengali, and Paul Stodghill.
Implementation and evaluation of a scalable
application-level checkpoint-recovery scheme for mpi
programs. In SC, 2004.

[24] The sequoia programming language.
http://http://sequoia.stanford.edu.

[25] SMP Superscalar (SMPSs) v2.3 User’s Manual, 2010.

[26] G. Tzenakis, A. Papatriantafyllou, J. Kesapides,
P. Pratikakis, H. Vandierendonck, and D. S.
Nikolopoulos. BDDT: Block-level dynamic dependence
analysis for deterministic task-based parallelism. In
Proceedings of the ACM symposium on Principles and
Practice of Parallel Programming, 2012. Poster paper.

[27] George Tzenakis, Angelos Papatriantafyllou, Hans
Vandierendonck, Polyvios Pratikakis, and Dimitrios S.
Nikolopoulos. BDDT: Block-level dynamic dependence
analysis for task-based parallelism. In Advanced
Parallel Processing Technologies, 2013.

[28] Yun Zhang, Soumyadeep Ghosh, Jialu Huang, Jae W.
Lee, Scott A. Mahlke, and David I. August. Runtime
asynchronous fault tolerance via speculation. In
Proceedings of the International Symposium on Code
Generation and Optimization, 2012.

[29] Gengbin Zheng, Lixia Shi, and L.V. Kale.
FTC-Charm++: an in-memory checkpoint-based fault
tolerant runtime for Charm++ and MPI. In
Proceedings of the IEEE International Conference on
Cluster Computing, 2004.

