
Kernel Version: 6.17

Document Revision: 1

FieldServer

Configuration Manual

This manual provides instructions for the following FieldServer products:

 Description

FS-X30 Series FieldServer

QuickServer FieldServer

APPLICABILITY & EFFECTIVITY

Effective for all systems manufactured after March 2015

 FieldServer Configuration Manual

Contact Information

Contact Information:

Thank you for purchasing the FieldServer.

Please call us for Technical support of the FieldServer product.

Contact Information:

Sierra Monitor Corporation

1991 Tarob Court

Milpitas, CA 95035

Contact number:

+1 408 262-6611

+1 800 727-4377

Email: info@sierramonitor.com

Website: www.sierramonitor.com

mailto:info@sierramonitor.com

 FieldServer Configuration Manual

Table of Contents

TABLE OF CONTENTS

1 FieldServer Concepts .. 7
1.1 Introduction ... 7
1.2 Application .. 7
1.3 Terminology .. 7

1.3.1 Nodes .. 7
1.3.2 Clients and Servers ... 8

2 Overall Operation Philosophy .. 9

3 Getting Started – Basic Configuration... 10
3.1 Configuration File Overview: .. 10
3.2 Configuration File Structure .. 10
3.3 Editing Configuration Files .. 14
3.4 Testing Configuration Files with MB8SIM.EXE .. 14

3.4.1 Additional worthwhile MB8SIM checks: .. 16

4 Map Descriptor Functions .. 17
4.1 Active vs. Passive functions ... 17
4.2 Passive Map Descriptor Functions ... 17

4.2.1 Passive .. 17
4.2.2 Passive Client (Passive_Client) .. 17

4.2.2.1 Working with Passive Client – Passive Server Applications .. 18
4.3 Active Map Descriptor Functions .. 19

4.3.1 Read Block Continuous (Rdbc) ... 19
4.3.2 Active Read Continuous with Sequencing (Arcs). ... 19
4.3.3 Write Block on Change (Wrbx) .. 19
4.3.4 Write Block on Change of Value (WRBCOV) .. 19
4.3.5 Write Block Continuous (Wrbc) ... 19
4.3.6 Active Write on Trigger (AWT) .. 20
4.3.7 Read Block (RDB) ... 21
4.3.8 Active Read Continuous with Offset (ARCO) .. 21
4.3.9 Active Read at Startup (ARS) .. 21
4.3.10 Active Write at Startup (AWS) ... 21
4.3.11 Write block (WRB) ... 21

5 Data Manipulation Features .. 22
5.1 Moves ... 22

5.1.1 Simple Moves .. 23
5.1.1.1 Simple Move Example .. 23
5.1.1.2 Special Application: Grouping Data .. 24
5.1.1.3 Special Application: Separating Responsible Map Descriptors.................................... 25
5.1.1.4 Special Application: Creating a LonWorks SNVT_Switch from 2 Modbus registers. ... 25

5.2 Function Moves – Type Casting ... 26

5.2.1 Functions Available For Type Casting: ... 26
5.2.2 Converting two Integers to a Float. ... 27
5.2.3 Using Moves to pack and unpack bits to or from a Register ... 27
1.1.1 Example 1 – Simple Bit Extraction .. 28

 FieldServer Configuration Manual

Table of Contents

1.1.2 Example 2 - Simple Bit Packing .. 28
1.1.3 Example 3 - Extracting bit groups ... 29
5.2.4 Bit Extraction – Application Example... 29

5.2.4.1 Bit Extraction Example Configuration: .. 30

5.2.5 Task Moves ... 31
5.2.5.1 Special Application: Node Status ... 31

5.2.6 Match-pattern .. 32
5.2.6.1 “Table of Patterns” Configuration example ... 33
5.2.6.1. Moves Definition ... 33
5.2.6.2 Table String Composition ... 34

5.2.7 Conditional Moves ... 34
5.2.7.1 Conditional Moves: Example 1 ... 35
5.2.7.2 Conditional MovesExample 2 ... 35

5.3 Mathematical functions ... 36

5.3.1 Math Function as a Moves Function ... 36
5.3.2 Standalone Math ... 37
5.3.3 Math Usage Example: ... 37
5.3.4 Optional Parameters ... 38

5.3.4.1 Truncate Result Example ... 38
5.4 Logic ... 39

5.4.1 Logic as a Moves Function .. 39
5.4.2 Standalone Logic ... 39

5.4.2.1 Logic Usage Example: .. 39
5.5 Scaling .. 40

5.5.1 Map Descriptor Scaling ... 40
5.5.1.1 Scaling function example - Converting Celsius to Fahrenheit: 40

5.5.2 Scaling using Moves ... 41
5.5.2.1 Moves Scaling function example – Multiplying values by 10: 41

5.6 Preloading Data Arrays with Initial Values ... 42

5.6.1 Introduction .. 42
5.6.2 Parameters used to define Preloads ... 42
5.6.3 Limitations and Operational Considerations ... 43
5.6.4 Example 1 – Load a Value .. 43
5.6.5 Example 2 – Load a Value – Effect of Target Data Array Format ... 43
5.6.6 Example 3 – Load a Value – Negative Numbers .. 44
5.6.7 Example 4 – Load a Value – Floating Point Numbers .. 44
5.6.8 Example 5 – Load a Value – Strings (1) ... 44
5.6.9 Example 6 – Load a Value – Strings (2) ... 45
5.6.10 Example 7 – Load a value - Casting ... 45
5.6.11 Example 8 – Load an Object name ... 45

5.7 Loading Data_Array Values from the FieldServer’s Non-Volatile Memory 46

6 Node Management ... 47
6.1 Data Array Functions .. 47

6.1.1 Node Status Function .. 47
6.1.2 Alias_Node_ID... 48

 FieldServer Configuration Manual

Table of Contents

6.1.3 Alias_Node_ID - Example: .. 48
6.1.4 Node_Online_Bits ... 49

6.2 Connection Parameters .. 50

6.2.1 Node_Retire_Delay ... 50
6.3 Node Parameters .. 50

6.3.1 Node Offline Action 50
6.3.2 Node Inactivity Timeout ... 51

7 Dynamic Parameters ... 52

7.1.1 Dynamic allocation of Node_ID or Station number ... 52
7.1.1.1 Diagram 1: Static Server Side Node_ID ... 52
7.1.1.2 Remote Client finds a Node with Node_ID dependent on the data read from the

remote Server device. ... 53

7.1.2 Map Descriptor Parameters specific to Dynamic Parameters .. 54
7.1.3 Examples ... 54

7.1.3.1 Example 1- Dynamic Allocation of Node ID.. 54
7.1.3.2 Example 2 – Dynamic Allocation of System Node ID ... 55
7.1.3.3 Example 3- Dynamic allocation of the BACnet MAC address 55
7.1.3.4 Example 4 – Dynamic Allocation of the connection Baud Rate 55

7.1.4 Error Messages ... 57

8 Port Expander Mode - PEX Mode ... 58
8.1 How Port Expansion Works: ... 58
8.2 Advantages of Port Expander Mode... 58
8.3 Limitations of Port Expander Mode .. 58
8.4 Port Expander Write Options .. 58
8.5 Handling of Successive Writes to the Same Point ... 59
8.6 Port Expansion Configuration: .. 59

9 Timing Parameters... 60
9.1 Line Drive Parameters .. 62
9.2 Suppressing Squelch on Half Duplex Communications ... 62

9.2.1 Setting Parameter Values ... 64
9.2.2 Statistics .. 64

9.3 Enable on RS-232 Port ... 64

Appendix A. Useful Features ... 65
Appendix A.1. Using comments .. 65
Appendix A.2. Using conditional process statements ... 65
Appendix A.3. Disabling the Client side of a configuration:... 66

Appendix A.1.1. Disabling a Node ... 66
Appendix A.4. Disabling Statistics Display .. 67
Appendix A.5. DHCP Client Options ... 68

Appendix B. Troubleshooting .. 69
Appendix B.1. Moves performance ... 69

Appendix C. Reference ... 70
Appendix C.1. Working with the Driver Manuals ... 70

 FieldServer Configuration Manual

Table of Contents

Appendix C.1.1. Introduction ... 70
Appendix C.1.2. Driver Manuals as Part of the Documentation Set .. 70

Appendix C.2. Default settings for parameters ... 70
Appendix C.3. Available Data Types for Data Arrays ... 71
Appendix C.4. Permissible Values for Configuration File Variables ... 71

Appendix C.4.1. Common Information .. 72
Appendix C.4.2. Data Arrays ... 73
Appendix C.4.3. Data Array Function .. 74
Appendix C.4.4. Connections/ Adapters .. 75
Appendix C.4.5. Nodes .. 77
Appendix C.4.6. Map Descriptors .. 81

Appendix C.5. Valid Characters for Common Fields in Configuration Files .. 83
Appendix C.6. Kernel Error Messages and Descriptions .. 83
Appendix C.7. Networking Glossary of Terms .. 90

LIST OF FIGURES

Figure 1 – Client/Server .. 8
Figure 2 – FieldServer Operation Theory ... 9
Figure 3 – MB8SIM Interface Screen .. 15
Figure 4 – MB8SIM Error Screen with Driver Versions .. 15
Figure 5 – Typical Network architecture ... 18
Figure 6 – Grouping Data .. 24
Figure 7 – Seperating Responsible Map Descriptors ... 25
Figure 8 – Creating a LonWorks SNVT_Switch from 2 Modbus registers. ... 25
Figure 9 – Packed Bits Activated .. 30
Figure 10 – Static Server Side Node_ID ... 52
Figure 11 – Remote Client finds a Node with Node_ID dependent on the data read from the remote

Server device.. 53
Figure 12 – FieldServer Timing Diagram .. 61
Figure 13 – Timing Diagram: Line Drive On/Off, Tx and Rx Squelch, Poll Delay, Turnaround Delay. 63

file:///C:/Subversion/Documentation/Published/Manuals/Fieldserver/FieldServer_Configuration_Manual.docx%23_Toc414471036
file:///C:/Subversion/Documentation/Published/Manuals/Fieldserver/FieldServer_Configuration_Manual.docx%23_Toc414471037
file:///C:/Subversion/Documentation/Published/Manuals/Fieldserver/FieldServer_Configuration_Manual.docx%23_Toc414471038
file:///C:/Subversion/Documentation/Published/Manuals/Fieldserver/FieldServer_Configuration_Manual.docx%23_Toc414471039
file:///C:/Subversion/Documentation/Published/Manuals/Fieldserver/FieldServer_Configuration_Manual.docx%23_Toc414471040
file:///C:/Subversion/Documentation/Published/Manuals/Fieldserver/FieldServer_Configuration_Manual.docx%23_Toc414471041
file:///C:/Subversion/Documentation/Published/Manuals/Fieldserver/FieldServer_Configuration_Manual.docx%23_Toc414471042
file:///C:/Subversion/Documentation/Published/Manuals/Fieldserver/FieldServer_Configuration_Manual.docx%23_Toc414471043
file:///C:/Subversion/Documentation/Published/Manuals/Fieldserver/FieldServer_Configuration_Manual.docx%23_Toc414471044
file:///C:/Subversion/Documentation/Published/Manuals/Fieldserver/FieldServer_Configuration_Manual.docx%23_Toc414471045
file:///C:/Subversion/Documentation/Published/Manuals/Fieldserver/FieldServer_Configuration_Manual.docx%23_Toc414471046
file:///C:/Subversion/Documentation/Published/Manuals/Fieldserver/FieldServer_Configuration_Manual.docx%23_Toc414471046
file:///C:/Subversion/Documentation/Published/Manuals/Fieldserver/FieldServer_Configuration_Manual.docx%23_Toc414471047
file:///C:/Subversion/Documentation/Published/Manuals/Fieldserver/FieldServer_Configuration_Manual.docx%23_Toc414471048

 FieldServer Configuration Manual

Page 7 of 92

1 FIELDSERVER CONCEPTS

1.1 Introduction

The FieldServer functions as a gateway enabling different devices utilizing different protocols to interface

with each other. The FieldServer solves communication and protocol conversion problems and improves

response times in distributed data acquisition and control systems. The extensive driver library available

from FieldServer Technologies provides a wide range of interoperability solutions. For a current list of

available drivers visit our website at www.fieldserver.com.

The FieldServer also acts as an Ethernet gateway, enabling new and legacy PLCs, RTUs and SCADA

devices to link to Ethernet for plant-wide communications.

Depending on the model, the FieldServer is equipped with combinations of Serial, Ethernet and

LonWorks®1 ports as well as various Fieldbus ports. The internal poll-block caching capability insures

that data from Server devices is immediately available to the Client devices when needed. Data can be

cached from slower devices or remote units for immediate access by the Client device. See Section 8 for

details.

The Hot Standby option for the FieldServer is available when dual redundancy is required. See

Enote0002 for details.

1.2 Application

Today’s plants are integrated, intelligent facilities requiring multiple mechanical and electrical systems to

be controlled from a central processor. Many of these devices are not part of the central automation

system, but that system still needs data input from these devices.

Through its powerful protocol conversion capability the FieldServer allows system designers and

managers to connect unique instrumentation and sensor devices onto common protocol systems and into

the plant Ethernet backbone. Due to its internal poll-block caching, multiple protocol capability and high

port count, the FieldServer improves data and machine update time compared to conventional HMI

packages using multiple drivers and port expanders.

The FieldServer is designed to enable devices within a facility to communicate with each other or to a

central control station via Serial, Arcnet, Ethernet or other communication busses. Two-way

communication is easily available between the various process and control systems.

1.3 Terminology

1.3.1 Nodes2

The devices communicating with the FieldServer may be referred to as “Stations”, “Nodes”, “RTU’s”,

“DCS’s”, “Workstations”, “SCADA Systems”, “MMI’s”, “Field Devices”, etc. To prevent confusion these

devices are always referred to as Nodes in this manual.

Similarly, “Device Address”, “Station Address”, “Station ID” is always referred to as “Node ID” in this

manual.

1
 LONWORKS

®
 is a trademark of Echelon Corporation registered in the United States and other countries.

2
 Nodes may have the same Node_ID value, so long as they are connected to different ports.

http://www.fieldserver.com/

 FieldServer Configuration Manual

Page 8 of 92

1.3.2 Clients and Servers

A Client Node can request data from and write data to a Server. In Process Control and Building

Automation applications, it is accurate to describe a Client as a device that receives status and alarm

data from a Server, and writes setpoints and control points to the Server.

In a FieldServer application, there is a Client/Server relationship on each network coupled to the

FieldServer. It is therefore typical that the FieldServer acts as a Client and a Server at the same time.

Figure I below illustrates this.

SLAVE

Server Side

Client Side

Server Node

Client Node

MASTER

FieldServer

Figure 1 – Client/Server

 FieldServer Configuration Manual

Page 9 of 92

Modbus

Data Highway Plus

Bridge

Data Arrays

Client Map Descriptors

Client Node Descriptors

Server Map Descriptors

Virtual Server Nodes

Location

Client
Side

Server
Side

Server Node

Client Node

2 OVERALL OPERATION PHILOSOPHY

The FieldServer functions as a bridge between two or more different Nodes (see Figure 2). The

information is gathered by the Client side of the FieldServer from the Server Nodes via a Serial Port,

Ethernet port or plug-in card. Nodes may use different protocols and even different communication

busses. The Client Node Descriptors contain information about each Node including connection ports

and protocol. Each Node is given a Node_Name and a Node_ID. The data from a Server Node is stored

on the FieldServer in a Data Array. The exact location as well as the format of the information is

determined by the Map Descriptors. The FieldServer can contain any number of Data Arrays, but each

Data Array can only store data in one format. The Client Map Descriptors describe where the information

is to be stored on the FieldServer, and the Server Map Descriptors describe how this information is able

to be accessed by a Client Node. On the Server side of the FieldServer, virtual Nodes are created to

convert the information stored in the Data Arrays to the format required by the Client Node. These Nodes

can be accessed by any of the available ports on the FieldServer at any time. The FieldServer thus acts

as a Client and a Server simultaneously.

Example:

Consider a Modbus PLC with a set of 10 high alarms in address 00001 to 00010.

A Map Descriptor is allocated to fetch Data Objects from Modbus address 00001 length 10 and save this

data to a Data Array named PLC1, offset 20. The high alarm for sensor number 5 on PLC1 is thus stored

in Data Array PLC1; offset 24 (the fifth location starting at offset 20).

A DCS using Allen Bradley DH+ protocol can be configured to access the FieldServer and read the Data

Array. The FieldServer will appear to the DCS as another DH+ PLC. If the Virtual Node PLC1 is

configured to contain the data on sensor 5/PLC1 as a DH+ address B3:57, then the data needed for

address B3:57 will be retrieved from Data Array PLC1, offset 24.

Figure 2 – FieldServer Operation Theory

 FieldServer Configuration Manual

Page 10 of 92

3 GETTING STARTED – BASIC CONFIGURATION

3.1 Configuration File Overview:

The default driver configuration file (CONFIG.CSV) for any driver combination ordered is loaded into the

FieldServer and can be retrieved using the Graphical User Interface Utility (see the

FieldServer_GUI_Manual for more details). Use this file as a template when editing configuration files to

ensure that the edited file takes the correct form. A detailed explanation of the configuration file follows:

3.2 Configuration File Structure

//==//

// Delivery.csv

// SMC Customer : XYZ Corp.

// Ultimate Destination : Main Office

// SMC Sales Order : 00103400

// Driver Configuration : Modbus RTU

// Configured By : GFM

// Date : 23 Mar 00

//

// Copyright (c) 2000 FieldServer Technologies

// 1991 Tarob Court, Milpitas, CA 95035

// (408) 262 6611 Fax: (408) 262 9042

// support@fieldServer.com

//

//===

//

// Common Information

//

Bridge

Title

DCC030 CC00103400 V1.00a

//===

//

Data_Arrays

Data_Array_Name , Data_Format , Data_Array_Length

DA_AI_01 , UInt16 , 200

DA_AO_01 , UInt16 , 200

DA_DI_01 , Bit , 200

DA_DO_01 , Bit , 200

Relevant Project information.

This title appears on the top line of the FS-GUI

screen. It may be used to indicate the configuration

version loaded, and the relevant customer/project.

Data Arrays are “protocol neutral” data buffers for storage of data to be

passed between protocols. It is necessary to declare the data format of each

of the Data Arrays to facilitate correct storage of the relevant data. More

information is available in Appendix C.3

Lines beginning // are comments and

do not affect the configuration.

Note: Comments should be at the

start of lines. If comments made after

a line of parameters must not follow a

comma directly.

This section allows for the determination of

parameters not directly related to any of the

connections.

 FieldServer Configuration Manual

Page 11 of 92

//==

//

// Client Side Connections

//

Connections

Port , Baud , Parity , Data_Bits , Stop_Bits , Protocol , Poll_Delay

P8 , 9600 , None , 8 , 1 , Modbus_RTU , 0.100s

//==

//

// Client Side Nodes

//

Nodes

Node_Name , Node_ID , Protocol , Port

PLC 1 , 1 , Modbus_RTU , P8

The port to be

connected to

defined in

terms of

connection

speed and

properties.

The protocol for the

network connected to

this port.

Timing parameters on the

connection allow for fine

tuning of communications.

A name allocated to the

node for reference by the

Map Descriptors. The Node ID of the Server.

The Server Node is attached to this

connection.

This section contains the parameters that describe the nature of

the physical connection to the Server Nodes.

This section defines the logical connection parameters for the

Server Nodes communicating with the FieldServer.

 FieldServer Configuration Manual

Page 12 of 92

//==

//

// Client Side Map Descriptors

//
Map_Descriptors

Map_Descriptor_Name , Data_Array_Name , Data_Array_Offset , Function , Node_Name , Address , Length , Scan_Interval

CMD_AI_01 , DA_AI_01 , 0 , Rdbc , PLC 1 , 30001 , 20 , 1.000s

CMD_AO_01 , DA_AO_01 , 0 , Rdbc , PLC 1 , 40001 , 20 , 1.000s

Map_Descriptors

Map_Descriptor_Name , Data_Array_Name , Data_Array_Offset , Function , Node_Name , Address , Length , Scan_Interval

CMD_DI_01 , DA_DI_01 , 0 , Rdbc , PLC 1 , 10001 , 20 , 1.000s

CMD_DO_01 , DA_DO_01 , 0 , Rdbc , PLC 1 , 00001 , 20 , 1.000s

/

Name assigned to the Map

Descriptor. In some protocols

the name becomes the

variable name.

Offset in relevant Data Array to start data

access/storage

Data Array to be

used for storage of

data being passed

between protocols.
Determines how data is

to be fetched/written.

The FieldServer is either

reading, being read, or

writing data. This can be

continuous, or on

change.

Node being

accessed.

First point

address

being

accessed.

Number of points

in package

Timing

parameters

assist with

pacing of data.

The Map Descriptor parameters describe the address details required to move

data between the FieldServer and an external device and the nature of the data

transfer.

 FieldServer Configuration Manual

Page 13 of 92

/==

//

// Server Side Connections

//

Connections

Adapter , Protocol

N1 , Modbus/TCP

//==

//

// Server Side Nodes

//

Nodes

Node_Name , Node_ID , Protocol

MBP_Srv_11 , 11 , Modbus/TCP

//==

//

// Server Side Map Descriptors

//

Map_Descriptors

Map_Descriptor_Name , Data_Array_Name , Data_Array_Offset , Function , Node_Name , Address , Length

SMD_DI_01 , DA_DI_01 , 0 , Passive , MBP_Srv_11 , 10001 , 200

SMD_DO_01 , DA_DO_01 , 0 , Passive , MBP_Srv_11 , 00001 , 200

Adapter definition applies to defining network

and FieldServer (e.g. PROFIBUS)

connections.

A Node name for

reference by the

Map Descriptors.

Since the FieldServer is a Server here, this is the ID of the FieldServer

(virtual) Node. The FieldServer can represent multiple Virtual Node_ID’s in

most protocols.

The protocol for the network

connected to this port.

Settings for how the FieldServer communicates with Client

Nodes.

 FieldServer Configuration Manual

Page 14 of 92

3.3 Editing Configuration Files

The configuration file is in comma-delimited format where entries within a line are separated by commas

and the end of a line is indicated by an entry without a comma. This file can be edited using spreadsheet

programs or any text editor.

It is recommended that the CONFIG.CSV file be backed up before editing. Once edited, the file can

saved and uploaded in the Graphic User Interface (see FieldServer_GUI_Manual for details)

Refer to Appendix C.4 for the parameters that are usually filled out in the configuration file. Only the

specified values may be used - other values may affect FieldServer performance or functioning.

Not all parameters are compulsory for every driver (See the related driver manual for details). The bold

legal value is the value that will be used if the parameter is not specified.

Not all variables need be defined for every configuration. Depending on the protocol and configuration,

some variables might not be necessary. More detailed information is located in the relevant Driver

Manual, including settings specific to the drivers being used for a particular application.

Most FieldServer parameters are specified in a configuration file and are fixed. A growing number,

however, may be changed dynamically using values found in Data Arrays. We call these Dynamic

Parameters. Refer to Section 6.3 for more information on Dynamic Parameters.

3.4 Testing Configuration Files with MB8SIM.EXE

MB8SIM.EXE is a program that simulates the FieldServer on the PC and can be used for testing edited

configuration files before transferring them back to the FieldServer. This file can be obtained by calling

Tech Support. It is not necessary to use mb8sim. The configuration can be loaded into the FieldServer

and tested in much the same way.

Open an MS-DOS prompt and navigate to the directory containing the configuration file.

Type: "mb8sim.exe -c<configuration file>", where <configuration file> is the name of the file to be

tested. For example, to test the CONFIG.CSV file, type "mb8sim –cconfig.csv".

To test specific sections of a configuration file it is possible to ignore certain sections:

To ignore a block use the "ignore" keyword at the start and the "process" keyword at the end of the

block.

To ignore individual lines use “//”

The "end" keyword will stop processing the file, and anything after this keyword will be ignored.

The following is an example of the interface when using MB8SIM.EXE. It looks very similar to the

interface when using RUINET.

 FieldServer Configuration Manual

Page 15 of 92

Check all screens to see if the file is working correctly, paying particular attention to the Error screen.

From the main menu, press "E" to enter the error display screen, and examine the errors listed (refer to

Figure 4). Take note of System Errors or Configuration Errors. These indicate configuration problems in

the configuration file.

Note: a number of "System Overrun" errors may occur in this screen. They are caused as a result of the

simulation, and will not cause any problems on the FieldServer.

When the file is free from errors (with the exception of "System Overrun" Errors), download it using the

"D" command from the main menu of the Remote User Interface.

None of these messages are errors.

Config and system errors will have a

“banner” saying “System Error” or

“Configuration Error”.

Figure 3 – MB8SIM Interface Screen

Figure 4 – MB8SIM Error Screen with Driver Versions

 FieldServer Configuration Manual

Page 16 of 92

3.4.1 Additional worthwhile MB8SIM checks:

 Check the Connections defined to ensure that they are as expected.

 Do the same for Nodes.

 Check the Data Arrays to ensure that all Data Arrays defined are there. If too many Data

Arrays exist, this usually signifies that a spelling error exists in the configuration, and that

incorrect Data Arrays were specified in the Map Descriptors.

Note that the first few lines of the error screen are merely informative and relevant information used for

fault finding and do not represent errors. Errors are shown as “System Error” or “Configuration Error” in

the error screen.

 FieldServer Configuration Manual

Page 17 of 92

4 MAP DESCRIPTOR FUNCTIONS3

Map Descriptor functions determine how data is mapped between Data Arrays and the corresponding

driver data points. The choice of function used is critical in ensuring that the right relationship is

established with the device being communicated with. The most important decision to make when

choosing a function is whether the function needs to be active or passive. Once this is determined, the

trigger for initiating communications determines which active or passive function is used.

4.1 Active vs. Passive functions

Active functions control the communications activity for the associated points in the network. Specifying

an active function for a point will enable the FieldServer to decide when a point is updated, and monitor

the health of the communications path for that point (if the associated protocol allows for this). Specifying

a passive function will mean that the FieldServer expects the communications for that point to be

controlled and monitored by another device on the associated network.

Note: By design, it is necessary that all active Map Descriptors communicate to a point that has a passive

mapping on the remote device, and that passive Map Descriptors are controlled by an active mapping on

the remote device.

There is a loose relationship between Active/Passive and Client/Server. Clients usually use active

mappings and Servers usually use passive mappings, however Active Servers and Passive Clients do

exist. Points that send an update to a network on change (e.g.: Alarm panels) are a good example of

Active Servers.

Another set of terminology used in this area is solicited vs. unsolicited messages. A Client receives a

solicited message from a Server when it asks for it (i.e.: the point is polled). A Client receives an

unsolicited message from a Server when the Server sends the point without the Client asking for it.

Clients that send solicited messages are Active Clients communicating with Passive Servers. Clients that

receive unsolicited messages are Passive Clients communicating with Active Servers.

4.2 Passive Map Descriptor Functions

4.2.1 Passive

The Passive function will not initiate any communications but waits to be solicited by a remote device and

responds with data accordingly. The Passive function will also accept writes and update the associated

Data Array.

4.2.2 Passive Client (Passive_Client)

The Passive_Client function is intended for use where the associated Map Descriptor performs a Client

function and is connected to an active Server. The Passive_Client function will consume all unsolicited

messages for the related point/s and store them in the associated Data Array.

3 Note that not all functions are supported by all drivers. Refer to the specific Driver Manual for information on functions supported
by individual drivers.

 FieldServer Configuration Manual

Page 18 of 92

Data Server Client

Network
Protocol A

FieldServer

Network
Protocol B

Typical Properties
Map Descriptor function used for both
protocols A and B is “passive”
FieldServer is non-intrusive into both
networks, and responds to queries and
commands only.

4.2.2.1 Working with Passive Client – Passive Server Applications

Some applications require the data Server to actively write data to and from the FieldServer. To do this it

is necessary to change the Client side of the configuration to be passive.

Individual drivers have specific requirements for managing passive communications, but the following

steps are typically required to change the Active Client side of a configuration file to make it a Passive

Client.

 Remove Adapter/Port to Client side Node

 Change Function from Rdbc to Passive

 Remove Scan_Interval

 Change Node ID to remote device’s target Device ID

If the Server side remains passive, then every Map Descriptor should have Passive as its function.

Consequently, the Server device will write data to the FieldServer’s Data Arrays, and the Client device will

read that data from the same Data Arrays, making the operation of the FieldServer much like that of a

normal data Server on an office network.

Figure 5 – Typical Network architecture

 FieldServer Configuration Manual

Page 19 of 92

4.3 Active Map Descriptor Functions

A Responsible Map Descriptor is a Map Descriptor that inherently monitors the quality of the data that it

is mapping and can be recognized by the “Function” parameter field. The following are all Responsible

Map Descriptors.

4.3.1 Read Block Continuous (Rdbc)

The Rdbc function will read a block of data of length specified by the “length” parameter, and transfer that

data to the Data Array specified. Reads are performed continuously at an interval specified by the

“Scan_Interval” parameter.

The Rdbc function also has the ability to perform what is known as “write throughs”. If the driver allows

writing to the point related to the Map Descriptor where Rdbc is specified, then the Rdbc function will write

the data in the Data Array back to the point when an update in the associated Data Array is detected.

This makes Rdbc the ideal function for read/write points.

4.3.2 Active Read Continuous with Sequencing (Arcs).

This function will perform the same operation as an Rdbc (Arc) function, but will sequence through the

range of addresses starting at "Address" and wrapping at "Address + Length". A length of 1 will be used

for every one of the Addresses that gets polled. The following drivers currently support the ARCS

function.

 Modbus_RTU

 Lutron_Machine

 BACnet MS/TP, BACnet Arcnet, BACnet

 Metasys N2

4.3.3 Write Block on Change (Wrbx)

The Wrbx function will write data from the Data Array to the remote device. The write is triggered by a

change in the associated Data Array. If the associated Data Array is updated a write will occur, even if the

value/s within the Data Array have not changed. The “Scan_Interval” parameter is not required for this

function as writes are event driven and not continuous.

4.3.4 Write Block on Change of Value (WRBCOV)

The Wrbcov function operates much the same as a Wrbx, but will only write on a value change. The write

is triggered by a change in value in the associated Data Array. If the associated Data Array is updated

with the same value a write will not occur. The “Scan_Interval” parameter is not required for this function

as writes are event driven and not continuous.

4.3.5 Write Block Continuous (Wrbc)

This is similar to the Wrbx function, except that the writes occur at a regular interval rather than on an

event driven basis. The frequency of the writes is determined by the “Scan_Interval” parameter.

 FieldServer Configuration Manual

Page 20 of 92

4.3.6 Active Write on Trigger (AWT)

This function is used to effect a single data write per trigger. As with the Wrbx function, the write only occurs when the Data Array is updated. In

this case the updated data is not used to form the write, but updating the Data Array triggers a read of a Secondary Data Array which contains the

data to be served in the write.

In the example below (from the Lutron eLumen Driver) the driver watches the Data Array called ‘Lut_triggers’ (offset 13). If that Data Array

element is updated (even if the value remains unchanged) the the write is triggered. The driver extracts the data from the Secondary Data Array

called ‘Set_tlck’ (offset 0) and forms a message to write this data to the field device.

Only certain drivers support/require the use use of this function. For other drivers, awt is a synonym for wrbx since there is no secondary Data

Array to extract information from.

Note: The driver may extract more data from the array than specified by the ‘length’ parameter. The only way to know how much data is to read

that specific driver’s manual.

Map_Descriptors

Map_Descriptor_Name , Data_Array_Name , Data_Array_Offset , Function , Node_Name , GRAFIK_command , DA_Lut_List , DA_Lut_List_Offset , Length

Set_tck , Lut_triggers , 13 , Awt , LUT_GRF6_0 , Set_tclk , Set_tclk , 0 , 1

 FieldServer Configuration Manual

Page 21 of 92

4.3.7 Read Block (RDB)

This function does a single read at startup only.

4.3.8 Active Read Continuous with Offset (ARCO)

This function does a read of length 1 for a range of addresses.

4.3.9 Active Read at Startup (ARS)

This function does an active/single read on startup, or every time the associated node goes online.

4.3.10 Active Write at Startup (AWS)

This function does an active/single write on startup, or node coming online.

4.3.11 Write block (WRB)

This function does a single write at startup.

 FieldServer Configuration Manual

Page 22 of 92

5 DATA MANIPULATION FEATURES

The features described in this section may or may not be needed depending on the application where the

FieldServer is implemented. If the application calls for straight passing of data without modification

through the FieldServer, then the features in this section will probably not be useful.

5.1 Moves

The Moves function permits data to be moved from one Data Array to another. The function parameter

within moves allows data manipulation to occur while moving the data, e.g: Logic operation, Integer to

floating point conversion, etc. Scaling, Logic and Math are also possible while moving data

With the exception of Conditional Moves (see 5.2.9), each Data Array location may only act as the target

location of one Responsible Move. This ensures that the data source can be uniquely determined in

order to establish source data validity, and so that a write through the target data location is directed to

the appropriate location.

Moves will execute whenever the source data changes or the scan interval (if specified) expires. If a task

name but no scan interval is defined, a default scan interval of 1s is assumed.

A Move operation must specify the following elements:

Source_Data_Array The name of the Data Array from which data is to be copied.

Source_Offset The offset within the Data Array from which data is to be copied

Target_Data_Array The name of the Data Array to which data is to be copied

Target_Offset

The offset within the Data Array to which data is to be copied. The offset can

be either a hardcoded value or can be obtained from another data array. See

Moves example 5.1.1.1 for more information.

The following elements are optional:

Length
The number of consecutive source Data Array values to be moved to

consecutive target locations, starting at the respective offsets

Task_Name
If a task name is specified, the move operation becomes a continuous task on

the FieldServer that is executed at the scan interval specified.

Scan_Interval
The time interval at which the task will be repeated. A task name must be

specified if a scan interval is specified.

Function
Defines move functionality, e.g. byte order manipulation. Functions are

summarized in Error! Reference source not found..

Conditional_Data_Array
The name of a Data Array to be used for conditional moves. See Section

5.1.1.3 for more information.

Conditional_Offset

The offset into the Conditional_Data_Array where the conditional bits for the

move are defined. The value found at this specified location must be non-

zero for the move to be executed. If the value is zero, the move is inhibited.

 FieldServer Configuration Manual

Page 23 of 92

5.1.1 Simple Moves

The simplest move involves the transfer of data without any format or protocol changes. Whenever the

Source Data Array is updated (not necessarily changed) the Target Data Array will be updated.

5.1.1.1 Simple Move Example

Data_Arrays

Data_Array_Name , Data_Format , Data_Array_Length

Source_DA , Float , 200

Target_DA , Float , 200

Offset_DA ,UInt ,1

Moves

Function , Source_Data_Array , Source_Offset , Target_Data_Array , Target_Offset , Length

Move_Only , Source_DA , 0 , Target_DA , 40 , 5

Target Offset example

Moves

Function , Source_Data_Array , Source_Offset , Target_Data_Array , Target_Offset , Length

Move_Only , Source_DA , 0 , Target_DA , <Offset_DA.0> , 5

Five Floating point values

are moved from the first

offset of Source_DA to

Offset 40 of Target DA

Move is reversible,

meaning data can move

from Target_DA to

Source_DA if applicable

(writeable points

The Target Offset Value

will be obtained from the

Offset_DA at offset 0

 FieldServer Configuration Manual

Page 24 of 92

Client side Data Array 1

Client side Data Array 4

Client side Data Array 2

Client side Data Array 3

Server Side Data

Array

Remote Client can
now poll the
FieldServer using
large poll lengths
without fear of
hitting undefined
registers.

One Server
Data Array
means One
Server Map
Descriptor is
possible

5.1.1.2 Special Application: Grouping Data

The location of data in Data Arrays on the FieldServer is determined by corresponding Map Descriptors.

Should a Client poll the FieldServer for data spanning more than one Map Descriptor, the FieldServer will

not know which Map Descriptor to use. This can be circumvented by moving data from multiple “Client

Side” Source Data Arrays to a single “Server Side” Target Data Array. This Data Array should be larger

(of greater length) than the maximum poll length of the Client.

Example

Consider a Modbus Client needing registers 40001 through 40050 from the FieldServer. The poll lengths

used to obtain this data are unknown.

This could be configured in the FieldServer Server side as follows:

Configuration 1: Map Descriptor 1 serves up 40001 Length 25 :

Map Descriptor 2 serves up 40026 Length 25

If the two poll blocks fall within these two address spans, the poll will be successful,

however, if all 50 registers are polled in a single poll it will fail

Configuration 2: Map Descriptor 1 serves up 40001 Length 50

For this to work, all 50 points must be contiguous in the same Data Array so that one Map

Descriptor can be created. If all 50 registers are polled in a single poll it will be

successful. If the Client polling algorithm keeps a fixed length of 50, and then decides to

poll address 40050, length 50, the poll will fail because addresses 40051 through 40099

are not declared in the FieldServer.

Configuration 3. Map Descriptor 1 serves up 40001 Length 200

For this to work, points must be contiguous in the Data Array, and the Data Array length

must be at least 200. Since Modbus can poll a maximum length of 125, a Client cannot

poll the required registers and encounter an address that is not configured. This is

therefore the most robust solution, and only costs a few points.

Figure 6 – Grouping Data

 FieldServer Configuration Manual

Page 25 of 92

Data Array 1

a

t

a

A

r

r

a

y

1

Data Array 2
Rdbc Wrbx Move

Server 1 Server 2

Float Data Array

With data from

Modbus address

40200

Bit Data Array

With data from

Modbus address

11235

Server Side Data
Array

Offset 20: Value

Offset 21: State

SNVT_STATE

State Value

40200 11235

LonWorks Server Map
Descriptor

5.1.1.3 Special Application: Separating Responsible Map Descriptors

Responsible Map Descriptors are active Map Descriptors that control the Communications (see section

4). Two Responsible Map Descriptors cannot share the same Data Array Offset due to monitoring

functions present in the kernel (Refer to Section 4.3 for more information). If two Responsible Map

Descriptors require access to the same data, the data can be made accessible to the second

Responsible Map Descriptor by moving it to a second Data Array.

5.1.1.4 Special Application: Creating a LonWorks SNVT_Switch from 2 Modbus
registers.

Figure 7 – Seperating Responsible Map Descriptors

Figure 8 – Creating a LonWorks SNVT_Switch from 2 Modbus registers.

 FieldServer Configuration Manual

Page 26 of 92

5.2 Function Moves – Type Casting

It is often necessary to manipulate incoming data to create the necessary outgoing data by either joining

smaller data types to create a larger data type, or splitting larger data types to deliver smaller data types.

An example of this is Modbus, where two 16 bit registers are used to transfer a 32 bit floating point value.

Upon receipt of these two registers, the FieldServer needs to join the integers to extract the floating point

value. The Type Casting moves described below perform these kinds of operations

5.2.1 Functions Available For Type Casting:

 Join_Float , Split_Float

 Join_Int16, Split_Int16

 Join_Int32, Split_Int32

 Swapped versions of the above (Big Endian vs Little Endian)

 Bit_Extract, Bit_Pack, Bit_Move

The following legacy functions have been replaced by the functions listed above. They are simply

presented in the table below for reverse compatibility.

Old Keyword New Keyword Function Performed

Int32 Join

2.i16-1.i32 Join_Int32_Swapped source bytes: [ab][cd] target bytes: [abcd}

2.i16-1.i32-sw Join _Int32 source bytes: [ab][cd] target bytes: [cdab]

2.i16-1.i32-m10k Join _M10K Modulo-10 format

Int32 Split

1.i32-2.i16 Split_Int32_Swapped source bytes: [abcd] target bytes: [ab][cd]

1.i32-2.i16-sw Split_Int32 source bytes: [abcd] target bytes: [cd][ab]

Float Join

2.i16-1.float Join _Float_Swapped source bytes: [ab][cd] target bytes: [abcd]

2.i16-1.float-sw Join _Float source bytes: [ab][cd] target bytes: [cdab]

Float Split

1.float-2.i16 Split_Float_Swapped source bytes: [abcd] target bytes: [ab][cd]

1.float-2.i16-sw Split_Float source bytes: [abcd] target bytes: [cd][ab]

Integer Join

2.i8-1.i16 Join_Int16_Swapped source bytes: [a][b] target bytes: [ab]

2.i8-1.16-s Join_Int16 source bytes: [a][b] target bytes: [ba]

Integer Split

1.i16-2.i8 Split_Int16_Swapped source bytes: [ab] target bytes: [a][b]

1.i16-2.i8-s Split_Int16 source bytes: [ab] target bytes: [b][a]

 FieldServer Configuration Manual

Page 27 of 92

5.2.2 Converting two Integers to a Float.

Data_Arrays

Data_Array_Name , Data_Format , Data_Array_Length

Source_DA , Uint16 , 200

Target_DA , Float , 200

Moves

Function , Source_Data_Array , Source_Offset , Target_Data_Array , Target_Offset , Length

Join_Float , Source_DA , 0 , Target_DA , 40 , 5

5.2.3 Using Moves to pack and unpack bits to or from a Register

A register provided by a device often consists of a set of binary values packed together for efficient data

transfer. These registers are normally 16 bits in size, but may also be 8 or 32 bits long. Since a register is

read as an analog value by most protocols, these binary values need to be extracted out of the register

into a bit data array before they can be read as useful data. The Bit_Extract Move function has been

created for this purpose.

The Bit_Pack function can be used to pack bits into a register.

The Bit_Move function allows the user the ability to extract a group of bits in one register and place them

singly into another register.

The Bit_Offset keyword can be used to start moving a group of bits from a specified offset within the

register. This keyword may also be used in conjunction with the Bit_Extract and Bit_Pack functions to

specify the first register offset to Extract or Pack.

The Length keyword will always specify the number of bits to be moved in the move operation when using

these three functions. If the length keyword is not used, then only one bit will be moved.

Note: The Data_Array_Type being used in source and target Data_Arrays can produce varying results

and care should be taken to use the correct type. For example, when using the Bit_Extract function, it

makes sense to use Byte, UInt16, or Uint32 source Data_Array_Types to extract 8, 16 or 32 bits per

register respectively. It also makes sense to use the Bit Data Type for target Data_Array_Type. However,

the FieldServer will allow other types to be used and follow a routine choice of conversion that may not be

considered predictable to all users. For example, if the Float Data_Type is used as a source type in

Bit_Extract, 32 bits per register will be extracted according to the rounded Integer number being

represented in the Float Register. If the Float Data_Type was used as a target type in Bit_Extract, then

each float register would store one binary value and would only ever represent 1 or 0.

Ten 16 Bit Integers are

taken from Source_DA

and combined in two’s to

make up 5 floating point

values

Length refers to the data type referenced in the

Function.

eg: If n is the value shown in Length, then:

Join_Float creates n Floats

Split_Float disassembles n Floats

Join_Int16 Creates n Integers

Bit_Extract extracts n Bits, etc

 FieldServer Configuration Manual

Page 28 of 92

Parameter Function

Bit_Extract

The function extracts bits out of the source Data_Array Registers at the Data Array offset

specified.. The bits are placed into the destination array in sequence. Only one bit is

allocated per offset. If the source array is of Bit Data Array type, a straight move is

performed.

Bit_Pack

The function extracts the binary version of each source offset and packs the bits into the

Data Array offset specified. The number of bits packed depends on the target Data type

(e.g: Bytes will get 8 bits, Floats will get 32, etc..). The length will specify the number of bits

to pack. If the destination Array is a Bit data type, a straight move is performed.

Bit_Move

The function extracts a subset of bits out of a source Register offset and transfers these to

a destination Register offset in packed form. Length specifies the number of bits to be

extracted.

Keywords Function
Legal

Values

Bit_Offset*

The parameter specifies the bit offset within a word to start at when performing

a bit move. For Bit_Extract operations, the source bit offset in the word pointed

to by the Source_Offset parameter is implied. For Bit_Pack operations, the bit

offset within the word pointed to by Target_Offset is implied.

Default

0

Length* The length parameter specifies the number of bits to be extracted/packed.
Default

1

5.2.4 Example 1 – Simple Bit Extraction

The following example extracts 3 16-bit registers worth of data from the 6th register of the source array

into the equivalent target of 48 bits:

Data_Arrays

Data_Array_Name , Data_Format , Data_Array_Length

Source_DA , Uint16 , 200

Target_DA , Bit , 200

Moves

Function , Source_Data_Array , Source_Offset , Target_Data_Array , Target_Offset , Length

Bit_Extract , Source_DA , 5 , Target_DA , 0 , 48

5.2.5 Example 2 - Simple Bit Packing

In this example, 12 bits are packed into the 3rd and 4th register of the target byte array, starting at the

eleventh bit in the source array. Note that the second target register will only be half populated, leaving

the last 4 bits empty.

Data_Arrays

Data_Array_Name , Data_Format , Data_Array_Length

Source_DA , Bit , 200

Target_DA , Byte , 200

 FieldServer Configuration Manual

Page 29 of 92

Moves

Function , Source_Data_Array , Source_Offset , Target_Data_Array , Target_Offset , Length

Bit_Pack , Source_DA , 10 , Target_DA , 2 , 12

5.2.6 Example 3 - Extracting bit groups

The following example extracts 3 bits from the second byte of a 32-bit register and places them into a

byte register on their own. The Bit_Offset keyword is used here to achieve this:

Data_Arrays

Data_Array_Name , Data_Format , Data_Array_Length

Source_DA , Uint32 , 200

Target_DA , Byte , 200

Moves

Function , Source_Data_Array , Source_Offset , Bit_Offset , Target_Data_Array , Target_Offset , Length

Bit_Move , Source_DA , 0 , 8 , Target_DA , 0 , 3

5.2.7 Bit Extraction – Application Example

Assume a Liebert device has been set up as follows:

 Liebert UPS (MM4)

Alarm String I - Modbus Register: 40289

Bit Description Bit Value

0 Communications 1

1 Battery Discharge 2

2 Input Failure 4

3 Hardware Shutdown 8

4 DC Ground Fault 16

5 Input CB Open 32

6 Output CB Open 64

7 DC Cap Fuse Blown 128

8 Low Battery Reserve 256

9 Output Overload 512

10 Rectifier Fuse Blown 1024

11-15 Unused

Bits 0 - 10 are each used to specify a unique event, and each has a corresponding integer value

determined by the binary contribution it makes to the integer value. For example, bit 10 has an integer

value of 1024 as its weighting in the integer value is 2 to the power 10.

A single packed bit integer with a value of 1034 signifies a blown rectifier fuse, a hardware shutdown, and

a battery discharge (sum of the values for the corresponding events). The value “1034” has no meaning

as such, but when the integer is “unpacked” the individual data bits communicate the required

information. This is depicted in the following diagram.

 FieldServer Configuration Manual

Page 30 of 92

5.2.7.1 Bit Extraction Example Configuration:

// Example of Bit Extraction

Data Arrays

Data_Array_Name , Data_Format , Data_Array_Length

Source_DA , Uint16 , 200

Target_DA , Bit , 200

Map Descriptors

Map_Descriptor_Name
,

Data_Array_Name

,

Data_Array_Offset

,

Node_Name

,

Function

,

Address

,

Length

CMD_PI_Alarm01_01 , Source_DA , 0 , UPS_01 , Rdbc , 40289 , 1

Moves

Function , Source_Data_Array , Source _Offset , Target_Data_Array , Target_Offset , Length

Bit_Extract , Source_DA , 0 , Target_DA , 0 , 10

Target_DA offsets 0 to 9

now contain the first 10 bits

of Register 40289. These

can now be served as bits

to the Protocol of choice.

Figure 9 – Packed Bits Activated

 FieldServer Configuration Manual

Page 31 of 92

5.2.8 Task Moves

If a Task_Name is defined the move will become a repetitive task and the data will be updated on a regular basis. The time between updates can

be set using the Scan_Interval parameter. If the Scan_Interval parameter is set the Task_Name parameter must be set. If a Task_Name is

declared, but no Scan_Interval is defined, a default scan interval of 1s is assumed.

5.2.8.1 Special Application: Node Status

The following data array can be configured to capture the status of a Node (Refer also to Section 6.1.1)

Data Arrays

Data_Array_Name , Data_Format , Data_Array_Length , Data_Array_Function

DA_Comm_OK , Bit , 256 , Node_Status

Target_DA , Bit , 200 , -

Node status bits are only evaluated by the FieldServer when the data is accessed. Since the data is only accessed on update, the data will be

neither accessed nor updated and a move would never occur. This can be circumvented by giving the move a Task_Name and specifying a

Scan_Interval.

Moves

Function , Source_Data_Array , Source_Offset , Target_Data_Array , Target_Offset , Task_Name , Scan_Interval

Move_Only , DA_Comm_OK , 0 , Target_DA , 40 , PLC1_Status , 1

 FieldServer Configuration Manual

Page 32 of 92

5.2.9 Match-pattern

The match pattern move is used at run time to move a customized single value based on combinations of

values in a Data Array as compared with preloaded customized criteria.

 The user builds a table of patterns (strings of tokens separated by “-“) each linked to a

particular location in a target Data Array.

 A “PATTERN DID NOT MATCH” string may also be defined and linked to a Data Array

location.

 A pattern is built based on the values in the Data Array at run time by the move function.

 The pattern built at run time is compared with the preloaded table of patterns. The tokens in

each pattern must match exactly. If the preloaded pattern contains a wildcard (*), that token

would not be compared.

 If the pattern matches a pattern in the table, its value will be stored in the target Data Array at

the specified location.

 If the pattern does not match any of the preloaded patterns in the table a check is done for a

“PATTERN DID NOT MATCH” string in table. If found, the corresponding value will be stored

in the target Data Array.

 If a “PATTERN DID NOT MATCH” string is not defined, a default value of –1 will be stored

and an SDO will be generated prompting the user to add a “PATTERN DID NOT MATCH”

record to the table.

In the example below, a combination of 4 values in a “Tokens” Data Array shows the status. The

FieldServer can perform “match-pattern” arithmetic and store the status as a single number 0 thru 8.

Data_Arrays

Data_Array_Name , Data_Format , Data_Array_Length

Tokens , Byte , 4

Status , Int , 1

Consider the following combinations of 4 values, here * is a wildcard. The token starting with the wildcard

will not be compared.

Data Array Values Status Description Status Value for Device

37 46 46 20 Good 0

36 * * 20 Channel disabled 1

* 45 * 20 Fault indicated2 2

* 43 * 20 Fault, aeration indicated 3

* * 45 20 Spacing indicator 4

* * 43 20 Zeromatc channel fault 5

* * 42 20 Empty Pipe 6

* * 37 20 hi/lo flowrate 7

00 00 00 00 comm. Error 8

 None of the above 111

 FieldServer Configuration Manual

Page 33 of 92

5.2.9.1 “Table of Patterns” Configuration example

Section Title

Offset_Table

Column Title Function Legal Values

Offset_Table_Name Provide name for Offset Table Up to 32 alphanumeric characters

Table_Index_Value
A unique value that will be stored if the

pattern matches
1-16

Table_String

The pattern:

“–“ is the delimiter which separates tokens

in a pattern and should not be considered

as part of pattern.

“*” means ignore this token

1-10, 000

Length*

The number of Data Array items to be

used to build the pattern to compare with

the Table string

Number of tokens in table string

should be the same as length under

Moves, 1.

Table_User_Value

Table user value defined by the applicable

driver protocol eg. for Bacnet

0 = normal

1 = alarm

2 = fault

0-65,535

Offset_Table

Offset_Table_Name , Table_String , Table_Index_Value ,Table_User_Value , Length

SPR4052 , 37-46-46-20 , 0 ,10 , 4

SPR4052 , 36-*-*-20 , 1 ,20 , 4

SPR4052 , *-45-*-20 , 2 ,30 , 4

SPR4052 , *-43-*-20 , 3 ,40 , 4

SPR4052 , *-*-45-20 , 4 ,50 , 4

SPR4052 , *-*-43-20 , 5 ,60 , 4

SPR4052 , *-*-42-20 , 6 ,70 , 4

SPR4052 , *-*-37-20 , 7 ,80 , 4

SPR4052 , 00-00-00-00 , 8 ,90 , 4

SPR4052 ,PATTERN DID NOT

MATCH

, 111 ,100 , 1

5.2.6.1. Moves Definition

Moves

Source_Data_Array , Source_Offset , Target_Data_Array , Target_Offset , Length , Function , Offset_Table_Name

Tokens , 0 , Status , 0 , 4 , Match-pattern , SPR4052

The “Status” Data Array will contain only the numbers 0 thru 8 or 111 depending upon the combinations

existing in the “Tokens” Data Array

 FieldServer Configuration Manual

Page 34 of 92

5.2.9.2 Table String Composition

Source Data Array

Values

Source Data Array

Format
Build Pattern4 Description

55 15 0 255 Byte 37-0F-00-FF Two Hex Characters

555 15 0 -2550 INT, UINT16, UINT32 555-15-0--25505 Just as decimal values

55.12 15.123 0 255 FLOAT
55.12-15.12-0.00-

255.00

Requires period and two decimal

places.

1 1 0 1 Bit 1-1-0-1 Binary pattern

5.2.10 Conditional Moves

A move can be defined so that it is executed conditionally based on the status of a bit in a predefined

Data Array location (conditional Data Array).

A useful feature of the conditional move is that data is able to be moved to the same target offset as

defined by another conditional move. The user is thus able to move data from different sources into the

same target based on the status of a bit in a Data Array.

The conditional bit can be placed in any Data Array and can also be in the source or destination Data

Array. It simply needs to be declared in the Move instruction parameters.

A conditional move needs to be scheduled by the kernel for processing and therefore requires a task

name and scan interval. The Parameters for a Conditional move are as follows:

Conditional Move Parameters

Source_Data_Array The name of the Data Array from which data is to be copied.

Source_Offset The offset within the Data Array from which data is to be copied

Target_Data_Array The name of the Data Array to which data is to be copied

Target_Offset

The offset within the Data Array to which data is to be copied. The offset can

be either a hardcoded value or can be obtained from another data array. See

Moves example 5.1.1.1 for more information.

Length
The number of consecutive source Data Array values to be moved to

consecutive target locations, starting at the respective offsets

Conditional_Data_Array
The name of a Data Array to be used for conditional moves. See Section

5.1.1.3 for more information.

Conditional_Offset

The offset into the Conditional_Data_Array where the conditional bits for the

move are defined. The value found at this specified location must be non-

zero for the move to be executed. If the value is zero, the move is inhibited.

Task_Name
If a task name is specified, the move operation becomes a continuous task on

the FieldServer that is executed at the scan interval specified.

Scan_Interval
The time interval at which the task will be repeated. A task name must be

specified if a scan interval is specified.

4
 You could insert “*” in place of any token if the value for that token is unimportant.

5
 2550 is negative; -- two negative signs, one is considered as delimiter

 FieldServer Configuration Manual

Page 35 of 92

5.2.10.1 Conditional Moves: Example 1

In this example, the user needs to move the data from one of two source locations based on the status of bit 1 or 2 of the conditional Data Array.

If bit 1 is high, then the data from Source_1 will be moved. If bit 2 is high, the Data from Source_2 will be moved. The kernel checks the condition

of the bits every second for a change in status.

Moves

Source_Data_Array , Source_Offset , Target_Data_Array , Target_Offset , Length , Conditional_Data_Array , Conditional_Offset , Task_Name , Scan_Interval

Source_1 , 0 , Target , 00 , 1 , Status , 1 , a , 1

Source_2 , 0 , Target , 01 , 1 , Status , 2 , b , 1

5.2.10.2 Conditional MovesExample 2

In this example, the data from DA_GV_01 will be moved to Gas_Snapshot only when DA_GP_PW_01 or DA_GL_PA_01 is updated on offset 192.

In this example all of the Data Arrays are bits, but analog data types will work as well.

Moves

Source_Data_Array , Source_Offset , Target_Data_Array , Target_Offset , Length , Conditional_Data_Array , Conditional_Offset , Task_Name , Scan_Interval

DA_GV_01 , 192 , Gas_Snapshot , 00 , 1 , DA_GL_PW_01 , 192 , a , 1

DA_GV_01 , 192 , Gas_Snapshot , 01 , 1 , DA_GL_PA_01 , 192 , b , 1

The Conditional Move that executed last becomes the Responsible Move by which data validity is determined, and through which write operations

are routed. If none of the Conditional Moves targeting a specific location have executed, the Conditional Move defined last acts as the

Responsible Move.

 FieldServer Configuration Manual

Page 36 of 92

5.3 Mathematical functions

Mathematical functions implement subset of math functions of Data Array values. Some single-operator

functions can be incorporated into Moves, but Multi-operator/operand functions must be defined in the

Math block. The length of the move defines the number of input operands.

The following table shows the Mathematics functions and their text representation:

Operator (csv

text)

Mathematics

Operator

Notes

ADD +

All operands are combined and a single output is produced for

n(=length) of input values

SUB -

MULT *

DIV /

GTE >= Each move works as follows:

value_of_(DA_SDA1 offset0) MathOperator value_of_(DA_SDA1

offset1) Result is stored in DA_TDA offset.

e.g. (for GTE)

value1 = DA_SDA1[0] ; value2 = DA_SDA1[1]

if value1 GTE value2, 1 will be stored at DA_TDA[10] else 0 will be

stored.

The length parameter is always 1 as only one operation can be

performed per move

LTE <=

GT >

LT <

EQ =

NE !=

SQ Square n outputs are produced for n (=length) values stored in sequence

starting at the Target Offset. SQRT Square root

PER %
For 2 values A and B.result of A PER B will be (A/B)*100 which will

be stored in the target Data Array..

5.3.1 Math Function as a Moves Function

Example

Moves

Function , Source_Data_Array , Source_Offset , Target_Data_Array , Target_Offset , Length

ADD , DA_SDA1 , 0 , DA_TDA , 0 , 10

SUB , DA_SDA1 , 0 , DA_TDA , 10 , 10

MULT , DA_SDA1 , 0 , DA_TDA , 20 , 4

DIV , DA_SDA1 , 10 , DA_TDA , 30 , 3

SQ , DA_SDA1 , 0 , DA_TDA , 100 , 4

SQRT , DA_SDA1 , 10 , DA_TDA , 140 , 2

GTE , DA_SDA1 , 0 , DA_TDA , 10 , 1

LTE , DA_SDA1 , 0 , DA_TDA , 11 , 1

GT , DA_SDA1 , 0 , DA_TDA , 12 , 1

LT , DA_SDA1 , 0 , DA_TDA , 13 , 1

PER , DA_SDA1 , 0 , DA_TDA , 14 , 1

EQ , DA_SDA1 , 0 , DA_TDA , 15 , 1

NE , DA_SDA1 , 0 , DA_TDA , 16 , 1

 FieldServer Configuration Manual

Page 37 of 92

5.3.2 Standalone Math

The Math definition allows up to four source data locations, up to four Math operations, and one output data location. Operands are kept on a

“stack” and are operated on in the sequence in which they have been defined. Math functions consume 1 or 2 stack variables as inputs (2 for

ADD, SUB, MULT, DIV, GTE, LTE, GT, LT, NE, EQ and 1 for SQRT, SQ) and leave the output on the stack, ready to be used by the next defined

Math operation. The output of each operation becomes an input to the next operation, along with the next defined operand.

Note: Output of GTE, LTE, GT, LT, EQ, NE, AND, OR, and NOT is binary either 1 or 0.

AND, OR, and NOT work the same way as Logic.

The following fields are specific to the Math & Logic definition:

DAI1...DAI4 : input Data Arrays 1 through 4

DOI1...DOI4

:
input Data Array offsets 1 through 4

DAO: output Data Array

DOO: output Data Array offset

FN1...FN4:
logic functions 1....4 (permitted values: ADD, SUB, MULT, DIV, GTE, LTE, GT, LT, EQ, NE, SQRT, SQ, AND , OR, NOT, - (no

setting))

5.3.3 Math Usage Example:

Math

Task_Name , Scan_Interval , DAI1 , DOI1 , DAI2 , DOI2 , DAI3 , DOI3 , DAI4 , DOI4 , FN1 , FN2 , FN3 , FN4 , DAO , DOO

Task_105 , 1 , DA_1 , 0 , DA_2 , 1 , DA_3 , 2 , DA_4 , 3 , ADD , SUB , MULT , SQRT , DA_5 , 21

This definition will result in the following operation:

DA_5[21] = Sqrt(((DA_1[0] + DA_2[1]) - DA_3[2]) * DA_4[3])

Math

Task_Name , Scan_Interval , DAI1 , DOI1 , DAI2 , DOI2 , DAI3 , DOI3 , DAI4 , DOI4 , FN1 , FN2 , FN3 , FN4 , DAO , DOO

Task_105, 1, DA_1, 0, DA_2, 1, DA_3, 2, DA_4, 3, Div, Sub, Mult, Sq, DA_5, 21

This definition will result in the following operation:

DA_5[21] = (((DA_1[0] / DA_2[1]) - DA_3[2]) * DA_4[3])
2

 FieldServer Configuration Manual

Page 38 of 92

Math

Task_Name , Scan_Interval , DAI1 , DOI1 , DAI2 , DOI2 , FN1 , DAO , DOO

Task_105 , 1 , DA_1 , 0 , DA_2 , 0 , Per , DA_5 , 0

This definition will result in the following operation:

DA_5[0] = DA_1[0] Per(%) DA_2[0]

Or

DA_5[0] = (DA_1[0] /DA_2[0]) * 100

i.e. if DA_1[0] = 10 and DA_2[0] = 20 then this means Da_1[0] is 50 % of Da_2[0] so DA_5[0] will contain

50.

5.3.4 Optional Parameters

Parameter Description
Legal

Values

Length*

Specifies the number of consecutive source Data Array values from all

defined source Data Arrays (egg DAI1 …DAI4) to be operated on and to

store a result at consecutive target locations, starting at the respective

offsets.

Any

positive

integer

Task_Name*
If a task name is specified, the move operation becomes a repetitive task

on the FieldServer and the data will be updated on a regular basis.
Any string

Scan_Interval*
Specifies the time interval at which the task will be repeated. A task

name must be specified if a scan interval is specified.
>0.1s, 2s

Truncate

Result*

This function causes all intermediate and final results to be stored after

truncating. Refer to the example in Section 5.3.4.1
Yes, -

5.3.4.1 Truncate Result Example

Math

DAI1 , DAI2 , DAI3 , FN1 , FN2 , DAO , DOI1 , DOI2 , DOI3 , DOO , Length , Truncate_Results

DA_X , DA_17 , DA_17 , DIV , MULT , DA_Z , 0 , 0 , 0 , 0 , 1 , Yes

If DA_17[0] = 17 and DA_X[0]=100=x

DA_Z[0]=(x/17)*17 will be = 85 NOT 100

 FieldServer Configuration Manual

Page 39 of 92

5.4 Logic

Logic functions implement Boolean functions (True/False statements) of bit Data Array values. Single-operator logic can be incorporated into

Moves, but Multi-operator/operand logic must be defined in the Logic block

5.4.1 Logic as a Moves Function

The length of the Move defines the number of input operands. For binary operators [AND, OR] all operands are combined and a single output is

produced. For the unary operator [NOT] an output is produced for every input, and is stored in sequence starting at the output location.

5.4.2 Standalone Logic

The logic definition allows up to four source data locations, up to four logic operations, and one output data location. Operands are kept on a

“stack” and are operated on in the sequence in which they have been defined. Logic functions consume 1 or 2 stack variables as inputs (2 for

AND, OR, and 1 for NOT) and leave the output on the stack, ready to be used by the next defined logic operation. The output of each operation

becomes an input to the next operation, along with the next defined operand.

Fields Specific to the Logic Definition

DAI1...DAI4 : input Data Arrays 1 through 4

DOI1...DOI4 : input Data Array offsets 1 through 4

DAO: output Data Array

DOO: output Data Array offset

FN1...FN4: logic functions 1....4 (permitted values: And, Or, Not, - (no setting))

5.4.2.1 Logic Usage Example:

Logic

Task_Name , Scan_Interval , DAI1 , DOI1 , DAI2 , DOI2 , DAI3 , DOI3 , DAI4 , DOI4 , FN1 , FN2 , FN3 , FN4 , DAO , DOO

Task_105 , 1 , DA_1 , 0 , DA_2 , 1 , DA_3 , 2 , DA_4 , 3 , AND , OR , AND , NOT , DA_5 , 21

This definition will result in the following operation:

DA_5[21] = ~ (((DA_1[0] & DA_2[1]) | DA_3[2]) & DA_4[3])

 FieldServer Configuration Manual

Page 40 of 92

5.5 Scaling

When writing a configuration file for the FieldServer, it may be required for the FieldServer to scale data

before passing it on to the receiving devices. This can be accomplished in three different places in the

FieldServer configuration:

 In the Client Side Map Descriptor section by adding scaling parameters.

 In the Server Side Map Descriptor section by adding scaling parameters

 In the Moves section by adding Scaling Parameters.

In all cases, four keywords are added to the section that needs to be populated with the necessary

scaling parameters. The FieldServer makes use of the four scaling parameters to calculate a slope and

offset for scaling all incoming values. It is possible therefore, to do any linear value conversion that may

be required.

5.5.1 Map Descriptor Scaling

For the first two cases where keywords are added to the map descriptors, the four keywords to be used

along with their valid ranges are as follows:

Column Title Function Legal Values

Data_Array_Low_Scale Scaling zero in Data Array Any signed 32-bit floating point value. 0

Data_Array_High_Scale Scaling max in Data Array Any signed 32-bit floating point value. 100

Node_Low_Scale Scaling zero in Connected Node Any signed 32-bit floating point value. 0

Node_High_Scale Scaling max in Connected Node Any signed 32-bit floating point value. 100

5.5.1.1 Scaling function example - Converting Celsius to Fahrenheit:

The following portion of a Map Descriptor example shows the settings required for a Client Map

Descriptor to take a Fahrenheit temperature reading and store it into the Data Array as a Celsius value.

Note that these parameters do NOT define the data range, thus a temperature of 500
o
 F will still be

properly converted.

Data_Array_Low_Scale , Data_Array_High_Scale , Node_Low_Scale , Node_High_Scale

0 , 100 , 32 , 212

 FieldServer Configuration Manual

Page 41 of 92

5.5.2 Scaling using Moves

It is also possible to scale values while moving data between Data Arrays. Doing the scaling this way often provides more visibility as it is then

possible to view both scaled and unscaled data in the Data Arrays. The keywords for scaling in the moves section are different from the Map

Descriptor keywords in order to avoid confusion, but function in much the same way. The keywords are:

Column Title Function Legal Values

Source_Low_Scale Scaling zero in Source Data Array Any signed 32-bit floating point value. 0

Source_High_Scale Scaling max in Source Data Array Any signed 32-bit floating point value. 100

Target_Low_Scale Scaling zero in Destination Data Array Any signed 32-bit floating point value. 0

Target_High_Scale Scaling max in Destination Data Array Any signed 32-bit floating point value. 100

5.5.2.1 Moves Scaling function example – Multiplying values by 10:

The following move example shows 5 values being moved from one Data Array to another (DA_Unscaled=>DA_Scaled). During the move, the

values are multiplied by 10, because the scaling parameters state that “A value from 0 to 10 in the Source is being represented as a value from 0

to 100 in the Target”. Again, these do not represent limits, and so a value of 500 would also be scaled properly and end up as 5000 in the Target

Data Array Offset.

Moves

Function , Source_Data_Array , Source_Offset , Target_Data_Array , Target_Offset , Length , Source_Low_Scale , Source_High_Scale , Target_Low_Scale , Target_High_Scale

Scale , DA_Unscaled , 00 , DA_Scaled , 00 , 5 , 00 , 10 , 00 , 100

 FieldServer Configuration Manual

Page 42 of 92

5.6 Preloading Data Arrays with Init ial Values

5.6.1 Introduction

Preloads provide a technique which allows parts of one or more Data Arrays to be initialized to specified

values. The Preloads are defined in a configuration file and loaded once when the configuration file is

loaded as the FieldServer starts.

It is also possible to use the FieldServer scripting language to have the FieldServer load a configuration

file and then poke values into the Data Arrays. For more information on this technique call FST Tech

Support.

5.6.2 Parameters used to define Preloads

Section Title

Preloads

Column Title Function Legal Values

Data_Array_Name

Name of the Data Array to be preloaded. The

Data Array must exist or be defined in the

configuration file and its definition must precede

the preload that references it. If not, System

Error Message 10117 will be printed.

Up to 15 alphanumeric

characters

One of the following:

Data_Array_Offset

Preload_Data_Index

Location

Data_Array_Location

Data_Array_Index

Buffer_Offset

The location in the Data Array to be preloaded.

0 to maximum where

maximum is the length of the

Data Array being referenced

less 1.

e.g. If the Data Array length is

200, the maximum value of this

parameter is 199.

Length Not used. A length of 1 is always applied.

One of the following:

Preload_Data_Value

Preload_Value

Specify the value to be used to initialize the

Data Array Location. If the Data Array specified

is a Data Array of Complex Data Objects (CDO)

then the kernel stores the value to the objects

‘Present_Value’ field. The value is assumed to

be a floating point value and the format

specified by the parameter below is ignored.

Any number – may be

specified with a fractional part,

e.g.0, 1, 1.01,-1, 123.456

A String
6
.

One of the following:

Preload_Data_Format*

Data_Array_Format*

Data_Format*

This parameter tells the kernel how to interpret

and apply the value specified using the

“Preload_Data_Value” parameter. (not to be

confused with the format of the Data Array).

Float, Bit, Byte, Uint16, Uint32,

Int16, Int32, String
7
, -

Preload_Obj_Name*

If this parameter is specified then the kernel

takes the value specified by the parameter and

uses it to assign a ‘Name’ to the Data Array

object if the Data Array is an array of Complex

Data Objects (CDO).

A maximum of 39 characters.

Leading/trailing spaces and

tabs are ignored. Commas not

supported; support for other

special characters unknown, -

6
 Strings: This has been tested with strings up to 320 characters long. Leading and trailing spaces and tabs are ignored, commas

cannot be used and support for other special characters is unknown. Format must be specified as ‘STRING’. The case of the
characters is preserved.
7
 Must be specified as String if Preload_Value is String.

 FieldServer Configuration Manual

Page 43 of 92

5.6.3 Limitations and Operational Considerations

 Each Data Array location to be preloaded requires its own preload line in the configuration

file.

 The value specified must be compatible with the format of the Data Array – e.g. Integer

arrays cannot be preloaded with numbers that contain fractions.

 Preloads cause Data Array updates. The FieldServer kernel does not differentiate between

an update on a Data Array performed as a preload or as the result of a store after processing

a protocol message. If the Data Array point is associated with a Map Descriptor using the

Write-on-update (Wrbx) function or an Rdbx function set to “Write through”, the preload will

trigger the write. Refer to Section 4.3.3 for more information.

 The ‘Preload_Data_Format’ must not be confused with the format of the Data Array being

preloaded. The ‘Preload_Data_Format’ tells the kernel how to interpret the number specified

by the ‘Preload_Data_Value’ parameter. Example: If ‘Preload_Data_Format’ is set to Byte

then the preload value is cast to a byte* before being stored in the Data Array.

5.6.4 Example 1 – Load a Value

Preloads

Data_Array_Name , Preload_Data_Value , Preload_Data_Format , Preload_Data_Index

DA_SDA1 , 11 , - , 0

Note: If the format of the Target Data Array is “Bit”, then the value 11 will not be stored as Bit arrays can

only store 1 and 0.

5.6.5 Example 2 – Load a Value – Effect of Target Data Array Format

Data_Arrays

Data_Array_Name , Data_Format , Data_Array_Length

DA_1 , FLOAT , 20

DA_2 , BYTE , 20

Preloads

Data_Array_Name , Preload_Data_Value , Preload_Data_Format , Preload_Data_Index

DA_1 , 257 , FLOAT , 0

DA_2 , 257 , FLOAT , 0

The Data Array named

‘DA_SDA1’ must have been

previously defined in the

configuration file or else there will

be a configuration error.

Format specified with a dash, therefore the

value 11 will be type cast to an unsigned 32-

bit integer. Omitting the value altogether

would have the same effect.

The value 257 is cast to a

floating point number.

The value 257 will be stored

Only numbers in the range 0-255

inclusive can be stored in a BYTE array.

The kernel chops off the part of the

number that exceeds the byte. Therefore

the value stored will be 1.

 FieldServer Configuration Manual

Page 44 of 92

5.6.6 Example 3 – Load a Value – Negative Numbers

Only SINT16, SINT32 and FLOAT formatted Data Arrays can store negative numbers. The

Preload_Data_Format must also be specified with one of those formats. Preload_Data_Format must be

cast so that the sign is preserved and then stored in a Data Array whose format can support negative

numbers.

Data_Arrays

Data_Array_Name , Data_Format , Data_Array_Length

DA_1 , FLOAT , 20

Preloads

Data_Array_Name , Preload_Data_Value , Preload_Data_Format , Preload_Data_Index

DA_1 , -1 , FLOAT , 0

5.6.7 Example 4 – Load a Value – Floating Point Numbers

Only FLOAT formatted Data Arrays can store floating point numbers. The Preload_Data_Format must

also be specified with ‘FLOAT’. In this example the value 123.456 is stored to the 11th element (index 10)

of the Data Array called ‘DA_1’

Data_Arrays

Data_Array_Name Data_Format Data_Array_Length

DA_1 FLOAT 20

Preloads

Data_Array_Name, Preload_Data_Value, Preload_Data_Format, Preload_Data_Index

DA_1, 123.456, FLOAT, 10

5.6.8 Example 5 – Load a Value – Strings (1)

Strings can be stored in Data Arrays of any format. If the Data Array format is UINT32 or SINT32 then

the kernel will store two characters from the string in each Data Array element.

Data_Arrays

Data_Array_Name, , Data_Format, , Data_Array_Length

DA_1, , FLOAT, , 20

Preloads

Data_Array_Name , Preload_Data_Value , Preload_Data_Format , Preload_Data_Index

DA_1 , Revision 123aA , STRING , 1

The string ‘Revision 123aA’ is stored starting in the 2nd element (index 1) of the Data Array named DA_1.

 FieldServer Configuration Manual

Page 45 of 92

5.6.9 Example 6 – Load a Value – Strings (2)

Data_Arrays

Data_Array_Name , Data_Format , Data_Array_Length

DA_1 , Uint32 , 20

Preloads

Data_Array_Name , Preload_Data_Value , Preload_Data_Format , Preload_Data_Index

DA_1 , ABCD , String , 0

The value found in the 1st element of the Data Array will be 0x4241 (Ascii value of A) and the value found

in the 2nd element will be 0x4443 (Ascii value of B). A UINT32 Data Array can store 2 characters per

element.

5.6.10 Example 7 – Load a value - Casting

Data_Arrays

Data_Array_Name , Data_Format , Data_Array_Length

DA_1 , FLOAT , 20

DA_2 , FLOAT , 20

Preloads

Data_Array_Name , Preload_Data_Value , Preload_Data_Format , Preload_Data_Index

DA_1 , 257 , FLOAT , 0

DA_2 , 257 , BYTE , 0

5.6.11 Example 8 – Load an Object name

In the example below a Complex Data Object for Analog Outputs is created with 20 objects. The preload

sets the name of the 1st object (index 0) to the string ‘ABCDEFGHIJKLMNOPQRSTUV’ as well as setting

the value of the Present Value field in the object to zero.

Data_Arrays

Data_Array_Name , Data_Format , Data_Array_Length

DA_1 , AO , 20

Preloads

Data_Array_Name , Preload_Data_Value , Preload_Data_Format , Preload_Data_Index

DA_1 , ABCDEFGHIJKLMNOPQRSTUV , String , 0

The value 257 will be cast to a byte before it is stored. . Only numbers in the range

0-255 inclusive can be stored in a BYTE. The kernel chops off the part of the number

that exceeds the byte and then stores this truncated value in the FLOAT array. Thus

the value 257 will be stored in the 1st element of DA_1 and the value 1 in the 1st

element of DA_2.

Both Data Arrays are

formatted as FLOAT and are

therefore capable of storing

the value 257.

 FieldServer Configuration Manual

Page 46 of 92

5.7 Loading Data_Array Values from the FieldServer’s Non-Volatile Memory

If the value in the Data Array changes, the FieldServer can be configured to save this changed value to

its Non-Volatile Memory up to 3 times a minute using the DA_Function_After_Store Parameter. On

startup the value will be loaded from the Non-Volatile Memory into the Data Array. This value will only be

stored 3 times a minute, so if more writes than that are done, the values will be stored in the Data Array,

but not to the Non-Volatile Memory. Storing this value has performance impacts, so care must be taken

to store this value only if needed.

There is a limit to the number of values that can be stored from a single data array:

UINT32: 9

FLOAT: 9

SINT32: 9

UINT16: 19

SINT16: 19

BYTE: 39

Example

Data_Arrays

Data_Array_Name , Data_Format , Data_Array_Length , DA_Function_After_Store

DA_NV_UINT32 , UINT32 , 1 , Non_Volatile

 FieldServer Configuration Manual

Page 47 of 92

6 NODE MANAGEMENT

6.1 Data Array Functions

6.1.1 Node Status Function

The Node Status Function is a Data Array function which provides the communication status between the

FieldServer and the actively mapped Nodes. The online status of a particular Node is indicated in the

Node Status Data Array. If the communication status is good then the Node Status is set to 1. The

communication status goes bad if it does not receive a response to a poll. The offset number in the Data

Array is equivalent to the station address of the Node. Refer also to Section 9, Appendix C.2 and

Appendix C.4.5.

Example:

If seven Nodes are connected to the FieldServer, when the Node with ID 5 is online, the sixth bit of the

Data Array configured for the function Node Status will be set to 1. (zero bit is unused)

Typical Data Array Parameters are:

Section Title

Data_Arrays

Column Title Function Legal Values

Data_Array_Name Provide name for Data Array Up to 15 alphanumeric characters

Data_Format Provides Data format Bit

Data_Array_Length Number of Data Objects 1 to 256

Data_Array_Function Special function for Data Array Node_Status

Data Arrays

Data_Array_Name , Data_Format , Data_Array_Length , Data_Array_Function

DA_Comm_OK , Bit , 256 , Node_Status

 FieldServer Configuration Manual

Page 48 of 92

6.1.2 Alias_Node_ID

If you have two Nodes with the same Node_ID or your Node_ID’s are longer than 255, the Node Status Function as described above will not work

correctly. In such cases, each Node can be assigned an Alias_Node_ID which can be used to provide Node Status.

Typical Data Array Parameters are:

Section Title

Data_Arrays

Column Title Function Legal Values

Data_Array_Name Provide name for Data Array Up to 15 alphanumeric characters

Data_Format Provides data format BIT

Data_Array_Length Number of Data Objects Minimum of 256 bits

Data_Array_Function* Special function for the Data Array Alias_Node_Status, None

6.1.3 Alias_Node_ID - Example:

A Data Array has been defined to report the status of the Nodes in the configuration using the Alias_Node_ID. Each Node that has been allocated

an Alias_Node_ID will have the corresponding bit in the Data Array set/unset based on the Node’s status.

Data Arrays

Data_Array_Name , Data_Format , Data_Array_Length , Data_Array_Function

Comm_Bits , Bit , 900 , Alias_Node_Status

Nodes

Node_Name , Node_ID , Alias_Node_ID , Protocol , Port , Retry_Interval , Recovery_Interval

N1 , 1 , 3 , Modbus_RTU , P1 , 0.1s , 0.1s

N3 , 1 , 300 , Modbus_RTU , P2 , 0.1s , 0.1s

Alias_Node_Status differs from Node_Status as follows:

 If a Node does not have an Alias_Node_ID defined then that Node’s status will not be reflected in the Data Array.

 The Alias_Node_ID’s can be any positive whole number including zero up to the limit of the maximum Data Array size.

 FieldServer Configuration Manual

Page 49 of 92

6.1.4 Node_Online_Bits

This Data Array function allows the user to specify Nodes and Subnets for which communication status is

required.

Example:

Typical Data Array Parameters are:

Section Title

Data_Arrays

Column Title Function Legal Values

Data_Array_Name Provide name for Data Array

Up to 15

alphanumeric

characters

Data_Format Provides Data format Bit

Data_Array_Length
If specified, this allows the user to configure the number

subsequent nodes after the Node_ID.
1 to 256

Data_Array_Function Special function for Data Array
Node_Online_Bits,

None

Node_ID*

If configured, the Node address of the specified Node

will be at offset 0. The length parameter will be used to

determine the number of Node addresses starting from

the Node_ID. If not declared or specified as -, Node_ID

0 will be at offset 0.

1 to 256, -

Subnet_ID*

This allows the subnet of the Node to be declared. If

subnets are not used, this parameter can be excluded.

If specified as -, the subnet is ignored and all Nodes will

be found.

0 to 256, -

Data_Arrays

Data_Array_Name , Data_Format , Data_Array_Length , Data_Array_Function , Node_ID , Subnet_ID

Node_on_Net , Bit , 30 , Node_Online_Bits , 1 , -

Node_on_Net1 , Bit , 30 , Node_Online_Bits , 1 , 1

Node_on_Net2 , Bit , 30 , Node_Online_Bits , 10 , 2

Node_on_Net3 , Bit , 30 , Node_Online_Bits , 10 , 3

Node_on_Net4 , Bit , 30 , Node_Online_Bits , 10 , 4

Node_on_Net5 , Bit , 30 , Node_Online_Bits , 10 , 5

 FieldServer Configuration Manual

Page 50 of 92

6.2 Connection Parameters

6.2.1 Node_Retire_Delay

When a FieldServer is started up, it polls all Nodes. Nodes that respond within the specified timeout

period (seconds) will be marked online. Nodes failing to respond within the timeout period will be

repeatedly polled for the length of time specified in the Node_Retire_Delay parameter (seconds). Once

this period has expired, there will be one further poll and if the Node does not respond within the specified

timeout period, it will be retired. The FieldServer must be restarted for retired or new Nodes to be

identified. This is an optional parameter. If not set, the FiledServer will continue retrying indefinitely.

This would be useful in a situation where there are plans for expansion and some Nodes have not yet

been installed and so would never respond.

Example

Connections

Port , Timeout , Node_Retire_Delay

P1 , 0.2 , 10

P2 , 0.2 , 10

P3 , 0.2 , 10

Nodes

Node_Name , Node_ID , Protocol , Port , Retry_Interval , Recovery_Interval

Dev1 , 1 , Modbus_RTU , P1 , 0 , 0

Dev2 , 2 , Modbus_RTU , P2 , 0 , 0

Dev3 , 3 , Modbus_RTU , P3 , 0 , 0

6.3 Node Parameters

6.3.1 Node Offline Action .

This function allows the user to clear the values from a Data Array if the associated active connection to a

Passive Node is lost. By default, the last values obtained from the Passive Node will remain in the Data

Arrays if the connection is lost. This functionality has been implemented for the following protocols:

BACnet IP, BACnet MSTP, Lonworks, and Metasys N2. A configuration example follows:

Nodes

Node_Name , Node_ID , Protocol , Port , Address_Type , Node_Offline_Action

PLC_12 , 12 , Modbus_RTU , P1 , ADU , Clear_data_Array

PLC_13 , 13 , Modbus_RTU , P1 , PDU , No_Action

 FieldServer Configuration Manual

Page 51 of 92

6.3.2 Node Inactivity Timeout

This parameter can be used with Passive Client drivers to let the FieldServer mark the node offline,

should no messages be received in the set time period. Normal node recovery will take place and the

node will go online once messages are received again. Sometimes it might be required to keep the node

always online if for example the FieldServer is connected to a printer port of the device e.g. for some Fire

Panel drivers, and the device could possibly only generate messages at event occurrence that may not

happen for weeks or months. In such cases the parameter can be omitted or set to zero.

Nodes

Node_Name , Node_ID , Protocol , Port , Node_Inactivity_Timeout

PLC_12 , 12 , FCI_E3 , P1 , 0

PLC_13 , 13 , FCI_E3 , P1 , 15

 Node will be

marked offline if

no messages

received for 15

seconds

Function Disabled:

Node will stay

online

 FieldServer Configuration Manual

Page 52 of 92

7 DYNAMIC PARAMETERS

Most FieldServer parameters are specified in a configuration file and are fixed. A growing number,

however, may be changed dynamically using values found in Data Arrays. We call these Dynamic

Parameters.

The following parameters can be dynamically configured.

Parameter Section Title Notes

Node_ID Nodes
This parameter typically describes the Server device address

of a communications session.

System_Node_ID FieldServer

Many drivers use this parameter and the ‘meaning’ of the

parameter is dependent on its context.

e.g. BACnet: Used as the MAC address

 DNP3: Used as the local station ID

BACnet_MAC_Address FieldServer

Similar to changing the System_Node_ID but specifically

designed for use on ProtoCessors because it also writes the

new ID down to the PIC where BACnet is implemented.

Baud Connections
The Baud rate on a connection can be changed dynamically

from the value in a data array.

7.1.1 Dynamic allocation of Node_ID or Station number

Almost all FieldServer configurations consist of a Server and Client side. The Client side of the

FieldServer reads data from the Server device. The Server side of the FieldServer then serves this data

to remote Client Nodes using a different protocol. The configuration of the Server Side of the FieldServer

is done in a configuration file and as such is fixed. This is illustrated in the diagram below.

7.1.1.1 Diagram 1: Static Server Side Node_ID

It is possible to control the Node_ID of the Server Node by including a special task in the Configuration

file that watches the value of a single element of a Data Array. When the value is updated then this task

takes the value and replaces the Node_ID of a designated Node so that its new Node_ID is the value

found in the Data Array. This is illustrated in the following diagram.

This new Node_ID can be saved to the Non-Volatile Memory so that it isn’t lost on a power cycle. When

the device starts up again, the stored value will be used.

Remote Client

Remote Server Device

Client Side

Server Side

Browse for nodes/devices and then browse for points.

Polls for Data

Finds node/device as configured in config.csv (static)

Figure 10 – Static Server Side Node_ID

 FieldServer Configuration Manual

Page 53 of 92

7.1.1.2 Remote Client finds a Node with Node_ID dependent on the data read
from the remote Server device.

Remote Server
Device

Client Side

Server Side

Polls for Data

Response data contains
Server Side Node ID.

Response unpacked and
stored in Data Array

A specially configured task
uses the data to change the
Node_ID of the server node
in the FIeldServer.

Remote Client

Remote Server
Device

Client Side

Server Side

Browse for nodes/devices
and then browse for points.

Finds Node_ID as updated
with data from the remote
Server device

Polls for Data

Server Side Node initially
takes Node_ID from
configuration file.

Figure 11 – Remote Client finds a Node with Node_ID dependent on the data read from the remote
Server device

 FieldServer Configuration Manual

Page 54 of 92

7.1.2 Map Descriptor Parameters specific to Dynamic Parameters

Section Title

Map Descriptors

Column Title Function Legal Values

Function
Function of Client Map

Descriptor

Change_Node_ID

Change_System_Node_ID

Change_System_MAC_Addr

Descriptor_Name

Name of the Object that will be

affected by the Dynamic

Parameter function.

One of the Node names specified as

described in Appendix C.4.5, or the

Bridge Title of the FieldServer specified

as described in Appendix C.2. Refer to

examples below for more information.

Data_Array_Name
Name of Data Array from which

the parameter value is taken.

One of the Data_Array_Names specified

as described under Appendix C.4.2

Data_Array_Offset*

Offset into the Data Array from

which the parameter value is

taken.

0 to (Data_Array_Length -1) as defined

in Appendix C.4.2

Low_Limit* These parameters can be used

to define a range of offsets that

are affected by this command.

Positive integer, 0, -
High_Limit*

Save*

The save value enables or

disables making the change

permanent. If yes, the value

will be stored and used next

time on start-up as the

Node_ID. If no, the change will

only remain until the next power

cycle, at which time the value in

the configuration file will be

used.

Yes, No

Load_csv_with_parameter

7.1.3 Examples

7.1.3.1 Example 1- Dynamic Allocation of Node ID

The parameter value is taken from the specified Data Array and Data Array Offset, and is used to modify

the parameter specified under Function of the object (e.g. Node) specified under Descriptor_Name,

subject to the limits set by Low_Limit and High_Limit.

In this example, when the value of Node_Array offset 160 is updated (presumably by a driver) then the

FieldServer will check the value is in the range 0 to 255 inclusive. If it is, it will look for the Node called

‘PLC_1’. If found, the Node_ID will be changed to the new value.

Dynamic_Parameters

Function , Descriptor_Name , Data_Array_Name , Data_Array_Offset , Low_Limit , High_Limit , Save

Change_Node_ID , PLC_1 , Node_Array , 160 , 0 , 255 , Yes

 FieldServer Configuration Manual

Page 55 of 92

7.1.3.2 Example 2 – Dynamic Allocation of System Node ID

The FieldServer watches DA_NODE_ID_NEW offset 0. When the data is updated, the FieldServer looks

for a Node named ‘NODE_1’. If a valid one is found then the NODE_ID of that Node will be changed and

the FieldServer will print a message reporting the change.

Dynamic_Parameters

Function , Descriptor_Name , Data_Array_Name , Data_Array_Offset , Low_Limit , High_Limit , Save

Change_System_Node_ID , NODE_1 , DA_NODE_ID_NEW , 0 , 0 , 255 , Yes

The Low_Limit and High_Limit parameters may be omitted in which case the Node_ID is not validated

against them.

The save value enables or disables making the change permanent. If yes, the value will be stored and

used next time on start-up as the Node_ID. If no, the change will only remain until the next power cycle,

at which time the value in the configuration file will be used.

7.1.3.3 Example 3- Dynamic allocation of the BACnet MAC address

Configuration and operation is the same as changing the System_Node_ID except that this command not

only changes the value of the System_Node_ID parameter it also causes the firmware to write to the

underlying PIC on the FieldServer to have it start using the new ID.

Dynamic_Parameters

Function , Descriptor_Name , Data_Array_Name , Data_Array_Offset , Low_Limit , High_Limit , Save

Change_System_MAC_Addr , Bridge1 , DA_NODE_ID_NEW , 0 , 0 , 255 , Yes

In the example above, the FieldServer watches offset zero of the Data Array called DA_NODE_ID_NEW.

If it changes and the new number is valid (in range) then the ‘Bridge’ section of the configuration file is

scanned until a bridge whose ‘Title’ matches the descriptor name’ is found. Once found, the value of the

System_Node_ID is updated and the driver writes the new ID down to the PIC on which the BACnet

driver has been implemented.

The Low_Limit and High_Limit parameters may be omitted in which case the Node_ID is not validated

against them.

The save value enables or disables making the change permanent. If Yes, the value will be stored and

used next time on start-up as the System_MAC_Addr. If No, the change will only remain until the next

power cycle, at which time the value in the configuration file will be used.

7.1.3.4 Example 4 – Dynamic Allocation of the connection Baud Rate

The Baud Rate on a connection can be dynamically changed from a Data Array Value by one of the

following methods:

Method 1: Using pre-mapped Data Array values to Baud Rates

By defining the Data Array format as Baud, a responsible Map Descriptor can be used to dynamically

change the Baud Rate on the associated connection. In the Example the below the Baud Rate on the R1

connection will be set to 9600 at startup, and will be changed to one of the following Baud Rates (if

supported) whenever the Map Descriptor stores a value in the Data Array:

 FieldServer Configuration Manual

Page 56 of 92

Data Array
Value

Baud Rate

0 Default

1 110

2 300

3 600

4 1200

5 2400

6 4800

7 9600

8 19200

9 20833

10 28800

11 38400

12 57600

13 76800

14 115200

Specify the Data Format as Baud. This forces the use of the Values/Baud Rate table above.

Data_Arrays
Data_Array_Name , Data_Format , Data_Array_Length
DA_BAUD , BAUD , 1

The Connection, Node and Map Descriptor examples below apply to both methods.

Method 2: Using actual Baud Rate Values

Specify the Data Format as a conventional value data type e.g.: Byte, Uint16, Uint32

Data_Arrays

Data_Array_Name , Data_Format , Data_Array_Length

DA_BAUD , UINT32 , 1

Only for this method specify a dynamic parameter of Function Baud_Rate to allow the use of actual Baud

Rate values in the Data Array to change the Baud Rate Dynamically e.g. Values of 110, 300, 600, ...

115200 (if supported) stored in the Data Array will cause the Baud Rate to be changed.

Dynamic_Parameters

Function Descriptor_Name Data_Array_Name Data_Array_offset

Baud_Rate R1 DA_BAUD 0

Connections

Port , Baud , Parity , Data_Bits , Stop_Bits , Protocol

R1 , 9600 , None , 8 , 1 , Modbus_RTU

000

Node_Name , Node_ID , Protocol , Port

MB_RTU , 11 , Modbus_RTU , R1

Map_Descriptors

Map_Descriptor_Name , Scan_Interval , Data_Array_Name , Data_Array_Offset , Function , Node_Name , Address , Length

CMD_AO1 , 1.0s , DA_BAUD , 0 , RDBC , MB_RTU , 40001 , 1

 FieldServer Configuration Manual

Page 57 of 92

7.1.4 Error Messages

Message Description

DynParam:#1 Err. Validation

impossible. Lo=%f Hi=%f

Desc=%s"

The low validation value is greater than the high value.
8

DynParam:#2 Err.

DescName=%s too long.

This message is printed when evaluating a Dynamic parameters task

where the function = ‘Change_Node_ID’. The maximum length of the

descriptor is 32 characters.8

DynParam:#3 Err. Node_ID

Set from DA. Node=%s not

found

While trying to change the Node_ID, the FieldServer could not find a

Node whose name matches the task’s ‘Descriptor_Name’ parameter.8

DynParam:#4 Err. Node_ID

Validation failed. Lo=%ld

Hi=%ld Rqd=%d Node=%s

The Node_ID was not changed because the dynamic value extracted

from a DA did not satisfy the validation. Check that the devices have

been correctly configured. Possibly mapping of DA and offset need

adjustment.

DynParam:#5 FYI. Node=%s

Id=%d changed to %d

(%s:%d=DA:off)

This message is printed each time the Node_ID is successfully updated

dynamically. You may ignore this message if it confirms your

expectations.

DynParam:#6 Err.

DescName=%s too long.

This message is printed when evaluating a Dynamic parameters task

where the function = ‘Change_System_Node_ID’ or

‘Change_System_MAC_Add’. The maximum length of the descriptor is

32 characters.8

DynParam:#7 Err.

System_Node_Id Validtn

failed. Lo=%ld Hi=%ld

Rqd=%d Node=%s

The value extracted from the DA to be used as a dynamic parameter is

out of range (based on the low and high values specified). Review the

validation range in the configuration file and also review your mapping.

Perhaps the DA:offset does not contain the new ID.

DynParam:#8 FYI.

Bridge=%s(%d) Id=%d

changed to %d

(%s:%d=DA:off)

This is confirmation of a change of a symnica parameter where the

function is ‘Change_System_Node_ID’ or ‘Change_System_MAC_Add’.

You may ignore this message if it confirms your expectations.

DynParam:#9 FYI. Cant write

MAC_ADDR to PIC with this

firmware

This message will be printed immediately after #8 if the platform is not a

ProtoCessor. It can be ignored.

8 Edit the configuration, download the modified configuration and reset the FieldServer for the changes to take effect.

 FieldServer Configuration Manual

Page 58 of 92

8 PORT EXPANDER MODE - PEX MODE

Under certain conditions the FieldServer can be configured in a Port Expander Mode where statically

configured Map Descriptors are not required to retrieve data from a Server Node.

8.1 How Port Expansion Works:

When the FieldServer receives a poll from the Client Node, it scans its internal tables looking for a Map

Descriptor that matches the poll. If such a Map Descriptor is found, the FieldServer responds with data

from the appropriate Data Array. If no Map Descriptor is found, the FieldServer scans the list of

configured Nodes and creates a Map Descriptor (cache) to fetch the data from that Node and returns this

data to the Client. The FieldServer will continue to retrieve data from the Node for future polls from the

Client Node. If the Client Node does not access the data for longer than the time configured under

Cache_Time_To_Live, (Refer to Appendix C.4) then the FieldServer will stop reading the data and

remove the Map Descriptor (cache).

8.2 Advantages of Port Expander Mode

Configuration is simpler - the FieldServer automatically creates and deletes Map Descriptors as required.

If mapping changes are made to a Client, the FieldServer usually does not need to be reconfigured.

8.3 Limitations of Port Expander Mode

Port Expander Mode does not work with all combinations of drivers.

If the FieldServer is used as a Pure Port Expander (Single Protocol) there is no restriction at all, e.g.

Modbus RTU Port Expander.

The following families of drivers support Port Expansion within the family:

 Modbus RTU

 Allen Bradley PCCC

 Metasys®9

8.4 Port Expander Write Options

Three possible scenarios exist for Writes in Port Expansion Mode:

 A Temporary Read Map Descriptor already exists for the point being written.

 A Temporary Write Map Descriptor already exists for the point being written.

 No Temporary Map Descriptor exists for the point being written.

In the first two cases data is simply witten through the FieldServer to the Server using the existing

Temporary Data Arrays. Iin the third case, temporary Map Descriptors are created.

It is possible to configure the FieldServer to send an immediate acknowledgement of a write instead of

waiting for acknowledgement of successful receipt from the Client. The Node parameter

Write_Ack_Option
10

 needs to be configured. Refer to Appendix C.4.

9
 Metasys is a registered trademark of Johnson Controls, Inc

 FieldServer Configuration Manual

Page 59 of 92

8.5 Handling of Successive Writes to the Same Point

When multiple successive port expansion writes to the same point occur, there is a potential build-up of

pending write transactions in the FieldServer, since the Server side may receive write transactions at a

faster speed than they are completed on the Client side (depending on the speeds of the respective

protocols).

There are two fundamental ways of dealing with the potential accumulation of successive writes to the

same point:

 Overwrite – any pending write values that have not yet been sent to the Server are overwritten

with the latest write value. This is the default option and it ensures that the last value that was

received from the Client is written to the Server. Intervening writes may be lost.

 Blocking – if it is important to preserve the sequence of write values to the same point (e.g. a

switching sequence of on/off transitions), then the Server can be configured to handle writes in a

blocking mode. Here successive writes to the same point are queued to a configurable maximum

length. Writes are accepted from the Client until the queue is full, at which point further writes will

be rejected. This option must be configured on the Server using the following Connection

parameters and values:

Column Title Function Legal Values

Write_Queue_Mode
Mode for dealing with potential accumulation of successive

writes to the same point can be configured.

Overwrite,

Blocking.

Write_Queue_Size

The length of the queue can be configured if blocking mode

is set. Blocking will occur when there is no more space on the

Write_Queue.

If size=0 every successive write is blocked. A message will be

displayed when blocking occurs, except if the Queue_Size=0.

Non-negative

integer, 0

Connections

Port , Baud , Parity , Data_Bits , Stop_Bits , Protocol , Handshaking , Poll_Delay , Write_Queue_Mode , Write_Queue_Size , Timeout

P1 , 9600 , None , 8 , 1 , Modbus_RTU , None , 0.100s , Blocking , 5 , 8s

8.6 Port Expansion Configuration:

The example configuration file for this mode is available from FieldServer Technical Support if needed.

Although Map Descriptor configuration is not required, Connections and Nodes do need to be configured.

Connection

Port , Protocol , Server_Hold_Timeout

P1 , mb_rtu , 12

P2 , mb_rtu , -

Nodes

Node_Name , Node_ID , Protocol , Port , Timeout , Write_Ack_Option

Dev1 , 1 , mb_rtu , P2 , 12 , Ack_Immediate

10

 This setting only affects writes to points not configured/existing as read cache Map Descriptors. Writes to existing points on the

FieldServer are acknowledged immediately

 FieldServer Configuration Manual

Page 60 of 92

9 TIMING PARAMETERS

Under normal operation, the FieldServer will send a poll request to a Server device and that device will

reply with a response. The amount of time between successive poll requests is called the Scan_Interval.

The time between receiving a response from a Server device and the next poll request is called the

Poll_Delay.

If the FieldServer sends a poll request, and the Server device does not send a response, it is considered

a timeout. The time the FieldServer waits before declaring a timeout can be adjusted by the Timeout

parameter. If a timeout occurs, then the FieldServer will retry the poll request (number of times retried is

specified by the retries parameter). The interval between Retries is specified by the Retry_Interval.

The FieldServer will send poll requests at the end of each Retry_Interval. Once the specified numbers

of Retries have been sent, the FieldServer will mark the Node offline. Once a Node has been marked

offline, it will wait for a period specified by Recovery_Interval before sending another poll request.

Once the communications have been re-established, the FieldServer will wait for a period called

Probation_Delay, before marking the Node as online.

Note 1: The Ic_Timeout parameter monitors the time between characters in a response. If the time

exceeds the Ic_Timeout, the response is discarded and is considered a Timeout.

Note 2: All parameters in bold above are configurable. See table below for where they are configured,

and what the defaults will be if they are not configured. Refer also to Appendix C.2.

Parameter Default Value Where Used

Scan_Interval 2 seconds Map Descriptor, Node, Connection

Poll_Delay 0.05 seconds Connection

Timeout 2 seconds Map Descriptor, Node, Connection

Retry_Interval 10 seconds Node

Retries 3 times Node

Recovery_Interval 30 seconds Node

Probation_Delay 1 minute Node

Ic_Timeout 0.5 seconds Map Descriptor, Node, Connection

Node_Inactivity_Timeout 0 seconds Node (see Section 6.3.2)

Note 4: In the case of parameters that may be declared at the Connection, Node or Map Descriptor level,

when the parameter is declared at more than one level, the Map Descriptor declaration takes highest

priority, followed by the Node declaration and then the Connection declaration.

Note 5: A non-response from the remote Server device causes a Timeout. The driver does nothing until

a response is received or the timeout period has expired. Thus if a connection has two Nodes and one

Node is producing Timeouts this will have the effect of slowing down communication for the other Node in

the sense that the driver does nothing while the timeout timer is counting up to its setpoint. Once there is

a timeout on one Node, the driver will not retry any Map Descriptors on that Node until the Retry_Interval

has expired. Thus during the Retry_Interval the other Node will get 100% of the service.

 FieldServer Configuration Manual

Page 61 of 92

FieldServer Server Device

Poll

ResponseScan-Interval

Poll-Delay

Poll

Response

Poll
Timeout

Retry-interval

Poll

Poll

Recovery-Interval

Status: Node Online

Status: Node Offline

Poll

Response

Poll

Response

Poll

Response

Probation -Delay

Status: Node Online

Time

Retries

Figure 12 – FieldServer Timing Diagram

 FieldServer Configuration Manual

Page 62 of 92

9.1 Line Drive Parameters

The RS-485 communications connection requires that line drive is asserted before sending a message.

When the message is sent, the line drive must be turned off to allow other devices on the network to

assert their line drives. Because the assertion and de-assertion of the line drive is not instantaneous,

some time needs to be allowed between asserting the line drive and sending the message, as well as

between the end of the message and de-asserting the line drive. This time is specified by the

Line_Drive_On and Line Drive_Off parameters.

If R1 or R2 are declared as ports in the configuration file, then Line_Drive_On and Line_Drive_Off are set

to 1ms by default, and need not be declared in the connection parameters unless the application requires

that the line drive times are adjusted.

If Line Drive times are set incorrectly, truncated messages and noise occur. If the time set is too long it

could truncate a message from another device. If the time set is too short, the FieldServer’s message will

be truncated.

For P1-P8 (RS-232), the Line_Drive parameters default to 0. Line Drive is implemented on FieldServers

using the RTS (Request to send) line on the RS-232 connection.

Example

// Client Side Connections

Connections

Port , Baud , Parity , Data_Bits , Stop_Bits , Protocol , Poll_Delay , Line_drive_on , Line_drive_off

P8 , 9600 , None , 8 , 1 , Modbus_RTU , 0.100s , 0.001s , 0.001s

Note 1: Line_Drive_On and Line_Drive_Off are not supported in the FS-X30 Series.

Note 2: Handshaking is not supported. The RTS line can be enabled by specifying Line_Drive_On and

Line_Drive_Off as non-zero values.

9.2 Suppressing Squelch on Half Duplex Communications

Many half-duplex serial communication channels generate noise when the channel switches direction

(typically at the end of a transmission burst), causing spurious data to be received at either end. The

FieldServer kernel implements a user-configurable timing sequence designed to suppress the reception

of this spurious data.

When the transmission ceases and releases the channel, noise can be generated at both the transmitting

and receiving end. In a master-slave situation using poll and response messages this leads to four

possible instances of squelch generation:

 Squelch received by the master at the end of a master to slave poll transmission.

 Squelch received by the slave at the end of a slave to master response transmission.

 Squelch received by the slave at the end of a master to slave poll transmission.

 Squelch received by the master at the end of a slave to master response transmission.

The first two are examples of what is termed TX squelch, received by the transmitting port at the end of a

message; the last two are examples of RX squelch, received by the receiving port at the end of a

message.

 FieldServer Configuration Manual

Page 63 of 92

The timing diagram illustrates the four instances of squelch, and identifies time intervals controlled by two

connection parameters, i.e. Squelch_Timer_Tx and Squelch_Timer_Rx. These timers are activated at

the appropriate moment, and for their duration prevent reception of data. Squelch_Timer_Tx starts at the

end of a transmission (as defined by RTS becoming inactive), and Squelch_Timer_Rx starts at the end of

a valid received message (as determined by the protocol driver). Note that the Squelch_Timer_Rx is only

relevant to Servers as Clients will in any event disregard any spurious data received after a response.

Master

Slave

Legend:

Line_drive_on

Line_drive_off

Squelch_timer_TX

Squelch_timer_RX

Turnaround_delay

Poll_delay

Squelch received by master after

poll.

Deleted by Squelch_timer_TX

Squelch received by master after

response.

Deleted by Kernel before next poll

Squelch received by slave after poll.

Deleted by Squelch_timer_RX

Squelch received by slave after

response.

Deleted by Squelch_timer_TX.

10

9

8

7

6

5

4

3

2

1

RTS

TX

RX

RTS

TX

RX

6321

Next PollPoll

Poll

Response

Response

7 8

21

9 10

4

5

3

Note: Squelch_Timer_Tx and Squelch_Timer_Rx are not supported in the FS-X30 Series.

Figure 13 – Timing Diagram: Line Drive On/Off, Tx and Rx Squelch, Poll Delay, Turnaround Delay.

 FieldServer Configuration Manual

Page 64 of 92

9.2.1 Setting Parameter Values

It is important to prevent the squelch suppression times from overlapping with valid data and interfering

with proper communication. The following connection parameters can be configured for the FieldServer:

Turnaround_delay This is the time the Server takes to initiate a response after having received a poll.

The Client connection must have a Squelch_Timer_Tx value less than the

turnaround delay.

Poll_Delay This is the shortest time the Client will wait between receiving a response message

and initiating the next poll. The Server connection must have a Squelch_Timer_Tx

value less than the poll delay.

Example:

Connections

Port , Squelch_Timer_Tx , Squelch_Timer_Rx , Turnaround_Delay , Line_drive_On , Line_drive_Off

P1 , 0.06 , 0.01 , 0.050 , 0.001 , 0.001

9.2.2 Statistics

Each connection keeps track of the number of bytes suppressed as a result of TX and Rx squelch timers.

These may be viewed in the connection statistics screen.

9.3 Enable on RS-232 Port

To force the RTS line high on the RS-232 Connection specify Line_Drive_Off and Line_Drive_On as non-

zero values.

Connections

Port , Baud , Parity , Data_Bits , Stop_Bits , Protocol , Poll_Delay , Line_drive_On , Line_drive_Off

P1 , 9600 , None , 8 , 1 , mb_rtu , 0.1 , 0.001 , 0.001

 FieldServer Configuration Manual

Page 65 of 92

Appendix A. Useful Features

Appendix A.1. Using comments

Configuration file comments are lines starting with //. Use this format to comment on the line:

Nodes

Node_Name, Node_ID, Protocol

// Main building Node

Test_A, 1, Modbus_RTU

Never place comments in the middle or at the end of lines e.g. this is NOT allowed:

Nodes

Node_Name, Node_ID, Protocol

Test_A, 1, Modbus_RTU // Main building Node

Appendix A.2. Using conditional process statements

The Client or Server sides of a configuration can be disabled using the following keywords:

Keyword Function

Ignore all lines will be ignored after this statement until a process statement is encountered.

Process causes lines after this statement to be processed again.

End configuration stops here, ignoring all further lines.

 FieldServer Configuration Manual

Page 66 of 92

Appendix A.3. Disabling the Client side of a configuration:

// Set up the Modbus Server side

//

Data_Arrays

Data_Array_Name , Data_Format , Data_Array_Length

DA_DO_01 , Bit , 1

Connections

Port , Baud , Parity , Data_Bits , Stop_Bits , Protocol

P1 , 9600 , None , 8 , 1 , Modbus_RTU

Nodes

Node_Name , Node_ID , Protocol

RTU_Srv_11 , 11 , Modbus_RTU

Map_Descriptors

Map_Descriptor_Name , Data_Array_Name , Data_Array_Offset , Function , Node_Name , Address , Length

SMD_DO1 , DA_DO_01 , 0 , Passive , RTU_Srv_11 , 00001 , 1

ignore

//===

//

// Set up the Modbus Client side

//

Connections

Port

P2

Nodes

Node_Name , Node_ID , Protocol , Port

DEV11 , 11 , Modbus_RTU , P2

Map_Descriptors

Map_Descriptor_Name , Data_Array_Name , Data_Array_Offset , Function , Node_Name , Address , Length

SMB_BO1 , DA_DO_01 , 0 , Rdbc , DEV11 , 1 , 1

process

Appendix A.3.1. Disabling a Node

Nodes

Node_Name , Node_ID , Protocol , Port

DEV11 , 11 , Modbus_RTU , P2

ignore

DEV12 , 12 , Modbus_RTU , P2

process

 FieldServer Configuration Manual

Page 67 of 92

Appendix A.4. Disabling Statistics Display

For large configurations with many Map Descriptors there is a possibility that the FieldServer will run out out memory before the entire configuration file is

loaded. In order to conserve memory it is possible to disable the collection of per Map Descriptor statistics. This is done by adding the MD_Option

parameter to the Map Descriptor section, and setting the value to No_Stats for each Map Descriptor. If a specific Map Descriptor is to be monitored, then

this setting can be omitted for that Map Descriptor.

Setting the No_Stats option on a Map Descriptor will disable the display of statistics for that Map Descriptor in FS-GUI, and will cause zero values to be

reflected for all statistics relating to that Map Descriptor in FieldServer Diagnostics Logs.

Statistics on the Node and Connection are not affected.

Example: This example will disable statistics on SMD_11_AI_01 but not on SMD_11_MI_02.

Map_Descriptors

Map_Descriptor_Name , Data_Array_Name , Data_Array_Offset , Function , Node_Name , Object_Type , Object_Instance , MD_Option

SMD_11_AI_01 , DA_AI_01 , 0 , Passive , Virtual_Dev_11 , AI , 01 , No_Stats

SMD_11_MI_02 , DA_AI_01 , 1 , Passive , Virtual_Dev_11 , MI , 02 , -

 FieldServer Configuration Manual

Page 68 of 92

Appendix A.5. DHCP Client Options

The FieldServer DHCP (Dynamic Host Configuration Protocol) Client can be enabled to obtain an IP

address lease from a networked DHCP server. Currently, the DHCP hostname option can be enabled to

report the FieldServer’s network hostname to a DHCP Server. This is done by creating a text file named

hostname.ini containing a single line of text e.g.: Boiler_Bridge_A. This file must be sent to the

FieldServer and restarted to take effect. This hostname will be visible in the DHCP Server’s list of IP

leases and could be optionally, manually added to a DNS server (a Static lease IP Address should be

reserved in the DHCP Server), in order to address the FieldServer by its hostname. For more information

on enabling the FieldServer DHCP Client, refer to the FieldServer-GUI Manual.

 FieldServer Configuration Manual

Page 69 of 92

Appendix B. Troubleshooting

Appendix B.1. Moves performance

Suppose we need to read 1000 points from a PLC and transfer it to another data array, there are several

ways to do it using moves. The table below shows the impact on the time it takes to complete the moves

using different configuration methods:

Map

Descriptor
Length Moves Length Operations

Memory locations

transfer

Performance degrade

because of Moves

1 1000 1 1000 1 1000 None

1000 1 1000 1 1000 1000 None

1 1000 1000 1 1000 1000 Some what

1000 1 1 1000 1000 1000000 Too Much

 FieldServer Configuration Manual

Page 70 of 92

Appendix C. Reference

Appendix C.1. Working with the Driver Manuals

Appendix C.1.1. Introduction

The purpose of the Driver Manual is to provide driver specific configuration information. When drivers are

installed in the FieldServer the specific combination is assigned a Driver Configuration Code (DCC). The

DCC covers the combination of drivers listed on the cover. In addition to the specific configuration

instructions for each driver, these manuals provide drawings and default configuration files for the

combination of drivers.

The Driver Manual contains a section for both the Client and Server side software drivers. Each section

of this supplement is split into two parts. The first describes the hardware and software included with the

FieldServer, as well as providing additional information relating to getting the FieldServer set-up and

connected. The next part discusses the configuration file in detail, and provides all the information

needed to configure the driver related parameters.

Appendix C.1.2. Driver Manuals as Part of the Documentation Set

In order to install and configure the FieldServer, proceed through the instructions in the Start-up Guide.

Refer to the Driver Manual for connection information. If the default file is all that is needed then nothing

further is required, it is already loaded onto the FieldServer. If it is necessary to modify the Configuration

Files to suit specific needs, please refer to Section 2 of this manual for a general overview of the

configuration file, and then refer to the specific driver supplements for configuration information on the

drivers.

Appendix C.2. Default settings for parameters

Parameter Default Setting

Default response timeouts 2000 ms = 2 sec

Inter character timeout 500 ms

SCADA hold 2000 ms = 2 sec

Data cache age limit for acceptable data 20000 ms = 20 sec

Cache 80

Retry Interval 10000 ms = 10 sec

Recovery Interval 30000 ms = 30 sec

Probation Delay 60000 ms = 1 min

Scan Interval 1 second

Poll Delay 50 ms

Retries 3

Activity Timer 120000 ms = 2 hour

Parity None

Baud 9600

Data Bits 8

Stop Bits 1

Handshake Timeout 2000 ms = 2 sec

 FieldServer Configuration Manual

Page 71 of 92

Appendix C.3. Available Data Types for Data Arrays

To facilitate the choice of data type, each of the data types available are described below.

Data Format Description

Float
Format used to store Floating Point Analog values. (e.g. temperature, volts).

Each point in the array represents one 32 bit Floating Point value.

Bit Format for storing Binary Data. Each point in the array represents one bit.

Byte Format for storing Bytes of data. Each point in the Array represents one Byte.

SInt16 – Signed 16

bit Integer.

Range: -32768 to 32767, discrete. Each point in the array represents one

integer.

Uint16 – Unsigned

16 bit Integer.
Range: 0 to 65 535, discrete. Each point in the array represents one integer.

 SInt32 – Signed 32

bit Integer

Range: -2147483648 to 2147483647, discrete. Each point in the array

represents one integer.

Uint32 – Unsigned

32 bit Integer

Range: 0 to 4294967295, discrete. Each point in the array represents one

integer.

Baud
Format used to dynamically change the Baud rate on a connection (refer to

Section 7)

In transferring data points from one protocol to another via the Data Arrays in the FieldServer, the

integrity of the data format is retained. E.g. if a point representing a bit data type is transferred into a

Data Array of type Float, the value will be a 32 bit floating point value that will only take on the values of 0

and 1. If this is transferred to an integer point in another protocol, the value will still only ever take on the

values of 0 and 1 despite the type conversions. This can be overcome using Moves – refer to Section 5.2

Appendix C.4. Permissible Values for Configuration File Variables

Default and acceptable values for the different variables defined in the configuration file. Optional Values

ate indicated with an asterix. Default values are indicated in bold. Timing parameters are listed in

seconds (0.003 would represent three milliseconds)

While this list contains acceptable variables for the FieldServer, some are not suitable for all

configurations, depending on the drivers used. Please see the Driver Manual for complete information

regarding acceptable variable values for specific drivers.

 FieldServer Configuration Manual

Page 72 of 92

Note: Titles in brackets indicate aliases

Appendix C.4.1. Common Information

Section Title

FieldServer

Column Title Function
Legal

Values

Title
Allows user to add title to main menu if desired.

Title text may not contain spaces
Title Text

Cache_Age;

(Cache_Age_Timeout)*

When poll block caching is used, data

previously polled and stored in an internal data

buffer is returned to the Server, providing the

data is not too old. This parameter specifies the

length of time cached data is valid.

Time in

seconds,

300s

Cache_Size* Specify size of Cache 0-1000; 80

Cache_Time_To_Live*

Used for Port Expansion. A cache is created for

data from a Node for which no Map Descriptor

is configured. If this data is not accessed for

longer that the time specified by this parameter,

the cache will be cleared.

Time in

seconds,

300s

Tier*

FieldServers have the ability to run as “multiple”

FieldServers on one platform. To differentiate

between the different running applications, each

of the applications is referred to as a Tier with a

specific name.

2

FieldServer_Name*
A name by which a FieldServer is identified -

need not be unique.

Default

value

blank

Cache_Age_Limit*
Maximum age of data in a cache Map

Descriptor for immediate response to poll.
5 minutes

System_Node_ID

(System_ station_address or

System_station) *

Use is driver dependent. Generally used to

identify the FieldServer as a Node when it is

configured as a Server.

1

Network_number*

Displayed where a protocol requires the

FieldServer to be assigned a network number

(e.g. BACnet).

5

Hot_Standby_Mode*

Where specified, this parameter defines the

behavior of the standby FieldServer in Hot

Standby mode. In Mode 1 the FieldServer is

completely passive; in Mode 2 the standby

FieldServer polls the connected devices through

alternate communication paths.

Default

value

blank

Port_Expander_Mode*
Indicates whether the port expander mode

function is enabled or not.

Default

value

blank

Cache_Map_Descriptor_Scan_Interval*
If the value 65535 is displayed, then this is an

error and it indicates that there is no setting.
2 seconds

Hot_Standby_Designation* Primary or Secondary. On boot the primary Primary

 FieldServer Configuration Manual

Page 73 of 92

tries to become the active and the secondary

tries to become the standby FieldServer. This

behavior may be different if the so called

secondary FieldServer gets re-booted first.

Hot_Standby_Pair_Name*

A name by which a pair of FieldServers

configured as a Hot Standby pair is known.

When one of a pair boots, it broadcasts a

message with its pair name in order to try and

locate the other FieldServer that forms the hot

standby pair.

Default

value

blank

Pex_Mode*
Specify if Pex_Mode should be enabled or

disabled. Refer to Section 8

Default

value

blank or

Enabled,

Disabled

Appendix C.4.2. Data Arrays

Section Title

Data_Arrays

Column Title Function Legal Values

Data_Array_Name

(DA_Name)
Provides name for Data Array

Up to 15 Alpha

Numeric

Characters

Data_Format Provides Data Format

INT16, INT32, or

BYTE; Specifies

size of source

value when scaling

FLOAT; specifies

floating point

format for

preloaded data in

buffer

Data_Array_Length

(Buffer_Length)
Number of Data Objects 0-10000

Data_Array_Function* Special function for the Data Array

Refer to table in

Appendix C.4.3,

None

DA_Function_After_Store*

If this parameter is specified, when a value different

to the current value is written to the Data Array it will

be stored in the FieldServer’s Non-Volatile Memory.

On start-up this value is loaded from the Non-Volatile

Memory into the Data Array. This value is only

stored 3 times a minute, so if more writes than that

are done, the values will be stored in the Data Array,

but not to the Non-Volatile Memory. Storing this

value has performance impacts, so care must be

taken to store this value only if needed. Refer to

Section 0

Non-Volatile,

Default value

blank

 FieldServer Configuration Manual

Page 74 of 92

Appendix C.4.3. Data Array Function

The Data_Array_Function Keyword is used in the configuration file to get system specific error conditions

and statistics. The available keywords are listed below:

Keyword Description

Node_Online_Bits Bit 0 is unused. Every bit corresponds to the Node with that number up to

255. E.g.: Bit 3 corresponds to Node 3, etc. Refer to Section 6.1.4 Node_Error_Bits

Cable_Status_Bits See Enote0002

Hot_Standby_Status_Bits See Enote0002

Node_Detail_Stat

(Dev_Detail_Stat)

A Data Array is created to reflect Node details. Handle can be set.

Values are reflected in the following order:

0 = Device handle, 1 = Node port; 2 = connection; 3 = old station; 4 =

station.

Chan_Detail_Stat

Connection information f

0 = First value handle; 1 = port; 2 = old port; 5 = error count.

Values in Data Array will reflect these values.

Node_Overview_Stat

Gives overview of all devices configured on the FieldServer. Cycles through

all the devices on the FieldServer in the order that they are configured.

Note that the Data Array needs to be long enough to store all device

information.

0 = Handle; 1 = station; 2 = port; 3 = adapter; 4 = status; 6 = old station;

10 = Historical message count; 11 = minutes; 12 = hour; 13 = day; 14 =

month.

15 = Historical error count; 16 = minutes; 17.= hour; 18 = day; 19 = month.

The next device starts at position 20 and the same structure is repeated.

Reporting will stop after all the devices have been reported or when the

Data Array is full.

Chan_Overview_Stat

Same except

0 = handle; 1 = port; 2 = adapter; 3 = status; 8 = old port; 9 = old adapter.

Thereafter follow Historical message and Error blocks in the same format as

above.

Dev_Error_Rates

Reports the number of errors per hour for each Node. Location in the Data

Array is the station of the device i.e. if the device station is configured to be

10, position 10 in the Data Array will show the number of errors per hour.

Errors for the past 60 minutes are stored.

Dev_Msg_Rates Same as above, except counting messages not errors.

Dev_Error_Percentage Percentage of messages generating errors over the past hour.

Node_Status
Provides the communication status between the FieldServer and the

actively mapped Nodes. Refer to Section 6.1.1

Alias_Node_Status

Where 2 nodes have the same Node_ID or Node_ID’s are longer than 255,

each Node can be assigned an Alias_Node_ID which can be used to

provide Node Status. Refer to Section 6.1.2

System_LED_Status

Provides the states of the system’s hardware LEDs with a 1 indicating an

LED is on and a 0 indicating an LED is off. The target data array for this

function should be of type “BIT” and needs to have a minimum length of 5.

The system LEDs correspond to the following bit offsets:

Bit 0 = Run LED. Toggles every second while the FieldServer is running.

 FieldServer Configuration Manual

Page 75 of 92

Keyword Description

Bit 1 = HSB Active LED.

Bit 2 = Node Offline LED.

Bit 3 = Configuration Error LED.

Bit 4 = System Error LED.

Get_System_Time

This parameter is used to access the system clock by using a Data Array.

The suggested Data Array format is UINT32, with a minimum length of 9.

The Data Array will contain the current system time in the following format:

Offset

0

1

2

3

4

5

6

7

8

Description

Seconds since 1 Jan 1970 00:00:00

Milliseconds past the second

Year (e.g. 2014)

Month (1-12)

Day

Hour

Minute

Seconds

Milliseconds

Appendix C.4.4. Connections/ Adapters

Section Title

Connections

Column Title Function Legal Values

Port /Connection

Specifies the port through which the device is connected to

the FieldServer. Adapter is used for Ethernet andhardware

connections and port is used for serial

P1-P8, R1-R2
11

Protocol The name of the protocol used by this connection.

Baud* Specifies Baud Rate 300, 9600, 38400;

Parity* Specifies serial data byte parity Even, Odd, None

Data_Bits* Sets number of data bits for serial port. 7, 8;

Stop_Bits* Sets the stop bits for communications 1, 2

Line_Drive_Off*
When using RS-485, specifies delay from end of message

to when the RTS line is deasserted

Time in seconds, 1

ms

Line_Drive_On*
When using RS-485, specifies delay after RTS is asserted

until message is transmitted

Time in seconds,

1 ms

Ic_Timeout*
Specifies inter-character timeout period within a message

once it starts

Timeout in seconds,

15 ms

Turnaround_Delay

*(Turnaround_Time)

This is the time the Server takes to initiate a response after

having received a poll.

Delay in seconds,

5 ms (for serial

drivers);

0 seconds (for all

adapter & ethernet

drivers)

May be protocol

11

 Not all ports shown are necessarily supported by the hardware. Consult the appropriate Instruction manual for details of the ports
available on specific hardware.

 FieldServer Configuration Manual

Page 76 of 92

dependent for some

drivers

Client/Server_Mode*

Where two FieldServers are connected in Hot Standby

mode each with a PEX and a SCADA Tier, if the SCADA

Tier of one FieldServer polls the SCADA Tier of the other

FieldServer, that tier will start acting as a Server. Setting

this parameter to Client_Only will prevent this happening.

Client_Only

Node_Retire_Delay*

This parameter allows the user to configure a time after

which a Node is no longer polled until the FieldServer is

restarted. See Section 6.1.4

Time (s), 0

Write_Queue_Mode*
Mode for dealing with potential accumulation of successive

writes to the same point can be configured.
Overwrite, Blocking.

Write_Queue_Size*

The length of the queue can be configured if blocking mode

is set. Blocking will occur when there is no more space on

the Write_Queue.

If size=0 every successive write is blocked. A message will

be displayed when blocking occurs, except if the

Queue_Size=0.

Non-negative

integer, 0

Bias_Mode*

Only relevant to Protonode and X25. If this parameter is

set to Yes or Enabled, it loads the RS-485 line by placing

additional resistance on it This has the benefit of making

the signals cleaner in a noisy environment but may reduce

the maximum number of devices possible in a multidrop

configuration.

Enabled, Yes,

Disabled, No

Poll_Delay*

The minimum amount of time that must pass between one

Client Map Descriptor completing its task and the next

Client Map Descriptor being serviced. Refer to Driver

Manuals.

.05 seconds

Low_Pri_Poll_Delay* The poll delay used for lower priority Map Descriptors. Protocol dependent

Server_Hold_Timeout*

When an upstream device polls the FieldServer, and the

data is unavailable or too old, the driver generates a poll to

the downstream device for fresh data, (port expansion).

The Server_Hold_Timeout defines the time available for

this transaction to complete before an error is returned.

2 seconds

IP_Address* An IP address for the connection if applicable.

Remote_IP_Address* A remote IP address for the connection if applicable.

Timeout* The timeout defined for the connection. 2 seconds

Recovery_Interval*
The time after a node goes off-line before the driver tries to

poll the device again.
30 seconds

Probation_Delay*

The length of time communication needs to be re-

established for before an offline Client node is marked on-

line again.

1 minute

Multidrop_Mode*

Indicates whether Multidrop mode is enabled or not.

Multidrop mode allows a server to ignore requests to nodes

that are not configured.

Enabled for RS-485,

Disabled for RS-232

IP_port*
Determined by specific driver or protocol used. See Driver

Manual.
 Remote_IP_Port*

Max_Master*

 FieldServer Configuration Manual

Page 77 of 92

Max_Info_Frames*

Connection_Type*

Application*

Section Title

Adapter

Column Title Function Legal Values

Adapter Adaptor name
Arcnet, DH+, Modbus+, PROFIBUS,

etc...

MAC_Address

(Net_number)

Specify Network MAC

address

Appendix C.4.5. Nodes

Section Title

Nodes

Column Title Function Legal Values

Node_Name

(Device_Name)

The node name specified in the CSV

file.

Up to 32 Alpha Numeric

Characters

Node_ID*

The station number or address of the

node. The actual meaning is

dependent on the driver and protocol –

refer to the Driver Manual.

1-255

Protocol

The protocol being used to update the

data for that node. Refer to the Driver

Manual

Modbus/TCP etc.

IP_Address* IP address of the Server Device Valid IP address, -

Host_Name*
Specifies the host name of the remote

device.
Any valid host name

12
, -

Retries*

Specifies how many sequential errors

must occur before marking a data

buffer and poll block bad, and marking

a device offline. The FieldServer will

poll the device and if it receives no

response will retry polling the device

the number of times specified by the

retries parameter. The FieldServer will

attempt to recover the connection once

the recovery interval has elapsed

Count

Default 3

Retry_Interval*
The amount of time in seconds that the

driver should wait before retrying a poll
Interval in Seconds

12
  If a Host name is used instead of an IP address, the FieldServer will try to resolve it to an IP_address before

starting to poll the remote device.

 If using an IP_Address and a Host_Name, the FieldServer will try to resolve the host name to get the latest

IP_Address to use, otherwise the configured IP_Address will be used.

 The FieldServer will try to re-resolve the host name before starting node recovery to get the latest IP_Address. If a

host name cannot be resolved, the last known IP_Address will remain in use.

 FieldServer Configuration Manual

Page 78 of 92

Section Title

Nodes

Column Title Function Legal Values

after a timeout has occurred

Srv_Offline_Method*

A Server Node could send

contradictory information if its data

comes from multiple Client Nodes,

some of which are offline and others

online, causing it to respond differently

depending on what data is polled. This

confuses some systems. This setting

allows the user to select whether the

Server Node should appear online or

offline if there is a mix of Client Node

Statuses.

Ignore_Clients - causes the Server to

behave explicitly – not to depend on

the status of the Client Node, but on

the data validity only. i.e. non-expired

data will be served whether or not the

responsible Client Nodes are online.

Any_Offline - suppress a data response

if ANY of the responsible Client Nodes

for the data range concerned are offline

All_Offline - only suppress a data

response if ALL of the responsible

Client Nodes for the data range

concerned are offline.

Always_Respond overrides the data

validity as well. i.e. it forces the Server

Node to regard data as valid even if the

Client Node is offline or the data has

expired.

Ignore_Clients

Any_Offline

All_Offline

Always_Respond

Write_Ack_Option*

Ack_Complete (default) - the Server

waits for the Client Side write

transaction to complete before

acknowledging the Write request. This

makes for good reliability but has a cost

in terms of throughput.

Ack_Immediate - fast, but less reliable.

The Server immediately acknowledges

a Write request before queuing the

Client Side Write. The

acknowledgement is thus not affected

by the success or failure of the Client

Side Write. Only recommended if the

same points are updated regularly.

Ack_Verified - most reliable, and

slowest. The Server waits for a Client

Ack_Complete,

Ack_Immediate, Ack_Verified

 FieldServer Configuration Manual

Page 79 of 92

Section Title

Nodes

Column Title Function Legal Values

Side Write and Readback to be

completed, and only updates the data

value if a data comparison between the

Client Side Write and Read values

passes. If the transaction fails for any

reason or if the data comparison fails,

the Server responds with a negative

acknowledgement.

Enable_Write_Retries*

The default write behavior is for a write

operation (WRB or WRBX) to be

attempted once only. If a timeout

occurs the write operation is aborted. If

set to yes, this parameter enables

failed write requests to be retried. The

number and timing of the write retries is

then governed by the Retries and

Retry_Interval parameters.

Warning: ensure that repeated writes

are safe for your application since a

Write may be retried because of a

transmission error in the Write

acknowledgement, in which case the

remote device will see two similar write

requests.

Yes, No

Node_Offline_Action*

If this parameter is defined, when a

Client Node goes offline, all Data Array

values of Map Descriptors defined on

this Node will be set to zero.

Clear_Data_Array, No_Action, -

Remote_IP_Address*
The remote IP address used by this

node
Required for protocols that use it

Node_Type*

Specified in the configuration file as the

PLC_Type. - Consult the driver manual

for additional information.

Required for protocols that use it

Port* Port number for a serial connection.

Readback_Option*

This Client Side parameter enables the

user to configure the timing of a read

after a write. The Readback operation

will apply to all drivers that support

Active Reads and Write-Through

operations.

Readback_Asynchronously: When a

write occurs, the read will occur when

scheduled

Readback_On_Write: When a write

occurs, set the timer to 0, so the

Responsible Map Descriptor will get

Readback_On_Write,

Readback_Asynchronously,

Readback_Immediately_On_Write

 FieldServer Configuration Manual

Page 80 of 92

Section Title

Nodes

Column Title Function Legal Values

queued in the next cycle

Readback_Immediately_On_Write:

Prioritize both write and read to happen

in a higher priority queue than normal

reads. The Readback operation will

apply to all drivers that support Active

Reads and Write-Through operation

MAC_Address*

Requered for protocols that use it, not

needed for other. Specified by remote

Mac Address of the device.

Required for protocols that use it

Node_Offline_response*

The type of response the Server side of

the driver sends when it finds the

Server node to be offline.

No_Response,

Old_Data,

Zero_Data,

FFFF_Data,

(Not valid for all protocols)

Timeout* The timeout specified for the node. 2 seconds

Recovery_Interval*

The time in seconds after a node goes

off-line before the driver tries to poll the

device again.

30 seconds

Probation_Delay*

The length of time communication

needs to be re-established for before

an offline Client node is marked on-line

again.

1 minute

Server_Name*

An alternate to specifying the IP

address. Typically used when the user

wants two nodes to talk to each other.

When specified, the FieldServer sends

out a broadcast with the server name

and uses the reply to fill in the IP

address for the node. Until the reply

has been received all polling for the

node is disabled. The server name

given should correspond to the

pair_name specified in the remote

FieldServer’s bridge settings.

Only applies to the SMT protocol.

Alias_Node_ID*

This is used to distinguish between

different nodes connected to the

FieldServer when a PLC does not

support the allocation of different

None_ID’s. Each node is given a

different alias. Upstream devices poll

the Alias_Node_ID and the FieldServer

routes the poll to the correct PLC which

is polled using the Node_ID.

Any enteture, -

Ports_on_PLC*
For hot standby operation. This field is

used to control which port on a PLC to
(look in hot standby section

 FieldServer Configuration Manual

Page 81 of 92

Section Title

Nodes

Column Title Function Legal Values

poll.

Appendix C.4.6. Map Descriptors

Section Title

Map Descriptors

Column Title Function Legal Values

Map_Descriptor_Name Used to identify a Map Descriptor by name.
Up to 32 Alpha Numeric

Characters

Data_Array_Name

(DA_Name)

The name of the Data Array where

information will be stored to and retrieved

from by the Map Descriptor.

One of the Data Array

names as defined in

Appendix C.4.2

Data_Array_Offset

The offset into the Data Array where data

should be stored on reads or retrieved from

on writes.

0 to (Data_Array_Length -

1) as defined in Appendix

C.4.2

Function Function of Client Map Descriptor

Rdbc - Read data buffer

continuously

Wrbc - Write data buffer

continuously

Rdb - Read data buffer

once

Wrb - Write data buffer

once

Wrbx - Write data buffer

on change

Node_Name Name of Node to fetch Data from

One of the Node names

specifies in "Client Node

Descriptor" above

Data_Type (Type)* Data Type in PLC

See Driver Manual for

validity and applicability.

File_Type* File Type in PLC

Block_Number (DB)

(File_Number)*
Block Number in PLC

Data_Array_Low_Scale*

(Buffer_Low_Scale)
Scaling zero in Data Array

Any signed 32-bit floating

point value. 0

Data_Array_High_Scale*

(Buffer_High_Scale)
Scaling max in Data Array

Any signed 32-bit floating

point value. 100

Node_Low_Scale* Scaling zero in Connected Node
Any signed 32-bit floating

point value. 0

Node_High_Scale* Scaling max in Connected Node
Any signed 32-bit floating

point value. 100

 FieldServer Configuration Manual

Page 82 of 92

Section Title

Map Descriptors

Column Title Function Legal Values

MD_Option*

Setting the No_Stats option on a Map

Descriptor will disable the display of

statistics for that Map Descriptor in FS-GUI,

and will cause zero values to be reflected for

all statistics relating to that Map Descriptor

in RUIdebug logs. Refer to Appendix A.4

No_Stats, -

Node_ID*

The Node ID used by this Map Descriptor

when the driver builds read or write

messages.

Address*

Allows a Map Descriptor to address remote

device data at a specific start memory

location.

Protocol dependant

Length*

Allows a Map Descriptor address a number

of remote device data locations from the

start address.

1, Protocol dependent

Scan_Interval*

When using continuous Map Descriptor

functions such as RDBC, this is the time a

Map Descriptor will wait before polling for

data again.

.5sec

Units*

Used to specify engineering units to

interpret data if used. Will display a dash if

not used.

Protocol Dependent

Network*
Used by some drivers as a network

number.
Check manual for values

Sector*
Used by some drivers as a sector number

for rack addressing.
Check manual for values

Panel*
Used by some drivers as a panel number for

rack addressing.

Card*
Used by some drivers as a card number for

rack addressing.

 FieldServer Configuration Manual

Page 83 of 92

Appendix C.5. Valid Characters for Common Fields in Configuration Files

ASCII Code Char Comment ASCII Code Char Comment

32 [space] 82 R

33 ! 83 S

35 # 84 T

36 85 U

38 & 39 ‘ 86 V

40 (87 W

41) 88 X

42 * 89 Y

43 + 90 Z

45 - 91 [

46 . 92 \

47 / 93]

48 0 94 ^

49 1 95 _ [underscore],

50 2 96 `

51 3 97 a

52 4 98 b

53 5 99 c

54 6 100 d

55 7 101 e

56 8 102 f

57 9 103 g

58 : 104 h

59 ; 105 i

60 < 106 j

61 = 107 k

62 > 108 l

63 ? 109 m

64 @ 110 n

65 A 111 o

66 B 112 p

67 C 113 q

68 D 114 r

69 E 115 s

70 F 116 t

71 G 117 u

72 H 118 v

73 I 119 w

74 J 120 x

75 K 121 y

76 L 122 z

77 M 123 {

78 N 124 |

79 O 125 }

80 P 126 ~

81 Q

Appendix C.6. Kernel Error Messages and Descriptions

Error Description Action

 FieldServer Configuration Manual

Page 84 of 92

Error Description Action

10003
A write to a Data Array exceeds the

available space.
Check Map Descriptor Offset, length.

10004
A write to a Byte/FloatData Array exceeds

the available space.

10005
A range of data exceeds the length of a

BYTE Data Array.
Check Map Descriptor Offset, length, count

10009 Protocol not detected. Check Node_Name in csv file.

10010
No connection defined for an existing

Physical Node Descriptor.

Confirm that Active Map Descriptors are not

added to a Server Node.

Define the Client Node Descriptor connection in

the CSV file.

10011

Unable to create a Client Node Descriptor,

since no valid channel adapter or port has

been specified.

Specify a valid channel adapter or port.

10014
Attempting to read a range past the end of

BYTE Data Array.
Check Map Descriptor Offset, length, count.

10016 Could not find or create Node
Check Node_Name, Node_ID and protocol in

CSV file.

10019 Check CSV file spelling.

10023
Protocol or Node_Name for Map_Descriptor

not detected
Check CSV file.

10025
Modbus/TCP - Client goes offline before

receiving a response to a poll.
Increase the timeout on the Modbus/TCP Client.

10026
There is no connection to one side of a

virtual wire.

Ensure that a Client and a Server is configured

for each virtual wire

10027
Connection mode of Hot_Standby_Data

only supported in Hot Standby Mode1

10028 Could not find nor create a Node. Refer to 10010

10031
The data_points limit on the FieldServer

has been reached
Contact FST.

10032

A Server Node has been assigned to a

Client Map Descriptor OR a Client Node

does not have a connection/Server_Name

Check CSV file.

10033
Invalid length specified for

Cable_Status_Bits
See specification in Enote0002

10034

An attempt to generate a write cache block

failed because the Node did not have a

connection.

10034

A protocol was specified in the

configuration file, but the required driver is

not loaded in the firmware (CB8MENU).

Correct the protocol in the configuration file

Obtain the correct DCC

10038

The FieldServer did not respond due to a

Data Array Age time exceeding the Cache

Age time limit.

Increase Cache Age setting in the configuration

file.

 FieldServer Configuration Manual

Page 85 of 92

Error Description Action

10039

There was a message overrun on Modbus

TCP slave driver. The Client is polling too

often for the FieldServer to respond and

there is more than one message in the in-

buffer. There should be overrun statistics

on the Server Connection in question.

Increase the timeout on the Client device.

10040
Same as 10039, except the overrun is more

than two messages.

10041
Invalid move function specified in

configuration file, or move not defined.
Fix the configuration error

10042 High and Low Scaling values are equal

10045

Move overruns Data Array. This usually

means that the offset PLUS the length of

the Move command is larger than the

length of the Data Array.

Actions: Check Data_Array Length:

Check Move settings

Target_Offset, Source_Offset, Client_Offset,

Server_Offset, Feedback_Offset, Mode_Offset,

Length 10046

Move Offset lies outside the Data Array.

This usually means that the offset of the

Move command is larger than the length of

the Data Array.

10047 Could not find Source Data Array for Move.

Make sure that the specified Data Array exists

before specifying move.

10048 Could not find Target Data Array for Move.

10049 Could not find Client Data Array for Move.

10050 Could not find Server Data Array for Move.

10051
Could not find Feedback Data Array for

Move.

10052 Could not find Mode Data Array for Move.

10053 Data Array already has a responsible move

10054
Setpoint Moves are only allowed to be 1

item in length.

10055

A move was defined, and a write occurred

to the target Data Array, but cannot transfer

to the Source Data Array because no

Responsible Active Map Descriptor is

defined.

10056

A move was defined, and a write occurred

to the target Data Array, but cannot transfer

to the Source Data Array because the Node

associated with the Responsible Active

Map Descriptor is offline.

10058

8051bp03 or CB8MENU found

SMCTCP.INI and FS_TCP.INI files, so it will

delete FS_TCP.INI and use SMCTCP.INI in

future.

10059 Old version of RUIBOOT.EXE being used.
Obtain latest RUIBOOT or use manual method

of setting IP address - see Utilities manual.

10070 Illegal Node_ID.

10071 Map Descriptor length of 0 is not allowed.

 FieldServer Configuration Manual

Page 86 of 92

Error Description Action

10072 Map Descriptor length too large.

10073 Illegal Data Type for J-Bus. Legal values = AI AR DI DR.

10074

An attempt to generate a write cache block

failed because the Node did not have a

connection.

10075 Illegal Map Descriptor address.

10076
This section of Data Array already has a

responsible Map Descriptor.

10077 Unable to add parameters from this line.
Ensure Map Descriptor headings are included in

the .CSV file.

10079
Map Descriptor length greater than Data

Array length

10082
Failed attempt to do a Modbus read from

Node_ID 0.
Only writes can be broadcast.

10083 Illegal Modbus Map Descriptor length

10084 Illegal Modbus Map Descriptor address

10085 Check backup station number settings...

10085
PLC_Port_Count set to 1, but Hot Standby

not configured for Mode2.
Set FieldServer parameter hs_mode to mode2

10087
Protocol specified in config file, but no such

driver is loaded.

10089 Illegal Modbus Node ID Must be in range 1 to 255.

10102

An attempt to generate a write cache block

failed because the Node did not have a

connection

Typically a Node has a Server_Name specified,

and a write to this Node occurred before the

Server_Name mechanism discovered a valid

connection.

10103

The maximum number of concurrent cache

blocks has been exceeded. A write

cache_block poll did not occur

10104
Connection mode of Hot_Standby_Data is

only supported in Hot Standby Mode1

10105
PLC_Port_Count = 1 only supported in

hot_standby mode2.
Set FieldServer parameter hs_mode to mode2

10106

An invalid hot_standby_mode has been

specified as part of the FieldServer

parameters,

check hsb_p(s).ini files

10107

Could not create cache block - possibly

because the maximum number of

data_points has been exceeded

Contact FST.

10108
A BACNet alarm event was generated but

the required Alarm Limits has not been set

10110
Hot_Standby "partner_discover" found a

PRIMARY SECONDARY mismatch

10111
Hot_Standby "partner_discover" found an

API Version mismatch

10112
Hot_Standby "partner_discover" found a

DCC version mismatch

 FieldServer Configuration Manual

Page 87 of 92

Error Description Action

10113
Hot_Standby "partner_discover" found a

config file mismatch

10114
A Node_ID > 255 was used in the

Hot_Standby commbit configuration.

10117

The Gateway Address for adapter N1 has

not been specified. This FieldServer will

only be accessible on the local TCP/IP

subnet.

10118

The NETMASK for adapter N1 or N2 has

not been specified. This FieldServer will not

be accessible on the TCP/IP network

through one or both of these adapters.

10119

The IP_ADDRESS for adapter N1 or N2

has not been specified. This FieldServer will

not be accessible on the TCP/IP network

through one or both of these adapters.

10120
An unrecognized rui_command was

received.

Check that the Ruinet and Kernel versions

match.

10125

In the BACNet driver, the OPTION_LIST

specified caused the packet buffer to be

exceeded. As a result the packet buffer was

truncated.

10126

The BACNet driver received a request for a

read_property_multiple with multiple

objects.

This is not reported in the current release of the

BACNet driver.

10127
An UDP socket buffer overflowed and UDP

data was lost.

10128
The keyword MY_IP has been used in the

FS_TCP.INI file.
Only use KW_N1 and KW_N2

10129
The keyword N1_IP has been used in the

SMCTCP.INI file.
Use the FS_TCP.INI file.

10130
UDP broadcast panics has been disabled

until a hardwired send is added

10133

The ARP resolve queue has been overrun.

This is typically the result of a mis-

configuration on the FieldServer.

Check all IP_addresses, in particular the

gateway address.

10134 A cache block was not created

The Client side plc_channel has not yet been

discovered, or an attempt to write to an

Analog_Input Data_Type

10136

A temporary write block has been removed

because an identical one existed. Write

data might have been lost.

10209

Warning: the Server is responding with data

from an explicit Map Descriptor that is not

reading continuously

10210
Info: the inet Server received a write to

input command that is not supported.

 FieldServer Configuration Manual

Page 88 of 92

Error Description Action

10214

Warning: A Server side driver tried to read

from a Data_Object that has a WRBX as a

responsible Map Descriptor. The data

being read from the Server side might not

be the same as on the Client side.

10216
A Server node is associated with more than

one Client Node.

10302
An IP Fragmented packet was received

while IP Defragmentation was disabled.

Display "RX IP fragments" stat in the Ethernet

api stat screen. If this occurs frequently enable

IP Defragmentation

10401 The I/Net Server ignored a write to an Input

10402
The Baud Rate on a Connections Port has

not been defined.
A default value will be used.

10403

The MSTP driver must run at a cycle time

shorter that 10ms or proper operation

cannot be guaranteed

10404

The Write Queue is full and data has been

overwritten. This could be caused by using

moves to do multiple write-thru’s on a

RDBC Map Descriptor.

Solve by increasing the Write_Queue_Size or

slowing write-thru’s.

10999 Up to and including

11001
Lutron driver: Data Array length for Area

names too small

Increase Data_Array_Length in .CSV file. 11002
Lutron driver: Data Array length for Scene

names too small

11003
Lutron driver: Data Array length for Zone

names too small

11004

Envirotronics SystemsPlus driver: The

name entered in the SysPlus_Cmd

mapdesc field is not recognized or was not

entered at all.

This field must be filled in with a valid

SysPlus_Cmd.

11005

Envirotronics SystemsPlus driver: The

name entered in the SysPlus_Data_Type

mapdesc field is not recognized or was not

entered at all.

This field must be filled in with a valid

SysPlus_Data_Type.

11006

Envirotronics SystemsPlus driver: The

name entered in the

Store_Data_Array_Name mapdesc field is

not valid or was not entered at all.

This field must be filled in with a valid Data Array

name.
11007

Envirotronics SystemsPlus driver: The

name entered in the

Par_Data_Array_Name mapdesc field is not

valid or was not entered at all.

11008

Envirotronics SystemsPlus driver: The

name entered in the SysPlus_Alarm_Name

mapdesc field is not valid or was not

entered at all.

 FieldServer Configuration Manual

Page 89 of 92

Error Description Action

11009

Envirotronics SystemsPlus driver: The

requested number of events or auxs to set

is more than set up in the parameter Data

Array..

Reduce number of events or auxs or increase

parameter Data Array length

11010

Siemens Cerberus driver: The counts Data

Array has less than 14 data elements per

panel and event countds could not be

stored.

Increase the number of data elements in the

counts Data Array to 14 elements per panel.

11011

Siemens Cerberus driver: The Client driver

could not find a suitable Map Descriptor to

store the incoming event. The error

message reported the event's panel,

module and device numbers.

Use the event's panel, module and device

numbers to define a Map Descriptor with

Node_Name = panel.

e.g For message: DRIVER-> CER : No mapdesc

for panel 2, module 15, device 4,

Create a mapdesc that will map to an address

of15*256 + 4 = 3844, since there are always 256

devices per module for Cerberus. The mapdesc

field block_number represents the Cerberus

module number. A Cerberus mapdesc maps to

addresses from module*256 + 0 to module*256

+ (length-1), e.g. the following addresses are

defined for a mapdesc of module 15 and length

4: (15*256 +0) ; (15*256 +1) ; (15*256 +2) ;

(15*256 +3). Our example event will cause this

error message since the greatest address is

(15*256 +3) = 3843 and we need an address of

3844. A mapdesc with module 15 and length 5

will store the event ok, since (15*256 + (5-1)) =

(15*256 +4) = 3844.

11012

Envirotronics SystemsPlus driver: The

SystemsPlus panel replied with "Not

Monitored" when the driver tried to edit read

scan alarm or tried to read alarm status.

The driver message screen records the

specific alarm's name

Refer to the SystemsPlus user manual to set up

the alarm for monitoring in the panel. This

message can only be solved in the panel and is

not a driver problem.

11013

A BACnet Ethernet packet was received on

a network adapter that is not configured in

the CSV file. Message will be ignored.

If BACnet comms fail, check the configuration

and network connection.

11014

An 802.3 (Hot Standby) packet was

received on an incorrectly configured

network adapter. Packet will be discarded.

11015
GE SRTP - SD016 message indicates NAK

error.

 FieldServer Configuration Manual

Page 90 of 92

Appendix C.7. Networking Glossary of Terms

Term Description

10Base2:

10Base2 is the implementation of the IEEE 802.3 Ethernet standard on thin

coaxial cable. Thin Ethernet or thinnet, as it is commonly called, runs at 10Mbps.

Stations are daisy chained and the maximum segment length is 200 meters.

10Base5:

10Base5 is the implementation of the IEEE 802.3 Ethernet standard on thick

coaxial cable. Thick or standard Ethernet, as it is commonly called, runs at

10Mbps. It uses bus topology and the maximum segment length is 500 meters.

10BaseT:

10BaseT is the implementation of the IEEE 802.3 Ethernet standard on

unshielded twisted-pair wiring. It uses star topology, with stations directly

connected to a multi-port hub. It runs at 10Mbps, and has a maximum segment

length of 100 meters.

802.3:

This IEEE standard governs the Carrier Sense Multiple Access/Collision

Detection (CSMA/CD) networks, which are more commonly called Ethernet.

802.3 networks operate at varying speeds and over different cable types. See

10Base2, 10Base5 and 10BaseT.

Arcnet:

Datapoint designed this 2.5 Mbps token-passing star-wired network in the 1970s.

Its low cost and high reliability can make it useful to companies on a tight network

budget, although not endorsed by any IEEE committee. ArcnetPlus is a

proprietary product of Datapoint that runs at 20 Mbps.

Bandwidth:

Bandwidth is the amount of data that can be transmitted over a channel,

measured in bits per second. For example, Ethernet has a 10Mbps bandwidth

and FDDI has a 100 Mbps bandwidth. Actual throughput may be different than the

theoretical bandwidth.

FieldServer:

A FieldServer connects two networks of the same access method, for example,

Ethernet to Ethernet or Token Ring to Token Ring. A FieldServer works at the

OSI’s Media Access Layer, and is transparent to upper-layer devices and

protocols. FieldServers operate by filtering packets according to their destination

addresses. Most FieldServers automatically learn where these addresses are

located, and thus are called learning FieldServers.

Ethernet:

Ethernet is a 10Mbps CSMA/CD network that runs over thick coax, thin coax,

twisted-pair, and fiber-optic cable. A thick coax Ethernet uses a bus topology. A

thin coax Ethernet uses a daisy chain topology. A fiber Ethernet is point-to-point.

DIX or Blue Book Ethernet is the name of the Digital Equipment Corp., Intel and

Xerox specification; 8802/3 is the ISO’s specification.

Gateway:

In OSI terminology, a gateway is a hardware and software device that connects

two dissimilar systems such as a LAN and a mainframe. It operates at the fourth

through seventh layers of the OSI model. In Internet terminology, a gateway is

another name for a router.

GUI (FS-GUI): Graphical User Interface

Hub:

A concentrator is a hub repeater or concentrator that brings together the

connections from multiple network Nodes. Hubs have moved past their origins as

wire concentrator centers, and often house FieldServers, routers, and network-

management devices.

Internet:

The Internet is a collection of over 2, 000 packet-switched networks located all

over the world, all linked using the TCP/IP protocol. It links many university,

government and research sites.

 FieldServer Configuration Manual

Page 91 of 92

Term Description

Internet Protocol

(IP):

IP is part of the TCP/IP suite. It is a session layer protocol that governs packet

forwarding.

Interoperability:

Interoperability is the ability of one manufacturer’s computer equipment to operate

alongside, communicate with, and exchange information with another vendor’s

dissimilar computer equipment.

Leased line:

A leased line is a transmission line reserved by a communications carrier for the

private use of a customer. Examples of leased line services are 56 Kbps or T-1

lines.

Local Area Network

(LAN):

A LAN is a group of computers, each equipped with the appropriate network

adapter card and software and connected by a cable, that share applications,

data and peripherals. All connections are made by cable or wireless media, but a

LAN does not use telephone services. It typically spans a single building or

campus.

LUI: Local User Interface

Network:

A network is a system of computers, hardware and software that is connected

over which data, files, and messages can be transmitted. Networks may be local

or wide area.

Open Systems:

In open systems, no single manufacturer controls specifications for the

architecture. The specifications are in the public domain, and developers can

legally write to them. Open systems are crucial for interoperability.

Packet:
A packet is a collection of bits comprising data and control information, which is

sent from one Node to another.

Packet Switching:

In packet switching, data is segmented into packets and sent across a circuit

shared by multiple subscribers. As the packet travels over the network, switches

read the address and route the packet to its proper destination. X.25 and frame

relay are types of packet-switching services.

PFE: Protocol Front End

Protocol:
A protocol is a standardized set of rules that specify how a conversation is to take

place, including the format, timing, sequencing and/or error checking.

Router:

A router is a network layer device that connects networks using the same

Network-Layer protocol, for example TCP/IP or IPX. A router uses a standardized

protocol, such as RIP, to move packets efficiently to their destination over an

internetwork. A router provides greater control over paths and greater security

than a FieldServer; however it is more difficult to set up and maintain.

RUI: Remote User Interface.

Server:

A Server is a computer that provides shared resources to network users. A Server

typically has greater CPU power, number of CPUs, memory, cache, disk storage,

and power supplies than a computer that is used as a single-user workstation.

SUI: System User Interface

TCP/IP,

Transmission

Control Protocol/

Internet Protocol:

TCP/IP is the protocol suite developed by the Advanced Research Projects

Agency (ARPA), and is almost exclusively used on the Internet. It is also widely

used in corporate internetworks, because of its superior design for WANs. TCP

governs how packets are sequenced for transmission. IP provides a

connectionless datagram service. “TCP/IP” is often used to generically refer to the

entire suite of related protocols.

 FieldServer Configuration Manual

Page 92 of 92

Term Description

Wide Area Network

(WAN):

A WAN consists of multiple LANs that are tied together via telephone services

and/or fiber optic cabling. WANs may span a city, state, a country or even the

world.

Wireless LAN:

A wireless LAN does not use cable, but rather radio or infrared to transmit

packets through the air. Radio frequency (RF) and infrared are the most common

types of wireless transmission.

