
CMSC/BIOL 361: Emergence

Cellular Automata: Introduction to NetLogo

Getting to Know NetLogo: All About Ants

NetLogo is a development environment. For you non-computer science people, that

means that it is a program that allows you to write code, debug code, translate that code

into instructions the computer understands (compile and interpret), and run the

instructions (link and execute). In other words, it allows you to do all the steps necessary

to write and execute a computer program in one convenient software package. As

already discussed, it is also a programming language. To use NetLogo effectively,

therefore, we need to understand both the software and the language. Let’s start with the

software.

First we should assume that NetLogo is installed on your machine. However, it may not

be. If not, download an installer from the link provided on the class website and install it.

NetLogo will run on any platform (Windows, Mac, Linux).

Good, now launch the program!

Welcome to the NetLogo environment! When you load the software, it presents you with

an interface screen (i.e., Interface tab is selected and on top). The interface screen

allows you to 1) design and modify the interface for a simulation using a nice Graphical

User Interface (GUI), 2) interact with a simulation that is already written and view it

behavior, and 3) use the interpreter aspect of NetLogo to run on-the-fly commands. We

will look at all of these options in a bit. For now, let’s continue to see what else NetLogo

has to offer.

Click on the Information tab. Doing this brings the following to the front an editable

help file. If you are running a simulation written by someone else, it should contain a

description of the model and instructions on its use. If you have written a simulation, it is

your responsibility to edit this file so that others are informed of the purpose and use of

your simulation. Now select the Procedures tab. It is this window that you will write

and edit NetLogo code.

Enough chit-chat; let’s get started! From the File Menu, select Models Library. This

brings up a library of all the pre-existing simulations that have been written in NetLogo

and incorporated in the software distribution. As you can see, there are quite a few and

Disclaimer: To get you oriented to the NetLogo platform, I’ve put together an in-depth

step-by-step walkthrough of a NetLogo simulation and the development environment

in which it is presented. For those of you with significant programming experience

under your belt, this walkthrough may be a bit of overkill. For those of you without

significant programming experience, it may still be a bit of overkill, considering that

StarLogo and NetLogo are frequently used by junior-high school students; i.e., the

interface and language are very intuitive. Nonetheless, the detail is there for those

who may need it. For those of you who wish to read less carefully (i.e., feel they can

learn fine by exploring on their own), I’ve highlighted sections that you really should

not skip in blue, such as “exercises” that need to be answered.

CMSC/BIOL 361: Emergence

Cellular Automata: Introduction to NetLogo

we will explore many of them over the next couple of weeks. For now, browse to the

Biology folder and select the Ants simulation. Then select Open to load the simulation

into NetLogo. When loaded NetLogo switches back to the Interface window, which as

you can see, is now filled with stuff:

This stuff includes: sliders for setting the initial conditions (e.g., population size, rate at

which pheromones diffuse or evaporate, and even an on/off “switch” for the output plot),

buttons that allow you to setup or run the simulation, and a plot that presents some data

concerning the behavior of the simulation, as well as the other aspects of the interface

window (tools for adding other controls and the interpreter for on-the-fly interaction).

Exercise 1: Play with Ants!!! Press the setup button. What happens? Then press the go

button. What happens? Given these initial conditions and the behavior of the system, to

which class of cellular automata do you think this model belongs? Press the go button to

stop the simulation. Change the initial conditions by using the sliders. Press the setup

button to setup the model with the new conditions and then run again. Do you still like

your classification choice?

Exercise 2: So, what is this a simulation of? Press the Information tab to read a bit

about the system this simulation is modeling. Now that you understand the system, go

back to the Interface tab and play with the model some more. Turn on the plot. What

insight does the plot give you into the behavior of the system? Is this system emergent.

Why or why not?

Just from running this little simulation, I hope you can see that NetLogo is a pretty cool

development environment that lets you play with cellular automata models in a very

sophisticated manner (I mean, there were actually ants running around on your computer

screen!!!). Certainly, this simulation is a lot more interesting than Conway’s Game of

Life! And, as you saw when you looked at the model’s library, there are many, many

simulations that we could happily spend hours playing with. But...we are here to learn

some biology and some computer science, which means we need to understand not only

Tools for creating new

buttons, sliders, etc.

Shell for entering on-

the-fly commands

Window where CA

world is visualized

Slider for setting initial

conditions

Buttons for controlling

simulation

Plot for presenting

some data re: the model

CMSC/BIOL 361: Emergence

Cellular Automata: Introduction to NetLogo

the output of the simulation, but how the simulation was created in the first place. So,

let’s explore a little further and look at the code for the Ant simulation by switching to

the Procedures tab.

Below are segments from the code for the Ant simulation, cut and paste directly from the

original and then annotated to help you read through and understand what is going on.

The color scheme is also the same:

The ant program starts with a block of code that defines the variables that all patches can

use. In other words, this code bit establishes the characteristics of a patch for the model,

where each variable saves an aspect of the patch’s state (e.g., a patch could have 5 g of

chemical, 1 food, no nest, 0.32 nest scent and a food source of 3). We know this because

it begins with the word patches-own. This word is a reserve word, or a phrase that is an

integral part of the NetLogo programming language. The reserve word is followed by

square braces ([]), and any code statements in those braces are affiliated with the word.

There is also a reserve word, turtles-own, that can be used to define any variables

associated with turtles. Both patches-own and turtles-own must be used first; i.e.,

when necessary, these definitions are the first things to appear in a NetLogo program.

Also worthy of note is the text followed by double semi-colons (;;) or comments.

Comments are annotations to source code that help explain the purpose and workings.

Anything followed by the ;; to the end of the line is ignored when a program is built

from code.

Let’s look at the next code block:

Here we see two more reserve words: to and end. These two words mark the start and

end of a command procedure or function (i.e., a block of code that performs a specific

task). In general, the syntax for a command procedure is:

to procedure-name

 do something

 :

 do something else

patches-own [
 chemical ;; amount of chemical on this patch

 food ;; amount of food on this patch (0, 1, or 2)
 nest? ;; true on nest patches, false elsewhere

 nest-scent ;; number that is higher closer to the nest
 food-source-number ;; number (1, 2, or 3) to identify the food sources

]

A comment

to setup
 clear-all

 set-default-shape turtles "bug"
 crt population

 [set size 2 ;; easier to see

 set color red] ;; red = not carrying food
 setup-patches

 do-plotting
end

CMSC/BIOL 361: Emergence

Cellular Automata: Introduction to NetLogo

end

The particular procedure illustrated on the previous page is standard and most NetLogo

simulations will have one. This is the setup procedure and is the list of commands that

happen when the setup button is pressed on the interface. This setup procedure does the

following:

1. Clears the display world of all patches and turtles (clear-all).

2. Establishes how turtles will be drawn (set-default-shape turtles “bug”)

3. Creates turtles, which belong to the breed “population” (crt). The settings

between the square braces following the crt statement establish what

“population” turtles look like.

4. The setup function then calls two function written by the programmer, one the

sets up the patches and the other that does the plotting. If you scroll down

through the program, you will see that these functions are defined in the same

way as was the setup procedure.

This setup function has introduced us to many NetLogo commands. Commands are

words that perform specific tasks in NetLogo (i.e., built-in functions). NetLogo

commands appear in blue. In addition to commands we can also see that there are other

words that are colored. These include values (in red) and standard NetLogo

identifiers and operators (in purple).

The standard setup procedure is followed by three more user-defined setup functions:

setup-patches, setup-nest, and setup-food. If you look carefully, you will see that setup-

patches initializes the world so that some patches are the ants’ nest and some their food.

It then recolors the patches (using the user-defined recolor-patch function) to reflect

whether a patch contains food or is the nest. All of this patch setting-up happens in the

setup function, when the setup-patch command is invoked. Take home message: you

can define a procedure (or function or block of code that completes a task) using the

keywords to and end and the syntax introduced earlier. Once you define a procedure, you

can invoke it (i.e., cause it to be executed) by just typing the procedure-name elsewhere

in your code.

Once setup, the next step is to actually run the simulation. This is done with another

standard, user-defined function: go. Below is the go procedure from the Ants simulation:

to go ;; forever button

 ask turtles

 [if who >= ticks [stop] ;; delay initial departure

 ifelse color = red

 [look-for-food] ;; not carrying food? look for it

 [return-to-nest] ;; carrying food? take it back to nest

 wiggle

 fd 1]

 diffuse chemical (diffusion-rate / 100)

 ask patches

 [set chemical chemical * (100 - evaporation-rate) / 100

 recolor-patch]

 tick

 do-plotting
end

CMSC/BIOL 361: Emergence

Cellular Automata: Introduction to NetLogo

This go procedure does the following:

1. Asks the turtles to perform all the commands in between the square braces that

follow the ask turtles command, including looking for food, returning to the

nest, wiggling, and moving forward one patch.

2. Tells each patch to share some of its chemical (see the patch definition) with all

eight of its neighboring patches (diffuse)

3. Asks all patches to update their amount of chemical.

4. Update the tick-counter (tick; a way of keeping track of time).

5. Plot the change in the system on the plot.

After the go function is a whole bunch of other code...all of which are additional

procedures that accomplish or help accomplish the tasks outlined in the go procedure,

which is the meat of the simulation.

Now, I could, in excruciating detail, work through the remainder of the code for the Ant

simulation...but I am not going to. Mainly because there are a lot of built-in commands

and a lot of details that can’t be simply explained in one sitting. Instead, I suggest you

read through the code on your own. I think you will find it to be mostly intuitive.

Discuss it with your neighbor if you get confused.

After you are fairly comfortable or fairly frustrated by the Ant simulation, I’d like you to

do the following:

Exercise 3: Familiarize yourself with NetLogo by doing Tutorial’s 1-3 in the NetLogo

User’s Manual (found through the Help Menu).

Exercise 4: Now that you are a NetLogo expert, go back to the Ant simulation. Let’s go

out on a limb and change the model! Alter something....it could be something big or

something little. Well, not too little. Changing the forward statement in the go procedure

from fd 1 to fd 2 is TOO little. The goal is to change the actual system being modeled

by modifying one of the procedures that govern its behavior (i.e., one of those functions

following the go procedure). Now run your newly adapted model. Is the effect of your

tampering visible? How so? Explain your modification and e-mail me a copy of your

program.

