
The Therion Book

Stacho Mudrák

Martin Budaj

Therion is copyrighted software. Distributed under the GNU General Public License.

Copyright c⃝ 1999–2014 Stacho Mudrák, Martin Budaj

This book describes Therion 5.3.16

Code contributions by Marco Corvi, Georg Pacher and Dimitrios Zachariadis.

We owe thanks to

Martin Sluka, Ladislav Blažek, Martin Heller, Wookey, Olly Betts

and all users for their feedback, support and suggestions.

Translations (%):

Language XTherion Map header Loch Translated by

bg 100 94 100 Alexander Yanev, Ivo Tachev

cz 94 100 – Ladislav Blažek

de 95 100 – Roger Schuster, Georg Pacher

el 98 100 – Stelios Zacharias

en[UK| US] 87 95 100

es 87 96 – Roman Muñoz

fr – 100 – Eric Madelaine, Gilbert Fernandes

it 99 100 – Marco Corvi

mi – 98 – Kyle Davis, Bruce Mutton

pl – 100 – Krzysztof Dudziński

pt[BR| PT] – 96 – Toni Cavalheiro

ru 94 99 – Vasily V. Suhachev

sk 99 100 96 Stacho Mudrák

sq 99 100 – Fatos Katallozi

The cover picture shows survey sketch of Hrozný kameňolom Chamber in the Cave of

Dead Bats in Slovakia and the map of it produced by Therion.

Table of Contents

Introduction . 7
Why Therion? . 7
Features . 8
Software requirements 9
Installation . 9

Setting-up environment 10
How does it work? 10
First run . 11

Creating data files 12
Basics . 12
Data types . 13
Coordinate systems 14
Magnetic declination 14
Data format . 15

‘encoding’ . 15
‘input’ . 15
‘survey’ . 16
‘centreline’ . 17
‘scrap’ . 21
‘point’ . 23
‘line’ . 26
‘area’ . 29
‘join’ . 30
‘equate’ . 30
‘map’ . 31
‘surface’ . 32
‘import’ . 33
‘grade’ . 33
‘revise’ . 33

Custom attributes 34
XTherion . 34

XTherion—text editor 35
XTherion—map editor 35
Additional tools 38
Keyboard and mouse shortcuts in the Map editor 39

Thinking in Therion 41
How to enter centreline? 41
How to draw maps? 42
How to create models? 43

Therion in depth 43
How the map is put together 43

Processing data 46
Configuration file 46

‘system’ . 46
‘encoding’ . 46
‘language’ . 46
‘cs’ . 46
‘sketch-warp’ 47
‘input’ . 47

‘source’ . 47
‘select’ . 48
‘unselect’ . 48
‘text’ . 49
‘layout’ . 49
‘setup3d’ . 55
‘sketch-colors’ 56
‘export’ . 56

Running Therion 58
XTherion—compiler 59

What we get? . 60
Information files 60

Log file . 60
XTherion . 60
SQL export . 60
Lists—caves, surveys, continuations 62

2D maps . 62
Maps for printing 62
Maps for GIS 63
Special-purpose maps 63

3D models . 63
Loch . 63

Changing layout of PDF maps 64
Page layout in the atlas mode 64
Page layout in the map mode 69
Customizing text labels 70
New map symbols 71

Point symbols 72
Line symbols 73
Area symbols 73
Special symbols 74

Appendix . 75
Compilation . 75

Quick start . 76
Hacker’s guide 76

Environment variables 77
Initialization files 78

Therion . 78
XTherion . 80

Limitations . 81
Example data . 81
History . 82
Future . 84

General . 84
2D maps . 84
3D models . 84
XTherion . 84
Loch . 84
Labyrinth . 84

Case studies . 85
Drawing maps in therion 85
Listing caves . 85
Area symbols . 87
Sketch morphing 87

Extended elevation control 90
Stations in extended elevation scraps 93

Dipsplaying overlaying maps in offset 94
Importing survex .3d files 96

Using surveys specified in .th files 96
Creating non-existing surveys 97
Ignoring station prefixes 98
Managing large projects 99
Conclusion . 101

Question marks handling 101
Question marks in centerline 101
Question marks in maps 102
Exporting question mark lists 103

Using user defined symbol types 104

LET NO ONE IGNORANT OF GEOMETRY ENTER HERE

ageOMetRhtos Mhdeis eisitO
—alleged inscription over the entrance

of Plato’s Academy, th century BC

Introduction

Therion is a tool for cave surveying. Its purpose is to help

• archive survey data on computer in a form as close to the original notes and sketches

as possible and retrieve them in a flexible and efficient way;

• draw a nice up-to-date plan or elevation map;

• create a realistic 3D model of the cave.

It runs on Unix, Linux, MacOSX and Win32 operating systems. Source code and Win-

dows installer are available on the Therion web page (http://therion.speleo.sk).

Therion is distributed under the GNU General Public License.

Why Therion?

In the 1990s we’ve done a lot of caving and cave surveying. Some computer programs

existed which displayed survey shots and stations after loop closure and error elimination.

These were a great help, especially for large and complicated cave systems. We used the

output of one of them—TJIKPR—as a background layer with survey stations for hand-

-drawn maps. After finishing a huge 166-page Atlas of the Cave of Dead Bats in early

1997, we soon had a problem: we found new passages connecting between known passages

and surveyed them. After processing in TJIKPR, the new loops influenced the position

of the old surveys; most survey stations now had a slightly different position from before

due to the changed error distribution. So we could either draw the whole Atlas again,

or accept that the location of some places was not accurate—in the case of loops with

a length of approximately 1 km there were sometimes errors of about 10m—and try to

distort the new passages to fit to old ones.

These problems remained when we tried to draw maps using some CAD programs in

1998 and 1999. It was always hard to add new surveys without adapting the old ones

to the newly calculated positions of survey stations in the whole cave. We found no

program that was able to draw an up-to-date complex map (i.e. not just survey shots

with LRUD envelope), in which the old parts are modified according to the most recent

known coordinates of survey stations.

In 1999 we begun to think about creating own program for map drawing. We knew about

programs which were perfectly suited for particular sub-tasks. There was METAPOST,

a high level programming language for vector graphics description, Survex for excellent

7

http://therion.speleo.sk
http://www.gnu.org/

processing of survey shots, and TEX for typesetting the results. We had only to glue

them together. By Xmas 1999 we had a minimalistic version of Therion working for the

first time. This consisted only of about 32 kB of Perl scripts and METAPOST macros but

served the purpose of showing that our ideas were implementable.

During 2000–2001 we searched for the optimal format of the input data, programming

language, concept of interactive map editor and internal algorithms with the help of

Martin Sluka (Prague) and Martin Heller (Zürich). In 2002 we were able to introduce

the first really usable version of Therion, which met our requirements.

Features

Therion is a command-line application. It processes input files, which are—including 2D

maps—in text format, and creates files with 2D maps or 3D model as the output.

The syntax of input files is described in detail in later chapters. You may create these

files in an arbitrary plain text editor like ed or vi. They contain instructions for Therion

like

point 1303 1004 pillar

where point is a keyword for point symbol followed by its coordinates and a symbol type

specification.

Hand-editing of such files is not easy—especially when you draw maps, you need to think

in spatial (Cartesian coordinate) terms. Thus there is a special GUI for Therion called

XTherion. XTherion works as an advanced text editor, map editor (where maps are

drawn fully interactively) and compiler (which runs Therion on the data).

It may look quite complicated, but this approach has a lot of advantages:

• There is strict separation of data and visualization. The data files specify only what

is where, not what it looks like. The visual representation is added by METAPOST in

later phases of data processing. (It’s very similar concept to XML data representation.)

This makes it possible to change map symbols used without changing the input data,

or merge more maps created by different persons in different styles into one map with

unified map symbols set.

2D maps are adapted for particular output scale (level of abstraction, non-linear scaling

of symbols and texts)

• All data are relative to survey station positions. If the coordinates of survey stations are

changed in the process of loop closure, then all relevant data is moved correspondingly,

so the map is always up-to-date.

• Therion is not dependent on particular operating system, character encoding or input

files editor; input files will remain human readable

• It’s possible to add new output formats

8

• 3D model is generated from 2D maps to get a realistic 3D model without entering too

much data

• although the support for WYSIWYG is limited, you get what you want

Software requirements

“A program should do one thing, and do it well.” (Ken Thompson) Therefore we use

some valuable external programs, which are related to the problems of typesetting and

data visualization. Therion can then do its task much better than if it was a standalone

application in which you could calibrate your printer or scanner and with one click send

e-mail with your data.

Therion needs:

• TEX distribution. Necessary only if you want to create 2D maps in PDF or SVG

format.

• Tcl/Tk with BWidget and optionally tkImg extension. It is only required for XTherion.

• LCDF Typetools if you want to use easy setup for custom fonts in PDF maps

• convert and identify utilities from ImageMagick distribution, if you want to use warping

of survey sketches.

• ghostscript if you want to create calibrated images from georeferenced PDF maps.

Windows installer includes all required packages with the exception of ghostscript. Read

the Appendix if you want to compile Therion yourself.

For displaying of maps and models you may use any of the following programs:

• any PDF or SVG viewer displaying 2D maps;

• any GIS supporting DXF or shapefile formats for analyzing the maps;

• appropriate 3D viewer for models exported in other than default format;

• any SQL database client to process exported database.

Installation

Installation from sources (therion-5.*.tar.gz package):

The source code is a primary Therion distribution. It needs to be compiled and installed

according to instructions in the Appendix.

Installation on Windows:

Run the setup program and follow instructions. It installs all the required stuff and

creates shortcuts to XTherion and Therion Book.

9

Setting-up environment

Therion reads settings from the initialization file. Default settings should work fine for

users using just latin characters1, standard TEX and METAPOST.

If you want to use own fonts for latin or non-latin characters in PDF maps, edit initial-

ization file. Instructions on how to do this are in the Appendix.

How does it work?

So, now it’s clear what Therion needs, let’s have a look at the way it interacts with all

these programs:

Therion

therion.mp

therion.tex

XTherion

Loch & other viewers

MetaPost

Plain base

makempx mpto

TEXdvitomp

Plain format

pdfTeX
Plain format

input data

PDF maps

info & log files

maps, models, DB

scanned sketches

DON’T PANIC! When your system is set-up right the majority of this is hidden from the

user and all necessary programs are run automatically by Therion.

For working with Therion it is enough to know that you have to create input data (best

done with XTherion), run Therion, and display output files (3D model, map, log file) in

the appropriate program.

For those who want to understand more about it, here is a brief explanation of the above

flowchart. Program names are in roman font, data files in italics. Arrows show data flow

between programs. Temporary data files are not shown. Meaning of colors:

• black—Therion programs and macros (XTherion is written in Tcl/Tk, so it needs this

interpreter to run)

• red—TEX package

1 In the PDF map Therion renders most of the accented characters as a combination of accent and a
base character. Some obscure accents might be omitted. Precomposed accented letters are included
for Slovak and Czech languages.

10

• green—input files created by the user and output files created by Therion

Therion itself does the main task. It reads the input files, interprets them, finds closed

loops and distributes errors. Next it transforms all other data (e.g. 2D maps) according

to new stations position. Therion exports data for 2D maps in METAPOST format.

METAPOST gives the actual shape to abstract map symbols according to map symbol

definitions; it creates a lot of PostScript files with small fragments of the cave. These

are read back and converted to a PDF-like format, which forms input data for pdfTEX.

PdfTEX does all the typesetting and creates a PDF file of the cave map.

Therion also exports 3D model (full or centreline) in various formats.

Centreline may be exported for further processing in any SQL database.

First run

After explaining the basic principles of Therion it’s a good idea to try it on the example

data.

• Download the sample data from Therion web page and unpack it somewhere on your

computer’s hard drive.

• Run XTherion (under Unix and MacOS X by typing ‘xtherion’ in the command line,

under Windows there is a shortcut in the Start menu).

• Open the file ‘thconfig’ from the sample data directory in the ‘Compiler’ window of

XTherion

• Press ‘F9’ or ‘compile’ in the menu to run Therion on the data—you’ll get some mes-

sages from Therion, METAPOST and TEX.

• PDF maps and 3D model are created in the data directory.

Additionally, you may open survey data files (*.th) in the ‘Text editor’ window and map

data files (*.th2) in the ‘Map editor’ window of XTherion. Although the data format

may look confusing for the first time, it will be explained in the following chapters.

11

Only for you, children of doctrine

and learning, have we written this work.
Examine this book, ponder the meaning

we have dispersed in various places and
gathered again; what we have concealed

in one place we have disclosed in another,

that it may be understood by your wisdom. —Henricus C. Agrippa ab Nettesheym,

Creating data files

Basics

The input files for Therion are in text format. There are a few rules about how such a

file should look:

• There are two kinds of commands. One-line commands and multi-line commands.

• A one-line command is terminated by an end of line character. The syntax of these is

command arg1 ... argN [-option1 value1 -option2 value2 ...]

where arg1 ... argN are obligatory arguments, and pairs -option value are options,

which you may freely omit. Which arguments and options are available depends on

the particular command. An example may be

point 643.5 505.0 gradient -orientation 144.7

with three obligatory arguments and one optional option/value pair. Sometimes op-

tions have no or multiple values.

• Multi-line commands begin similarly to one line commands, but continue on subsequent

lines until explicit command termination. These lines may contain either data or

options, which are applied to subsequent data. If a data line starts with a word

reserved for an option, you have to insert ‘!’ in front of it. The syntax is

command arg1 ... argN [-option1 value1 -option2 value2 ...]

...

optionX valueX

data

...

endcommand

Again, for better illustration, a real example follows:

line wall -id walltobereferenced

1174.0 744.5

1194.0 756.5 1192.5 757.5 1176.0 791.0

smooth off

1205.5 788.0 1195.5 832.5 1173.5 879.0

12

endline

This command line has one obligatory argument, a line type (passage wall in this

case), followed by one option. The next two lines contain data (coordinates of Bézier

curves to be drawn). The next line (“smooth off”) specifies an option which applies

to subsequent data (i.e. not for the whole line, unlike the option -id in the first line)

and the last line contains some more data.

• if the value of an option or argument contains spaces, you should enclose this value in

" " or []. If you want to put a double-quote " into text in " " you need to insert it

twice. Quotes are used for strings; brackets for numerical values and keywords.

• each line ending with a backslash (\) is considered to continue on the next line, as if

there was neither line-break nor backlash.

• everything that follows #, until the end of line—even inside a command—is considered

to be a comment, and is ignored.

• multiline comments inside comment ... endcomment block are allowed in data and 5.4

configuration files

Data types

Therion uses following data types:

• keyword ◃ a sequence of A-Z, a-z, 0-9 and _-/ characters (not starting with ‘-’).

• ext keyword ◃ keyword that can also contain +*.,’ characters, but not on the first

position.

• date ◃ a date (or a time interval) specification in a format

YYYY.MM.DD@HH:MM:SS.SS - YYYY.MM.DD@HH:MM:SS.SS or ‘-’ to leave a date unspec-

ified.

• person ◃ a person’s first name and surname separated by whitespace characters. Use

‘/’ to separate first name and surname if there are more names.

• string ◃ a sequence of any characters. Strings may contain special tag <lang:XX> to 5.3

separate translations. In multilingual strings only the text between <lang:XX> (where

XX is the language selected in initialization or configuration file) and the next <lang:YY>

tag is displayed on the output. If no match is found, everything before any occurence

of <lang:ZZ> tag is displayed.

• units ◃ length units supported: meter[s], centimeter[s], inch[es], feet[s], yard[s] (also m,

cm, in, ft, yd). Angle units supported: degree[s], minute[s] (also deg, min), grad[s],

mil[s], percent[age] (clino only). A degree value may be entered in decimal notation

(x.y) or in a special notation for degrees, minutes and seconds (deg[:min[:sec]]).

13

Coordinate systems

Therion supports coordinate transformations in geodetic coordinate systems. You can

specify cs option in centreline, surface, import and layout objects and then enter

XY data in given system. You can also specify output cs in configuration file.

If you do not specify any cs in your dataset, it is assumed you are working in local

coordinate system, and no conversions are done. If you specify cs anywhere in the data,

you have to specify it for all location data (fix, origin in layout etc.).

cs applies to all subsequent location data until other cs is specified or until the end of

the current object, whichever comes first.

Following coordinate systems are supported:

• UTM1 – UTM60 ◃ Universal Transverse Mercator in northern hemisphere and given zone,

WGS84 datum.

• UTM1N – UTM60N ◃ same as UTM1 – UTM60

• UTM1S – UTM60S ◃ UTM in southern hemisphere, WGS84 datum.

• lat-long, long-lat ◃ latitude (N positive, S negative) and longitude (E positive,

W negative) in given order in degrees (deg[:min[:sec]] allowed), WGS84 datum. By

default, not supported on output.

• EPSG:<number> ◃ Most of EPSG coordinate systems. Almost every coordinate sys-

tem used worldwide has its own EPSG number. To find number of your system, see

extern/proj4/nad/epsg file in the therion source distribution.

• ESRI:<number> ◃ Similar to EPSG, but ESRI standard.

• JTSK, iJTSK ◃ Czechoslovak S-JTSK system used since 1920s with south and west

axis (JTSK) and its modified version with axis pointing east and north and negative

numbers (iJTSK). JTSK is not supported on output (iJTSK is).

• JTSK03, iJTSK03 ◃ new S-JTSK realisation introduced in Slovakia in 2011.

• OSGB:<H, N, O, S or T><A-Z except I> ◃ British Ordnance Survey National Grid.5.4

• S-MERC ◃ the spherical Mercator projection, as used by various online mapping sites.

Magnetic declination

Therion contains built-in IGRF2 Earth geomagnetic field model valid for period 1900–

2020. It is automatically used if the cave is located in space using any of supported5.4

geodetic coordinate systems and no declination is specified by user. The computed dec-

lination is listed in the LOG file for information.

2 See http://www.ngdc.noaa.gov/IAGA/vmod/

14

http://www.ngdc.noaa.gov/IAGA/vmod/

Data format

The syntax of input files is explained in the description of individual commands. Studying

the example files distributed with Therion will help you understand. See also an example

in the Appendix.

Each of the following sections describes one Therion command using the following struc-

ture:

Description: notes concerning this command.

Syntax: schematic syntax description.

Context: specifies the context in which is this command allowed. The survey context

means that the command must be enclosed by survey ... endsurvey pair. The scrap

context means that the command must be enclosed within scrap ... endscrap pair.

Context all means that the command may be used anywhere.

Arguments: a list of the obligatory arguments with explanations.

Options: a list of the available options.

Command-like options: options for multi-line commands, which can be specified among

the data lines.

‘encoding’

Description: sets the encoding of input file. This allows the use of non-ASCII characters

in input files.

Syntax: encoding <encoding-name>

Context: It should be the very first command in the file.

Arguments:

• <encoding-name> ◃ to see a list of all the supported encoding names, run Therion

with --print-encodings option. ‘UTF-8’ (Unicode) and ‘ASCII’ (7 bit) encodings

are always supported.

‘input’

Description: inserts the contents of a file in place of the command. Default extension is

‘.th’ and may be omitted. For greatest portability use relative paths and Unix slashes

‘/’, not Windows backslashes ‘\’, as directory separators.

Syntax: input <file-name>

Context: all

15

Arguments:

• <file-name>

‘survey’

Description: Survey is the main data structure. Surveys may be nested—this allows a

hierarchical structure to be built. Usually some level of this hierarchical structure survey

represents caves, higher levels karst areas and lower levels e.g. passages.

Each survey has its own namespace specified by its <id> argument. Objects (like survey

stations or scraps; see below) which belong to a subsurvey of the current survey are

referenced as

<object-id>@<subsurvey-id>,

or, if there are more nesting levels

<object-id>@<subsubsurvey-id>.<subsurvey-id>.3

This means, that object identifiers must be unique only in the scope of one survey. For

instance, survey stations names can be the same if they are in different surveys. This

allows stations to be numbered from 0 in each survey or the joining of two caves into one

cave system without renaming survey stations.

Syntax: survey <id> [OPTIONS]

... other therion objects ...

endsurvey [<id>]

Context: none, survey

Arguments:

• <id> ◃ survey identifier

Options:

• namespace <on/off> ◃ specify whether survey creates namespace (on by default)

• declination <specification> ◃ set the default declination for all data objects in

this survey (which can be overridden by declination definitions in subsurveys). The

<specification> has three forms:

1. [] an empty string. This will reset the declination definition.

2. [<value> <units>] will set a single value (also for undated surveys).

3. [<date1> <value1> [<date2> <value2> ...] <units>] will set declination for

several dates. Then the declination of each shot will be set according to the date

specification of the data object. If you want to explicitly set the declination for undated

survey data, use ‘-’ instead of date.

3 Note: it’s not possible to reference any object from the higher-level surveys.

16

If no declination is specified and some geodetic coordinate system is defined, the dec-

lination is automatically computed using built-in geomagnetic model.

N.B.: The declination is positive when the magnetic north is east of true north.

• person-rename <old name> <new name> ◃ rename a person whose name has been

changed

• title <string> ◃ description of the object

• entrance <station-name> ◃ specifies the main entrance to the cave represented by

this survey. If not specified and there is exactly one station marked entrance in this

survey, it is considered to represent a cave also. This information is used for cave-list

export.

‘centreline’

Description: Survey data (centreline) specification. The syntax is borrowed from Survex

with minor modifications; the Survex manual may be useful as an additional reference

for the user. A synonym term ‘centerline’ may be used.

Syntax: centreline [OPTIONS]

date <date>

team <person> [<roles>]

explo-date <date>

explo-team <person>

instrument <quantity list> <description>

calibrate <quantity list> <zero error> [<scale>]

units <quantity list> [<factor>] <units>

sd <quantity list> <value> <units>

grade <grade list>

declination <value> <units>

grid-angle <value> <units>

infer <what> <on/off>

mark <type>

flags <shot flags>

station <station> <comment> [<flags>]

cs <coordinate system>

fix <station> [<x> <y> <z> [<std x> <std y> <std z>]]

equate <station list>

data <style> <readings order>

break

group

endgroup

walls <auto/on/off>

17

vthreshold <number> <units>

extend <spec> [<station> [<station>]]

station-names <prefix> <suffix>

...

[SURVEY DATA]

...

endcentreline

Context: none, survey

Options:

• id <ext_keyword> ◃ id of the object

• author <date> <person> ◃ author of the data and its creation date

• copyright <date> <string> ◃ copyright date and name

• title <string> ◃ description of the object

Command-like options:

• date <date> ◃ survey date. If multiple dates are specified, a time interval is created.

• explo-date <date> ◃ discovery date. If multiple dates are specified, a time interval

is created.

• team <person> [<roles>] ◃ a survey team member. The first argument is his/her

name, the others describe the roles of the person in the team (optional—currently not

used). The following role keywords are supported: station, length, tape, [back]compass,

[back]bearing, [back]clino, [back]gradient, counter, depth, station, position, notes, pic-

tures, pics, instruments (insts), assistant (dog).

• explo-team <person> ◃ a discovery team member.

• instrument <quantity list> <description> ◃ description of the instrument that

was used to survey the given quantities (same keywords as team person’s role)

• infer <what> <on/off> ◃ ‘infer plumbs on’ tells the program to interpret gradients

±90 ◦ as UP/DOWN (this means no clino corrections are applied). ‘infer equates

on’ will case program to interpret shots with 0 length as equate commands (which

means that no tape corrections are applied)

• declination <value> <units> ◃ sets the declination for subsequent shots

true bearing = measured bearing + declination.

The declination is positive when the magnetic north is east of true north. If no decli-

nation is specified, or the declination is reset (-), then a valid declination specification

is searched for in all surveys the data object is in. See declination option of survey

command.

18

• grid-angle <value> <units> ◃ specifies the magnetic grid angle (declination against

grid north).

• sd <quantity list> <value> <units> ◃ sets the standard deviation for the given

measurements. The Quantity list can contain the following keywords: length, tape,

bearing, compass, gradient, clino, counter, depth, x, y, z, position, easting, dx, nor-

thing, dy, altitude, dz.

• grade <grade list> ◃ sets standard deviations according to the survey grade specifi-

cation (see grade command). All previously specified standard deviations or grades are

lost. If you want to change an SD, use the sd option after this command. If multiple

grades are specified, only the last one applies. You can specify grades only for position

or only for surveys. If you want to combine them, you must use them in one grade line.

• units <quantity list> [<factor>] <units> ◃ set the units for given measurements

(same quantities as for sd).

• calibrate <quantity list> <zero error> [<scale>] ◃ set the instrument calibra-

tion. The measured value is calculated using the following formula: measured value =

(read value− zero error)× scale. The supported quantities are the same as sd.

• break ◃ can be used with interleaved data to separate two traverses

• mark [<station list>] <type> ◃ set the type of named stations. <type> is one

of: fixed, painted and temporary (default). If there is no station list, all subsequent

stations are marked.

• flags <shot flags> ◃ set flags for following shots. The supported flags are: surface

(for surface measurements), duplicate (for duplicated surveys), splay (for short side

legs that are hidden in maps and models by default). These are excluded from length

calculations.

All shots having one of the stations named either ‘.’ or ‘-’ are splay shots by default

(see also data command).

If flag is set to approx[imate], it is included to total length calculations, but also

displayed separately in survey statistics. It should be used for shots, that were not

surveyed properly and need to be resurveyed.

Also “not” is allowed before a flag.

• station <station> <comment> [<flags>] ◃ set the station comment and its flags.

If "" is specified as a comment, it is ignored.

Supported flags: entrance, continuation, air-draught[:winter/summer], sink,

spring, doline, dig, arch, overhang. Also not is allowed before a flag, to remove 5.3

previously added flag.

You can also specify custom attributes to the station using attr flag followed by

attribute name and value. Example:

station 4 "pit to explore" continuation attr code "V"

19

If there is a passage, that was explored, but not surveyed yet, estimated explored length

of this passage can be added to the station with continuation flag. Just add explored

<explored-length> to the station flags. Explored lengths are a part of survey/cave

statistics, displayed separately. Example:

station 40 "ugly crollway" continuation explored 100m

• cs <coordinate system> ◃ coordinate system for stations with fixed coordinates

• fix <station> [<x> <y> <z> [<std x> <std y> <std z>]] ◃ fix station coordi-

nates (with specified errors—only the units transformation, not calibration, is applied

to them).

• equate <station list> ◃ set points that are equivalent

• data <style> <readings order> ◃ set data style (normal, topofil, diving, cartesian,

cylpolar, dimensions, nosurvey) and readings order. Reading is one of the following

keywords: station, from, to, tape/length, [back]compass/[back]bearing, [back]clino/

[back]gradient, depth, fromdepth, todepth, depthchange, counter, fromcount, tocount,

northing, easting, altitude, up/ceiling4, down/floor, left, right, ignore, ignoreall.

See Survex manual for details.

For interleaved data both newline and direction keywords are supported. If backward

and forward compass or clino reading are given, the average of them is computed.

If one of the shot stations is named either ‘.’ or ‘-’, the shot has splay attribute set.5.3

Dot should be used for shots ending on features inside passage, dash for shots ending on

passage walls, floor or ceiling. Although Therion makes no distinction between them

yet, it should be used to improve 3D modeling in the future.

• group

• endgroup ◃ group/endgroup pair enables the user to make temporary changes in

almost any setting (calibrate, units, sd, data, flags...)

• walls <auto/on/off> ◃ turn on/off passage shape generation from LRUD data for

subsequent shots. If set auto, passage is generated only if there is no scrap referencing

given centreline.

• vthreshold <number> <units> ◃ threshold for interpreting LRUD readings as left-

right-front-back reading perpendicular to the shot.

If passeges are horizontal (inclination < vthreshold), LR is perpendicular to the

shot and UD is vertical.

If passages are more or less vertical (inclination > vthreshold), even UD becomes

perpendicular to the shot – otherwise passages would not look very good. In the case

of vertical shots, UD is interpreted as north-south dimension from the station to allow

tube-like modelling of verticals.

4 dimension may be specified as a pair [<from> <to>], meaning the size at the beginning and end of
the shot

20

• extend <spec> [<station> [<station>]] ◃ control how the centerline is extended.

<spec> is one of the following

normal/reverse ◃ extend given and following stations to the same/reverse direction

as previous station. If two stations are given—direction is applied only to given shot.

left/right ◃ same as above, but direction is specified explicitly.

vertical ◃ do not move station (shot) in X direction, use only Z component of the

shot

start ◃ specify starting station (shot)

ignore ◃ ignore specified station (shot), continue extended elevation with other station

(shot) if possible

hide ◃ do not show specified station (shot) in extended elevation

If no stations are specified, <spec> is valid for following shots specified.

• station-names <prefix> <suffix> ◃ adds given prefix/suffix to all survey stations

in the current centreline. Saves some typing.

‘scrap’

Description: Scrap is a piece of 2D map, which doesn’t contain overlapping passages

(i.e. all the passages may be drawn on the paper without overlapping). For small and

simple caves, the whole cave may belong to one scrap. In complicated systems, a scrap

is usually one chamber or one passage. Ideally, a scrap contains about 100 m of the cave.

Each scrap is processed separately by METAPOST; scraps which are too large may exceed

METAPOST’s memory and cause errors.

Scrap consists of point, line and area map symbols. See chapter How the map is put

together for explanation how and in which order are they displayed.

Scrap border consists of lines with the -outline out or -outline in options (passage

walls have -outline out by default). These lines shouldn’t intersect—otherwise Therion

(METAPOST) can’t determine the interior of the scrap and METAPOST issues a warning

message “scrap outline intersects itself”.

Each scrap has its own local cartesian coordinate system, which usually corresponds with

the millimeter paper (if you measure the coordinates of map symbols by hand) or pixels

of the scanned image (if you use XTherion). Therion does the transformation from this

local coordinate system to the real coordinates using the positions of survey stations,

which are specified both in the scrap as point map symbols and in centreline data. If the

scrap doesn’t contain at least two survey stations with the -name reference, you have to

use the -scale option for calibrating the scrap. (This is usual for cross sections.)

21

The transformation consists of the following steps:

• Linear transformation (shifting, scaling and rotation) which ‘best’ fits stations drawn

in the scrap to real ones. ‘Best’ means that the sum of squared distances between cor-

responding stations before and after transformation is minimal. The result is displayed

red if debug option of the layout command is set on.

• Non-linear transformation of the scrap which (1) moves survey stations to their correct

position, (2) is continuous. Displayed blue in the debug mode.

• Non-linear transformation of the scrap which (1) moves joined points together, (2)

doesn’t move survey stations, (3) is continuous. Finally the position of curves’ control

points is adjusted to preserve smoothness. The result is final map.

Syntax: scrap <id> [OPTIONS]

... point, line and area commands ...

endscrap [<id>]

Context: none, survey

Arguments:

• <id> ◃ scrap identifier

Options:

• projection <specification> ◃ specifies the drawing projection. Each projection is

identified by a type and optionally by an index in the form type[:index]. The index

can be any keyword. The following projection types are supported:

1. none ◃ no projection, used for cross sections or maps that are independent of survey

data (e.g. digitization of old maps where no centreline data are available). No index is

allowed for this projection.

2. plan ◃ basic plan projection (default).

3. elevation ◃ orthogonal projection (a.k.a. projected profile) which optionally takes

a view direction as an argument (e.g. [elevation 10] or [elevation 10 deg]).

4. extended ◃ extended elevation (a.k.a. extended profile).

• scale <specification> ◃ is used to pre-scale (convert coordinates from pixels to

meters) the scrap data. If scrap projection is none, this is the only transformation that

is done with coordinates. The <specification> has four forms:

1. <number> ◃ <number> meters per drawing unit.

2. [<number> <length units>] ◃ <number> <length units> per drawing unit.

3. [<num1> <num2> <length units>] ◃ <num1> drawing units corresponds to <num2>

<length units> in reality.

4. [<num1> ... <num8> [<length units>]] ◃ this is the most general format, where

you specify, in order, the x and y coordinates of two points in the scrap and two points

22

in reality. Optionally, you can also specify units for the coordinates of the ‘points in

reality’. This form allows you to apply both scaling and rotation to the scrap.

• cs <coordinate system> ◃ assumes that (calibrated) local scrap coordinates are given

in specified coordinate system. It is useful for absolute placing of imported sketches

where no survey stations are specified.5

• stations <list of station names> ◃ stations you want to plot to the scrap, but

which are not used for scrap transformation. You don’t have to specify (draw) them

with the point station command.

• sketch <filename> <x> <y> ◃ underlying sketch bitmap specification (lower left cor-

ner coordinates).

• walls <on/off/auto> ◃ specify if the scrap should be used in 3D model reconstruction

• flip (none)/horizontal/vertical ◃ flips the scrap after scale transformation

• station-names <prefix> <suffix> ◃ adds given prefix/suffix to all survey stations

in the current scrap. Saves some typing.

• author <date> <person> ◃ author of the data and its creation date

• copyright <date> <string> ◃ copyright date and name

• title <string> ◃ description of the object

‘point’

Description: Point is a command for drawing a point map symbol.

Syntax: point <x> <y> <type> [OPTIONS]

Context: scrap

Arguments:

• <x> and <y> are the drawing coordinates of an object.

• <type> determines the type of an object. The following types are supported:

special objects: station6, section7, dimensions8;

5 If there are some survey stations in the scrap, the cs specification is ignored.
6 Survey station. For each scrap (with the exception of scraps in ‘none’ projection) at least one station
with station reference (-name option) has to be specified.

7 section is an anchor for placing the cross-section at this point. This symbol has no visual repre-
sentation. The cross section must be in the separate scrap with ‘none’ projection specified. You can
specify it through the -scrap option.

8 Use -value option to specify passage dimensions above/below centerline plane used while creating
3D model.

23

labels: label, remark, altitude9, height10, passage-height11, station-name12,

date;

symbolic passage fills:13 bedrock, sand, raft, clay, pebbles, debris, blocks, water,

ice, guano, snow;

speleothems: flowstone, moonmilk, stalactite, stalagmite, pillar, curtain, he-

lictite, soda-straw, crystal, wall-calcite, popcorn, disk, gypsum, gypsum-

flower, aragonite, cave-pearl, rimstone-pool, rimstone-dam, anastomosis, kar-

ren, scallop, flute, raft-cone, clay-tree;5.4

equipment: anchor, rope, fixed-ladder, rope-ladder, steps, bridge, traverse,

camp, no-equipment;

passage ends: continuation, narrow-end, low-end, flowstone-choke, breakdown-

choke, clay-choke, entrance;5.4

others: dig, archeo-material, paleo-material, vegetable-debris, root, water-

flow, spring14, sink, ice-stalactite, ice-stalagmite, ice-pillar, gradient,5.4

air-draught15, map-connection16, extra17, u18.

Options:

• subtype <keyword> ◃ determines the object’s subtype. The following subtypes for

given types are supported:

station:19 temporary (default), painted, natural, fixed;

air-draught: winter, summer, undefined (default);

water-flow: permanent (default), intermittent, paleo.

The subtype may be specified also directly in <type> specification using ‘:’ as a

separator.20

Any subtype specification can be used with user defined type (u). In this case you need

also to define corresponding metapost symbol (see the chapter New map symbols).

9 General altitude label. All altitudes are exported as a difference against grid Z origin (which is 0
by default). To display altitude on the passage wall, use altitude option for any line point of the
passage wall

10 Height of formations inside of the passage (like pit etc.); see below for details.
11 Height of the passage; see below for details.
12 If no text is specified, the name of the nearest station is used.
13 Unlike other point symbols, these are clipped by the scrap border. See the chapter How the map is

put together.
14 Always use spring and sink symbols with a water-flow arrow.
15 Number of ticks is set according to -scale option
16 Virtual point, used to indicate connection between shifted maps (extended elevation, map offset).
17 Additional morphing point.
18 For user defined point symbols.
19 if station subtype is not specified, Therion reads it from centreline, if it’s specified there
20 E.g. station:fixed

24

• orientation/orient <number> ◃ defines the orientation of the symbol. If not speci-

fied, it’s oriented to north. 0 ≤ number < 360.

• align ◃ alignment of the symbol or text. The following values are accepted: center, c,

top, t, bottom, b, left, l, right, r, top-left, tl, top-right, tr, bottom-left, bl, bottom-right,

br.

• scale ◃ symbol scale, can be: tiny (xs), small (s), normal (m), large (l), huge (xl).

Normal is default.

• place <bottom/default/top> ◃ changes displaying order in the map.

• clip <on/off> ◃ specify whether a symbol is clipped by the scrap border. You cannot

specify this option for the following symbols: station, station-name, label, remark,

date, altitude, height, passage-height.

• dist <distance> ◃ valid for extra points, specifies the distance to the nearest station

(or station specified using -from option. If not specified, appropriate value from LRUD

data is used.

• from <station> ◃ valid for extra points, specifies reference station.

• visibility <on/off> ◃ displays/hides the symbol.

• context <point/line/area> <symbol-type> ◃ (to be used with symbol-hide and

symbol-show layout options) symbol will be hidden/shown according to rules for spec-

ified <symbol-type>.21

• id <ext_keyword> ◃ ID of the symbol.

Type-specific options:

• name <reference> ◃ if the point type is station, this option gives the reference to the

real survey station.

• extend [prev[ious] <station>] ◃ if the point type is station and scrap projection

is extended elevation, you can adjust the extension of the centreline using this option.

• scrap <reference> ◃ if the point type is section, this is a reference to a cross-section

scrap.

• explored <length> ◃ if the point type is continuation, you can specify length of pas-

sages explored but not surveyed yet. This value is afterwards displayed in survey/cave

statistics.

• text ◃ text of the label, remark or continuation. It may contain following formatting

keywords:22

21 Example: if you specify -context point air-draught to a label which displays the observation
date, the symbol-hide point air-draught command would hide both air-draught arrow and the
corresponding label.

22 For SVG output, only
, <thsp>, <it>, <bf>, <rm> and <lang:XX> keywords are taken into
account; all others are silently ignored.

25

 ◃ line break

<center>/<centre>, <left>, <right> ◃ line alignment for multi-line labels. Ignored

if there is no
 tag.

<thsp> ◃ thin space

<rm>, <it>, <bf>, <ss>, <si> ◃ font switches

<rtl> and </rtl> ◃ marks beginning and end of a right-to-left written text5.3

<lang:XX> ◃ creates multilingual label (see string type for detailed description)5.3

• value ◃ value of height, passage-height or altitude label or point dimensions

height: according to the sign of the value (positive, negative or unsigned), this type of

symbol represents chimney height, pit depth or step height in general. The numeric

value can be optionally followed by ‘?’, if the value is presumed and units can be added

(e.g. -value [40? ft]).

passage-height: the following four forms of value are supported: +<number> (the height

of the ceiling), -<number> (the depth of the floor or water depth), <number> (the dis-

tance between floor and ceiling) and [+<number> -<number>] (the distance to ceiling

and distance to floor).

altitude: the value specified is the altitude difference from the nearest station. If the

altitude value is prefixed by “fix” (e.g. -value [fix 1300]), this value is used as an

absolute altitude. The value can optionally be followed by length units.

dimensions: -value [<above> <below> [<units>]] specifies passage dimensions a-

bove/below centerline plane used in 3D model.

‘line’

Description: Line is a command for drawing a line symbol on the map. Each line symbol

is oriented and its visualization may depend on its orientation (e.g. pitch edge ticks). The

general rule is that the free space is on the left, rock on the right. Examples: the lower

side of a pitch, higher side of a chimney and interior of a passage are on the left side of

pitch, chimney or wall symbols, respectively.

Syntax: line <type> [OPTIONS]

[OPTIONS]

...

[LINE DATA]

...

[OPTIONS]

...

[LINE DATA]

...

26

endline

Context: scrap

Arguments:

• <type> is a keyword that determines the type of line. The following types are sup-

ported:

passages: wall, contour, slope23, floor-step, pit, ceiling-step, chimney, over-

hang, ceiling-meander, floor-meander;

passage fills: flowstone, moonmilk, rock-border24, rock-edge25, water-flow;

labels: label;

special: border, arrow, section26, survey27, map-connection28, u29.

Command-like options:

• subtype <keyword> ◃ determines line subtype. The following subtypes are supported

for given types:

wall: invisible, bedrock (default), sand, clay, pebbles, debris, blocks, ice, un-

derlying, overlying, unsurveyed, presumed, pit30, flowstone, moonmilk; 5.4

border: visible (default), invisible, temporary, presumed;

water-flow: permanent (default), conjectural, intermittent;

survey: cave (default), surface (default if centreline has surface flag).

The subtype may be specified also directly in <type> specification using ‘:’ as a

separator.31

Any subtype specification can be used with user defined type (u). In this case you need

also to define corresponding metapost symbol (see the chapter New map symbols).

23 Slope line marks upper border of the sloping area. It’s necessary to specify l-size in at least one
point. Gradient lines length and orientation is an average of specified l-sizes and orientations in
the nearest points. If there is no orientation specification, gradient marks are perpendicular to the
slope line.

24 Outer outline of large boulders. If the line is closed, it is filled with the background colour.
25 Inner edges of large boulders.
26 Line showing cross-section position. If both control points (red dots) of a Bézier curve (grey line) 5.3

are given then the section line (blue) is drawn up to the perpendicular projection (dotted) of the
first control point and from the projection (dotted) of the section control point. No section curve is
displayed.

27 Survey line is automatically drawn by Therion.
28 Used to indicate connection between maps (in offset, or the same points in extended elevation).
29 For user defined line symbols.
30 Usually open to surface.
31 E.g. border:invisible

27

• [LINE DATA] specify either the coordinates of a line segment <x> <y>, or coordinates of

a Bézier curve arc <c1x> <c1y> <c2x> <c2y> <x> <y>, where c indicates the control

point.

• close <on/off/auto> ◃ determines whether a line is closed or not

• mark <keyword> ◃ is used to mark the point on the line (see join command).

• orientation/orient <number> ◃ orientation of the symbols on the line. If not spec-

ified, it’s perpendicular to the line on its left side. 0 ≤ number < 360.

• outline <in/out/none> ◃ determines whether the line serves as a border line for a

scrap. Default value is ‘out’ for walls, ‘none’ for all other lines. Use -outline in for

large pillars etc.

• reverse <on/off> ◃ whether points are given in reverse order.

• size <number> ◃ line width (left and right sizes are set to one half of this value)

• r-size <number> ◃ size of the line to the right

• l-size <number> ◃ same to the left. Required for slope type.

• smooth <on/off/auto> ◃ whether the line is smooth at the given point. Auto is

default.

• adjust <horizontal/vertical> ◃ shifts the line point to be aligned horizontally/ver-

tically with the previous point (or next point if there is no previous point). The result

is horizontal/vertical line segment). If all line points have this option, they are aligned

to the average y or x coordinate, respectively. This option is not allowed in the plan

projection.

• place <bottom/default/top> ◃ changes displaying order in the map.

• clip <on/off> ◃ specify whether a symbol is clipped by the scrap border.

• visibility <on/off> ◃ displays/hides the symbol.

• context <point/line/area> <symbol-type> ◃ (to be used with symbol-hide and

symbol-show layout options) symbol will be hidden/shown according to rules for spec-

ified <symbol-type>.

Type-specific options:

• altitude <value> ◃ can be specified only with the wall type. This option creates an

altitude label on the wall. All altitudes are exported as a difference against grid Z

origin (which is 0 by default). If the value is specified, it gives the altitude difference

of the point on the wall relative to the nearest station. The value can be prefixed by a

keyword “fix”, then no nearest station is taken into consideration; the absolute given

value is used instead. Units can follow the value. Examples: +4, [+4 m], [fix 1510

m].

• border <on/off> ◃ this option can be specified only with the ‘slope’ symbol type. It

switches on/off the border line of the slope.

28

• direction <begin/end/both/none/point> ◃ can be used only with the section type.

It indicates where to put a direction arrow on the section line. None is default.

• gradient <none/center/point> ◃ can be used only with the contour type and indi-

cates where to put a gradient mark on the contour line. If there is no gradient speci-

fication, behaviour is symbol-set dependent (e.g. no tick in UIS, tick in the middle in

SKBB).

• head <begin/end/both/none> ◃ can be used only with the arrow type and indicates

where to put an arrow head. End is default.

• text <string> ◃ valid only for label lines.

• height <value> ◃ height of pit or wall:pit; available in METAPOST as a numeric 5.4

variable ATTR__height.

Options:

• id <ext_keyword> ◃ ID of the symbol.

‘area’

Description: Area is specified by surrounding border lines. They may be of any type,

but must be listed in order and each pair of consecutive lines must intersect. In order to

be sure that lines intersect even after scrap transformation you may e.g. continue a lake

border 1 cm behind a passage wall—these overlaps will be automatically clipped by scrap

border. You may use invisible border to achieve this inside of the passage.

Syntax: area <type>

place <bottom/default/top>

clip <on/off>

visibility <on/off>

... border line references ...

endarea

Context: scrap

Arguments:

• <type> is one of following: water, sump, sand, debris, blocks, flowstone, moonmilk,

snow, ice, clay, pebbles, bedrock32, u33.

Command-like options:

• the data lines consist of border line references (IDs)

• place <bottom/default/top> ◃ changes displaying order in the map.

• clip <on/off> ◃ specify whether a symbol is clipped by the scrap border.

32 An empty area which can be used to clean the background.
33 For user defined area symbols, may be followed by arbitrary subtype.

29

• visibility <on/off> ◃ displays/hides the symbol.

• context <point/line/area> <symbol-type> ◃ (to be used with symbol-hide and

symbol-show layout options) symbol will be hidden/shown according to rules for spec-

ified <symbol-type>.

Options:

• id <ext_keyword> ◃ ID of the symbol.

‘join’

Description: Join works in two modes: it joins either two scraps or two or more points

or lines in a map together.

When joining more than two points or lines, use one join command for all of them, not

a sequence of join commands for pairs.34

When joining scraps, only passage walls are joined. It’s a good idea to place a scrap join

in the passage which is as simple as possible, otherwise you have to specify join for each

pair of objects which should be joined.35

Syntax: join <point1> <point2> ... <pointN> [OPTIONS]

Context: none, scrap, survey

Arguments:

• <pointX> can be an ID of a point or line symbol, optionally followed by a line point

mark <id>:<mark> (e.g. podangl_l31@podangl:mark1). <mark> can be also ‘end’ (end

of the line) or line point index (where 0 is the first point).

A special case is when <point1> and <point2> are scrap IDs—than the closest scrap

ends are joined together.

Options:

• smooth <on/off> indicates whether two lines are to be connected smoothly.

• count <N> (when used with scraps) ◃ Therion will try to join scraps which connect in

N locations/passages.

‘equate’

Description: Sets the survey stations equivalence.

Syntax: equate <station list>

Context: none, survey

34 E.g. use join a b c, not join a b followed by join b c.
35 If you want some object which is clipped by a scrap boundary to continue to a neighbouring scrap,

use -clip off option for that object.

30

‘map’

Description: A map is a collection of either scraps or other maps of the same projection

type. It’s possible to include survey in the map—this will display centreline in the map.

Map object simplifies the data management when selecting data for output. See the

chapter How the map is put together for more thorough explanation.

Syntax: map <id> [OPTIONS]

... scrap, survey or other map references ...

break

... next level scrap, survey or other map references ...

preview <above/below> <other map id>

endmap

Context: none, survey

Arguments:

• <id> ◃ scrap identifier

Command-like options:

• the data lines consist of scrap or map references. Note that you can not mix them

together.

• if you refer to map, you can specify offset at which this sub-map will be displayed

together with preview type of its original position. Syntax is following:

<map reference> [<offset X> <offset Y> <units>] <above/below/none>

• scraps following the break will be placed on another level

• preview <above/below> <other map id> will put the outline of the other map in the

specified preview position relative to the current map.

Preview is displayed only if the map is in the map-level level as specified by the

select command.

Use the revise command if you want to add maps from higher levels to the preview.

Options:

• projection/proj <plan/elevation/extended/none> ◃ required if the map contains

survey.

• title <string> ◃ description of the object

• survey <id> ◃ associate a survey with map (e.g. all surveying statistics from this 5.4

survey will be used when this map is selected for output).

31

‘surface’

Description: Surface (terrain) specification. It is possible to display it in two ways: as a

scanned topographical map (both in 2D map and 3D model36) or surface grid – digital

elevation model (in 3D model only).

Syntax: surface [<name>]

cs <coordinate system>

bitmap <filename> <calibration>

grid-units <units>

grid <origin x> <origin y> <x spacing> <y spacing> <x count> <y count>

grid-flip (none)/vertical/horizontal

[grid data]

endsurface

Context: none, survey

Command-like options:

• cs <coordinate system> ◃ coordinate system for bitmap calibration and grid origin

specification

• bitmap <filename> <calibration> ◃ scanned topographical map.

calibration may have two forms:

1. [X1 Y1 x1 y1 X2 Y2 x2 y2 [units]], where upper case X/Y variables are pic-

ture coordinates (pixels; lower-left corner is 0 0), lower-case x/y variables are real

coordinates. Optional units apply to real coordinates (metres by default).

2. [X1 Y1 station1 X2 Y2 station2], where upper case X/Y variables are picture

coordinates and station1 and station2 are survey stations names.

• grid-units <units> ◃ units in which grid is specified. Metres by default.

• grid <origin x> <origin y> <x spacing> <y spacing> <x count> <y count>

<origin x> <origin y> ◃ specify coordinates of the lower-left (S-W) corner of the

grid

<x spacing> <y spacing> ◃ distance between grid nodes in W-E and S-N directions

<x count> <y count> ◃ number of nodes in the row and number of rows which form

the grid (see below).

• [grid data] ◃ a stream of numbers giving the altitude a.s.l. in grid nodes. It starts in

the grid-origin and fills the grid in rows (in the row from W to E; rows from S to N).

• grid-flip (none)/vertical/horizontal ◃ useful if your grid (exported from other

program) needs to be flipped

36 You need to enter elevation data in order to display the topographical map in 3D model. Currently
only JPEG maps are supported in 3D.

32

‘import’

Description: Reads survey data in different formats (currently processed centreline in

*.3d, *.plt, *.xyz formats). Survey stations may be referenced in scraps etc. When

importing Survex’ 3D file, stations are inserted in survey hierarchy, if there exists identical

hierarchy to that in 3D file.

Syntax: import <file-name> [OPTIONS]

Context: survey / all37

Options:

• filter <prefix> ◃ if specified, only stations with given prefix and shots between them

will be imported. Prefix will be removed from station names.

• surveys (create)/use/ignore ◃ specifies how to import survey structure (works only

with .3d files).

create ◃ split stations into subsurveys, if subsurveys do not exist, create them

use ◃ split stations into existing subsurveys

ignore ◃ do not split stations into sub-surveys

• cs <coordinate system> ◃ coordinate system for stations with fixed coordinates

• calibrate [<x> <y> <z> <X> <Y> <Z>] ◃ coordinates in the imported file are shifted

from lower-case coordinates to upper-case coordinates.

‘grade’

Description: This command is used to store predefined precisions of centreline data. See

sd option description for centreline command.

Syntax: : grade <id>

...

[<quantity list> <value> <units>]

...

endgrade

Context: all

‘revise’

Description: This command is used to set or change properties of an already existing

object.

Syntax: The syntax of this command for object created with “single line” command is

37 only with .3d files, where survey structure is specified

33

revise id [-option1 value1 -option2 value2 ...]

For objects created with “multi line” commands is syntax following

revise id [-option1 value1 -option2 value2 ...]

...

optionX valueX

data

...

endrevise

Context: all

Arguments:

The id stands for object identifier (the id of an object you want to revise must always

be specified).

Custom attributes

Objects survey, centreline, scrap, point, line, area, map and surface can contain user-

defined attributes in a form -attr <name> <value>. <name> may contain alphanumeric

characters, <value> is a string.

The custom attributes are used in map export depending on output format:

• in shapefile export they are written directly to the associated dbf file,

• in maps generated using METAPOST (PDF, SVG) the attributes are written in the

METAPOST source file as strings (named like ATTR_<name>) and can be evaluated and

used by user in symbols definition macros.

You can test presence of such a variable using if known ATTR_<name>: ... fi.

XTherion

XTherion is a GUI (Graphical User Interface) for Therion. It helps a lot with creating

input data files. Currently it works in three main modes: text editor, map editor and

compiler.38

It is not necessary for Therion itself—you may edit input files in your favourite text editor

and run Therion from the command line. XTherion is also not the only GUI which may

be used with Therion. It is possible to write a better one, which would be more user

friendly, more WYSIWYG, faster, more robust and easier to use. Any volunteers?

38 Here we’re concerned with creating data, so only the two first modes are described in this section.
For compiler features see the chapter Processing data.

34

This manual does not describe such familiar things as ‘if you want to save a file, go to

menu File and select Save, or press Ctrl-s’. Browse the top menu for a minute to get

feeling of XTherion.

For each mode of operation, there is an additional right or left menu. The submenus may

be packed; you may unpack them by clicking on the menu button. For most of the menus

and buttons, there is a short (translated) description in the status line, so it’s not hard

to guess the meaning of each one. The order of submenus on the side may be customized

by the user. Right-click on the menu button and select in the menu which of the other

menus it should be swapped with.

XTherion—text editor

XTherion’s text editor offers some interesting features which may help with creating text

input files: support for Unicode encoding and ability to open multiple files.39

To make entering data easy, it supports table formatting of centreline data. There is

a menu Data table for typing the data. It may be customized to user’s data order by

pressing a Scan data format button when the cursor is below the data order specification

(‘data’ option in the ‘centreline’ command).

XTherion—map editor

Map editor allows you to draw and edit map fully interactively. But don’t expect too

much. XTherion is not a truly WYSIWYG editor. It displays only the position, not

the actual shape, of drawn point or line symbols. Visually there is no difference between

a helictite and a text label—both are rendered as simple dots. The type and other

attributes of any object are specified only in the Point control and Line control menus.

Exercise: Find two substantial reasons, why the map drawn in XTherion can’t be identical

with Therion output. (If you answer this, you’ll know, why XTherion will never be true

WYSIWYG editor. Authors’ laziness is not the correct answer.)

Let’s begin by describing typical use of the map editor. First, you have to decide which

part of the cave (which scrap) you’ll draw.40

After creating a new file in the map editor, you may load one or more images—scanned

survey sketches from the cave41—as a background for the drawing. Click on the Insert

button in Background images menu. Unfortunately, as a limitation of Tcl/Tk language,

39 File encoding is specified on the first line of the file. This line is hidden by XTherion and may be
accessed only indirectly using the right-hand menu.

40 It’s possible to draw more than one scrap in one file, in which case all inactive scraps are rendered
yellow.

41 XTherion can’t scale nor rotate individual images, so use the same orientation, scale and DPI for all
images used in the same scrap.

35

Hints: 1. What does loop closure do? 2. Why do we use MetaPost?

only GIF, PNM and PPM (plus PNG and JPEG if you installed tkImg extension) images

are supported. Additionally XTherion supports XVI (XTherion vector image) format,

which displays centreline and LRUD information on the background, and PocketTopo

data exported in Therion format (see below). All opened images are placed in the upper-

left corner of the working area. Move them by double clicking and dragging with the

right mouse button or through a menu. For better performance on slower computers, it’s

possible to temporarily unload a currently unused image from memory by unchecking its

Visibility check-box. It’s possible to open an existing file without loading of background

images using Open XP menu.42

The size and zoom setting of the drawing area is adjusted in the corresponding menu.

Auto adjust calculates optimal size of the working area according to the sizes and positions

of loaded background images.

After these preparation steps, you’re ready for drawing, or, more precisely, for creating

a map data file. It’s important to remember, that you’re actually creating a text file

which should conform to the syntax described in the chapter Data format. Actually, only

a subset of the Therion commands are used in the Map editor: multi-line scrap ...

endscrap commands which may contain point, line and area commands. (Cf. chapter

Data format). This corresponds with a section of hand-drawn map, which is built up

from points, lines and filled areas.

So, the first step is defining the scrap by a scrap ... endscrap multi-line command.

In the File commands menu click on the Action submenu and select Insert scrap. This

changes the Action button to Insert scrap if it had any other value. After pressing this

button a new scrap will be inserted in the beginning of the file. You should see lines

scrap - scrap1

endscrap

end of file

in the preview window above the Insert scrap button. This window is a simplified outline

of the text file, which will be saved by XTherion. Only the command (scrap, point,

line, text—why text see below) and its type (for point and line) or ID (for scrap)

are shown.

The full contents of any command is displayed in the Command preview menu.

For modifying previously-created commands, there are additional menus—e.g. Scrap con-

trol for the scrap command. Here you can change the ID (very important!) and other

options. For details see chapter Data format.

Now it’s possible to insert some point symbols. As with scrap insertion, go to the

File commands menu, click on the Action submenu and select Insert point; than press

newly renamed Insert point button. A shortcut for all this is Ctrl-p. Than click on the

42 Note: Therion doesn’t use background images in any way unless you assign them to some scrap using
-sketch option.

36

desired spot in the working area and you’ll see a blue dot representing a point symbol.

Its attributes can be adjusted in the Point control menu. You’ll stay in ‘insert’ mode—

each click on the working area adds a new point symbol. Take care not to click twice

on the same place—you would insert two point symbols in the same place! To escape

from ‘insert’ to ‘select’ mode, press Esc key on the keyboard or Select button in the File

commands menu.

What will the order of commands in the output file? Exactly the same as in the outline

in the File commands menu. Newly created point, line and text objects are added before

the currently marked line in the outline. It is possible to change the order by selecting a

line and pressing Move down, Move up or Move to buttons in the File commands menu.

This way you can also move objects between scraps.

Drawing lines is similar to drawing in other vector editing programs, which work with

Bézier curves. (Guess how to enter the line insertion mode, other than using the shortcut

Ctrl-l.) Click where the first point should be, then drag the mouse with pressed left

button and release it where the first control point should be. Than click somewhere else

(this point will be the second point of the curve) and drag the mouse (adjusting the second

control point of the previous arc and the first control point of the next one simultaneously.)

If this explanation sounds too obscure, you can get some practise working in some of the

standard vector editors with comprehensive documentation. The line will be finished

after escaping from the insertion mode. Beginning and orientation of the line is marked

by a small orange tick to the left at the first point.

For line symbols, there are two control menus: Line control and Line point control. First

one sets attributes for the whole curve, like type or name. The check-box reverse is

important: Therion requires oriented curves and it is not unusual that you begin to draw

from the wrong end. The Line point control menu enables you to adjust the attributes of

any selected point on the line, such as the curve being smooth at this point (which is on

by default), or the presence of neighbouring control points (‘<<’ and ‘>>’ check-boxes).

Areas are specified by their surrounding lines. Click on Insert area and then click on the

lines surrounding the desired area. They are automatically inserted in the Area control

and named (if not already named). An alternate way is to insert them as a text43

command, the contents of which (entered in the Text editor menu of the Map editor) is

usual area ... endarea multi-line command (see the chapter Data format.)

If you draw some scraps with none projection, it’s necessary to calibrate the drawing

area. The scale can be defined only one way in XTherion—using coordinates of two points

(specified both in the picture coordinate system and in the ‘real’ coordinate system).

After selecting a scrap (click on its header in the File commands menu) two small red

squares connected by red arrow will appear (by default, they’ll be in the lower corners

43 CAUTION! The command text is not a Therion command! It’s only a nickname for a block of an
arbitrary text in XTherion. In the file saved by XTherion, there’ll only be whatever you type into
the Text editor or see in the Command preview. It may be an area definition or whatever you want,
such as a comment beginning with a ‘#’ character.

37

of drawing area). You have to drag them to points with known coordinates—usually

intersections of mm grid lines on the scanned drawing. If you can not see these points,

you can either

• press Scale button in the Scraps menu and click on two different places on the image

where the endpoints of calibration arrow should be, or

• move mouse pointer to desired position, read pointer coordinates from the status bar

and enter these coordinates into picture scale points boxes in the Scraps control. After

filling X1,Y1 and X2,Y2 coordinate pairs the calibration arrow will be moved corre-

spondingly.

Then you have to enter real coordinates of these points (X1, Y1, X2, Y2).

In the selection mode you can select existing line or point objects and set their attributes

in the corresponding menus, move them, or delete them (Ctrl-d or Action button in File

commands menu after setting Action to Delete).

There is a Search and select menu which makes it easy to switch between objects and

visualize things you can’t see at the first look at the picture. For example, if you enter

expression ‘station’ and press Show All, all stations on the picture will become red.

XTherion doesn’t do any syntax checking; it only writes drawn objects with their at-

tributes to a text file. Any errors are detected only when you process these files with

Therion.

TIP: Entering symbols of the same type at once saves you a lot of time because you need

not change symbol type and fill options for each new symbol. Options box preserves the

old value and it’s enough to change a few characters.44 It is a good idea to start with

drawing all survey stations (don’t forget to give them names according to real names in

the centreline command), than all passage walls followed by all other point symbols, lines

and areas. Finally draw cross-sections.

Additional tools

Help/Calibrate bitmap produces OziExplorer-compatible MAP file based on georef-5.3

erencig data included in a PDF map45.

If the map in PDF format has been converted to raster using external program, convertor

uses raster image and pdf map with the same base name located in the same directory

to calculate the calibration data.

44 In the case of survey stations, XTherion automatically increases the station number for the next
symbol inserted.

45 Calibration information for nine distinct points is present if centreline contains station(s) fixed using
geodetic coordinate system(s)

38

If the PDF file is used directly, you have to set DPI and output format before automatic

conversion46 to a raster format.

PocketTopo data exported in Therion format47 from PocketTopo application can be5.3

imported in text editor as well as in map editor (File → Import → PocketTopo therion

export and Backgroud Images → Insert → PocketTopo therion export). The same file

is used for both imports. Importing sketch does not create scrap data directly. The

drawing is just displayed on the background like scanned bitmaps and should be digitized

manually.

Keyboard and mouse shortcuts in the Map editor

General

• Ctrl+Z ◃ undo

• Ctrl+Y ◃ redo

• F9 ◃ compile current project

• to select object in the listbox using keyboard: switch using ‘Tab’ into desired listbox;

move with underlined cursor to desired object; press ‘Space’

• PageUp/PageDown ◃ scroll up/down in the side panel

• Shift+PageUp/PageDown ◃ scroll up/down in file commands window

Drawing area and background images

• RightClick ◃ scroll drawing area

• Double RightClick on the image ◃ move the image

Inserting scrap

• Ctrl+R ◃ insert scrap

Inserting line

• Crtl+L ◃ insert new line and enter an ‘insert line point’ mode

• LeftClick ◃ insert line point (without control points)

• Ctrl+LeftClick ◃ insert line point very close to existing point (normally it’s inserted

right above closest existing point)

• LeftClick + drag ◃ insert line point (with control points)

• hold Ctrl while dragging ◃ fix the distance of previous control point

46 ghostscript and convert should be installed on your system. Note, that Windows installation
does not include ghostscript

47 This is a special text format which needs to be imported using XTherion and can not be processed
by Therion directly.

39

• LeftClick + drag on the control point ◃ move its position

• RightClick on one of the previous points ◃ selects the previous point while in insert

mode (useful if you want to change also the direction of previous control point)

• Esc or LeftClick on the last point ◃ end the line insertion

• LeftClick on the first line point ◃ close the line and end line insertion

Editing line

• LeftClick + drag ◃ move line point

• Ctrl+LeftClick + drag ◃ move line point close to the existing point (normally it is

moved right above closest existing point)

• LeftClick on control point + drag ◃ move control point

Adding line point

• select the point before which you want to insert points; insert required points; press

Esc or left-click on the point you selected at the beginning

Deleting line point

• select the point you want to delete; press Edit line → Delete point in the Line control

panel

Splitting line

• select the point at which you want to split the line; press Edit line → Split line in the

Line control panel

Inserting point

• Ctrl+P ◃ switch to ‘insert point’ mode

• LeftClick ◃ insert point at given position

• Ctrl+LeftClick ◃ insert point very close to existing point (normally it will be inserted

right above the closest point)

• Esc ◃ escape from the ‘inset point’ mode

Editing point

• LeftClick + drag ◃ move point

• Ctrl+LeftClick + drag ◃ move point close to the existing point (normally it is moved

right above closest existing point)

• LeftClick + drag on point arrows ◃ change point orientation or sizes (according to

given switches in Point control panel)

40

Inserting area

• press Ctrl+A or File commands → Insert → area to switch to the ‘insert area border’

mode

• RightClick on the lines, that surround desired area

• Esc to finish area border lines insertion

Editing area

• select area you want to edit

• pres ‘Insert’ in the Area control to insert other border lines at current cursor position

• pres ‘Insert ID’ to insert border with given ID at current cursor position

• pres ‘Delete’ to remove selected area border line

Selecting an existing object

• LeftClick ◃ select object on the top

• RightClick ◃ select object right below the top object (useful when several points lie

above each other)

Thinking in Therion

Although everything (well, almost everything) about Therion input files has been ex-

plained, this chapter offers some additional tips and hints.

How to enter centreline?

The basic building block is the centreline command. If the cave is larger than a few

meters it’s a good idea to split data in more files and separate centreline data from map

data.

We usually use one *.th file containing centreline per survey trip. It’s handy to start

with an empty template file as shown below, where dots will be replaced with appropriate

texts.

encoding ISO8859-1

survey ... -title "..."

centreline

team "..."

team "..."

date ...

units clino compass grad

data normal from to compass clino length

...

41

endcentreline

endsurvey

To create a unique namespace the centreline command is enclosed in survey ... end-

survey command. It’s useful when the survey has the same name as the file which

contains it.48 The points will than be referenced using @ character—see the survey

command description.

For really large caves it’s possible to build a hierarchical structure of directories. In such

a case we create one special file called INDEX.th which includes all other *.th files from

given directory and contains equate commands to define connections between surveys.

How to draw maps?

The most important thing is to devise division of the cave into scraps. Scrap is the basic

building block of the map. It’s almost always a bad idea to try to fit each scrap to corre-

sponding *.th file with centreline from one survey trip. The reason is that connections

between scraps should be as simple as possible. Scraps in general are independent on

centreline hierarchy so try to forget the survey hierarchy when drawing maps and choose

best scrap joins.

We usually insert maps in the last-but-one level in survey hierarchy.49 Each scrap may

than contain arbitrary part of any survey in the last level of hierarchy. For example,

there is a survey main which contains surveys a, b, c and d. Surveys a – d contain

centreline data from four survey trips and each of them is in a separate file. There is a

map main_map which contains scraps s1 and s2. If the main_map is located in the main

survey, scrap s1 may cover part of the centreline from survey a, complete survey b and

part of c; s2 will cover part of the a and c surveys and a complete d survey. The survey

stations names will be referenced using @ symbol (e.g. 1@a) in the scraps.50

Scraps are usually stored in *.th2 files. Each file may contain more scraps. To keep

data well organized, we have some naming conventions: in the file foo.th2 all scraps are

named foo_si, where i is 1, 2 an so on. Cross-sections are named foo_ci, lines foo_li

etc. This helps a lot with large cave systems: if some scrap is referenced, you immediately

know in which file it had been defined.

Similar to *.th files, there may be one file INDEX.th2 per directory which includes all

*.th2 files, defines scrap joins and maps.

48 E.g. survey entrance in the file entrance.th.
49 Remember that surveys create namespaces, so you may reference only objects in the given survey

and all subsurveys.
50 If you include maps in the top-level survey, you may reference any survey station in any scrap,

which is very flexible. On the other side you have than use longer names in stations references, like
3@dno.katakomby.jmn.dumbier

42

When drawing scraps you should check if the outline is properly defined: all lines creating

the outer border should have -outline out option; all lines surrounding inner pillars -

outline in option. Scrap outlines can’t intersect themselves—otherwise the inner side

of the scrap can’t be determined. There are two simple tests that scrap outline is correct:

• there is no METAPOST warning “scrap outline intersects itself”

• when you set passage fill to any color (color map-fg <number> option in layout),

you may see what Therion considers to be inside of the scrap.

How to create models?

The model is created from scrap outlines. The height and depth of the passage are

computed from passage-height and dimensions point map symbols.

Therion in depth

How the map is put together

This chapter explains how -clip, -place, -visibility and -context options of point,

line and area commands exactly work. It gives also explanation of color, trans-

parency, symbol-hide and symbol-show options of the layout command.

While exporting the map, Therion has to determine three attributes for each point, line

or area symbol: visibility, clipping and ordering.

(1) Symbol is visible if all of the following is true:

• it has -visibility option set on (all symbols by default),

• it hasn’t been hidden by the -symbol-hide option in layout,

• if its -context option is set, the corresponding symbol hasn’t been hidden by the

-symbol-hide option in layout.

Only visible symbols are exported.

(2) Some symbols are clipped by the scrap outline. These are by default all the following:

• point symbols: symbolic passage fills (bedrock. . . guano),

• line symbols: all line symbols which don’t have -outline option set with the exception

of section, arrow, label, gradient and water-flow

• area symbols: all.

43

The default setting may be changed using the -clip option, if this is allowed for par-

ticular symbol. All other symbols are not clipped by the scrap boundary.

(3) Ordering: Each symbol belongs to one of the following groups which are drawn

consecutively:

• bottom ◃ all symbols with -place bottom option set

• default-bottom ◃ all area symbols by default

• default ◃ symbols which don’t belong to any other group

• default-top ◃ ceiling-step and chimney by default

• top ◃ all symbols with -place top option set

Ordering of symbols inside of each group follows the order of commands in the input

file51: symbols which come first are drawn last (i.e. they are displayed at the top of each

group).

Now we are ready to describe how the map (or atlas chapter) is constructed:

• map area is filled with color map-bg

• surface bitmaps are displayed if surface is set bottom

• FOR each scrap: outline is filled white

• grid is displayed if grid is set bottom

• preview below52 is filled with color preview-below

• FOR each level53:

BEGIN of transparency

FOR each scrap: outline is filled with color map-fg

FOR each scrap: area symbols are filled and clipped to scrap boundary

END of transparency

BEGIN of clipping by text labels (for all labels in this and upper levels)

FOR each scrap:

draw all symbols to be clipped (with the exception of line survey)

ordered from bottom to top

draw line survey symbols

clip to scrap boundary

FOR each scrap:

51 Or File commands menu in XTherion
52 As specified using the preview option in the map command
53 Level is a collection of scraps not separated by a break in the map command

44

draw all symbols not to be clipped (with the exception of point station

and all labels) ordered from bottom to top

draw point station symbols

END of clipping by text labels

FOR each scrap: draw all (point and line) labels (including wall-altitude)

• preview above is drawn with color preview-above

• surface bitmaps are displayed if surface is set top

• grid is displayed if grid is set top

45

We both step and do not step in the same rivers.

Ποταμοῖς τοῖς αὐτοῖς ἐμβαίνομέν τε καὶ οὐκ ἐμβαίνομεν.
—Heraclitus of Ephesus, th/th century BC

Processing data

Besides data files, which contain survey data, Therion uses a configuration file, which

contains instructions on how the data should be presented.

Configuration file

The configuration filename can be given as an argument to therion. By default Therion

searches for file named thconfig in the current working directory. It is read like any other

therion file (i.e. one command per line; empty lines or lines starting with ‘#’ are ignored;

lines ended with a backslash continue on the next line.) A list of currently supported

commands follow.

‘system’

Allows to execute system commands during therion compilation.54 Normally Therion

waits until the subprocess is finished. If you want to continue compilation without break,

use <command> & syntax on Linux and start <command> syntax on Windows.

‘encoding’

Works like the encoding command in data files—specifies character sets.

‘language’

Syntax:

• language <xx_[YY]>

Sets the output language for translatable texts.5.3

‘cs’

Syntax:

• cs <coordinate system>

54 E.g. to open or refresh external PDF viewer.

46

Outside of layout command specifies the coordinate system for output. It is not possible5.3

to specify more coordinate systems for different outputs (the last occurence of cs is used

for all output files).

If no cs is defined in the configuration file, the first cs therion encounters in the data

files is used as an output cs.

Inside the layout specifies coordinate system for subsequent location data (origin, grid-

origin).

‘sketch-warp’

Syntax:

• sketch-warp <algorithm>

Specifies which scrap warping (morphing) algorithm to use. Possible algorithms are

line—the default; plaquette—invented by Marco Corvi.

‘input’

Works like input command in data files—includes other files.

‘source’

Description: Specifies which source (data) files Therion should read. You can specify

several files here; one per line. You can also specify them using the -s command line

option (see below).

It is also possible to type (some small snippets of) code directly in configuration file using

the multi-line syntax.

Syntax:

source <file-name>

or

source

. . . therion commands. . .

endsource

Arguments:

• <file-name>

47

‘select’

Description: selects objects (surveys and maps) for export. By default, all survey objects

are selected. If there is no map selected, all scraps belonging to selected surveys are

selected by default for map export.

If there are no scraps or maps in the data, centreline from all surveys is exported in the

map.

When exporting maps in different projections, you need to select them for each projection

separately.

Syntax: select <object> [OPTIONS]

Arguments:

• <object> ◃ any survey or map, identified by its ID.

Options:

• recursive <on/off> ◃ valid only when a survey is selected. If set on (by default) all

subsurveys of the given survey are recursively selected/unselected.

• map-level <number> ◃ valid only when a map is selected. Determines the level at

which map expansion for atlas export is stopped. By default 0 is used; if ‘basic’ is

specified, expansion is done up to the basic maps. Note: Map previews are displayed

only as specified in maps in the current map-level.

• chapter-level <number> ◃ valid only when a map is selected. Determines the level

at which chapter expansion for atlas export is stopped. By default 0 is used, if ‘-’ or

‘.’ is specified, no chapter is exported for this map. If title-pages option in layout

is on, each chapter starts with a title page.

‘unselect’

Description: Unselects objects from export.

Syntax: unselect <object> [OPTIONS]

Arguments:

The same as the select command.

Options:

The same as the select command.

48

‘text’

Description: Specifies translation of any default therion text in output.

Syntax: text <language ID> <therion text> <my text>

Arguments:

• <language ID> ◃ standard ISO language identifier (e.g. en or en_UK)

• <therion text> ◃ therion text to translate. For list of therion texts and available

translations, see thlang/texts.txt file.

‘layout’

Description: Specifies layout for 2D maps. Settings which apply to atlas mode are marked

‘A’; map mode ‘M’.

Syntax: layout <id> [OPTIONS]

copy <source layout id>

cs <coordinate system>

north <true/grid>

scale <picture length> <real length>

base-scale <picture length> <real length>

units <metric/imperial>

rotate <number>

symbol-set <symbol-set>

symbol-assign <point/line/area/group/special> <symbol-type> \

<symbol-set>

symbol-hide <point/line/area/group/special> <symbol-type>

symbol-show <point/line/area/group/special> <symbol-type>

symbol-colour <point/line/area/group/special> <symbol-type> <colour>

size <width> <height> <units>

overlap <value> <units>

page-setup <dimensions> <units>

page-numbers <on/off>

exclude-pages <on/off> <list>

title-pages <on/off>

nav-factor <factor>

nav-size <x-size> <y-size>

transparency <on/off>

opacity <value>

surface <top/bottom/off>

surface-opacity <value>

49

sketches <on/off>

layers <on/off>

grid <off/top/bottom>

grid-origin <x> <y> <x> <units>

grid-size <x> <y> <z> <units>

grid-coords <off/border/all>

origin <x> <y> <z> <units>

origin-label <x-label> <y-label>

own-pages <number>

page-grid <on/off>

legend <on/off/all>

legend-columns <number>

legend-width <n> <units>

map-comment <string>

map-header <x> <y> <off/n/s/e/w/ne/nw/se/sw/center>

map-header-bg <on/off>

map-image <x> <y> <n/s/e/w/ne/nw/se/sw/center> <filename>

statistics <explo/topo/carto/copyright all/off/number>

<explo/topo-length on/off>

scale-bar <length> <units>

survey-level <N/all>

language <xx[_YY]>

colour/color <item> <colour>

debug <on/all/first/second/scrap-names/station-names/off>

doc-author <string>

doc-keywords <string>

doc-subject <string>

doc-title <string>

code <metapost/tex-map/tex-atlas>

endcode

endlayout

Arguments:

<id> ◃ layout identifier (to be used in the export command)

Command-like options:

• copy <source layout id> ◃ set properties here that are not modified based on the

given source layout.

map presentation-related:

• scale <picture length> <real length> ◃ set scale of output map or map atlas (M,

A; default: 1 200)

50

• base-scale <picture length> <real length> ◃ if set, Therion will optically scale

the map by a (scale/base-scale) factor. This has the same effect as if the map

printed in base-scale would be photo-reduced to the scale. (M, A)

• rotate <value> ◃ rotates the map (M, A; default: 0)

• units <metric/imperial> ◃ set output units (M, A; default: metric)

• symbol-set <symbol-set> ◃ use symbol-set for all map symbols, if available. Be

aware, that symbol set name is case sensitive. (M, A)

Therion uses following predefined symbol sets:

UIS (International Union of Speleology)

ASF (Australian Speleological Federation)

AUT (Austrian Speleological Association)

CCNP (Carlsbad Caverns National Park) 5.4

NZSS (New Zealand Symbol Set) 5.4

SKBB (Speleoklub Banská Bystrica)

• symbol-assign <point/line/area/group/special> <symbol-type> <symbol-set>

◃ display a particular symbol in the given symbol-set. This option overrides symbol-set

option.

If the symbol has a subtype, <symbol-type> argument may have one of the following

forms: type:subtype or simply type, which assigns new symbol set to all subtypes of

a given symbol.

Following symbols may not be used with this option: point section (which isn’t rendered

at all) and all point and line labels (label, remark, altitude, height, passage-height,

station-name, date). See the chapter Changing layout/Customizing text labels for details

how to change labels’ appearance. (M, A)

Group may be one of the following: all, centerline, sections, water, speleothems, 5.3

passage-fills, ice, sediments, equipment. 5.4

There are two special symbols: north-arrow, scale-bar.

• symbol-hide <point/line/area/group/special> <symbol-type> ◃ don’t display

particular symbol or group of symbols.

You may use group cave-centerline, group surface-centerline, point cave-

station, point surface-station and group text in symbol-hide and symbol-show 5.4

commands.

Use flag:<entrance/continuation/sink/spring/doline/dig> as a <symbol-type>

to hide stations with particular flags (e.g. symbol-hide point flag:entrance).

May be combined with symbol-show.(M, A)

51

• symbol-show <point/line/area/group/special> <symbol-type> ◃ display partic-

ular symbol or group of symbols. May be combined with symbol-hide. (M, A)

• symbol-colo[u]r <point/line/area/group/special> <symbol-type> <colour> ◃ 5.3

change colour of particular symbol or group of symbols.55 (M, A)

page layout related:

• size <width> <height> <units> ◃ set map size in the atlas mode. If not specified, it

will be calculated from page-setup and overlap. In map mode applies iff page-grid

is on (M, A; default: 18 22.2 cm)

• overlap <value> <units> ◃ set overlap size in paper units in the atlas mode or map

margin in the map mode (M, A; default: 1 cm)

• page-setup <dimensions> <units> ◃ set page dimensions in this order: paper-width,

paper-height, page-width, page-height, left-margin and top-margin. If not specified, it

will be computed from size and overlap (A; default: 21 29.7 20 28.7 0.5 0.5 cm)

• page-numbers <on/off> ◃ turn on/off page numbering (A; default: true)

• exclude-pages <on/off> <list> ◃ exclude specified pages from cave atlas. The list

may contain page numbers separated by a comma or dash (for intervals) e.g. 2,4-

7,9,23 means, that pages 2, 4, 5, 6, 7, 9 and 23 should be omitted. Only the map

pages should be counted. (Set own-pages 0 and title-pages off to get the correct

page numbers to be excluded.) Changes of own-pages or title-pages options don’t

affect page excluding. (A)

• title-pages <on/off> ◃ turn on/off title pages before each atlas chapter (A; default:

off)

• nav-factor <factor> ◃ set atlas navigator zoom factor (A; default: 30)

• nav-size <x-size> <y-size> ◃ set number of atlas pages in both directions of navi-

gator (A; default: 2 2)

• transparency <on/off> ◃ set transparency for the passages (underlying passages are

also visible) (M, A; default: on)

• opacity <value> ◃ set opacity value (used if transparency is on). Value range is

0–100. (M, A; default: 70)

• surface-opacity <value> ◃ set the surface bitmap opacity (used if transparency is

on). Value range is 0–100. (M, A; default: 70)

• surface <top/bottom/off> ◃ set the position of the surface bitmap above/below the

map. (M, A; default: off)

• sketches <on/off> ◃ turn on/off displaying of morphed sketch bitmaps. (M, A; de-

fault: off)

55 Note: colour change currently applies to pattern fills only if (1) output format is PDF and (2) META-
POST version is at least 1.000

52

• layers <on/off> ◃ enable/disable PDF 1.5 layers (M, A; default: on)

• grid <off/bottom/top> ◃ enable/disable grid (optionally coordinates’ values may be

also displayed) (M, A; default: off)

• cs <coordinate system> ◃ coordinate system for origin and grid-origin

• north <true/grid> ◃ specify default orientation of the map. By default, true (astro-

nomical) north is used. It is ignored when used with local coordinate system.

• grid-origin <x> <y> <x> <units> ◃ set coordinates of grid origin (M, A)

• grid-size <x> <y> <z> <units> ◃ set grid size in real units (M, A; default is equal

to scalebar size)

• grid-coords <off/border/all> ◃ specify where to label grid with coordinates. (M,

A; default: off)

• origin <x> <y> <z> <units> ◃ set origin of atlas pages (M, A)

• origin-label <x-label> <y-label> ◃ set label for atlas page which has the lower

left corner at the given origin coordinates. May be either a number or a character. (M,

A; default: 0 0)

• own-pages <number> ◃ set number of own pages added before the first page of auto-

matically generated pages in atlas mode (currently required for correct page numbering)

(A; default: 0)

• page-grid <on/off> ◃ show pages key plan (M; default: off)

map legend related:

• map-header <x> <y> <off/n/s/e/w/ne/nw/se/sw/center> ◃ print map header at

location specified by <x> <y>. Predefined map header contains some basic information

about cave: name, scale, north arrow, list of surveyors etc. It is fully customizable (see

the chapter Changing layout for details). <x> is easting (left-right on page). <y> is

northing (up/down page). Ranges for <x> and <y> are -100–200. Lower-left corner of

the map is 0 0, upper-right corner is 100 100. The header is aligned with the specified

corner or side to this anchor point. (M; default: 0 100 nw)

• map-header-bg <on/off> ◃ when on, background of map header is filled with back-

ground color (e.g. to hide map grid). (M; default: off)

• map-image <x> <y> <n/s/e/w/ne/nw/se/sw/center> <filename> ◃ include image

specified by <filename> into map at location specified by <x> <y>. For coordinates

and alignment details, see map-header specification.

• legend-width <n> <units> ◃ legend width (M, A; default: 14 cm)

• legend <on/off/all> ◃ display list of used map symbols in the map header. If set to

all, all symbols from the current symbol set are displayed. (M, A; default: off)

• colo[u]r-legend <on/off> ◃ turn on/off legend of map-fg colours when map-fg is set

to altitude, scrap or map (M, A)

53

• legend-columns <number> ◃ adjusts the number of legend columns (M, A; default:

2)

• map-comment <string> ◃ optional comment displayed at the map header (M)

• statistics <explo/topo/carto/copyright all/off/number> or

• statistics <explo/topo-length on/hide/off> ◃ display some basic statistics; if

set to off, team members are sorted alphabetically; otherwise according to their con-5.4

tribution to exploration and surveying (M, A; default: off)

• scale-bar <length> <units> ◃ set the length of the scale-bar (M, A)

• language <xx[_YY]> ◃ set output language. Available languages are listed on the

copyright page. See the Appendix if you want to add or customize translations. (M,

A)

• colo[u]r <item> <colour> ◃ customize colour for special map items (map-fg, map-

bg, preview-above, preview-below, label). Colour range is 0–100 for grayscale, [0–100

0–100 0–100] triplet for RGB colours.

For map-fg, you can use altitude, scrap or map as colours. In this case the map is

coloured according to altitude, scraps or maps.

For map-bg, you can use transparent to omit page background completely.

For labels, you can switch colour on/off. If on, labels are coloured using the colour of

associated scrap.

• debug <on/all/first/second/scrap-names/station-names/off> ◃ draw scrap in

different stages of transformation in different colours to see how Therion distorts map

data. See the description of scrap command for details. The points with distance

changed most during transformation are displayed orange. If scrap-names is specified,

scrap names are shown for each scrap, station-names displays name of each survey

station.

• survey-level <N/all> ◃ N is the number of survey levels displayed next to the station

name (M, A; default: 0).

PDF related:

• doc-author <string> ◃ set document author (M, A)

• doc-keywords <string> ◃ set document keywords (M, A)

• doc-subject <string> ◃ set document subject (M, A)

• doc-title <string> ◃ set document title (M, A)

customization:

• code <metapost/tex-map/tex-atlas> ◃ Add/redefine TEX and METAPOST macros

here. This allows user to configure various things (like user defined symbols, map and

atlas layout at one place &c.) See the chapter Changing layout for details.

54

page-width

pa
ge

-h
ei

gh
t

size (width)

si
ze

 (
he

ig
ht

)

overlap
le

ft
-m

ar
gi

n

top-margin

paper-width

pa
pe

r-
he

ig
ht

grid-size (width)

gr
id

-s
iz

e
(h

ei
gh

t)

• endcode ◃ should end the TeX and METAPOST sections

‘setup3d’

Syntax:

• setup3d <value>

Temporary hack to set sampling distance in meters when generating piecewise linear 3d 5.3

model from passage walls made of Bézier curves.

55

‘sketch-colors’

Syntax:

• sketch-colors <number-of-colors>

This option can be used to reduce size of sketch bitmap images in maps.5.4

‘export’

Description: Exports selected surveys or maps.

Syntax:

• export <type> [OPTIONS]

Arguments:

• <type> ◃ The following export types are supported:

model ◃ 3D model of the cave

map ◃ one page 2D map

atlas ◃ 2D atlas in more pages

cave-list ◃ summary table of caves

survey-list ◃ summary table of surveys

continuation-list ◃ list of possible continuations

database ◃ SQL database with centreline

Options:

common:

• encoding/enc <encoding> ◃ set output encoding

• output/o <file> ◃ set output file name. If no file name is given the prefix “cave.”

is used with an extension corresponding to output format.

If the output filename is given and no output format is specified, the format is deter-

mined from the filename extension.

model:

• format/fmt <format> ◃ set model output format. Currently the following output

formats are supported: loch (native format; default), compass (plt file), survex (3d

file), dxf, esri (3d shapefiles), vrml, 3dmf and kml (Google Earth).

• enable <walls/[cave/surface-]centerline/splay-shots/surface/all> and

56

• disable <walls/[cave/surface-]centerline/splay-shots/surface/all> ◃

selects which features to export, if the format supports it. Surface is currently exported

in therion format only.

• wall-source <maps/centerline/all> ◃ set source data for passage wall modeling.

map/atlas:

• format/fmt <format> ◃ set map format. Currently pdf, svg, xhtml56, survex, dxf,

esri57, kml (Google Earth), xvi58 and bbox59 for map; pdf for atlas are supported. 5.3

• projection <id> ◃ unique identifier that specifies the map projection type. (See the

scrap command for details.)

If there is no map defined, all scraps in the given projection are exported.

If there are no scraps with the specified projection then Therion will display centreline

from selected surveys.

• layout <id> ◃ use predefined map or atlas layout.

• layout-xxx ◃ where xxx stands for other layout options. Using this you can change

some layout properties directly within the export command.

• encoding/enc <encoding> ◃ set output encoding

common for lists:

• format/fmt <format> ◃ set continuation output format. Currently the following out-

put formats are supported: html (default), txt, kml60 and dbf. 5.4

continuation-list:

• attributes <(on)/off> ◃ set whether to export user defined attributes in continua-

tion list table.

• filter <(on)/off> ◃ set whether continuations without comment/text should be fil- 5.3

tered out.

cave-list:

• location <on/(off)> ◃ set whether to export coordinates of cave entrances in the

table.

• surveys (on)/off ◃ exports raw list of caves when set off. Otherwise survey structure 5.3

with aggregated ststistics is also displayed.

56 SVG embedded in XHTML file which contains also legend
57 ESRI shapefiles. Multiple files are written to a directory with the specified filename.
58 Xtherion vector image. XVI images may be used in xtherion to draw in-scale maps. Scale (100DPI

image resolution is assumed) and grid-size from layout are used in export.
59 Text file containing geographic coordinates of lower-left and upper-right corners of the map area.
60 For cave-list and continuation-list.

57

database:

• format/fmt <format> ◃ currently only sql

• encoding/enc <encoding> ◃ set output encoding

File formats summary:

export type available formats

model loch, dxf, esri, compass, survex, vrml, 3dmf, kml

map pdf, svg, xhtml, dxf, esri, survex, xvi, kml, bbox5.3

atlas pdf

database sql

lists html, txt, kml, dbf

Running Therion

Now, after mastering data and configuration files, we’re ready to run Therion. Usually

this is done from the command line in the data directory by typing

therion

The full syntax is

therion [-q] [-L] [-l <log-file>]

[-s <source-file>] [-p <search-path>]

[-d] [-x] [--use-extern-libs] [<cfg-file>]

or

therion [-h/--help]

[-v/--version]

[--print-encodings]

[--print-tex-encodings]

[--print-init-file]

[--print-environment]

[--print-symbols]

Arguments:

<cfg-file> Therion takes only one optional argument: the name of a configuration

file. If no name is specified thconfig in the current directory is used. If there is no

thconfig file (e.g. current directory is not a data directory), Therion exits with an

error message.

Options:

• -d ◃ Turn on debugging mode. The current implementation creates a temporary direc-

tory named thTMPDIR (in your system temporary directory) and does not delete any

temporary files.

58

• -h, --help ◃ Display short help.

• -L ◃ Do not create a log-file. Normally therion writes all the messages into a therion.log

file in the current directory.

• -l <log-file> ◃ Change the name of the log file.

• -p <search-path> ◃ This option is used to set the search path (or list of colon-

separated paths) which therion uses to find its source files (if it doesn’t find them

in the working directory).

• -q ◃ Run therion in quiet mode. It will print only warning and error messages to

STDERR.

• --print-encodings ◃ Print a list of all supported input encodings.

• --print-tex-encodings ◃ Print a list of all supported encodings for PDF output.

• --print-init-file ◃ Print a default initialization file. For more details see the Ini-

tialization section in the Appendix.

• --print-environment ◃ Print environment settings for therion.

• --print-symbols ◃ Print a list of all therion supported map symbols in symbols.xhtml

file.

• -s <source-file> ◃ Set the name of the source file.

• --use-extern-libs ◃ Don’t copy TEX and METAPOST macros to working directory.

TEX and METAPOST should search for them on their own. Use with caution.

• -v, --version ◃ Display version information.

• -x ◃ Generate file ‘.xtherion.dat’ with additional information for XTherion.

XTherion—compiler

XTherion makes it easier to run Therion especially on systems without a command line

prompt. Compiler window is the default window of XTherion. To run Therion it’s enough

to open a configuration file and press ‘F9’ or ‘Compile’ button.

XTherion displays messages from Therion in the lower part of the screen. Each error

message is highlighted and is hyperlinked to the source file where the error occurred.

After a first run there are activated additional menus Survey structure and Map structure.

User may comfortably select a survey or map for export by double clicking on some of the

items in the tree. Simple click in the Survey structure tree displays some basic information

about the survey in the Survey info menu.

59

What we get?

Information files

Log file

Besides the messages from Therion and other programs used, the log file contains infor-

mation about computed values of magnetic declination and meridian convergence, loop

errors and scrap distortions.

Absolute loop error is
√

∆x2 + ∆y2 + ∆z2, where ∆x is the difference between the iden-

tical start and end points of the loop before the error distribution measured along the

x coordinate axis; similarly for y and z. Percentual loop error is calculated as absolute

error / loop length. Average error is simple arithmetic average of all loop errors.

Scrap distortion is calculated using the distortion measure defined for all pairs of points

(point symbols, points and control points of line symbols) in the scrap. The measure is

calculated as |da−db|
db

, where db is the distance of points before warping and da is the distance

of points after warping. The maximal and average scrap distortions are calculated as a

maximum or average of such measures applied to all pairs of points.

XTherion

Therion provides some basic facts about each survey (length, vertical range, N–S range,

E–W range, number of shots and stations) if -x option is given. This information is

displayed in XTherion, Compiler window, Survey info menu, when some survey from the

Survey structure menu is selected.

SQL export

SQL export makes it easy to get very detailed and subtle information about centreline.

It is a text file starting with tables declaration (where ‘?’ stands in the following listing

for a maximal value required by the column data)

create table SURVEY (ID integer, PARENT_ID integer,

NAME varchar(?), FULL_NAME varchar(?), TITLE varchar(?));

create table CENTRELINE (ID integer, SURVEY_ID integer,

TITLE varchar(?), TOPO_DATE date, EXPLO_DATE date,

LENGTH real, SURFACE_LENGTH real, DUPLICATE_LENGTH real);

60

create table PERSON (ID integer, NAME varchar(?), SURNAME varchar(?));

create table EXPLO (PERSON_ID integer, CENTRELINE_ID integer);

create table TOPO (PERSON_ID integer, CENTRELINE_ID integer);

create table STATION (ID integer, NAME varchar(?),

SURVEY_ID integer, X real, Y real, Z real);

create table STATION_FLAG (STATION_ID integer, FLAG char(3));

create table SHOT (ID integer, FROM_ID integer, TO_ID integer,

CENTRELINE_ID integer, LENGTH real, BEARING real, GRADIENT real,

ADJ_LENGTH real, ADJ_BEARING real, ADJ_GRADIENT real,

ERR_LENGTH real, ERR_BEARING real, ERR_GRADIENT real);

create table SHOT_FLAG (SHOT_ID integer, FLAG char(3));

which is followed by a mass of SQL insert commands. This file may be loaded into any

SQL database (after some database-dependent initialization, which may include running

a SQL server and connecting to it, creating a database and connecting to it. A good idea

is to start a transaction before loading this file, if database doesn’t start a transaction

automatically.) It’s important to set-up database encoding to match the one specified in

Therion export database command.

SURVEY

 ID: integer

 PARENT_ID: integer

 NAME: varchar

 FULL_NAME: varchar

 TITLE: varchar

CENTRELINE

 ID: integer

 SURVEY_ID: integer

 TITLE: varchar

 TOPO_DATE: date

 EXPLO_DATE: date

 LENGTH: real

 SURFACE_LENGTH: real

 DUPLICATE_LENGTH

EXPLO

 PERSON_ID: integer

 CENTRELINE_ID: integer

TOPO

 PERSON_ID: integer

 CENTRELINE_ID: integer

PERSON

 ID: integer

 NAME: varchar

 SURNAME: varchar

STATION

 ID: integer

 NAME: varchar

 SURVEY_ID: integer

 X: real

 Y: real

 Z: real

STATION_FLAG

 STATION_ID: integer

 FLAG: char(3)

SHOT

 ID: integer

 CENTRELINE_ID: integer

 FROM_ID: integer

 TO_ID: integer

 LENGTH: real

 BEARING: real

 GRADIENT: real

 ADJ_LENGTH: real

 ADJ_BEARING: real

 ADJ_GRADIENT: real

 ERR_LENGTH: real

 ERR_BEARING: real

 ERR_GRADIENT: real

SHOT_FLAG

 SHOT_ID: integer

 FLAG: char(3)

Table and column names are self-explaining; for undefined or non-existing values NULL

is used. FLAG in SHOT_FLAG table is dpl or srf for duplicated or surface shots; in STA-

TION_FLAG table ent, con, fix, spr, sin, dol, dig, air, ove, arc for stations with

entrance, continuation, fixed, spring, sink, doline, dig, air-draught, overhang or arch

attributes, respectively.

Examples of simple queries follow:

List of survey team members with an information how much has each of them surveyed:

61

select sum(LENGTH), sum(SURFACE_LENGTH), NAME, SURNAME

from CENTRELINE, TOPO, PERSON

where CENTRELINE.ID = TOPO.CENTRELINE_ID and PERSON.ID = PERSON_ID

group by NAME, SURNAME order by 1 desc, 4 asc;

Which parts of the cave were surveyed in the year 1998?

select TITLE from SURVEY where ID in

(select SURVEY_ID from CENTRELINE

where TOPO_DATE between ’1998-01-01’ and ’1998-12-31’);

How long are passages lying between 1500 and 1550 m a.s.l.?

select sum(LENGTH) from SHOT, STATION S1, STATION S2

where (S1.Z+S2.Z)/2 between 1500 and 1550 and

SHOT.FROM_ID = S1.ID and SHOT.TO_ID = S2.ID;

Lists—caves, surveys, continuations

Using export continuation-list you get an overview of all points in the centreline and

scraps marked61 as a possible continuation.

export cave-list gives you a tabular information about surveyed caves (you need to

specify entrance flags in your data) including length, depth and entrance(s) location.

Detailed information about each sub-survey gives export survey-list command. The

length includes shots with approximate flags, but not explored, duplicate or surface.

2D maps

Maps for printing

Maps are produced in PDF and SVG formats, which may be viewed or printed in a wide

variety of viewers. Be sure to uncheck Fit page to paper or similar option if you want to

print in the exact scale.

In atlas mode some additional information is put on each page: page number, map name,

and page label.

Especially useful are the numbers of neighbouring pages in N, S, E and W directions, as

well as in upper and lower levels. There are also hyperlinks at the border of the map if

the cave continues on the next page and on the appropriate cells of the Navigator.

61 using station attribute for centreline point and point continuation in scraps

62

PDF files are highly optimized—scraps are stored in XObject forms only once in the

document and than referenced on appropriate pages. Therion uses most advanced PDF

features like transparency and layers.

Created PDF files may be optionally post-processed in applications like pdfTEX or Adobe

Acrobat—it’s possible to extract or change some pages, add comments or encryption, etc.

If the map was produced using georeferenced data then it also contains georeferencing 5.3

information. This can be extracted by XTherion to produce georeferenced raster images

(see XTherion/Additional tools for details).

Maps for GIS

Maps produced in DXF, ESRI or KML formats may be further processed in appropriate

software. These maps do not contain visualized map symbols

Special-purpose maps

Map in XVI format contains centreline with LRUD (and optionally morphed sketches)

and can be imported in XTherion to serve as a background for digitization.

Map in Survex format is intended for a quick preview in Aven.

3D models

Therion may export 3D model in various formats besides its native format. These may

be loaded in appropriate viewing, editing or raytracing programs to be printed or further

processed. If the format doesn’t support arbitrary passage shape definition, only the

centreline is included.

Loch

Loch is a 3D model viewer included in the Therion distribution. It supports e.g. high-

resolution rendering to file and stereo view using 3D-glasses.

63

Jesus said, ‘Let him who

seeks continue seeking until he finds. When he

finds, he will become troubled. When he becomes

troubled, he will be astonished, and he will rule over

the all.’ —Gospel according to Thomas, nd century

Changing layout of PDF maps

This chapter is extremely useful if you’re not satisfied with the predefined layout of map

symbols and maps provided, and want to adapt them to your needs. However, you need

to know how to write plain TEX and METAPOST macros to do this.

Page layout in the atlas mode

The layout command allows basic page setup in the atlas mode. This is done through its

options such as page-setup or overlap. But there are no options which would specify

the position of map, navigator and other elements inside the area defined by page-width

and page-height dimensions; e.g., why is the navigator below the map and not on its

right or left side?

There are many possible arrangements for a page. Rather than offer even more options for

the layout command, Therion uses the TEX language to describe other page layouts. This

approach has the advantage that the user has direct access to the advanced typesetting

engine without making the language of Therion overcomplex.

Therion uses pdfTEX with the plain format for typesetting. So you should be familiar

with the plain TEX if you wish to define new layouts.

The ultimate reference for plain TEX is

Knuth, D. E.: The TEXbook, Reading, Massachusetts, Addison-Wesley 11984

For pdfTEX’s extensions there is a short manual

Thành, H. T.—Rahtz, S.—Hagen, H.: The pdfTEX user manual, available at

http://www.pdftex.org

The TEX macros are used inside of code tex-atlas part of the layout command (see

the chapter Processing data for details). The basic one predefined by Therion is the

64

http://www.pdftex.org

\dopage

macro. The idea is simple: for each page Therion defines TEX variables (count, token,

and box registers) which contain the page elements (map, navigator, page name etc.).

At the end of each page macro \dopage is invoked. This defines the position of each

element on the page. By redefining this macro you’ll get desired page layout. Without

this redefinition you’ll get the standard layout.

Here is the list of variables defined for each page:

Boxes:

• \mapbox ◃ The box containing the map. Its width (height) is set according to the size

and overlap options of the layout command to

size_width + 2*overlap or

size_height + 2*overlap, respectively

• \navbox ◃ The box containing the navigator, with dimensions

size_width * (2*nav_size_x+1) / nav_factor or

size_height * (2*nav_size_y+1) / nav_factor, respectively

Both \mapbox and \navbox also contain hyperlinks.

Count registers:

• \pointerE, \pointerW, \pointerN, \pointerS contain the page number of the neigh-

bouring pages in the E, W, N and S directions. If there is no such a page its page

number is set to 0.

• \pagenum current page number

Token registers:

• \pointerU, \pointerD contain information about pages above and below the current

page. It consists of one or more concatenated records. Each record has a special format

page-name|page-number|destination||

If there are no such pages, the value is set to notdef.

See the description of the \processpointeritem macro below for how to extract and

use this information.

• \pagename ◃ name of the current map according to options of the map command.

• \pagelabel ◃ the page label as specified by origin and origin-label options of the

layout command.

65

The following variables are set at the beginning of the document:

• \hsize, \vsize ◃ TEX page dimensions, set according to page-width and page-height

parameters of the page-setup option of the layout command. They determine our

playground when defining page layout using the \dopage macro.

• \ifpagenumbering ◃ This conditional is set true or false according to the page-

numbers option of the layout command.

There are also some predefined macros which help with the processing of \pointer*

variables:

• \showpointer with one of the \pointerE, \pointerW, \pointerN or \pointerS as

an argument displays the value of the argument. If the value is 0 it doesn’t display

anything. This is useful because the zero value (no neighbouring page) shouldn’t be

displayed.

• \showpointerlist with one of the \pointerU or \pointerD as an argument presents

the content of this argument. (Which contains \pointerU or \pointerD, see above.)

For each record it calls the macro \processpointeritem, which is responsible for data

formatting.

Macro \showpointerlist should be used without redefinition in the place where you

want to display the content of its argument; for custom data formatting redefine \pro-

cesspointeritem macro.

• \processpointeritem has three arguments (page-name, page-number, destination)

and visualizes these data. The arguments are delimited as follows

\def\processpointeritem#1|#2|#3\endarg{...}

An example definition may be

\def\processpointeritem#1|#2|#3\endarg{%

\hbox{\pdfstartlink attr {/Border [0 0 0]}%

goto name {#3} #2 (#1)\pdfendlink}%

}

(note how to use the destination argument), or much simpler (if we don’t need hyperlink

features):

\def\processpointeritem#1|#2|#3\endarg{%

\hbox{#2 (#1)}%

}

For font management there are macros

• \size[#1] for size changes,

• \color[#1 #2 #3] for colour changes (RGB values in the range 0–100), and

• \rm, \it, \bf, \ss, \si for type face switching.

66

See below for a list of predefined texts which may be used in the atlas.

There is also a \framed macro which takes a box as an argument and displays the box

framed. The frame style can be customized by redefining the \linestyle macro which

defaults to 1 J 1 j 1.5 w.

Now we’re ready to define the \dopage macro. You may choose which of the predefined

elements to use. A very simple example would be

layout my_layout

scale 1 200

page-setup 29.7 21 27.7 19 1 1 cm

size 26.7 18 cm

overlap 0.5 cm

code tex-atlas

\def\dopage{\box\mapbox}

\insertmaps

endlayout

which defines the landscape A4 layout without the navigator nor any texts. There is only

a map on the page.

Note the \insertmaps macro. Map pages are inserted at its position. This is not done

automatically because you may wish to insert some other pages before the first map page.

More advanced is the default definition of the \dopage macro:

\def\dopage{%

\vbox{\centerline{\framed{\mapbox}}

\bigskip

\line{%

\vbox to \ht\navbox{

\hbox{\size[20]\the\pagelabel

\ifpagenumbering\space(\the\pagenum)\fi

\space\size[16]\the\pagename}

\ifpagenumbering

\medskip

\hbox{\qquad\qquad

\vtop{%

\hbox to 0pt{\hss\showpointer\pointerN\hss}

\hbox to 0pt{\llap{\showpointer\pointerW\hskip0.7em}%

\raise1pt\hbox to 0pt{\hss\updownarrow\hss}%

\raise1pt\hbox to 0pt{\hss\leftrightarrow\hss}%

\rlap{\hskip0.7em\showpointer\pointerE}}

\hbox to 0pt{\hss\showpointer\pointerS\hss}

}\qquad\qquad

\vtop{

67

\def\arr{\uparrow}

\showpointerlist\pointerU

\def\arr{\downarrow}

\showpointerlist\pointerD

}

}

\fi

\vss

\scalebar

}\hss

\box\navbox

}

}

}

Using other plain TEX macros or TEX primitives it’s possible to add other features, e.g. a

different layout for odd and even pages; headers and footers; or adding a logo to each

page.

In addition to map pages contains atlas additional items: title page, basic facts about

the cave, legend with used map symbols etc.

Therion automatically generates list of used map symbols and lists of persons who have

discovered, surveyed and drawn selected part of the cave. Following token registers may

be used (according to user’s requirements before or after the \insertmaps macro):

• \explotitle, \topotitle, \cartotitle ◃ translated titles

• \exploteam, \topoteam, \cartoteam ◃ participating members (according to team,

explo-team options for centreline and author option of scraps)

• \explodate, \topodate, \cartodate ◃ corresponding dates

• \comment ◃ is set according to map-comment option of the layout command

• \copyrights ◃ is set according to copyright options for surveys and other objects

• \cavename ◃ name of the exported map; set according to -title option of exported

map

• \cavelength, \cavedepth ◃ approximate length and depth of displayed map

• \cavelengthtitle, \cavedepthtitle ◃ translated labels

• \cavemaxz, \caveminz ◃ altitude max/min value5.4

• \thversion ◃ current therion version5.4

• \currentdate ◃ current date5.4

• \outcscode, \outcsname ◃ output coordinat system code and name5.4

• \northdir ◃ ‘true’ or ‘grid’5.4

68

• \magdecl ◃ magnetic declination in degrees5.4

• \gridconv ◃ grid meridian convergence in degrees5.4

There is a macro \atlastitlepages which combines most of the token registers men-

tioned above to get simple preformatted atlas introductory pages.

For legend displaying there are

• \iflegend ◃ conditional; true iff legend option of the layout command was set to on

or all values

• \legendtitle ◃ token register containing translated legend title

• \insertlegend ◃ macro for inserting legend symbols pictures with translated descrip-

tions in the specified number of columns (according to legend-columns layout option)

• \formattedlegend ◃ combines all three above commands to get preformatted legend

with header and symbols typeset in two62 columns if legend option is set on

North arrow and scale bar may be displayed using

• \ifnortharrow ◃ conditional; true if map projection is plan and symbol north-arrow

is not hidden in layout

• \ifscalebar ◃ conditional; true if scalebar is not hidden

• \northarrow ◃ PDF form with the north arrow

• \scalebar ◃ PDF form with the scale bar

There is a general-purpose macro for typesetting in multiple columns63:

• \begmulti <i>, \endmulti ◃ text between these macros is typeset in <i> columns

Example how to create atlas with lists of surveyors etc. followed by map pages and with

legend at the end:

code tex-atlas

\atlastitlepages

\insertmaps

\formattedlegend

Page layout in the map mode

In the map mode it’s possible to use a lot of predefined variables which are described in

the previous chapter:

62 Default; adjust the legend-columns layout option to get them more or less
63 Not to be used with map legend, where multiple columns are to be adjusted by legend-columns

layout option

69

\cavename, \comment, \copyrights, \explotitle, \topotitle, \cartotitle,

\exploteam, \topoteam, \cartoteam, \explodate, \topodate, \cartodate,

\cavelength, \cavedepth, \cavelengthtitle, \cavedepthtitle, \cavemaxz,

\caveminz, \thversion, \currentdate, \outcscode, \outcsname, \northdir,

\magdecl, \gridconv, \ifnortharrow, \ifscalebar, \northarrow, \scalebar,

\iflegend, \legendtitle, \insertlegend, \begmulti <i>, \endmulti,

\formattedlegend, \legendcolumns.

In order to place them somewhere on the map page, you have to define \maplayout

macro in the code tex-map section of the layout command. It should contain one or

more \legendbox invocations. The \legendbox macro has four parameters: coordinates

ranging 0–100, alignment specification (N, E, S, W, NE, SE, SW, NW or C) and the

content to be displayed.

A simple example is

\def\maplayout{

\legendbox{0}{100}{NW}{\northarrow}

}

which displays north arrow in the upper-left corner of the map sheet.

For user’s convenience, there is \legendcontent token register. It contains preformat-

ted cave name, north arrow, scale bar, explo/topo/carto teams, comment, copyrights

and legend. (The \legendcontent is also used in the default map layout definition:

\def\maplayout{\legendbox{0}{100}{NW}{\the\legendcontent}}).

Width of the above text may be adjusted by \legendwidth dimen register (its default

value is set by legend-width layout option). The color and size of texts in the pre-

formatted legend can be easily changed using \legendtextcolor, \legendtextsize,

\legendtextsectionsize and \legendtextheadersize token registers, e.g. for large

blue text:

code tex-map

\legendwidth=20cm

\legendtextcolor={\color[0 0 100]}

\legendtextsize={\size[20]}

\legendtextheadersize={\size[60]}

It is possible to display the whole map framed by setting the \framethickness dimen

register to positive value, e.g. 0.5mm.

Customizing text labels

There is a preliminary interface to changing font sizes for labels via the METAPOST

macro

70

fonts_setup(<tinysize>,<smallsize>,<normalsize>,<largesize>,<hugesize>);

which may be used inside of the code metapost section of the layout command. <nor-

malsize> applies to point label, <smallsize> applies to remark and all other point labels.

Each of them may apply to line label according to its -size option.

Example:

code metapost

fonts_setup(6,8,10,14,20);

% default values depend on scale; for 1:200 they are 7,8,10,12,14

New map symbols

Therion’s layout command makes it easy to switch among various predefined map symbol

sets. If there is no such symbol or symbol set you want, it’s possible to design new map

symbols.

However, this requires knowledge of the METAPOST language, which is used for map

visualization. It’s described in

Hobby, J. D.: A User’s Manual for MetaPost, available at

http://cm.bell-labs.com/cm/cs/cstr/162.ps.gz

User may also benefit from comprehensive reference to the METAFONT language, which

is quite similar to METAPOST:

Knuth, D. E.: The METAFONTbook, Reading, Massachusetts, Addison-Wesley 11986

New symbols may be defined in the code metapost section of the layout command.

This makes it easy to add new symbols at the run-time. It is also possible to add

symbols permanently by compiling them into Therion executable (see the Appendix for

instructions how to do this).

Each symbol has to have a unique name, which consists of following items:

• one of the letters ‘p’, ‘l’, ‘a’, ‘s’ for point, line, area or special symbols, respectively;

• underscore character;

• symbol type as listed in the chapter Data format with all dashes removed;

• if the symbol has a subtype, add underscore character and subtype;

• underscore character;

• symbol set identifier in uppercase

Example: standard name for a point ‘water-flow’ symbol with a ‘permanent’ subtype

in the ‘MY’ set is p_waterflow_permanent_MY. Standard name for user-defined symbol

types should not include symbol set identifier, e.g. p_u_bat.

Each new symbol has to be registered by a macro call

71

http://cm.bell-labs.com/cm/cs/cstr/162.ps.gz

initsymbol("<standard-name>");

unless it’s compiled into Therion executable.

There are four predefined pens PenA (thickest) . . . PenD (thinnest), which should be

used for all drawings. For drawing and filling use thdraw and thfill commands instead

of METAPOST’s draw and fill.

The following variables are also available:5.4

• boolean ATTR__shotflag_splay, ATTR__shotflag_duplicate,

ATTR__shotflag_approx ◃ set for line survey

• boolean ATTR__stationflag_splay ◃ set true for endstations of splay shots

• boolean ATTR__scrap_centerline ◃ set true for scraps created from centreline

• boolean ATTR__elevation ◃ true for (extended) elevation, false for plan projection

• numeric ATTR__height ◃ height of a pit or wall:pit

• string ATTR__id ◃ contains current object ID

• string ATTR__survey ◃ contains current survey name

• string ATTR__scrap ◃ contains current scrap name

• picture ATTR__text ◃ contains typeset text e.g. for point continuation

• string NorthDir ◃ ‘true’ or ‘grid’

• numeric MagDecl ◃ magnetic declination in degrees

• numeric GridConv ◃ grid meridian convergence in degrees

Point symbols

Point symbols are defined as macros using def ... enddef; commands. Majority of

point symbol definitions has four arguments: position (pair), rotation (numeric), scale

(numeric) and alignment (pair). Exceptions are section which has no visual representa-

tion; all labels, which require special treatment as described in the previous chapter, and

station which takes only one argument: position (pair).

All point symbols are drawn in local coordinates with the length unit u. Recommended

ranges are ⟨−0.5u, 0.5u⟩ in both axes. The symbol should be centered at the coordinates’

origin. For the final map, all drawings are transformed as specified in the T transforma-

tion variable, so it’s necessary to set this variable before drawing.

This is usually done in two steps (assume that four arguments are P, R, S, A):

• set the U pair variable to
(

width

2
, height

2

)
of the symbol for correct alignment. The

alignment argument A is a pair representing ratios
(

shiftx

Ux

)
and

(
shifty

Uy

)
.

(Hence aligned A means shifted (xpart A * xpart U, ypart A * ypart U).)

• set the T transformation variable

72

T:=identity aligned A rotated R scaled S shifted P;

For drawing and filling use thdraw and thfill commands instead of METAPOST’s draw

and fill. These take automatically care of T transformation.

An example definition may be

def p_entrance_UIS (expr P,R,S,A)=

U:=(.2u,.5u);

T:=identity aligned A rotated R scaled S shifted P;

thfill (-.2u,-.5u)--(0,.5u)--(.2u,-.5u)--cycle;

enddef;

initsymbol("p_entrance_UIS");

Line symbols

Line symbols differ from point symbols in respect that there is no local coordinate system.

Each line symbol gets the path in absolute coordinates as the first argument. Therefore

it’s necessary to set T variable to identity before drawing.

Following symbols take additional arguments:

• arrow ◃ numeric: 0 is no arrows, 1 arrow at the end, 2 begin, 3 both ends

• contour ◃ text: list of points which get the tick or one of −1, −2 or −3 to mark

undefined tick, tick in the middle or no tick, respectively

• section ◃ text: list of points which get the orientation arrow or −1 to indicate no arrows

• slope ◃ numeric: 0 no border, 1 border; text: list of (point,direction,length) triplets

Usage example:

def l_wall_bedrock_UIS (expr P) =

T:=identity;

pickup PenA;

thdraw P;

enddef;

initsymbol("l_wall_bedrock_UIS");

Area symbols

Areas are similar to lines: they take only one argument – path in absolute coordinates.

You may fill them in three ways:

• fill an uniform or randomised grid in a temporary picture (having dimensions bbox

path) with some point symbols; clip it according to path and add to the currentpic-

ture

73

• fill path with a solid colour

• fill path with a predefined pattern using a withpattern keyword.

Patterns are defined using the same user interface (without the patterncolor macro) as

described in the article

Bolek, P.: “METAPOST and patterns,” TUGboat, 3, XIX (1998), pp. 276–283, available

online at http://www.tug.org/TUGboat/Articles/tb19-3/tb60bolek.pdf

You may use standard METAPOST draw and similar macros without setting of T variable

in pattern definitions.

Example on how to define and use patterns:

beginpattern(pattern_water_UIS);

draw origin--10up withpen pensquare scaled (0.02u);

patternxstep(.18u);

patterntransform(identity rotated 45);

endpattern;

def a_water_UIS (expr p) =

T:=identity;

thclean p;

thfill p withpattern pattern_water_UIS;

enddef;

initsymbol("a_water_UIS");

Special symbols

There are currently two special symbols: scale bar and north arrow. Both are experi-

mental and subject to change.

74

http://www.tug.org/TUGboat/Articles/tb19-3/tb60bolek.pdf

1. When a distinguished but elderly scientist states that something is

possible, he is almost certainly right. When he states that something

is impossible, he is very probably wrong.

2. The only way of discovering the limits of the possible is to venture a

little way past them into the impossible.

3. Any sufficiently advanced technology is indistinguishable from magic.

—Arthur C. Clarke,

Appendix

Compilation

If you want to compile Therion from source code and run it, you need (first three are

required only during compilation):

• GNU C/C++ compiler

• GNU make

• Perl

• Tcl/Tk 8.4.3 and newer (http://www.tcl.tk) with BWidget widget set

(http://sourceforge.net/projects/tcllib) and optionally tkImg extension

(http://sourceforge.net/projects/tkimg).

• TEX distribution with at least TEX with Plain format, recent pdfTEX, and METAPOST

(http://www.tug.org).

• LCDF Typetools package (http://www.lcdf.org/type/)

• ImageMagick distribution with convert and identify utilities, if you want to use warping

of survey sketches.

• ghostscript if you want to create calibrated images from georeferenced PDF maps.

To compile Loch, you need

• freetype 2 and newer; freetype-config must work

• wxWidgets 2.6 and newer; wx-config must work

• VTK 5.0 and newer

• libjpeg, libpng, zlib

All programs (with the exception of BWidget and tkImg package) are usually included in

Linux, Unix or MacOS X distributions. For Windows consider using MinGW and MSYS

(http://www.mingw.org). It’s a distribution of GNU utilities with GNU make and GCC.

(BTW, why not to use precompiled Windows version?)

75

http://www.tcl.tk
http://sourceforge.net/projects/tcllib
http://sourceforge.net/projects/tkimg
http://www.tug.org
http://www.lcdf.org/type/
http://www.mingw.org

Quick start

• unpack the source distribution therion-5.*.tar.gz

• cd therion

• make config-macosx or make config-win32, if you use MacOS X or Windows, re-

spectively

• make

• sudo make install

Hacker’s guide

Make parameters

Therion’s makefile may take some optional parameters.

• config-linux, config-macosx, config-win32 ◃ configure Therion for a specific plat-

form. Linux is a default.

• config-release, config-oxygen, config-ozone ◃ set optimization level for C++

compiler (none, -O2 and -O3)

• config-debug ◃ useful before debugging the program

• install ◃ install Therion

• clean ◃ delete all temporary files

Adding new translations

Therion supports translation of map labels. Suppose you want to add a new language

xx.

• run ‘perl process.pl export xx’ in the ‘thlang’ Therion source subdirectory. This

creates a file texts_xx.txt. This file is UTF-8 encoded.

• edit the texts_xx.txt file. Add your translations at lines beginning with ‘xx:’.

• run make update

• compile Therion

Adding new encodings

Although UTF-8 Unicode encoding covers all characters which Therion is able to process,

it may be inconvenient to use it. In that case it’s possible to add support for any 8-bit

encoding for text input files. Copy a translation file to the thchencdata directory; add its

name to ‘ifiles’ hash in the beginning of the Perl script generate.pl; run it and recompile

Therion.

76

The translation file should contain two hexadecimal values of a character (first one in

the 8-bit encoding, second one in Unicode) in each line. Possible comments follow the ‘#’

character.

Adding new TEX encodings

It’s easy to add new encodings for 2D map output.64 Copy an appropriate encoding

mapping file with an *.enc extension to the texenc/encodings, run the Perl script

mktexenc.pl located in the texenc directory and compile Therion.

Therion uses the same encoding files as afm2tfm program from the TEX distribution,

which has the same format as an encoding vector in a PostScript font. You may find

more details in the chapter 6.3.1.5 Encoding file format in the documentation to Dvips

program.

Generating new TEX and METAPOST headers

Therion uses TEX and METAPOST for 2D map visualization and typesetting. Predefined

macros are compiled into the Therion executable and are copied to the working directory

just before running METAPOST and TEX (unless the --use-extern-libs option is used).

Layout command makes it possible to modify some macros in the configuration file at

the run-time.

However, it’s possible to make permanent changes to the macro files. After modifying the

files in the mpost and tex directories it’s necessary to run Perl scripts genmpost.pl and

gentex.pl, which generate C++ header files, and compile Therion executable again.

Environment variables

Therion reads following environment variables:

• THERION ◃ [not required] search path for (x)therion.ini file(s)

• HOME (HOMEDRIVE + HOMEPATH on WinXP) ◃ [not required, but usually present on your

system] search path for (x)therion.ini file(s)

• TEMP, TMP ◃ system temporary directory, where Therion stores temporary files (in a

directory named thPID, where PID is a process ID), unless tmp-path is specified

in the initialization file.

Consult the documentation of your OS how to set them.

64 This section applies to old-style font selection using tex-fonts command in the initialization file 5.3
and is obsolete when using pdf-fonts command.

77

Initialization files

Therion’s and XTherion’s system dependent settings are specified in the file therion.ini

or xtherion.ini, respectively. They are searched for in the following directories:

• on UNIX: ., $THERION, $HOME/.therion, /etc, /usr/etc, /usr/local/etc

• on Windows: ., $THERION, $HOME\.therion, <Therion-installation-directory>,

C:\WINDOWS, C:\WINNT, C:\Program Files\Therion

Therion

If no file is found Therion uses its default settings. If you want to list them, use --print-

init-file option. The initialization file is read like any other therion file. (Empty lines

or lines starting with ‘#’ are ignored; lines ending with a backslash continue on next line.)

Currently supported initialization commands follow.

• loop-closure <therion/survex>

By default, survex is used if present, otherwise therion.

• encoding-default <encoding-name>

Set the default output encoding (currently unused).

• encoding-sql <encoding-name>

Set the default output encoding for SQL export.

• language <xx[_YY]>

Default output language. See the copyright page for the list of available languages.

• units <metric/imperial>

Set default units.

• mpost-path <file-path>

Set the full path to a METAPOST executable if Therion can’t find it (“mpost” is the

default).

• mpost-options <string>

Set METAPOST options.

• pdftex-path <file-path>

Set the full path to a pdfTEX executable if Therion can’t find it (“pdfetex” is the

default).

• identify-path <file-path>

78

Set the full path to ImageMagick’s identify executable if Therion can’t find it (“iden-

tify” is the default).

• convert-path <file-path>

Set the full path to ImageMagick’s convert executable if Therion can’t find it (“con-

vert” is the default).

• source-path <directory>

Path to data and configuration files. Used mostly for system-wide grades and layout

definitions.

• tmp-path <directory>

Path where temporary directory should be created.

• tmp-remove <OS command>

System command to delete files from the temporary directory.

• tex-env <on/off>

[Works on Windows only.] When set to off (default), Therion temporarily clears all

environment variables related to TEX. Useful if there is other TEXdistribution installed

on your system which had set-up any environment variables, which could confuse TEX

and METAPOST programs supplied in Therion for Windows distribution.

Set to on if you use other TEX distribution for maps processing.

• text <language ID> <therion text> <my text>

Using this option you can change any default therion text translation in output. For

list of therion texts and available translations, see thlang/texts.txt file.

• cs-def <id> <proj4def> 5.4

Define a new coordinate system <id> using Proj4 syntax.

• pdf-fonts <rm> <it> <bf> <ss> <si> 5.3

Set-up fonts to be used in PDF maps. The command has to be followed by paths

specifying where regular, italic, bold, sans-serif and sans-serif oblique fonts are located

in your system. TrueType and OpenType fonts are supported.

Therion requires LCDF Typetools to be installed on your system to use this command.

Example:

pdf-fonts "/usr/share/fonts/Serif.ttf" \

"/usr/share/fonts/Serif-Italic.ttf" \

"/usr/share/fonts/Serif-Bold.ttf" \

"/usr/share/fonts/Sans.ttf" \

"/usr/share/fonts/Sans-Oblique.ttf"

• otf2pfb <on/off> 5.3

79

When set to on (default), OpenType fonts used in pdf-fonts are converted to PFB

fonts, if they are PostScript-based. Some information is lost in the PFB format, but

there is advantage that pdfTEX can embed subset of PFB fonts (in contrast with

OpenType fonts which must be fully embedded).

• tex-fonts <encoding> <rm> <it> <bf> <ss> <si>

Original and more complicated way to set-up fonts for PDF maps. You need to explic-

itly specify encoding (maximum 256 characters from the font that will be used). The

list of currently supported encodings gives the --print-tex-encodings command line

option. The same encoding must be used while generating TEX metrics (*.tfm files)

for those fonts (e.g. with the afm2tfm program) and this encoding must be explicitly

given also in the pdfTEX’s map file. The only exception is the base set of Computer

Modern fonts, which use ‘raw’ encoding. This encoding doesn’t need to be specified in

the pdfTEX’s map file.

Encoding has to be followed by five font specifications for regular, italic, bold, sans-

serif and sans-serif oblique styles. Default setting is tex-fonts raw cmr10 cmti10

cmbx10 cmss10 cmssi10

Example how to use other fonts (e.g. TrueType Palatino in xl2 (an encoding derived

from ISO8859-2) encoding). Run:

ttf2afm -e xl2.enc -o palatino.afm palatino.ttf

afm2tfm palatino.afm -u -v vpalatino -T xl2.enc

vptovf vpalatino.vpl vpalatino.vf vpalatino.tfm

You get files vpalatino.vf, vpalatino.tfm and palatino.tfm. Add the line

palatino <xl2.enc <palatino.ttf

to the pdfTEX’s map file. The same should be done for the italic and bold faces and

corresponding sans-serif and sans-serif-oblique fonts. If you’re lazy try

tex-fonts xl2 palatino palatino palatino palatino palatino

(We should use actually virtual font vpalatino instead of palatino, which contains

no kerning or ligatures, but pdfTEX doesn’t support \pdfincludechars command on

virtual fonts. To be improved.)

If you want to add some unsupported encodings, read the chapter Compilation /

Hacker’s guide.

XTherion

Initialization file for XTherion is actually a Tcl script evaluated when XTherion starts.

The file is commented; see the comments for details.

80

Limitations

• scrap size ◃ ≈ 2.8× 2.8 m in the output scale (METAPOST limit)

• page size ◃

PDF map or atlas: ≈ 5× 5 m (pdfTEX limit)

SVG map: unlimited

• scraps count ◃ approx. 500–6000, depending on frequency of cross-sections

current METAPOST limit: 4(scraps + sections) < 4096 (may be arbitrarily increased)

pdfTEX limit: 2× pages + images + patterns + 6(scraps + sections) < 32500

Example data

Following simple example illustrates basic usage of Therion commands:

encoding utf-8

survey main -title "Test cave"

survey first

centreline

units compass grad

data normal from to compass clino length

1 2 100 -5 10

endcentreline

endsurvey

survey second -declination [3 deg]

centreline

calibrate length 0 0.96

data normal from to compass length clino

1 2 0 10 +10

endcentreline

endsurvey

centreline

equate 2@first 1@second

endcentreline

scraps are usually in separate *.th2 files

81

scrap s1 -author 2004 "Therion team"

point 763 746 station -name 2@second

point 702 430 station -name 2@first

point 352 469 station -name 1@first

point 675 585 air-draught -orientation 240 -scale large

line wall -close on

287 475

281 354 687 331 755 367

981 486 846 879 683 739

476 561 293 611 287 475

endline

endscrap

map m1 -title "Test map"

s1

endmap

endsurvey

Corresponding configuration file could be:

encoding utf-8

source test

layout l1

scale 1 100

layers off

endlayout

select m1@main

export model -fmt survex

export map -layout l1

If you save data file as ‘test.th’ and configuration file as ‘thconfig’ you may process them

with Therion.

History

• 1999

Oct: first concrete ideas

82

Nov: start of programming (Perl scripts and METAPOST macros)

Dec 27: Therion compiles simple map in PostScript format for the first time (32 kB

of Perl and 7 kB of METAPOST and TEX source code). The map warping model

was substantially different from the current one (positions of features were relative

to a particular survey shot, not to positions of all stations in a scrap). This version

already included some interesting features such as transformation functions which

allowed user specification of the input format for survey data, or splitting large

maps to multiple sheets.

• 2000

Jan: xthedit (Tcl/Tk), a graphical front-end for Therion

Feb 18: start of reprogramming (Perl)

Apr 1: first hyperlinked PDF cave map / atlas

Aug: experiments with PDF, pdfTEX and METAPOST

• 2001

Nov: start of reimplementation from scratch: Therion (C++ with some Perl scripts

inherited from the previous version); notion of a scrap; interactive 2D map editor

ThEdit as a replacement of xthedit (Delphi)

Dec: ThEdit exports simple map for the first time

• 2002

Mar: Therion 0.1 — Therion is able to process survey data (centreline) of the Cave of

Dead Bats. XTherion, text editor designed for Therion (Tcl/Tk).

Jul 27: Therion 0.2 — Therion compiles simple map (consisting of two scraps) for the

first time (800 kB of source code)

Aug: XTherion extended to 2D map editor (as a replacement of ThEdit)

Sep: Therion compiles first real and complex map of a cave. XTherion extended to

compiler.

• 2003

Mar: First version of The Therion Book finished

Apr: Therion included in Debian GNU/Linux

Jun: all Perl scripts rewritten in C++, Therion is one executable program now (al-

though using Survex and TEX)

• 2004

Mar: Therion 0.3 — Therion exports 3D model created from 2D maps. Loop closure

algorithm included into Therion.

• 2006

83

Oct: Therion 0.4 — New 3D viewer (Loch).

• 2007

Feb: Therion 0.5 — Support for bitmap sketches morphing.

Future

Although Therion is already used for map production, there are a lot of new features to

be implemented:

General

• loop closure information in SQL

2D maps

• complete the predefined symbol sets

• generate registers for atlas

• use MPlib instead of METAPOST

3D models

• improve passage walls modeling

XTherion

• improve 2D editing capabilities

Loch

• colour schemes

• survey tree for selecting sub-surveys to display

• spatial filtering (e.g. clipping by planes)

• support for multiple surfaces

Labyrinth

• completely new GUI in the far future (see http://labyrinth.speleo.sk)

84

http://labyrinth.speleo.sk

There is no royal road to geometry.

Μὴ εἶναι βασιλικὴν ἀτραπὸν ἐπὶ γεωμετρίαν.
—Euclid, rd century BC

There is no royal road, but there is a road.

—Frederick P. Brooks,

Case studies

This chapter is automatically generated from the samples directory in the Therion source

code.

Drawing maps in therion

641

640

641

640

642

640

10

1

4

0

6

8

Rabbit Cave - plan

10 m

Length: 76 m

Depth: 5 m

Surveyed by: Martin Budaj, Miroslav Hofer, Stacho Mudrák 1997

06
8

10

1

4

Rabbit Cave – extended elevation

10 m

Length: 76 m

Depth: 5 m

Surveyed by: Martin Budaj, Miroslav Hofer, Stacho Mudrák 1997

Listing caves

When surveying caves in some large area, you often need to generate an up to date list of

all caves in that area. In therion dataset, “cave” can be defined in several ways, depending

on the level of cave survey.

If you have just surveyed entrance station (e.g. using GPS or standard surveying meth-

ods), all you need to do is to assign entrance flag using

85

station cave-1 "Unsurveyed cave" entrance

If there is some explored passage behind this entrance, but you did not survey it properly,

you should add also continuation flag and explored flag followed by explored length.

Explored but unsurveyed passage lengths are also part of summary statistics.

station cave-2 "Unsurveyed but explored" entrance \

continuation explored 80m

If you have properly surveyed some cave, its data are usually in some survey structure.

Survey becomes a cave, if it has main entrance station specified using -entrance option.

Example:

survey small_cave -title "Tunnel cave" -entrance 0

If survey contains survey data, but it has no main entrance specified, it is not considered

as a cave, just as data organization unit and thus not present in the cave list. Only surveys

containing some caves (i.e. entrance stations or surveys with main entrance defined) are

present in the final cave list table.

After caves in your data have been properly defined, you can generate table using

export cave-list -o caves.html

Resulting table looks like this

Title Length Depth Explored Altitude

Tunnel cave 25 7 1244.0

Unsurveyed cave 1234.0

Unsurveyed but explored 80 1256.0

86

Area symbols

Therion area types

bedrock

flowstone

moonmilk

ice

snow

water

sump

clay

sand

pebbles

debris

blocks

Sketch morphing

Original survey sketch:

87

Image after morphing:

Walls after morphing:

Another survey sketch:

88

This image after morphing:

Morphed sketch after extra points insertion:

And the morphed walls:

89

Extended elevation control

Assume following situation (in plan view), when there is a loop in centerline between

stations 1 and 4, small chimney near station 5 and entrance to the cave is at station 6.

0

1

2

3

4

5

6

5’

By default, centerline extended elevation of this situation looks like this:

90

0
1

2

3
4

55

5’

6

This is obviously not what we would like to get.

To control process of extended elevation, there is a special extend option in centerline

command.

First of all, we would like to start our extended elevation at station 6 (where the entrance

is). This can be done by specifying

extend start 6

in the centerline. Now it looks better,

0
1

2

3
44

5

5’

6

but there is still a problem with a branch containing station 5.

If we would like to start this branch from station 4, we need to forbid therion to extend

station 5 from 1. This can be done by specifying

extend ignore 1 5

This means, that shot from 1 to 5 will be ignored, when extended elevation is generated.

If we would like to extend branch starting with station 5 to the left, we need to specify

also

91

extend left 5

This will extend all stations from station 5 to the left.

0
1 1

2

3
4

5

5’

6

As we have mentioned before, there is a small chimney above station 5. In this case, it

is much more natural to draw this shot as vertical (because it is a chimney). To specify

this, use

extend vertical 5 5’

0
1 1

2

3
4

5

5’

6

Or you can completely hide this leg from extended centerline using:

extend hide 5 5’

92

0
1 1

2

3
4

5

6

Stations in extended elevation scraps

Even if the station 1 is present more then one time in the map, therion automatically

detects correct position of this station in each scrap and they are usually drawn correctly.

4

51

6

4
3

2

1
0

The only thing that is missing is connection line between stations 1 in these two branches.

Therion does not automatically generate these lines because their shape usually depends

on particilar map.

To draw such a line all you need to do is to create a simple scrap with this line. Here is

an example:

scrap sc -proj extended

point 0 0 station -name 1 -from 5 -visibility off

point 100 0 station -name 1 -from 2 -visibility off

line map-connection

0 5

0 15

100 15

93

100 5

endline

endscrap

As you can see, even there are two stations with same name, they are distinguished by

-from option, which specifies previous station in extended elevation. Using this scrap

you receive the final map:

4

51

6

4
3

2

1
0

Dipsplaying overlaying maps in offset

Assume that there are two maps m1 and m2 (m1 is above m2). By default therion

displays m1 overlying m2.

To display map m2 in offset you need to create a map containing m2 and specify offset

and preview type for m2 in this map. Example:

map m12

m1

break

m2 [0 8 m] below

endmap

94

After selecting the m12 in configuration file you receive:

Joining arrows are created from map-connection points specified in scraps that are moved.

Otherwise these points are ignored.

If the situation is more complicated, e.g. there is m3 below m2

you need to create more complicated map structure to handle this.

map m23

m2

break

m3 [-8 0 m] below

endmap

map m123

m1

break

m23 [0 8 m] below

95

endmap

Then m123 looks like this:

Importing survex .3d files

Therion surveys nearly correspond to station prefixes defined by *begin/*end pairs in

survex source files. Usually there does not exist one-to-one mapping between them. So

if you want to keep your centerline in survex files you need to solve the problem how to

match survex and therion data structures. This sample shows three different ways, how

to deal with station prefixes when importing survex .3d files to therion.

Using surveys specified in .th files

If you will import .3d file with -surveys use switch, then therion tries to find the match

between survex prefix and therion survey name. If this match is found, stations are

inserted into survey found. Otherwise prefix is left with station names. Example code:

import use.3d -surveys use

input use-out.th2

survey use

input use-in.th2

endsurvey

In this case you should take care where you input your .th2 files containing scraps. In

use-out.th2 file you should refer to station names using:

point 165.744 176.58 station -name 2@use

but in the use-in.th file using

96

point 321.454 236.22 station -name 1

Map with station names in this case looks like this:

0@use

1@use

sub.1@use

3@use
2@use

Station names are before ‘@’ symbol, survey names follow this symbol.

Creating non-existing surveys

If you import your .3d file using

import create.3d -surveys create

all survex prefixes are taken into account and if surveys with corresponding names do not

exist, they are created. In this case, if you do

input create.th2

right after import command, you refer to stations in .th2 file with names shown on the

map.

97

0@create

1@create

2@create

0@sub.create

1@sub.create

Ignoring station prefixes

Last possibility is to import your .3d file using

import ignore.3d -surveys ignore

Also in this case, station references in corresponding .th2 file are same as station names

on the next map.

98

ignore.0

ignore.1

ignore.sub.0

ignore.3

ignore.sub.1

Note that no surveys are created in this case. Station names are taken from .3d files

without change.

Managing large projects

Assume a situation when you want to join these three small maps within single large

project. Assume that coordinates of cave entrances are specified in the top-level cave.3d

file. If your joining code will be

import cave.3d -surveys use

survey cave

input use/use.th

input create/create.th

input ignore/ignore.th

endsurvey

not all stations are replaced correctly. The “created” series is placed wrong on the map.

99

ignore.0@cave

ignore.1@cave

ignore.sub.0@cave

ignore.3@cave

ignore.sub.1@cave

0@create.cave

1@create.cave

2@create.cave

0@sub.create.cave

1@sub.create.cave

0@use.cave

1@use.cave

sub.1@use.cave

3@use.cave
2@use.cave

This is because in top level import command, survey create is imported from file cre-

ate/create.3d with wrong coordinates, and we import top-level .3d file with -surveys

use switch. This means, cave.create.1 will be imported here as create.1@cave and not

1@create.cave.

To solve this problem, we need to re-import stations from top-level cave.3d file once more

with -surveys create switch.

import cave.3d -surveys use

import cave.3d -surveys create

survey cave

input use/use.th

input create/create.th

input ignore/ignore.th

endsurvey

After this additional import final looks as expected.

ignore.0@cave

ignore.1@cave

ignore.sub.0@cave

ignore.3@cave

ignore.sub.1@cave

0@create.cave

1@create.cave

2@create.cave

0@sub.create.cave

1@sub.create.cave

0@use.cave

1@use.cave

sub.1@use.cave

3@use.cave
2@use.cave

100

Conclusion

Even if there are several possibilities how to map survex prefix structure to therion survey

structure, the most clean solution is to create survey structure to desired depth in .th

files using empty survey/endsurvey pairs and allways use -surveys use switch when

importing .3d files.

Question marks handling

Possible continuations are treated special way in therion in both centerline and map files.

You may associate text description, explored length (behind this continuation) or any

other atribute to it (like Code if you have your own coding standard for continuations).

Question marks in centerline

In the centerline object, you may add a special flags to the station, where continuation

is possible. Just use following syntax

station 5 "pit" continuation attr Code V explored 20m

When you export map and use

symbol-show point flag:continuation

in your layout, station with continuation flag specified is marked by question mark (con-

tinuation symbol is shown above the station).

You may redefine continuation symbol to show also continuation description (stored in

_text attribute) using following layout code

101

code metapost

def p_continuation(expr pos,theta,sc,al) =

% draw default continuation symbol

p_continuation_UIS(pos,theta,sc,al);

% if text attribute is set

if known(ATTR__text) and picture(ATTR__text):

% set labeling color to light orange

push_label_fill_color(1.0, 0.9, 0.8);

% draw filled label with text next to ?

p_label.urt(ATTR__text,(.5u,-.25u) transformed T,0.0,8);

% restore original labeling color

pop_label_fill_color;

fi;

enddef;

endcode

Then also continuation description is displayed in the map.

pit

Question marks in maps

In the scrap (.th2 file), you can use -text, -code and -explored options to continuation

symbol.

102

point 796.0 676.0 continuation -attr Code A -explored 50m \

-text "water too cold to continue survey"

In the map, also the question marks only are displayed by default.

When you redefine continuation symbol as mentioned above, you can show also continu-

ation codes and descriptions.

strong wind from breakdown

water too cold to continue survey

pit

Exporting question mark lists

You may also export a list of all continuations from your project project using

export continuation-list -o questions.html

File questions.html then contains following list:

103

Comment Explored Survey Station Code

water too cold to continue survey 50.0 Sample cave 7 A

strong wind from breakdown Sample cave 3 B

pit 20.0 Sample cave 5 V

Using user defined symbol types

If therion does not offer any appropriate symbol for the feature you want to draw to the

map, you can use user defined symbol type (type u, valid for point, line and area objects).

The syntax is very simple. Assume you want to create “bat” point, line and area. You

just use u:bat as a type (bat is in fact subtype) of u type. So your code will be like this:

point 555.0 480.0 u:bat

or

line u:bat

or

area u:bat

When you export map without defining the symbols in METAPOST, user defined symbols

are highlighted in red without any graphical representation.

To display them correctly you need to define symbols for them in METAPOST languge

the same way as ordinary symbols are usually redefined.

Firstly point symbol. In the

code metapost

section of your layout define point u:bat symbol like this

104

def p_u_bat(expr pos, theta, sc, al) =

T := identity shifted pos;

thfill (bat_path scaled 2.0) withcolor black;

enddef;

similarly the line u:bat symbol

def l_u_bat(expr P) =

T:=identity;

cas := 0;

dlzka := arclength P;

mojkrok:=adjust_step(dlzka, 1.0u);

pickup PenD;

forever:

t := arctime cas of P;

thfill bat_path scaled 0.5 shifted (point t of P) withcolor black;

cas := cas + mojkrok;

exitif cas > dlzka + (mojkrok / 3); % for rounding errors

endfor;

enddef;

and finally the area u:bat symbol (pattern in this case)

% bat pattern

beginpattern(pattern_bat);

fill bat_path withcolor black;

endpattern;

% bat area symbol

def a_u_bat (expr Path) =

T:=identity;

thclean Path;

thfill Path withpattern pattern_bat;

enddef;

These symbols will be included also in the legend. To change the way how they are

drawn there just define appropriate macro. Its name should be symbol macro name with

_legend suffix.

def l_u_bat_legend =

l_u_bat(((.2,.2) -- (.8,.8)) inscale)

enddef;

Finally, add description of your new symbols that will be shown in the legend using text

command anywhere in the configuration file.

105

text en "point u:bat" "bat"

text en "line u:bat" "bat path"

text en "area u:bat" "lot of bats"

After all these definitions you receive bat point, line and area symbols with proper graph-

ical representation and legend boxes.

Legend

wall bat path

border lot of bats

bat

106

	Table of Contents
	Introduction
	Creating data files
	Processing data
	What we get?
	Changing layout of PDF maps
	Appendix
	Case studies

