GNU ccd2cue

for version 0.5 (March 13, 2015)

Bruno Félix Rezende Ribeiro <oitofelix@gnu.org>

mailto:oitofelix@gnu.org

GNU ccd2cue is a CCD sheet to CUE sheet converter. It supports the full extent of CUE
sheet format expressiveness, including mixed-mode discs and CD-Text meta-data.

This manual is for GNU ccd2cue version 0.5 (March 13, 2015).

This package is a component of the GNU Operating System and is developed by the GNU
Project.

Copyright (©) 2010, 2013, 2014, 2015 Bruno Félix Rezende Ribeiro

Permission is granted to copy, distribute and /or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections. A copy
of the license is included in the section entitled “GNU Free Documentation
License.”.

Table of Contents

Preface 1
1 OVErvVICW 3
1.1 DeSCriptionttt e e 3
1.2 Distribution.ooouiiii 3
1.3 Getting & COPY -« v v vttt ettt 4
1.4 Contact . .vove et 4
1.5 Bug reporting.ttt 4
1.6 Contributingo.uoiiii i 5)
1.7 Donating.oooiiii 5
1.8 Hacking. 6
2 Release 7
2.1 ANDNOUNCEIMNENT . . . oottt et et e 8
2.2 N WS oot 10
2.3 TO Ao o 13
2.4 AULhOTS. . o 14
2.5 Thanks . ..o 15
2.6 DOMNOTS. ..t 16
3 Operation............ 17
4 Tutorial 19
5 Invocation................. ... 21
6 Burning....... 22
Appendix A Compact Disc fields.............. 23
AT CATALDG . . oottt e e e 24
A2 MODE . ..t 25
A3 FLAGS et 26

Appendix B CCD sheet format................ 28
B.l CLlomeCD ... 29
B.l.l Version.......oooiiiii 29
B2 DASC o 30
B.2.1 TocEntrieso 30
B.2.2 Sessions........iiiii 30
B.2.3 DataTracksScrambled..............c.iiiuiiiniinnennn.. 30
B.2.4 CDTextLengtho, 31
B.2.5 CATALOG o 31
B3 CDT Xt oottt 32
B.3. 1 Entries 32
B.3.2 Entry ... 32
B4 Session.......ooi 33
B4l PreGapModecouuuiiiiiii e 33
B.4.2 PreGapSubCcoiuuiiiiii 33
B.o Entry ... 34
B.5. 1 SesSSion ... 34
B.5.2 Point ... 34
B.5.3 ADR. ... 35
B.5.4 Control..... ..o 35
B.5.5 TrackNOiiii i 35
B.5.6 AMin. ... 35
Bl DT ASeC. . 35
B.5.8 AFrameo 36
B0, AL BA. . 36
B.5.10 Zero ... 36
B.5. 11 PMin .o 36
B.5.12 PSeC ..o 36
B.5.13 PErameot 37
B.5.14 PLBA .. 37
B.6 TRACK ..o 38
B.6.1 MODE. 38
B.6.2 I8RC. ... 38
B.6.3 INDEXttt 39
B.6.4 FLAGS .. o 39
Appendix C CUE sheet format................ 40
C.1 CATALOG . . .ottt e e e e 41
C.2 CDTEXTFILE ..ottt e e e 42
C.3 TITLE ..ottt e e 43
C.4 PERFORMER . ..ottt e i 44
C.5 SONGWRITER ...ttt ittt e e e e e 45
G0 FILE . it 46
G TRACK . oottt 48
G FLAGS . oottt e e 49
CLO ISRC .ottt 50
C.I0 PREGAP .. oot 51

ii

C.12 POSTGAP . ottt e 54
G183 REM .ottt 95

Appendix D GNU Free Documentation License

.. 56
Appendix E The GNU Manifesto............. 64
Appendix F The GNU Project................ 73
Appendix G Linux and the GNU system 88
Appendix H Why Software Should Not Have

OWNers.............o i, 91
Appendix 1 Why Free Software Needs Free

Documentation............................ ... 95

Preface 1

Preface

Manifesto: On the internet there is a gigantic quantity of optical disc image
files in numerous formats. Countless times we need to burn some of them.
Some time ago I needed it, but I came across a file format extremely irritating
for a Free Software user like me: a CD layout descriptor file, with .ccd suffix,
generated by a proprietary software called CloneCD. I searched the internet for
a way to burn that file on the GNU+Linux-Libre system, but I only found a lot
of people asking for a solution on a lot of forums, and getting the unanimous
answer: no way! At first I could not believe at that point there was no option.
Then, with a little bit of patience and research, I wrote some code to convert
that files to a format much more common and accessible, an ad-hoc standard
in the GNU operating system: the CUE sheet format. So I could burn a lot of
what I wanted! I wondered whether it would be useful for others. .. and here
is the result!
—Bruno Félix Rezende Ribeiro (oitofelix)

There is a well known and widely employed proprietary optical disc authoring software
called CloneCD! which is intended to make a nearly exact copy of audio and/or data optical
discs for archival and/or reproduction purposes. When making a copy of an optical disc
to hard disk that program can output three files: audio/data raw image, sub-channel data
and layout description. The GNU ccd2cue program operates exclusively on the latter to
produce a hopefully equivalent? layout description in the CUE sheet format and possibly a
companion CD-Text meta-data file. Since there are free software packages that can easily
and fully handle CUE sheet files, this frees the user from the temptation to use a proprietary
program or from the burden of searching for the desired disc data into a supposedly more
free software friendly format.

One such program capable of burning a raw image file laid out by a CUE sheet file, as
well as converting a CUE sheet file to the TOC sheet format, is cdrdao®.

Notably, GNU ccd2cue can handle:

e Mixed-mode CCD sheet file*;
o CD-Text meta-data®;

e Track special sub-code flags®;

Designed to run on an equally freedom-restricting and user-subjugating platform known as Microsoft
Windows.

As far as possible to the full extent of CUE sheet format expressiveness.
See http://cdrdao.sourceforge.net/.
A sheet describing the layout of a disc which contains simultaneously audio and data tracks.

T WN

A method for storing disc and track relevant information (like album, song and artist names) on a
standard compliant audio CD.

In-disc information that determines copy restriction (very sad!) and audio track characteristics like 4
channel audio and track pre-emphasis.

http://cdrdao.sourceforge.net/
http://cdrdao.sourceforge.net/

Preface 2

This manual is split in two major logical segments: instruction and reference. In the
former resides the manual content targeted to instructional, reasonably tutorial, use. It is
composed of the following chapters:

Overview General information about purpose, distribution, copying, community, contri-
bution and donation for this package.

Release Presents information specifically relevant for the current release or subject to
change between releases.

Operation Teach how the program works from the user’s perspective;

Tutorial Guides the reader step-by-step in using the program for practical common use
cases.

Invocation Concerns ccd2cue invocation syntax, accepted options and their meanings.

Burning Gives an important warning and advice about burning the resulting CUE sheet.
READ THAT!

In the latter, one can find the reference material comprised of the following appendices:

Compact Disc fields
Describes some Compact Disc information that are common concepts to CCD
and CUE sheet formats.

CCD sheet format
Describes the CCD sheet format (at least the part we know about — it is a
reverse engineering process, and you are encouraged to help).

CUE sheet format
Describes the CUE sheet format.

Now that you are acquainted with the program and documentation, HAPPY HACKING!

Chapter 1: Overview 3

1 Overview

This chapter briefly explains for what this package is intended, gives relevant considera-
tions regarding dependencies, configuration, build, installation and use, describes which are
the rules for its distribution, how to get a copy of it, how to contact the community, how
to fill bug reports, how to contribute to the package, how to make donations to support its
development and how to get started hacking the code. Bear in mind that instructions in this
chapter are package-specific; for general and in-depth configuration, build and installation
instructions refer to the file INSTALL present in the top-level directory of the source distri-
bution. If you have checked out the source tree from the VCS repository see Section 1.8
[Hacking], page 6.

For more information about this program you can visit its home page at
https://www.gnu.org/software/ccd2cue/. If you want to receive notifications about
new releases of this program or important issues related to it, subscribe to its mailing
list, as described in Section 1.4 [Contact], page 4, or subscribe to the package atom feed
https://savannah.gnu.org/news/atom.php?group=ccd2cue.

1.1 Description

GNU ccd2cue is a CCD sheet to CUE sheet converter. It supports the full extent of
CUE sheet format expressiveness, including mixed-mode discs and CD-Text meta-data. It
plays an important role for those who need to use optical disc data which is only available
in the proprietary sheet format CCD, but don’t want to surrender their freedom. It fills
an important gap in the free software world because before its conception it was impossible
to use complex forms of optical disc data laid out by CCD sheets in a whole/holy free
operating system.

The GNU ccd2cue documentation is also intended to be a reference documentation for
both sheet format specifications. That way we can reverse engineer the secret CCD sheet
proprietary format only once and then make the information available for developers in
order to benefit all free software users that want their software to be interoperable. The
CUE sheet format is not a secret, but with this package we take the opportunity to ensure
that its specification is available under a free documentation license for the sake of the whole
free software community.

1.2 Distribution

This program is free software; this means that everyone is free to use it and free to
redistribute it under certain conditions. This program is not in the public domain; it is
copyrighted and there are restrictions on its distribution, but these restrictions are designed
to permit everything that a good cooperating citizen would want to do. What is not allowed
is to try to prevent others from further sharing any version of this program that they might
get from you. The precise conditions are found in the GNU GPL (General Public Licence).
The program manual is covered by the GFDL (Appendix D [GNU Free Documentation
License|, page 56). This license is similar in spirit to the GNU General Public License, but
is more suitable for documentation.

https://www.gnu.org/software/ccd2cue/
https://savannah.gnu.org/news/atom.php?group=ccd2cue
https://www.gnu.org/licenses/gpl.html

Chapter 1: Overview 4

1.3 Getting a copy

One way to get a copy of this program is from someone else who has it. You need not
ask for our permission to do so, or tell any one else; just copy it. You may also receive
this program when you buy a computer. Computer manufacturers are free to distribute
copies on the same terms that apply to everyone else. These terms require them to give
you the full sources, including whatever changes they may have made, and to permit you
to redistribute the program received from them under the usual terms of the GNU General
Public License. In other words, the program must be free for you when you get it, not just
free for the manufacturer.

If you have access to the Internet, you can get the latest distribution version of this pro-
gram at https://ftp.gnu.org/gnu/ccd2cue/. Please, use a mirror if possible; you will be
automatically redirected to the nearest mirror at http://ftpmirror.gnu.org/ccd2cue/.

A VCS repository, where the development takes place, is also available. It maintains the
full history of modifications of every single source file. You can checkout any given revision
of any file or get a snapshot of the entire source tree in a particular desired state. Special
build tools, as described in Section 1.8 [Hacking], page 6, are required to build from those
checkouts, though. Notably, to stay up to date with the latest developments in the source
tree, you can anonymously checkout the repository with the following command:

git clone git://git.savannah.gnu.org/ccd2cue.git

1.4 Contact

You can get in touch with other users and the developers of this program by subscribing
to its mailing list. Anyone is welcome to join the list; to do so, visit ccd2cue’s help and
support mailing list web interface. To post a message to all the list members, send email to
ccd2cue@gnu.org. To see the collection of prior postings to the list, visit its archive. You
can use this list for all discussion, including asking for help and bug reporting, although
the preferred method for reporting bugs is sending a mail to bug-ccd2cue@gnu.org, the
ccd2cue’s bug reporting mailing list. See Section 1.5 [Bug reporting], page 4.

If you feel somewhat chatty, eager for a somewhat more instantaneous response from com-
munity, you can join us on our friendly IRC channel: ‘irc://irc.freenode.net/ccd2cue’.

1.5 Bug reporting

If you came across some problem and need help you can contact the community as
described in Section 1.4 [Contact], page 4. If you think you found a bug, but is not quite
sure about it, you can ask for support sending a mail to ccd2cue@gnu.org. We will revise
your post, advise you and take the appropriate measures. If you are confident you have found
a bug, you can submit a bug report directly to bug-ccd2cue@gnu.org. You can subscribe
to this ccd2cue’s bug reporting mailing list at its web interface. To see the collection of prior
reported bugs, visit its archive. Please, when reporting a bug include enough information
for the maintainers to reproduce the problem. Generally speaking, that means:

e The contents of any input files necessary to reproduce the bug and command line
invocations of the program(s) involved (cruciall).

e A description of the problem and any samples of the erroneous output.

e The version number of the program(s) involved (use --version).

https://ftp.gnu.org/gnu/ccd2cue/
http://ftpmirror.gnu.org/ccd2cue/
https://lists.gnu.org/mailman/listinfo/ccd2cue/
https://lists.gnu.org/mailman/listinfo/ccd2cue/
mailto:ccd2cue@gnu.org
https://lists.gnu.org/archive/html/ccd2cue/
mailto:bug-ccd2cue@gnu.org
mailto:ccd2cue@gnu.org
mailto:bug-ccd2cue@gnu.org
https://lists.gnu.org/mailman/listinfo/bug-ccd2cue/
https://lists.gnu.org/archive/html/bug-ccd2cue/

Chapter 1: Overview 5

e Hardware, operating system, and compiler versions (uname -a).
e Unusual options you gave to configure, if any (see config.status).

e Anything else that you think would be helpful.

1.6 Contributing

This program is a collaborative effort and we encourage contributions from anyone and
everyone — your help is very much appreciated. You can help in many ways:

e Donate to developers in order to support their work. See Section 1.7 [Donating|, page 5.

e Write documentation. We are specially in need to complete the CCD sheet format
specification.

e Help users in the mailing list and IRC channel.

e Find and report bugs. See Section 1.5 [Bug reporting], page 4.

e Fix reported bugs.

e Implement new feature ideas.

o Write test cases.

e Check the documentation against the implementation.

e Translate the program strings to other languages.

You can join the development team to contribute code and documentation at the
development page. Patches are most welcome, but contributed code should follow the
GNU Coding Standards. If it doesn’t, we’ll need to find someone to fix the code before we
can use it. It is also necessary that the contributor be willing to assign their copyright to
the FSF, since the developers plan to make it officially part of the GNU operating system
and they want FSF to enforce the program’s license. To get started hacking see Section 1.8
[Hacking], page 6.

1.7 Donating

If you find this program useful, please send a donation to its developers to support their
work. If you use this program at your workplace, please suggest that the company make
a donation. We appreciate contributions of any size — donations enable us to spend more
time working on this package, and help cover our infrastructure expenses.

If you’d like to make a donation of any value, please send it to the following Bitcoin
address:

12sKDaBNYekQuRPdrpnbUL4YRDKrzMnY62

Since we aren’t a tax-exempt organization, we can’t offer you a tax deduction, but for all
donations over 0.05 BTC, we’d be happy to recognize your contribution on the donors page
and on DONORS file for the next release.

We are also happy to consider making particular improvements or changes, or giving
specific technical assistance, in return for a substantial donation over 0.5 BTC. If you
would like to discuss this possibility, write to me at oitofelix@gnu.org.

Another possibility is to pay a software maintenance fee. Again, write to me about this
at oitofelix@gnu.org to discuss how much you want to pay and how much maintenance
we can offer in return.

https://savannah.gnu.org/projects/ccd2cue/
DONORS.html
mailto:oitofelix@gnu.org
mailto:oitofelix@gnu.org

Chapter 1: Overview 6

Thanks for your support!

1.8 Hacking

The development sources are available through VCS at Savannah:
https://savannah.gnu.org/git/?group=ccd2cue
If you are getting the sources from a VCS (or change configure.ac), you'll need to have

Automake, Autoconf and Gettext installed to (re)build. You’ll also need help2man. All of
these programs are available from https://ftp.gnu.org/gnu/.

After getting the VCS sources, and installing the tools above, you can run ./bootstrap
&& ./configure && make to do a fresh build. After that first time, running make should
suffice to rebuild the program with your changes. See file INSTALL.

When modifying the sources, or making a distribution, more is needed, as follows:
e This distribution also uses Gnulib to share common files, stored as a submodule in git.

e When updating gettext, besides the normal installation on the system, it is necessary
to run gettextize -f in this hierarchy to update the po/ infrastructure. After doing
so, rerun gnulib-tool --import since otherwise older files will have been imported.
See Gnulib Manual, for more information.

When committing changes to the repository always create an entry in the
doc/release/latest-news.texi file for any user-visible changes or additions made.
This file is intended to provide the latest release news for the NEWS.texi and
ANNOUNCEMENT. texi files to avoid duplication of information and syncing work. After a
release is made the news items should be moved to the NEWS.texi file and another news
list should be built from scratch in the ANNOUNCEMENT . texi file.

https://ftp.gnu.org/gnu/
https://www.gnu.org/software/gnulib

Chapter 2: Release 7

2 Release

In this chapter one can find information that are specific to the current release or subject
to change between releases. It presents the features this package acquired over time, prob-
lems that affect its overall usage and what possibly could happen to it — by our wishes —
in the future. Last but not least, people whose contribution for this package are noteworthy
are acknowledged.

Chapter 2: Release 8

2.1 Announcement

GNU ccd2cue is a CCD sheet to CUE sheet converter. It supports the full extent of
CUE sheet format expressiveness, including mixed-mode discs and CD-Text meta-data. It
plays an important role for those who need to use optical disc data which is only available
in the proprietary sheet format CCD, but don’t want to surrender their freedom. It fills
an important gap in the free software world because before its conception it was impossible
to use complex forms of optical disc data laid out by CCD sheets in a whole/holy free
operating system.

The GNU ccd2cue documentation is also intended to be a reference documentation for
both sheet format specifications. That way we can reverse engineer the secret CCD sheet
proprietary format only once and then make the information available for developers in
order to benefit all free software users that want their software to be interoperable. The
CUE sheet format is not a secret, but with this package we take the opportunity to ensure
that its specification is available under a free documentation license for the sake of the whole
free software community.

News

e Danish, German, Ukrainian and Vietnamese translations.

e Support for localized Unix manual pages. Feature suggested by Mario Blattermann
(German translator).

e Respectable Unix manual pages.
e Localizable --help meta-variables. Bug reported by Mario Blattermann.

e Numerous grammatical and markup corrections to the user’s manual. Patch submitted
by Karl Berry.

e Make target announcegnu which automatically sends a signed an-
nouncement message to info-gnu@gnu.org, ccd2cue@gnu.org and
coordinator@translationproject.org mailing lists when a release is
ready. This target can only be made in VCS checkouts.

o Make target fetchpo which fetches from the Translation Project the latest PO files
available . This target can only be made in VCS checkouts.

e Latest release news, manifesto, package’s description and version in a single point of
maintenance.

e Package meta-information, as release date and build system version, automatically
generated at configuration time.

e Announcement message in user’s manual and homepage.

e Make target distdir can be made when top-level documentation files are missing.

Download

Here are the compressed sources and a GPG detached signature:

https://ftp.gnu.org/gnu/ccd2cue/ccd2cue-0.5.tar.gz
https://ftp.gnu.org/gnu/ccd2cue/ccd2cue-0.5.tar.gz.sig

Use a mirror for higher download bandwidth:

mailto:info-gnu@gnu.org
mailto:ccd2cue@gnu.org
mailto:coordinator@translationproject.org

Chapter 2: Release 9

http://ftpmirror.gnu.org/ccd2cue/ccd2cue-0.5.tar.gz
http://ftpmirror.gnu.org/ccd2cue/ccd2cue-0.5.tar.gz.sig

Use a .sig file to verify that the corresponding file (without the .sig suffix) is intact.
First, be sure to download both the .sig file and the corresponding tarball. Then, run a
command like this:

gpg —-verify ccd2cue-0.5.tar.gz.sig

If that command fails because you don’t have the required public key, then run this
command to import it:

gpg --recv-keys 0x28D618AF --keyserver hkp://keys.gnupg.net
and rerun the gpg --verify command.

This release is signed by Bruno Féliz Rezende Ribeiro. His key fingerprint is 7CB1 208C
7336 56B7 5962 2500 27B9 C6FD 28D6 18AF.

This release was bootstrapped with the following tools:
e GNU Autoconf 2.69
e GNU Automake 1.14.1
e GNU Texinfo 5.2

Links

Homepage https://www.gnu.org/software/ccd2cue/
Atom feed https://savannah.gnu.org/news/atom.php?group=ccd2cue
Help and support mailing list

ccd2cue@gnu.org
Bug reporting mailing list
bug-ccd2cue@gnu.org

IRC channel
irc:/ /irc.freenode.net /ccd2cue

Support Tracker
https://savannah.gnu.org/support /?group=ccd2cue

Bug Tracker
https://savannah.gnu.org/bugs/?group=ccd2cue

Development page
https://savannah.gnu.org/projects/ccd2cue/

Chapter 2: Release 10

2.2 News

This document contains a list of user-visible changes worth mentioning. The changes
are split and ordered by version in reverse chronological order. If you want to receive
notifications about new releases of this program or important issues related to it, subscribe
to the mailing list, as described in Section 1.4 [Contact|, page 4, or subscribe to the package
atom feed https://savannah.gnu.org/news/atom. php?group=ccd2cue.

0.5
e Danish, German, Ukrainian and Vietnamese translations.

e Support for localized Unix manual pages. Feature suggested by Mario
Blattermann (German translator).

e Respectable Unix manual pages.

e Localizable --help meta-variables. Bug reported by Mario Blattermann.

e Numerous grammatical and markup corrections to the user’s manual.
Patch submitted by Karl Berry.

e Make target announcegnu which automatically sends a signed
announcement message to info-gnu@gnu.org, ccd2cue@gnu.org and
coordinator@translationproject.org mailing lists when a release is
ready. This target can only be made in VCS checkouts.

e Make target fetchpo which fetches from the Translation Project the latest
PO files available . This target can only be made in VCS checkouts.

e Latest release news, manifesto, package’s description and version in a single
point of maintenance.

e Package meta-information, as release date and build system version, auto-
matically generated at configuration time.

e Announcement message in user’s manual and homepage.

e Make target distdir can be made when top-level documentation files are
missing.

0.4

e The code repository moved from CVS to Git.

e Mailing lists were re-purposed. Now bug-ccd2cue@gnu.org is exclusively
used for bug reporting and ccd2cue@gnu.org for user support.

e Fixed bad wording in --help text. Bug reported by Benno Schulenberg of
the Translation Project.

e Fixed potential crash caused by calling error function with wrong
arguments inside error handling routines. Bug first noticed by Rosa
(GNU/)Linux maintainers.

e Fixed documentation distribution bug in which the INSTALL file didn’t get
redistributed. Bug reported by Darren S..

e Added distgnu Make target which aids the maintainer in uploading release
tarballs to the GNU ftp site. It only can be made from VCS checkouts.

e Likewise, the homepage Make target now can only be made from VCS
checkouts. Therefore the exclusive infrastructure for building the package’s
homepage doesn’t get distributed.

https://savannah.gnu.org/news/atom.php?group=ccd2cue
mailto:info-gnu@gnu.org
mailto:ccd2cue@gnu.org
mailto:coordinator@translationproject.org
mailto:bug-ccd2cue@gnu.org
mailto:ccd2cue@gnu.org

Chapter 2: Release 11

0.3

0.2

Fixed build system bug in which configure didn’t detect the absence of
help2man for maintainer builds.

Improved maintainer-clean Make target effectiveness.

The program ccd2cue has become a GNU package, and therefore is now
dubbed GNU ccd2cue. Its code and documentation have been updated to
reflect such remarkable occurrence.

The target homepage generates the package homepage primarily from re-
lease documentation.

Some interesting GNU philosophy essays were added to documentation.

Various bugs in the program and documentation were fixed.

Support for all features of the CUE sheet format, prominently CD-Text
meta-data and track sub-code flags.

Internationalization support using gettext.

Compliance with the GNU Coding Standards and the GNU Maintaining
Standards. See GNU Coding Standards and GNU Maintaining Standards.
Noteworthy changes are the use of the GNU build system for the ease
and consistency of build and installation (see INSTALL file), documentation
in the Texinfo format, notably an user manual that can be outputted in
numerous formats including, but not limited to, printable pdf, info, html
and plain text.

Traditional Unix man page automatically generated by help2man.

Doxygen for in-depth source code documentation. That can be used to out-
put pdf, html and numerous other formats documenting the inner workings
of the code.

GNU compliant command line parsing provided by Argp. It is no more
necessary to provide arguments in the fixed order of command’s synopsis;
the arguments can be given in any order and long options are accepted.

The command line options suffered the following changes to comply with
GNU Coding Standards:

-0 Has companion long option --output.

-i Has companion long option --image.

-h Changed to -7 with companion long option --help.

-v Changed to -V with companion long option --version.

The following command line options were added to cover new features:

-c cdt-file
—--cd-text=cdt-file
Writes CD-Text data to cdt-file.

https://www.gnu.org/software/help2man

Chapter 2: Release 12

-a
——-absolute-file-name
Uses absolute file name deduction.

--usage Gives a short usage message.

e It is no longer required to specify -i option in every invocation. It is
enough to specify only one file name on the command invocation, as an
option or non-option argument, since the remaining needed file names are
now deduced automatically.

0.1 Initial release;

Chapter 2: Release 13

2.3 To do

This chapter contains a list of ideas and features which would be nice to see implemented
some day. If you are ready to start working on any of these TODO items, we appreciate
your help; please write to bug-ccd2cue@gnu.org so we can be aware that the problem is
being addressed, and talk with you how to do it best. It is best to consult the latest version
of this file in the program source code repository. See Section 1.3 [Getting a copy]|, page 4
and Section 1.8 [Hacking], page 6 for instruction on how to access it.

Since the developers of this program are willing to assign the copyright of this package to
FSF, please be prepared to sign legal papers to transfer the copyright on your work to the
FSF too. For more details on this and some more practical details about getting involved,
see Section 1.6 [Contributing], page 5.

As well as the issues listed here, there are bug reports, which are effectively to-do items
too — that can use your help — at the bug tracker web interface. See Section 1.5 [Bug
reporting], page 4 for more information.

CCD sheet format specification
There is a specification of the CCD sheet format in the program manual. That
specification is the result of a reverse engineering process and is incomplete;
pretty much only the fields that affects the CUE sheet generation are known.
It would be very nice to decipher the entirety of the format, and document
it, so we can bring into light whether there is room for improvement in the
conversion process, and to open new possibilities for more expressive formats

like the TOC sheet.

TOC sheet format

As the name implies the program GNU ccd2cue is designed to convert CCD
sheets only to the CUE sheet format. This format has some well know limi-
tations regarding the sub-channel data, which apparently can be mitigated by
more expressive formats. There is one sheet format called “TOC” that is very
common, well documented and accessible to free software in the GNU system.
It seems that format was designed to handle the sub-channel data that is the
major flaw of the CUE sheet format. In fact it seems like a super-set of the CUE
sheet format. For that reason we would like to have a ccd2toc in complement
of the GNU ccd2cue. But is that another project? If not, we have to change
the name. ;-)

mailto:bug-ccd2cue@gnu.org
https://savannah.gnu.org/bugs/?group=ccd2cue

Chapter 2: Release 14

2.4 Authors

This chapter contains a list of people that made sufficiently large contributions to de-
velopment that they can be regarded as truly authors of the program. This program would
not be what it is today without the invaluable help of these people, to whom we would like
to say:

THANK YOU VERY MUCH!

The names are listed in chronological order of contribution. Each person’s contact in-
formation, usually email, and a summary of that person’s contribution is put in per corre-
spondent section.

For contributions that does not matter for copyright purposes, e.g., minor or non-source

code contributions, see Section 2.5 [Thanks|, page 15. If you would appreciate your own
name listed here, please contribute! See Section 1.6 [Contributing], page 5.

Bruno Félix Rezende Ribeiro (oitofelix) oitofelix@gnu.org
He is the original and only author so far.

mailto:oitofelix@gnu.org

Chapter 2: Release 15

2.5 Thanks

This chapter contains a list of people that reported problems, suggested improvements
or submitted relatively small portions of actual code. This program would not be what it
is today without the invaluable help of these people, to whom we would like to say:

THANK YOU!

The names are listed in chronological order of contribution. Each person’s contact in-
formation, usually email, and a summary of that person’s contribution is put in per corre-
spondent section.

For contributions that does matter for copyright purposes, e.g., major source code con-
tributions, see Section 2.4 [Authors]|, page 14. If you would appreciate your own name listed
here, please contribute! See Section 1.6 [Contributing], page 5.

Lucas Skoldqvist (frusen) frusen@gungre.ch
He pointed out a syntactically incorrect expression in the manifesto, kindly
tested pre-release versions and reported bugs.

mailto:frusen@gungre.ch

Chapter 2: Release 16

2.6 Donors

This chapter contains a list of people that supported development by means of donation.
This program would not be what it is today without the invaluable help of these people, to

whom we would like to say:
THANK YOU VERY MUCH!

If you would appreciate your own name listed here, please donate! See Section 1.7
[Donating], page 5.

Name Email BTC
Lucas Skoldqvist (frusen) frusen@gungre.ch 0.28833329

mailto:frusen@gungre.ch

Chapter 3: Operation 17

3 Operation

First, it is important to distinguish between the various files involved in the conversion
operation accomplished by GNU ccd2cue. The whole process basically consists of a conver-
sion of the CCD set of files into a CUE set of files, whose meaning, by suffix, is described
below:

In the CCD set all files have the same basename and the respective suffixes are manda-
tory. It is composed of:

.img Audio/data raw image (hereafter called image file);
.sub Sub-channel data (hereafter called sub-channel file);
.ccd Layout description (hereafter called CCD sheet file);

In the CUE set all files need not have the same basename and the respective suffixes are
just an optional default. It is composed of:

.bin The same image file as above with the traditional suffix;
.cdt CD-Text meta-data file (hereafter called CD-Text file);
.cue Layout description (hereafter called CUE sheet file);

The GNU ccd2cue program never touches any of the files in the CCD set; not even to
rename the image file to use the traditional .bin suffix. However it will still work with
other software because the image file is explicitly referenced inside the CUE sheet file. The
idea is to take the least intrusive approach, e.g., to have both sets of files simultaneously
without any interfering with each other. Although we are against the use and development
of any proprietary program, including those which can handle CCD sheets!, it can be useful
to have the original CCD sheet for reference, in case the conversion process is improved in
a subsequent release; or more expressive destination formats? become supported; or just for
debugging.

The GNU ccd2cue program has just one non-trivial operation: the conversion. And this
only relies on the information contained inside the CCD sheet file to generate the equivalent
CUE sheet file. Thus, GNU ccd2cue does not enforce, and in fact does not even check, if
you have the sub-channel file, or even more important, the actual image file. Therefore,
although it is possible to generate seamlessly a CUE sheet file from a lone CCD sheet file,
it is a must to have also, at least, the corresponding image file in order to burn the disc.

While the image file is not used by GNU ccd2cue but is referenced in the produced CUE
sheet file, the sub-channel file is not used nor referenced at all in the CUE sheet file. The
CUE sheet format was not designed to describe the information found in the sub-channel

1 Actually I'm really sorry those programs came into existence in the first place. I wish I never had to write
a program like GNU ccd2cue. I would then be contributing to society in a way that directly advances
the social good, not just alleviating the wrong doing of others that immersed in their own egoism and
blindness desire to subjugate their neighbors for their own benefit.

2 The TOC sheet format is an example.

Chapter 3: Operation 18

file and most optical disc authoring software seems to ignore it when guided by a CUE
sheet file. Therefore, do not expect to obtain an exact copy, at the sub-channel level, using
the CUE sheet file to guide your burning software. Nevertheless, for the vast majority
of practical uses the extra sub-channel data contained in the sub-channel file can be fully
ignored producing yet usable discs for the intended application. Notice however that that
does not mean CUE sheet format is incapable of describing any sub-channel data; in fact it
describes the most important ones. Hence all that data is available for GNU ccd2cue not
inside the sub-channel file but rather in the CCD sheet file itself; the CD-Text meta-data is
such a case — the CD-Text file is produced from decoded sub-channel information available
inside the CCD sheet file.

Chapter 4: Tutorial 19

4 Tutorial

The most ordinary use case is when you have a CCD set of files and just want to
generate a CUE sheet file in order to burn or otherwise access the data inside the image file.
Supposing your CCD sheet file is called free-as-in-freedom.ccd, all you need is the command:

ccd2cue -o free-as-in-freedom.cue free-as-in-freedom.ccd

Remember that if your CCD sheet file name has spaces or unusual characters, like ‘$’,
you are better quoting the whole name with ‘>’. Naturally the CUE sheet file don’t need
to have the same base name as the CCD sheet file. You can give an adequate CUE sheet
output file name, at your discretion, to the —o (-—output) option. If you omit the -o option
entirely as in

ccd2cue free-as-in-freedom.ccd

the result is that the yielding CUE sheet is written to the standard output, giving you the
chance to pipe it out to another command or to use the shell to redirect it to a file, as you
would do without it using the —o option. The same thing is accomplished by passing - as
an argument to option -o.

Can you guess what happens if we omit the CCD sheet input file specification as well?
If you answered that GNU ccd2cue will read the CCD sheet input from standard input
and write the correspondent CUE sheet output to standard output, unfortunately you are
wrong. It would be nice if it behaved that way, but there is an inherent design drawback:
the CUE sheet needs to reference an image file and possibly a CD-Text file; in that way,
how could it have any clue about those file names? For that reason it is always necessary
to supply at least one file name in an option or non-option argument, so GNU ccd2cue can
deduce the remaining file names needed. The deduction algorithm is very simple: get the
file name supplied, in the following preference order:

1. CCD sheet input file name (non-option argument);
2. CUE sheet output file name (-o, —-output);

3. Image file name (-i, --image);

4. CD-Text file name (-c, --cd-text);

conserve only its base name and concatenate the canonical suffix. Therefore, if you want
to read the CCD sheet input from standard input and write the CCD sheet output to
standard output, it is enough to just make explicit the name of a image name, possibly
with a nonstandard suffix, regardless of the actual existence of the image file, as in
ccd2cue -i free-as-in-free-speech.img

where free-as-in-free-speech. img is the image file name. On the other hand, you can
use the -i (--image) in conjunction with the CCD sheet file name and/or CUE sheet file
name just to override the image file name deduction. As expected, the argument - in place

of the CCD sheet file name, will also make GNU ccd2cue read its CCD sheet input from
standard input.

If, for some weird reason, you want to move the CUE sheet file around while keeping the
image file in its original place and yet be able to normally use this pair as if they were in
the same directory, you can use the option -a (-—absolute-file-name). That option will
make the file name deduction algorithm explained above retain the absolute directory name

Chapter 4: Tutorial 20

for each file; however, as a consequence of this approach, it will only work for file names
not directly supplied, but deduced by the program.

When GNU ccd2cue detects CD-Text data information inside the CCD sheet, it outputs
a CD-Text file, whose name is determined by the same file name deduction rules just
described, unless overridden by the option -c (--cd-text). It is not possible to output the
binary CD-Text data to standard output, however.

Chapter 5: Invocation 21

5 Invocation

The command ccd2cue is used to convert CCD sheet files in CUE sheet files. It is
invoked as follow:
ccd2cue [OPTION...] [ccd-file]

The input file, referred as ccd-file, must exist. If ccd-fileis ‘~’, or omitted, standard
input is used.

Output options:
-c
-—cd-text=cdt-file
Write CD-Text data to cdt-file.
-0
--output=cue-file
Write output to cue-file.

While the main output file cue-file is always generated, the cdt-file is created only
when there is CD-Text info. If cue-file is ‘-’, or ——output is omitted, standard output is
used.

Conversion options:

-a
—-absolute-file—name
Use absolute file name deduction.

-i
-—image=img-file
Reference img-file as the image file.

The img-file is a reference to a data file required only at burning time and thus its
existence is not enforced at the conversion stage.

Help options:
-7
--help Give a help list.

--usage Give a short usage message.

-V
--version
Print program version.

Mandatory or optional arguments to long options are also mandatory or optional for any
corresponding short options.

Chapter 6: Burning 22

6 Burning

READ THIS!

If you have burned a CD from a CUE sheet produced by this program and all audio
tracks became only senseless static noise, you may need to tell your burning software to
swap the byte order of all samples sent to the CD-recorder. This can be accomplished with
(for example) the --swap option when using the cdrdao program. Experience has shown
that at least for mixed-mode discs it is necessary to use that option when burning, otherwise
you will almost certainly waste a CD.

Supposing you want to burn a CD using the cdrdao program and a CUE sheet file
named gnu.cue, and wisely want to ensure the correct behavior of your burnt disc, use the
command:

cdrdao write --swap --speed 1 --eject gnu.cue

That way cdrdao will swap the byte order of audio samples, cautiously burning in the
smallest possible speed and will eject your CD when it is done.

Appendix A: Compact Disc fields 23

Appendix A Compact Disc fields

This appendix describes some Compact Disc information that are common concepts to
both sheet formats. Each following manual section corresponds to a Compact Disc field
or characteristic. For each of them is explained its meaning, the values it can assume and
is given an example where appropriate. Cross references to both CCD and CUE sheets
applicable elements follow each description.

Appendix A: Compact Disc fields 24

A.1 CATALOG

Description
MCN (Media Catalog Number);

Value UPC (Universal Product Code)' | EAN (European Article Number)? encoded; ex-
actly 13 decimal digits;

Example 7954234679231

CCD sheet
See Section B.2.5 [CATALOG (Disc CCD Section)], page 31.

CUE sheet
See Section C.1 [CATALOG (CUE Command)|, page 41.

This field is usually used on CD-ROM’s mastered for commercial production.

1 See https://en.wikipedia.org/wiki/Universal_Product_Code.
2 See https://en.wikipedia.org/wiki/European_Article_Number.

https://en.wikipedia.org/wiki/Universal_Product_Code
https://en.wikipedia.org/wiki/European_Article_Number
https://en.wikipedia.org/wiki/Universal_Product_Code
https://en.wikipedia.org/wiki/European_Article_Number

Appendix A: Compact Disc fields 25

A.2 MODE

Description
Track data type;

Value The following modes are defined:
Value Description
AUDIO Audio/Music (2352 — 588 samples)
CDG Karaoke CD+G (2448)
MODE1/2048 CD-ROM Mode 1 Data (cooked)
MODE1/2352 CD-ROM Mode 1 Data (raw)
MODE2/2048 CD-ROM XA Mode 2 Data (form 1) *
MODE2/2324 CD-ROM XA Mode 2 Data (form 2) *
MODE2/2336 CD-ROM XA Mode 2 Data (form mix)
MODE2/2352 CD-ROM XA Mode 2 Data (raw)
CDI/2336 CDI Mode 2 Data
CDI/2352 CDI Mode 2 Data
The modes marked with ‘*’ are not defined in the original CUE sheet format
specification.
CCD sheet
See Section B.6.1 [MODE (TRACK CCD Section)], page 38
CUE sheet

See Section C.7 [TRACK (CUE Command)], page 48.

Appendix A: Compact Disc fields 26

A.3 FLAGS

Description
Track special sub-code flags;

Value The following flags (possibly more than one):

Value Description

DCP Digital Copy Permitted

4CH 4 CHannel audio

PRE PRE-emphasis enabled (audio tracks only)

SCMS Serial Copy Management System

For non-audio tracks the special flag DATA is used implicitly.
CCD sheet

See Section B.6.4 [FLAGS (TRACK CCD Section)], page 39.
CUE sheet

See Section C.8 [FLAGS (CUE Command)], page 49.

Appendix A: Compact Disc fields 27

A.4 ISRC

Description

ISRC (International Standard Recording Code)?;

Value 12 characters: the first five characters are upper case alphanumeric; the last
seven are numeric only. The code has the format: CCOOQOYYSSSSS, where:

C
0
Y
S

Country code;
Owner code;
Year;

Serial number;

Example USRMS8371421

CCD sheet

See Section B.6.2 [ISRC (TRACK CCD Section)|, page 38.

CUE sheet

See Section C.9 [ISRC (CUE Command)], page 50.

This field is usually used on CD-ROM’s mastered for commercial production.

3 See https://en.wikipedia.org/wiki/ISRC.

https://en.wikipedia.org/wiki/ISRC
https://en.wikipedia.org/wiki/ISRC

Appendix B: CCD sheet format 28

Appendix B CCD sheet format

-
Warning: This appendix describes the CCD sheet format. This description is the
result of observation, deduction and tests. Although there is quite some uncertainty
about the semantics of a number of elements, it is expected that every applicable
entry, or otherwise relevant element — for the production of the corresponding CUE
sheet — is well understood. Due to its proprietary nature, no authoritative, free and
public available reference of the CCD sheet format do exist. Whereas the information

contained herein is thought to be accurate, there is no guarantee of its correctness.
-

The CCD sheet format is an instance of the INI format!; a simple text file with a basic
structure composed of sections and properties. The following syntactic rules apply to CCD
sheets:

1. Every section has a name in square brackets that appears on a line by itself (as in
[CDText]).

2. Every property has a name and a value (in the form name=value — there is no space
around ‘=") and belongs exclusively to one section: the nearest upward section.

3. There is no explicit end-of-section delimiter (sections end at the next section declaration
or end-of-file) and sections cannot be nested.

4. A ¢’ (space) can occur in a indexed section (resp. property) name followed by a number
(like in [Session 3] (resp. INDEX 0=17524)).

5. Each non-indexed section (resp. property) come out only once per file (resp. section).

6. Indexes of sections and properties starts at the minimum value allowed and increment
sequentially.

Each following manual section corresponds to a CCD sheet section, and each subsection
within to a valid property of its parent section. The sequence in which sections should
be declared in the CCD sheet is the same given below. For each section and property is
explained its meaning, and for properties is made explicit its value type. A ‘(?)’ indicates
the correspondent property value is not more than believed to be right or is a guess against
which no counter example do exist so far. In the end of each section description is presented a
code example of that section using each available property just described. Indexed sections
and properties are those whose syntax references index. Unless otherwise noted, each
section and property are mandatory. The correlation with CUE sheet format is expressed
by means of cross references to the relevant CUE commands.

L See https://en.wikipedia.org/wiki/Ini_file.

https://en.wikipedia.org/wiki/Ini_file
https://en.wikipedia.org/wiki/Ini_file

Appendix B: CCD sheet format

B.1 CloneCD

Syntax [CloneCD]

Description
Properties of the disc authoring software;

Example

[CloneCD]
Version=3

B.1.1 Version

Syntax Version=value

Description
The major version of CloneCD which made the CCD sheet;

Value Positive integer;

29

Appendix B: CCD sheet format

B.2 Disc
Syntax [Disc]

Description
Properties that apply to the entire disc;

Example

[Disc]

TocEntries=18
Sessions=1
DataTracksScrambled=0
CDTextLength=810
CATALOG=5479154328763

B.2.1 TocEntries

Syntax TocEntries=value

Description
Number of Entry sections;

Value Strictly positive integer;

B.2.2 Sessions
Syntax Sessions=value

Description
Number of Session sections;

Value Strictly positive integer;

B.2.3 DataTracksScrambled

Syntax DataTracksScrambled=value

Description
Unknown meaning;;

Value Non-negative integer (7);

Appendix B: CCD sheet format 31

B.2.4 CDTextLength

Syntax CDTextLength=value

Description
The size in bytes of the corresponding CD-Text file discarding one byte for the
terminating null character; 0 if there is no CD-Text meta-data;

See Section C.2 [CDTEXTFILE (CUE Command)], page 42, for more informa-
tion on the CD-Text file.

Value Given by the formula:

(16 + 2) * [CDText] .Entries
Where:

e 16 — CD-Text entry length (in bytes);
e 2 — CRC code length (in bytes);
e [CDText] .Entries — Value of Entries property of

CDText section;

CUE sheet
See Section C.2 [CDTEXTFILE (CUE Command)], page 42.

B.2.5 CATALOG
Syntax CATALOG=value

Description
MCN (Media Catalog Number);

Value UPC/EAN encoded; exactly 13 decimal digits; see Section A.1 [CATALOG
(Compact Disc fields)], page 24.

CUE sheet
See Section C.1 [CATALOG (CUE Command)|, page 41.

Appendix B: CCD sheet format 32

B.3 CDText

Syntax [CDText]

Description
CD-Text meta-data; this section is entirely omitted if there is no CD-Text
meta-data.

Example

[CDText]

Entries=3

Entry 0=80 00 00 00 54 72 69 6f 20 41 63 6f 75 73 74 69
Entry 1=81 00 16 00 54 72 69 6f 20 41 63 6f 75 73 74 69
Entry 2=8f 00 2a 00 00 01 Of 00 16 14 00 00 00 00 00 00

CUE sheet
See Section C.2 [CDTEXTFILE (CUE Command)], page 42.

[
See Section C.3 [TITLE (CUE Command)], page 43.

See Section C.4 [PERFORMER (CUE Command)], page 44.
See Section C.5 [SONGWRITER (CUE Command)], page 45.

B.3.1 Entries
Syntax Entries=value

Description
Number of Entry properties inside CDText section;

Value Strictly positive integer;

B.3.2 Entry

Syntax Entry index=value

Description
CD-Text entry;

Value The nth index is exactly the nth CD-Text file entry, omitting the 2 byte CRC
code and additionally — in the case of the last entry — the final null character.
It is encoded as a space-separated sequence of 16 hexadecimal numbers of two
digits without ‘Ox’ base indicator. Each pair of digits represents one byte.

Index Non-negative integer;

Appendix B: CCD sheet format

B.4 Session

Syntax [Session index]

Description
Unknown meaning;

Index Strictly positive integer;

Example

[Session 1]
PreGapMode=0
PreGapSubC=0

B.4.1 PreGapMode

Syntax PreGapMode=value

Description
Unknown meaning;;

Value Non-negative integer (7);

B.4.2 PreGapSubC

Syntax PreGapSubC=value

Description
Unknown meaning;

Value Non-negative integer (7);

33

Appendix B: CCD sheet format

B.5 Entry

Syntax [Entry index]

Description
Table of Contents entry;

Index Non-negative integer;

Example

[(Entry 0]
Session=1
Point=0xal
ADR=0x01
Control=0x00
TrackNo=0
AMin=0
ASec=0
AFrame=0
ALBA=-150
Zero=0
PMin=1
PSec=0
PFrame=0
PLBA=4350

Every property whose value is an integer in hexadecimal base uses ‘Ox’ notation.

B.5.1 Session
Syntax Session=value

Description
Unknown meaning;

Value Strictly positive integer;
B.5.2 Point

Syntax Point=value
Description

Unknown meaning;

Value Hexadecimal non-negative integer;

Appendix B: CCD sheet format

B.5.3 ADR

Syntax ADR=value

Description
Unknown meaning;;

Value Hexadecimal non-negative integer;

B.5.4 Control

Syntax Control=value

Description
Unknown meaning;;

Value Hexadecimal non-negative integer;

B.5.5 TrackNo

Syntax TrackNo=value

Description
Unknown meaning;;

Value Non-negative integer;
B.5.6 AMin

Syntax AMin=value
Description

Unknown meaning;;

Value Non-negative integer;
B.5.7 ASec

Syntax ASec=value
Description

Unknown meaning;;

Value Non-negative integer;

Appendix B: CCD sheet format

B.5.8 AFrame

Syntax AFrame=value

Description
Unknown meaning;;

Value Non-negative integer;

B.5.9 ALBA
Syntax ALBA=value

Description
Unknown meaning;;

Value Negative integer;

B.5.10 Zero

Syntax Zero=value

Description
Unknown meaning;;

Value Non-negative integer;
B.5.11 PMin

Syntax PMin=value
Description

Unknown meaning;;

Value Non-negative integer;
B.5.12 PSec

Syntax PSec=value
Description

Unknown meaning;;

Value Non-negative integer;

Appendix B: CCD sheet format

B.5.13 PFrame

Syntax PFrame=value

Description
Unknown meaning;;

Value Non-negative integer;

B.5.14 PLBA

Syntax PLBA=value

Description
Unknown meaning;

Value Non-negative integer;

37

Appendix B: CCD sheet format 38

B.6 TRACK

Syntax [TRACK index]

Description
Track layout and meta-data;

Index Strictly positive integer;
Example
[TRACK 1]
MODE=0
ISRC=DKKH50800101
INDEX 1=0

FLAGS=DCP 4CH PRE SCMS

CUE sheet
See Section C.7 [TRACK (CUE Command)], page 48.

B.6.1 MODE
Syntax MODE=value

Description
Track mode; see Section A.2 [MODE (Compact Disc fields)], page 25.

Value Non-negative integer;

Value Mode

0 AUDIO

1 MODE1/2352 (7)

2 MODE2/2352
CUE sheet

See Section C.7 [TRACK (CUE Command)], page 48.

B.6.2 ISRC
Syntax ISRC=value

Description
ISRC (International Standard Recording Code); see Section A.4 [ISRC (Com-
pact Disc fields)], page 27.

Value 12 characters: the first five characters are alphanumeric; the last seven are
numeric only.

CUE sheet
See Section C.9 [ISRC (CUE Command)], page 50.

Appendix B: CCD sheet format 39

B.6.3 INDEX

Syntax INDEX index=value

Description
Index within a track;

Index Non-negative integer;
Value Non-negative integer indicating the number of frames (1/75th of a second).
CUE sheet

See Section C.11 [INDEX (CUE Command)], page 52.

B.6.4 FLAGS

Syntax FLAGS=value

Description
Special sub-code flags for this track;

Value A space-separated string of the flags described in Section A.3 [FLAGS (Compact
Disc fields)], page 26;

CUE sheet
See Section C.8 [FLAGS (CUE Command)], page 49.

Appendix C: CUE sheet format 40

Appendix C CUE sheet format

The CUE sheet format is a simple text file composed solely of CUE commands, its
respective arguments, blank spaces and lines. The following syntactic rules apply to CCD
sheets:

1. Each command take one, and only one, entire line.
2. Commands are case insensitive.

3. Commands can be indented at will.

4. Blank lines are ignored.

There are three contexts in a CUE sheet file: None, File and Track. The first of them
is not introduced by any command, and the last two are introduced by FILE and TRACK
commands, respectively. The only commands that pertain to more than one context, namely
None and Track, are the CD-Text related commands TITLE, PERFORMER and SONGWRITER.

The only commands that can appear multiple times within its contexts are FILE, TRACK,
INDEX and REM.

The valid positions of a command are determined by the following rules:
1. A command can only appear after the introduction of the context it pertains to.

2. Within that context the position of a command is determined by its specific positioning
rules.

Each following manual section corresponds to a CUE command. For each of them is
explained its meaning, context structure and positioning rules. At the end of each section
is an example of use and a reference to the correlated CCD sheet format element, if there
is any.

The meaning of the context tables is:

Parents The contexts to which this command pertains; ‘None’ here names the context
introduced by no command.

Multiple =~ Whether multiple instances of this command within a single instance of its
context is allows; value is ‘Yes’ or ‘No’.

Children = The commands that pertains to the context introduced by this command; ‘None’
if there is not one.

The meaning of the positioning tables is:

After This command must appear after the commands listed here, if they are present.
The expression ‘None’ means nothing.

Before This command must appear before the commands listed here, if they are
present. The expression ‘None’ means nothing.

Appendix C: CUE sheet format 41

C.1 CATALOG

CATALOG mcn [CUE Command]|
Define MCN (Media Catalog Number) of the disc as mcn. The argument men is a num-
ber composed of 13 decimal digits in UPC/EAN encoding as described in Section A.1
[CATALOG (Compact Disc fields)], page 24.

Context

Parents None
Multiple No
Children None

Position

After None

Before
CDTEXTFILE
TITLE
PERFORMER
SONGWRITER
FILE

Example

CATALOG 3203040601052
CCD sheet

See Section B.2.5 [CATALOG (Disc CCD Section)], page 31.

Appendix C: CUE sheet format 42

C.2 CDTEXTFILE

CDTEXTFILE file-name [CUE Command]|
Specify file file-name as the one containing the CD-Text meta-data of the disc. If
file-name contains any spaces it must be enclosed in quotation marks.

The CD Text Encoding and Decoding Guide! documents the CD-Text file format.

Context

Parents None
Multiple No
Children None

Position
After
CATALOG
Before
TITLE
PERFORMER
SONGWRITER
FILE
Example

CDTEXTFILE misicas-com-nomes-de-garotas.cdt
CDTEXTFILE "EngHaw - Longe Demais das Capitais (1986).cdt"

CCD sheet
See Section B.3 [CDText (CCD Section)], page 32.

L See https://gnu.org/software/libcdio/cd-text-format.html.

https://gnu.org/software/libcdio/cd-text-format.html
https://gnu.org/software/libcdio/cd-text-format.html

Appendix C: CUE sheet format 43

C.3 TITLE

TITLE title-string [CUE Command]|
If this command is inside a TRACK command context, make title-string the title of
the correspondent track; otherwise make it the title of the entire disc. The value
title-string should not contain more than 80 characters. If title-string contains any
space, it must be enclosed in quotation marks.

This command is meant for CD-Text enhanced discs. The same data can be retrieved
from the CD-Text file using CDTEXTFILE command.

Context

Parents
None
TRACK

Multiple No
Children None

Position
After
CATALOG
CDTEXTFILE
Before
FILE

Position (TRACK)

After None
Before
INDEX
Example
TITLE "Por Quem os Sinos Dobram"
TITLE S.0.S.
CCD sheet

The CCD sheet format support this feature only by means of a general mechanism
designed to specify indiscriminately any CD-Text encoded entry. See Section B.3 [CDText
(CCD Section)], page 32.

Appendix C: CUE sheet format 44

C.4 PERFORMER

PERFORMER performer-string [CUE Command]|
If this command is inside a TRACK command context, write performer-string as the
name of the performer of the correspondent track; otherwise write it as the name of
the performer of the entire disc. The value title-string should not contain more than
80 characters. If title-string contains any space, it must be enclosed in quotation
marks.

This command is meant for CD-Text enhanced discs. The same data can be retrieved
from the CD-Text file using CDTEXTFILE command.

Context

Parents
None
TRACK

Multiple No
Children None

Position
After
CATALOG
CDTEXTFILE
Before
FILE

Position (TRACK)

After None
Before

INDEX
Example

PERFORMER "Detonator e as Musas do Metal"
PERFORMER Metrd

CCD sheet

The CCD sheet format support this feature only by means of a general mechanism
designed to specify indiscriminately any CD-Text encoded entry. See Section B.3 [CDText
(CCD Section)], page 32.

Appendix C: CUE sheet format 45

C.5 SONGWRITER

SONGWRITER song-writer-string [CUE Command]
If this command is inside a TRACK command context, write song-writer-string as the
name of the song writer of the correspondent track; otherwise write it as the name
of the song writer of the entire disc. The value song-writer-string should not contain
more than 80 characters. If song-writer-string contains any space, it must be enclosed
in quotation marks.

This command is meant for CD-Text enhanced discs. The same data can be retrieved
from the CD-Text file using CDTEXTFILE command.

Context

Parents
None
TRACK

Multiple No
Children None

Position
After
CATALOG
CDTEXTFILE
Before
FILE

Position (TRACK)

After None
Before

INDEX
Example

SONGWRITER "Stefani Joanne Angelina Germanotta"
SONGWRITER Getz

CCD sheet

The CCD sheet format support this feature only by means of a general mechanism
designed to specify indiscriminately any CD-Text encoded entry. See Section B.3 [CDText
(CCD Section)], page 32.

Appendix C: CUE sheet format

C.6 FILE

FILE file-name file-type

46

[CUE Command]

Declare file file-name of type file-type as the one whose data will be used in the
following TRACK command contexts by INDEX commands. If file-name contains any
space, it must be enclosed in quotation marks.

There are a total of 5 types file-type can take: two types for raw data and three for
audio. The raw data types are BINARY and MOTOROLA, and they differ only in
endianness — little and big endian respectively. The audio types are AIFF, WAVE
and MP3 and the correspondent files must be setup to 44.1 KHz, 16 bits and stereo.
The following table summarizes it:

BINARY Intel binary raw data Little-endian® — least significant byte first).

MOTOROLA Motorola binary raw data Big-endian® — most significant byte first).

AIFF Audio data in AIFF (Audio Interchange File Format)*.

WAVE Audio data in WAVE (Waveform Audio File Format).

MP3 Audio data in MP3 (MPEG-1 or MPEG-2 Audio Layer II1)°.
Context
Parents None

Multiple Yes

Children
TRACK
Position
After
CATALOG
CDTEXTFILE
Before None
Example

FILE guix-1.0.iso BINARY
FILE "The Free Software Song.wav" WAVE

S O s W N

See https://en.wikipedia.
See https://en.wikipedia.
See https://en.wikipedia.
See https://en.wikipedia.
See https://en.wikipedia.

org/wiki/Little_endian#Little-endian.

org/wiki/Big_endian#Big-endian.
org/wiki/Aiff.
org/wiki/Waveform_Audio_File_Format.
org/wiki/Mp3

https://en.wikipedia.org/wiki/Little_endian#Little-endian
https://en.wikipedia.org/wiki/Big_endian#Big-endian
https://en.wikipedia.org/wiki/Aiff
https://en.wikipedia.org/wiki/Waveform_Audio_File_Format
https://en.wikipedia.org/wiki/Mp3
https://en.wikipedia.org/wiki/Little_endian#Little-endian
https://en.wikipedia.org/wiki/Big_endian#Big-endian
https://en.wikipedia.org/wiki/Aiff
https://en.wikipedia.org/wiki/Waveform_Audio_File_Format
https://en.wikipedia.org/wiki/Mp3

Appendix C: CUE sheet format 47

CCD sheet

Since the CCD sheet file is not meant to be composed from scratch by an user or
authoring software, but rather created to mimic an existing disc layout, it is assumed that
the source of data are the CCD image and sub-channel files, which have predefined formats
and names. Thus there is no related explicit element in the CCD sheet format.

Among the CCD set files, is presumed that the source of audio/data is a file with the
same base name of the CCD sheet file, but with a different extension, to indicate its specific
purpose, namely .img. This file is always assumed as having type BINARY.

Appendix C: CUE sheet format 48

C.7 TRACK

TRACK number data-type [CUE Command]|
Define the numberth track, whose type is data-type. The value number is a strictly
positive integer and must be one greater than the last one supplied to a previous TRACK
command, notwithstanding number can be greater than 1 in the first occurrence of
TRACK command; however, it cannot exceed 99 in any case. Usually number is padded
with a 0 on the left when smaller than 10, in order to keep track numbers two digit
wide uniformly throughout the CUE sheet. The data-type argument is one of those
described at Section A.2 [MODE (Compact Disc fields)], page 25.

This command should appear at least once in the CUE sheet file.

Context

Parents
FILE

Multiple Yes

Children
FLAGS
ISRC
TITLE
PERFORMER
SONGWRITER
PREGAP
INDEX
POSTGAP

Position

After None

Before None

Example

TRACK 1 MODE2/2352
TRACK 37 AUDIO

CCD sheet
See Section B.6 [TRACK (CCD Section)], page 38.

Appendix C: CUE sheet format 49

C.8 FLAGS

FLAGS flag_1 flag_2 ... flag_n [CUE Command]|
Set special sub-code flags flag_1...flag_n for the current track. Flags are separated
by space. For the allowed flags and its respective meanings, see Section A.3 [FLAGS
(Compact Disc fields)], page 26.

Context
Parents

TRACK
Multiple No
Children None

Position

After None

Before
INDEX

Example
FLAGS DCP
FLAGS 4CH PRE
CCD sheet
See Section B.6.4 [FLAGS (TRACK CCD Section)], page 39.

Appendix C: CUE sheet format 50

C.9 ISRC

ISRC code [CUE Command]|
Specify the ISRC (International Standard Recording Code) to the current track. The
value code is described at Section A.4 [ISRC (Compact Disc fields)|, page 27.

This command only apply to audio tracks.

Context

Parents

TRACK
Multiple No
Children None

Position

After None

Before
INDEX

Example
ISRC DKKH50800101

CCD sheet
See Section B.6.2 [ISRC (TRACK CCD Section)], page 38.

Appendix C: CUE sheet format 51

C.10 PREGAP

PREGAP mm:ss:ff [CUE Command]
Set the length of the current track pre-gap to mm minutes plus ss seconds plus ff
frames.

The values mm, ss and ff must be non-negative integers.
A frame is the 75th part of a second.

No data is consumed from the file specified in the current FILE command context.

Context
Parents

TRACK
Multiple No
Children None

Position
After None
Before
INDEX
Example
PREGAP 00:02:00
CCD sheet

No CCD sheet element analogous or directly related to this command is known.

Appendix C: CUE sheet format 52

C.11 INDEX

INDEX number mm:ss:ff [CUE Command]

If number is 0, then consider the time specified by the next INDEX command as the
track pre-gap length present in the file declared by the current FILE command context.

If number is 1, then define the starting time of the index of this track as mm minutes
plus ss seconds plus ff frames. This index specify the starting time of track data and
is the only stored in the table-of-contents of the disc.

If number is 2 or more, then define the starting time of the (number — 1)th sub-index
within this track as mm minutes plus ss seconds plus ff frames.

If this is the first INDEX command of the current TRACK command context, then it
must start at 00:00:00 and number must be either 0 or 1.

If this is not the first INDEX command of the current TRACK command context, then
number must be one greater than that of the last TRACK command.

The value number cannot be greater than 99 and is usually padded with a 0 on the
left when smaller than 10, in order to keep index and sub-index numbers two digit
wide uniformly throughout the CUE sheet.

The time mm:ss:ff is an offset relative to the beginning of the file specified by the
current FILE command context.

The values mm, ss and ff must be non-negative integers.

There are 75 frames per second.

Context

Parents

TRACK

Multiple Yes
Children None

Position
After
FLAGS
ISRC
TITLE
PERFORMER
SONGWRITER
PREGAP
Before

POSTGAP

Appendix C: CUE sheet format

Example
INDEX 00 00:00:00
INDEX 01 00:02:00
INDEX 02 03:23:54
CCD sheet
See Section B.6.3 [INDEX (TRACK CCD Section)], page 39.

93

Appendix C: CUE sheet format 54

C.12 POSTGAP

POSTGAP mm:ss:ff [CUE Command]
Set the length of the current track post-gap to mm minutes plus ss seconds plus ff
frames.

The values mm, ss and ff must be non-negative integers.
A frame is the 75th part of a second.

No data is consumed from the file specified in the current FILE command context.

Context

Parents
TRACK

Multiple No
Children None

Position

After
INDEX

Before None

Example
POSTGAP 00:02:00

CCD sheet

No CCD sheet element analogous or directly related to this command is known.

Appendix C: CUE sheet format 55

C.13 REM

REM comment [CUE Command]
Ignore comment.

The value comment can be any string of arbitrary length, but it ends at end-of-line.
Its practical use is to comment the CUE sheet for the sake of human readers.

There is no way to make multi-line comments, but one can simply start consecutive
lines with this command.

Context

Parents None
Multiple Yes
Children None

Position

After None

Before None

Example

REM There is no system but GNU
REM and Linux-Libre is just one of its kermels.

CCD sheet

No CCD sheet element analogous or directly related to this command is known.

Appendix D: GNU Free Documentation License 56

Appendix D GNU Free Documentation License

Version 1.3, 3 November 2008

FSF (Free Software Foundation) (http://fsf.org/)
51 Franklin St., Floor 5

Boston, MA 02110-1335

USA

This document is part of GNU philosophy, the GNU Project’s exhaustive collection of articles
and essays about free software and related matters.

Copyright (© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

Verbatim copying and distribution of this entire appendixare permitted world-
wide, without royalty, in any medium, provided this notice is preserved.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document free in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as “you”. You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of

http://fsf.org/

Appendix D: GNU Free Documentation License 57

mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under this
License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at
most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in
a format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain Asci1 without markup,
Texinfo input format, LaTEX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modifica-
tion. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by proprietary word proces-
sors, SGML or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word processors
for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the title
page. For works in formats which do not have any title page as such, “Title Page” means
the text near the most prominent appearance of the work’s title, preceding the beginning
of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document to
the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the
Title” of such a section when you modify the Document means that it remains a section
“Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other

Appendix D: GNU Free Documentation License 58

implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license notice
saying this License applies to the Document are reproduced in all copies, and that you
add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make or
distribute. However, you may accept compensation in exchange for copies. If you distribute
a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest
onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you with
an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

Appendix D: GNU Free Documentation License 59

o

Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

State on the Title page the name of the publisher of the Modified Version, as the
publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other copy-
right notices.

Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

Include an unaltered copy of this License.

Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given
on the Title Page. If there is no section Entitled “History” in the Document, create
one stating the title, year, authors, and publisher of the Document as given on its
Title Page, then add an item describing the Modified Version as stated in the previous
sentence.

Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

Delete any section Entitled “Endorsements”. Such a section may not be included in
the Modified Version.

Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as

Secondary Sections and contain no material copied from the Document, you may at your

Appendix D: GNU Free Documentation License 60

option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but en-
dorsements of your Modified Version by various parties—for example, statements of peer
review or that the text has been approved by an organization as the authoritative definition
of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you include
in the combination all of the Invariant Sections of all of the original documents, unmodified,
and list them all as Invariant Sections of your combined work in its license notice, and that
you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various
original documents, forming one section Entitled “History”; likewise combine any sections
Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You must delete
all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various documents
with a single copy that is included in the collection, provided that you follow the rules of
this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

Appendix D: GNU Free Documentation License 61

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of
the Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations of
some or all Invariant Sections in addition to the original versions of these Invariant Sections.
You may include a translation of this License, and all the license notices in the Document,
and any Warranty Disclaimers, provided that you also include the original English version
of this License and the original versions of those notices and disclaimers. In case of a
disagreement between the translation and the original version of this License or a notice or
disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or dis-
tribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder explic-
itly and finally terminates your license, and (b) permanently, if the copyright holder fails to
notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the first
time you have received notice of violation of this License (for any work) from that copyright
holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

Appendix D: GNU Free Documentation License 62

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns. See http://
www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation. If the
Document specifies that a proxy can decide which future versions of this License can be
used, that proxy’s public statement of acceptance of a version permanently authorizes you
to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web
server that publishes copyrightable works and also provides prominent facilities for anybody
to edit those works. A public wiki that anybody can edit is an example of such a server. A
“Massive Multiauthor Collaboration” (or “MMC”) contained in the site means any set of
copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and subse-
quently incorporated in whole or in part into the MMC, (1) had no cover texts or invariant
sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-
BY-SA on the same site at any time before August 1, 2009, provided the MMC is eligible
for relicensing.

http://www.gnu.org/copyleft/
http://www.gnu.org/copyleft/

Appendix D: GNU Free Documentation License 63

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with

no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled

¢‘GNU Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . . Texts.” line with this:

with the Invariant Sections being list their titles, with the
Front-Cover Texts being list, and with the Back-Cover Texts
being list.
If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Appendix E: The GNU Manifesto 64

Appendix E The GNU Manifesto

The GNU Manifesto was written by Richard Stallman at the beginning of the GNU Project,
to ask for participation and support. For the first few years, it was updated in minor ways
to account for developments, but now it seems best to leave it unchanged as most people
have seen it. Since that time, we have learned about certain common misunderstandings that
different wording could help avoid. Footnotes added since 1993 help clarify these points. For
up-to-date information about the available GNU software, please see the information available
on our web server, in particular our list of software. For how to contribute, see http://gnu.
org/help.

“The GNU Manifesto” was originally published in Dr. Dobb’s Journal, vol. 10, n. 3 (March
1985).

This document is part of GNU philosophy, the GNU Project’s exhaustive collection of articles
and essays about free software and related matters.

Copyright (© 1985, 1993, 2003, 2005, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.

Verbatim copying and distribution of this entire appendixare permitted world-
wide, without royalty, in any medium, provided this notice is preserved.

What’s GNU? Gnu’s Not Unix!

GNU, which stands for Gnu’s Not Unix, is the name for the complete Unix-compatible
software system which I am writing so that I can give it away free to everyone who can use
it.! Several other volunteers are helping me. Contributions of time, money, programs and
equipment are greatly needed.

So far we have an Emacs text editor with Lisp for writing editor commands, a source
level debugger, a yacc-compatible parser generator, a linker, and around 35 utilities. A
shell (command interpreter) is nearly completed. A new portable optimizing C compiler
has compiled itself and may be released this year. An initial kernel exists but many more
features are needed to emulate Unix. When the kernel and compiler are finished, it will be
possible to distribute a GNU system suitable for program development. We will use TEX
as our text formatter, but an nroff is being worked on. We will use the free, portable X
window system as well. After this we will add a portable Common Lisp, an Empire game, a
spreadsheet, and hundreds of other things, plus online documentation. We hope to supply,
eventually, everything useful that normally comes with a Unix system, and more.

GNU will be able to run Unix programs, but will not be identical to Unix. We will make
all improvements that are convenient, based on our experience with other operating sys-
tems. In particular, we plan to have longer file names, file version numbers, a crashproof file
system, file name completion perhaps, terminal-independent display support, and perhaps

1 The wording here was careless. The intention was that nobody would have to pay for permission to use
the GNU system. But the words don’t make this clear, and people often interpret them as saying that
copies of GNU should always be distributed at little or no charge. That was never the intent; later on,
the manifesto mentions the possibility of companies providing the service of distribution for a profit.
Subsequently I have learned to distinguish carefully between “free” in the sense of freedom and “free” in
the sense of price. Free software is software that users have the freedom to distribute and change. Some
users may obtain copies at no charge, while others pay to obtain copies—and if the funds help support
improving the software, so much the better. The important thing is that everyone who has a copy has
the freedom to cooperate with others in using it.

http://gnu.org/help
http://gnu.org/help

Appendix E: The GNU Manifesto 65

eventually a Lisp-based window system through which several Lisp programs and ordinary
Unix programs can share a screen. Both C and Lisp will be available as system program-
ming languages. We will try to support UUCP, MIT Chaosnet, and Internet protocols for
communication.

GNU is aimed initially at machines in the 68000/16000 class with virtual memory, be-
cause they are the easiest machines to make it run on. The extra effort to make it run on
smaller machines will be left to someone who wants to use it on them.

To avoid horrible confusion, please pronounce the g in the word “GNU” when it is the
name of this project.

Why I Must Write GNU

I consider that the Golden Rule requires that if I like a program I must share it with other
people who like it. Software sellers want to divide the users and conquer them, making each
user agree not to share with others. I refuse to break solidarity with other users in this way.
I cannot in good conscience sign a nondisclosure agreement or a software license agreement.
For years I worked within the Artificial Intelligence Lab to resist such tendencies and other
inhospitalities, but eventually they had gone too far: I could not remain in an institution
where such things are done for me against my will.

So that I can continue to use computers without dishonor, I have decided to put together
a sufficient body of free software so that I will be able to get along without any software
that is not free. I have resigned from the AI Lab to deny MIT any legal excuse to prevent
me from giving GNU away.?

Why GNU Will Be Compatible with Unix

Unix is not my ideal system, but it is not too bad. The essential features of Unix seem
to be good ones, and I think I can fill in what Unix lacks without spoiling them. And a
system compatible with Unix would be convenient for many other people to adopt.

How GNU Will Be Available

GNU is not in the public domain. Everyone will be permitted to modify and redistribute
GNU, but no distributor will be allowed to restrict its further redistribution. That is to
say, proprietary modifications will not be allowed. I want to make sure that all versions of
GNU remain free.

Why Many Other Programmers Want to Help

I have found many other programmers who are excited about GNU and want to help.
Many programmers are unhappy about the commercialization of system software. It may
enable them to make more money, but it requires them to feel in conflict with other pro-
grammers in general rather than feel as comrades. The fundamental act of friendship among
programmers is the sharing of programs; marketing arrangements now typically used essen-
tially forbid programmers to treat others as friends. The purchaser of software must choose
between friendship and obeying the law. Naturally, many decide that friendship is more

2 The expression “give away” is another indication that I had not yet clearly separated the issue of price
from that of freedom. We now recommend avoiding this expression when talking about free software.
See Words to Avoid (or Use with Care) Because They Are Loaded or Confusing for more explanation.

Appendix E: The GNU Manifesto 66

important. But those who believe in law often do not feel at ease with either choice. They
become cynical and think that programming is just a way of making money.

By working on and using GNU rather than proprietary programs, we can be hospitable
to everyone and obey the law. In addition, GNU serves as an example to inspire and a
banner to rally others to join us in sharing. This can give us a feeling of harmony which
is impossible if we use software that is not free. For about half the programmers I talk to,
this is an important happiness that money cannot replace.

How You Can Contribute

I am asking computer manufacturers for donations of machines and money. I'm asking
individuals for donations of programs and work.?

One consequence you can expect if you donate machines is that GNU will run on them
at an early date. The machines should be complete, ready to use systems, approved for use
in a residential area, and not in need of sophisticated cooling or power.

I have found very many programmers eager to contribute part-time work for GNU. For
most projects, such part-time distributed work would be very hard to coordinate; the inde-
pendently written parts would not work together. But for the particular task of replacing
Unix, this problem is absent. A complete Unix system contains hundreds of utility pro-
grams, each of which is documented separately. Most interface specifications are fixed by
Unix compatibility. If each contributor can write a compatible replacement for a single
Unix utility, and make it work properly in place of the original on a Unix system, then
these utilities will work right when put together. Even allowing for Murphy to create a few
unexpected problems, assembling these components will be a feasible task. (The kernel will
require closer communication and will be worked on by a small, tight group.)

If T get donations of money, I may be able to hire a few people full or part time. The
salary won’t be high by programmers’ standards, but I'm looking for people for whom
building community spirit is as important as making money. I view this as a way of enabling
dedicated people to devote their full energies to working on GNU by sparing them the need
to make a living in another way.

Why All Computer Users Will Benefit

Once GNU is written, everyone will be able to obtain good system software free, just
like air.*

This means much more than just saving everyone the price of a Unix license. It means
that much wasteful duplication of system programming effort will be avoided. This effort
can go instead into advancing the state of the art.

Complete system sources will be available to everyone. As a result, a user who needs
changes in the system will always be free to make them himself, or hire any available

3 Nowadays, for software tasks to work on, see the High Priority Projects list, at http://fsf .org/
campaigns/priority-projects/, and the GNU Help Wanted list, the general task list for GNU software
packages, at http://savannah.gnu.org/people/?type_id=1. For other ways to help, see http://gnu.
org/help/help.html.

This is another place I failed to distinguish carefully between the two different meanings of “free.” The
statement as it stands is not false—you can get copies of GNU software at no charge, from your friends
or over the net. But it does suggest the wrong idea.

http://fsf.org/campaigns/priority-projects/
http://fsf.org/campaigns/priority-projects/
http://savannah.gnu.org/people/?type_id=1
http://gnu.org/help/help.html
http://gnu.org/help/help.html

Appendix E: The GNU Manifesto 67

programmer or company to make them for him. Users will no longer be at the mercy of one
programmer or company which owns the sources and is in sole position to make changes.

Schools will be able to provide a much more educational environment by encouraging all
students to study and improve the system code. Harvard’s computer lab used to have the
policy that no program could be installed on the system if its sources were not on public
display, and upheld it by actually refusing to install certain programs. I was very much
inspired by this.

Finally, the overhead of considering who owns the system software and what one is or is
not entitled to do with it will be lifted.

Arrangements to make people pay for using a program, including licensing of copies,
always incur a tremendous cost to society through the cumbersome mechanisms necessary
to figure out how much (that is, which programs) a person must pay for. And only a
police state can force everyone to obey them. Consider a space station where air must be
manufactured at great cost: charging each breather per liter of air may be fair, but wearing
the metered gas mask all day and all night is intolerable even if everyone can afford to
pay the air bill. And the TV cameras everywhere to see if you ever take the mask off are
outrageous. It’s better to support the air plant with a head tax and chuck the masks.

Copying all or parts of a program is as natural to a programmer as breathing, and as
productive. It ought to be as free.

Some Easily Rebutted Objections to GNU’s Goals

“Nobody will use it if it is free, because that means they can’t rely on any support.”
“You have to charge for the program to pay for providing the support.”

If people would rather pay for GNU plus service than get GNU free without service,
a company to provide just service to people who have obtained GNU free ought to be
profitable.’

We must distinguish between support in the form of real programming work and mere
handholding. The former is something one cannot rely on from a software vendor. If your
problem is not shared by enough people, the vendor will tell you to get lost.

If your business needs to be able to rely on support, the only way is to have all the
necessary sources and tools. Then you can hire any available person to fix your problem:;
you are not at the mercy of any individual. With Unix, the price of sources puts this out of
consideration for most businesses. With GNU this will be easy. It is still possible for there
to be no available competent person, but this problem cannot be blamed on distribution
arrangements. GNU does not eliminate all the world’s problems, only some of them.

Meanwhile, the users who know nothing about computers need handholding: doing
things for them which they could easily do themselves but don’t know how.

Such services could be provided by companies that sell just handholding and repair
service. If it is true that users would rather spend money and get a product with service, they
will also be willing to buy the service having got the product free. The service companies
will compete in quality and price; users will not be tied to any particular one. Meanwhile,
those of us who don’t need the service should be able to use the program without paying
for the service.

5 Several such companies now exist.

Appendix E: The GNU Manifesto 68

“You cannot reach many people without advertising, and you must charge for the program
to support that.”
“It’s no use advertising a program people can get free.”

There are various forms of free or very cheap publicity that can be used to inform numbers
of computer users about something like GNU. But it may be true that one can reach more
microcomputer users with advertising. If this is really so, a business which advertises the
service of copying and mailing GNU for a fee ought to be successful enough to pay for its
advertising and more. This way, only the users who benefit from the advertising pay for it.

On the other hand, if many people get GNU from their friends, and such companies don’t
succeed, this will show that advertising was not really necessary to spread GNU. Why is it
that free market advocates don’t want to let the free market decide this?°

“My company needs a proprietary operating system to get a competitive edge.”

GNU will remove operating system software from the realm of competition. You will
not be able to get an edge in this area, but neither will your competitors be able to get an
edge over you. You and they will compete in other areas, while benefiting mutually in this
one. If your business is selling an operating system, you will not like GNU, but that’s tough
on you. If your business is something else, GNU can save you from being pushed into the
expensive business of selling operating systems.

I would like to see GNU development supported by gifts from many manufacturers and
users, reducing the cost to each.”

“Don’t programmers deserve a reward for their creativity?”

If anything deserves a reward, it is social contribution. Creativity can be a social contri-
bution, but only in so far as society is free to use the results. If programmers deserve to be
rewarded for creating innovative programs, by the same token they deserve to be punished
if they restrict the use of these programs.

“Shouldn’t a programmer be able to ask for a reward for his creativity?”

There is nothing wrong with wanting pay for work, or seeking to maximize one’s income,
as long as one does not use means that are destructive. But the means customary in the
field of software today are based on destruction.

Extracting money from users of a program by restricting their use of it is destructive
because the restrictions reduce the amount and the ways that the program can be used.
This reduces the amount of wealth that humanity derives from the program. When there
is a deliberate choice to restrict, the harmful consequences are deliberate destruction.

The reason a good citizen does not use such destructive means to become wealthier
is that, if everyone did so, we would all become poorer from the mutual destructiveness.
This is Kantian ethics; or, the Golden Rule. Since I do not like the consequences that
result if everyone hoards information, I am required to consider it wrong for one to do so.

6 Although it is a charity rather than a company, the Free Software Foundation for 10 years raised most
of its funds from its distribution service. You can order things from the FSF to support its work.

7 A group of computer companies pooled funds around 1991 to support maintenance of the GNU C
Compiler.

Appendix E: The GNU Manifesto 69

Specifically, the desire to be rewarded for one’s creativity does not justify depriving the
world in general of all or part of that creativity.

“Won’t programmers starve?”

I could answer that nobody is forced to be a programmer. Most of us cannot manage
to get any money for standing on the street and making faces. But we are not, as a result,
condemned to spend our lives standing on the street making faces, and starving. We do
something else.

But that is the wrong answer because it accepts the questioner’s implicit assumption:
that without ownership of software, programmers cannot possibly be paid a cent. Suppos-
edly it is all or nothing.

The real reason programmers will not starve is that it will still be possible for them to
get paid for programming; just not paid as much as now.

Restricting copying is not the only basis for business in software. It is the most common
basis® because it brings in the most money. If it were prohibited, or rejected by the customer,
software business would move to other bases of organization which are now used less often.
There are always numerous ways to organize any kind of business.

Probably programming will not be as lucrative on the new basis as it is now. But that
is not an argument against the change. It is not considered an injustice that sales clerks
make the salaries that they now do. If programmers made the same, that would not be an
injustice either. (In practice they would still make considerably more than that.)

“Don’t people have a right to control how their creativity is used?”

“Control over the use of one’s ideas” really constitutes control over other people’s lives;
and it is usually used to make their lives more difficult.

People who have studied the issue of intellectual property rights? carefully (such as
lawyers) say that there is no intrinsic right to intellectual property. The kinds of supposed
intellectual property rights that the government recognizes were created by specific acts of
legislation for specific purposes.

For example, the patent system was established to encourage inventors to disclose the
details of their inventions. Its purpose was to help society rather than to help inventors. At
the time, the life span of 17 years for a patent was short compared with the rate of advance
of the state of the art. Since patents are an issue only among manufacturers, for whom
the cost and effort of a license agreement are small compared with setting up production,

8 T think I was mistaken in saying that proprietary software was the most common basis for making money
in software. It seems that actually the most common business model was and is development of custom
software. That does not offer the possibility of collecting rents, so the business has to keep doing real
work in order to keep getting income. The custom software business would continue to exist, more or
less unchanged, in a free software world. Therefore, I no longer expect that most paid programmers
would earn less in a free software world.

In the 1980s I had not yet realized how confusing it was to speak of “the issue” of “intellectual property.”
That term is obviously biased; more subtle is the fact that it lumps together various disparate laws which
raise very different issues. Nowadays I urge people to reject the term “intellectual property” entirely,
lest it lead others to suppose that those laws form one coherent issue. The way to be clear is to
discuss patents, copyrights, and trademarks separately. See Did You Say “Intellectual Property”? It’s a
Seductive Mirage for further explanation of how this term spreads confusion and bias.

Appendix E: The GNU Manifesto 70

the patents often do not do much harm. They do not obstruct most individuals who use
patented products.

The idea of copyright did not exist in ancient times, when authors frequently copied other
authors at length in works of nonfiction. This practice was useful, and is the only way many
authors’ works have survived even in part. The copyright system was created expressly for
the purpose of encouraging authorship. In the domain for which it was invented—books,
which could be copied economically only on a printing press—it did little harm, and did
not obstruct most of the individuals who read the books.

All intellectual property rights are just licenses granted by society because it was thought,
rightly or wrongly, that society as a whole would benefit by granting them. But in any
particular situation, we have to ask: are we really better off granting such license? What
kind of act are we licensing a person to do?

The case of programs today is very different from that of books a hundred years ago.
The fact that the easiest way to copy a program is from one neighbor to another, the
fact that a program has both source code and object code which are distinct, and the fact
that a program is used rather than read and enjoyed, combine to create a situation in
which a person who enforces a copyright is harming society as a whole both materially and
spiritually; in which a person should not do so regardless of whether the law enables him
to.

“Competition makes things get done better.”

The paradigm of competition is a race: by rewarding the winner, we encourage everyone
to run faster. When capitalism really works this way, it does a good job; but its defenders
are wrong in assuming it always works this way. If the runners forget why the reward is
offered and become intent on winning, no matter how, they may find other strategies—such
as, attacking other runners. If the runners get into a fist fight, they will all finish late.

Proprietary and secret software is the moral equivalent of runners in a fist fight. Sad
to say, the only referee we've got does not seem to object to fights; he just regulates them
(“For every ten yards you run, you can fire one shot”). He really ought to break them up,
and penalize runners for even trying to fight.

“Won’t everyone stop programming without a monetary incentive?”

Actually, many people will program with absolutely no monetary incentive. Program-
ming has an irresistible fascination for some people, usually the people who are best at it.
There is no shortage of professional musicians who keep at it even though they have no
hope of making a living that way.

But really this question, though commonly asked, is not appropriate to the situation.
Pay for programmers will not disappear, only become less. So the right question is, will
anyone program with a reduced monetary incentive? My experience shows that they will.

For more than ten years, many of the world’s best programmers worked at the Artificial
Intelligence Lab for far less money than they could have had anywhere else. They got many
kinds of nonmonetary rewards: fame and appreciation, for example. And creativity is also
fun, a reward in itself.

Then most of them left when offered a chance to do the same interesting work for a lot
of money.

Appendix E: The GNU Manifesto 71

What the facts show is that people will program for reasons other than riches; but if
given a chance to make a lot of money as well, they will come to expect and demand it.
Low-paying organizations do poorly in competition with high-paying ones, but they do not
have to do badly if the high-paying ones are banned.

“We need the programmers desperately. If they demand that we stop helping our neigh-
bors, we have to obey.”

You’re never so desperate that you have to obey this sort of demand. Remember: millions
for defense, but not a cent for tribute!

“Programmers need to make a living somehow.”

In the short run, this is true. However, there are plenty of ways that programmers
could make a living without selling the right to use a program. This way is customary now
because it brings programmers and businessmen the most money, not because it is the only
way to make a living. It is easy to find other ways if you want to find them. Here are a
number of examples.

A manufacturer introducing a new computer will pay for the porting of operating systems
onto the new hardware.

The sale of teaching, handholding and maintenance services could also employ program-
mers.

People with new ideas could distribute programs as freeware,!? asking for donations from
satisfied users, or selling handholding services. I have met people who are already working
this way successfully.

Users with related needs can form users’ groups, and pay dues. A group would contract
with programming companies to write programs that the group’s members would like to
use.

All sorts of development can be funded with a Software Tax:

Suppose everyone who buys a computer has to pay x percent of the price as a software
tax. The government gives this to an agency like the NSF to spend on software development.

But if the computer buyer makes a donation to software development himself, he can
take a credit against the tax. He can donate to the project of his own choosing—often,
chosen because he hopes to use the results when it is done. He can take a credit for any
amount of donation up to the total tax he had to pay.

The total tax rate could be decided by a vote of the payers of the tax, weighted according
to the amount they will be taxed on.

The consequences:
e The computer-using community supports software development.
e This community decides what level of support is needed.

e Users who care which projects their share is spent on can choose this for themselves.

10 Subsequently we learned to distinguish between “free software” and “freeware.” The term “freeware”
means software you are free to redistribute, but usually you are not free to study and change the source
code, so most of it is not free software. See Words to Avoid (or Use with Care) Because They Are Loaded
or Confusing for more explanation.

Appendix E: The GNU Manifesto 72

In the long run, making programs free is a step toward the postscarcity world, where
nobody will have to work very hard just to make a living. People will be free to devote
themselves to activities that are fun, such as programming, after spending the necessary
ten hours a week on required tasks such as legislation, family counseling, robot repair and
asteroid prospecting. There will be no need to be able to make a living from programming.

We have already greatly reduced the amount of work that the whole society must do
for its actual productivity, but only a little of this has translated itself into leisure for
workers because much nonproductive activity is required to accompany productive activity.
The main causes of this are bureaucracy and isometric struggles against competition. Free
software will greatly reduce these drains in the area of software production. We must do
this, in order for technical gains in productivity to translate into less work for us.

Appendix F: The GNU Project 73

Appendix F The GNU Project

The original version of this essay was published in Open Sources: Voices from the Open Source
Revolution, by Chris DiBona and others (Sebastopol: O’Reilly Media, 1999), under the title
“The GNU Operating System and the Free Software Movement.”

This document is part of GNU philosophy, the GNU Project’s exhaustive collection of articles
and essays about free software and related matters.

Copyright (© 1998, 2001, 2002, 2005, 2006, 2007, 2008, 2010 Richard Stallman

Verbatim copying and distribution of this entire appendixare permitted world-
wide, without royalty, in any medium, provided this notice is preserved.

The First Software-Sharing Community

When I started working at the MIT Artificial Intelligence Lab in 1971, I became part
of a software-sharing community that had existed for many years. Sharing of software was
not limited to our particular community; it is as old as computers, just as sharing of recipes
is as old as cooking. But we did it more than most.

The AI Lab used a timesharing operating system called ITS (the Incompatible Timeshar-
ing System) that the lab’s staff hackers' had designed and written in assembler language for
the Digital PDP-10, one of the large computers of the era. As a member of this community,
an Al Lab staff system hacker, my job was to improve this system.

We did not call our software “free software,” because that term did not yet exist; but
that is what it was. Whenever people from another university or a company wanted to
port and use a program, we gladly let them. If you saw someone using an unfamiliar and
interesting program, you could always ask to see the source code, so that you could read it,
change it, or cannibalize parts of it to make a new program.

The Collapse of the Community

The situation changed drastically in the early 1980s when Digital discontinued the PDP-
10 series. Its architecture, elegant and powerful in the 60s, could not extend naturally to
the larger address spaces that were becoming feasible in the 80s. This meant that nearly
all of the programs composing I'TS were obsolete.

The AI Lab hacker community had already collapsed, not long before. In 1981, the spin-
off company Symbolics had hired away nearly all of the hackers from the AI Lab, and the
depopulated community was unable to maintain itself. (The book Hackers, by Steve Levy,
describes these events, as well as giving a clear picture of this community in its prime.)
When the AI Lab bought a new PDP-10 in 1982, its administrators decided to use Digital’s
nonfree timesharing system instead of ITS.

The modern computers of the era, such as the VAX or the 68020, had their own operating
systems, but none of them were free software: you had to sign a nondisclosure agreement
even to get an executable copy.

1 The use of “hacker” to mean “security breaker” is a confusion on the part of the mass media. We hackers
refuse to recognize that meaning, and continue using the word to mean someone who loves to program,
someone who enjoys playful cleverness, or the combination of the two. See my article, “On Hacking,” at
http://stallman.org/articles/on-hacking.html.

http://stallman.org/articles/on-hacking.html

Appendix F: The GNU Project 74

This meant that the first step in using a computer was to promise not to help your
neighbor. A cooperating community was forbidden. The rule made by the owners of
proprietary software was, “If you share with your neighbor, you are a pirate. If you want
any changes, beg us to make them.”

The idea that the proprietary software social system—the system that says you are not
allowed to share or change software—is antisocial, that it is unethical, that it is simply
wrong, may come as a surprise to some readers. But what else could we say about a
system based on dividing the public and keeping users helpless? Readers who find the idea
surprising may have taken the proprietary software social system as a given, or judged it on
the terms suggested by proprietary software businesses. Software publishers have worked
long and hard to convince people that there is only one way to look at the issue.

When software publishers talk about “enforcing” their “rights” or “stopping piracy,”
what they actually say is secondary. The real message of these statements is in the unstated
assumptions they take for granted, which the public is asked to accept without examination.
Let’s therefore examine them.

One assumption is that software companies have an unquestionable natural right to own
software and thus have power over all its users. (If this were a natural right, then no
matter how much harm it does to the public, we could not object.) Interestingly, the US
Constitution and legal tradition reject this view; copyright is not a natural right, but an
artificial government-imposed monopoly that limits the users’ natural right to copy.

Another unstated assumption is that the only important thing about software is what
jobs it allows you to do—that we computer users should not care what kind of society we
are allowed to have.

A third assumption is that we would have no usable software (or would never have a
program to do this or that particular job) if we did not offer a company power over the
users of the program. This assumption may have seemed plausible, before the free software
movement demonstrated that we can make plenty of useful software without putting chains
on it.

If we decline to accept these assumptions, and judge these issues based on ordinary
commonsense morality while placing the users first, we arrive at very different conclusions.
Computer users should be free to modify programs to fit their needs, and free to share
software, because helping other people is the basis of society.

There is no room here for an extensive statement of the reasoning behind this conclusion,
so I refer the reader to the article Why Software Should Not Have Owners.

A Stark Moral Choice

With my community gone, to continue as before was impossible. Instead, I faced a stark
moral choice.

The easy choice was to join the proprietary software world, signing nondisclosure agree-
ments and promising not to help my fellow hacker. Most likely I would also be developing
software that was released under nondisclosure agreements, thus adding to the pressure on
other people to betray their fellows too.

I could have made money this way, and perhaps amused myself writing code. But I knew
that at the end of my career, I would look back on years of building walls to divide people,
and feel I had spent my life making the world a worse place.

Appendix F: The GNU Project 75

I had already experienced being on the receiving end of a nondisclosure agreement, when
someone refused to give me and the MIT Al Lab the source code for the control program for
our printer. (The lack of certain features in this program made use of the printer extremely
frustrating.) So I could not tell myself that nondisclosure agreements were innocent. I was
very angry when he refused to share with us; I could not turn around and do the same thing
to everyone else.

Another choice, straightforward but unpleasant, was to leave the computer field. That
way my skills would not be misused, but they would still be wasted. I would not be culpable
for dividing and restricting computer users, but it would happen nonetheless.

So I looked for a way that a programmer could do something for the good. 1 asked
myself, was there a program or programs that I could write, so as to make a community
possible once again?

The answer was clear: what was needed first was an operating system. That is the crucial
software for starting to use a computer. With an operating system, you can do many things;
without one, you cannot run the computer at all. With a free operating system, we could
again have a community of cooperating hackers—and invite anyone to join. And anyone
would be able to use a computer without starting out by conspiring to deprive his or her
friends.

As an operating system developer, I had the right skills for this job. So even though
I could not take success for granted, I realized that I was elected to do the job. I chose
to make the system compatible with Unix so that it would be portable, and so that Unix
users could easily switch to it. The name GNU was chosen, following a hacker tradition, as
a recursive acronym for “GNU’s Not Unix.”

An operating system does not mean just a kernel, barely enough to run other programs.
In the 1970s, every operating system worthy of the name included command processors,
assemblers, compilers, interpreters, debuggers, text editors, mailers, and much more. ITS
had them, Multics had them, VMS had them, and Unix had them. The GNU operating
system would include them too.

Later I heard these words, attributed to Hillel:?

If I am not for myself, who will be for me?
If T am only for myself, what am I?
If not now, when?

The decision to start the GNU Project was based on a similar spirit.

Free as in Freedom
The term “free software” is sometimes misunderstood—it has nothing to do with price.
It is about freedom. Here, therefore, is the definition of free software.
A program is free software, for you, a particular user, if:
e You have the freedom to run the program as you wish, for any purpose.

e You have the freedom to modify the program to suit your needs. (To make this freedom
effective in practice, you must have access to the source code, since making changes in
a program without having the source code is exceedingly difficult.)

2 Asan Atheist, I don’t follow any religious leaders, but I sometimes find I admire something one of them
has said.

Appendix F: The GNU Project 76

e You have the freedom to redistribute copies, either gratis or for a fee.

e You have the freedom to distribute modified versions of the program, so that the
community can benefit from your improvements.

Since “free” refers to freedom, not to price, there is no contradiction between selling
copies and free software. In fact, the freedom to sell copies is crucial: collections of free
software sold on CD-ROMs are important for the community, and selling them is an impor-
tant way to raise funds for free software development. Therefore, a program which people
are not free to include on these collections is not free software.

Because of the ambiguity of “free,” people have long looked for alternatives, but no one
has found a better term. The English language has more words and nuances than any other,
but it lacks a simple, unambiguous, word that means “free,” as in freedom—“unfettered”
being the word that comes closest in meaning. Such alternatives as “liberated,” “freedom,”
and “open” have either the wrong meaning or some other disadvantage.

GNU Software and the GNU System

Developing a whole system is a very large project. To bring it into reach, I decided to
adapt and use existing pieces of free software wherever that was possible. For example, I
decided at the very beginning to use TEX as the principal text formatter; a few years later, 1
decided to use the X Window System rather than writing another window system for GNU.

Because of this decision, the GNU system is not the same as the collection of all GNU
software. The GNU system includes programs that are not GNU software, programs that
were developed by other people and projects for their own purposes, but which we can use
because they are free software.

Commencing the Project

In January 1984 I quit my job at MIT and began writing GNU software. Leaving MIT
was necessary so that MIT would not be able to interfere with distributing GNU as free
software. If I had remained on the staff, MIT could have claimed to own the work, and
could have imposed their own distribution terms, or even turned the work into a proprietary
software package. I had no intention of doing a large amount of work only to see it become
useless for its intended purpose: creating a new software-sharing community.

However, Professor Winston, then the head of the MIT AI Lab, kindly invited me to
keep using the lab’s facilities.

The First Steps

Shortly before beginning the GNU Project, I heard about the Free University Compiler
Kit, also known as VUCK. (The Dutch word for “free” is written with a v.) This was a
compiler designed to handle multiple languages, including C and Pascal, and to support
multiple target machines. I wrote to its author asking if GNU could use it.

He responded derisively, stating that the university was free but the compiler was not.
I therefore decided that my first program for the GNU Project would be a multilanguage,
multiplatform compiler.

Hoping to avoid the need to write the whole compiler myself, I obtained the source
code for the Pastel compiler, which was a multiplatform compiler developed at Lawrence
Livermore Lab. It supported, and was written in, an extended version of Pascal, designed

Appendix F: The GNU Project 7

to be a system-programming language. I added a C front end, and began porting it to the
Motorola 68000 computer. But I had to give that up when I discovered that the compiler
needed many megabytes of stack space, while the available 68000 Unix system would only
allow 64k.

I then realized that the Pastel compiler functioned by parsing the entire input file into
a syntax tree, converting the whole syntax tree into a chain of “instructions,” and then
generating the whole output file, without ever freeing any storage. At this point, I concluded
I would have to write a new compiler from scratch. That new compiler is now known as
GCC; none of the Pastel compiler is used in it, but I managed to adapt and use the C front
end that I had written. But that was some years later; first, I worked on GNU Emacs.

GNU Emacs

I began work on GNU Emacs in September 1984, and in early 1985 it was beginning to
be usable. This enabled me to begin using Unix systems to do editing; having no interest
in learning to use vi or ed, I had done my editing on other kinds of machines until then.

At this point, people began wanting to use GNU Emacs, which raised the question of how
to distribute it. Of course, I put it on the anonymous ftp server on the MIT computer that I
used. (This computer, prep.ai.mit.edu, thus became the principal GNU ftp distribution
site; when it was decommissioned a few years later, we transferred the name to our new ftp
server.) But at that time, many of the interested people were not on the Internet and could
not get a copy by ftp. So the question was, what would I say to them?

I could have said, “Find a friend who is on the net and who will make a copy for you.”
Or I could have done what I did with the original PDP-10 Emacs: tell them, “Mail me a
tape and a SASE (self-addressed stamped envelope), and T will mail it back with Emacs on
it.” But I had no job, and I was looking for ways to make money from free software. So I
announced that I would mail a tape to whoever wanted one, for a fee of $150. In this way,
I started a free software distribution business, the precursor of the companies that today
distribute entire Linux-based GNU systems.

Is a Program Free for Every User?

If a program is free software when it leaves the hands of its author, this does not neces-
sarily mean it will be free software for everyone who has a copy of it. For example, public
domain software (software that is not copyrighted) is free software; but anyone can make
a proprietary modified version of it. Likewise, many free programs are copyrighted but
distributed under simple permissive licenses which allow proprietary modified versions.

The paradigmatic example of this problem is the X Window System. Developed at
MIT, and released as free software with a permissive license, it was soon adopted by various
computer companies. They added X to their proprietary Unix systems, in binary form only,
and covered by the same nondisclosure agreement. These copies of X were no more free
software than Unix was.

The developers of the X Window System did not consider this a problem—they expected
and intended this to happen. Their goal was not freedom, just “success,” defined as “having
many users.” They did not care whether these users had freedom, only about having many
of them.

This led to a paradoxical situation where two different ways of counting the amount of
freedom gave different answers to the question, “Is this program free?” If you judged based

Appendix F: The GNU Project 78

on the freedom provided by the distribution terms of the MIT release, you would say that
X was free software. But if you measured the freedom of the average user of X, you would
have to say it was proprietary software. Most X users were running the proprietary versions
that came with Unix systems, not the free version.

Copyleft and the GNU GPL

The goal of GNU was to give users freedom, not just to be popular. So we needed to use
distribution terms that would prevent GNU software from being turned into proprietary
software. The method we use is called “copyleft.”?

Copyleft uses copyright law, but flips it over to serve the opposite of its usual purpose:
instead of a means for restricting a program, it becomes a means for keeping the program
free.

The central idea of copyleft is that we give everyone permission to run the program, copy
the program, modify the program, and distribute modified versions—but not permission to
add restrictions of their own. Thus, the crucial freedoms that define “free software” are
guaranteed to everyone who has a copy; they become inalienable rights.

For an effective copyleft, modified versions must also be free. This ensures that work
based on ours becomes available to our community if it is published. When programmers
who have jobs as programmers volunteer to improve GNU software, it is copyleft that
prevents their employers from saying, “You can’t share those changes, because we are going
to use them to make our proprietary version of the program.”

The requirement that changes must be free is essential if we want to ensure freedom for
every user of the program. The companies that privatized the X Window System usually
made some changes to port it to their systems and hardware. These changes were small
compared with the great extent of X, but they were not trivial. If making changes were
an excuse to deny the users freedom, it would be easy for anyone to take advantage of the
excuse.

A related issue concerns combining a free program with nonfree code. Such a combination
would inevitably be nonfree; whichever freedoms are lacking for the nonfree part would be
lacking for the whole as well. To permit such combinations would open a hole big enough
to sink a ship. Therefore, a crucial requirement for copyleft is to plug this hole: anything
added to or combined with a copylefted program must be such that the larger combined
version is also free and copylefted.

The specific implementation of copyleft that we use for most GNU software is the GNU
General Public License, or GNU GPL for short. We have other kinds of copyleft that are
used in specific circumstances. GNU manuals are copylefted also, but use a much simpler
kind of copyleft, because the complexity of the GNU GPL is not necessary for manuals.?

The Free Software Foundation

As interest in using Emacs was growing, other people became involved in the GNU
Project, and we decided that it was time to seek funding once again. So in 1985 we created

3 In 1984 or 1985, Don Hopkins (a very imaginative fellow) mailed me a letter. On the envelope he had
written several amusing sayings, including this one: “Copyleft—all rights reversed.” I used the word
“copyleft” to name the distribution concept I was developing at the time.

4 We now use the GNU Free Documentation License for documentation.

Appendix F: The GNU Project 79

the Free Software Foundation (FSF), a tax-exempt charity for free software development.
The FSF also took over the Emacs tape distribution business; later it extended this by
adding other free software (both GNU and non-GNU) to the tape, and by selling free
manuals as well.

Most of the FSF’s income used to come from sales of copies of free software and of other
related services (CD-ROMs of source code, CD-ROMs with binaries, nicely printed manuals,
all with the freedom to redistribute and modify), and Deluxe Distributions (distributions
for which we built the whole collection of software for the customer’s choice of platform).
Today the FSF still sells manuals and other gear, but it gets the bulk of its funding from
members’ dues. You can join the FSF at http://fsf.org/join.

Free Software Foundation employees have written and maintained a number of GNU
software packages. Two notable ones are the C library and the shell. The GNU C library
is what every program running on a GNU/Linux system uses to communicate with Linux.
It was developed by a member of the Free Software Foundation staff, Roland McGrath.
The shell used on most GNU/Linux systems is BASH, the Bourne Again Shell,> which was
developed by FSF employee Brian Fox.

We funded development of these programs because the GNU Project was not just about
tools or a development environment. Our goal was a complete operating system, and these
programs were needed for that goal.

Free Software Support

The free software philosophy rejects a specific widespread business practice, but it is not
against business. When businesses respect the users’ freedom, we wish them success.

Selling copies of Emacs demonstrates one kind of free software business. When the FSF
took over that business, I needed another way to make a living. I found it in selling services
relating to the free software I had developed. This included teaching, for subjects such
as how to program GNU Emacs and how to customize GCC, and software development,
mostly porting GCC to new platforms.

Today each of these kinds of free software business is practiced by a number of corpo-
rations. Some distribute free software collections on CD-ROM; others sell support at levels
ranging from answering user questions, to fixing bugs, to adding major new features. We
are even beginning to see free software companies based on launching new free software
products.

Watch out, though—a number of companies that associate themselves with the term
“open source” actually base their business on nonfree software that works with free software.
These are not free software companies, they are proprietary software companies whose
products tempt users away from freedom. They call these programs “value-added packages,”
which shows the values they would like us to adopt: convenience above freedom. If we value
freedom more, we should call them “freedom-subtracted” packages.

Technical Goals

The principal goal of GNU is to be free software. Even if GNU had no technical advantage
over Unix, it would have a social advantage, allowing users to cooperate, and an ethical
advantage, respecting the user’s freedom.

5 “Bourne Again Shell” is a play on the name “Bourne Shell,” which was the usual shell on Unix.

http://fsf.org/join

Appendix F: The GNU Project 80

But it was natural to apply the known standards of good practice to the work—for
example, dynamically allocating data structures to avoid arbitrary fixed size limits, and
handling all the possible 8-bit codes wherever that made sense.

In addition, we rejected the Unix focus on small memory size, by deciding not to support
16-bit machines (it was clear that 32-bit machines would be the norm by the time the GNU
system was finished), and to make no effort to reduce memory usage unless it exceeded a
megabyte. In programs for which handling very large files was not crucial, we encouraged
programmers to read an entire input file into core, then scan its contents without having to
worry about 1/0.

These decisions enabled many GNU programs to surpass their Unix counterparts in
reliability and speed.

Donated Computers

As the GNU Project’s reputation grew, people began offering to donate machines running
Unix to the project. These were very useful, because the easiest way to develop components
of GNU was to do it on a Unix system, and replace the components of that system one by
one. But they raised an ethical issue: whether it was right for us to have a copy of Unix at
all.

Unix was (and is) proprietary software, and the GNU Project’s philosophy said that we
should not use proprietary software. But, applying the same reasoning that leads to the
conclusion that violence in self defense is justified, I concluded that it was legitimate to use
a proprietary package when that was crucial for developing a free replacement that would
help others stop using the proprietary package.

But, even if this was a justifiable evil, it was still an evil. Today we no longer have any
copies of Unix, because we have replaced them with free operating systems. If we could not
replace a machine’s operating system with a free one, we replaced the machine instead.

The GNU Task List

As the GNU Project proceeded, and increasing numbers of system components were
found or developed, eventually it became useful to make a list of the remaining gaps. We
used it to recruit developers to write the missing pieces. This list became known as the
GNU Task List. In addition to missing Unix components, we listed various other useful
software and documentation projects that, we thought, a truly complete system ought to
have.

Today,® hardly any Unix components are left in the GNU Task List—those jobs had
been done, aside from a few inessential ones. But the list is full of projects that some might
call “applications.” Any program that appeals to more than a narrow class of users would
be a useful thing to add to an operating system.

Even games are included in the task list—and have been since the beginning. Unix
included games, so naturally GNU should too. But compatibility was not an issue for
games, so we did not follow the list of games that Unix had. Instead, we listed a spectrum
of different kinds of games that users might like.

6 That was written in 1998. In 2009 we no longer maintain a long task list. The community develops free
software so fast that we can’t even keep track of it all. Instead, we have a list of High Priority Projects,
a much shorter list of projects we really want to encourage people to write.

Appendix F: The GNU Project 81

The GNU Library GPL

The GNU C library uses a special kind of copyleft called the GNU Library General
Public License,” which gives permission to link proprietary software with the library. Why
make this exception?

It is not a matter of principle; there is no principle that says proprietary software prod-
ucts are entitled to include our code. (Why contribute to a project predicated on refusing
to share with us?) Using the LGPL for the C library, or for any library, is a matter of
strategy.

The C library does a generic job; every proprietary system or compiler comes with a C
library. Therefore, to make our C library available only to free software would not have
given free software any advantage—it would only have discouraged use of our library.

One system is an exception to this: on the GNU system (and this includes GNU /Linux),
the GNU C library is the only C library. So the distribution terms of the GNU C library
determine whether it is possible to compile a proprietary program for the GNU system.
There is no ethical reason to allow proprietary applications on the GNU system, but strate-
gically it seems that disallowing them would do more to discourage use of the GNU system
than to encourage development of free applications. That is why using the Library GPL is
a good strategy for the C library.

For other libraries, the strategic decision needs to be considered on a case-by-case basis.
When a library does a special job that can help write certain kinds of programs, then
releasing it under the GPL, limiting it to free programs only, is a way of helping other free
software developers, giving them an advantage against proprietary software.

Consider GNU Readline, a library that was developed to provide command-line editing
for BASH. Readline is released under the ordinary GNU GPL, not the Library GPL. This
probably does reduce the amount Readline is used, but that is no loss for us. Meanwhile, at
least one useful application has been made free software specifically so it could use Readline,
and that is a real gain for the community.

Proprietary software developers have the advantages money provides; free software de-
velopers need to make advantages for each other. I hope some day we will have a large
collection of GPL-covered libraries that have no parallel available to proprietary software,
providing useful modules to serve as building blocks in new free software, and adding up to
a major advantage for further free software development.

Scratching an Itch?

Eric Raymond® says that “Every good work of software starts by scratching a developer’s
personal itch.”® Maybe that happens sometimes, but many essential pieces of GNU software
were developed in order to have a complete free operating system. They come from a vision
and a plan, not from impulse.

" This license is now called the GNU Lesser General Public License, to avoid giving the idea that all
libraries ought to use it.

8 Eric Raymond is a prominent open source advocate; see Why Open Source Misses the Point of Free
Software.

9 Eric S. Raymond, The Cathedral and the Bazaar: Musings on Linux and Open Source by an Accidental
Revolutionary, rev. ed. (Sebastopol, Calif.: O’Reilly, 2001), p. 23.

Appendix F: The GNU Project 82

For example, we developed the GNU C library because a Unix-like system needs a C
library, BASH because a Unix-like system needs a shell, and GNU tar because a Unix-like
system needs a tar program. The same is true for my own programs—the GNU C compiler,
GNU Emacs, GDB and GNU Make.

Some GNU programs were developed to cope with specific threats to our freedom. Thus,
we developed gzip to replace the Compress program, which had been lost to the community
because of the LZW patents. We found people to develop LessTif, and more recently started
GNOME and Harmony, to address the problems caused by certain proprietary libraries (see
below). We are developing the GNU Privacy Guard to replace popular nonfree encryption
software, because users should not have to choose between privacy and freedom.

Of course, the people writing these programs became interested in the work, and many
features were added to them by various people for the sake of their own needs and interests.
But that is not why the programs exist.

Unexpected Developments

At the beginning of the GNU Project, I imagined that we would develop the whole GNU
system, then release it as a whole. That is not how it happened.

Since each component of the GNU system was implemented on a Unix system, each
component could run on Unix systems long before a complete GNU system existed. Some
of these programs became popular, and users began extending them and porting them—to
the various incompatible versions of Unix, and sometimes to other systems as well.

The process made these programs much more powerful, and attracted both funds and
contributors to the GNU Project. But it probably also delayed completion of a minimal
working system by several years, as GNU developers’ time was put into maintaining these
ports and adding features to the existing components, rather than moving on to write one
missing component after another.

The GNU Hurd

By 1990, the GNU system was almost complete; the only major missing component was
the kernel. We had decided to implement our kernel as a collection of server processes
running on top of Mach. Mach is a microkernel developed at Carnegie Mellon University
and then at the University of Utah; the GNU Hurd is a collection of servers (i.e., a herd
of GNUs) that run on top of Mach, and do the various jobs of the Unix kernel. The start
of development was delayed as we waited for Mach to be released as free software, as had
been promised.

One reason for choosing this design was to avoid what seemed to be the hardest part of
the job: debugging a kernel program without a source-level debugger to do it with. This
part of the job had been done already, in Mach, and we expected to debug the Hurd servers
as user programs, with GDB. But it took a long time to make that possible, and the
multithreaded servers that send messages to each other have turned out to be very hard to
debug. Making the Hurd work solidly has stretched on for many years.

Alix

The GNU kernel was not originally supposed to be called the Hurd. Its original name
was Alix—mnamed after the woman who was my sweetheart at the time. She, a Unix system

Appendix F: The GNU Project 83

administrator, had pointed out how her name would fit a common naming pattern for Unix
system versions; as a joke, she told her friends, “Someone should name a kernel after me.”
I said nothing, but decided to surprise her with a kernel named Alix.

It did not stay that way. Michael (now Thomas) Bushnell, the main developer of the
kernel, preferred the name Hurd, and redefined Alix to refer to a certain part of the kernel—
the part that would trap system calls and handle them by sending messages to Hurd servers.

Later, Alix and I broke up, and she changed her name; independently, the Hurd design
was changed so that the C library would send messages directly to servers, and this made
the Alix component disappear from the design.

But before these things happened, a friend of hers came across the name Alix in the
Hurd source code, and mentioned it to her. So she did have the chance to find a kernel
named after her.

Linux and GNU /Linux

The GNU Hurd is not suitable for production use, and we don’t know if it ever will
be. The capability-based design has problems that result directly from the flexibility of the
design, and it is not clear solutions exist.

Fortunately, another kernel is available. In 1991, Linus Torvalds developed a Unix-
compatible kernel and called it Linux. In 1992, he made Linux free software; combining
Linux with the not-quite-complete GNU system resulted in a complete free operating sys-
tem. (Combining them was a substantial job in itself, of course.) It is due to Linux that
we can actually run a version of the GNU system today.

We call this system version GNU/Linux, to express its composition as a combination of
the GNU system with Linux as the kernel.

Challenges in Our Future

We have proved our ability to develop a broad spectrum of free software. This does not
mean we are invincible and unstoppable. Several challenges make the future of free software
uncertain; meeting them will require steadfast effort and endurance, sometimes lasting for
years. It will require the kind of determination that people display when they value their
freedom and will not let anyone take it away.

The following four sections discuss these challenges.

Secret Hardware

Hardware manufacturers increasingly tend to keep hardware specifications secret. This
makes it difficult to write free drivers so that Linux and XFree86 can support new hardware.
We have complete free systems today, but we will not have them tomorrow if we cannot
support tomorrow’s computers.

There are two ways to cope with this problem. Programmers can do reverse engineering
to figure out how to support the hardware. The rest of us can choose the hardware that is
supported by free software; as our numbers increase, secrecy of specifications will become
a self-defeating policy.

Reverse engineering is a big job; will we have programmers with sufficient determination
to undertake it? Yes—if we have built up a strong feeling that free software is a matter
of principle, and nonfree drivers are intolerable. And will large numbers of us spend extra

Appendix F: The GNU Project 84

money, or even a little extra time, so we can use free drivers? Yes, if the determination to
have freedom is widespread.

[2008 note: this issue extends to the BIOS as well. There is a free BIOS, coreboot; the
problem is getting specs for machines so that coreboot can support them.]

Nonfree Libraries

A nonfree library that runs on free operating systems acts as a trap for free software
developers. The library’s attractive features are the bait; if you use the library, you fall into
the trap, because your program cannot usefully be part of a free operating system. (Strictly
speaking, we could include your program, but it won’t run with the library missing.) Even
worse, if a program that uses the proprietary library becomes popular, it can lure other
unsuspecting programmers into the trap.

The first instance of this problem was the Motif toolkit, back in the 80s. Although there
were as yet no free operating systems, it was clear what problem Motif would cause for
them later on. The GNU Project responded in two ways: by asking individual free software
projects to support the free X Toolkit widgets as well as Motif, and by asking for someone
to write a free replacement for Motif. The job took many years; LessTif, developed by the
Hungry Programmers, became powerful enough to support most Motif applications only in
1997.

Between 1996 and 1998, another nonfree GUI toolkit library, called Qt, was used in a
substantial collection of free software, the desktop KDE.

Free GNU /Linux systems were unable to use KDE, because we could not use the library.
However, some commercial distributors of GNU/Linux systems who were not strict about
sticking with free software added KDE to their systems—producing a system with more
capabilities, but less freedom. The KDE group was actively encouraging more programmers
to use Qt, and millions of new “Linux users” had never been exposed to the idea that there
was a problem in this. The situation appeared grim.

The free software community responded to the problem in two ways: GNOME and
Harmony.

GNOME, the GNU Network Object Model Environment, is GNU’s desktop project.
Started in 1997 by Miguel de Icaza, and developed with the support of Red Hat Software,
GNOME set out to provide similar desktop facilities, but using free software exclusively. It
has technical advantages as well, such as supporting a variety of languages, not just C++.
But its main purpose was freedom: not to require the use of any nonfree software.

Harmony is a compatible replacement library, designed to make it possible to run KDE
software without using Qt.

In November 1998, the developers of Qt announced a change of license which, when
carried out, should make Qt free software. There is no way to be sure, but I think that this
was partly due to the community’s firm response to the problem that Qt posed when it was
nonfree. (The new license is inconvenient and inequitable, so it remains desirable to avoid
using Qt.)

[Subsequent note: in September 2000, Qt was rereleased under the GNU GPL, which
essentially solved this problem.]

Appendix F: The GNU Project 85

How will we respond to the next tempting nonfree library? Will the whole community
understand the need to stay out of the trap? Or will many of us give up freedom for
convenience, and produce a major problem? Our future depends on our philosophy.

Software Patents

The worst threat we face comes from software patents, which can put algorithms and
features off limits to free software for up to 20 years. The LZW compression algorithm
patents were applied for in 1983, and we still cannot release free software to produce proper
compressed GIFs. [As of 2009 they have expired.] In 1998, a free program to produce MP3
compressed audio was removed from distribution under threat of a patent suit.

There are ways to cope with patents: we can search for evidence that a patent is invalid,
and we can look for alternative ways to do a job. But each of these methods works only
sometimes; when both fail, a patent may force all free software to lack some feature that
users want. What will we do when this happens?

Those of us who value free software for freedom’s sake will stay with free software anyway.
We will manage to get work done without the patented features. But those who value free
software because they expect it to be technically superior are likely to call it a failure when
a patent holds it back. Thus, while it is useful to talk about the practical effectiveness of
the “bazaar” model of development, and the reliability and power of some free software, we
must not stop there. We must talk about freedom and principle.

Free Documentation

The biggest deficiency in our free operating systems is not in the software—it is the lack
of good free manuals that we can include in our systems. Documentation is an essential
part of any software package; when an important free software package does not come with
a good free manual, that is a major gap. We have many such gaps today.

Free documentation, like free software, is a matter of freedom, not price. The criterion
for a free manual is pretty much the same as for free software: it is a matter of giving
all users certain freedoms. Redistribution (including commercial sale) must be permitted,
online and on paper, so that the manual can accompany every copy of the program.

Permission for modification is crucial too. As a general rule, I don’t believe that it
is essential for people to have permission to modify all sorts of articles and books. For
example, I don’t think you or I are obliged to give permission to modify articles like this
one, which describe our actions and our views.

But there is a particular reason why the freedom to modify is crucial for documentation
for free software. When people exercise their right to modify the software, and add or
change its features, if they are conscientious they will change the manual, too—so they can
provide accurate and usable documentation with the modified program. A nonfree manual,
which does not allow programmers to be conscientious and finish the job, does not fill our
community’s needs.

Some kinds of limits on how modifications are done pose no problem. For example,
requirements to preserve the original author’s copyright notice, the distribution terms, or
the list of authors, are OK. It is also no problem to require modified versions to include
notice that they were modified, even to have entire sections that may not be deleted or
changed, as long as these sections deal with nontechnical topics. These kinds of restrictions

Appendix F: The GNU Project 86

are not a problem because they don’t stop the conscientious programmer from adapting
the manual to fit the modified program. In other words, they don’t block the free software
community from making full use of the manual.

However, it must be possible to modify all the technical content of the manual, and
then distribute the result in all the usual media, through all the usual channels; otherwise,
the restrictions do obstruct the community, the manual is not free, and we need another
manual.

Will free software developers have the awareness and determination to produce a full
spectrum of free manuals? Once again, our future depends on philosophy.

We Must Talk about Freedom

Estimates today are that there are ten million users of GNU/Linux systems such as
Debian GNU/Linux and Red Hat “Linux.” Free software has developed such practical
advantages that users are flocking to it for purely practical reasons.

The good consequences of this are evident: more interest in developing free software,
more customers for free software businesses, and more ability to encourage companies to
develop commercial free software instead of proprietary software products.

But interest in the software is growing faster than awareness of the philosophy it is based
on, and this leads to trouble. Our ability to meet the challenges and threats described above
depends on the will to stand firm for freedom. To make sure our community has this will,
we need to spread the idea to the new users as they come into the community.

But we are failing to do so: the efforts to attract new users into our community are far
outstripping the efforts to teach them the civics of our community. We need to do both,
and we need to keep the two efforts in balance.

“Open Source”

Teaching new users about freedom became more difficult in 1998, when a part of the
community decided to stop using the term “free software” and say “open source software”
instead.

Some who favored this term aimed to avoid the confusion of “free” with “gratis”—a
valid goal. Others, however, aimed to set aside the spirit of principle that had motivated
the free software movement and the GNU Project, and to appeal instead to executives and
business users, many of whom hold an ideology that places profit above freedom, above
community, above principle. Thus, the rhetoric of “open source” focuses on the potential
to make high-quality, powerful software, but shuns the ideas of freedom, community, and
principle.

The “Linux” magazines are a clear example of this—they are filled with advertisements
for proprietary software that works with GNU/Linux. When the next Motif or Qt appears,
will these magazines warn programmers to stay away from it, or will they run ads for it?

The support of business can contribute to the community in many ways; all else being
equal, it is useful. But winning their support by speaking even less about freedom and
principle can be disastrous; it makes the previous imbalance between outreach and civics
education even worse.

“Free software” and “open source” describe the same category of software, more or less,
but say different things about the software, and about values. The GNU Project continues

Appendix F: The GNU Project 87

to use the term “free software,” to express the idea that freedom, not just technology, is
important.

Try!

Yoda’s aphorism (“There is no ‘try’”) sounds neat, but it doesn’t work for me. I have
done most of my work while anxious about whether I could do the job, and unsure that it
would be enough to achieve the goal if I did. But I tried anyway, because there was no one
but me between the enemy and my city. Surprising myself, I have sometimes succeeded.

Sometimes I failed; some of my cities have fallen. Then I found another threatened city,
and got ready for another battle. Over time, I’ve learned to look for threats and put myself
between them and my city, calling on other hackers to come and join me.

Nowadays, often I'm not the only one. It is a relief and a joy when I see a regiment of
hackers digging in to hold the line, and I realize, this city may survive—for now. But the
dangers are greater each year, and now Microsoft has explicitly targeted our community.
We can’t take the future of freedom for granted. Don’t take it for granted! If you want to
keep your freedom, you must be prepared to defend it.

Appendix G: Linux and the GNU system 88

Appendix G Linux and the GNU system

The original version of this essay was published as the file etc/LINUX-GNU in the GNU Emacs
distribution.

This document is part of GNU philosophy, the GNU Project’s exhaustive collection of articles
and essays about free software and related matters.

Copyright © 1996, 2002 Richard Stallman

Verbatim copying and distribution of this entire appendixare permitted world-
wide, without royalty, in any medium, provided this notice is preserved.

The GNU project started in 1984 with the goal of developing a complete free Unix-like
operating system: GNU. “Free” refers to freedom, not price; it means you are free to run,
copy, distribute, study, change, and improve the software.

A Unix-like system consists of many different programs. We found some components
already available as free software—for example, X Windows and TEX. We obtained other
components by helping to convince their developers to make them free—for example, the
Berkeley network utilities. This left many missing components that we had to write in
order to produce GNU—for example, GNU Emacs, the GNU C compiler, the GNU C
library, Bash, and Ghostscript. The GNU system consists of all these components together.

The GNU project is not just about developing and distributing some useful free software.
The heart of the GNU project is an idea: that software should be free, that software users
should have freedom to participate in a community. To run your computer, you need an
operating system; if it is not free, your freedom has been denied. To have freedom, you
need a free operating system. We therefore set out to write one.

In the long run, though, we cannot expect to keep the free operating system free unless
the users are aware of the freedom it gives them, and value that freedom. People who do
not appreciate their freedom will not keep it long. If we want to make freedom last, we
need to spread awareness of the freedoms they have in free software.

The GNU project’s method is that free software and the idea of users’ freedom support
each other. We develop GNU software, and as people encounter GNU programs or the GNU
system and start to use them, they also think about the GNU idea. The software shows
that the idea can work in practice. Some of these people come to agree with the idea, and
then they are more likely to write additional free software. Thus, the software embodies
the idea, spreads the idea, and grows from the idea.

Early on in the development of GNU, various parts of it became popular even though
users needed proprietary systems to run them on. Porting the system to many systems and
maintaining them required a lot of work. After that work, most GNU software is easily
configured for a variety of different platforms.

By 1991, we had found or written all of the essential major components of the system
except the kernel, which we were writing.!

That was the situation when Linux came into being. Linux is a kernel, like the kernel
of Unix; it was written by Linus Torvalds, who released it under the GNU General Public

1 This kernel consists of the Mach microkernel plus the GNU HURD. The first test release was made in
1996. Now, in 2002, it is running well, and Hurd-based GNU systems are starting to be used.

Appendix G: Linux and the GNU system 89

License. He did not write this kernel for GNU, but it fit into the gap in GNU. The
combination of GNU and Linux included all the major essential components of a Unix-
compatible operating system. Other people, with some work made the combination into a
usable system. The principal use of Linux, the kernel, is as part of this combination.

The popularity of the GNU/Linux combination is success, in the sense of popularity, for
GNU. Ironically, the popularity of GNU/Linux undermines our method of communicating
the ideas of GNU to people who use GNU.

When GNU programs were only usable individually on top of another operating system,
installing and using them meant knowing and appreciating these programs, and thus being
aware of GNU, which led people to think about the philosophical base of GNU. Now
users can install a unified operating system which is basically GNU, but they usually think
these are “Linux systems”. At first impression, a “Linux system” sounds like something
completely distinct from the “GNU system,” and that is what most users think.

This leads many users to identify themselves as a separate community of “Linux users”,
distinct from the GNU user community. They use more than just some GNU programs,
they use almost all of the GNU system, but they don’t think of themselves as GNU users.
Often they never hear about the GNU idea; if they do, they may not think it relates to
them.

Most introductions to the “Linux system” acknowledge that GNU software components
play a role in it, but they don’t say that the system as a whole is a modified version of the
GNU system that the GNU project has been developing and compiling since Linus Torvalds
was in junior high school. They don’t say that the main reason this free operating exists is
that the GNU Project worked persistently to achieve its goal of freedom.

As a result, most users don’t know these things. They believe that the “Linux system”
was developed by Linus Torvalds “just for fun”, and that their freedom is a matter of good
fortune rather than the dedicated pursuit of freedom. This creates a danger that they will
leave the survival of free software to fortune as well.

Since human beings tend to correct their first impressions less than called for by addi-
tional information they learn later, these users will tend to continue to underestimate their
connection to GNU even if they do learn the facts.

When we began trying to support the GNU/Linux system, we found this widespread
misinformation led to a practical problem—it hampered cooperation on software mainte-
nance. Normally when users change a GNU program to make it work better on a particular
system, they send the change to the maintainer of that program; then they work with the
maintainer, explaining the change, arguing for it, and sometimes rewriting it for the sake
of the overall coherence and maintainability of the package, to get the patch installed. But
people who thought of themselves as “Linux users” showed a tendency to release a forked
“Linux-only” version of the GNU program and consider the job done. In some cases we had
to redo their work in order to make GNU programs run as released in GNU /Linux systems.

How should the GNU project encourage its users to cooperate? How should we spread
the idea that freedom for computer users is important?

We must continue to talk about the freedom to share and change software—and to teach
other users to value these freedoms. If we value having a free operating system, it makes
sense to think about preserving those freedoms for the long term. If we value having a

Appendix G: Linux and the GNU system 90

variety of free software, it makes sense to think about encouraging others to write free
software, instead of proprietary software.

However, it is not enough just to talk about freedom; we must also make sure people
know the reasons it is worth listening to what we say.

Long explanations such as our philosophical articles are one way of informing the public,
but you may not want to spend so much time on the matter. The most effective way you can
help with a small amount of work is simply by using the terms “Linux-based GNU system”
or “GNU/Linux system”, instead of “Linux system,” when you write about or mention
such a system. Seeing these terms will show many people the reason to pay attention to
our philosophical articles.

The system as a whole is more GNU than Linux; the name “GNU/Linux” is fair. When
you are choosing the name of a distribution or a user group, a name with “GNU /Linux”
will reflect both roots of the combined system, and will bring users into connection with
both—including the spirit of freedom and community that is the basis and purpose of GNU.

Appendix H: Why Software Should Not Have Owners 91

Appendix H Why Software Should Not Have

Owners

This essay was originally published in Technos: Quarterly for Education and Technology,
vol. 3, n. 2, pp. 2426, Summer 1994.

This document is part of GNU philosophy, the GNU Project’s exhaustive collection of articles
and essays about free software and related matters.

Copyright © 1994, 2009 Richard Stallman

Verbatim copying and distribution of this entire appendixare permitted world-
wide, without royalty, in any medium, provided this notice is preserved.

Digital information technology contributes to the world by making it easier to copy and
modify information. Computers promise to make this easier for all of us.

Not everyone wants it to be easier. The system of copyright gives software programs
“owners,” most of whom aim to withhold software’s potential benefit from the rest of the
public. They would like to be the only ones who can copy and modify the software that we
use.

The copyright system grew up with printing—a technology for mass-production copying.
Copyright fit in well with this technology because it restricted only the mass producers of
copies. It did not take freedom away from readers of books. An ordinary reader, who did
not own a printing press, could copy books only with pen and ink, and few readers were
sued for that.

Digital technology is more flexible than the printing press: when information has digital
form, you can easily copy it to share it with others. This very flexibility makes a bad fit
with a system like copyright. That’s the reason for the increasingly nasty and draconian
measures now used to enforce software copyright. Consider these four practices of the
Software Publishers Association (SPA):

e Massive propaganda saying it is wrong to disobey the owners to help your friend.
e Solicitation for stool pigeons to inform on their coworkers and colleagues.

e Raids (with police help) on offices and schools, in which people are told they must
prove they are innocent of illegal copying.

e Prosecution (by the US government, at the SPA’s request) of people such as MIT’s
David LaMacchia, not for copying software (he is not accused of copying any), but
merely for leaving copying facilities unguarded and failing to censor their use.!

All four practices resemble those used in the former Soviet Union, where every copying
machine had a guard to prevent forbidden copying, and where individuals had to copy
information secretly and pass it from hand to hand as samizdat. There is of course a
difference: the motive for information control in the Soviet Union was political; in the US
the motive is profit. But it is the actions that affect us, not the motive. Any attempt to
block the sharing of information, no matter why, leads to the same methods and the same
harshness.

Owners make several kinds of arguments for giving them the power to control how we
use information:

! The charges were subsequently dismissed.

Appendix H: Why Software Should Not Have Owners 92

Name Calling

Owners use smear words such as “piracy” and “theft,” as well as expert terminology
such as “intellectual property” and “damage,” to suggest a certain line of thinking to the
public—a simplistic analogy between programs and physical objects.

Our ideas and intuitions about property for material objects are about whether it is
right to take an object away from someone else. They don’t directly apply to making a copy
of something. But the owners ask us to apply them anyway.

Exaggeration

Owners say that they suffer “harm” or “economic loss” when users copy programs them-
selves. But the copying has no direct effect on the owner, and it harms no one. The owner
can lose only if the person who made the copy would otherwise have paid for one from the
owner.

A little thought shows that most such people would not have bought copies. Yet the
owners compute their “losses” as if each and every one would have bought a copy. That is
exaggeration—to put it kindly.

The Law

Owners often describe the current state of the law, and the harsh penalties they can
threaten us with. Implicit in this approach is the suggestion that today’s law reflects
an unquestionable view of morality—yet at the same time, we are urged to regard these
penalties as facts of nature that can’t be blamed on anyone.

This line of persuasion isn’t designed to stand up to critical thinking; it’s intended to
reinforce a habitual mental pathway.

It’s elementary that laws don’t decide right and wrong. Every American should know
that, in the 1950s, it was against the law in many states for a black person to sit in the
front of a bus; but only racists would say sitting there was wrong.

Natural Rights

Authors often claim a special connection with programs they have written, and go on to
assert that, as a result, their desires and interests concerning the program simply outweigh
those of anyone else—or even those of the whole rest of the world. (Typically companies, not
authors, hold the copyrights on software, but we are expected to ignore this discrepancy.)

To those who propose this as an ethical axiom—the author is more important than
you—I can only say that I, a notable software author myself, call it bunk.

But people in general are only likely to feel any sympathy with the natural rights claims
for two reasons.

One reason is an overstretched analogy with material objects. When I cook spaghetti, I
do object if someone else eats it, because then I cannot eat it. His action hurts me exactly
as much as it benefits him; only one of us can eat the spaghetti, so the question is, which
one? The smallest distinction between us is enough to tip the ethical balance.

But whether you run or change a program I wrote affects you directly and me only
indirectly. Whether you give a copy to your friend affects you and your friend much more
than it affects me. I shouldn’t have the power to tell you not to do these things. No one
should.

Appendix H: Why Software Should Not Have Owners 93

The second reason is that people have been told that natural rights for authors is the
accepted and unquestioned tradition of our society.

As a matter of history, the opposite is true. The idea of natural rights of authors was
proposed and decisively rejected when the US Constitution was drawn up. That’s why the
Constitution only permits a system of copyright and does not require one; that’s why it
says that copyright must be temporary. It also states that the purpose of copyright is to
promote progress—not to reward authors. Copyright does reward authors somewhat, and
publishers more, but that is intended as a means of modifying their behavior.

The real established tradition of our society is that copyright cuts into the natural rights
of the public—and that this can only be justified for the public’s sake.

Economics

The final argument made for having owners of software is that this leads to production
of more software.

Unlike the others, this argument at least takes a legitimate approach to the subject. It
is based on a valid goal—satisfying the users of software. And it is empirically clear that
people will produce more of something if they are well paid for doing so.

But the economic argument has a flaw: it is based on the assumption that the difference
is only a matter of how much money we have to pay. It assumes that production of software
is what we want, whether the software has owners or not.

People readily accept this assumption because it accords with our experiences with
material objects. Consider a sandwich, for instance. You might well be able to get an
equivalent sandwich either gratis or for a price. If so, the amount you pay is the only
difference. Whether or not you have to buy it, the sandwich has the same taste, the same
nutritional value, and in either case you can only eat it once. Whether you get the sandwich
from an owner or not cannot directly affect anything but the amount of money you have
afterwards.

This is true for any kind of material object—whether or not it has an owner does not
directly affect what it ¢s, or what you can do with it if you acquire it.

But if a program has an owner, this very much affects what it is, and what you can do
with a copy if you buy one. The difference is not just a matter of money. The system of
owners of software encourages software owners to produce something—but not what society
really needs. And it causes intangible ethical pollution that affects us all.

What does society need? It needs information that is truly available to its citizens—for
example, programs that people can read, fix, adapt, and improve, not just operate. But
what software owners typically deliver is a black box that we can’t study or change.

Society also needs freedom. When a program has an owner, the users lose freedom to
control part of their own lives.

And, above all, society needs to encourage the spirit of voluntary cooperation in its
citizens. When software owners tell us that helping our neighbors in a natural way is
“piracy,” they pollute our society’s civic spirit.

This is why we say that free software is a matter of freedom, not price.

Appendix H: Why Software Should Not Have Owners 94

The economic argument for owners is erroneous, but the economic issue is real. Some
people write useful software for the pleasure of writing it or for admiration and love; but if
we want more software than those people write, we need to raise funds.

Since the 1980s, free software developers have tried various methods of finding funds,
with some success. There’s no need to make anyone rich; a typical income is plenty of
incentive to do many jobs that are less satisfying than programming.

For years, until a fellowship made it unnecessary, I made a living from custom enhance-
ments of the free software I had written. Each enhancement was added to the standard
released version and thus eventually became available to the general public. Clients paid
me so that I would work on the enhancements they wanted, rather than on the features I
would otherwise have considered highest priority.

Some free software developers make money by selling support services. In 1994, Cygnus
Support, with around 50 employees, estimated that about 15 percent of its staff activity
was free software development—a respectable percentage for a software company.

In the early 1990s, companies including Intel, Motorola, Analog Devices Texas Instru-
ments and Analog Devices combined to fund the continued development of the GNU C
compiler. Most GCC development is still done by paid developers. The GNU compiler for
the Ada language was funded in the 90s by the US Air Force, and continued since then by
a company formed specifically for the purpose.

The free software movement is still small, but the example of listener-supported radio
in the US shows it’s possible to support a large activity without forcing each user to pay.

As a computer user today, you may find yourself using a proprietary program. If your
friend asks to make a copy, it would be wrong to refuse. Cooperation is more important
than copyright. But underground, closet cooperation does not make for a good society. A
person should aspire to live an upright life openly with pride, and this means saying no to
proprietary software.

You deserve to be able to cooperate openly and freely with other people who use software.
You deserve to be able to learn how the software works, and to teach your students with it.
You deserve to be able to hire your favorite programmer to fix it when it breaks.

You deserve free software.

Appendix I: Why Free Software Needs Free Documentation 95

Appendix I Why Free Software Needs Free
Documentation

This essay was originally published on http://gnu.org, in 1996.

This document is part of GNU philosophy, the GNU Project’s exhaustive collection of articles
and essays about free software and related matters.

Copyright © 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2009
Free Software Foundation, Inc.

Verbatim copying and distribution of this entire appendixare permitted world-
wide, without royalty, in any medium, provided this notice is preserved.

The biggest deficiency in free operating systems is not in the software—it is the lack of good
free manuals that we can include in these systems. Many of our most important programs
do not come with full manuals. Documentation is an essential part of any software package;
when an important free software package does not come with a free manual, that is a major
gap. We have many such gaps today.

Once upon a time, many years ago, I thought I would learn Perl. I got a copy of a free
manual, but I found it hard to read. When I asked Perl users about alternatives, they told
me that there were better introductory manuals—but those were not free.

Why was this? The authors of the good manuals had written them for O’Reilly Asso-
ciates, which published them with restrictive terms—mno copying, no modification, source
files not available—which exclude them from the free software community.

That wasn’t the first time this sort of thing has happened, and (to our community’s
great loss) it was far from the last. Proprietary manual publishers have enticed a great
many authors to restrict their manuals since then. Many times I have heard a GNU user
eagerly tell me about a manual that he is writing, with which he expects to help the GNU
Project—and then had my hopes dashed, as he proceeded to explain that he had signed a
contract with a publisher that would restrict it so that we cannot use it.

Given that writing good English is a rare skill among programmers, we can ill afford to
lose manuals this way.

Free documentation, like free software, is a matter of freedom, not price. The problem
with these manuals was not that O’Reilly Associates charged a price for printed copies—that
in itself is fine. (The Free Software Foundation sells printed copies of free GNU manuals,
too.) But GNU manuals are available in source code form, while these manuals are available
only on paper. GNU manuals come with permission to copy and modify; the Perl manuals
do not. These restrictions are the problems.

The criterion for a free manual is pretty much the same as for free software: it is a matter
of giving all users certain freedoms. Redistribution (including commercial redistribution)
must be permitted, so that the manual can accompany every copy of the program, on line
or on paper. Permission for modification is crucial too.

As a general rule, I don’t believe that it is essential for people to have permission to
modify all sorts of articles and books. The issues for writings are not necessarily the same
as those for software. For example, I don’t think you or I are obliged to give permission to
modify articles like this one, which describe our actions and our views.

http://gnu.org

Appendix I: Why Free Software Needs Free Documentation 96

But there is a particular reason why the freedom to modify is crucial for documentation
for free software. When people exercise their right to modify the software, and add or change
its features, if they are conscientious they will change the manual too—so they can provide
accurate and usable documentation with the modified program. A manual which forbids
programmers from being conscientious and finishing the job, or more precisely requires
them to write a new manual from scratch if they change the program, does not fill our
community’s needs.

While a blanket prohibition on modification is unacceptable, some kinds of limits on
the method of modification pose no problem. For example, requirements to preserve the
original author’s copyright notice, the distribution terms, or the list of authors, are OK. It
is also no problem to require modified versions to include notice that they were modified,
even to have entire sections that may not be deleted or changed, as long as these sections
deal with nontechnical topics. (Some GNU manuals have them.)

These kinds of restrictions are not a problem because, as a practical matter, they don’t
stop the conscientious programmer from adapting the manual to fit the modified program.
In other words, they don’t block the free software community from making full use of the
manual.

However, it must be possible to modify all the technical content of the manual, and then
distribute the result through all the usual media, through all the usual channels; otherwise,
the restrictions do block the community, the manual is not free, and so we need another
manual.

Unfortunately, it is often hard to find someone to write another manual when a propri-
etary manual exists. The obstacle is that many users think that a proprietary manual is
good enough—so they don’t see the need to write a free manual. They do not see that the
free operating system has a gap that needs filling.

Why do users think that proprietary manuals are good enough? Some have not consid-
ered the issue. I hope this article will do something to change that.

Other users consider proprietary manuals acceptable for the same reason so many people
consider proprietary software acceptable: they judge in purely practical terms, not using
freedom as a criterion. These people are entitled to their opinions, but since those opinions
spring from values which do not include freedom, they are no guide for those of us who do
value freedom.

Please spread the word about this issue. We continue to lose manuals to proprietary
publishing. If we spread the word that proprietary manuals are not sufficient, perhaps the
next person who wants to help GNU by writing documentation will realize, before it is too
late, that he must above all make it free.

We can also encourage commercial publishers to sell free, copylefted manuals instead of
proprietary ones. One way you can help this is to check the distribution terms of a manual
before you buy it, and prefer copylefted manuals to noncopylefted ones.

Note: We maintain a page that lists free books available from other publishers.

Index

Index

csubfile. oo 17
¢

“damage,” erroneous use of term............... 92

“free software,” unambiguous translations of ... 76
“give away software,” misleading use of term... 65

“GNU Manifesto” ..., 64, 72
“hacker,” actual meaning of term (see also
“cracker”)o 73
“intellectual property,” bias and fallacy of term
(see also ownership) 69, 70, 92
“Linux,” erroneous use of term (see also open
SOUICE) .o v vte et e 86
“open source,” values of.................... 86, 87
“open,” misleading use of term................. 79
“piracy,” erroneous use of term......... 74, 92, 93
“theft,” erroneous use of term.................. 92

6

68000-class hardware 65, 73, 77

A

absolute file name deduction................... 19
Adalanguage............o.oiiii i 94
ADR, CCD propertycoovviiiiaiaa.... 35
AFrame, CCD property......................... 36
AT (Artificial Intelligence) Lab, MIT (see also
MIT) . o 65, 70, 73
Air Force, US..... .o i 94
ALBA, CCD Propertyovvuueuuunnnnnnnnnnns 36
Al e 82
AMin, CCD propertyooiii.... 35
Analog Devices.......covviiiiiiiiiiiiii.. 94
ASCIT. o 57
ASec, CCD Propertyc.oueeeuueunnnnnnnnnn 35
audio track static noise............ 22

B

BASH (Bourne Again Shell), GNU 79, 81, 82
Bushnell, Michael (now Thomas) 83

C o 7
CHBIATY « oo 79, 81, 82, 83
CH+, 1anguage ovvei e 84
call to action, contribute to GNU 66, 75
call to action, donate, 66

call to action, future challenges............. 83, 87

97
call to action, promote free documentation..... 96
call to action, talk about freedom.............. 86
call to action, use correct terminology (see also
terminology). i 79
calling ccd2cue......... ool 21
Carnegie Mellon University 82
CATALOG, CCD property........cccvvvvvvveeen... 31
CATALOG, CD fieldcooviiiinnnnnnennnnn.. 24
CATALOG, CUE commandouvuenneunann. 41
CCD property, ADR.............cooiiiiiinnnn. 35
CCD property, AFrame......................... 36
CCD property, ALBAt 36
CCD property, AMin................... 35
CCD property, ASeciiii. 35
CCD property, CATALOG........................ 31
CCD property, CDTextLength.................. 31
CCD property, Control........................ 35
CCD property, DataTracksScrambled.......... 30
CCD property, Entries........................ 32
CCD property, Entry.......................... 32
CCD property, FLAGS, 39
CCD property, INDEX........ccoiiiiinnnnnnnnn. 39
CCD property, ISRC.......... il 38
CCD property, MODE 38
CCD property, PFrame......................... 37
CCD property, PLBA.........., 37
CCD property, PMin........... ...t 36
CCD property, Point ..., 34
CCD property, PreGapMode 33
CCD property, PreGapSubC.................... 33
CCD property, PSec............. 36
CCD property, Session..........ccovvuuueeennn. 34
CCD property, Sessions............cooiuuunnn. 30
CCD property, TocEntries.................... 30
CCD property, TrackNo........................ 35
CCD property, Version........................ 29
CCD property, Zeroc.ovvvviiiennenennnn. 36
CCD section, CDTeXtvvvvvninininnenn 32
CCD section, CloneCD............ccoviiniunnn. 29
CCD section, DiSCcvviiiiniiniiiiinann, 30
CCD section, Entry............. 34
CCD section, Session............covviniunann. 33
CCD section, TRACK, 38
CCD setoffiles ... 17
ccd2cue invocation il 21
ccd2cue Optionsov v 21
CDburningcoovviiieiiiiieennn.. 22
CD field, CATALOGcoviiuiiiiiinn... 24
CD field, FLAGS......... ... i, 26
CD field, ISRC...... ..o 27
CD field, MODE....... ..ot 25
CD-Text file generation........................ 20
cdrdao Programcoiiiiiiiiiiiiiiiia, 1
cdrdao tip .. .vvei 22
CDText, CCD section..........ovviiinennennnn. 32

Index

CDTEXTFILE, CUE commandc...oouun. 42
CDTextLength, CCD property.................. 31
citizen values, convenience v................ 79, 84
citizen values, cooperation 93, 94
citizen values, future challenges to.......... 83, 86
citizen values, Golden Rule 68
citizen values, open source v. free software 86
citizen values, proprietary manuals............. 96
citizen values, proprietary software and 74
CloneCD proprietary program.................. 1
CloneCD, CCD section.......oovvvvvnnnnennnn.. 29
command-line syntax 21
commercial use and development............... 86
Common Lisp.........oooiiiiii i 64
competition, impact on................. 68, 70, 91
CompPress Programi. .. .ooueeee e e nnneeeannnnnn.. 82
Constitution, authors’ natural rights and US... 93
Constitution, US ..., 74
Control, CCD property..........ccovvvvvinnnnn. 35
converting CCD sheet 19
copying documentation 56
copying manual............. ool 56
copyleft, FDL and 56
copyleft, GPL and............................. 78
copyleft, modified versions.............. 76, 77,78
copyright, digital technology and............... 91
copyright, enforcement measures............... 91
CUE command, CATALOG..............ccoviinnn.. 41
CUE command, CDTEXTFILE 42
CUE command, FILEcoviinian.. 46
CUE command, FLAGS iun.. 49
CUE command, INDEX iinion... 52
CUE command, ISRC...........coviiinnnnnnnn.. 50
CUE command, PERFORMER....................... 44
CUE command, POSTGAP.............c.coovunon.. 54
CUE command, PREGAP 51
CUE command, REMoiiininn.n. 55
CUE command, SONGWRITER 45
CUE command, TITLE........................... 43
CUE command, TRACKcoiinion... 48
CUE set offiles. ..o 17
Cygnus SUpportvvvuiiiii i 94

D

DataTracksScrambled, CCD property.......... 30
de Icaza, Miguel............... o L 84
Debian GNU/LINUX .. .oovvviiiiiiiiaenn.. 86
deduction of file names 19
deduction using absolute file names............ 19
Deluxe Distributions, FSF 79
developers, (see also programmers)......... 75, 83
developers, collaboration between.............. 81
developers, funding for............... 94
developers, GNU Project................... 80, 82
developers, incentive for 81
developers, manuals 86
developers, proprietary software................ 77

98
developers, traps for............. 84
development, contributions and donations. 80
development, funding for............ 71,72, 78,79
development, fundraising 76
Disc, CCDsectioncovviirnuniennnnenn.. 30
documentation (see also both FDL and manuals)
................................ 85, 86, 95, 96
documentation copyingo.. 56
documentation license 56
documentation organization..................... 2
DTD . 57
E
ed . 7
education, free software in..................... 67
Emacs, GNU 64, 77, 79, 82
Empire game............... o oo 64
Entries, CCD property..........coovuuuuunnnn. 32
Entry, CCD property...................... ... 32
Entry, CCD section..........covvvivvnnnnnnnn, 34

F

FDL (see also both manuals and documentation)

................................... 56, 63, 78
features of GNU ccd2cue........................ 1
file name deduction algorithm.................. 19
file with .subsuffix............................ 17
FILE, CUE commandouuueueunenennn. 46
FLAGS, CCD property........cooviinninnnnnnnn. 39
FLAGS, CD field............coiiiiiiinn. 26
FLAGS, CUEcommandouvuiireunennnn. 49
format of TOC sheet.............ccoiiiiii.. 1
Fox, Brian......... ..o 79

Free Documentation License (FDL), GNU (see also
FDL, manuals, and documentation) ... 56, 63
Free Software Foundation (FSF) (see also FSF)

....................................... 78, 79
free software, essential difference between open
source and 86
Free University Compiler Kit (VUCK)......... 76
freedom denying software 1
freeware (see also software).................... 71
FSF, and selling GNU manuals 95
FSF, Deluxe Distributions..................... 79
FSF, fundraising............... ...t 68, 79
FSF, how youcan help 68
full piping . ..o 19
G
games, Empireo oL 64
games, Unix compatibility and................. 80
GIF 85
GNOME (GNU Network Object Model
Environment) 82, 84

GNU (see also both software and GNU).... 75, 83

Index

GNU ccd2cue featurescoooiiiii.n. 1
GNU ccd2cue historycooviiia... 1
GNU ccd2cue motivation 1
GNU ccd2cue operationcooeon.. 17
GNU ccd2cueorigin ...l 1
GNU ccd2cue tutorialo oL 19
GNU ccd2cue use.....cooviiiiiii i 17
GNU ccd2cue, omitting all arguments.......... 19
GNU ccd2cue, omitting output option 19
GNU Help Wanted list.............c.ooiun... 66
GNU Project (see also GNU).............. 73, 87
GNU, “GNU Manifesto” 64, 72
GNU, acronymcoevuveiiiiaennennen.. 75
GNU, advertising for 68
GNU, GCC oo 77,79, 94
GNU, GDB ..ot 82
GNU, GNOME (GNU Network Object Model
Environment) 82, 84

GNU, GNU BASH (Bourne Again Shell)... 79, 81,
82
GNU, GNU C compiler (see also GNU, GCC)

.................................. 68, 82, 94
GNU, GNU C Library.................. 79, 81, 82
GNU, GNU compilerccooviiiinn... 94
GNU, GNU Emacs 64, 77,79, 82

GNU, GNU Free Documentation License (FDL)
(see also FDL, manuals, and documentation)

....................................... 56, 63
GNU, GNU ftp distribution site 77
GNU, GNU HUrd .« oo 82, 83
GNU, GNU Makeoovviiiniiiiii ... 82
GNU, GNU manuals...............coovue.... 95
GNU, GNU Privacy Guard (GPG)............. 82
GNU, GNU programs (see also software) 65
GNU, GNU Project................. 64, 73, 87, 95
GNU, GNU Readline...................oooo.e. 81
GNU, GNU software (see also software) ... 64, 65,
81
GNU, GNU software, as distinguished from the
GNU system ..., 76
GNU, GNU tar.....cooviiiiiii e 82
GNU, GNU Task LiStovvvviiiiien 80
GNU, Harmonyocoiiiinninnn... 82, 84
GNU, motivation to write 65
GNU, objections tooooe.. 67, 72
GNU, operating system parts....... 64, 75, 76, 82
GNU, programs developed to cope with specific
threats........ .o 82
GNU, user supportoouviiueennean... 67
Golden Rule...................oo L. 65, 68
GPG (GNU Privacy Guard) 82
GPL. .o 78, 81
GPL, copyleft and........... oL 78
BZID oo 82

99
Harmony 82, 84
High Priority Projects list 66
Hillel (the Elder) ...t 75
history of GNU ccd2cue...........coooiii.... 1
Hopkins, Don..............ooiiiiii i 78
HTML ... 57
Hungry Programmers.......................... 84
Hurd, GNU 82
Hurd, original name of 82
I
INDEX, CCD property...........ccooviinnino. .. 39
INDEX, CUEcommandcouveunuunennnn.. 52
Intel (see also “trusted computing”)........... 94
introduction.............o oL 1
invoking ccd2cue........ ..ol 21
ISRC, CCD propertycovvviiiinninnninnn.. 38
ISRC, CDfield..........ooiiiiiiiiiin. 27
ISRC, CUE commanduvvueuenenennnnns 50

ITS (Incompatible Timesharing System).... 73, 75

Kantian ethics.......... .. .o 68
KDE .o 84
kernel, GNU Hurd, 82
kernel, Linuxooiiiii i 83

L

LaMacchia, David o i i 91
TATEX oo e 57
Lawrence Livermore Lab....................... 76
LessTif (see also Motif).................... 82, 84
Levy, Steven.........oooiiiiiiiiiiiiiiinn. 73
LGPL, GNU C library and 81
libraries (comp.), C................. 79, 81, 82, 83
libraries (comp.), GNU 81
libraries (comp.), GNU C Library (see also GNU)
....................................... 79, 81
license documentation 56
license of manual o 56

licenses (see also Affero, FDL, GPL, LGPL, X11,
BSD, XFree86, and lax permissive licenses)

... 63
Linux kernel oo 83
Lisp, Common............cooiiiiiiiiiiiia... 64
LZW (Lempel-Ziv-Welch) data compression

algorithm (see also patents)........... 82, 85

Index

M

Mach microkernel...................L. 82
manifesto........ ... o i 1
manual copying. ... 56
manual license............... ... o i 56
manual organization................ 2
manuals (see also manuals, FDL, and
documentation) 56, 63, 95, 96
manuals, GNU L. 95
manuals, need for................... ... 85, 86
McGrath, Roland............ L. 79
MIT, AI (Artificial Intelligence) Lab.... 65, 74, 76
MIT, Chaosnetc.coviiiiiieeenninea... 65
MIT, X Window System and 7
MODE, CCD Propertyc.ceuueuuuuuunnnnnnnn. 38
MODE, CD field........c.oiuuiiiniiiiiiinn.. 25
Motif (see also LessTif).................... 84, 86
motivation to write GNU ccd2cue............... 1
Motorolaooviiiiii i 77, 94
MP 85
Multics. oo 75

N

National Science Foundation (NSF)............ 71
nondisclosure agreements 65, 73, 74, 77
nroff 64

(@)

O’Reilly Associates........c..coovviiiiiennn.. 95
omitting all arguments of GNU ccd2cue........ 19
omitting output option of GNU ccd2cue 19
open source, essential difference between free
software and Lo 86
operation of GNU ccd2cue..................... 17
organization of this manual 2
origin of GNU ccd2cue. ...t 1
outputting CD-Text file........................ 20
ownership, and damage to social cohesion...... 74
ownership, and Soviet-style information control
.. 91
ownership, and users’ freedom 74
ownership, arguments for................... 92, 93

P

Pascal ... 76
Pastel, compilerl 76
patents........ ... 69, 85
patents, LZW data compression algorithm 85
PDF 57
PERFORMER, CUE command....................... 44
Perl ... oo 95
PFrame, CCD property.........ccouuuueeennnnnn 37
piping input and output 19
PLBA, CCD propertycoooiiiinnio. .. 37

PMin, CCD pPropertyc.coevuuuuuunnnnnnnn. 36

100
PNG . 57
Point, CCD property.......................... 34
POSTGAP, CUE commandcooouninn.. 54
PREGAP, CUE commandcovuvueununnnn. 51
PreGapMode, CCD property 33
PreGapSubC, CCD property 33
prep.ai.mit.edu............ol 7
Privacy Guard (GPG), GNU................... 82
program cdrdaottt 1
program CloneCD (proprietary)................ 1

programmers, and creativity and entitlement .. 68,
70, 92, 93

programmers, incentive for 65, 70, 71

programmers, income for.... 68, 69, 71, 72, 77, 79,
94

programmers, psychosocial harm to............ 65
proprietary software oo 1
proprietary software, paradox of permissive license

... 7
PSec, CCD propertyc.ceovvuuurrunnnnnnnnn. 36

public domain software (see also software).. 65, 77

Q

Qb 84, 86

R

Raymond, Eric ...t 81
Readline, GNU (see also libraries (comp.), GNU)
... 81
Red Hat Linux (see also “Linux,” erroneous use of
BEIIN) Lo 86
Red Hat Software.............................. 84
REM, CUE commandcovirurnennennann. 55

S

schools, free software in........................ 67
selling, free software........................ 76, 79
Session, CCD property........................ 34
Session, CCD section..........ovvvinvnnunnn. 33
Sessions, CCD property..........coovuuuunnnn. 30
set of filesof CCD ... 17
set of filesof CUEo .. 17
SGML. 57
simple USe Case 19
Software Publishers Association (SPA)......... 91
software, overstretched analogy with material
objects........ .. i 92, 93
software, software tax....................o..... 71
SONGWRITER, CUE command 45
Soviet Unioncooviii .. 91
Stallman, Richard 94
static noise in audio tracks................. ... 22
stdin to stdout 19
sub-channel information 17
swap sample bytes..............o i 22

Index

terminology, importance of using correct 92
TEX 64, 76
Texas Instruments............................. 94
TITLE, CUE commandcovveunenneen... 43
TOC sheet format ...t 1
TocEntries, CCD property 30
Torvalds, Linus................oo i, 83
TRACK, CCD section...........covvvivninenn... 38
TRACK, CUE commandccvuvneneen... 48
TrackNo, CCD property..........ccovvuuuunnnnn. 35
trademarks and/or trademark law 69
traps, “open source”iiiiiiiaaa 79
traps, nonfree libraries................... 84

U

universities, releasing free software at 76
University of Utah........ 82
Unix compatibility, announcement of........... 64
Unix compatibility, ease of contribution because of

... 66
Unix compatibility, games and 80
Unix compatibility, GNU Project development and

... 82
Unix compatibility, Linux kernel and........... 83
Unix compatibility, reason for.............. 65, 75
user-subjugating software....................... 1

users, arguments used to justify control over... 92,
93

101
users, benefit to.......... ... oL 66, 72
users, premise of author supremacy (see also
ownership) ...t 92, 93
users, technical support for GNU 67
using GNU ccd2cue...........o 17
UUCP. e 65
\Va
VA X 73
Version, CCD property.........ccoovuuvunnnnn. 29
2 PP 7
VS 75
Winston, Patrickl 76
X
X To0IKit. ottt 84
X Window System 76, 77, 78
XOF i 57
XFree86 . ..o ovvii 83
XML 57
Y
FACC .« e ve ettt s 64
Yoda . ..o 87

	Preface
	Overview
	Description
	Distribution
	Getting a copy
	Contact
	Bug reporting
	Contributing
	Donating
	Hacking

	Release
	Announcement
	News
	To do
	Authors
	Thanks
	Donors

	Operation
	Tutorial
	Invocation
	Burning
	Compact Disc fields
	CATALOG
	MODE
	FLAGS
	ISRC

	CCD sheet format
	CloneCD
	Version

	Disc
	TocEntries
	Sessions
	DataTracksScrambled
	CDTextLength
	CATALOG

	CDText
	Entries
	Entry

	Session
	PreGapMode
	PreGapSubC

	Entry
	Session
	Point
	ADR
	Control
	TrackNo
	AMin
	ASec
	AFrame
	ALBA
	Zero
	PMin
	PSec
	PFrame
	PLBA

	TRACK
	MODE
	ISRC
	INDEX
	FLAGS

	CUE sheet format
	CATALOG
	CDTEXTFILE
	TITLE
	PERFORMER
	SONGWRITER
	FILE
	TRACK
	FLAGS
	ISRC
	PREGAP
	INDEX
	POSTGAP
	REM

	GNU Free Documentation License
	The GNU Manifesto
	The GNU Project
	Linux and the GNU system
	Why Software Should Not Have Owners
	Why Free Software Needs Free Documentation
	Index

