NMIN-12A2568B

Single Board Computer
User Manual V. 1

Table of Contents

1.0 OVeIVIBW . .ottt e 2
1.1 Noted microcontroller features:. 2
1.2 Included Files 3

2.0 Getting Started 3

3.0 Memory Mapt 5

4.0 ProgrammingtheBoard., 5
4.1 BDM Connector and ParallelPort. 6
4.2 S-Records and the Serial Loader 6

4.2.1 Downloading S-RECOMAS . .« « v v v v v it e e e e 7
4.3 On-board Development System 7
4.3.1 Hooking INto AUtODOOL v v v ot et e e e e e 7
.32 TGS . v vttt e e e 8
4.3.3 QUICK ENIIY . vttt it et e et et e e e 8
4.3.4 BOOLENIIY © ot vttt e e et e e e 8
435 AUIOVECIOT & v v vttt e e et et ettt et e e e e 8

5.0 I/O Connectionsand Jumpers., 8

6.0 Board Layout. 10

7.0 Schematic e 11

8.0 EXamples. 12
8.1 Playingwiththe LEDs. 12
8.2 Reading fromthe A/Dport 12
8.3 Addinga Sensor i 13
8.4 Implementing an Interrupt. 14

8.4.1 Real Time Interrupt Examplet 15
8.4.2 Interrupts Calling Forth o oo vt it i et e e e e 17
8.5 Flash Programming. 17

User ManuaV.1 Aug 18, 2003

1.0 Overview

The NMIN-12A256B single board computer provides you with plug and play access to a powerful
microcontroller. The computer board provides power regulation, RS232 and RS422 serial support and an
LCD connector. The microcontroller includes the following built in capabilities:

i BDM A/D timers
ports
Flash
MC9S12A256
Microcontroller [—— .
R interrupts
RAM SPI scl 2C

Figure 1 P eripheral interfaces onthe = MC9S12A256 micr ocontr oller.

1.1 Noted micr ocontr oller f eatures:

16-bit HCS12 CPU

Multiplexed External Bus Interface for memory expansion

Interrupt control for all onboard peripherals including priority manipulations
Breakpoints for stepping through code without needing an emulator

* Single-wire BDM (Background Debug Mode) for downloading and debugging
low current oscillator, PLL, COP watchdog, real time interrupt, clock monitor
8-bit and 4-bit ports with interrupt functionality

Programmable rising or falling edge triggers

256K Flash EEPROM

* 4K byte EEPROM

12K byte RAM

 8-channel 10-bit 5V Analog-to-Digital Converters

* 16-bit counter/timer with 8 programmable input capture or output compare channels
» Two 8-bit or one 16-bit pulse accumulators

* 8 PWM channels

» Two asynchronous Serial Communications Interfaces (SCI) up to 115K baud
» Three Synchronous Serial Peripheral Interface (SPI)

« Inter-IC Bus (IIC) compatible with 12C Bus standard

* 1/O lines with 5V input and drive capability

» Operation at up to 50MHz for core and up to 25MHz bus speed for peripherals
* Single-Chip and Expanded Modes

* Low power modes

User ManuaV.1 Aug 18, 2003 2

The computer board’s power consumption is about 60 mA.
1.2 Included Files

The following files are included and are available from our website. The MaxForth files are only available
if you have licensed them:

* asl2 - Mac OS X version of the Motorola freeware assembler
» asl2.exe - PC version of the Motorola freeware assembler
as12.htm - documentation for the assembler
BootEVB-16.S19 - Serial Boot loader, srecord file
DB12DP256-16.S19 - Dbug12 monitor, srecord file

» HCS12Manuals.zip - contains a copy of the Motorola manuals for the microcontroller from their
website. Note: these are too big to put on a Floppy so they are available at:
http://www.ee.ualberta.ca/~rchapman/MFwebsite/HCS12/HCS12Manuals.zip

NMIN-12A256Bv1.pdf - this manual in PDF format

» Out.S19 - output of converted srecord

rtiled.Ist - output of assembled source code

rtiled.s - source code example of an interrupt and power saving instruction WAI
rtiled.s19 - srecord output from assembler

SRecCvt (OSX) - srecord conversion utility for Mac OS X

» SRecCuvt.exe - srecord conversion utility for PCs

SRecCvtRG.pdf - srecord conversion utility documentation

Licensed files:

« fuzzytest.f - an example file for testing the fuzzy logic support

» mf51fhcs12.map - contains a map of all the bits and pieces in MaxForth for the current release but
may change in future releases. Use with caution.

* MF51FHCS12.S19 - a copy of the MaxForth kernel in Motorola S-record form that can be
downloaded when experimenting with flash

* SCRUB.F - a utility for clearing vectors from EEPROM and flash

* SHT11.F - an example of interfacing to a temperature and humidity sensor

* TESTA24.F - an example to test ATO4

NOTE: Throughout the manual, Ox is used to precede hex addresses in the text for clarity but it

is not used in the MaxForth examples because the numeric base is changed by typing HEX or
DECIMAL.

2.0 Getting Star ted

Computer
Board

MMC211421142114 (Sika) Fiash Programmer ’
Power

Serial Cable

Figure 2 Computer hooked up to boar d with a serial cab le.

You will interact with your board by connecting it to a PC using a serial cable and running a terminal program
such as HyperTerminal or an equivalent setup. You need to set it to 9600 BAUD, one stop bit, no parity and 8

User ManuaV.1 Aug 18, 2003 3

data bits. Connect an RS232 serial cable between your PC's COM port and the serial port on the board. To
power up the board, you need a 7 to 12 volt plug-in transformer plugged into the power jack, PJ1 (AC, DC
both polarities accepted).

Alternatively, you could use Linux or a Mac. On the Mac, ZTerm is a powerful terminal program available as
shareware from the Internet.

When everything is ready and you plug in the power, you should receive a prompt in the terminal program. If
you have the J4 jumpers set to the serial loader position:

D-Bug12 Bootloader v1.0.0

a) Erase Flash
b) Program Flash
¢) Set Baud Rate

d) Erase EEPROM
?

or if the J4 jumpers are set to the application position and the D-Bug12 monitor application is loaded:

D-Bug12 4.0.0b18
Copyright 1996 - 2002 Motorola Semiconductor
For Commands type "Help"

>
or if the J4 jumpers are set to the application position and MaxForth is loaded:

Max-FORTH V5.1 F (license agreement is required)

And when you depress the ENTER key, it should respond with

type ? for help

or

or
OK (Max-FORTH prompt)

When you see that message, it means the communication is established and you are ready to interact with
the board and microcontroller. By pressing the reset button, RS1, you should get the same boot prompt as
when you powered it up. Pressing the reset button will leave the contents of most of the RAM intact which
might be useful for debugging purposes, whereas, if you power cycle the board, then all RAM contents will be
lost.

User ManuaV.1 Aug 18, 2003 4

3.0 Memory Map

The memory map consists of RAM, ROM and registers. The interrupt vectors exist in protected flash space
along with the serial loader. Since they can’t be changed, a secondary vector table exists at OXEF80. There
is a one to one correspondence with the primary vector table. Since these locations can only be written once,
the entire 512 bytes must be erased to change a vector. For prototyping, the vector can be set once to point
into EEPROM which can be erased more easily.

When only the serial loader is loaded, it relocates RAM to the top of memory and copies itself to it to run only
out of RAM. This allows the changing of page F through the flash window at 0x8000. The MaxForth system
takes up space in page E and page F of flash leaving pages O to page D available for use. None of the
EEPROM is used so it is all available for use for user applications.

Serial Loader MaxForth
OxFFFF OxFFFF rimary vectors
RAM prToty OXFF80
serial loader
0xD000 Flash secondary vectors 0xF000
Flash Page F y OXEF80
Page F system
0xCO000 0xCO000
Flash Flash
) . free
window window <pace
pages O-F pages 0-D P
0x8000 0x8000
system
Flash Flash
page E page E free
0x4000 0x4000 space
RAM system
0x1000 0x1000 freey
EEPROM EEPROM <pace
0X0400 ——o 0X0400 —— P
0x0000 registers 0x0000 registers

Figure 3 After booting, the RAM memor y map either belongs to the serial loader or

the MaxFor th application.

4.0 Programming the Boar d

When the board is reset, it executes the program pointed to by the vector at location OXFFFE. In a loaded
board this will be the boot loader which will either start the serial loader or MaxForth. When MaxForth starts,
it checks to see if there is an autostart application present and runs it or else it just runs MaxForth.

There are several ways in which to program the board:

1. download an s-record through the BDM connector and the PC parallel port using a programmer

User ManuaV.1 Aug 18, 2003 5

such as P&E Micro’s BDM programmer.

2. download s-records using the embedded serial loader and a serial port with HyperTerminal,
NMITerm or equivalent

3. interact directly with the microcontroller and download source code to the on-board
development system, MaxForth, through a serial port and HyperTerminal

When downloading text files to the board, using the text download protocol, make sure the delay per line is at
least 100 milliseconds. You can risk having lines missed if you go to fast, but with some setups, it is possible
to use smaller line delays which has a nice effect on a long download. Your mileage will vary.

4.1 BDM Connector and P arallel P ort

Using the HCS12 cable from P&E Micro or equivalent, plug it into the parallel port of your computer
through a parallel port cable and the BDM port on the computer board making sure to orientate the
triangle on the pin header to pin 1 on the board which is marked by a square solder pad on the bottom of
the board. Apply power to the board. When disconnecting from the board make sure it goes through a
power cycle before you try out the downloaded software since a reset is not enough to regain control of
the microcontroller after interacting with the BDM port.

Check the help screens for more details.

4.2 S-Records and the Serial Loader

Using the serial loader, you can download s-records that have been created by a C compiler or
Assembler program that you have acquired separately, to flash memory to be run. The help menu,
invoked by typing a ?, is:

??

a) Erase Flash

b) Program Flash

c) Set Baud Rate

d) Erase EEPROM

?

The serial loader works by running out of RAM. At bootup, the boot program in flash checks to see if
there is an application by checking for a vector at OXEFFE. If there isn't, then it copies the serial loader
program from flash to RAM and then runs the program. The serial loader program must run out of RAM
to be able to program flash memory.

If you download an application, reboot and nothing happens, you can recover to the serial loader by

setting the jumpers on the J4 connector with a jumper or equivalent and pressing the reset button. You
will be taken back to the serial loader where you can erase your errant application and try again.

Hee Heo
@

J 4 Application J 4 Serial Loader

Figure 4 Jumper positions on the J4 connector f or booting into the serial loader or
an application. If there are no jumper s, then the default will be the Application. This
is impor tant if y ou intend to use ¢ hannel 0 and 1 of the A/D input since lea ving
jumper s in the Application position will pre vent those inputs fr om being used.

User ManuaV.1 Aug 18, 2003 6

4.2.1 Downloading S-Recor ds

The serial loader uses a simple text transfer protocol to transfer data from the host computer to the
board. Depending on your host program and its defaults, the setting may be not right. Try it first and if it
doesn’t work, modify some of the settings.

To install a fresh copy of MaxForth and erase all the flash, do the following:

1. getto the serial loader from Forth by FLASH or by resetting with the J4 connector set like in
Figure 4.

2. pressa

3. wait till done, then press b

4. download the MaxForth s-record with the text protocol, by cutting and pasting or dragging and
dropping if supported

5. wait till done, then press reset with the J4 jumpers removed or in the Application position

Quick Tip ! For an extremely fast download, you could try setting the baud rate to 115200, set
line delay to zero and flow control to X-ON/X-OFF. Using this setup, you can download the
entire kernel in seconds when needed. You could also use this method to download s-records
to flash for code to be autostarted or run from MaxForth.

4.3 On-boar d Development System

Taking advantage of the interactive nature of the board’s development system, MaxForth, you can
interact directly with the microcontroller’s peripherals by fetching and storing values to the memory
mapped configuration registers for the peripheral devices. This is an effective way of understanding the
peripheral documentation, verifying correct initialization sequences, running some tests on different
configurations and debugging driver code as you develop it. By typing in new definitions, you can add
new macros to the dictionary for interactive use or for creating an automated program. Some examples
are given later on.

4.3.1 Hooking Into A utoboot

You can autoboot an application by leaving a vector to it at location OXEFFE. The startup boot loader will
detect this vector and then jump to the location that the vector is pointing to. When MaxForth is installed,
it has a vector at that location. To get to the serial loader from MaxForth, type in FLASH and hit enter. To
get back to the serial loader from an application, jump to location 0XFO2E in memory. The application
area can be erased using the serial loader without the boot loader being removed from memory.

MaxForth occupies the space from 0x4000-0x7FFF and OxC000-0xC911. At location OXEFFE is the
start vector for MaxForth which is what the bootloader looks for when booting. MaxForth can be
replaced by erasing it and writing a new application in its place, making sure that the startup vector for
the new application is at OXEFFE.

If you want to hook into the MaxForth autoboot system, then there are several places where you can do
this:

* quick entry - allow setting of COP and other write-once registers on the micro.
* boot entry - MaxForth has been setup and can be augmented
* auto vector - last possible chance before Forth is started up

User ManuaV.1 Aug 18, 2003 7

Table 1: Noted Memory L ocations for Startup Hooks

Name Value Notes
quick_tag OXOFEC storeatag !
quick_vector OXOFE8 CFA of word to call
boot _tag OXOFEO storeatag 2
boot_vector OxOFE4 CFA of word to call
boot_start 0x0400 lower limit in flash for check-
ing for an auto vector tag 2ona
1K boundary
boot_end 0xF000 upper limit of flash for auto
vectortag 2 checking
1.A55A
2. A44A for first autostart aA55A for continuous last autostart.

4.3.2 Tags

The patterns 0xA44A and OxA55A are referred to as tags and are used during the autoboot process to
find vectors to be executed during the bootup process. Only the lowest A44A and A55A tag will be
executed with A44A going first. This applies to the boot entry and autovectors. The quick entry, if used,
only uses A55A.

4.3.3 Quick Entry

Quick entry lets you get in on the boot process and set COP or any other write once registers before
MaxForth starts up. The tag contains a bit value that is checked first and if present, then the CFA stored
at the vector preceding it is executed.

HEX A55A FECEE! ' COP-RUN CFA FE8 EE! (hook into quick entry vector)

4.3.4 Boot Entr y

Boot entry lets you take over or execute something after MaxForth has been initialized. This is a good
time to modify the dictionary linkage to add extra words from flash. The vector follows the tag.

HEX A44A FEOEE! ' STARTUP CFA FE4 EE! (hook into boot-start vector)
4.3.5 Auto Vector
As well, at any 1K boundary in RAM, EEPROM or flash you can lay down a tag followed by a vector.

HEX 1000 AUTOSTART STARTUP (hook into auto-start vector)

5.0 I/O Connections and J umpers
The jumpers and I/O headers from the board are as follows:

« J1is the primary serial port, SCO, that is used for the serial bootloader, dbug12 monitor and MaxForth
« J2 is the second serial port, SCI1.

» J3is the jumper for LCD contrast.

» J4 is for selecting boot to Serial Loader or application such as MaxForth

+ J5 is the analog input header

« J6 is the I/O and other peripheral interface signals

« J7 is the jumpers for future memory expansion

User ManuaV.1 Aug 18, 2003

» J8 is the LCD connector, or SPI, or Timers shared 1/Os

» J9 is the BDM OUT that supports motorola DBUG12 POD mode.
» J10 is the BDM in interface.

» DB2 has the same pinout as J6 for Dsub 44 pin. The connector is not installed.
Additionally:

* the red LED is controlled by port M bit0, PMO
« the green LED is controlled by port M bitl, PM1

» Resistor POT, R4 provides the voltage to the LCD that is used to adjust the LCD contrast
* RS1, reset switch

User ManuaV.1 Aug 18, 2003

6.0 Board Layout

BCNO1 °

Jioo/ole@
10000
RS1 @ N X XX
@ o000
‘m e l Onmmmm C7 ©
o0 ° o'o
o e & 0 0
mo o Slee ®
0o < e : eimee " 9 = | (@
FY) C. ...(ﬁ.‘ LM2937
J8 RISKE ®
lO[:jﬂfy
oo IL1HRI2 TA
oo WEe "
(X AN
oo 2 .
w e Cl
o0 - 0|
o0 =0=
ooms IS
RN o0
@ 4 i @
) O O N M ur me

J6

Q.QQQQQQQQQ: Q.Q..Q.Q!
Q..Q‘QQQQQQQQQ 000000O0OCGOO

DB2 WWW.NEWMICROS.COM

User ManuaV.1 Aug 18, 2003

b 5 4 3 2 1
+5v
Ja R4
10K
u2
RS
2 5 5] / \
1 4 2.2€
¢z, 1 e %Q 8 L
+ + \
I
_CmH 1uF 3 5 1uF H_c_” At —~ A +5v
— = +
- S0 8 10 O - 8
500 7 9 RDO
O O
sn_ 13 RXD1
Ve
so1_14 01 ° 1o o 00 R13 R12
PM3/RW/SSO PMA4/E1/MOSIO) 300 300
° o o1
MAX232CWE PIODO | | | PTIDI
2
N oo P12D2 |, | PT3D3 PMO 1 \KJ
PM3 P16 Papa | | Pr5DS N
PM2 P12 [7 |
PSO/RXDO P13 8 , P66 1o ol P17D7 PV 3N 4 A
PS1/TXDO P14 |11 | NG PMS/E2/SCKO , K
PS2/RXD1 PT5[12 | 1 *—° g Y
< PS3/TXD1 pT6[13 /| SHARED IO/LCD/SPI HCOS D2
PADOD P17[14)
VRH s < we] PADOT Tov
75 |PADO2
o ol2 71 |PADO3 <mmw,m_n_ & 9 4 N N
PADOO 3|, |4 PADOI Lyl pmoA——— |
s
PADO2 5| |6 PADO3 PADOS))
PADO4 7 8 PADOS PADO7 o4 T I
o o BKGD PAD[4y /|
PADOS 9| |10 PADO? ReseT OO PAlfa2 g
L EINGY PA2143 g
AD 6 |PES PA3|44 0@
2xc L0 pasfas A
ey PAS 4 PO 46[5 l45 PRI
(9] PAG [47) pp2 aalo o143 ppy
+5v +5v I R7 c <C s y P4 42| o] 41 PP5
S R2 47K 047 N e) GND anlo o] 39 PPy
PBI[17) = — PAD_ 3810 o] 37 PAI
RS AOK PB2 PA2 36 35 PA3
RS R4 W — He 1o 0 o
10K PB3[19) Py PAL_ 34| o33 PAS
10K 10K v o /| N = PA6 32| ol 31 A
s 1 31 [voore O\ pes[21 A paa 4 PO 30| o] 29 sl
= 0047 77| vODX PB6| 22 B o P2 28| o] 27 Ps3
+5V +5V 0o [> VDDR C PB7[23 PS1 ° PMO 2615 o125 PML
PADOO oo PADOI O Ot VDDA PEO [40) o pM2 24[0 ol 23 pM3
VRL 1 VRH M PE1[30 / PA7 ° pMa 2215 o121 pws
9 0 O 1 |VRL PE2[38) PAG o pl6 20| ol PJ
10K 1 2 |VSSA PE3[37 A PA5 10]° PEQ 18|, o PE1
9 |VDD2 PEA[27 A [VERTIN PE2 1615 of PE3
\7r 9 _|vDD1 PE7[24 /| PAG NM WM 145 & “Mw
6 | TEST PMS[70 A 1
cig o@r 5 vssR 25L|\L:6 PBO_ 10 w m PB1
 PAl ulg
3] VssPLL PP1[3) PB2_ 8|0 o PB3
. Jio 0.1 Jﬁc; 0vss1 22— PAD 1510 PB4 6 Lo o PBS
3 o D1 0 |vss2 PP3| J —) PB4 [0 o PB7
° L1 6] VSsX PP4[80 y 45V 2 5 o
[N 34| EXTAL Pps[79
o+— 35 | XTAL PP7|78 /A 16
N4148
BDM IN =
L2 C._
00—+ 1
10uH
L2 22PF
7 > oo c12
22F
© +5V v
o i
BDM OUT 16Mhz
N = 1 5 5 9N_.8
10K
HCos HCos
RESET = =
+5V
VR1 bl BYPASS CAPACITORS
LM2937 mﬁ 5V VDDA VDDPLL
+ +5V +5V
47K IN mzooS
cA R10
13 ci9| cis c1s cia cs
W o121 %00 oL %om
0.1uF H 4.7k O.1uF =
CB== 0.1uF Lu 0.1uF 100uF TITLE
M = = = = sormovals one NMIN-12A256B
1 1 L vss VssA VSS VSSPLL BN 051303
1 3 R v
B T e 052103 | D BcNo1 02
i
Q ~ - " n n scae [| SHEET
4 < < 2 }

8.0 Examples

These examples may be typed in interactively or cut and pasted into the terminal window if you are using
MaxForth. Alternatively, they can be translated to the language that you are using to program the
microcontroller with.

8.1 Playing with the LEDs

There is a green and red LED attached to port M bits 1 and 0 respectively. You can easily turn these on
and off from MaxForth using the following code. Note that constants are defined for the registers for
convenience:

HEX
250 CONSTANT PTM (define port M address
252 CONSTANT DDRM (define data direction register for port m

1 DDRM C! ('set bit 0 as an output and all others as inputs
1PTMC! (turn on the red led connected to bit 0

2 DDRM C! (sethit 1 as an output and all others as inputs
2PTMC! (turn on the green led connected to bit 1

3 DDRM C! ('set bits 0 and 1 as outputs; all others as inputs
3PTMCI! (turn on both leds

8.2 Reading fr om the A/D por t

For this example we will consider the simplest way to get an A/D reading:

)
get A/D

reading

v

initialize
A/D

v

request
channel 0

v
‘_ not yet
v

display
reading

This involves: setting up the A/D registers so it is ready to go; requesting a read of a channel; waiting for
that channel to complete converting; and finally, reading and displaying the value. Each of these boxes
on the diagram will become a word except for Done.

HEX

(A/D peripheral registers

82 CONSTANT ATDOCTL2
83 CONSTANT ATDOCTL3

User ManuaV.1 Aug 18, 2003 12

84 CONSTANT ATDOCTL4
85 CONSTANT ATDOCTLS
86 CONSTANT ATDOSTAT
90 CONSTANT ATDODRO

(INIT-A/D (--)
7 ATDOCTL4 C! (10 hit resolution; prescaler greater than 6
40 ATDOCTL3 C! (8 conversions per sequence
CO ATDOCTL2 C!'; (power up, fast flag clear and interrupts off

:REQUESTO (--)
80 ATDOCTLS5 CI!'; (8 conversions, right unsigned, one-shot, channel 0

: CHANNELO? (--f) ATDOSTAT C@ 80 AND ;
: DISPLAY-READING (--) ATDODRO @ . ;

:GETAD INIT-A/D REQUESTO BEGIN CHANNELO? UNTIL DISPLAY-READING ;

8.3 Adding a Sensor

The SHT11 from Sensirion is a smart sensor combining temperature and relative humidity sensors with
an onboard conversion and a two wire communication facility all in a very tiny package. In the following
example it is hooked up to PORT T of the microprocessor. One line is used to provide clock and the
other line is used as a bidirectional line for communication.

(SHT11 interface for MaxForth Rob Chapman Aug 13, 03

(The SHT11 sensor chip provides 14 bit resolution on temperature and
(12 bit resolution on relative humidity. The four pins connect to

(+5, GND, PT1 for clock and PT3 for data.

(PT1 s the serial clock; PT3 is the data line and is bidirectional so

(care must be taken not to drive it high, just low so there will be no
(conflicts. It can be driven low but is pulled high by pull up resistor.

HEX

(Registers

242 CONSTANT DDRT (data direction register for port T
240 CONSTANT PTT (port t outputs

244 CONSTANT PERT (port t enable for pull ups

(Debugging

:PT7TRIG (pulse pt7 low for debugging with scope
DDRT C@ 80 OR DUP DDRT C! (enable PT5 output
PTT C@ AND 7F AND DUP PTT C! (setitlow
80ORPTT C!; (setithigh

(Clocks

K1 2PTTC@ ORPTTC!;

KO 2NOTPTTC@ ANDPTT C!;
:KO1 KOK1;

:K10 K1KO;

:K10S 0 DO K10 LOOP;

(Data

User ManuaV.1 Aug 18, 2003 13

http://www.sensirion.com/en/sensors/humidity/sensors_devices/sensorSHT11.htm

:DOADDRTC! PTTC@ 8 NOT AND PTT C!;
:D12DDRTC!;

(Protocol: 8 bit command and 16 bit data
:SHT-CMD (n-) D1KO 9K10S K1 DOKO1 D1 KO DO 3 K10S
10 50 DO KO 2DUP AND IF D1 ELSE DO THEN K1 2/ LOOP 2DROP
D1 KO01KO;
: DAT-READY? (--f) PTTC@ 8 AND O=;
:GET-8 (n--n") 80 DO KO 2* PTTC@ 8 AND IF 1 OR THEN K1 LOOP;
: GET-DAT (--n) 0GET-8 KODOK10D1 GET-8 KO01KO;

(Exchanges
:RST 1E SHT-CMD;

(Initial setup

(INIT-SHT
2PLACES (for printout format
2DDRTC! (clock is output always
FF PERT C!; (pull up enabled

DECIMAL

(Tests for temperature in Celsius and relative humidity (RH)

(Values obtained from chip are in a raw format and need to be massaged
(Formula for temperature: -40 + .01*rawTE

(Formula for linear RH: -4 + rawRH*(.0405 + -2.8*10-6 * rawRH)

(Formula for true RH: linRH + (TE-25)(.01 + .00008*rawRH)

: TEMP 3 SHT-CMD BEGIN DAT-READY? UNTIL GET-DAT
S>F .01E F*40E F-F. ;

:RELH 5 SHT-CMD BEGIN DAT-READY? UNTIL GET-DAT
S>F FDUP -2.8E-6 F* .0405E F+ FOVER F* 4E F- (linear RH
FSWAP (linear rh\raw rh
3 SHT-CMD BEGIN DAT-READY? UNTIL GET-DAT
S>F .01E F* 40E F- (temperature for compensation
(linear rh\raw rh \ temp
25E F- FSWAP .00008E F*.01E F+ F* F+ (RHtrue) F.;

To get results from the sensor chip you must first initialize the port and then get data. For example if we
get data and then breath on the chip to increase humidity and humidity we can get the following results:

INIT-SHT OK

TEMP 26.36C OK

RELH 43.94% OK

(breathe on sensors for 5 seconds
TEMP 27.75C OK

RELH 80.76% OK

8.4 Implementing an Interrupt

The HCS12 contains a lot of parts to get right (usually all of them) before you can make an interrupt
(more generally referred to as an exception) happen. You must set up the CPU, the interrupt controller
and an interrupt source such as a peripheral. Setting up the CPU involves modifying CPU control
register while setting up the interrupt controller and peripheral involves modifying their memory mapped
control registers.

User ManuaV.1 Aug 18, 2003 14

The interrupt machinery on the HCS12 supports a wide range of operational capabilities. You can just
use one interrupt or support a complex system of prioritized interrupts from all peripherals. Interrupts
can even be forced to happen to provide for a way of testing or syncing.

To set up an interrupt you'd f ollow these steps:

1. write an interrupt service routine which will turn off the source of the interrupt when invoked by
the interrupt. This routine must end with the assembly instruction rti

2. put the address of this routine in the right location in the secondary vector table
3. enable the peripheral
4. enable interrupts

8.4.1 Real Time Interrupt Example

The real time interrupt is a simple interrupt to enable and service so it is a good one to start with. This
following example is written in assembler and be compiled on a computer and downloaded with the serial
loader:

; RTlinterrupt vector Rob Chapman Jun 20, 2003

; startup sets up port M and initializes the real time interrupt (RTI), turns
; on the green LED and then does nothing

; the RTl just changes the red LED every 64ms

; Registers Used

CRGFLG equ $37 ; RTlinterrupt flag
RTICTL equ $3B ; RTI control register
CRGINT equ $38 ; RTlinterrupt control
DDRM equ $252 ; port M data direction register
PTM equ $250 ; port M outputs: O is red, 1 is green
; Startup code
org $C000
startup:
Ids #$4000 ; establish a stack
movb #$03,DDRM ; drive port M bits 0 and 1
movb #$02,PTM ; turn off red LED and turn on green LED

movb #$7F,RTICTL : 64ms timer
movb #$80,CRGINT ; enable RTI interrupts

cli ; enable interrupts
lowpower:

wai ; go to low power mode

bra lowpower ; save energy

; Service interrupt routine for real time interrupt

sir_rti:
movb #$80,CRGFLG ; reset RTI interrupt
ldaa PTM
eora #01
staa PTM ; toggle red LED
rti ; return from interrupt

; secondary vector table additions
;i tie in

org $EFFO ; RTI vector

dw sir_rti

; startup tie in

User ManuaV.1 Aug 18, 2003 15

org $EFFE ; application vector
dw startup

To compile this program, you can use the freeware assembler as12 on a PC or a Mac. The assemblers
are with the included files. Once the program is compiled, you must then convert the output srecord with
another freeware program sreccvt . This gets it into the right download format. Then you download the
file and once it is done, press the reset button. You should see the green LED light and the red LED flash
rapidly.

NOTE: If you are using the D-Bug12 monitor application, then you will not have to convert the
s-record format but you should org to a different address.

On a PC you can assemble and convert from a DOS command prompt and then download with a
terminal program. You can either put the as12 and sreccvt programs right in your working directory or
put them elsewhere and then add the path to your autoexec.bat file. Once you've established the proper
sequence, you can automate it by putting it into a batch file.

On a Mac using OS X, you assemble and convert using a unix terminal window. You can either keep the
programs local or put them into a common directory. For instance you could do the following:

sudo cp as12 /usr/bin/
Password:
rehash

This puts the as12 program into your /ust/bin directory so that you can call it from anywhere. The
same procedure can be done for sreccvt . The rehash command just makes the new command
available right away.

To assemble the program:

asl12 rtiled.s > rtiled.Ist

This will produce two outputs. The .Ist file is a listing of the assembled program while the .s19 file is the
output srecord. The srecord file must then be converted to the correct format for downloading:

sreccvt -m 00000 fffff 32 -Ip rtiled.s19
SRecCvtv1.0.11

Converting S-Record File: rtiled.s19
S-Record File Conversion Complete

If you want to see the output, you can view it from the command line:

more Out.S19
S2240FC000CF4000180B030252180B020250180B7F003B180B80003810EF3E20FD180B800057
S2240FC02037B6025088017A02500BFFG3
S2240FEFEOFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCO1CFFFFFFFFFFFFFFFFFFFFFFFFC0007D
S9030000FC

Download the program by first selecting a to erase the flash and then b followed by the above srecord:

D-Bug12 Bootloader v1.0.0

a) Erase Flash

b) Program Flash
) Set Baud Rate
d) Erase EEPROM

User ManuaV.1 Aug 18, 2003 16

?a

a) Erase Flash

b) Program Flash
¢) Set Baud Rate
d) Erase EEPROM
?b

*kk

Reset the board.

If all goes well, the green LED should be on and the red LED should be blinking. Make sure you change
the J4 jumpers for the application to run.

8.4.2 Interrupts Calling For th

As for calling a Forth word from an interrupt, this is doomed to fail at some point since not all Forth words
including the virtual machine are interruptible without some extra context savings. This all adds overhead
and goes against keeping interrupts as short as possible. If you keep your interrupts simple and in
assembler, then they have a greater chance of working and meeting system time constraints.

8.5 Flash Programming

There is 256K of flash memory available on chip but since the microcontroller has only 16 bits of address
space, or 64K, you must access the flash through a programming window.

Flash memory may only be written when it is in the region 0x8000-OxBFFF which is referred to as the
program memory page window. This region is a 16K window which can be used to access all of the
256K of flash memory. To change which 16K region of memory is accessed there, you need only change
the PPAGE (0x30) register. Since there is only 256K of flash but the register is 8 bits, the memory
windows will be unique for a small range only and then wrap after that. For example, putting 0 into
PPAGE (HEX 0 30 C!) will access the lowest 16K of the 256K flash memory, but so will 16, 32, 48, etc. To
access the top page of flash, which also appears in the memory map from 0xC000 to OxFFFF, you would
store 15, 31, 47, etc. into the PPAGE register (HEX F 30 C!). These sections of flash are referred to as
pages of flash. As noted in the memory map (Figure 3 on page 5), page E and page F are permanently
in the CPU memory map but they can also be accessed through the programming page window. For
instance if you store 14 into the PPAGE register, you will see the same memory image at location 0x4000
as you will see at 0x8000. If you want to install interrupt vectors in the secondary vector table at OXEF80-
OXEFFF, then you must put page F into the programming window. For instance if you want to install an
interrupt vector for the real time interrupt (RTI) which is at OXEFFO, you'd do the f ollowing:

HEX
F30C!
address_of_interrupt_vector AFFO FL!

Note that OXAFFO is 0x4000 less than where the actual interrupt vector is to be but that it will appear
there. If you try to use FL! in any other memory area outside of the programming window, it will not work.

As described in the microcontroller manual on flash memory, the upper 16 bytes of EEPROM are
reserved as control registers for the EEPROM. You should avoid setting values in this range (OxFFO-
OxFFF) unless you know what you are doing. Setting the wrong values in this region has the potential to
lock out use of the EEPROM from being erased.

The EEPROM differs from the flash memory in two other aspects. Its erase size is 4 bytes while the flash
is 512 bytes. This makes the EEPROM easier to reprogram in small amounts. In MaxForth you can
program a byte location irregardless of its value as it will be erased first by EEC! if necessary. In flash
memory, the minimum programming size is an aligned 2 bytes and the location must be OxFFFF to begin
with. To program EEPROM use EEC!, EE!, EEMOVE and EEWORD. To program flash, use FL!,
FLMOVE, FLERASE and FLWORD. EDP is used by EEWORD and FDP is used by FLWORD.

User ManuaV.1 Aug 18, 2003 17

	Table of Contents
	1.0 Overview
	1.1 Noted microcontroller features:
	1.2 Included Files

	2.0 Getting Started
	3.0 Memory Map
	4.0 Programming the Board
	4.1 BDM Connector and Parallel Port
	4.2 S-Records and the Serial Loader
	4.2.1 Downloading S-Records

	4.3 On-board Development System
	4.3.1 Hooking Into Autoboot
	4.3.2 Tags
	4.3.3 Quick Entry
	4.3.4 Boot Entry
	4.3.5 Auto Vector

	5.0 I/O Connections and Jumpers
	6.0 Board Layout
	7.0 Schematic
	8.0 Examples
	8.1 Playing with the LEDs
	8.2 Reading from the A/D port
	8.3 Adding a Sensor
	8.4 Implementing an Interrupt
	8.4.1 Real Time Interrupt Example
	8.4.2 Interrupts Calling Forth

	8.5 Flash Programming

