EITF35 - Introduction to Structured VLSI Design (Fall 2015)

Course projects

v.1.0.0

1 Introduction

This document describes the course projects provided iREITIntroduction to Struc-

tured VLSI Design” conducted at EIT, LTH. The projects argéeesions to the lab as-
signments 2 and 3, where the ALU and PS/2 keyboard contmdled to be integrated to
the whole system along with additional components. Theclrasjuirement for projects
is that the result obtained by performing some functions sigcaddition, multiplication,

and other ALU operations is to be displayed on a computeesdregerfaced to the FPGA
using the VGA port.

NOTE: Completion of project 1 gives a grade 4 and completion fhboth will result
in a grade 5.

Students interested in developing their own project toialdagrade 5 instead of the
suggested project are welcome to discuss their propostigive TAs. There are several
sensors on the Nexys 4 board which could be used to perfoeresting projects. One
example would be to use the microphone or to use the accedéeosnto implement a
simple video game.

2 Objectives

At the end of these projects the student will have learnt
« How to use the IP generator from Xilinx to instantiate |Pe=or

» How to perform fixed point programming and compare resutismfan algorithm
in Matlab with the output from the hardware design

* How to optimize code to obtain minimum area and hardwareues consumption
and how to meet hardware constraints

3 Assignments

* Project 1 - A calculator with memory:
Deadline Oct. 21

Instantiate an 8 kB, 8 bit wide RAM in your design using Xilitik generator. In-
tegrate the keyboard, ALU, VGA controller and the newly ¢eealP into your

design. The design should be able to input operands fromefiedard, store them
into the RAM and later calculate the result and display tis<eon the VGA.

* Project 2 - Integrated ALU with memory and a square root:unit
Deadline Oct. 30

The design should be able to get operands from the keyboardtare them in
the RAM. Along with performing the already implemented agems, the ALU
should be able to compute the square root of one operand ith 31 decimal
digits in accuracy after the decimal point. The result stidag displayed on the
seven segment display as well as the VGA screen. The squatranid should be
synthesized separately and should occupy less than 6% tftdi@umber of slices

in the FPGA.

A typical block diagram for the top level with both project aidh2 integrated is
shown in Fig 1.

FPGA

PS/2
Keyboard

controller

PS/2 Keyboard

> ALU

Square root

Lab preparation

System controller

8k Byte RAM

¢ Monitor

Graphic drawing

engine

Figure 1. An overview on the course projects

- Read this manual and try to understand the given tasks. Matethat you have
understood what is expected from the proje€@snsult the lab assistants, if the
functionality or any task is not expressed clear enough

- Read the VGA section of the digilent Nexys 4 FPGA user mgrarad go through
the provided VGA controller reference design. Understand b VGA controller
works. Read about generation of IP cores using Xilinx IP gatioe.

Equipment

- A Digilent Nexys-4 FPGA board.

- A PC monitor with a standard VGA port.

- A PS/2 interfaced keyboard.

4 The VGA reference design

To ease the start of the project, a reference design of a VGWater on the target
FPGA board is provided, where a course welcome messagedisddeom FPGA's block
memories and displayed on the monitor. The student can snddg design to suit the
requirements of whichever project he/she chooses to inmgriém

In both course projects, a VGA display with pixel resolutioh640x480@60Hz
is used. The VGA port connections, VGA color signals and désiing specification
may be found in the user guide of the FPGA board provided bylé€yig Therefore,
descriptions for these parts are not repeated in this mawhareas only the VGA signal
timing diagram is illustrated here as shown in Fig. 2.

Horizontal Horizontal ____
) . blanking blanking
Video line internal internal

| | |

Horizontal : : :

Synch. | | |

| | |

| «—— 256us (40 clocks) —> | | ||

| €«——— 26.24 us (656 clocks) ———— | | I

I ! | I

| €— 30.08 us (752 clocks) ———— | |

: <«—— 32 us (800 clocks) > :

Vertical - =" Vertical

Video blanking blanking
frame internal internal

| |
Vertical : :
Synch. | |
| |
| |
|

|<— 15.36 ms (480 lines) ———»

|
|
|€——— 15.424 ms (490 lines) ————p|
1

|
[
|
|
|
Lo
[
[
| [
| €— 15744 ms (492 lines) ———— P |
:4— 16.672 ms (521 lines) >:

Figure 2: Signal timing diagram for a 60Hz, 64880 VGA display.

To illustrate the use of the given signal timing informati@reference design of
the VGA controller is provided in this course and is brieflysdébed in this manual.
The reference design displays a course welcome message GA\aigplay, where the
message is saved as an image file stored in the block membtiesEPGA. An overview
of the provided VGA controller is shown in Fig. 3.

A) Clocking wizard (DCM) : This module divides the input clofrequency by a fac-
tor of 4, as the provided VGA controller is designed based sgstem clock of
25MHz. The clocking wizard is a primitive component avaiéalm Xilinx’s FP-
GAs, which may be generated from Xilinx Vivado environmeitivthe use of IP
generator. The way of generating and properly configuriregXhinx Clocking
wizard is shown as a video clip, placed under:

blank

hcount hs
veount VGA controller vs
g 640 x 480@60Hz
50MHz s r (© !
—P>||OS i
o= Monitor
2 rgb
Controller -
rst
rom_dout
Picture ROM

rom_addr

Figure 3: Block diagram of the VGA controller reference desi

“S\tutorials\ise_clock_rom.wmv’,

NOTE: The video clip uses an older version of the IP generdiotr the newer
Vivado tool makes it a lot easier. Several example videoshmifound online
which describe the IP generator.

B) Picture ROM: This is the place where the welcome messagfetisd. The message
is saved as a bitmap image and is stored inside FPGAs datasR@dta ROMs
may be generated with the use of Xilinx IP cores, howeverirtpet data files have
to be loaded in a “.coe” file format during the ROM generatidinis may be ac-
complished by using the software provided - “imageConvérpgaced under:

“S:\course_projects\imageConverter\”.

A bitmap image conversion is shown in a video climage_converter.wmv’, and
ROM generation is shown inge_clock_romwnmv’, both placed under:

“S\tutorials\".

C) VGA controller: This module contains two binary countarsed for tracking on
the horizontal video pixels and vertical video lines, retpely. Horizontal and
vertical synchronization pulses for the VGA display are eyated based on the
counters, and an additional blank signal is provided as dapubdo indicate the
VGA blanking time interval.

D) Controller: The system controller keeps tracking on tineent VGA pixel position
by using the horizontal and vertical counter values praviftem the VGA con-
troller. This module also controls the address of picturdvR@nd reads out the
image data at the desired pixel locations. 3-bit color codiés one bit each for
red, green, and blue are sent to the VGA display, resultingawving 8 different
color tones.

Notice that physical pins mappings of the system I/O sigaalan FPGA are accom-
plished with the use of a constraint file, namely the “.xdcg,fiwhich is added in the

4

project structure.

5 Course project 1 Grade4) - A calculator with memory

In this project, the ALU implemented in lab assignment 3 aBd2Fkeyboard controller
designed in lab assignment 2 will be reused. A new IP will beegated using the Xilinx
IP generator tool.

5.1 Task1l

Start by first understanding how the given VGA controller kgrTry assigning your own
rgb colors to the display instead of ROM data. Figure out Hmwiertical and horizontal
counters can be used in order to emulate the seven segmglatycis the LCD. An illus-

tration of the LCD display required is shown in a screen cagptplaced under:

“S'\course_projects\rtl_ref_designs\project_1.jpg”.

Integrate the VGA controller to the keyboard and the ALU. @swp level file to in-
stantiate these three IPs as components in order to keepfthetionally in separate
files. Reuse as much code as possible from your previousrdesig

5.2 Task?2

In this step, you will generate your own memory module. Theidateps of generating
an IP core are listed below.

* Click on the IP Catalog in the Project Manager.

* Search for RAM. In Memories & Storage elements, choBsdIs & ROMs. Then
choose Block memory generator.

* In the new window that opens up, examine the memory blockulibbe generated.
* Choose a Single port RAM with the Algorithm set to Minimumesr.

* Set Memory write width to 8 bits and write depth to 8 kB.

* Leave all other options unchanged. Generate memory.

Once this is done, a new IP will appear in your design hiesamgimdow. Examine the
HDL files generated by clicking on + beside the IP and choo#iiegHDL files. The
component instantiation that needs to be used in your @tmutiesign can be found in
this HDL instantiation file.

5.3 Task3

Integrate the memory module into your design by instamigatt as a component and
verify that integration has succeeded. Refer to Fig 4 anddhewing steps for some
suggested ways to verify the memory controller. We will perf read and write opera-
tions to the memory using the basic pins and switches avaitabthe board.

Y Tl
le—

AUDIO OUT SN

AddI'CSS UP/Down ! BTN BTNDCVIO BTAR

. KT16)

e V= "Iilli' w.digilentinc.com

— e goppign 2012 ..

llllllll =1 01171 1T
o A A e A Y o A e K A 8

LDIs(PZ)LDH(RDLDlQ(UDU“ (PE)LDII(RI) LDIO(UI) LDS(UG) LDB(W) LD?(UG) LDS(U?) i’.DS('H) LD1(T5) i:.D3(T6) LDZ(RG) E.DI(US) i’.m(TB)
SULISCP4SH14¢P3) SH1 3CR3? sW12 " T1)SW11CT3) SHI0CU2) SWCU2) SUBCU4) SWZCUS) SWECUS) SWECUZ) SW4CRS) SWIC(RE) SH2(R7) SHIKUB) SHOCUS>
1 i ¥ T 1 ;

Figure 4: FPGA with memory controls

* Assign CPU RESET to reset your system. Check whether thet iresctive high
or low and make appropriate changes to your code. If you haliéesient polarity,
instead of changing the whole code, you can create a local sagnal with the
required polarity in your top level and use this as the resettie rest of your
system.

* Even though the mem_data bus generated from the IP will bies8fbr testing we
will now use only 4 bits. Assign the mem_data[3 downto 0] bityour keyboard
out data. Assign the upper 4 bits to zero.

* Design a counter and connect the mem_address to this cowMtieen BTNL is
pressed and if SWITCH[12] is set to 0, the address shouléiment. The address

6

should decrement if BTNL is pressed when SWITCH[12] is sdf.tRemember to
use debouncing logic on the BTN, if not the memory addressimigcrement by
more than one at each press of BTNL. It would be a good idesstoannect the
mem_write_enable to this button.

* Try and use the LEDO-7 present on the board for debuggingecKlvhether after
adding debouncing logic the address increments by thenesjsieps.

* Assign BTNC to enable data latching. The keyboard data lshioe registered to
the memory input only when BTNC is pressed.

* Connect the memory_out data to the seven segment disitlagr en the FPGA or
on the LCD screen for debugging.

It is always a good idea to look at the warnings tab when swizivgy the design.
Understand the warnings shown and see if they are OK for yesigd. It may happen
that the memory block is not connected properly and youesystoes not work.

54 Task4

The next step is to write code to enable data storage in theomyeatong with the oper-
ators. Use the same BTNC-BTNL logic described above to stateing of data into the
memory along with the operands. The input data range is fremr265 and the inputs are
considered to be unsigned. At the end of entering data valees with operands, the
ALU should be started. This can be done by pressing the <Ek&r on your keyboard.

A) At the press of every <Enter> key the memory controllenstide able to pop the
top three memory locations (the two data operands and thatpg compute the
result and display it on the VGA screen.

B) Onthe next <Enter> key the next two data operands and th@tyy have to popped
out from the memory and result should be displayed on the V&Aen. Do not
forget to take into account that for the mod 3 operator we rieezhter only one
data and the operand. Remember also that the result coulthiee & positive or a
negative number. Therefore it is required to display tha sigthe result before the
result as shown in the example in Fig. 5.

C) Since the data RAM created will be 8 bits wide and we neetbi@ some operands
along with data, some of the bit patterns can be assignedésetoperators(e.g.
“+7 %0 R=" *mod”). Choose the range of 130 to 135 for opers. This also
means that input data in the range of 130 to 135 shall not beidered as operands.

D) The values should be stored into the RAM only when properapds and operators
have been entered. There should be an option to use the back kpy to input
a different set of operators and operands. For example, istake is done while
entering the operands, one could use the backspace keete tied already entered
numbers and start over. A detailed description of operados operands is as
follows:

E)

F)

G)

H)

Both data operands must be displayed in at least 3 digitsdfieds, tens, units) on
the VGA screen and the computation results must also besepted in three digits
(hundreds, tens, units) along with thign. The operands, computation result along
with the operator must be shown on the emulated 7-segmerdsvVi®A monitor.
For example if one has to compute the sum of 98 and 99 the VG#ajishould
look like the ouput in Fig. 5. The inputs will be entered in Beligits format,
meaning if one wants to use 9 as an operand, the input frometleoard shall
be 009. If the data entered is above the limit, then the nursbalt be stored as
255. For example if the user enters 1234 as the first inputatg@erthe calculator
shall store this number as 255 when the data latch buttoresspd. Note that the
backspace key should be operational to fix the data befordataelatch button is
pressed.

If you plan on performing project 2, consider that the maxm width of the result
displayed on the monitor should be 5 digits, which corresisan the square root
of 255 = 15.968.

198+099-+197

Figure 5: Example VGA Output

Remember that the result is signed and the operands arenadsighis will enable
one to design a simple state machine to accept the right anodumputs before
storing them in the memory.

The design must be able to perform the following diffel@rhputation operations:
addition, subtraction, multiplication and modulo 3. Aniication of overflow/un-
derflow should also be displayed when it happens.

The emulated 7-segments have to be shown in a visible Rireallowed to load
digits and operators from data ROMs, however, you have tgidenthe available
memory capacity in the FPGA. It is recommended to design plalisengine for
one 7-segment, and use it to generate digits at all locatiorisg system run-time.
Using either logics or data memories is always a design wéde/here a common
practice is to use a mixed design approach to find a balandat ptween them.
You may, for instance, store all data operators (e.g. “+7, “=”) in ROMs, and
generate all digits by using one 7-segment display engine.

An example output of the memory operation is shown in Fig eRi® the presenta-
tions uploaded along with this manual for details on how tafithe memory and reading
the memory. To begin with, the write address is “0". When dathoperands are entered,
the memory will fill up in a way similar to a stack. Once the udecides to compute the
results, the <Enter> key will be pressed. This should resybpping data from the top
of the stack and displaying results on the VGA screen. FurtBater> keys should pop
data correctly in order to display the corresponding restle calculator should also be

able to accept data inputs in the middle of displays. For gamn Fig. 6 after the third
<Enter> key has been pressed resulting in a display of +04&@VGA monitor, the
user should be able to input more operands and operatorsshibuld result in the mem-
ory being filled up again until the user decides to evaluagerésults using the <Enter>
key. Contact the teaching assistant if you have any questions ohé operation of the
memory.

[a—
(8}

— | e
o |

Direction of POP

On first enter key
013%003 = +001
On second enter key
100*000 = +000
On third enter key
007*007 = +049
On fourth enter key
006-030 =-024
On fifth enter key
003*054 = +162
On sixth enter key
098+010 =+108

e}

Direction of memory fill
(similar to a stack)

A

0
0
o
"
-
*
5
10 |

Initial position—»

—_
S

Figure 6: Example output

6 Course project 2 Grade5) - ALU with square root and
Memory

In this project an additional operation namely the compaitadf the square root of an
unsigned number will be added to the ALU. The computed reshidtlld be displayed on
the emulated seven segment display on the VGA monitor witb tlypee decimal digits
in accuracy. The detailed requirements are as follows

A) Interface the keyboard, ALU and the VGA as explained in pihevious sections.
Emulate a seven segment display on the VGA screen.

B) The square root unit is to be designed which should acceptnsigned integer
as its input and produce the square root of the number withaat three digits in
accuracy after the decimal point. The input range for thesgjtoot number will be
[0-255]. The square root unit has to be integrated into th& ALhe design should
be capable of accepting data from keyboard, compute rdsulisfferent operands
like addition, multiplication and square root, then digpthe result on the VGA
screen. You can assign the key of your choice to perform tharegoot, such as
the ‘s’ button from the keyboard.

C) Find an algorithm to calculate the square root or use tgerihm such as the
Newton-Rhaphson method. An introduction to algorithmslangenting square
root can be found on Wikipedia. Use a lookup table to find tlse$t square root
and start with that as the seed to the algorithm. Severatiters can be done to
obtain a reasonably accurate square root of a number withdwésxmethod.

D) Start by writing a Matlab script which uses the fixed poifit fjotation tool. Un-
derstand what widths of inputs and outputs are required ¢duywre the desired
accuracy in the final result. Think about number of bits nddaethe divisor and
choose correct widths appropriately.

E) Discuss the algorithm implementation and the bit widkizd t/ou have chosen with
the TA.

F) The final implementation of the square root unit should be abé to fit inside 6%
of the total number of slices.

G) You will probably need a divider unit to perform the squevet algorithm. Instan-
tiate a divider core generator IP from the IP generator t&mlect the algorithm
to be of type “fixed” with dividend and divisor widths to be ®¥fandY bits re-
spectively. The values of andY should be obtained from Matlab simulations or
by calculations. Since you need 3 decimal digits of accyréney would probably
correspond to a fraction binary width of 10 bits.

H) Read the divider IPs manual to understand the number dé€yitakes to produce
one division output. Construct a small testbench and véndy you understand the
divider’s operation.

10

I) The next step is to design the algorithm and integratetd the system. From

simulations done in Matlab you will be able to understandthenber of iterations
required to reach the desired accuracy for all the numbereirange from [0-255].
Once this is fixed, design a state machine which will startwleés say BTNC is
pressed and process the square root of the input numberestorg purposes, you
can input the number from the SWITCH buttons. Remember tofavatihe division
operation to complete before proceeding to the next immatConstruct a testbench
and verify that the state machine is functioning as requitée divider IP returns
the integer and fractional part of the quotient. Make suneg®esign your adders to
take care that the fractional bits are added correctly amihtieger bits are updated.

J) The final result obtained will contain an integer part anfdaational part. The

K)

L)

integer part and the fractional part needs to be display@dB3D number. Design
a small function to do this.

Integrate the square root unit to the ALU with memory desigin Project 1. The
final result should be displayed on the CRT monitor using t&\tontroller and
the input should come from the keyboard instead of the SWIKEYs$.

Remember to do things step by step. Create modules basadhotionality and
integrate in the top level. For example, you should have arsée module which
accepts a seven segment coded number and displays on the aff@/separate
module to perform square root, one to do all the other ALU apens etc.

11

