
ioPAC RTU Software User’s Manual

First Edition, October 2013

www.moxa.com/product

© 2013 Moxa Inc. All rights reserved.

ioPAC RTU Software User’s Manual

The software described in this manual is furnished under a license agreement and may be used only in accordance with
the terms of that agreement.

Copyright Notice

© 2013 Moxa Inc. All rights reserved.

Trademarks

The MOXA logo is a registered trademark of Moxa Inc.
All other trademarks or registered marks in this manual belong to their respective manufacturers.

Disclaimer

Information in this document is subject to change without notice and does not represent a commitment on the part of
Moxa.

Moxa provides this document as is, without warranty of any kind, either expressed or implied, including, but not limited
to, its particular purpose. Moxa reserves the right to make improvements and/or changes to this manual, or to the
products and/or the programs described in this manual, at any time.

Information provided in this manual is intended to be accurate and reliable. However, Moxa assumes no responsibility for
its use, or for any infringements on the rights of third parties that may result from its use.

This product might include unintentional technical or typographical errors. Changes are periodically made to the
information herein to correct such errors, and these changes are incorporated into new editions of the publication.

Technical Support Contact Information

www.moxa.com/support

Moxa Americas
Toll-free: 1-888-669-2872
Tel: +1-714-528-6777
Fax: +1-714-528-6778

 Moxa China (Shanghai office)
Toll-free: 800-820-5036
Tel: +86-21-5258-9955
Fax: +86-21-5258-5505

Moxa Europe
Tel: +49-89-3 70 03 99-0
Fax: +49-89-3 70 03 99-99

 Moxa Asia-Pacific
Tel: +886-2-8919-1230
Fax: +886-2-8919-1231

Moxa India
Tel: +91-80-4172-9088
Fax: +91-80-4132-1045

Table of Contents

1. Introduction .. 1-1
Overview ... 1-2

Scope .. 1-2
Related Documents ... 1-2
Supported Products ... 1-2

Software Architecture .. 1-2
Journaling Flash File System (JFFS2) ... 1-3
Software Package .. 1-4

2. Getting Started.. 2-1
Developing the First Program ... 2-2

Hardware and Software Requirements ... 2-2
Development Procedure ... 2-2

Configuring the Ethernet Interface .. 2-2
Modifying Network Settings with the Serial Console ... 2-2
Modifying Network Settings over the Network ... 2-3

Connect an RTU to a Linux PC .. 2-3
Install the Toolchain onto the PC .. 2-4
Set Cross Compiler & glibc Environment Variables .. 2-4
Develop Code & Compile the Program ... 2-4
Upload & Run the Program ... 2-5

3. RTU Management .. 3-1
System Information .. 3-2
Firmware Upgrade and Default Settings ... 3-2

Upgrading the Firmware ... 3-2
Recovering the Firmware .. 3-4
Loading Factory Defaults .. 3-5

Enabling and Disabling Daemons .. 3-6
Run-Level Settings .. 3-7
System Time Setting ... 3-8

Setting the Time Manually .. 3-8
Updating the Time with NTP Client ... 3-10
Updating the Time Automatically ... 3-10
NTP Server Setting .. 3-11

Executing Scheduled Commands with Cron Daemon ... 3-11
Software Lock .. 3-12

4. RTU Communications .. 4-1
Internet Configuration ... 4-2

Modbus TCP Master and Slave... 4-2
DNS... 4-2
Telnet/FTP .. 4-2
iptables .. 4-3
NAT (SNAT) .. 4-7
Port Forwarding (DNAT) ... 4-9
PPP Dial-up Service ... 4-9
PPPoE .. 4-12
NFS (Network File System) Client .. 4-14
Sending Mail ... 4-14
OpenVPN .. 4-14
NTP Server/Client .. 4-18
Port Trunking .. 4-19

Serial Configuration .. 4-19
Modbus RTU Master ... 4-19

5. RTU Data Acquisition ... 5-1
I/O Data Access.. 5-2
Battery Backup SRAM .. 5-2
Millisecond Timestamp .. 5-2
Active OPC Server... 5-2

6. RTU Programming ... 6-1
Programming Guide .. 6-2

Memory Usage .. 6-2
Using C/C++ .. 6-2

Linux Toolchain ... 6-2
On-Line Debugging with GDB .. 6-4
Library and APIs .. 6-4

A. System Commands .. A-1
Moxa Special Utilities .. A-1

1
1. Introduction

The following topics are covered in this chapter:

 Overview

 Scope

 Related Documents

 Supported Products

 Software Architecture

 Journaling Flash File System (JFFS2)

 Software Package

ioPAC RTU Software Introduction

 1-2

Overview
This section introduces the scope of this document and lists related documents for reference.

Scope
The purpose of this document is to help users set up and configure the ioPAC RTU and become familiar with the
programming environment quickly. The following topics are covered in this document:

 Introduction

 Getting Started

 RTU Management

 RTU Communications

 RTU Data Acquisition

 RTU Programming

The following information is provided in the Appendix:

 System Commands

Related Documents
Additional information about ioPAC RTU features is available in the following manuals, which can be found in
the ioPAC RTU Documentation & Software CD.

 ioPAC 8500 RTU Hardware User’s Manual

 C/C++ Sample Code Programming Guide for ioPAC RTU Controllers

Supported Products
 ioPAC 8500 Series

 ioPAC 5500 Series

Software Architecture
The ioPAC RTU controller uses an ARM9 based industrial grade CPU for the system and ARM Cortex™ M4 based
CPUs for the modules. It provides up to 10 MB Flash ROM, 64 MB on-board SDRAM, and a microSD socket (up
to 32 MB) for users to install application software and to store data directly on the controller.

The pre-installed operating system (OS) provides an open platform for software program development, which
follows a standard Linux-based architecture. Software that runs on desktop PCs can be easily exported to the
RTU controller with a cross compiler. Program porting can be done with the toolchain provided by Moxa.

The built-in flash ROM is partitioned into Boot Loader, Kernel, Root File System, and User directory partitions.
In order to prevent user applications from crashing the Root File System, the RTU controller uses a unique Root
File System with Protected Configuration for emergency use. This Root File System comes with serial and
Ethernet communication capability for users to load the Factory Default Image file. User settings and
applications are saved in the user directory.

To improve system reliability, the RTU controller has a built-in mechanism that prevents the system from
crashing. When the kernel boots up, the RTU will mount the root file system in read-only mode, and then enable
services and daemons. At the same time, the kernel will start searching for system configuration parameters
via rc or inittab.

Normally, the kernel uses the Root File System to boot up the system. The Root File System is protected, and
cannot be changed by users, which creates a safe zone for users.

ioPAC RTU Software Introduction

 1-3

For more information about the memory map and programming, refer to the Programming Guide section in
Chapter 6.

Journaling Flash File System (JFFS2)
The Root File System and User directory in the flash memory is formatted with the Journaling Flash File System
(JFFS2). The formatting process places a compressed file system in the flash memory. This operation is
transparent to users.

The Journaling Flash File System (JFFS2), which was developed by Axis Communications in Sweden, puts a file
system directly on the flash, instead of emulating a block device. It is designed for use on flash ROM chips and
recognizes the special write requirements of a flash ROM chip. JFFS2 implements wear-leveling to extend the
life of the flash disk, and stores the flash directory structure in the RAM. A log-structured file system is
maintained at all times. The system is always consistent, even if it encounters crashes or improper
power-downs, and does not require fsck (file system check) on boot-up.

JFFS2 is the newest version of JFFS. It provides improved wear-leveling and garbage-collection performance,
improved RAM footprint and response to system-memory pressure, improved concurrency and support for
suspending flash erases, marking of bad sectors with continued use of the remaining good sectors (enhancing
the write-life of the devices), native data compression inside the file system design, and support for hard links.

The key features of JFFS2 are:

• Targets the flash ROM directly

• Robustness

• Consistency across power failures

• No integrity scan (fsck) is required at boot time after normal or abnormal shutdown

• Explicit wear leveling

• Transparent compression

Although JFFS2 is a journaling file system, this does not preclude the loss of data. The file system will remain
in a consistent state across power failures and will always be mountable. However, if the system is powered
down during a write, then the incomplete write will be rolled back on the next boot, but writes that have already
been completed will not be affected.

Additional information about JFFS2 is available at:
http://sources.redhat.com/jffs2/jffs2.pdf
http://developer.axis.com/software/jffs/

ioPAC RTU Software Introduction

 1-4

http://www.linux-mtd.infradead.org/

Software Package
Boot Loader Moxa Boot Loader (v1.0)

Kernel Linux 2.6.38

Protocol Stack ARP, PPP, CHAP, PAP, IPv4, ICMP, TCP, UDP, DHCP, FTP, HTTP, NTP, NFS, SMTP,
SSH 1.0/2.0, SSL, Telnet, PPPoE, OpenVPN, TFTP

File System JFFS2, NFS, Ext2, Ext3, VFAT/FAT

OS shell command Bash

Busybox Linux normal command utility collection

Utilities
tinylogin Login and user manager utility

telnet Telnet client program

ssh SSH client program

ftp FTP client program

smtpclient Email utility

ntpdate NTP client program

tftp TFTP client program

ddns NO-IP client program

Daemons
pppd Dial in/out over serial port daemon

telnetd Telnet server daemon

inetd TCP server manager program

ftpd FTP server daemon

sshd Secure shell server

openvpn Virtual private network

openssl Open SSL

ntpd NTP server daemon

Linux Toolchain
Gcc (V4.4.2) C/C++ PC Cross Compiler

GDB (V7.0.1) Source Level Debug Server

Glibc(V2.10.1) POSIX standard C library

2
2. Getting Started

This chapter is intended as a quick start guide to help new users set up and configure the ioPAC RTU controller
quickly, and develop a simple program to run on the ioPAC RTU controller.

The following topics are covered in this chapter:

 Developing the First Program

 Hardware and Software Requirements

 Development Procedure

 Configuring the Ethernet Interface

 Modifying Network Settings with the Serial Console

 Modifying Network Settings over the Network

 Connect an RTU to a Linux PC

 Install the Toolchain onto the PC

 Set Cross Compiler & glibc Environment Variables

 Develop Code & Compile the Program

 Upload & Run the Program

ioPAC RTU Software Getting Started

 2-2

Developing the First Program
This section lists the minimum hardware and software requirements, and gives an overview of program
development procedures.

Hardware and Software Requirements
The following hardware items are required to complete the first program.

 1 x ioPAC RTU controller

 1 x 9-48VDC power supply

 1 x Ethernet cable

 1 x PC or Laptop with following minimum requirements

 CPU: Intel Pentium 4 or above

 RAM: 512 MB (1024 MB recommended)

 HDD: at least 200 MB of free space

 Network Interface: 10/100M Ethernet

 Linux Operating System (Debian 6.0.1, Ubuntu 11.04 or Fedora Core 15 are recommended)

Development Procedure
Follow the steps below to complete the first program development.

Step 1: Connect an RTU to a Linux PC

Step 2: Install the Toolchain onto the PC

Step 3: Set Cross Compiler & glibc Environment Variables

Step 4: Develop Code & Compile the Program

Step 5: Upload & Run the Program

Configuring the Ethernet Interface
The network settings of the ioPAC RTU controller can be modified with the serial console, or online over the
network.

Modifying Network Settings with the Serial Console
In this section, we use the serial console to configure network settings of the ioPAC.

First, use the command

#cd /etc/network

to change to the directory where the network’s configuration files are located.

root@Moxa:# cd /etc/network/
root@Moxa:/etc/network/#

Call up the vi text editor to begin editing the interfaces configuration file by typing:

#vi interfaces

You can configure the ioPAC RTU controller’s Ethernet ports for static or dynamic (DHCP) IP addresses.

ioPAC RTU Software Getting Started

 2-3

Static IP addresses:

As shown below, 2 network addresses need to be modified: address, network, netmask, and broadcast.

The default IP addresses are 192.168.127.254 for LAN1 and 192.168.126.254 for LAN2, with default netmasks
of 255.255.255.0.

We always want the loopback interface.

auto eth0 eth1 lo
#auto eth0 lo
iface lo inet loopback

iface eth0 inet static
 address 192.168.127.254
 network 192.168.127.0
 netmask 255.255.255.0
 broadcast 192.168.127.255
 gateway 192.168.127.1

embedded ethernet LAN2
iface eth1 inet static
 address 192.168.126.254
 network 192.168.126.0
 netmask 255.255.255.0
 broadcast 192.168.126.255
 gateway 192.168.126.1

Dynamic IP Addresses:

By default, the ioPAC RTU is configured for “static" IP addresses. To configure LAN ports to request an IP
address dynamically, replace static with dhcp and then delete the address, network, netmask, and broadcast
lines.

Auto eth0 eth1 lo

iface lo inet loopback
iface eth0 inet dhcp
iface eth1 inet dhcp

Modifying Network Settings over the Network
IP settings can be activated over the network, but the new settings will not be saved to the flash ROM without
modifying the file /etc/network/interfaces.

For example, type the command #ifconfig eth0 192.168.127.1 to change the IP address of LAN1 to
192.168.127.1.

root@Moxa:# ifconfig eth0 192.168.127.1
root@Moxa:/etc/network/#

NOTE You can use the ipset command to directly configure the settings and save them to the flash ROM, and the
route table to debug any issues when configuring over an Ethernet connection.

Connect an RTU to a Linux PC
Follow the steps below to establish the connection between the PC and the RTU.

Step 1: Connect the PC Ethernet connector to LAN1 or LAN2 of the ioPAC RTU with an Ethernet cable.

Step 2: Change the IP address of the PC as follows:

Connected to ioPAC RTU LAN Port Set PC’s IP address

ioPAC RTU Software Getting Started

 2-4

LAN1 (default IP: 192.168.127.254) 192.168.127.100

LAN2 (default IP: 192.168.126.254) 192.168.126.100

Step 3: Use the telnet command to access the console of the RTU controller.

root@localhost:~# telnet 192.168.127.254

Step 4: If successfully connected to the RTU controller, the following message will be shown on the screen.
Close this connection to return to the local PC.

root@localhost:~# telnet 192.168.127.254
Trying 192.168.127.254...
Connected to 192.168.127.254.
Escape character is ‘^]’.

Moxa login:

Install the Toolchain onto the PC
The RTU controller’s GNU toolchain requires approximately 150 MB of hard disk space on your PC. The RTU
controller’s toolchain software is located on the Document and Software CD. To install the toolchain, insert the
CD into your PC’s CD-ROM and then issue the following commands:

root@localhost:~# mount /dev/cdrom /mnt/cdrom

root@localhost:~# sh /mnt/cdrom/Software/Toolchain/arm-linux_Vx.x.sh

The toolchain will be installed automatically on the host Linux PC within a few minutes.

Set Cross Compiler & glibc Environment
Variables

Before compiling the program, be sure to set the following path first, since the toolchain files (including the
compiler, link, and library) are located in this directory. Setting the path allows you to run the compiler from
any directory.

root@localhost:~# PATH=$PATH:/usr/local/arm-linux/bin:/usr/sbin

root@localhost:~# export PATH

root@localhost:~# LD_LIBRARY_PATH=/usr/local/arm-linux/tools/lib:/usr/lib

root@localhost:~# export LD_LIBRARY_PATH

Alternatively, the same commands can be added to $HOME/.bash_profile to make it effective for all login
sessions by adding below commands.

PATH=$PATH:/usr/local/arm-linux/bin:/usr/sbin

export PATH

LD_LIBRARY_PATH=/usr/local/arm-linux/tools/lib:/usr/lib

export LD_LIBRARY_PATH

Develop Code & Compile the Program
The Software and Document CD contains a sample hello_world.c program and makefile for users to run pilot
tests to the RTU controller.

ioPAC RTU Software Getting Started

 2-5

Type the following commands for the host PC to copy the files used for this example.

root@localhost:~# cd /tmp/
root@localhost:/tmp# mkdir example
root@localhost:/tmp# cp –r /mnt/cdrom/Software/Sample/hello_world/* /tmp/example

To compile the program, go to the hello_world subdirectory and issue the following commands:

root@localhost:~# cd/tmp/example/hello_world

root@localhost:/tmp/example/hello_world# make

The following response should be shown on the screen.

root@localhost:/tmp/example/hello_world# make

/usr/local/arm-linux/bin/arm-linux-gcc -I/usr/local/arm-linux/include

-I/usr/local/arm-linux/include/RTU -o hello_world hello_world.o

-L/usr/local/arm-linux/lib -lpthread -lmxml -L/usr/local/arm-linux/lib/RTU

-lmoxa_rtu -lrtu_common -ltag -Wl,-rpath,/lib/RTU/ -Wl,--allow-shlib-undefined

The hello_world-release and hello_world-debug executable files are described as below:

• hello_world-release: an ARM platform executable file (created specifically to run on the Moxa RTU
Controllers)

• hello_world-debug: an ARM platform GDB debug server executable file

NOTE Since Moxa’s toolchain places a specially designed makefile in the /tmp/example/hello_world directory, be
sure to type the #make command from within that directory. If users type the #make command from any
other directory, the host Linux PC may use other system compilers (e.g., cc or gcc) and result in errors.

Upload & Run the Program
Follow the steps below to upload and run the hello_world.c program.

Step 1: Use the telnet command to access the console of the RTU controller.

root@localhost:~# telnet 192.168.127.254

Step 2: Enter root for both the account and password.

Step 3: Before uploading the compiled program to the RTU controller, check the free space of the flash memory
on the RTU controller. If the flash memory is full, you cannot save data to the flash ROM. Use the following
command to calculate the amount of available flash memory.

root@Moxa:~# df –h

NOTE If there is not enough available space for user’s program, users must delete some existing files.

Step 4: Use the following commands to connect the FTP server of the RTU controller.

root@localhost:/tmp/example/hello_world# ftp 192.168.127.254

Step 5: Enter root for both the account and password.

ioPAC RTU Software Getting Started

 2-6

Step 6: Use the following commands to upload hello_world-release to the RTU controller by FTP in Binary
mode

ftp> cd /home

ftp> put hello_world

Step 7: Use the following commands to run the hello_world program on the RTU controller.

root@Moxa:/home~# chmod +x hello_world

root@Moxa:/home~# ./hello_world

To run the program automatically after the system starts, modify the /home/autoexec.sh file as follows.

#!/bin/sh

This script will be executed in rd.local.
Echo “Load user’s script from /home/autoexec.sh”

/home/hello_world

3
3. RTU Management

This chapter discusses version control, deployment, updates, and peripherals. The information in this chapter
will be particularly useful when you need to run the same application on multiple ioPAC RTU controllers.

The following topics are covered in this chapter:

 System Information

 Firmware Upgrade and Default Settings

 Upgrading the Firmware

 Recovering the Firmware

 Loading Factory Defaults

 Enabling and Disabling Daemons

 Run-Level Settings

 System Time Setting

 Setting the Time Manually

 Updating the Time with NTP Client

 Updating the Time Automatically

 NTP Server Setting

 Executing Scheduled Commands with Cron Daemon

 Software Lock

ioPAC RTU Software RTU Management

 3-2

System Information
To determine the hardware capability of your ioPAC RTU controller and supported software functions, check the
version numbers of your ioPAC RTU hardware, kernel, and user file system. When contacting Moxa to
determine the hardware version, you will need the Production S/N (serial number), which is located on the
ioPAC’s bottom label.

To check the kernel version, type:
#kversion -a

 root@Moxa:~# root@Moxa:~# kversion -a
RTU version 1.1.0 build 2014/2/24:12
API version 1.4.0 build 2014/2/24:12

Slot0 Module Info:
VID = 0x110a, PID = 0x50e0, SerialNumber = 0x21
Hardware Version = 1.0.0, Firmware Version = 1.0.0

NOTE The kernel version number is used for the factory default configuration. You may download the latest firmware
version from Moxa’s website and then upgrade the ioPAC RTU hardware.

Firmware Upgrade and Default Settings

Upgrading the Firmware
The ioPAC RTU bios, kernel, and root file system are combined into one firmware file, which can be downloaded
from Moxa’s website www.moxa.com. The name of the file has the form FWR_ioPAC_x_x_x.hfm, with
“x_x_x” indicating the firmware version. To upgrade the firmware, download the firmware file to a PC, and then
transfer the file to the ioPAC RTU using a console port or Telnet console connection.

ATTENTION

Upgrading the firmware will erase all data on the flash ROM
If you are using the RAM disk to store code for your applications, beware that updating the firmware will erase
all of the data on the flash ROM. You should back up your application files and data before updating the
firmware.

Since different flash disks have different sizes, it is a good idea to check the size of your flash disk before
upgrading the firmware, or before using the disk to store your application and data files. Use the #df –h
command to list the size of each memory block and how much free space is available in each block.

ioPAC RTU Software RTU Management

 3-3

Filesystem Size Used Available Use% Mounted on
/dev/root 16.0M 8.2M 7.8M 51% /
/dev/ram0 499.0K 16.0K 458.0K 3% /var
/dev/ram7 2.0M 15.0K 1.8M 1% /dev
/dev/mtdblock3 12.0M 632.0K 11.4M 5% /tmp
/dev/mtdblock3 12.0M 632.0K 11.4M 5% /home
/dev/mtdblock3 12.0M 632.0K 11.4M 5% /etc
tmpfs 29.8M 0 29.8M 0% /dev/shm
root@Moxa:/# upramdisk
root@Moxa:/# df -h
Filesystem Size Used Available Use% Mounted on
/dev/root 16.0M 8.2M 7.8M 51% /
/dev/ram0 499.0K 17.0K 457.0K 4% /var
/dev/ram7 2.0M 15.0K 1.8M 1% /dev
/dev/mtdblock3 12.0M 632.0K 11.4M 5% /tmp
/dev/mtdblock3 12.0M 632.0K 11.4M 5% /home
/dev/mtdblock3 12.0M 632.0K 11.4M 5% /etc
tmpfs 29.8M 0 29.8M 0% /dev/shm
/dev/ram1 31.9M 395.0K 29.9M 1% /var/ramdisk
root@Moxa:~#
Follow the steps below to save the firmware file to the ioPAC RTU controller’s RAM disk and upgrade the
firmware.

1. Type the following commands to enable the RAM disk:

#upramdisk
#cd /mnt/ramdisk

2. Type the following commands to use the ioPAC RTU controller’s built-in FTP client to transfer the firmware
file (FWR_ioPAC_x_x_x.hfm) from the PC to the ioPAC RTU:

/mnt/ramdisk> ftp <destination PC’s IP> Login Name: xxxx
Login Password: xxxx
ftp> bin
ftp> get FWR_ioPAC_x_x_x.hfm

 root@Moxa:~# ftp 192.168.127.3
Connected to 192.168.127.3.
220- Welcome to Rainbow FTP-G Server FREEWARE Edition.
220 *** For Personal Use Only!! ***
Name (192.168.127.3:root): root
331 Password required for root
Password:
230 User successfully logged in.
Remote system type is UNIX.
ftp> bin
200 Type set to BINARY
ftp> ls
200 Port command successful.
150 Opening ASCII mode data connection for directory list.
-rwx------ 1 user group 140856793 Apr 19 16:11
arm-linux_V1.0_Build2013041916.sh
-rwx------ 1 user group 6158672 Jan 11 10:31 FTP-G_x64.exe
-rwx------ 1 user group 10053852 Apr 17 19:09
FWR_ioPAC8500_V1.1_Build13041719_STD.hfm
226 Transfer complete
ftp> get FWR_ioPAC8500_V1.1_Build13041719_STD.hfm /home/
FWR_ioPAC8500_V1.1_Build13041719_STD.hfm
local: /home/FWR.hfm remote: FWR_ioPAC8500_V1.1_Build13041719_STD.hfm
200 Port command successful.
150 Opening BINARY mode data connection for file transfer.
226 Transfer complete.
10053852 bytes received in 81.2 secs (1.2e+02 kbytes/sec)
ftp>

3. Next, use the upgradehfm command to upgrade the kernel and root file system.

upgradehfm FWR_ioPAC_x_x_x.hfm

ioPAC RTU Software RTU Management

 3-4

root@Moxa:/mnt/ramdisk# upgradehfm FWR_ioPAC8500_V1.1_Build13041719_STD.hfm
root@Moxa:/home# upgradehfm FWR_ioPAC8500_V1.1_Build13041719_STD.hfm
Upgrade firmware utility version 1.1.
To check source firmware file context.
The source firmware file conext is OK.
This step will destory all your firmware.
Continue ? (Y/N) :

Now upgrade the file [KERNEL_ioPAC-8500].
Format MTD device [/dev/mtd1] ...
MTD device [/dev/mtd1] erase 128 Kibyte @ 380000 -- 100% complete.
Wait to write file ...
Completed 100%

Now upgrade the file [ROOTFS_ioPAC-8500].
Format MTD device [/dev/mtd2] ...
MTD device [/dev/mtd2] erase 128 Kibyte @ 1000000 -- 100% complete.
Wait to write file ...
Completed 100%

Now upgrade the file [85M-5401] for slot module

Now upgrade the file [85M-3811] for slot module

Now upgrade the file [85M-3810] for slot module

Now upgrade the file [85M-3801] for slot module

Now upgrade the file [85M-3800] for slot module

Now upgrade the file [85M-2600] for slot module

Now upgrade the file [85M-1602] for slot module

NOTE The firmware upgrade contains the I/O modules firmware. If there is no compatible I/O modules installed, it will
automatically skip the I/O module firmware upgrading procedure.

Recovering the Firmware
If the ioPAC RTU fails to boot up normally, the device firmware may be corrupt.

Follow the steps below to recover the device firmware:

1. Run a TFTP server on your PC.

2. Put the ioPAC RTU firmware file in the root folder of the TFTP server.

3. Power off the ioPAC RTU controller.

4. Connect the ioPAC RTU controller to the PC to the console port with a console cable, and to the LAN1 port
with an Ethernet cable.

5. Start a terminal program (e.g., PComm) with the settings: Baudrate 115200, no hardware flow control, 8
N 1; character set VT100.

6. Hold down the DEL key on your PC keyboard.

7. Power on the ioPAC RTU controller. You will be guided to the boot loader utility menu as shown below:

===

=

(1) Network Configuration (2) Format User Disk

(3) Firmware Upgrade (4) Reboot

===

=

Command>>3

8. Press 1 to configure the Network (e.g., TFTP server IP address and ioPAC RTU IP address).

ioPAC RTU Software RTU Management

 3-5

9. Press 3 to upgrade the ioPAC RTU controller firmware.

10. Press 1 to select Load from LAN and then type the firmware filename to upgrade the device firmware.

===

=

(1) Load from LAN (2) Load from serial with Xmodem

===

=

Command>>1

Please input load file name..

Default file name : RTU.hfm

User Input file name : RTU.hfm

Initializing network ...OK

Search TFTP Server...OK

Using default protocol (TFTP)

Ready to receive RTU.hfm

frm_headerlength : [0x5c]

frm_header_version : [0x2000000]

frm_modelname : [RTU]

frm_totallength : [0x96eed0]

frm_checksum :

[0xe2c36f1f]

frm_totalfileno : [0x3]

frm_apidno : [0x1]

frm_APID :

[0x80000189]

file_filename : [KERNEL_ioPAC-8500]

file_filelength : [1c7a74]

file_checksum : [65246529]

file_flashstart : [80080000]

file_flashend : [80400000]

file_flashlength : [380000]

file_DRAMstartaddr : [0]

file_mtdno : [1]

file_version :

[260602]

Erase flashrom 0x80080000-0x800a0000 ..OK

11. After completing the upgrade process, power cycle the ioPAC RTU.

Loading Factory Defaults
Use the following procedure to reset the ioPAC to the factory defaults. Note that when you reset the ioPAC, all
of your tag definitions, software programs, and files will be deleted, and the service and runtime engine will be
restarted.

1. When the system is booting up and the RDY LED is blinking GREEN, hold the toggle switch in the RESET
position.

2. Continue to hold toggle switch until the RDY LED turns a solid RED, and then release the toggle switch. It
will take around 90 seconds to complete the factory reset process.

3. When the RDY LED starts blinking GREEN (indicating that the kernel is rebooting), the factory mode is
completed.

ioPAC RTU Software RTU Management

 3-6

Enabling and Disabling Daemons
The following daemons are enabled when the ioPAC RTU controller boots up for the first time.

snmpd SNMP Agent daemon
telnetd Telnet Server / Client daemon
inetd Internet Daemons
ftpd FTP Server / Client daemon
sshd Secure Shell Server daemon
Type the ps command to list all processes currently running.

 root@Moxa:/# cd /etc
root@Moxa:/etc# ps
 PID USER VSZ STAT COMMAND
 1 root 1868 S init [3]
 2 root 0 SW [kthreadd]
 3 root 0 SW [ksoftirqd/0]
 4 root 0 SW [kworker/0:0]
 5 root 0 SW [kworker/u:0]
 6 root 0 SW [rcu_kthread]
 7 root 0 SW< [khelper]
 8 root 0 SW [sync_supers]
 9 root 0 SW [bdi-default]
 10 root 0 SW< [kblockd]
 11 root 0 SW [khubd]
 12 root 0 SW< [rpciod]
 13 root 0 SW [kswapd0]
 14 root 0 SW [kworker/0:1]
 15 root 0 SW [fsnotify_mark]
 16 root 0 SW< [aio]
 17 root 0 SW< [nfsiod]
 18 root 0 SW< [crypto]
 23 root 0 SW [mtdblock0]
 24 root 0 SW [mtdblock1]
 25 root 0 SW [mtdblock2]
 26 root 0 SW [mtdblock3]
 27 root 0 SW [kworker/u:1]
 44 root 0 SW [flush-1:0]
 45 root 0 SW [flush-1:7]
 49 root 0 SWN [jffs2_gcd_mtd3]
 106 root 2816 S /usr/sbin/inetd
 113 root 4208 S /sbin/sshd
 117 root 2872 S /bin/sh /bin/rtu_agent
 120 root 45440 S /bin/rtu_agent_bin
 125 root 2920 S /bin/sh --login
 131 root 6824 S sshd: root@ttyp0
 137 root 2924 S -bash
 139 root 2740 R ps
root@Moxa:/ect#

To run a private daemon, you can edit the rc.local file, as follows:

#cd /etc
#vi rc.local

 root@Moxa:~# cd /etc/
root@Moxa:~# /etc/rc.d# vi rc.local

Next, use the vi command to open your application program. In this example, we use the hello_world.c
program and let it run in the background.

ioPAC RTU Software RTU Management

 3-7

!/bin/sh
if [-f /home/autoexec.sh]; then
/home/autoexec.sh
fi
Add the new daemons or programs starting from the next line
/home/hello_world &~

The enabled daemons will be available after you reboot the system.

 root@Moxa:~# ps
 PID USER VSZ STAT COMMAND
 1 root 1868 S init [3]
 2 root 0 SW [kthreadd]
 3 root 0 SW [ksoftirqd/0]
 4 root 0 SW [kworker/0:0]
 5 root 0 SW [kworker/u:0]
 6 root 0 SW [rcu_kthread]
 7 root 0 SW< [khelper]
 8 root 0 SW [sync_supers]
 9 root 0 SW [bdi-default]
 10 root 0 SW< [kblockd]
 11 root 0 SW [khubd]
 12 root 0 SW< [rpciod]
 13 root 0 SW [kswapd0]
 14 root 0 SW [kworker/0:1]
 15 root 0 SW [fsnotify_mark]
 16 root 0 SW< [aio]
 17 root 0 SW< [nfsiod]
 18 root 0 SW< [crypto]
 23 root 0 SW [mtdblock0]
 24 root 0 SW [mtdblock1]
 25 root 0 SW [mtdblock2]
 26 root 0 SW [mtdblock3]
 27 root 0 SW [kworker/u:1]
 49 root 0 SWN [jffs2_gcd_mtd3]
 106 root 2816 S /usr/sbin/inetd
 113 root 4208 S /sbin/sshd
 117 root 2872 S /bin/sh /bin/rtu_agent
 120 root 45440 S /bin/rtu_agent_bin
 125 root 2920 S /bin/sh --login
 131 root 6824 S sshd: root@ttyp0
 137 root 2924 S -bash
 159 root 2740 S /usr/sbin/telnetd
 160 root 2920 S -bash
 161 root 0 SW [flush-1:7]
 164 root 1848 S ./ hello_world
 171 root 6824 S sshd: root@ttyp2
 177 root 2924 S -bash
 178 root 2740 R ps
root@Moxa:~#

Run-Level Settings
In this section, we outline the steps you should take to set the Linux run-level and execute requests. The
run-level for the ioPAC RTU controller is 3. Use the following command to enable or disable settings:

 root@Moxa:/etc/rc.d/rc3.d# ls
S19nfs-common S25nfs-user-server S99showreadyled
S20snmpd S55ssh
S24pcmcia S99rmnologin
root@Moxa:/etc/rc.d/rc3.d#

#cd /etc/rc.d/init.d

Edit a shell script to execute /home/tcps2-release and save to tcps2 as follows:

#cd /etc/rc.d/rc3.d

ioPAC RTU Software RTU Management

 3-8

#ln –s /etc/rc.d/init.d/tcps2 S60tcps2

SxxRUNFILE stands for
S: start the run file while Linux boots up.
xx: a number between 00-99. Smaller numbers have a higher priority.
RUNFILE: the file name.

 root@Moxa:/etc/rc.d/rc3.d# ls
S19nfs-common S25nfs-user-server S99showreadyled
S20snmpd S55ssh
S24pcmcia S99rmnologin
root@Moxa:/etc/rc.d/rc3.d# ln –s /home/tcps2-release S60tcps2
root@Moxa:/etc/rc.d/rc3.d# ls
S19nfs-common S25nfs-user-server S99rmnologin
S20snmpd S55ssh S99showreadyled
S24pcmcia S60tcps2
root@Moxa:/etc/rc.d/rc3.d#

KxxRUNFILE stands for
K: start the run file while linux shuts down or halts.
xx: a number between 00-99. Smaller numbers have a higher priority.
RUNFILE: the file name.

To remove the daemon, remove the run file from the /etc/rc.d/rc3.d directory by using the following
command:

#rm –f /etc/rc.d/rc3.d/S60tcps2

NOTE Level rc3.d has a higher priority than rc.local, so rc3.d will execute before rc.local.

System Time Setting

Setting the Time Manually
The ioPAC RTU controller has two time settings. One is the system time, and the other is the RTC (Real Time
Clock) time kept by the ioPAC hardware. Use the #date command to query the current system time or set a
new system time. Use #hwclock to query the current RTC time or set a new RTC time.

Use the following command to query the system time:

#date

Use the following command to query the RTC time:

#hwclock

Use the following command to set the system time:

#date YYYYMMDDhhmm

MM = Month
DD = Date
hhmm = hour and minute
YYYY = Year

Use the following command to set the RTC time:

#hwclock –w

Write current system time to RTC

The following figure illustrates how to update the system time and set the RTC time.

ioPAC RTU Software RTU Management

 3-9

root@Moxa:/# date
Fri May 10 02:35:39 UTC 2013
root@Moxa:/# hwclock
Fri May 10 02:35:43 2013 0.000000 seconds
root@Moxa:/# date 201305101037
Fri May 10 10:37:00 UTC 2013
root@Moxa:/# hwclock -w
root@Moxa:/# date ; hwclock
Fri May 10 10:37:32 UTC 2013
Fri May 10 10:37:32 2013 0.000000 seconds
root@Moxa:/#

ioPAC RTU Software RTU Management

 3-10

Updating the Time with NTP Client
The ioPAC RTU controller has a built-in NTP (Network Time Protocol) client that is used to initialize a time
request to a remote NTP server. Use #ntpdate <this client utility> to update the system time.

#ntpdate time.stdtime.gov.tw

#hwclock –w

Visit http://www.ntp.org for more information about NTP and NTP server addresses.

 root@Moxa:/# date ;hwclock
Fri May 10 10:50:54 CST 2013
Fri May 10 02:50:53 2013 0.000000 seconds
root@Moxa:/# ntpdate time.stdtion.gov.tw
10 May 10:51:03 ntpdate[156]: adjust time server 192.168.50.33 offset 0.007500 sec
root@Moxa:/# hwclock -w
root@Moxa:/# date; hwclock
Fri May 10 10:51:17 CST 2013
Fri May 10 10:51:16 2013 0.000000 seconds
root@Moxa:/#

Add the command line to the vi/etc/profile directory to change the time zone. For example, export
TZ=CST-8.

NOTE Before using the NTP client utility, check your IP and DNS settings to make sure that an Internet connection is
available. Refer to Chapter 2 for instructions on how to configure the Ethernet interface, and see Chapter 4 for
DNS settings information.

Updating the Time Automatically
This section demonstrates how to use a shell script to update the time automatically.

Example shell script to update the system time periodically

#!/bin/sh
ntpdate time.nist.gov
You can use the time server’s ip address or domain
name directly. If you use domain name, you must
enable the domain client on the system by updating
/etc/resolv.conf file.
hwclock –-systohc
sleep 100
Updates every 100 seconds. The min. time is 100 seconds. Change
100 to a larger number to update RTC less often.

Save the shell script using any file name (e.g., fixtime)

How to run the shell script automatically when the kernel boots up

Copy the above example shell script fixtime to directory /etc/init.d, and then use chmod 755 fixtime to change
the shell script mode. Next, use vi editor to edit the file /etc/inittab. Add the following line to the bottom of the
file:

ntp : 2345 : respawn : /etc/init.d/fixtime

Use the command #init q to re-init the kernel.

ioPAC RTU Software RTU Management

 3-11

NTP Server Setting
The ioPAC RTU controller has an NTP server setting. First, configure the time sync server at the path
/etc/ntp.conf and use the /etc/init.d/ntpd start command to start the NTP server.

 root@Moxa:/etc# /etc/init.d/ntpd start
Starting ntp server

Use the ntpq -pn command to check the NTP server status, and ntpd –g –l /etc/ntp_log & to debug the NTP
server.

NOTE ntpd and ntpdate cannot be used at the same time because the UDP port 123 will be occupied.
Remember to use hwclock-w to update the RTC time, or else the time sync settings will be lost after you
restart the device.

Executing Scheduled Commands with Cron
Daemon

Start cron from the /etc/rc.d/rc.local directory. It will return immediately, so you don’t need to start it with
‘&’ to run in the background.

The Cron daemon will search /etc/cron.d/crontab for crontab files, which are named after accounts in
/etc/passwd.

Cron wakes up every minute, and checks each command to see if it should be run that minute. Modify the file
/etc/cron.d/crontab to set up your scheduled applications. Crontab files have the following format:

mm h dom mon dow user command

min hour date month week user command

0-59 0-23 1-31 1-12 0-6 (0 is Sunday)

The following example demonstrates how to use cron.

How to use cron to update the system time and RTC time every day at 8:00

Step 1: Write a shell script named fixtime.sh and save it to /home/.

#!/bin/sh
ntpdate time.nist.gov
hwclock –w
exit 0

Step 2: Change the fixtime.sh mode.

#chmod 755 fixtime.sh

Step 3: Modify the /etc/cron.d/crontab file to run fixtime.sh at 8:00 every day.

Add the following line to the end of crontab:
* 8 * * * root/home/fixtime.sh

Step 4: Enable the cron daemon manually.

#/etc/init.d/crond start

Step 5: Enable cron when the system boots up.

Add the following line in the /etc/rc.d/rc.local file
#/etc/init.d/crond start

ioPAC RTU Software RTU Management

 3-12

Software Lock
Software Lock is an innovative technology developed by the Moxa engineering team. It can be adopted by a
system integrator or developer to protect his/her applications from being copied. An application is compiled
into a binary format bound to the ioPAC RTU and the operating system (OS) that the application runs on. So as
long as the application is obtained from the development PC, it can be installed on the same hardware and the
same operating system, resulting in a loss of the add-on value created by the developer.

Moxa’s engineers used data encryption to develop this protection mechanism for your applications. The binary
file associated with each of your applications needs to undergo an additional encryption process after you have
developed it. The process requires you to install an encryption key on the ioPAC RTU.

1. Choose an encryption key (e.g.,”ABigKey”) and install it on the ioPAC RTU controller using the pre-loaded
setkey utility program.

#setkey ABigKey

NOTE: set an empty string to clear the encryption key on the ioPAC RTU controller by:

#setkey ““

2. Develop and compile your program in the development PC.

3. On the development PC, run the binencryptor utility program to encrypt your program with an encryption
key.

#binencryptor yourProgram ABigKey

4. Upload the encrypted program file to the ioPAC RTU by FTP or NFS and test the program.

The encryption key is a computer-wise key. That is to say, an ioPAC RTU has only one key installed. Running
the setkey program multiple times overrides the existing key.

To prove the effectiveness of this software protection mechanism, prepare an ioPAC RTU that has not been
installed an encryption key or install a key different from that used to encrypt your program. In any case, the
encrypted program fails immediately.

This mechanism also allows an ioPAC RTU with an encryption key to bypass programs that are not encrypted,
and is useful in developing and testing programs on the ioPAC RTU.

4
4. RTU Communications

In this chapter, we explain how to configure the ioPAC RTU various communication functions.

The following topics are covered in this chapter:

 Internet Configuration

 Modbus TCP Master and Slave

 DNS

 Telnet/FTP

 iptables

 NAT (SNAT)

 Port Forwarding (DNAT)

 PPP Dial-up Service

 PPPoE

 NFS (Network File System) Client

 Sending Mail

 OpenVPN

 NTP Server/Client

 Port Trunking

 Serial Configuration

 Modbus RTU Master

ioPAC RTU Software RTU Communications

 4-2

Internet Configuration

Modbus TCP Master and Slave
Modbus TCP is a very common communication protocol in industrial applications and the ioPAC RTU controller
has built-in Modbus TCP master and slave functions. For more detailed information, refer to the C/C++
Sample Code Programming Guide for ioPAC RTU Controllers.

DNS
The ioPAC RTU controllers can be set as a DNS client but not a DNS server. To set up the ioPAC as a DNS client,
edit three configuration files: /etc/hosts, /etc/resolv.conf, and /etc/nsswitch.conf.

/etc/hosts

This is the first file that the Linux system reads to resolve the host name and IP address.

/etc/resolv.conf

This is the most important file to edit when using DNS for the other programs. For example, before using
#ntpdate time.nist.goc to update the system time, add the DNS server address to the file. Ask your network
administrator which DNS server address you should use. The DNS server’s IP address is specified by the
nameserver command. For example, add the following line to /etc/resolv.conf if the DNS server’s IP
address is 168.95.1.1:

nameserver 168.95.1.1

 root@Moxa:/etc# cat resolv.conf

resolv.conf This file is the resolver configuration file
See resolver(5).

#nameserver 192.168.1.16
nameserver 168.95.1.1
nameserver 140.115.1.31
nameserver 140.115.236.10
root@Moxa:/etc#

/etc/nsswitch.conf

This file defines the sequence to resolve the IP address by using /etc/hosts file or /etc/resolv.conf.

Telnet/FTP
In addition to supporting Telnet client-server and FTP client-server architectures, the ioPAC RTU controllers
also support SSH and SFTP client-server architectures. To enable or disable the Telnet/FTP server, first edit the
file /etc/inetd.conf.

Enabling the Telnet/FTP server
The following example shows the default content of the /etc/inetd.conf file. The Telnet/FTP server is enabled
by default:

discard dgram udp wait root /bin/discard
discard stream tcp nowait root /bin/discard
telnet stream tcp nowait root /bin/telnetd
ftp stream tcp nowait root /bin/ftpd -l

Disabling the Telnet/FTP server
Disable the daemon by typing # in front of the first character of the row to comment out the line.

ioPAC RTU Software RTU Communications

 4-3

iptables
The iptables command is an administrative tool for setting up, maintaining, and inspecting the Linux kernel’s
IP packet filter rule tables. Several different tables are defined, with each table containing built-in chains and
user-defined chains.

Each chain is a list of rules that apply to a certain type of packet. Each rule specifies what to do with a matching
packet. A rule (such as a jump to a user-defined chain in the same table) is called a “target.”

The ioPAC RTU controllers support 3 types of iptables tables: Filter tables, NAT tables, and Mangle tables:

A. Filter tables—includes three chains:

INPUT chain
OUTPUT chain
FORWARD chain

B. NAT tables—includes three chains:

PREROUTING chain—transfers the destination IP address (DNAT)
POSTROUTING chain—works after the routing process and before the Ethernet device process to transfer
the source IP address (SNAT)
OUTPUT chain—produces local packets

sub-tables

Source NAT (SNAT)—changes the first source packet IP address
Destination NAT (DNAT)—changes the first destination packet IP address
MASQUERADE—a special form for SNAT. If one host can connect to the Internet, then other computers
that connect to this host can connect to the Internet when the computer does not have an actual IP
address.
REDIRECT—a special form of DNAT that re-sends packets to a local host independent of the destination
IP address.

C. Mangle tables—includes two chains

PREROUTING chain—pre-processes packets before the routing process.
OUTPUT chain—processes packets after the routing process.
It has three extensions—TTL, MARK, TOS.

ioPAC RTU Software RTU Communications

 4-4

The following figure shows the iptables hierarchy.

The ioPAC RTU controllers support the following sub-modules. Be sure to use the module that matches your
application.

nf_conntrack ipt_MASQUERADE xt_length

nf_conntrack_ftp ipt_REDIRECT xt_limit

nf_conntrack_irc ipt_REJECT xt_mark

nf_nat_ftp xt_TCPMSS xt_multiport

nf_nat_irc xt_mac xt_owner

nf_nat_snmp_basic ipt_ULOG xt_state

nf_queue ipt_ah xt_tcpmss

ipt_LOG xt_esp

NOTE The ioPAC RTU controllers DO NOT support IPv6 or ipchains.

The basic syntax to enable and load an iptables module is as follows:

#lsmod
#modprobe ip_tables
#modprobe iptable_filter

Use lsmod to check if the ip_tables module has already been loaded onto the ioPAC RTU controller unit. Use
modprobe to insert and enable the module.

ioPAC RTU Software RTU Communications

 4-5

Use the following command to load the modules (iptable_filter, iptable_mangle, iptable_nat):
#modprobe iptable_filter

NOTE iptables plays the role of packet filter or NAT. Take care when setting up the iptables rules. If the rules are
not correct, remote hosts that connect via a LAN or PPP may be denied access. We recommend using the serial
console to set up the iptables.
Click on the following links for more information about iptables:
http://www.linuxguruz.com/iptables/
http://www.netfilter.org/documentation/HOWTO//packet-filtering-HOWTO.html

To illustrate the iptables syntax, we have divided our discussion of the various rules into three categories:
observe and erase chain rules, define policy rules, and append or delete rules.

Observe and Erase Chain Rules

Usage:
iptables [-t tables] [-L] [-n]

-t tables: Table to manipulate (default: ‘filter’); example: nat or filter.
-L [chain]: Lists all rules in selected chains. If no chain is selected, all chains are listed.
-n: Numeric output of addresses and ports.

iptables [-t tables] [-FXZ]

-F: Flush the selected chain (all the chains in the table if none is listed).
-X: Delete the specified user-defined chain.
-Z: Set the packet and byte counters in all chains to zero.

Examples:
iptables -L -n

In this example, since we do not use the -t parameter, the system uses the default ‘filter’ table. Three
chains are included: INPUT, OUTPUT, and FORWARD. INPUT chains are accepted automatically, and all
connections are accepted without being filtered.

#iptables –F
#iptables –X
#iptables –Z

http://www.linuxguruz.com/iptables/
http://www.netfilter.org/documentation/HOWTO/packet-filtering-HOWTO.html

ioPAC RTU Software RTU Communications

 4-6

Define Policy for Chain Rules

Usage:
iptables [-t tables] [-P] [INPUT, OUTPUT, FORWARD, PREROUTING, OUTPUT, POSTROUTING]
[ACCEPT, DROP]

-P: Set the policy for the chain to the given target.
INPUT: For packets coming into the ioPAC RTU.
OUTPUT: For locally-generated packets.
FORWARD: For packets routed out through the ioPAC RTU.
PREROUTING: To alter packets as soon as they come in.
POSTROUTING: To alter packets as they are about to be sent out.

Examples:
#iptables –P INPUT DROP
#iptables –P OUTPUT ACCEPT
#iptables –P FORWARD ACCEPT
#iptables –t nat –P PREROUTING ACCEPT
#iptables –t nat –P OUTPUT ACCEPT
#iptables -t nat –P POSTROUTING ACCEPT

In this example, the policy accepts outgoing packets and denies incoming packets.

Append or Delete Rules

Usage:
iptables [-t table] [-AI] [INPUT, OUTPUT, FORWARD] [-io interface] [-p tcp, udp, icmp, all] [-s
IP/network] [--sport ports] [-d IP/network] [--dport ports] –j [ACCEPT. DROP]

-A: Append one or more rules to the end of the selected chain.
-I: Insert one or more rules in the selected chain as the given rule number.
-i: Name of an interface via which a packet is going to be received.
-o: Name of an interface via which a packet is going to be sent.
-p: The protocol of the rule or of the packet to check.
-s: Source address (network name, host name, network IP address, or plain IP address).
--sport: Source port number.
-d: Destination address.
--dport: Destination port number.
-j: Jump target. Specifies the target of the rules; i.e., how to handle matched packets. For
example, ACCEPT the packet, DROP the packet, or LOG the packet.

Examples:
Example 1: Accept all packets from lo interface.
iptables –A INPUT –i lo –j ACCEPT

Example 2: Accept TCP packets from 192.168.0.1.
iptables –A INPUT –i eth0 –p tcp –s 192.168.0.1 –j ACCEPT

Example 3: Accept TCP packets from Class C network 192.168.1.0/24.
iptables –A INPUT –i eth0 –p tcp –s 192.168.1.0/24 –j ACCEPT

Example 4: Drop TCP packets from 192.168.1.25.
iptables –A INPUT –i eth0 –p tcp –s 192.168.1.25 –j DROP

Example 5: Drop TCP packets addressed for port 21.
iptables –A INPUT –i eth0 –p tcp --dport 21 –j DROP

Example 6: Accept TCP packets from 192.168.0.24 to W341’s port 137, 138, 139
iptables –A INPUT –i eth0 –p tcp –s 192.168.0.24 --dport 137:139 –j ACCEPT

ioPAC RTU Software RTU Communications

 4-7

Example 7: Drop all packets from MAC address 01:02:03:04:05:06.
iptables –A INPUT –i eth0 –p all –m mac -–mac-source 01:02:03:04:05:06 –j DROP

NOTE In Example 7, remember to issue the command #modprobe ipt_mac first to load module ipt_mac.

NAT (SNAT)
NAT (Network Address Translation) protocol translates IP addresses used on one network to different IP
addresses used on another network. One network is designated the inside network and the other is the outside
network. Typically, the ioPAC RTU controllers connect several devices on a network and maps local inside
network addresses to one or more global outside IP addresses, and un-maps the global IP addresses on
incoming packets back into local IP addresses.

NOTE Click on the following links for more information about iptables and NAT:
http://www.netfilter.org/documentation/HOWTO/NAT-HOWTO.html

The IP address of LAN1 is changed to 192.168.127.254 (you will need to load the module ipt_MASQUERADE):

1. #echo 1 > /proc/sys/net/ipv4/ip_forward

2. #modprobe ip_tables

3. #modprobe iptable_filter

4. #modprobe nf_conntrack

5. #modprobe iptable_nat

6. #modprobe ipt_MASQUERADE

7. #iptables -t nat -A POSTROUTING -o eth0 -j SNAT --to-source 192.168.127.254

8. #iptables -t nat -A POSTROUTING -o eth0 -s 192.168.126.0/24 -j MASQUERADE

ioPAC RTU Software RTU Communications

 4-8

Enabling NAT at Bootup

In most real world situations, use a simple shell script to enable NAT when the ioPAC RTU controller boots up.
The following script is an example.

#!/bin/bash
If you put this shell script in the /home/nat.sh
Remember to chmod 744 /home/nat.sh
Edit the rc.local file to make this shell startup automatically.
vi /etc/rc.d/rc.local
Add a line in the end of rc.local /home/nat.sh
EXIF=‘eth0’ #This is an external interface for setting up a valid IP address.
EXNET=‘192.168.126.0/24’ #This is an internal network address.

1. Insert modules.

Here 2> /dev/null means the standard error messages will be dump to null device.

modprobe nf_tables 2> /dev/null

modprobe nf_conntrack 2> /dev/null

modprobe nf_conntrack_ftp 2> /dev/null

modprobe nf_conntrack_irc 2> /dev/null

modprobe iptable_nat 2> /dev/null

modprobe nf_nat_ftp 2> /dev/null

modprobe nf_nat_irc 2> /dev/null

2. Define variables, enable routing, and erase default rules.

PATH=/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/sbin

export PATH

echo “1” > /proc/sys/net/ipv4/ip_forward

/bin/iptables -F

/bin/iptables -X

/bin/iptables -Z

/bin/iptables -F -t nat

/bin/iptables -X -t nat

/bin/iptables -Z -t nat

/bin/iptables -P INPUT ACCEPT

/bin/iptables -P OUTPUT ACCEPT

/bin/iptables -P FORWARD ACCEPT

/bin/iptables -t nat -P PREROUTING ACCEPT

/bin/iptables -t nat -P POSTROUTING ACCEPT

/bin/iptables -t nat -P OUTPUT ACCEPT

3. Enable IP masquerade.

ioPAC RTU Software RTU Communications

 4-9

Port Forwarding (DNAT)
Port forwarding allows remote computers (e.g., computers on the Internet) to connect to a specific computer
or service within a private local-area network (LAN). The following is an FTP port forwarding example.

echo 1 >/proc/sys/net/ipv4/ip_forward
modprobe ip_tables
modprobe nf_conntrack
modprobe nf_conntrack_ftp
modprobe nf_conntrack_irc
modprobe iptable_nat
modprobe nf_nat_ftp
modprobe nf_nat_irc
iptables -t nat -A PREROUTING -p tcp --dport 99 -i eth0 -j DNAT --to-destination 192.168.126.100:

PPP Dial-up Service
PPP (Point to Point Protocol) is used to run IP (Internet Protocol) and other network protocols over a serial link.
PPP can be used for direct serial connections (using a null-modem cable) over a Telnet link, and links
established using a modem over a telephone line.

Modem/PPP access is almost identical to connecting directly to a network through the ioPAC RTU controller
Ethernet port. Since PPP is a peer-to-peer system, the ioPAC RTU controller can also use PPP to link two
networks (or a local network to the Internet) to create a Wide Area Network (WAN).

NOTE More information about PPP is available at:
http://tldp.org/HOWTO/PPP-HOWTO/index.html
http://axion.physics.ubc.ca/ppp-linux.html

The pppd daemon is used to connect to a PPP server from a Linux system. For more detailed information about
pppd, use pppd --help.

ioPAC RTU Software RTU Communications

 4-10

Example 1: Connecting to a PPP server over a simple dial-up connection

The following command is used to connect to a PPP server by modem. Use this command for old ppp servers
that prompt for a login name (replace username with the correct name) and password (replace password with
the correct password). Note that debug and default route 192.1.1.17 are optional.

#pppd connect ‘chat -v “ “ ATDT5551212 CONNECT “ “ ogin: username word: password’
/dev/ttyM0 115200 debug crtscts modem defaultroute

If the PPP server does not prompt for the username and password, the command should be entered as follows.
Replace username with the correct username and replace password with the correct password.

#pppd connect ‘chat -v “ “ ATDT5551212 CONNECT “ “‘user username password password
/dev/ttyM0 115200 crtscts modem

The pppd options are described below:

connect ‘chat etc...’

This option gives the command to contact the PPP server. The ‘chat’ program is used to dial a remote computer.
The entire command is enclosed in single quotes because pppd expects a one-word argument for the ‘connect’
option. The options for ‘chat’ are given below:

-v

verbose mode; log what we do to syslog

“ “

Double quotes—don’t wait for a prompt, but instead do ... (note that you must include a space after the second
quotation mark)

ATDT5551212

Dial the modem, and then ...

CONNECT

Wait for an answer.

“ “

Send a return (null text followed by the usual return)

login: username word: password

Log in with the username and password.

/dev/

Specify the callout serial port.

115200

The baudrate.

debug

Log status in syslog.

crtscts

Use hardware flow control between computer and modem (at 115200 this is a must).

modem

Indicates that this is a modem device; pppd will hang up the phone before and after making the call.

defaultroute

ioPAC RTU Software RTU Communications

 4-11

Once the PPP link is established, make it the default route; if you have a PPP link to the Internet, this is probably
what you want.

192.1.1.17

This is a degenerate case of a general option of the form x.x.x.x:y.y.y.y. Here x.x.x.x is the local IP address
and y.y.y.y is the IP address of the remote end of the PPP connection. If this option is not specified, or if just
one side is specified, then x.x.x.x defaults to the IP address associated with the local machine’s hostname
(located in /etc/hosts), and y.y.y.y is determined by the remote machine.

Example 2: Connecting to a PPP Server over a Hard-Wired Link

If a username and password are not required, use the following command (note that noipdefault is optional):

#pppd connect ‘chat –v “ “ “ “ ‘ noipdefault /dev/ttyM0 19200 crtscts “

If a username and password is required, use the following command (note that noipdefault is optional, and root
is both the username and password):

#pppd connect ‘chat –v “ “ “ “ ‘ user root password root noipdefault
/dev/ttyM0 19200 crtscts

How to Check the Connection

Once you’ve set up a PPP connection, there are some steps you can take to test the connection. First, type:

/sbin/ifconfig

(The folder ifconfig may be located elsewhere, depending on your distribution.) You should be able to see all
the network interfaces that are UP. ppp0 should be one of them, and you should recognize the first IP address
as your own, and the P-t-P address (or point-to-point address) the address of your server. Here’s what it
looks like on one machine:

lo Link encap Local Loopback
inet addr 127.0.0.1 Bcast 127.255.255.255 Mask 255.0.0.0
UP LOOPBACK RUNNING MTU 2000 Metric 1
RX packets 0 errors 0 dropped 0 overrun 0

ppp0 Link encap Point-to-Point Protocol
inet addr 192.76.32.3 P-t-P 129.67.1.165 Mask 255.255.255.0
UP POINTOPOINT RUNNING MTU 1500 Metric 1
RX packets 33 errors 0 dropped 0 overrun 0
TX packets 42 errors 0 dropped 0 overrun 0

Now, type:

ping z.z.z.z

where z.z.z.z is the address of your name server. This should work. Here’s what the response could look like:

waddington:~$p ping 129.67.1.165
PING 129.67.1.165 (129.67.1.165): 56 data bytes
64 bytes from 129.67.1.165: icmp_seq=0 ttl=225 time=268 ms
64 bytes from 129.67.1.165: icmp_seq=1 ttl=225 time=247 ms
64 bytes from 129.67.1.165: icmp_seq=2 ttl=225 time=266 ms
^C
--- 129.67.1.165 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 247/260/268 ms
waddington:~$

Try typing:

ioPAC RTU Software RTU Communications

 4-12

netstat –nr

This should show three routes, something like this:

Kernel routing table
Destination iface Gateway Genmask Flags Metric Ref Use
129.67.1.165 ppp0 0.0.0.0 255.255.255.255 UH 0 0 6
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
0.0.0.0 ppp0 129.67.1.165 0.0.0.0 UG 0 0 6298

If your output looks similar but doesn’t have the destination 0.0.0.0 line (which refers to the default route used
for connections), you may have run pppd without the defaultroute option. At this point you can try using
Telnet, FTP, or finger, bearing in mind that you’ll have to use numeric IP addresses unless you’ve set up
/etc/resolv.conf correctly.

Setting up a Machine for Incoming PPP Connections

This first example applies to using a modem, and requiring authorization with a username and password.

pppd/dev/ttyM0 115200 crtscts modem 192.168.16.1:192.168.16.2 login auth

You should also add the following line to the file /etc/ppp/pap-secrets:

* * ““ *

The first asterisk (*) lets everyone log in. The second asterisk (*) lets every host connect. The pair of double
quotation marks (““) is to use the /etc/passwd file to check the password. The last asterisk (*) is to let any
IP address connect.

The following example does not check the username and password:

pppd/dev/ttyM0 115200 crtscts modem 192.168.16.1:192.168.16.2

PPPoE
1. Connect the ioPAC RTU controller LAN port to an ADSL modem with a cross-over cable, hub, or switch.

2. Log in to the ioPAC RTU controller as the root user.

3. Edit the file /etc/ppp/chap-secrets and add the following:

“username@hinet.net”*“password”*

Secrets for authentication using CHAP
client server secret IP addresses

PPPOE example, if you want to use it, you need to unmark it and modify it
“username@hinet.net” * “password” *

following is INBOUND for everyone
 * * “” *

“username@hinet.net” is the username obtained from the ISP to log in to the ISP account. “password”
is the corresponding password for the account.

4. Edit the file /etc/ppp/pap-secrets and add the following:

“username@hinet.net”*“password”*

INBOUND connections

Every regular user can use PPP and has to use passwords from /etc/passwd
* * “” *

PPPOE user example, if you want to use it, you need to unmark it and modify it
“username@hinet.net” * “password” *

ioPAC RTU Software RTU Communications

 4-13

UserIDs that cannot use PPP at all. Check your /etc/passwd and add any# other
accounts that should not be able to use pppd!
guest hostname “*” -
master hostname “*” -
root hostname “*” -
support hostname “*” -
stats hostname “*” -

“username@hinet.net” is the username obtained from the ISP to log in to the ISP account. “password”
is the corresponding password for the account.

5. Edit the file /etc/ppp/options and add the following line:

plugin pppoe

This wait period only applies if the connect or pty option is used.
#connect-delay <n>

Load the pppoe plugin
plugin /lib/pppoe.so

---<End of File>---

6. Add one of two files: /etc/ppp/options.eth0 or /etc/ppp/options.eth1. The choice depends on which

LAN is connected to the ADSL modem. If you use LAN1 to connect to the ADSL modem, then add
/etc/ppp/options.eth0. If you use LAN2 to connect to the ADSL modem, then add
/etc/ppp/options.eth1. The file context is shown below:

name username@hinet.net
mtu 1492
mru 1492
defaultroute
noipdefault
~

Type your username (the one you set in the /etc/ppp/pap-secrets and /etc/ppp/chap-secrets files)
after the “name” option. You may add other options as desired.

7. Set up DNS

If you are using DNS servers supplied by your ISP, edit the file
/etc/resolv.conf by adding the following lines of code:

nameserver ip_addr_of_first_dns_server
nameserver ip_addr_of_second_dns_server

For example:
nameserver 168.95.1.1
nameserver 139.175.10.20

8. Use the following command to create a PPPoE connection:

pppd eth0
The eth0 is what is connected to the ADSL modem LAN port. The example above uses LAN1. To use LAN2,
type:
pppd eth1

9. Type ifconfig ppp0 to check if the connection is OK or has failed. If the connection is OK, you will see
information about the ppp0 setting for the IP address. Use ping to test the IP.

10. If you want to disconnect it, use the kill command to kill the pppd process.

mailto:username@hinet.net

ioPAC RTU Software RTU Communications

 4-14

NFS (Network File System) Client
The Network File System (NFS) is used to mount a disk partition on a remote machine, as if it were on a local
hard drive, allowing fast, seamless sharing of files across a network. NFS allows users to develop applications
for the ioPAC RTU controllers, without worrying about the amount of disk space that will be available. The ioPAC
RTU controller supports NFS protocol for clients.

NOTE More information about NFS is available at:
http://www.tldp.org/HOWTO/NFS-HOWTO/index.html
http://nfs.sourceforge.net/nfs-howto/client.html
http://nfs.sourceforge.net/nfs-howto/server.html

Setting up the ioPAC RTU Controller as an NFS Client

The following procedure is used to mount a remote NFS Server.

1. To know the NFS Server’s shared directory.

2. Establish a mount point on the NFS Client site.

3. Mount the remote directory to a local directory.

#mkdir –p /home/nfs/public
#mount –t nfs NFS_Server(IP):/directory /mount/point

Example:
#mount -t nfs -o nolock 192.168.13.1:/home/public /home/nfs/public

Sending Mail
msmtp is a minimal SMTP client that takes an email message body and passes it on to an SMTP server. It is
suitable for applications that use email to send alert messages or important logs to a specific user.

NOTE More information about smtpclient is available at:
https://wiki.archlinux.org/index.php/Msmtp

To send an email message, use the ‘smtpclient’ utility, which uses SMTP protocol. Type msmtp --help to see
the help message.

Example:
msmtp --host=hostname --read-envelope-from address_receiver@moxa.com

OpenVPN
OpenVPN provides two types of tunnels for users to implement VPNS: Routed IP Tunnels and Bridged
Ethernet Tunnels. To begin with, check to make sure that the system has a virtual device named
/dev/net/tun. If not, issue the following command:

mknod /dev/net/tun c 10 200

An Ethernet bridge is used to connect different Ethernet networks together. The Ethernets are bundled into one
bigger, “logical” Ethernet. Each Ethernet corresponds to one physical interface (or port) that is connected to the
bridge.

On each OpenVPN machine, you should generate a working directory, such as /etc/openvpn, where script
files and key files reside. Once established, all operations will be performed in that directory.

http://www.tldp.org/HOWTO/NFS-HOWTO/index.html
http://nfs.sourceforge.net/nfs-howto/client.html
http://nfs.sourceforge.net/nfs-howto/server.html
https://wiki.archlinux.org/index.php/Msmtp

ioPAC RTU Software RTU Communications

 4-15

Setup 1: Ethernet Bridging for Private Networks on Different Subnets

1. Set up four machines, as shown in the following diagram.

Host A (B) represents one of the machines that belongs to OpenVPN A (B). The two remote subnets are
configured for a different range of IP addresses. When this setup is moved to a public network, the external
interfaces of the OpenVPN machines should be configured for static IPs, or connect to another device (such as
a firewall or DSL box) first.

openvpn --genkey --secret secrouter.key

Copy the file that is generated to the OpenVPN machine.

2. Create link symbols to enable this script at boot time:

ln -s /etc/openvpn/openvpn-bridge /etc/rc.d/rc3.d/S32vpn-br # for example
ln -s /etc/openvpn/openvpn-bridge /etc/rc.d/rc6.d/K32vpn-br # for example

3. Create a configuration file named A-tap0-br.conf and an executable script file named A-tap0-br.sh on
OpenVPN A.

point to the peer
remote 192.168.8.174
dev tap0
secret /etc/openvpn/secrouter.key
cipher DES-EDE3-CBC
auth MD5
tun-mtu 1500
tun-mtu-extra 64
ping 40
up /etc/openvpn/A-tap0-br.sh
#----------------------------------Start------------------------------
#!/bin/sh
value after “-net” is the subnet behind the remote peer
route add -net 192.168.4.0 netmask 255.255.255.0 dev br0
#---------------------------------- end ------------------------------

Create a configuration file named B-tap0-br.conf and an executable script file named B-tap0-br.sh on
OpenVPN B.

point to the peer
remote 192.168.8.173
dev tap0
secret /etc/openvpn/secrouter.key

ioPAC RTU Software RTU Communications

 4-16

cipher DES-EDE3-CBC
auth MD5 tun-mtu 1500
tun-mtu-extra 64
ping 40
up /etc/openvpn/B-tap0-br.sh
#----------------------------------Start------------------------------
#!/bin/sh
value after “-net” is the subnet behind the remote peer
route add -net 192.168.2.0 netmask 255.255.255.0 dev br0
#---------------------------------- end ------------------------------

NOTE: Select cipher and authentication algorithms by specifying “cipher” and “auth”. To see which
algorithms are available, type:

openvpn --show-ciphers
openvpn --show—auths

4. Start both of OpenVPN peers,

openvpn --config A-tap0-br.conf&
openvpn --config B-tap0-br.conf&

If you see the line “Peer Connection Initiated with 192.168.8.173:5000” on each machine, the connection
between OpenVPN machines has been established successfully on UDP port 5000.

5. On each OpenVPN machine, check the routing table by typing the command:

route

Destination Gateway Genmsk Flags Metric Ref Use Iface
192.168.4.0 * 255.255.255.0 U 0 0 0 br0

192.168.2.0 * 255.255.255.0 U 0 0 0 br0

192.168.8.0 * 255.255.255.0 U 0 0 0 eth0

Interface eth1 is connected to the bridging interface br0, to which device tap0 also connects, whereas the
virtual device tun sits on top of tap0. This ensures that all traffic from internal networks connected to
interface eth1 that come to this bridge write to the TAP/TUN device that the OpenVPN program monitors.
Once the OpenVPN program detects traffic on the virtual device, it sends the traffic to its peer.

6. To create an indirect connection to Host B from Host A, you need to add the following routing item:

route add –net 192.168.4.0 netmask 255.255.255.0 dev eth0

To create an indirect connection to Host A from Host B, you need to add the following routing item:
route add –net 192.168.2.0 netmask 255.255.255.0 dev eth0

Now ping Host B from Host A by typing:
ping 192.168.4.174

A successful ping indicates that you have created a VPN system that only allows authorized users from one
internal network to access users at the remote site. For this system, all data is transmitted by UDP packets
on port 5000 between OpenVPN peers.

7. To shut down OpenVPN programs, type the command:

killall -TERM openvpn

Setup 2: Ethernet Bridging for Private Networks on the Same Subnet

1. Set up four machines as shown in the following diagram:

ioPAC RTU Software RTU Communications

 4-17

2. The configuration procedure is almost the same as for the previous example. The only difference is that you
will need to comment on the parameter “up” in “/etc/openvpn/A-tap0-br.conf” and
“/etc/openvpn/B-tap0-br.conf”.

Setup 3: Routed IP

1. Set up four machines as shown in the following diagram:

2. Create a configuration file named “A-tun.conf” and an executable script file named “A-tun. sh”.

point to the peer
remote 192.168.8.174
dev tun
secret /etc/openvpn/secrouter.key
cipher DES-EDE3-CBC
auth MD5
tun-mtu 1500
tun-mtu-extra 64
ping 40
ifconfig 192.168.2.173 192.168.4.174
up /etc/openvpn/A-tun.sh

ioPAC RTU Software RTU Communications

 4-18

#----------------------------------Start------------------------------
#!/bin/sh
value after “-net” is the subnet behind the remote peer
route add -net 192.168.4.0 netmask 255.255.255.0 gw $5
#---------------------------------- end ------------------------------

Create a configuration file named B-tun.conf and an executable script file named B-tun.sh on OpenVPN B:

remote 192.168.8.173
dev tun
secret /etc/openvpn/secrouter.key
cipher DES-EDE3-CBC
auth MD5
tun-mtu 1500
tun-mtu-extra 64
ping 40
ifconfig 192.168.4.174 192.168.2.173
up /etc/openvpn/B-tun.sh

#----------------------------------Start------------------------------
#!/bin/sh
value after “-net” is the subnet behind the remote peer
route add -net 192.168.2.0 netmask 255.255.255.0 gw $5
#---------------------------------- end ------------------------------

Note that the parameter “ifconfig” defines the first argument as the local internal interface and the second
argument as the internal interface at the remote peer.

Note that $5 is the argument that the OpenVPN program passes to the script file. Its value is the second
argument of ifconfig in the configuration file.

3. Check the routing table after you run the OpenVPN programs, by typing the command:

route

Destination Gateway Genmsk Flags Metric Ref Use Iface
192.168.4.174 * 255.255.255.255 UH 0 0 0 tun0

192.168.4.0 192.168.4.174 255.255.255.0 UG 0 0 0 tun0

192.168.2.0 * 255.255.255.0 U 0 0 0 eth1

192.168.8.0 * 255.255.255.0 U 0 0 0 eth0

NTP Server/Client
Refer to the System Time Setting section in Chapter 3 for more information.

ioPAC RTU Software RTU Communications

 4-19

Port Trunking
To enable the port trunking function, use the debug port as described in the following steps.

1. Enable the port trunking function (IP_Bonding mode 1)

/etc/init.d/networking stop

ipset bond0 -aup -i192.168.19.151 -n255.255.255.0 -g192.168.19.254

modprobe bonding mode=1 miimon=100 use_carrier=0

/etc/init.d/networking start

2. After configuration, the virtual IP address will be set to 192.168.19.151

3. Disable the port trunking function

/etc/init.d/networking stop

ipset bond0 -adown

/etc/init.d/networking start

4. Use the ifconfig command to check the Ethernet configuration.

Serial Configuration

Modbus RTU Master
Modbus RTU is a very common communication protocol in industrial applications and the ioPAC RTU controller
has a built-in Modbus RTU master function. For more detailed information, see the C/C++ Sample Code
Programming Guide for ioPAC RTU Controllers.

5
5. RTU Data Acquisition

This chapter explains how to use the ioPAC RTU controller for data acquisition.

The following topics are covered in this chapter:

 I/O Data Access

 Battery Backup SRAM

 Millisecond Timestamp

 Active OPC Server

ioPAC RTU Software RTU Data Acquisition

 5-2

I/O Data Access
ioPAC RTU controllers support many kinds of I/O modules that collect physical data from sensors. For ioPAC
8500 series, users can use modularized 85M series I/O modules.

Moxa provides C/C++ programming tools for users to develop their own project for data acquisition. C/C++
library and APIs can be found under C/C++ Sample Code Programming Guide for ioPAC RTU Controllers
 Files  io, io_event, and misc.

One important function of the current analog input module is the Burn Out function. Users can use the
MX_RTU_Module_AI_Burnout_Value_Set API to configure the Burn Out mode. If a module is burned out
or a wire is disconnected, the LED will turn RED.

Battery Backup SRAM
ioPAC RTU controllers support battery backup SRAM which is an important part of applications that require any
kind of data backup in the event of a power failure. The size is 128 KB and users can use the APIs
MX_RTU_SRAM_Read and MX_RTU_SRAM_Write to access the SRAM. For more detailed information and
examples, please refer to C/C++ Sample Code Programming Guide for ioPAC RTU Controllers  Files
 misc.

Millisecond Timestamp
A timestamp is a sequence of characters or encoded information identifying when a certain event occurred,
usually expressing the date and time of day and sometimes accurate to a small fraction of a second. The ioPAC
85M-1602-T and 85M-3801/11-T support modules have a dual CPU architecture, which means each I/O
module has its own CPU that can easily record events in milliseconds. Using this function enables the ioPAC to
collect data more accurately by providing millisecond timestamps for event and historical data analysis. Thanks
to the millisecond timestamp function, operators can distinguish the sequence of data and know how to handle
this event accordingly.

Users can use the APIs MX_RTU_Module_DI_Value_Get, MX_RTU_Module_AI_Raw_Value_Get, and
MX_RTU_Module_AI_Eng_Value_Get to retrieve the timestamp information from I/O modules. For more
detailed information and examples, please refer to C/C++ Sample Code Programming Guide for ioPAC
RTU Controllers  Files.

Active OPC Server
Active OPC (AOPC) Server is a software package provided by Moxa that operates as an OPC driver for an HMI
or SCADA system. It offers seamless connection from Moxa's ioLogik series products to SCADA systems. Active
OPC Server meets the latest standard of OPC DA 3.0, which allows connections to various kinds of devices and
host OPC machines.

Moxa has pioneered the concept of “active type” OPC software in the automation industry. The patented Active
OPC Server offers non-polling architecture alongside the standard OPC protocol, giving users the alternative of
active, push-based communication from Moxa’s RTUs and remote I/O devices. This adaptation of “push”
technology means that I/O status will be updated at the Active OPC Server only when there is an I/O status
change, a pre-configured interval is reached, or when a request is issued by a user. This application of push
technology cuts metadata overhead, resulting in faster I/O response times and more accurate data collection
than traditional pull-based architectures. With Moxa’s “active technology” advantage, users can now instantly
receive alarms and real-time updates allowing for timely risk response.

Use the AOPC APIs to configure and access the AOPC tag information. For more detailed information and
examples, please refer to C/C++ Sample Code Programming Guide for ioPAC RTU Controllers  Files
 aopc.

6
6. RTU Programming

This chapter describes how to install a toolchain onto the host computer that you use to develop your
applications. Cross-platform development and debugging are also discussed.

The following topics are covered in this chapter:

 Programming Guide

 Memory Usage

 Using C/C++

 Linux Toolchain

 On-Line Debugging with GDB

 Library and APIs

ioPAC RTU Software RTU Programming

 6-2

Programming Guide

Memory Usage
Partition sizes are hard coded into the kernel binary. The total flash memory on the ioPAC RTU controller is 32
MB.

FLASH system space: 20 MB (read only)

FLASH user space: 12 MB (read/write, /home, /etc, /temp support)

Users can use df and free commands to check memory information.

root@Moxa:~# df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/root 16384 8452 7932 52% /
/dev/ram0 499 17 457 4% /var
/dev/ram7 2011 15 1894 1% /dev
/dev/mtdblock3 12288 740 11548 6% /tmp
/dev/mtdblock3 12288 740 11548 6% /home
/dev/mtdblock3 12288 740 11548 6% /etc
tmpfs 30556 0 30556 0% /dev/shm
root@Moxa:~# free
 total used free shared buffers
Mem: 61116 13476 47640 0 40
Swap: 0 0 0
Total: 61116 13476 47640
root@Moxa:~#

If the user file system is incorrect, the kernel will change the root file system to the kernel and use the default
Moxa file system. To finish the boot process, run the init program.

NOTE 1. The user file system is a complete file system. Users can create and delete directories and files (including
source code and executable files) as needed.

2. Users can create the user file system on the host PC or the target platform and copy it to the ioPAC RTU
controller.

3. Continuously writing data to flash is not recommended, since doing so will decrease the flash’s life.

Using C/C++

Linux Toolchain
The Linux toolchain contains a suite of cross compilers and other tools, as well as the libraries and header files
that are necessary to compile your applications. These toolchain components must be installed on your host
computer (PC) running Linux. We have confirmed that the following Linux distributions can be used to install
the toolchain.

ioPAC 8500 & 5500 Series

Debian 6.0.1

Ubuntu 11.04

Fedora Core 15

Steps for Installing the Linux Toolchain

Refer to the Install the Toolchain onto the PC section in Chapter 2.

ioPAC RTU Software RTU Programming

 6-3

Compilation for Applications

To compile a simple C application, use the cross compiler instead of the regular compiler:

#arm-linux-gcc –o example –Wall –g –O2 example.c
#arm-linux-strip –s example
#arm-linux-gcc -ggdb –o example-debug example.c

Most of the cross compiler tools are the same as their native compiler counterparts, but have an additional
prefix that specifies the target system. In the case of x86 environments, the prefix is i386-linux-. In the case
of the ioPAC RTU controller, the prefix is arm-linux-.

For example, the native C compiler is gcc and the cross C compiler for ARM in the ioPAC is arm-linux-gcc.

Moxa provides cross compiler tools for the following native compilers. Simply add the arm-linux- prefix.

ar Manages archives (static libraries)

as Assembler

c++, g++ C++ compiler

cpp C preprocessor

gcc C compiler

gdb Debugger

ld Linker

nm Lists symbols from object files

objcopy Copies and translates object files

objdump Displays information about object files

ranlib Generates indexes to archives (static libraries)

readelf Displays information about ELF files

size Lists object file section sizes

strings Prints strings of printable characters from files (usually object files)

strip Removes symbols and sections from object files (usually debugging information)

ioPAC RTU Software RTU Programming

 6-4

On-Line Debugging with GDB
The toolchain also provides an online debugging mechanism to help you develop your program. Before
performing a debugging session, add the option -ggdb to compile the program. A debugging session runs on
a client-server architecture on which the server gdbserver is installed on the ioPAC RTU and the client ddd is
installed in the host computer. We’ll assume that you have uploaded a program named hello_world-debug
to the ioPAC RTU and start to debug the program.

1. Log on to the ioPAC and run the debugging server program.

#gdbserver 192.168.127.254:2000 hello_world-debug

Process hello_world-debug created; pid=38

The debugging server listens for connections at network port 2000 from the network interface
192.168.127.254. The name of the program to be debugged follows these parameters. For a program
requiring arguments, add the arguments behind the program name.

2. In the host computer, change the directory to where the program source resides.

cd /my_work_directory/myfilesystem/testprograms

3. Execute the client program.

#ddd --debugger arm-linux-gdb hello_world-debug &

4. Enter the following command at the GDB, DDD command prompt.

Target remote 192.168.127.5:2000

The command produces a line of output on the target console, similar to the following.

Remote debugging using 192.168.127.5:2000

192.168.127.5 is the host PC’s IP address, and 2000 is the port number. You can now begin debugging in
the host environment using the interface provided by DDD.

5. Set an execution breakpoint by double-clicking, or by entering b main on the command line.

6. Click the cont button.

Library and APIs
For more detailed information about the library and APIs, please refer to the C/C++ Sample Code
Programming Guide for ioPAC RTU Controllers.

A
A. System Commands

Moxa Special Utilities
Command Description
kversion Show kernel version

upramdisk Mount ramdisk

downramdisk Unmount ramdisk

ipset Configure and save network settings

setdef Reset to factory defaults and reboot

setkey Set key command for Software Lock function

upgradehfm Firmware upgrade utility

To view the supported system commands, use the "help" or "busybox --help" commands, as illustrated in the
following examples for the ioPAC 8500 controller (RTU version 1.2.0).

"help" command:

root@Moxa:~# help

GNU bash, version 3.2.39(1)-release (arm-unknown-linux-gnu)

These shell commands are defined internally. Type `help' to see this list.

Type `help name' to find out more about the function `name'.

Use `info bash' to find out more about the shell in general.

Use `man -k' or `info' to find out more about commands not in this list.

A star (*) next to a name means that the command is disabled.

 JOB_SPEC [&] ((expression))

 . filename [arguments] :

 [arg...] [[expression]]

 alias [-p] [name[=value] ...] bind [-lpvsPVS] [-m keymap] [-f fi

 break [n] builtin [shell-builtin [arg ...]]

 caller [EXPR] case WORD in [PATTERN [| PATTERN].

 cd [-L|-P] [dir] command [-pVv] command [arg ...]

 compgen [-abcdefgjksuv] [-o option complete [-abcdefgjksuv] [-pr] [-o

 continue [n] declare [-afFirtx] [-p] [name[=val

 dirs [-clpv] [+N] [-N] echo [-neE] [arg ...]

ioPAC RTU Software System Commands

 A-2

 enable [-pnds] [-a] [-f filename] eval [arg ...]

 exec [-cl] [-a name] file [redirec exit [n]

 export [-nf] [name[=value] ...] or false

 fc [-e ename] [-nlr] [first] [last for NAME [in WORDS ... ;] do COMMA

 for ((exp1; exp2; exp3)); do COM function NAME { COMMANDS ; } or NA

 getopts optstring name [arg] hash [-lr] [-p pathname] [-dt] [na

 help [-s] [pattern ...] history [-c] [-d offset] [n] or hi

 if COMMANDS; then COMMANDS; [elif kill [-s sigspec | -n signum | -si

 let arg [arg ...] local name[=value] ...

 logout popd [+N | -N] [-n]

 printf [-v var] format [arguments] pushd [dir | +N | -N] [-n]

 pwd [-LP] read [-ers] [-u fd] [-t timeout] [

 readonly [-af] [name[=value] ...] return [n]

 select NAME [in WORDS ... ;] do CO set [--abefhkmnptuvxBCHP] [-o opti

 shift [n] shopt [-pqsu] [-o long-option] opt

 source filename [arguments] test [expr]

 time [-p] PIPELINE times

 trap [-lp] [arg signal_spec ...] true

 type [-afptP] name [name ...] typeset [-afFirtx] [-p] name[=valu

 ulimit [-SHacdfilmnpqstuvx] [limit umask [-p] [-S] [mode]

 unalias [-a] name [name ...] unset [-f] [-v] [name ...]

 until COMMANDS; do COMMANDS; done variables - Some variable names an

 wait [n] while COMMANDS; do COMMANDS; done

 { COMMANDS ; }

"busybox --help" command:

root@Moxa:/# busybox --help

BusyBox v1.15.3 (2013-02-18 13:27:47 CST) multi-call binary

Copyright (C) 1998-2008 Erik Andersen, Rob Landley, Denys Vlasenko

and others. Licensed under GPLv2.

See source distribution for full notice.

Usage: busybox [function] [arguments]...

 or: function [arguments]...

 BusyBox is a multi-call binary that combines many common Unix

 utilities into a single executable. Most people will create a

ioPAC RTU Software System Commands

 A-3

 link to busybox for each function they wish to use and BusyBox

 will act like whatever it was invoked as!

Currently defined functions:

 [, [[, addgroup, adduser, arp, awk, basename, brctl, bunzip2, bzcat,

 bzip2, cat, chat, chgrp, chmod, chown, chroot, clear, cp, crond,

 crontab, cut, date, delgroup, deluser, depmod, df, dirname, dmesg,

 dnsdomainname, du, echo, egrep, env, expr, false, fdisk, fgrep, find,

 flash_eraseall, free, freeramdisk, getty, grep, gunzip, gzip, halt,

 head, hostname, hwclock, id, ifconfig, ifdown, ifenslave, ifup, inetd,

 insmod, ip, kill, killall, killall5, klogd, ln, login, ls, lsmod,

 md5sum, mdev, mkdir, mkfifo, mknod, mktemp, modprobe, more, mount, mv,

 netstat, nice, passwd, pidof, ping, poweroff, ps, pwd, reboot, renice,

 rm, rmdir, rmmod, route, run-parts, sed, sleep, start-stop-daemon,

 stty, su, sulogin, sync, syslogd, tail, tar, tcpsvd, telnet, telnetd,

 test, tftp, top, touch, traceroute, true, udhcpc, umount, uname, vi,

 which, xargs, zcat

ioPAC RTU Software System Commands

 A-4

"busybox --help" command:

root@Moxa:/# busybox --help

BusyBox v1.15.3 (2013-02-18 13:27:47 CST) multi-call binary

Copyright (C) 1998-2008 Erik Andersen, Rob Landley, Denys Vlasenko

and others. Licensed under GPLv2.

See source distribution for full notice.

Usage: busybox [function] [arguments]...

 or: function [arguments]...

 BusyBox is a multi-call binary that combines many common Unix

 utilities into a single executable. Most people will create a

 link to busybox for each function they wish to use and BusyBox

 will act like whatever it was invoked as!

Currently defined functions:

 [, [[, addgroup, adduser, arp, awk, basename, brctl, bunzip2, bzcat,

 bzip2, cat, chat, chgrp, chmod, chown, chroot, clear, cp, crond,

 crontab, cut, date, delgroup, deluser, depmod, df, dirname, dmesg,

 dnsdomainname, du, echo, egrep, env, expr, false, fdisk, fgrep, find,

 flash_eraseall, free, freeramdisk, getty, grep, gunzip, gzip, halt,

 head, hostname, hwclock, id, ifconfig, ifdown, ifenslave, ifup, inetd,

 insmod, ip, kill, killall, killall5, klogd, ln, login, ls, lsmod,

 md5sum, mdev, mkdir, mkfifo, mknod, mktemp, modprobe, more, mount, mv,

 netstat, nice, passwd, pidof, ping, poweroff, ps, pwd, reboot, renice,

 rm, rmdir, rmmod, route, run-parts, sed, sleep, start-stop-daemon,

 stty, su, sulogin, sync, syslogd, tail, tar, tcpsvd, telnet, telnetd,

 test, tftp, top, touch, traceroute, true, udhcpc, umount, uname, vi,

 which, xargs, zcat

	1. Introduction
	Overview
	Scope
	Related Documents
	Supported Products

	Software Architecture
	Journaling Flash File System (JFFS2)
	Software Package

	2. Getting Started
	Developing the First Program
	Hardware and Software Requirements
	Development Procedure

	Configuring the Ethernet Interface
	Modifying Network Settings with the Serial Console
	Modifying Network Settings over the Network

	Connect an RTU to a Linux PC
	Install the Toolchain onto the PC
	Set Cross Compiler & glibc Environment Variables
	Develop Code & Compile the Program
	Upload & Run the Program

	3. RTU Management
	System Information
	Firmware Upgrade and Default Settings
	Upgrading the Firmware
	Recovering the Firmware
	Loading Factory Defaults

	Enabling and Disabling Daemons
	Run-Level Settings
	System Time Setting
	Setting the Time Manually
	Updating the Time with NTP Client
	Updating the Time Automatically
	NTP Server Setting

	Executing Scheduled Commands with Cron Daemon
	Software Lock

	4. RTU Communications
	Internet Configuration
	Modbus TCP Master and Slave
	DNS
	Telnet/FTP
	iptables
	Observe and Erase Chain Rules
	Define Policy for Chain Rules
	Append or Delete Rules

	NAT (SNAT)
	Enabling NAT at Bootup

	Port Forwarding (DNAT)
	PPP Dial-up Service
	Example 1: Connecting to a PPP server over a simple dial-up connection
	Example 2: Connecting to a PPP Server over a Hard-Wired Link
	How to Check the Connection
	Setting up a Machine for Incoming PPP Connections

	PPPoE
	NFS (Network File System) Client
	Setting up the ioPAC RTU Controller as an NFS Client

	Sending Mail
	OpenVPN
	Setup 1: Ethernet Bridging for Private Networks on Different Subnets
	Setup 2: Ethernet Bridging for Private Networks on the Same Subnet
	Setup 3: Routed IP

	NTP Server/Client
	Port Trunking

	Serial Configuration
	Modbus RTU Master

	5. RTU Data Acquisition
	I/O Data Access
	Battery Backup SRAM
	Millisecond Timestamp
	Active OPC Server

	6. RTU Programming
	Programming Guide
	Memory Usage

	Using C/C++
	Linux Toolchain
	Steps for Installing the Linux Toolchain
	Compilation for Applications

	On-Line Debugging with GDB
	Library and APIs

	A. System Commands
	Moxa Special Utilities

