NAUR |/ \TECH

€ CORPORATION

CETerm Scripting Guide

for Version 5.1 or later

Naurtech Terminal Emulation and Web
Browser Smart Clients

for Windows CE Devices

CETerm | CE3270 | CE5250 | CEVT220

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

Copyright Notice

This document may not be reproduced in full, in part or in any form, without prior
written permission of Naurtech Corporation.

Naurtech Corporation makes no warranties with respect to the contents of this
document and specifically disclaims any implied warranties of merchantability or
fitness for any particular purpose. Further, Naurtech Corporation, reserves the

right to revise this publication and referenced software without any obligation to
notify any person or organization of such revision or changes.

Trademarks

CETerm®, CE3270™ CEb5250™ CEVT220™ are trademarks of Naurtech
Corporation.

Other product names mentioned in this manual may be trademarks or registered
trademarks of their respective companies and are hereby acknowledged.

Software Version

This document is for Version 5.1 or later of Naurtech Smart Clients.

CETerm Scripting Guide Page 2

N

AURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

Table of Contents

(o o}V u e | a1 81\ o) (o] TN 2
E2T0 L= 0= 1 T PSRNt 2
_Eoftware WIBTSION ..ot e et ee et e e enesaeeneeanesaeensaneennesnssneeanesaeennesnesneennesaenneaneeneeans 2
Y N O A o 0 T —— 3
T — 6
AASSUIMIPEIONS .ottt e et e e et ettt et e e e e e e ee et e e eeaeseeeestaeeeeaeseessnnannaeeaeseeernen 6
[Conventions used inthis Manual. ... 6
Additional DOCUMENTAION..........cceeiiiiiiiciiieeeeee e e e e e e e e teeeeeeeaaeseeeenes 7|
ONling KNOWIEAGEDASEiiiiiiiieiee e e e e e e e ee e eeeeeeeeeenes 7
NS ReTe TTe 1o o T —— 8
[1.1 Feature HIGhIGhES.............oiviiiiiiieie e 9
AT e BT T e I 11
.2 Enabling Scripting and Editing ScriptS........cccocoiiiiii 12
eneral SEtiNGS ... 12

NG SCTIPES vttt ee e eeeeeeeeeeseeeeenesesesennreneeeees 12]

P.3 CETerm Automation ODJECEScccuuiiiiiiiiiiicciiee e aa e e e 15
[e e N O Yo I T 15
P.5 OnBarcodeRead Script EVENt........oooooiiiiiiiiiiieeeeee e 15
D6 Automated [oTe 1 P PP PP PPPPPPPPPPIR 18
P.7 Custom Screen Hot=-SPOtSuuiiiiiiiiieie e 20
B.0 CETerm AUtomation ODJECESc.ooeeeeeeeeeeeeeseresererererererereeeeeeeeensesesesesesesesesesesesenens 22
BT The CETEIM ODJEOT ... eotiiiiiiiieeieeee ettt seea 22
N Yo Yo 22
PO S . 26

B.2 ThE SESSION ODJECE.......c.cveeveeeeeeeeeeeeeeeeeeeeeeeeeeeeeerereesereeeeneeeerseeereesersesnseeenseeeeseeeesneecas 26
E\ethods .. 27
FOPEBITIES .ottt ettt et e e ettt e e e e e ettt eeeeeeeeeetnb e eeeeaeeeer b aeaaaeaaeereees Zﬂ

B.3 The SCreEN ODJECE......ceviieiieeeeeeeeeeeeee et e et e e e et eesn e eneeaesneeeneeas 27
NIt gTe e F O PP PP PPPPPPPPPPPIR 27
Properties ... 28

B4 The BrOWSET ODJECEo.vevevvveeeeeeeeeeeeeeeeeeeeeeeeeeeeserererenenenenenenenensnsesnsesesesesesnseseseeesens 28
Elethods .. 28

) =T =Y 29

B.5 The MESSAGE ODJECE. ... eeeeieeeeeeee et e e eneeeeeas 29
N Yo Yo 30
PrODertiES . 30

B.6 The TextiNDUt OBJECEvvvvveeeeeeeeeeeeeecee e eeeeeeeeeeees 30
E\ethods .. 30

0] LT [T P P PP PP PPPPPPPPIR 31

AN Y OISO o) Yo 31
NIt g TeTe [P PP PPPPPPPPPPPPPIR 31
Properties ... 33
R Y T 34
Elethods .. 34

) =T =Y 36

B.9 The REGISIIY ODJECLc.eeieeeeeeeeeee e e e eeneeeeeas 37

C

ETerm Scripting Guide Page 3

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

ALt [PP 37
Properties ... PO T OO TSP ST PO P PP PO O PO PO U P TP PO PO TP PP P PSR VY PPOUPUPUPPPPOIR 39

.0 CETEIM SCHDE EVENESeevveeeeeeeeeeeeeeeeeeeeeeeserrerenerereneneneeeeeeseeesesesesesesnsesnsnsecesesens 40
|4_.J§The ONBarcodeREAd EVENt ..ot ee e s e aneans 40

N L01= D ST P P PP PP 40
YT o) L= — 41

B.2 The ONDOCUMENTDONE EVENT..........eeneeneeeananneeennenneeenn 41
Evntax ... 41
=0 11)[R UPURPPOR 42

xample......................... BT P TP U PO PSP USSP PP P PY PP VT POUPPPTPTPPIO 48

.9 The ONSEeSSIONSWICN EVENToviiiiiiiiiiieee e e e eeaeeaas 48
S ST 48
10101 o [T TP TPTI 48
|4_%0 The ONSYIUSDOWN EVENL ..ot s s enesaneeane 49
Y11= PP 49
Example............... SO PO PSP T TSP P TP PO PO P PSSP PP PO PP TP PU P PO UV OYPPOUPUPPPPPPPPPPOOY 49
[1'51 The ONWaKEUD EVENt........oii oo 50
L0122 50

X AMIPDIE . . e 50

.0 Scripting Techniques and Tips B PSP P TSP P VPP PP PO PPY PP PPPPTOY 52
.1 Expect and ExpectMonitor for Automating Tasks................cccueveveeeiiiiiiiiiiiiiiiiieeeeeeeeaee 52
AT EXPECE SO . 52
1.2 EXPECIMONIEON CIASS ..o 53
1.3 Automating 1asks WIith EXPeCt ..., 57|

b.2 Presenting Visual Feedback During Script EXxecutionccccoooovvivuuuueeeiiiiiiiiiieeciiieaane 57
b.3 Getting User Inputtoa Script......o 58
5.4 Running an External Program............oooooioiiiiiiiiiiiieeeceeeeeeeeeeee 59
b.5 Using Timers 10 RUN SCHPES ... 59
b6 Accessinga File. ... 60
6.7 ACCESSING the REGISIIY ... 61
5.8 Writing EffiCient SCriPLScccoeeieieiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 62
E.8.1 Use Local Variables ... 62
.8.2 Encapsulate Code in FUNGCHONScccovvveiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 63
5.8.3 Limit EXECULION TiMIe . ittt e e e s e i e e e s e e e e e e e e e e eeeeeeeeaeaeaaeeaeeas 63

CETerm Scripting Guide Page 4

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

B.9 DEeBUGGING SCIIDES ... ee et eeeseseeeseeesneesnessnesenssesneesneesnnssnsseaseesneeneeas 64
5.9.1 ShOW SCHPE EITOIS ...t e e e e e e et s eeeeeseeessnaeeseeseeennnns 64
O SN N s (O N — 65

Appendix 1 - IDA Action Codes ... 66|
ADPENAIX 2 = PrOPEITIES ..ttt e e e et e e e e aeeeeeetanaaeaeaaaeeeeee /9]

APPlication Properties ... 75

DAY o ol (0] 1= (= T 75

5ESSION PrODEITIESeeiiiiii it e s e eaanees 76

(2= 101 o L= gl el (o) o 1= (=Y PP PP PP PPPPPPPR 77

Common Symbology Properties ... 78

Codabar Symbology Properties ... 79

Code39 Symbology Propertiesooiiuiiiiiiiiiiiii e 80

Code 128 Symbology Propertie€soooooeieiiiiiiiiiiiiieiee 81

JUPC-EAN General Symbology Properties....... ..o 82

Eymbology NBIMIES ettt e e e e e e e e e e e et eaeeeaeeerraaaan 83

Appendix 3 — Symbology LabelTypes ... 85
ADPPENAIX 4 = CONSTANTS ...ttt e e e e e e e e e e e eeeeeeeaaeaaaaaaaaaaananaaaaeaannnnnnes Sﬂ

N e e T AT T 87

HEN N Kol S e T T 87

File Attribute CONSTANTS....ooiiiiiiiiiiiiii e 88

'I-?egistry CONSEANES ... e e nennnne 88

Browser Error CONSTANTSoooiiiiiiet ittt e e et e et e eeeeseeeeesssseeeeseeeessnnnseeeeeeennsnrees 89

S O S SANY ...ttt e e e e e eeee e e eeeeeaeeeeeeeeaeeaaeeeennnnnannnnnnnnnan 91
[Te [— 92

CETerm Scripting Guide Page 5

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

Preface

All of us at Naurtech Corporation constantly strive to deliver the highest quality
products and services to our customers. We are always looking for ways to
improve our solutions. If you have comments or suggestions, please direct these

to:

Naurtech Corporation

e-mail:

support@naurtech.com

Phone: +1 (425) 837.0800

Assumptions
This manual assumes you have a working knowledge of:

Microsoft Windows user interface metaphor and terminology.

Stylus based touch screen navigation terminology.

Basic programming and scripting concepts.

Dynamic HTML, the browser DOM, and JavaScript.

Basic operations and requirements of the host applications you want to
access with the Naurtech smart client.

Conventions used in this Manual
This manual uses the following typographical conventions:

All user actions and interactions with the application are in bold, as in
[Session] [Configure]

Any precautionary notes or tips are presented as follows

Tip: Text associated with a specific tip

& represents new version specific information
All text associated with samples is presented as follows.

/*alert*/
OS.Alert ("Script done.");

CETerm Scripting Guide Page 6

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

Additional Documentation

Naurtech Scripting is an integral feature of Naurtech terminal emulation Smart
Clients. Please refer to the User's Manual for detailed installation and

configuration information. The User's Manual may be downloaded from the
“Support” section of our website.

Online Knowledgebase

Although we continually strive to keep this manual up to date, you may find our
online support knowledgebase useful for the latest issues, troubleshooting tips
and bug fixes. You can access the support knowledgebase from our website at:

www.naurtech.com - Support = Knowledgebase

CETerm Scripting Guide Page 7

1.0 Introduction

The Naurtech CETerm Smart Clients provide a robust and flexible environment
for Terminal Emulation and Web based applications on a mobile device. Our
Clients are available for most Windows CE platforms including CE .NET 4.2,
Windows CE 5.0, Windows Mobile 2003, and Windows Mobile 5.

Device tailored versions of our Clients are available for most industrial terminals.
These versions integrate the peripherals on each device, such as the barcode
scanner, magnetic stripe reader, RFID reader and Bluetooth printer. Naurtech
Scripting features provide additional control of these peripherals and simplify
tasks such as data collection, validation, and automation.

All Naurtech Clients include one or more Terminal Emulations (TE) and a Web
Browser for a natural migration path from legacy text based TE applications to
newer Web based applications. We will refer to the clients collectively as
CETerm, although the scripting features apply fully to the single emulation
products CE3270, CE5250, and CEVT220.

Scripting features can help the transition to web applications and add capabilities
to older TE applications. Newer web based applications can be presented in a
familiar single-purpose (locked down) configuration which uses keys, the touch
screen, or both for user interactions. Please see our “Web Browser
Programming Guide” for detailed information on using the Web Browser features.

The Naurtech Scripting features automate and extend our Smart Clients. We
use the industry standard JavaScript language with Microsoft JScript additions.
JavaScript is the language underlying the most capable and complex
functionality available in web applications today. This new class of web
applications is sometimes referred to as “Web 2.0” using Asynchronous
Javascript and XML (AJAX). CETerm brings this mature and rich language to
the TE user to provide more productive TE applications. Scripting can also
interact with web browser sessions to enrich and extend existing web
applications on the mobile device.

Scripts can be as simple as editing barcode data before sending to a host or as
complex as parsing an external XML document, applying an XSLT transformation
and returning the result to the host through the TE session. CETerm Automation
Objects are provided to give scripts access to the state of CETerm, the TE
session, and access to Windows CE operating system functions such as reading
a file.

This guide is intended to describe the steps for writing and running scripts and
the features provided through the CETerm Automation Objects. Please consult
the standard references for details on JavaScript (or JScript) syntax and XML.
You may also need to consult standard references for HTML syntax, the browser

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

Document Object Model (DOM), and other aspects of Dynamic HTML if you are
scripting web browser features. Please refer to the Naurtech User’'s Manual for
details on basic usage and configuration of the Naurtech clients.

We hope that our Scripting features will enrich and extend the capabilities of your

TE and browser applications. Explore a little deeper and we think you will be
amazed at the possibilities for building powerful business applications.

1.1 FEATURE HIGHLIGHTS

Following are some of the special features in Naurtech Scripting

. JavaScript. Naurtech uses the industry standard JavaScript scripting
language. This powerful language is familiar to programmers and non-
programmers world-wide as the core of rich web applications. With JScript,
the Microsoft version of JavaScript, additional features are available such as
the ability to use ActiveX objects in scripts.

. On-device Script Editing. Scripts are saved within the CETerm
configuration and can be edited and tested right on the mobile device. Scripts
can be imported and exported via text files on the device as well as loaded
dynamically from files.

. Cross Session Scripting. All Naurtech clients allow up to 4 simultaneous
sessions. Scripts can access and control any or all sessions. For example,
you could extract text from one TE session and insert it into a different TE
session or into a Web application.

. Automation Objects. CETerm Automation Objects are available to access
and control the state of CETerm, the state of a TE or web browser session,
the mobile device, and the Windows CE Operating System. Together these
objects provide a rich set of features to simplify routine steps or build complex
applications. For example, you can use an automation object to examine the
current screen contents to trigger special actions.

. Enriched Web Browser Applications. Naurtech Scripting can interact with
a web browser session to enrich existing web applications that were not
written for a mobile device. For example, key bindings can be added to
activate items in the page and scanned barcode or RFID data can be directed
to input elements.

CETerm Scripting Guide Page 9

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

. Workflow Automation. Scripts can be used to automate routine tasks. The
task may be a simple login process or a complex set of steps in your host
application.

. Event Activated Scripts. There are several events within CETerm that will
run associated scripts. For example, when a barcode is read, the script
“‘OnBarcodeRead” will execute and will allow arbitrary processing of the
barcode data before it is submitted to the TE or web browser session.

. Key, Button, and Menu Activated Scripts. Like most other CETerm
actions, scripts can also be tied to any key combination, a toolbar button, or a
context menu.

. Timer Activated Scripts. Scripts can be scheduled to run at a future time or
run periodically.

. Host Activated Scripts. Host applications can also invoke scripts using
special commands within the TE data stream.

CETerm Scripting Guide Page 10

2.0 Getting Started

This section describes some common ways that scripting features can be used
within CETerm. Here we describe the JavaScript engine in CETerm and show
how to load and edit a script. We also show sample scripts which (1) handle
scanner input, (2) auto-login a terminal emulation session, and (3) provide user-
specified “hot-spots” on the screen. Only small code “snippets” are shown. For
complete details see the later sections of this manual.

2.1 JAVASCRIPT ENGINE

The CETerm JavaScript engine is a full JavaScript environment running in
CETerm that provides all the power and familiarity of JavaScript for automating
and extending your data collection process. Strictly speaking, CETerm contains
the Microsoft JScript engine, which has additional capabilities, but we will refer to
it as JavaScript.

The CETerm JavaScript engine is separate from the JavaScript engines which
are available in web browser sessions, but the two engines can communicate,
exchange data and send commands. Unlike the web browser engine, the
CETerm engine runs independently of any TE or browser session and can
interact with all sessions. This persistence allows the CETerm engine to
maintain state throughout a data collection process.

The CETerm script engine runs as part of the CETerm user interface and when
processing a script, the device keys and screen may be unresponsive. Think of
the script engine as a virtual user which can examine the screen and send input.
There are several techniques to write asynchronous scripts and to show
feedback to the user and get user input while a script is running.

2.2 ENABLING SCRIPTING AND EDITING SCRIPTS

Scripting is disabled by default. To enable scripting, open the configuration
dialog

[Session] ->[Configure] ->[Options] ->[Configure Scripting]

General Settings

On the General tab, check the Enable box and check Show Script Errors. You
may also want to enable file and registry access permission or program
launching if you need these features. The Re-Initialize button on this tab can be
used if you have made changes to the permissions or your scripts and you wish
to load the changes. The re-initialization does not take place until the dialog is

closed.
saipting _ [K][X]

General | Scripts |
[v] Enable | Re-Initislize

Script Timeout (sach: [300 3

| Shiow Script Errors
Allow File/Registry Read
Allow File/Regstry Wrike
Allows Program Launch

The Script Timeout variable limits the duration of script execution. This limit is
useful when developing new scripts and as a safeguard against a script with an
“infinite loop”. A value of 0 will disable the timeout. During execution, a script
can modify the timeout value and reset the timer to allow additional execution
time.

Editing Scripts
Scripts are edited on the Scripts tab. There are 64 script slots. The size of the
script in each slot is limited to about 260,000 characters (about one-half
megabyte under Windows CE). Scripts can also be loaded dynamically from
files. A script slot will usually contain function definitions, which will be loaded into
the engine, or executable statements such as function calls which may be bound
to a key, toolbar, or menu.

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

Scripting @ E]
General | Scripts

Marme | Flags | Script e
J*0nDocumentDor
J*0nSessionConne
J*OnStylusDown®,

L=t B = Uy B R R N

After selecting a script slot and tapping the Edit button, an Edit Script dialog will
appear. The edit dialog allows Import and Export of scripts. For initial script

development it may be easier to edit on your desktop PC, copy the script to the
device, and Import the script. Smaller changes are easily made on the device.

Edit Script - OnBarcodeRead ¢[3

F*OnEarcodeRead*|
function OnBarcodeRead] session, data,

[[»

/I Manipulate barcode data here

/I Send barcode to emulator
CETerm.SendText data, session);

4]] [[
D Load at Starkup

4

| Impaork | | Expork | | 84 |

The checkbox Load at Startup should be checked for all scripts that contain
function definitions that you want to have available in the script engine. The
checkbox should not be checked for slots that contain scripts that are bound to
keys or other activations. Load at Startup should be checked for all event
handler definitions. All scripts with Load at Startup will be loaded into the script
engine when it starts with CETerm startup, or when Re-Initialize has been
pressed on the General tab.

After importing or editing a script, you may want to tap the Test/Load button. If
the script engine was previously enabled, the script will be executed. If the

current script is a function definition, it will be checked for correct syntax and will
be made available to the script engine. If the current script contains executable

CETerm Scripting Guide Page 13

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

statements or is a function call, it will simulate activating the script. In general,
you do not want to use Test/Load for executable statements.

Remember to tap Test/Load or Re-Initialize (with Load at Startup checked)
after making changes to a script, if you want those changes loaded into the script
engine. Also, Test/Load will not work if you have just checked Enable but not
yet accepted the configuration changes.

The Template button displays a list of script templates which correspond to the
scripting event handlers. Select a template and tap OK to have it replace the
current contents of the script being edited. The template scripts show some of
the ways to use CETerm Automation Objects.

Load Script Template @

Select kemplate and tap O

OnBarcodeRead]) - Process barcode read
OnDocumentDoned) - Run after web docu
OnMavigateErrar() - Run if navigation Faild
OnMetCheckFailed) - Run after network;
On3essionConneck) - Run after connect
0nS|essinnDiscu:unnect|(}l - Fun after dislcnn
]] »

i] »

4]

CETerm Scripting Guide Page 14

2.3 CETERM AUTOMATION OBJECTS

The CETerm Automation Objects provide access to the running CETerm
application, session screens, the Windows CE operating system, and other
features. For example the command

CETerm.PostIDA("IDA SESSION S1", 0);

within a script would switch CETerm to Session 1 if another session was
currently active. Automation Objects can give access to the browser Document
Object Model (DOM) of connected web sessions and the text on terminal
emulation sessions. The IDA action codes are described briefly in the following
section.

The CETerm Automation Objects are similar to ActiveX controls that are used in
web pages, but they do not require any special creation operations prior to use.
In fact, the same CETerm Automation Objects are accessible from both the
CETerm JavaScript engine and the web browser JavaScript engines.

2.4 IDA AcTtioN CODES

An IDA Action Code is a special value that is used to invoke a device action,
program action, or emulator action within the Naurtech Smart Client. IDA Action
Codes can invoke special keys under terminal emulation, sound a tone, connect
a session, or show the SIP. There are many IDA codes and these are
documented in Appendix 1 of this manual. Almost any action which can be
invoked by a KeyBar or assigned to a hardware key can be invoked by an IDA
code. IDA codes can be submitted to CETerm in several different ways, under
both scripting and the web browser.

2.5 ONBARCODEREAD SCRIPT EVENT

CETerm generates several script events during operation. If there is a
corresponding event handler defined within the CETerm script engine, then that
handler will be invoked. The "OnBarcodeRead" event is a good example. The
OnBarcodeRead event handler can intercept and pre-process barcode scan data
using the full power of JavaScript before sending the data on to the TE or
browser session.

The OnBarcodeRead handler could do something simple, such as pre-pending
zero digits for short barcodes, or something complex such as splitting an
Automotive Industry Action Group (AIAG) B-10 barcode and putting different
parts into different fields on an IBM 5250 emulation screen.

Here is the OnBarcodeRead template that can be loaded in the script edit dialog

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

/* OnBarcodeRead */
function OnBarcodeRead(session, data, source, type, date, time)

{

// Manipulate barcode data here

// Send barcode to emulator
CETerm.SendText (data, session);

// Return 0 to handle barcode normally
// Return 1 if handled data here
return 1;

}

This handler simply passes the barcode data on to the current session using the
“SendText” method. The return value of 1 tells CETerm not to pass on the
barcode data with the usual wedge technique.

The following OnBarcodeRead handler will prefix 3 zeros to any 8 digit barcode
and pass other barcodes unchanged

/* OnBarcodeRead */

function OnBarcodeRead(session, data, source, type, date, time)
// Prefix zeros to short barcodes
if (data.length == 8)

{
}

// Send barcode to emulator
CETerm.SendText (data, session);

data = "000" + data;

// Return 0 to handle barcode normally
// Return 1 if handled data here
return 1;

}

If the OnBarcodeRead handler is defined, it will override any “ScannerNavigate”
handler defined in a web page META tag. The following OnBarcodeRead
handler will pass the scan on to the ScannerNavigate handler for a web browser
in session 2

/* OnBarcodeRead */
function OnBarcodeRead(session, data, source, type, date, time)
// Don’'t process for browser session
if (session == 2)
// Return 0 to handle barcode with ScannerNavigate
return 0O;

CETerm Scripting Guide Page 16

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

// Prefix zeros to short barcodes
if (data.length == 8)

{
}

// Send barcode to emulator
CETerm. SendText (data, session) ;

data = "000" + data;

// Return 1 if handled data here
return 1;

The following OnBarcodeRead handler will split any barcode containing an ASCII
Linefeed (LF = 0xOA) character and terminated with an ASCII ENQ (ENQ = 0x05)
into two parts. The first part is put into the current IBM 5250 field and the second
part into the next field and then submitted to the IBM host. This technique is
used to login a user with a Code39 barcode in full-ASCIl mode. All other
barcodes are passed on for normal input

/* OnBarcodeRead */
function OnBarcodeRead(session, data, source, type, date, time)

{

// Look for Full-ASCII Code 39 (LF = 0x0A) to mark Field Exit
var l1lfIndex = data.indexOf ("\xO0A");

if (1lfIndex >= 0)

{

var passwordStart = 1lfIndex + 1;

// Look for Full-ASCII Code 39 (ENQ = 0x05)
var engIndex = data.lastIndexOf ("\x05");

if (engIndex >= 0)
{
// NOTE: Using substr to extract user
// Send User
CETerm.SendText (data.substr(0, 1lfIndex), session);

// Send field exit to advance cursor
CETerm.SendIDA("IDA FIELD EXIT", session);

// Send Password

// NOTE: Using substring to extract password

CETerm.SendText (data.substring(passwordStart,
engIndex), session);

// Submit form
CETerm.SendIDA("IDA ENTER", session);

CETerm Scripting Guide Page 17

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

// All scan data handled here
return 1;

}

// Handle scan data in normal way
return 0;

The type argument to OnBarcodeRead contains the labeltype of the barcode.
This labeltype is related to the barcode symbology but usually a little more
informative. The values are dependent on the hardware manufacturer but for
most devices are the same as the Symbol LABELTYPE. The type is a small
integer value representing a printable ASCII character (See Appendix 3). The
source argument is the name of the scanner that read the barcode and is
typically unused. The date and time are text strings representing the time of
the read.

2.6 AUTOMATED LOGIN

Automating the host login process is a common task to speed workflow. CETerm
contains a Macro record and playback that is usually used for this task. One
limitation of the Macro feature is that it will only support a single session auto-
connecting when CETerm starts. The scripting feature allows much more power
and flexibility for automating the login or any complex or repetitive process.

Most auto-login features are based on a “prompt-and-response” mechanism that
waits for text from the host (the prompt) and then sends some text (the
response). The “expect” script and “ExpectMonitor” class provide the “prompt-
and-response” mechanism within CETerm. The response is usually some simple
text, but with the ExpectMonitor, it can be a script itself. The ExpectMonitor is
also a good example of using script timers to perform long tasks. The full listing
of the “expect” script and “ExpectMonitor” can be found in Section 5.1.

When “expect” is used for auto-login, it is activated within the
“OnSessionConnect” event handler. Here is a simple example of an
OnSessionConnect handler

/* OnSessionConnect */

function OnSessionConnect (session)
// Set login information
var myusername = "joeuser';

CETerm Scripting Guide Page 18

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

var mypassword = "secret";
var waittime = 8000; // Milliseconds waiting for each text

// Only login session 1
if (session == 1)

{

// Look for "login" then "password"
expect (session, waittime, "Login", myusername + "\r",
"Pagssword", mypassword + "\r");

The expect arguments are session for the session index, waittime for the
milliseconds waiting for each expected text, followed by pairs of expected text
(prompt) and corresponding action(response). If the action is text, it is simply
sent to the host when appropriate. There can be any number of (expected text,
action) pairs as arguments. The expected text can be plain text or a regular
expression.

For a case-insensitive match of “Login”, an appropriate regular expression could
be /1login/i Regular expressions use the slash character as a delimiter
rather than double-quote characters. The ‘i indicates a case-insensitive match.

A more complex action can contain an anonymous function definition such as

var beepMe = function (session) {CETerm.SendIDA("IDA_BEEP_LOUD", 0);
CETerm.SendText ("me\r", session); }

Combining these changes into the expect call would give

expect (session, waittime, /login/i, beepMe,
"Password", mypassword + "\r");

You might wonder why the SendIDA call in beepMe has a session index of 0
whereas SendText has the actual session argument. In this case we know that
the beep action is not session specific and does not need to be sent to a specific
session. In general, it is always OK to specify a session and it will be ignored for
actions that do not require a value.

CETerm Scripting Guide Page 19

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

2.7 CusTOM SCREEN HOT-SPOTS

A “hot-spot” is an area on a terminal emulation screen that is activated by taping
with your finger or the stylus. CETerm supports several pre-defined hot-spots for
TE sessions. With scripting, it is possible to define custom hot-spot behaviors.
Custom hot-spots use the “OnStylusDown” event handler. Browser sessions do
not support the OnStylusDown event because equivalent behavior can be
implemented in HTML. You may need to disable the pre-defined hot-spots in
CETerm because they will be triggered before a custom hot-spot.

The hot-spot action can depend on the screen contents in an area or simply be
tied to a screen area. The following OnStylusDown handler can be loaded from
the script templates

/* OnStylusDown */
function OnStylusDown(session, row, column)
{
// Look for custom hot-spot
var screen = CETerm.Session(session) .Screen;
var text = screen.GetTextLine(row) ;
if (text.match(/beep/i))

{
}

0S.PlaySound("default.wav", 0);
}

This hot-spot will play a sound if the line touched contains the word “beep”. The
following hot-spots will activate VT function keys if the user touches in the
specified rows and columns. In this case, the screen can show a box drawn with
VT line drawing characters and text inside each box. With such a display, you
can effectively create large glove-friendly on-screen buttons in TE.

/* OnStylusDown */
function OnStylusDown(session, row, column)
{
// Buttons are on rows "start" through "end"
var buttonrowstart = 9;
var buttonrowend = 13;
var IDA = "IDA NONE";

// Buttons are "buttonwidth" columns wide

// Leftmost button is #1

var buttonwidth = 5;

var button = Math.floor ((column + buttonwidth - 1) /
buttonwidth) ;

if (row >= buttonrowstart && row <= buttonrowend)

{

switch (button)

CETerm Scripting Guide Page 20

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

case
case
case
case

}

W N R

IDA =
IDA =
IDA =
IDA =

"IDA VT PF1";
"IDA VT PF2";
"IDA VT PF3";
"IDA VT PF4";

break;
break;
break;
break;

// DEBUG: Uncomment next two lines for testing

//0S.Alert (

//

"row=" + row +

" col=" + column +

" button=" + button + " IDA=" + IDA);

if (!IDA.match("IDA NONE"))

{

// Send command
CETerm.PostIDA(IDA, session);

You may have noticed by now the use of Post IDA in some cases and SendIDA
in other cases. SendIDA is a synchronous activation of an action whereas
PostIDA is an asynchronous or deferred activation. In general it is always better
to use PostIDA unless you must wait for the action to complete before
proceeding in the script. The post action is similar to the “PostMessage” function
in Windows programming and the send is similar to the “SendMessage” function.
See the CETerm automation object for more details.

CETerm Scripting Guide

Page 21

3.0 CETerm Automation Objects

This section describes the Automation Objects available to the CETerm script
engine. These objects provide access to the running CETerm application, TE
session screens, the Windows CE operating system, and other features for
developing rich applications.

The automation objects are accessed in a hierarchical manner similar to the
Document Object Model (DOM) of a webpage. The two top-level objects are
CETerm and 0S. The CETerm object provides access to application specific
features whereas the 0S object provides access to generic Operating System
(OS) features such as files and the device registry.

Automation objects provide some of the same functionality provided by the
Window object in the web browser. For example, the familiar Window methods
alert () and setTimeout () are provided by the 0S.Alert () and
CETerm.SetTimeout () methods.

3.1 THE CETERM OBJECT

The CETerm object gives access to CETerm features, settings, and session
state. This section documents the methods and properties of the CETerm object.

Methods
The following methods are available
Method Action
AbortScript Abort the currently running script
ClearAllTimers Clear all SetTimeout and Setlnterval timers
Clearinterval Clear a recurring interval timer
ClearTimeout Clear a one-time timer
GetProperty Get a property value
PlaySound Play a tone or wave file on the device (deprecated)
PlayTone Play a tone on the device (deprecated)
PostIDA Send a command to a session (asynchronous)
RunScript Run a script (called from a web browser only)
SendIDA Send a command to a session (synchronous)
SendText Send text to a session
Session Get a session object
Setlnterval Create a recurring interval script execution timer
SetProperty Set a property value
SetScriptTimeout | Set the current script execution timeout
SetTimeout Create a one-time script execution timer

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

AbortScript()
Stops the currently executing script.

ClearAllTimers()
Clear all recurring interval timers and one-time timers.

ClearInterval(intervalTimerID)
Clear the specified recurring interval timer.

ClearTimeout(timerlID)
Clear the specified one-time timer.

value = GetProperty(propertyName)

Return the named property value. This may be a device property, application
property, or session property. See Appendix 2 for a list of available properties.
Returns the JavaScript “undefined” value if the requested property cannot be
found.

PlaySound(sound) (deprecated)

Play a tone or wave file on the device. This PlaySound is not the same as the
Windows PlaySound of the OS object. This method will accept a wave file name
but it will also accept a “tone specifier” as a string to support this legacy feature in
the Naurtech Web Browser. New application should use the OS.PlaySound or
OS.PlayTone commands. Use the complete file path if the wave file is not in the
\Windows directory.

If the handheld device contains a programmable tone generator, the sound
parameter may also be a string which defines a sequence of tones to play. The
syntax is given below:

“wvfffddd” — where

vv — is the volume 01-10

fff — is the frequency in 10’s of MHz, 000-999

ddd — is the duration in 10’s of milliseconds, 000-999

CETerm Scripting Guide Page 23

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

Multiple tone specifications can be concatenated.

PlayTone(volume, frequency, duration) (deprecated)

Play a tone if supported by the handheld hardware. This method is provided for
backward compatibility within the web browser. New application should use
OS.Playtone() which provides the same functionality.

volume — is the volume 00 -10 (0 is off, 10 is loudest)
frequency — is the frequency in Hz.
duration — is the duration in milliseconds.

PostIDA(IDASymbolicName, session)

PostIDA submits an IDA action command and directs it to the specified session.
Valid session values are 1-4. The special session value of 0 will send the
command to the current session. Some IDA commands act at a global level and
ignore the session variable. See Appendix 1 for IDA Symbolic Names.

The PostIDA command will return before the action executes. In general, the
IDA action will not be applied until after the current script execution ends. We
recommend using PostIDA rather than SendIDA. There are only rare situations
when SendIDA must be used.

status = RunScript(script)

Run the specified script in the CETerm engine. This method must only be used
when the CETerm object is referenced from the web browser script engine. In
general, it is better to use PostIDA with an IDA_SCRIPT_xx action to run a pre-
defined script from the web browser. To execute a script contained in a string
from the CETerm engine use the JavaScript “eval()” method.

SendIDA(IDASymbolicName, session)

SendIDA sends an IDA action command and directs it to the specified session.
Valid session values are 1-4. The special session value of 0 will send the
command to the current session. See Appendix 1 for IDA Symbolic Names.

The SendIDA method will attempt to complete the action before returning. We
recommend using PostIDA rather than SendIDA. There are only rare situations
when SendIDA must be used. For example, SendIDA will be needed if you
need to invoke IBM field actions, such as Field Exit, between sending text to an
IBM session with SendText.

CETerm Scripting Guide Page 24

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

SendText(text, session)

SendText sends a text string to the specified session. Valid session values are
1-4. The special session value of 0 will send the command to the current
session. This command is synchronous and CETerm will act on each character
before this method returns.

The text string may include IDA symbolic names between backslash characters
. The IDA codes will be interpolated as the text is sent. For example,
“‘username\\IDA_FIELD_ EXIT\\secretpassword”. Note that each backslash has a
preceding backslash because it has special meaning within a JavaScript string.

Session (index)

Return the corresponding Session object. Valid index values are 1 to the
MaxSession property value. The object is returned even if the session is not
connected.

intervalTimerID = SetInterval(scriptExpression, delayMillisec)

Set a recurring interval timer to execute the scriptExpression after each delay of
delayMillisec. This method returns an ID that should be saved in a global variable
for later use with Clearinterval if needed. Other scripts may run while waiting for
this timer. The scriptExpression is a string containing the script, but is commonly
a function invocation, such as “myTimerFunction(3, ‘alert’);”

Timers are especially useful with complex or long-running scripts. Interval timers
should be used to perform simple update tasks. One-time timers should be used
in preference to interval timers. In general, scripts should perform a short action
and exit. With a complex script such as a state-machine, the state can be
maintained in global variables and the script re-activated periodically to check for
state transitions and perform actions. See the “expect” script and
“ExpectMonitor” class in Section 5.1 for an example of the use of a timer.

status = SetProperty(propertyName, propertyValue)

SetProperty will assign the given value to the named property. See Appendix 2
for a list of available properties. The returned status is 0 for success, non-zero
for failure.

CETerm Scripting Guide Page 25

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

SetScriptTimeout(millisec)

Set the maximum script execution time. This value may be updated during a
running script. If updated, the new timeout will apply starting at the time of the
change. A value of 0 will disable the timeout.

timeoutTimerID = SetTimeout(scriptExpression, delayMillisec)
Set a one-time timer to execute the scriptExpression after a delay of

delayMillisec. This method returns an ID that should be saved in a global variable
for later use with ClearTimeout if needed. Other scripts may run while waiting for
this timer. The scriptExpression is a string containing the script, but is commonly
a function invocation, such as “myTimerFunction(3, ‘alert’);”

Timers are especially useful with complex or long-running scripts. Timers can
also be used to defer an operation which is not possible within an event handler.
One-time timers should be used in preference to interval timers. In general,
scripts should perform a short action and exit. With a complex script such as a
state-machine, the state can be maintained in global variables and the script re-
activated periodically to check for state transitions and perform actions. See the
“‘expect” script and “ExpectMonitor” in Section 5.1 for an example of the use of a

timer.

Properties

The CETerm object has several application level properties.

Property Description Values
ActiveSession | Current active session. (read only) 1-4
MaxSession Maximum session index. (read only) |4
Message Returns message object. (read only) | object
TextInput Return text input object. (read only) object

3.2 THE SESSION OBJECT

The Session object gives access to session state. This section documents the
methods and properties of the Session object.

CETerm Scripting Guide

Page 26

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

Methods
The Session object has no methods.

Properties
The session object has several read only properties.

Property Description Values

Browser Returns browser object. (read only) object

IsConnected Returns true if session is connected. | true, false
(read only)

Screen Returns screen object. (read only) object

3.3 THE SCREEN OBJECT

The Screen object gives access to a session terminal emulation screen. This
section documents the methods and properties of the Screen object.

Methods
The following methods are available

Method Action

GetText Get all text from start location to end location
GetTextLine Get all text on a line

GetTextRect Get a rectangle of text

text = GetText(startRow, startColumn, endRow, endColumn)

Return the requested range of text. Each line will be separated by the
TextLineSeparator property value. If the session is not connected the JavaScript
null value is returned. End coordinates of -1 will use the maximum valid value.

text = GetTextLine(row)

Return the requested row of text. If the session is not connected the JavaScript
null value is returned. The row range is from 1 to the maximum row number.

CETerm Scripting Guide Page 27

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

text = GetTextRect(startRow, startColumn, endRow, endColumn)

Return the requested rectangle of text. Each line fragment will be separated by
the TextLineSeparator property value. If the session is not connected the
JavaScript null value is returned. End coordinates of -1 will use the maximum
valid value.

Properties

The screen object has several read only properties.

Property Description Values

Rows Number of rows in screen. (read only) 1-50

Columns Number of columns in screen. (read only) | 1-132

CursorRow Current row containing cursor. Setting 1to
this value will change the cursor location. | Rows

CursorColumn Current column containing cursor. Setting | 1 to
this value will change the cursor location. | Columns

TextLineSeparator | Text which separates every line in Default:
GetText methods. nothing

3.4 THE BROWSER OBJECT

The Browser object gives access to a web browser session. This section
documents the methods and properties of the Browser object.

Methods
The following methods are available

Method Action

AddMetaltem Add a CETerm <META> element to the current web page.
Navigate Navigate to specified URL.

RunScript Run a script in the web browser JavaScript engine.

CETerm Scripting Guide Page 28

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

result = AddMetaltem(target, content)

Add a CETerm <META> tag element to the current web page. This is typically
used to add custom <META> elements which define key mappings or other
custom behaviors. See the Naurtech Web Browser Programming Guide for
documentation on custom <META> tags. Returns O for success, non-zero for
failure. After adding META elements that change the values of information icons
you may need to use CETerm.PostIDA(“IDA_INFO_REFRESH?, 0) to apply the

changes.

result = Navigate(URL)
Navigate the browser session to the specified URL. Returns 0 for success, non-

zero for failure.

result = RunScript(script)

Execute the specified script in the browser Javascript engine. Returns 0 for
success, non-zero for failure.

Properties

The following read-only properties are available.

Property Description Values

Document Document object of the current web page. | object
The DOM of the page may be examined
and altered via this object. WARNING:
Use a local variable to hold this reference
to minimize memory usage. (read only)

DoclLoaded Returns true if document is loaded. (read | true,
only) false

3.5 THE MESSAGE OBJECT

The Message object provides feedback to the user while a script is running. This
object displays a dialog with a text message, an optional progress bar, and an
optional script cancellation button. The progress value can be set by the script

CETerm Scripting Guide

Page 29

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

as tasks are completed, or it can run at a constant rate to show activity to the

user.

Methods

The Message object has no methods.

Properties

The Message object is controlled through read-write properties. Setting a
property will change the message dialog appearance.

interval, message dialog is closed. A
value of 0 disables this timeout.

Property Description Values
AbortButtonVisible | If true, a script abort button is visible. true, false
Taping this button will abort the current
script execution.
IsVisible If true, message dialog is visible. true, false
Progress Current progress value in percent. 0to 100
ProgressRate Rate of change of progress bar. In units | 1to 100
of percent per second.
ProgressRunning | If true, Progress increases at true, false
ProgressRate
ProgressVisible If true, progress bar is shown true, false
Text Text of message. text
Title Text in message box title bar. text
Timeout Visibility timeout for dialog. After this 0 to 9999

3.6 THE TEXTINPUT OBJECT

The Text Input object provides user input in a script. This object displays a
dialog with a text message, an input field, a Cancel button and an OK button.

Methods

The following methods are available

CETerm Scripting Guide

Page 30

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

Method Action

Getlnput Get input from the user

result = GetInput()

Getlnput displays the user input dialog. Returns 1 for successful input, O if input
is canceled by the user, and -1 if there was an error. A default response may be
set in the Input property prior to calling Getlnput. If no default is desired, be sure
to clear Input prior to calling Getlnput.

Properties
The Text Input has the following properties.

Property Description Values
Input Can be pre-set with default response text
before calling Getlnput. If Getlnput
returns 1, contains the user input.

PasswordMode If true, input is shown as * characters. true, false
Prompt Text prompt message for user. text
Title Text in message box title bar. text

3.7 THE OS OBJECT

The 0S object provides access to operating system resources such as files and
the registry.

Methods
The following methods are available

Method Action

Alert Show the user a text message. (synchronous)

Beep Play a default beep tone.

Exec Run a separate program.

GetErrorMessage | Get a text error message for a Windows CE error value.
KillProcess Stop a running process started with Exec.

CETerm Scripting Guide Page 31

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

MessageBox Display a standard Windows MessageBox.
PlaySound Play a wave file on the device.

PlayTone Play a tone on the device.

Sleep Pause the script execution.

StopSound Stop an asynchronous playing PlaySound sound.
WaitForProcess | Wait for the specified process to end.

Alert(message)
Show the user a simple text message and wait for them to press OK.

Beep()
Sound the default Windows beep tone.

status = Exec(programFile, commandLine)

Start the specified program. Returns 0 for success, non-zero for failure.

Use GetErrorMessage() to convert a non-zero status to a text message. You
should immediately save the property LastExecProcess after a successful Exec
call to obtain the process ID for later use in WaitForProcess or KillProcess.

The programFile should be a fully qualified filename.

text = GetErrorMessage(error)
Returns a descriptive text message for the specified Windows error.

status = KillProcess(processID)

Attempts to stop the specified process. Returns 0 for success, non-zero for
failure. You must obtain the processID from the property LastExecProcess
immediately after a successful Exec call.

result = MessageBox(message, title, flags)

Display a standard Windows message box. The title is displayed in the message
box title bar. The flags are used to specify the icon and buttons that are visible.
Returns a value corresponding to the button pushed to close the dialog. See
Appendix 4 for flag definitions.

CETerm Scripting Guide Page 32

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

PlaySound(sound, flags)

Play a wave file on the device. This PlaySound is not the same as the
CETerm.PlaySound(). Use the complete file path if the wave file is not in the
\Windows directory. The flags control the way the sound is played. See
Appendix 4 for flag definitions. Returns true on success, false otherwise.

PlayTone(volume, frequency, duration)

Play a tone if supported by the handheld hardware. New applications should use
this method and avoid CETerm.Playtone().

volume — is the volume 00 -10 (0 is off, 10 is loudest)
frequency — is the frequency in Hz.
duration — is the duration in milliseconds.

Sleep(delay)
Delay script execution for specified milliseconds.

result = StopSound()
Stop any currently playing sound. Returns 0 on success.

status = WaitForProcess(processID, timeout)

Wait for the specified process to exit. Return after timeout milliseconds even if
process is still running. Return 0O if process has exited, non-zero for timeout or
failure. You must obtain the processID from the property LastExecProcess
immediately after a successful Exec call.

Properties
The 0S object has the following properties.

Property Description Values
File Returns the File object. This object object
provides access to the Windows file
systems. (read only)

CETerm Scripting Guide Page 33

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

Property Description Values

LastError Returns the last Windows error related to | integer
the OS object.

LastExecProcess | Returns the process ID of the last unsigned
program started via Exec. (read only) integer

Registry Returns the Registry object. This object | object
provides access to the Windows registry.
(read only)

TickCount Returns the current tick count from unsigned
Windows. This provides a millisecond integer
resolution time source. (read only)

3.8 THE FILE OBJECT

The File object provides access to the Windows file system.

Methods

The following methods are available

Method

Action

Copy

Create a copy of an existing file.

CreateDirectory

Create a new directory.

Delete

Delete an existing file.

GetAttributes

Get the attributes of an existing file.

GetOpenFileName

Select a filename with a file Open dialog.

GetSaveFileName

Select a filename with a file Save dialog

Move Move or rename a file.

Read Read file contents.

RemoveDirectory | Remove (delete) an existing directory.
SetAttributes Set the attributes of an existing file.
Write Write contents to a new or existing file.

status = Copy(existingFile, newFile, overWrite)

Copy an existing file to a new file. If a file already exists with the new file name,
copy will fail unless overWrite is true. Returns true for success, false for failure.

CETerm Scripting Guide Page 34

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

Use the File properties LastError or LastErrorMessge to get additional error
information.

status = CreateDirectory(newDirectory)

Create a new directory. Returns true for success, false for failure.

Use the File properties LastError or LastErrorMessge to get additional error
information.

status = Delete(filename)

Delete an existing file. Returns true for success, false for failure.

Use the File properties LastError or LastErrorMessge to get additional error
information.

attributes = GetAttributes(filename)

Return the attributes of the file. Use the File properties LastError or

LastErrorMessge to get additional error information. See Appendix 4 for attribute
definitions.

filename = GetOpenFileName(title, filter)

Return the name of a file specified by the user in an Open file dialog. The title of
the dialog should contain descriptive information for the user. For example,
“‘Please select a datafile.” The filter is list of filter pairs. Each pair represents the
description of a filter and the file selector wildcards. For a JavaScript file it may
look like this: "Jscript File (*.js)\x00*.js\x00\x00". Each element of the
pair is followed by "\xoo" as a separator character. The last pair has an

additional trailing "\xoo". Here is a multiple filter example:
"JScript File (*.3s)\x00*.3s\x00A11 Files (*.*)\x00*.*\x00\x00"

filename = GetSaveFileName(title, filter)

Returns the name of a file specified by the user in a Save file dialog. The title of
the dialog should contain descriptive information for the user. For example,
“Save file as:”. The filter is list of filter pairs. Each pair represents the description
of a filter and the file selector wildcards. For a JavaScript file it may look like this:
"JScript File (*.js)\x00*.js\x00\x00". Each element of the pair is followed
by "\xoo" as a separator character. The last pair has an additional trailing

m\xo00". Here is a multiple filter example:
"JScript File (*.js)\x00%.js\x00All Files (*.*)\x00*.*\x00\x00"

CETerm Scripting Guide Page 35

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

status = Move(existingFilename, newFileName)

Move or rename an existing file. Returns true for success, false for failure.
Use the File properties LastError or LastErrorMessge to get additional error
information.

contents = Read(filename)

Read entire file and return as contents. The read is an atomic operation which
opens the file, reads all contents and closes the file. The File object does not
support the concept of an “open” file or reading parts of a file. There must be
sufficient memory to hold the entire file contents. There is no error information
returned. Use GetAttributes to validate a filename and ensure read access.

status = RemoveDirectory(directoryname)

Delete an existing directory. Returns true for success, false for failure.
Use the File properties LastError or LastErrorMessge to get additional error
information.

status = SetAttributes(filename, attributes)

Sets the attributes of the file. Returns true for success, false for failure. Use the
File properties LastError or LastErrorMessge to get additional error information.
See Appendix 4 for attribute definitions.

status = Write(filename, contents)

Writes contents to the file. Returns true for success, false for failure. Any current
contents are first deleted. The write is an atomic operation which opens the file,
writes all contents and closes the file. The File object does not support the
concept of an “open” file or writing parts of a file. To append to a file, use Read
to get the current contents and Write the combined current and additional
contents. Use the File properties LastError or LastErrorMessge to get
additional error information.

Properties
The File object has the following properties.

CETerm Scripting Guide Page 36

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

Property Description Values
LastError Returns the last error value associated unsigned
with the File object. integer

LastErrorMessage | Returns a text message of the last error text
associated with the File object. (read

only)

3.9 THE REGISTRY OBJECT

The Registry object provides access to the Windows registry. The registry is a
form of database on Windows devices which holds the device configuration. The
registry has a hierarchical structure. The “keys” are similar to file folders and the
“‘values” inside a key are similar to files in a folder. Several methods require a
“fully qualified” value name which contains the full key hierarchy, begins with a
“root” key, and ends with the value name. This fully qualified value name is
similar to a file name with the full path.

WARNING: Altering the registry can make your device unusable. Be sure you
know the effect of changing values.

Methods
The following methods are available

Method Action

DeleteKey Delete an existing key.

DeleteValue Delete an existing value.

EnumerateKeys Get all sub-key names of a specified key.
EnumerateValues | Get all value names of a specified key.

FlushKey Issue the RegFlushKey command.

GetValueType Get the data type of a value.

ReadValue Read a value from a key.

ReadValueVBArray | Read a value from a key and return as a Visual Basic array.
WriteValue Write a value to a key.

CETerm Scripting Guide Page 37

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

status = DeleteKey(keyname)

Deletes an existing key and all values. Returns O for success or non-zero for an
error. Delete will fail if a key has sub-keys.

status = DeleteValue(keyname, valuename)

Deletes the specified value in an existing key. Returns 0 for success or non-zero
for an error.

keylist = EnumerateKeys(keyname)

Return a list of sub-keys of the specified key. See Appendix 4 for key names and
definitions. Each sub-key in the list is separated by the current StringSeparator
property value.

keylist = EnumerateValues(keyname)

Return a list of values of the specified key. See Appendix 4 for key names and
definitions. Each value name in the list is separated by the current
StringSeparator property value.

status = FlushKey(keyname)

Performs a Windows CE “RegFlushKey” on the specified key. Some older
devices use this to trigger a save of the current registry to persistent memory.
Do not use FlushKey unless directed by the device manufacturer. Returns 0 for
success, non-zero for error.

type = GetValueType(valuename)

Gets the data type for the specified value. Use a fully qualified value name that
starts with a root key. Returns O for success or non-zero for an error.

data = ReadValue(valuename)

Read the data from the specified value. Use a fully qualified value name that
starts with a root key. Binary values are returned as a list of comma separated

CETerm Scripting Guide Page 38

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

hexadecimal digits. MULTI_SZ strings are separated with the current
StringSeparator property value.

data = ReadValueVBArray(valuename)

Read the data from the specified value. Return the data as a Visual Basic array.
Use a fully qualified value name that starts with a root key. It is usually best to
use the ReadValue method and split the values using JavaScript. In rare
circumstances a true array may be needed. It is not possible to return a
JavaScript array, but it is easy to convert a Visual Basic array into a JavaScript

array using the VBArray object. For example:
var valuename = "HKLM\\Comm\\PY21BG1\\Parms\\TcpIp\\DhcpDNS";
var vbarray = new VBArray(OS.Registry.ReadValueVBArray(valuename) ;
var jsarray = vbarray.toarray() ;

status = WriteValue(valuename, valuedata, datatype)

Write the specified value. Use a fully qualified value name that starts with a root
key. WriteValue will create the containing key if it does not exist. Binary values
are submitted as a list of comma separated hexadecimal digits. MULTI_SZ
strings are separated with the current StringSeparator property value. Returns 0
for success, non-zero for error. See Appendix 4 for root key names and datatype
definitions. Common datatypes are “REG_SZ” for a string and “REG_DWORD”
for a DWORD value.

Properties
The Registry object has the following property.

Property Description Values
StringSeparator Text string that separates MULTI_SZ text
values. Default: "<|>"

CETerm Scripting Guide Page 39

4.0 CETerm Script Events

This section describes the script events within the CETerm script engine. These
events provide ways to trigger event handlers when various conditions occur in
CETerm. The event handlers are arbitrary scripts.

The event model in CETerm uses specific event handler names to bind events to
handlers. If the event handler function (e.g., “OnBarcodeRead”) is defined in the
script engine, it will be executed when the event occurs. There is no special
command required to register or bind the function to the event. Event handlers
can be re-defined at any time. If the handler is no longer needed, the function
can be re-defined as empty.

Event Fired when...

OnBarcodeRead Barcode read.

OnDocumentDone New web page loads.

OnNavigateError Web navigation fails.
OnNetCheckFailed Fails to complete network check to host.
OnSessionConnect Session connects to host.

OnSessionDisconnect Session disconnects from host.

OnSessionDisconnected | Session disconnected by host.

OnSessionReceive TE session receives data from host.
OnSessionSwitch Active session changes.
OnStylusDown Stylus tap on screen.

OnWakeup Device resumes after a suspend.

4.1 THE ONBARCODEREAD EVENT

The onBarcodeRead event is fired when a barcode is successfully read. The
handler can pre-process the data or check other conditions prior to passing it on
to a TE or browser session.

Syntax

function OnBarcodeRead(session, data, source, type, date, time)

session — index of currently active session

data — barcode data

source — source of barcode. Typically a constant scanner name.
type — labeltype of barcode. See Appendix 3 for values.

date — date of barcode read.

time — time of barcode read.

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

Example

Several samples for OnBarcodeRead were given in Section 2.5. Following is an
example that checks the RF connection before submitting the data to the host.
This notifies the user that the barcode was not received by the host and instructs
the user to return to RF coverage.

/* OnBarcodeRead */
function OnBarcodeRead(session, data, source, type, date, time)

{

// Check RF status
var status = CETerm.GetProperty("device.rf.status");
if (status <= 0)

{

OS.Alert("No RF signal detected.\n" +
"Barcode discarded.\n" +
"Return to RF coverage.");

// Discard barcode

return 1;

}

// Send barcode to emulator
CETerm.SendText (data, session);

// Return 1 if handled data here
return 1;

4.2 THE ONDOCUMENTDONE EVENT

The onDocumentDone event is fired when a new webpage has completed
loading into a web browser session. The handler can add META tag definitions,
examine or alter the Document Object Model (DOM), or add JavaScript methods
to the page. This event allows CETerm to enhance a web page for mobile data
collection that was not originally designed for such.

Syntax

function OnDocumentDone (session)

session — index of browser session which completed page load.

CETerm Scripting Guide Page 41

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

Example

This example shows how several META tags can be added to a web page. We
will add a “PowerOn” handler, a key remapping, and information item tags to
position the RF indicator at a special location. The “PowerOn” handler is often
used to navigate to a specific page, such as a login page, when the device
resumes. The RF indicator tags will restore a specific location, but could be used
to alter the RF indicator location depending on the current page.

/* OnDocumentDone */
function OnDocumentDone(session)

{

var b = CETerm.Session(session) .Browser;

// Do not process the initial about:blank page
if (!b.Document.URL.match ("about:blank"))

{

// Add PowerOn META handler
b.AddMetaltem("PowerOn",
"Javascript:alert (\"My PowerOn\");");

// Insert new JavaScript function
b.RunScript ("function myfl () {alert (\"F1l Function\");}");

// Add Key mapping to inserted function
b.AddMetaItem("OnKey F1", "Javascript:my£fl();");

// Position RF signal indicator
b.AddMetaItem("Signal", "x=195");
b.AddMetalItem("Signal", "y=100");

// Update information items for location to take effect
CETerm.PostIDA("IDA INFO REFRESH", session);

4.3 THE ONNAVIGATEERROR EVENT

The OnNavigateError event is fired if the browser fails to complete a web
navigation. Typically, the error handler will redirect the web browser to a “file:”
URL on the device for error recovery. This event may fire if the device loses RF
coverage during a navigation or the web server crashes. It is a good practice to
use the CETerm “Check Network Before Send” feature to validate RF coverage
prior to submitting the navigation request and use the OnNavigateError for
additional error handling.

Syntax

function OnNavigateError (session, params)

CETerm Scripting Guide Page 42

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

session — index of browser session which failed to navigate.
params — navigation error parameters, including the error number and URL.

The params argument is formatted as URL parameters and has the form:
error=0x800C0005&url=http://192.168.1.20/application.exe?state=3&scan=0

Everything after url= in the params argument is the URL that failed to
navigate, along with all the parameters of that URL. The error values are
standard Microsoft browser status codes and are defined in Appendix 4.

Example For Windows CE 5.0 devices

This example shows how to redirect a web browser to a static URL on the
device.

/* OnNavigateError */
function OnNavigateError (session, params)

{

// Save params in text 3x where x is session index

// This is required by CE 5.0 devices which do not pass
// parameters to a "file:" URL.

CETerm.SetProperty("app.usertext.3" + session, params) ;

// Navigate to static error page
var b = CETerm.Session(session) .Browser;
b.Navigate("file:///error.htm") ;

}

Note the CETerm.SetProperty () call. This method saves the params in
persistent memory for later use by the "error.htm" web page. The reason to do
this is because the parameters are lost by the Windows CE browser when
navigating to a "file:" resource. The error web page can retrieve the params
using:

var property = "app.usertext.3" + external.sessionindex;
var params = external.CETerm.GetProperty(property) ;

Using the URL, the error page can re-attempt the navigation or decide on other
error recovery. Please note that the "User Text X" is used for several purposes in
CETerm, including key remapping. Be sure that this use does not collide with
other uses in your configuration.

CETerm Scripting Guide Page 43

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

Example For Windows Mobile devices

Handheld devices using Windows Mobile can use a different technique to pass
on the params URL. For these devices, the parameters of a “file:” URL are
available within the browser. The error parameters can simply be passed on to
the static page without using a “User Text x” variable.

/* OnNavigateError */
function OnNavigateError (session, params)

{

// Navigate to static error page
var b = CETerm.Session(session) .Browser;
b.Navigate("file:///error.htm?" + params);

}

The error page can access the failed URL parameters using normal techniques

to re-attempt the navigation or decide on other error recovery.
var params = document.location.search;

4.4 THE ONNETCHECKFAILED EVENT

The onNetCheckFailed eventis fired if a “Network Check on Send” fails to
detect the host system and the Network Check Action is
“‘ida://IDA_SCRIPT_ON_NETCHECKFAILED”. Other Network Check Actions
are possible, including direct naming of an error URL. See the User Manual for
more information. Typically, this error handler will redirect the web browser to a
“file:” URL on the device for error recovery.

Syntax

function OnNetCheckFailed(session, pendingURL)

session — index of browser session attempting navigation.
pendingURL — pending URL for navigation.

The pendingURL is the destination that the user requested but which has been
deferred because the host was not contacted. The event handler can re-try the
navigation.

Example

This example is nearly identical to the onNavigateError handler except that
there is no error number in the pendingURL. This handler
shows how to redirect a Windows CE web browser to a static URL on the device.

CETerm Scripting Guide Page 44

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

/* OnNetCheckFailed =/
function OnNetCheckFailed (session, pendingURL)

{

// Save pendingURL in text 3x where X 1s session index

// This is required by CE 5.0 devices which do not pass

// parameters to a "file:" URL.

CETerm.SetProperty("app.usertext.3" + session, pendingURL) ;

// Navigate to static error page
var b = CETerm.Session(session) .Browser;
b.Navigate("file:///error.htm") ;

See the onNavigateError example above for additional details.

4.5 THE ONSESSIONCONNECT EVENT

The onSessionConnect eventis fired when a session initially connects to the
specified host. The handler can be used to initiate an automated login using the
“expect” script and “ExpectMonitor” class.

Syntax

function OnSessionConnect (session)

session — index of session which connected.

Example
An example using OnSessionConnect to start the automated login was shown
above in Section 2.6 and is repeated below. Please refer to Section 2.6 for
details. The “expect” script is discussed in Section 5.1.

/* OnSessionConnect */
function OnSessionConnect (session)

{

// Set login information

var myusername = "joeuser";
var mypassword = "secret";
var waittime = 8000; // Milliseconds waiting for each text

// Only login session 1
if (session == 1)

CETerm Scripting Guide Page 45

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

// Look for "login" then "password"
expect (session, waittime, "Login", myusername + "\r",
"Password", mypassword + "\r");

4.6 THE ONSESSIONDISCONNECT EVENT

The OonSessionDisconnect event is fired when a session is disconnected by a
user action. The handler can be used to switch to another session, exit, or
perform other cleanup tasks.

Syntax

function OnSessionDisconnect(session)

session — index of session which was disconnected by user.

Example

This example will switch to the next connected session when the current session
is disconnected. If there are no other connected sessions, then CETerm will exit.

/* OnSessionDisconnect */

function OnSesgsionDisgconnect (session)
// Switch to next connected session
CETerm.SendIDA ("IDA SESSION_ NEXTLIVE", O) ;

if (CETerm.ActiveSession == session)
// Still on current session, no others connected.
CETerm.PostIDA ("IDA PROGRAM EXIT", O) ;

CETerm Scripting Guide Page 46

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

4.7 THE ONSESSIONDISCONNECTED EVENT

The OnSessionDisconnected eventis fired when a terminal emulation (TE)
session is disconnected by the remote host. The handler can be used to attempt
to reconnect to the host or perform other cleanup tasks.

Syntax

function OnSessionDisconnected(session)

session — index of session which was disconnected by remote host.

Example

This example will check for RF coverage and attempt to reconnect if RF is
detected.

/* OnSessionDisconnected */
function OnSesgssionDisconnected(session)

{

// Check RF status
var status = CETerm.GetProperty("device.rf.status");
if (status <= 0)

{

OS.Alert("No RF signal detected.\n" +
"Return to RF coverage and reconnect.");
return;

}

// Attempt to reconnect to host
CETerm.PostIDA("IDA SESSION CONNECT", session);

4.8 THE ONSESSIONRECEIVE EVENT

The OnSessionReceive eventis fired when a terminal emulation session
receives data from the connected host. The handler can be used to detect
screen content such as an error message and perform a desired action.

Syntax

function OnSessionReceive (session, count)

CETerm Scripting Guide Page 47

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

session — index of session which received data.
count — count of bytes received.

Example

This example will check the screen content on line 24 looking for an error
message. [f found, the error is displayed as a popup message.

/* OnSessionReceive */

function OnSessionReceive(session, count)
// Get line of text
var s = CETerm.Session(session) .Screen;
var line = s.GetTextLine(24);

// Do a regular expression case-insensitive match
if (line.match(/error/i))

{
}

O0S.Alert("Error: " + line);

4.9 THE ONSESSIONSWITCH EVENT

The onSessionSwitch event is fired when the active session changes. The
handler can be used to perform a session specific action.

Syntax

function OnSessionSwitch(session, previousSession)

session — index of session which became active.
previousSession — index of session which was previously active.

Example

This example will reposition the battery information item depending on which
browser session is active.

/* OnSessionSwitch */

CETerm Scripting Guide Page 48

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

function OnSessionSwitch(session, previousSession)

{

var b = CETerm.Session(session) .Browser;

if (b.DocLoaded)

{

var X = (session == 1) ? 195 : 10;
var y = (session == 1) ? 10 : 100;
b.AddMetaltem("Battery", "x=" + x);
b.AddMetalItem("Battery", "y=" + Yy);

CETerm.PostIDA("IDA INFO_REFRESH", 0);

4.10 THE ONSTYLUSDOWN EVENT

The onStylusDown eventis fired when the user taps a terminal emulation
screen with a stylus or finger. This event is only fired if the tap does not activate
a standard “touch” feature. All touch features can be disabled in the CETerm
configuration. This handler can be used to activate user-defined hot-spots.

Syntax

function OnStylusDown(session, row, column)

session — index of currently active session
row — row of screen tap
column — column of screen tap.

Example

Several samples for OnStylusDown were given in Section 2.7. Following is an
example that starts a barcode scan if the row contains the word “scan”. Not all
hardware devices support a scan trigger by script. If tapping on an IBM screen,
you must tap on an input field in the row, or the focus will not be in an input field
when the scan is sent to the session. Of course the “OnBarcodeRead” handler
could be used to force the scanned data into a preferred input field.

/* OnStylusDown */
function OnStylusDown(session, row, column)

{

var screen = CETerm.Session(session) .Screen;

// Get row of text
var text = screen.GetTextLine(row) ;

CETerm Scripting Guide Page 49

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

// Look for "scan" as case-insensitive match

if (text.match(/scan/i))

{
}

CETerm.PostIDA("IDA SCAN TRIGGER", O

4.11 THE ONWAKEUP EVENT

) i

The onwakeup event is fired when the device resumes after suspending. The
handler can be used to perform any action, such as waiting for RF coverage or

switching to a specific session.

Syntax

function OnWakeup()

Example

This example will wait for RF coverage to resume and sound a tone when it is
available. While waiting, a “tic” sound will be made periodically to indicate the
check. This sample is more complex than needed, but it illustrates how to use

global variables and timers to periodically check state.

/* RFSoundOnConnect */

// Global control variables
var RFWakeupSoundTimerID = 0;
var RFWakeupSoundContinue = 0;

var RFWakeupSoundInterval = 200; // milliseconds

var RFWakeupSoundCountMaximum = 50; // 50%200

var RFWakeupSoundCount = 0;

function OnWakeup ()

{

// Start with wakeup event
RFWakeupSoundStart () ;

}

// Function to start RF check
function RFWakeupSoundStart ()

{

if (!RFWakeupSoundContinue)

= 10 seconds

CETerm Scripting Guide

Page 50

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

RFWakeupSoundContinue = 1;

if (RFWakeupSoundTimerID != 0)

{
// Stop and clear any previous check
CETerm.ClearTimeout (RFWakeupSoundTimerID) ;
RFWakeupSoundTimerID = O;

}

RFWakeupSoundCount = 0;

// Schedule first RF check

RFWakeupSoundTimerID = CETerm.SetTimeout (
"RFWakeupSoundOnTimer () ; ",
RFWakeupSoundInterval) ;

}
}

// Function to check RF and notify user

function RFWakeupSoundOnTimer ()
RFWakeupSoundTimerID = O;
RFWakeupSoundCount++;

// Get and check info
var rfStatus = CETerm.GetProperty("device.rf.status");

if (rfStatus > 0)

{
// RF detected
// Delayed playsound, increase delay for WEP if needed
CETerm.SetTimeout ("RFWakeupSoundPlay();", 100);
RFWakeupSoundContinue = 0;

}

else if (RFWakeupSoundCount > RFWakeupSoundCountMaximum)
// Failed to get RF, show failure message.
OS.Alert("Failed to detect RF signal.\n" +
"Return to coverage area.");
RFWakeupSoundContinue = 0;

}

if (RFWakeupSoundContinue)

{

if (! (RFWakeupSoundCount % 5))

// Play "tick" sound while check is running.
CETerm.PlaySound("MenuPop") ;

}

// Schedule next RF check

RFWakeupSoundTimerID = CETerm.SetTimeout (
"RFWakeupSoundOnTimer () ; ",
RFWakeupSoundInterval) ;

CETerm Scripting Guide Page 51

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

function RFWakeupSoundPlay ()

{

}

// Select any wave file on device for notification.
CETerm.PlaySound("infbeg") ;

5.0 Scripting Techniques and Tips

This section describes ways that scripting can extend the capabilities of CETerm.
Tips for script development are also presented.

5.1 EXPECT AND EXPECTMONITOR FOR AUTOMATING TASKS

The “expect” script and “ExpectMonitor” class provide a general purpose
“‘prompt-and-response” tool. Using “expect” for automated login was described in
Section 2.6. Here we provide the complete listing of the scripts and discuss
other options for use.

5.1.1 Expect Script

The “expect” script illustrates a couple of powerful JavaScript constructs. Even
though the expect function has 4 defined arguments in the function declaration, it
is possible to pass an unlimited number of arguments. All arguments are
accessible through the special “arguments” variable. This script also shows the
object-oriented aspects of JavaScript by creating a new ExpectMonitor class.

/*
//
//
//

expect */

This script will "expect" a text prompt on the screen and
respond with text or action.

Syntax: expect(session, timeout,
expectedText, response
[, expectedText2, response2])

session is the session index

timeout is the wait interval for each text in milliseconds
expectedText can be a string or regular expression
Response can be a text response or a function

function expect(session, timeout, expectedText, response)

CETerm Scripting Guide Page 52

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

// Build array from arguments

// This technique will accumulate any
// number of expect/response pairs

var TargetResponseArray = [];

for (var i=2; i < arguments.length; i++)

{
}

// Create an ExpectMonitor class that manages the actions
var EM = new ExpectMonitor(session, timeout,
TargetResponseArray) ;

TargetResponseArray.push(arguments[i]) ;

// Set optional ExpectMonitor behaviors
//EM.silent = true;
//EM.OnDone = function (success) { 0S.Alert("Done.") };

// Start check
EM.Start () ;

5.1.2 ExpectMonitor Class

The “ExpectMonitor” class illustrates the use of a prototype in JavaScript. This
class also manages all instances of itself to restrict the number of objects that
can be created.

/* ExpectMonitor */

//

// ExpectMonitor class

//

// The ExpectMonitor class manages the expect/action
// sequence for a session.

// Only one ExpectMonitor is allowed per session.

function ExpectMonitor(session, timeout, targetactions)

{

// Validate session
if (session < 1 || session > 4)

{
}

this.session = session;
this.timeout = timeout;
this.args = targetactions;

return null;

CETerm Scripting Guide Page 53

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

this.state = 0;
this.timer null;
this.checkCount = 0;
this.totalCheckCount = 0;

this.maxCheckCount = this.timeout / this.checkDelta;

// Abort any existing object

if (ExpectMonitor.Instances[this.session] != null)

ExpectMonitor.Instances[this.session] .Abort () ;

}

// Record this instance in the global array
ExpectMonitor.Instances [this.session] = this;

function ExpectMonitor Check/()

{
// Clear timer id
this.timer = null;

// If something to check for, check it.
var target = this.args[this.state];

if (target != null)

{

// Get all screen text
var screenText =

CETerm.Session (this.session) .Screen.GetText (1,1,

if (screenText != null && screenText.match (

{

// Found match

var action = this.args[this.state + 1];

this.checkCount = 0;

if (action != null)

{

// Check action
if (typeof action == "function")

{

// Run function action

// Pass session number as argument

action(this.session);

}

else if (typeof action == "string")

{

// Send text to session

CETerm.SendText (action, this.session);

}

else if (!this.silent)

{

-1,

))

CETerm Scripting Guide

Page 54

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

OS.Alert ("Unknown action type for expect.");

}

// Check if another match expected

this.state +=2;
target = this.args[this.state];

if (target != null)

{

// Schedule next check
this.Schedule () ;

}

else

{

// Done with this expect.

// Run any post-execution actions
if (typeof this.OnDone == "function")

{
}

this.OnDone (true);

else

// No match, schedule again

if (this.checkCount++ < this.maxCheckCount)

0S.Alert("Expect failed to find text \"" +

{
this.Schedule() ;
!
else
{
if (!this.silent)
{
target + "\"");
1
if (typeof this.OnDone == "function")
{
// Done but failed
this.OnDone (false);
!
!

function ExpectMonitor Schedule ()

{

// Schedule next check
var script = "ExpectMonitor.Instances[" +

this.session + "] .Check()";

CETerm Scripting Guide

Page 55

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

this.timer = CETerm.SetTimeout (script, this.checkDelta);

function ExpectMonitor Start ()

{

// Cleanup first in case restarted
this.Abort () ;

// Initialize state
this.state = 0;
this.checkCount = 0;

this.Check () ;

function ExpectMonitor Abort ()

{
// Stop any timer
if (this.timer != null)
{

CETerm.ClearTimeout (this.timer) ;
this.timer = null;

}

// Set state to beyond reasonable range
this.state = 1000;

// Method definitions

ExpectMonitor.prototype.Check = ExpectMonitor Check;
ExpectMonitor.prototype.Schedule = ExpectMonitor Schedule;
ExpectMonitor.prototype.Start = ExpectMonitor Start;
ExpectMonitor.prototype.Abort = ExpectMonitor Abort;

ExpectMonitor.prototype.OnDone = null;

// Check every 200 milliseconds
ExpectMonitor.prototype.checkDelta = 200;
// About 10 seconds for each text check
ExpectMonitor.prototype.maxCheckCount = 50;
// Allow messages
ExpectMonitor.prototype.silent = false;

// Class statics
ExpectMonitor.Instances = [];

CETerm Scripting Guide Page 56

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

5.1.3 Automating Tasks with Expect

Any routine prompt-and-response task can be automated with “expect”.
Examples may be navigating through a hierarchy of menus or closing an order
for shipping. In any case, you identify text to find on the screen and the user
input to take you to the next screen. Here is a simple menu traversal:

// Traverse menu
expect (CETerm.ActiveSession, 8000,

"3, Applications", "3\r",
"2. Inventory", "2\r",
"2. Put Back", "2\r");

This script can be entered into any script slot and bound to a key combination for
activation. You must also load the “expect” and “ExpectMonitor” in a script slot
which is marked “Load at Startup” so that the functions are available for use.

5.2 PRESENTING VISUAL FEEDBACK DURING SCRIPT EXECUTION

The Message object can be displayed during script execution when you want to
provide a visual indication of script progress. The Message object is
asynchronous and a script can continue running while it is displayed. This is
unlike the OS.Alert() message which stops script execution and requires user
confirmation. There is only one Message object within CETerm and you can
change the Message properties within any script.

WARNING: You must exercise caution when using the Message box to avoid
leaving it visible after a script is done. You may want to provide a
cleanup script that can be activated by the user to be sure the
message is hidden.

Following is an example of using the Message box. This message will display
itself for 5 seconds and then disappear.

/* Show message for 5 seconds */

var m = CETerm.Message;

m.Text = "Processing data, please wait.";

.Timeout = 5;

.AbortButtonVisible = true; // does nothing because script exits
.Progress = 0;
.ProgressRunning
.ProgressVisible

= true;
.ProgressRate = 20;

t
true;

233333

CETerm Scripting Guide Page 57

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

m.IsVisible = true;

You may want to update the progress bar directly while processing data. Here is
an example.

/* Update progress and message during processing */
var m = CETerm.Message;

m.Text = "Processing data, please wait.";
m.Timeout = 0;

m.AbortButtonVisible = false;
m.ProgressRunning = false;

// Do some work

m.Progress = 0;

m.IsVisible = true;

0S.Sleep(2000); // Simulate work delay
// Update

m.Progress = 20;

m.Text = "Finding addresses, please wait.";
0S.Sleep(2000); // Simulate work delay
// Update

m.Progress = 50;

m.Text = "Sorting addresses, please wait.";
0S.Sleep(2000); // Simulate work delay
// Update

m.Progress = 90;

m.Text = "Almost done, please wait.";
0S.Sleep(2000); // Simulate work delay
// Done

m.IsVisible = false;

5.3 GETTING USER INPUT TO A SCRIPT

The TextInput object can get user input for a script. Here is an example for
getting a password.

/* Get password from user */
var t = CETerm.TextInput;

t.Title = "Warehouse Management";
t.Prompt = "Please enter your password:";
t.PasswordMode = true;

t.Input = ""; // Clear current password

CETerm Scripting Guide Page 58

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

var

if (

{
OS.Alert ("Password is " + t.Input);
t.Input = ""; // Clear password

}

else

{

OS.Alert ("Failed to get password.");

}

t.GetInput () ;

s
s == 1)

5.4 RUNNING AN EXTERNAL PROGRAM

It is possible to start an external program from the CETerm script engine. You
can wait for the program to finish or allow it to run independently. Usually you
will run a program then return to CETerm when it exits.

Here is an example to start the stylus calibration. Note that the arguments
depend on whether your device is Window CE or Windows Mobile.

/* Stylus Calibration */
// TODO: Uncomment the line for your device

// For Windows CE 5.0 devices
0S.Exec("\\Windows\\ctlpnl.exe", "cplmain.cpl,9,1");

// For Windows Mobile 5 devices
//0S.Exec ("\\Windows\\ctlpnl.exe", "cplmain.cpl,7,0");

5.5 USING TIMERS TO RUN SCRIPTS

Script execution timers are useful for several tasks. They can be used to:
1. Defer an action which is not possible in an event handler.
2. Perform an action periodically.
3. Provide an asynchronous script execution.
4. Split up a long running task.

We have already shown how the timer is used with the ExpectMonitor class and
task automation in Section 5.1. Event handlers should be limited to a small
amount of processing. If more processing is needed, it is best to schedule that
processing with SetTimeout() and allow the event handler to exit.

CETerm Scripting Guide Page 59

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

The following example will save data from memory to a flash file whenever a
particular URL is loaded.

/* OnDocumentDone */
function OnDocumentDone (session)

{

var b = CETerm.Session(session) .Browser;

if (b.Document.URL.match(/InventorySave/))
{
// Resume online inventory, and save cached
// data to file in background.
CETerm.SetTimeout ("BackgroundSave (" + session + ");", 10);

}

/* BackgroundSave */
function BackgroundSave(session)
{
var d = new ActiveXObject ("Microsoft.XMLDOM") ;
d.loadXML (
"<?xml version=\"1.0\"?><Books>" +
"<Book QTY=\"10\"><Title>Beginning XML</Title></Book>" +
"<Book QTY=\"2\"><Title>Mastering XML</Title></Book>" +
"</Books>") ;

if (!0S.File.Write("\\FlashDisk\\inventory.xml", d.xml))

{
}

OS.Alert("Failed to save inventory.");

5.6 ACCESSING A FILE

The File automation object provides basic access to the Windows CE filesystem.
It supports whole-file read and write, but does not support the concept of an
“open” file with piecewise read or write. You can also create and delete file
directories.

This example shows how to append to an existing file by using a combination of
read and write.

/* AppendToFile */
function AppendToFile(filename, addedContent)

{

var status = false;

CETerm Scripting Guide Page 60

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

var F = OS.File;

// Check if file exists

var attributes = F.GetAttributes(filename) ;
if (attributes != OxXFFFFFFFF)

var content = F.Read(filename) ;

status = F.Write(filename, content + addedContent) ;
else

{
}

return status;

status = F.Write(filename, addedContent) ;

5.7 ACCESSING THE REGISTRY

The registry on a Windows CE device is a form of database which contains most
of the device configuration. The Registry automation object allows you to
read, write and delete registry keys and values.

WARNING: Altering the registry can make your device unusable. Be sure you
know the effect of changing values and accept the responsibility.

The registry has a hierarchical structure. The “keys” are similar to file folders and
the “values” inside a key are similar to files in a folder. Several Registry
methods require a “fully qualified” value name which contains the full key
hierarchy, begins with a “root” key, and ends with the value name. This fully
qualified value name is similar to a file name with the full path.

The following example creates a new key and value and confirms that it can be
read.

/* NewRegistryDWORD */
function NewRegistryDWORD(keyname, valuename, valuedata)

{

var status = false;
var R = OS.Registry;

// Check if file exists
var fullyQualifiedKey = "HKEY LOCAL MACHINE\\" +
keyname + "\\" + valuename;

if (!R.WriteValue(fullyQualifiedKey, valuedata, "REG DWORD"))

{

CETerm Scripting Guide Page 61

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

// Check if can read value
var readdata = R.ReadValue(fullyQualifiedKey) ;
if (readdata == valuedata)

{
}

status = true;

}

if (!status)

{

OS.Alert("Failed to confirm write of " +
fullyQualifiedKey) ;

}

return status;

}
NewRegistryDWORD may be used as follows.

// Write a new value
NewRegistryDWORD ("SOFTWARE\\Naurtech\\Test", "TestDword", 510);

5.8 WRITING EFFICIENT SCRIPTS

Good programming practices should be used when developing scripts for
CETerm. In general, it is important to conserve memory, minimize script
compilations, and limit execution times. Please refer to a JavaScript
programming book for more information.

5.8.1 Use Local Variables

Whenever possible, use local variables within functions and declare them with
the var keyword, like this:

var status;
var message = "hello";
var i, j, k;

If you fail to use the var keyword, then JavaScript automatically creates a global
variable with that name if it has not already been declared outside a function.

JavaScript uses “garbage collection” to reclaim memory no longer in use.
Memory occupied by global variables may never be reclaimed, whereas local
variable memory can be reclaimed after a function call completes. Because the

CETerm Scripting Guide Page 62

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

JavaScript engine in CETerm is not reset frequently like a browser JavaScript
engine, it is more likely that poor programming practices could exhaust memory.

5.8.2 Encapsulate Code in Functions

Whenever possible, put multiple script actions within a function. This should
minimize compilations and make it easier to use local variables as described
above. For example, the following actions could be in a script which is bound to
a key-combination:

CETerm.SetProperty("sessionl.scanner.upca.enabled", true);
CETerm.SetProperty("sessionl.scanner.msi.enabled", false);
CETerm.SetProperty("sessionl.scanner.pdf4l7.enabled", false);
CETerm.PlayTone(8, 2000, 200);

CETerm.PlayTone(8, 1500, 200);

CETerm.PostIDA("IDA SCAN APPLYCONFIG", 0);

Or, the actions could be in a function which is loaded with “Load at Startup”

function enableUPCA/()

{

CETerm.SetProperty("sessionl.scanner.upca.enabled", true);
CETerm.SetProperty("sessionl.scanner.msi.enabled", false);
CETerm.SetProperty("sessionl.scanner.pdf4l7.enabled", false);
CETerm.PlayTone(8, 2000, 200);

CETerm.PlayTone(8, 1500, 200);

CETerm.PostIDA("IDA SCAN APPLYCONFIG", 0);

{

and the function call, in a separate script, could be bound to the key-
combination:

enableUPCA() ;

Using the later approach, the function is only compiled once, not each time the
key is pressed. In general, separating the function definitions from the invocation
is a good practice.

5.8.3 Limit Execution Time

Because the script engine acts like a “virtual user”, when a script is executing,
CETerm will seem unresponsive. You cannot have a script running continuously.
However, using events and timers, you can accomplish most tasks.

CETerm Scripting Guide Page 63

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

Do not disable the “Script Timeout” unless you are sure your script will not enter
an infinite loop.

5.9 DEBUGGING SCRIPTS
All but the most trivial script will require some degree of debugging.

5.9.1 Show Script Errors

The first step is to enable “Show Script Errors”. This will enable a popup
message for compilation and runtime errors. Compilation errors will usually be
seen when new scripts are added or upon script engine startup. It may not be
clear which script loaded at startup contains the error. In this case you may need
to open the edit dialog for each script and tap the “Test/Load” button to identify
the bad script.

The compilation error looks like this:
Microsoft JScript compilation error
[Line: 15 Col: 8] Expected ')’
OS.Alert (message);

Notice that the line of script presented looks OK. In this case, the missing ‘)’ is
on the previous line of script, but the error is detected as the compiler reaches
column 8 of this line and encounters the ‘O’. Be sure to look around the
indicated location to identify the source of the error.

A runtime error may be seen at startup if a script is performing some initialization,
or it may be seen while using CETerm. It can be difficult to identify the source of
the error if the script was fired by an event or timer. Most often, a runtime error
can be prevented by “defensive coding” where you are sure to check the validity
of arguments and object references.

The runtime error looks like this:

Microsoft JScript runtime error
[Line: 14 Col: 9] Object doesn’t support this property
or method.

Unfortunately, the JScript engine does not return the source code line for a
runtime error. You must manually examine your scripts at the specified location
for a clue about the problem.

CETerm Scripting Guide Page 64

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

5.9.2 OS.Alert()

Because there is no JScript debugger on the Windows CE device, the tried-and-
true debugging tool is “OS.Alert(message)’. Experienced programmers will
recognize this as the “write(6,100)”, “printf” or “MessageBox” technique.

The basic idea is to sprinkle “OS.Alert()” calls through your code to track program
flow and variable values. It can be tedious, but it's easy to do and easy to
remove the OS.Alert() calls by preceding them with comment characters.

Alternatively, you can define a Debug() method and sprinkle it through your code.
This makes it easier to enable or disable debugging.

var globalDebugLevel = 0;

function Debug(message)

{

if (globalDebugLevel > 0)

{
}

OS.Alert (message) ;

CETerm Scripting Guide Page 65

Appendix 1 - IDA Action Codes

Many IDA codes apply only to a Terminal Emulation session. Some IDA codes

can only be used in restricted circumstances, such as IDA_URL.

Symbolic Name Friendly Name Description
IDA_BEL Bell
IDA_BS Backspace
IDA HT Horizontal Tab
IDA_TAB Tab
IDA LF Linefeed
IDA VT Vertical Tab
IDA FF Form Feed
IDA CR Carriage Return
Printable ASCII
IDA_SPACE <Space>
IDA_EXCLAMATION_MARK !
IDA_DOUBLE_QUOTE "
IDA_ NUMBER SIGN #
IDA_DOLLAR_SIGN $
IDA_ PERCENT %
IDA_AMPERSAND &
IDA_SINGLE_QUOTE '
IDA_ LEFT _PAREN (
IDA_RIGHT_PAREN)
IDA_ASTERISK *
IDA_PLUS +
IDA_ COMMA :
IDA_HYPHEN -
IDA_PERIOD .
IDA_SLASH /
IDA_O 0
IDA 1 1
IDA 9 9
IDA_COLON :
IDA_SEMICOLON ;
IDA_LESS_THAN <
IDA_EQUAL =
IDA_GREATER_THAN >

5

IDA_QUESTION MARK

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

Symbolic Name Friendly Name Description
IDA_AT @

IDA_A A

IDA B B

IDA Z Z
IDA_LEFT_BRACKET [

IDA_ BACKSLASH \
IDA_RIGHT_BRACKET]

IDA_ CARET A
IDA_UNDERSCORE _

IDA_ BACKTICK)

IDA a a

IDA_b b

IDA z z
IDA_LEFT_BRACE {

IDA_PIPE |

IDA_RIGHT BRACE }

IDA_TILDE ~

IDA DEL DEL

C1 ASCII Controls

IDA_IND Index
IDA_NEL Next Line
IDA_HTS Horiz Tab Set
IDA RI Reverse Index
IDA_SS2 Single Shift 2
IDA_SS3 Single Shift 3
IDA_DCS Device Ctrl Str
IDA_PU1 Private Use One
IDA PU2 Private Use Two
IDA_CSI Ctrl Seq Intro
IDA_ST String Term
IDA_OSC OS Command
IDA_PM Private Msg
IDA_APC App Prog Cmd

Internal Actions (TE only)

IDA_UPDATE_CURSOR

Update Cursor

CETerm Scripting Guide

Page 67

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

Symbolic Name

Friendly Name

Description

IDA_INHIBIT_UPDATE

Inhibit Update

Don’t update display

IDA_UNINHIBIT_UPDATE

Uninhibit Update

Allow display update

IDA_UPDATE Update Force display update
IDA_INHIBIT SEND Inhibit Send VT buffer characters
IDA_UNINHIBIT SEND Uninhibit Send VT stop buffering

IDA_SEND_PENDING

Send Pending Chars

VT send buffered chars

Program Actions

IDA_PROGRAM_ABOUT

Program About

Display About dialog

IDA_PROGRAM_EXIT

Program Exit

Exit program

IDA_PROGRAM_EXITSILENT

Program EXxit Silent

Exit program silently

IDA_PROGRAM_HELP

Program Help

Display Help

IDA_SUSPEND_DEVICE

Suspend Device

Enter suspend state

IDA_BLUETOOTH_DISCOVERY

Bluetooth Discovery

Start discovery

IDA_WARMBOOT

Warm Boot

Warm boot device

IDA_COLDBOOT

Cold Boot

Cold boot device

IDA_MENU_TOPBOTTOM

Menu Top/Bot

Toggle menu location

IDA_MENU_TOGGLEHIDE Menu Toggle Toggle menu visibility
IDA_ TOOLBAR TOGGLE ToolBar Toggle Toggle toolbar visibility
IDA_ START TOGGLEHIDE Start Menu Toggle Toggle Start visibility
IDA_MENUBAR_TOGGLEHIDE MenuBar Toggle Toggle menubar
visibility
IDA_SESSION_TOGGLECON Connect/Discon Toggle session
connection
IDA_SESSION_CONFIGURE Configure Configure session
IDA_ SESSION CONNECT Connect Connect session
IDA_SESSION_DISCONNECT Disconnect Disconnect session

IDA_SESSION_NEXT_LIVE

Next Live Session

Switch to next live
session

IDA_SESSION_PASSWORD

Password

Session password
dialog

IDA_SESSION_PREV

Prev Session

Switch to previous
session

IDA_SESSION_NEXT

Next Session

Switch to next session

IDA_SESSION DISCON_ALL

Disconnect All

Disonnect all sessions

IDA_SESSION_S1 Session 1 Switch to session 1
IDA_SESSION_S2 Session 2 Switch to session 2
IDA_ SESSION S3 Session 3 Switch to session 3

CETerm Scripting Guide

Page 68

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

Symbolic Name

Friendly Name

Description

IDA_SESSION_S4 Session 4 Switch to session 4
IDA_ TOOLBAND_ HIDE Hide ToolBar Hide full Toolbar

IDA_ TOOLBAND TOGGLEHIDE | Toggle ToolBar Toggle Toolbar visibility
IDA_ KEYBAR HIDE Hide KeyBar Hide KeyBar

IDA_ KEYBAR TOGGLEHIDE KeyBar Toggle Toggle KeyBar visibility

IDA_KEYBAR_LEFT

Prev KeyBar

Switch to previous
KeyBar

IDA_KEYBAR_RIGHT

Next KeyBar

Switch to next KeyBar

IDA KEYBAR SEPARATOR --Separator-- Separator for KeyBar
IDA_KEYBAR_NONE (Empty) No action placeholder
IDA HSCROLL HIDE HScroll Hide

IDA_ HSCROLL VISIBLE HScroll Show

IDA_HSCROLL_TOGGLEHIDE

HScroll Toggle

IDA_ HSCROLL PLUSON

HScroll Right One

IDA_HSCROLL_MINUSONE

HScroll Left One

IDA_HSCROLL_PLUSHALF

HScroll Right Page

IDA_HSCROLL_MINUSHALF

HScroll Left Page

IDA_HSCROLL_PLUSEND

HScroll Right End

IDA_HSCROLL_MINUSEND

HScroll Left End

IDA_VSCROLL_HIDE

VScroll Hide

IDA_VSCROLL_VISIBLE

VScroll Show

IDA_VSCROLL_TOGGLEHIDE

VScroll Toggle

IDA_VSCROLL_PLUSONE

VScroll Up One

IDA_VSCROLL_MINUSONE

VScroll Down One

IDA_VSCROLL_PLUSHALF

VScroll Up Page

IDA_VSCROLL_MINUSHALF

VScroll Down Page

IDA_VSCROLL_PLUSEND

VScroll Up End

IDA_VSCROLL_MINUSEND

VScroll Down End

IDA_FONT_ PLUS Font Inc Increase font size
IDA_FONT_MINUS Font Dec Decrease font size
IDA_TOGGLE_FONT_BOLD Font Bold

IDA_SMARTPAD_OPEN

SmartPad Show

IDA_SMARTPAD CLOSE

SmartPad Hide

IDA_SMARTPAD_TOGGLEHIDE

SmartPad Toggle

IDA_SLEEP 10

Sleep 10msec

IDA_SLEEP_50

Sleep 50msec

CETerm Scripting Guide

Page 69

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

Symbolic Name Friendly Name Description
IDA_SLEEP 200 Sleep 200msec

IDA_ SLEEP 1000 Sleep 1sec

IDA_SLEEP 5000 Sleep 5sec

IDA_SLEEP 20000 Sleep 20sec

IDA_SLEEP_100000

Sleep 100sec

IDA_ SCAN_RESUME

Scan Resume

Allow scanning

IDA_SCAN_SUSPEND

Scan Suspend

Suspend scanning

IDA_SCAN_TRIGGER

Scan Trigger

Soft trigger scanner

IDA_ MACRO OPEN Macro Show Show Macro Tool
IDA_ MACRO_CLOSE Macro Hide Hide Macro Tool
IDA_MACRO_TOGGLEHIDE Macro Toggle Toggle Macro Tool

hiding

IDA_MACRO_RECORD

Macro Record

Start Macro record

IDA MACRO STOP

Macro Stop

Stop Macro record

IDA_MACRO_PLAY

Macro Play

Replay Macro

IDA_PRINT_SCREEN

Print Screen

Print current screen

IDA OIA HIDE OIA Hide Hide IBM OIA bar
IDA OIA VISIBLE OIA Show Show IBM OIA bar
IDA_OIA_TOGGLEHIDE OIA Toggle Toggle OIA bar
visibility
General IBM and VT Actions
IDA PF1 F1 (Not VT PF1)
IDA PF2 F2 (Not VT PF2)
IDA PF3 F3 (Not VT PF3)
IDA_PF4 F4 (Not VT PF4)
IDA PF24 F24
IDA HOME Home
IDA_ DOWN Down
IDA _UP Up
IDA LEFT Left
IDA RIGHT Right
IDA_ ENTER Enter
IBM Actions
CETerm Scripting Guide Page 70

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

Symbolic Name Friendly Name Description
IDA_IBM_HOME IBM Home

IDA_DELETE Delete

IDA_INSERT_ON Insert On

IDA_INSERT_OFF Insert Off

IDA_INSERT_TOGGLE Insert Toggle

IDA_ATTN Attn

IDA_CLEAR Clear

IDA_CURSOR_SELECT

Cursor Select

IDA_DUP

DUP

IDA_ERASE _EOF Erase EOF
IDA_ ERASE_INPUT Erase Input
IDA FIELD MARK Field Mark
IDA_ NEWLINE Newline
IDA PA1 PA1

IDA PA2 PA2

IDA PA3 PA3

IDA RESET Reset

IDA_ SYSREQ Sys Request
5250 Specific Actions

IDA FIELD EXIT Field Exit
IDA_FIELD PLUS Field +

IDA FIELD MINUS Field -

IDA_FIELD_ADVANCE

Field Advance

IDA_FIELD_BACKSPACE

Field Backspace

IDA_FIELD SUB Field SUB
IDA HELP IBM Help
IDA_ ROLL DOWN Roll Down
IDA_ ROLL UP Roll Up
IDA_ ROLL LEFT Roll Left
IDA ROLL RIGHT Roll Right
IDA_BACKSPACE Backspace
IDA_PRINT IBM Print
VT Actions

IDA_ ANSWERBACK Answerback
IDA_FIND Find

IDA INSERT HERE Insert Here
IDA NEXT Next

IDA_ PREVIOUS Previous

CETerm Scripting Guide

Page 71

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

Symbolic Name

Friendly Name

Description

IDA REMOVE Remove

IDA SELECT Select

IDA VT PF1 VT PF1 Numpad PF1 key
IDA VT PF2 VT PF2 Numpad PF2 key
IDA VT PF3 VT PF3 Numpad PF3 key
IDA VT PF4 VT PF4 Numpad PF4 key
IDA VT COMMA Numpad Comma

IDA_ NUMPAD 0O Numpad 0

IDA_NUMPAD 1 Numpad 1

IDA_ NUMPAD 2 Numpad 2

IDA_ NUMPAD 3 Numpad 3

IDA_ NUMPAD 4 Numpad 4

IDA_NUMPAD 5 Numpad 5

IDA_ NUMPAD 6 Numpad 6

IDA_ NUMPAD 7 Numpad 7

IDA_ NUMPAD 8 Numpad 8

IDA_ NUMPAD 9 Numpad 9

IDA VT ENTER Numpad Enter

IDA_ VT MINUS Numpad Minus

IDA_VT PERIOD

Numpad Period

IDA_UDK_F6 UDK F6 VT User Defined Key
F6

IDA_UDK_F7 UDK F7 VT User Defined Key
F7

IDA_UDK_F20 UDK F20 VT User Defined Key
F20

IDA_VT HELP VT Help

IDA_VT DO VT Do

IDA_ADD Add

IDA_ MULTIPLY Multiply

IDA_DIVIDE Divide

Custom VT Sequences

IDA_ VT SAP0135 VT SAP0135 0x00 0x35

IDA_VT CSI_M VT CSI M ESC[M

IDA_VT CSI N VT CSIN ESC[N

IDA_VT CSI O VT CSI O

IDA_ VT CSI P VT CSIP

CETerm Scripting Guide

Page 72

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

Symbolic Name Friendly Name Description
IDA_VT_CSI_Q VT CSIQ

IDA_VT _CSI R VT CSIR

IDA_VT _CSI_S VT CSI S

IDA_VT CSIL T VTCSIT

Windows App Keys

IDA_APPKEY_K1 App Key 1

IDA_APPKEY_K2 App Key 2

IDA_APPKEY_K16 App Key 16

IDA_SCROLL_UPPERLEFT

Scroll Upper Left

IDA_SCROLL_UPPERRGHT

Scroll Upper Right

IDA_SCROLL_LOWERLEFT

Scroll Lower Left

IDA_SCROLL_LOWERRGHT

Scroll Lower Right

IDA_SCROLL CENTER

Scroll Center

IDA_SCROLL_CURSOR_CENTER

Scroll Cursor Center

IDA_SCROLL CURSOR VISIBLE

Scroll Cursor Visible

IDA_COPYALL Copy All Copy screen to
clipboard

IDA PASTE Paste Past clipboard

IDA_USTRING 1 Text 1 Send user text 1

IDA_ USTRING 2 Text 2 Send user text 2

I.I-D.A_USTRING_64 :I:éxt 64 éénd user text 64

IDA_SCRIPT _1 Script 1 Run Script 1

IDA SCRIPT 2 Script 2 Run Script 2

IDA SCRIPT 64 Script 64 Run Script 64

IDA_SIP HIDE SIP Hide

IDA_SIP_ SHOW SIP Show

IDA_SIP TOGGLEHIDE SIP Toggle

IDA_SIP LOCKDOWN SIP Lockdown

IDA_SIP_ UNLOCK SIP Unlock

IDA_SIP_UP SIP Up

IDA_SIP DOWN SIP Down

IDA_SIP_FORCEDOWN

SIP Forcedown

CETerm Scripting Guide

Page 73

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

Symbolic Name Friendly Name Description
IDA_IM_KEYBOARD IM Keyboard

IDA_IM_LOCKED IM Locked

HTML Actions

IDA_URL_HOME URL Home

IDA_URL_BACK URL Back

IDA URL URL Defines start of URL

Special Actions

IDA_VIBRATE_100

Vibrate 100ms

IDA_VIBRATE_200

Vibrate 200ms

IDA_VIBRATE_500

Vibrate 500ms

IDA_VIBRATE_1000

Vibrate 1sec

IDA_VIBRATE_2000

Vibrate 2sec

IDA_VIBRATE_5000

Vibrate 5sec

IDA_BEEP_OK Beep

IDA_ BEEP_WARN Beep Warn
IDA_BEEP_LOUD Beep Loud
IDA_KBD_ALPHA KeyMode Alpha
IDA_KBD NUMERIC KeyMode Numeric
IDA_KBD ALPHANUM KeyMode AlphaNum

IDA_KBD_UPPERALPHA

KeyMode Upper
Alpha

IDA_KBD_LOWERALPHA

Keymode Lower
Alpha

IDA_ KBD FUNCMODE

KeyMode Func

IDA_KBD_CYCLEMODE

KeyMode Cycle

Cycle to next mode

IDA_POPUP_IPADDRESS

Show IP Address

IDA_POPUP_MACADDRESS

Show MAC Address

IDA_POPUP_BATTERY

Show Battery

IDA_POPUP_TIME Show Time
IDA_POPUP_SERIALNUMBER Show Serial #
IDA_POPUP_DEVICEID Show Device ID
IDA_POPUP_RFINFO Show RF info

CETerm Scripting Guide

Page 74

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

Appendix 2 - Properties

The properties listed in this appendix may be accessed via the GetProperty and
SetProperty methods on the CETerm object. Properties marked (RO) are read-
only and may not be set with SetProperty. The symbol T/F indicates a true or
false value.

APPLICATION PROPERTIES

Property Name Description

app.buildid (RO) Program build identifier

app.name (RO) Program name

app.script.NN Script # NN contents, NN is 1-64
app.session.active (RO) Currently active session
app.usertext.NN User text # NN contents, NN is 1-64
app.version (RO) Program version

DEVICE PROPERTIES

Property Name Description
device.batterystatus (RO) Current battery status string
device.battery.statustext (RO)

device.battery.status (RO) Current battery status

-1 —unknown, 0 — critical, 1 — warning,
2 — low, 3 — medium, 4 — high, 5 - charging

device.battery.level (RO) Current battery strength - 0 — 100
-1 — unknown

device.deviceid (RO) Device ID string

device.ipaddress (RO) IP Address of handheld

device.macaddress (RO) MAC Address of handheld

device.platformid (RO) Windows CE Platform ID

device.presetid (RO) Windows CE Preset ID

device.rf.strength (RO) RF signal strength 0-100,

-2 — not associated with AP,

CETerm Scripting Guide Page 75

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

Property Name Description
-1 — unknown
device.rf.status (RO) RF status

-1 — unknown, 0 — unassociated, 1 — poor,
2 — fair, 3 — good, 4 — very good, 5 — excellent
device.serialnumber (RO) Device serialnumber

SESSION PROPERTIES

Session properties begin with “sessionX” where X is 1 through 4. For example
“session4.connection.host”. If no ‘X’ value is found, the currently active session
number is used.

Property Name Description
sessionX.connection.host Session host (or home URL)
sessionX.connection.port TE session port
sessionX.connection.type Session type

3270, 5250, VT220, HTML
sessionX.printer.network.queue | Network printing queue
sessionX.printer.serial.port Serial printing port

CETerm Scripting Guide Page 76

SCANNER PROPERTIES

Scanner properties are unique for each session. Scanner properties begin with
“sessionX.scanner” where X is 1 through 4. For example
“session4.scanner.enabled”. If no ‘X’ value is found, the currently active session
number is used. We use the name “scanner” for all types of barcode readers,
including laser scanners and imagers. If a hardware vendor is listed, the
property is specific to barcode readers made by that vendor.

NOTE: If you are changing the scanner properties for the currently activesession,
you must call CETerm.PostIDA(“IDA_SCAN_APPLYCONFIG”, 0); for
the changes to take effect.

WARNING: Not all properties are applicable to all hardware devices. Different
devices may use different names to refer to the same parameters.
You should look at the settings available in the CETerm configuration
dialogs to determine if the property is appropriate and what values it

may accept.
Property Name Description
sessionX.scanner.enabled Scanner is enabled. T/F

sessionX.scanner.aimerenabled | Aimer is enabled. T/F
sessionX.scanner.wedgeenabled | Allow wedge if scanner disabled in
CETerm (Intermec). T/F
sessionX.scanner.focusnear Imager focus near if true. T/F
sessionX.scanner.enhanced1d Improved decode for poor quality barcodes
sessionX.scanner.picklistmode Decode barcode under cross-hairs. T/F

sessionX.scanner.preamble Barcode preamble
sessionX.scanner.postamble Barcode postamble
sessionX.scanner.grid Barcode grid filter (Intermec) Use

OnBarcodeRead for more features.
sessionX.scanner.beamtimeout | Scan beam timeout, milliseconds
sessionX.scanner.aimertimeout | Aimer timeout, milliseconds
sessionX.scanner.aimmode Aim mode. none, dot, slab, reticle
sessionX.scanner.redundancy Linear security/redundancy, 0-5

COMMON SYMBOLOGY PROPERTIES

Symbology properties are unique for each session. Symbology properties begin
with “sessionX.scanner.SSS” where X is 1 through 4 and SSS represents a
symbology name and may be 3 or more characters long. For example
“session4.scanner.upca.enabled”. If no ‘X’ value is found, the currently active
session number is used. See the Symbology Names table below for SSS values.

NOTE: If you are changing the scanner properties for the currently activesession,
you must call CETerm.PostIDA(“IDA_SCAN_APPLYCONFIG”, 0); for
the changes to take effect.

WARNING: Not all properties are applicable to all hardware devices or all
symbologies. Different devices may use different names to refer to the
same parameters. You should look at the settings available in the
CETerm configuration dialogs to determine if the property is
appropriate and what values it may accept. This is also true for the
symbologies that a device supports. You may be able to successfully
change a parameter that is not supported on a device.

Last Property Level Description

enabled Symbology is enabled. T/F

verifycheck Require check digit validation. T/F

redundancy Scan redundancy flag. T/F (Symbol)

reportcheck Report the check digit with the data. T/F

reportnumbersystem Report UPC number system. T/F

reportcountry Report UPC country code. T/F

reportstartstop Report start/stop digits with barcode data. T/F

converttoupca Convert barcode output to UPCA. T/F

converttoean13 Convert barcode output to EAN-13. T/F

supplemental2 Enable 2 digit supplemental or add-on barcode. T/F

supplemental5 Enable 5 digit supplemental or add-on barcode. T/F

supplementalrequired Require supplemental on UPC. T/F

supplementalseparator | Insert supplemental separator. T/F

addendum Supplemental mode. none, optional, required

minlength Minimum barcode length. Not supported by all
symbologies. See configuration dialogs for ranges.

maxlength Maximum barcode length. Not supported by all
symbologies. See configuration dialogs for ranges.

stripleading Strip characters from start of barcode. 0-32

striptrailing Strip characters from end of barcode. 0-32

customid Custom symbology ID. 4 character string

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

CODABAR SYMBOLOGY PROPERTIES

Codabar specific symbology properties are unique for each session. Symbology
properties begin with “sessionX.scanner.codabar” where X is 1 through. For
example “session4.scanner.codabar.clsiediting”. If no ‘X’ value is found, the
currently active session number is used.

NOTE: If you are changing the symbology properties for the currently active
session, you must call “CETerm.PostIDA(
“‘IDA_SCAN_APPLYCONFIG”, 0) for the changes to take effect.

WARNING: Not all properties are applicable to all hardware devices. Different
devices may use different names to refer to the same parameters.
You should look at the settings available in the CETerm configuration
dialogs to determine if the property is appropriate and what values it
may accept.

Last Property Level Description

clsiediting CLSI editing is enabled. T/F
notisediting NOTIS editing is enabled. T/F
startstop Start/Stop digit modes. Not all modes apply to all

devices. See CETerm configuration for values on a
specific device. discard, none, abcd, dc1-dc4,
lowerabcd, abcd/tn*e, aa, bb, cc, dd, any

CETerm Scripting Guide Page 79

CoDE39 SYMBOLOGY PROPERTIES

Code 39 specific symbology properties are unique for each session. Symbology
properties begin with “sessionX.scanner.code39” where X is 1 through. For
example “session4.scanner.code39.clsiediting”. If no ‘X’ value is found, the
currently active session number is used.

NOTE: If you are changing the symbology properties for the currently active
session, you must call “CETerm.PostIDA(
“IDA_SCAN_APPLYCONFIG”, 0) for the changes to take effect.

WARNING: Not all properties are applicable to all hardware devices. Different
devices may use different names to refer to the same parameters.
You should look at the settings available in the CETerm configuration
dialogs to determine if the property is appropriate and what values it
may accept.

Last Property Level Description

asciimode Select ASCIl mode. Not all modes apply to all
devices. See CETerm configuration for values on a
specific device. base, full, mixedfull

fullascii Enable Full-ASCIl mode. T/F
verifycheck39 Check digit validation mode. 0-255
reportstartstop Report start/stop with barcode. T/F
convertocode32 Convert to Code 32 format. T/F
reportcode32prefix Report Code 32 prefix with barcode. T/F
concatenation Enable concatenation. T/F

stripAIAG Remove AIAG codes. T/F

erroraccept Allow format error. T/F

CODE 128 SYMBOLOGY PROPERTIES

Code 128 specific symbology properties are unique for each session.
Symbology properties begin with “sessionX.scanner.code128” where X is 1
through. For example “session4.scanner.code128.ISBT”. If no ‘X’ value is
found, the currently active session number is used.

NOTE: If you are changing the symbology properties for the currently active
session, you must call “CETerm.PostIDA(
“IDA_SCAN_APPLYCONFIG”, 0) for the changes to take effect.

may accept.

WARNING: Not all properties are applicable to all hardware devices. Different
devices may use different names to refer to the same parameters.
You should look at the settings available in the CETerm configuration
dialogs to determine if the property is appropriate and what values it

Last Property Level

Description

FNC1char FNC1 character. 0-255
CIP Enable CIP labels. T/F
ISBT Enable ISBT 128 labels. T/F
other Enable other 128 labels. T/F

UCCEAN

Enable UCCEAN 128 labels. T/F

UPC-EAN GENERAL SYMBOLOGY PROPERTIES

UPC-EAN general symbology properties are unique for each session.
Symbology properties begin with “sessionX.scanner.upc-ean” where X is 1
through. For example “session4.scanner.upc-ean.bookland”. If no ‘X’ value is
found, the currently active session number is used.

NOTE: If you are changing the symbology properties for the currently active
session, you must call “CETerm.PostIDA(
“IDA_SCAN_APPLYCONFIG”, 0) for the changes to take effect.

may accept.

WARNING: Not all properties are applicable to all hardware devices. Different
devices may use different names to refer to the same parameters.
You should look at the settings available in the CETerm configuration
dialogs to determine if the property is appropriate and what values it

Last Property Level

Description

bookland Enable Bookland labels. T/F
coupon Enable Coupon labels. T/F
lineardecode Enable linear decode. T/F

supplemental2

Enable 2 digit supplemental or add-on barcode. T/F

supplemental5

Enable 5 digit supplemental or add-on barcode. T/F

supplementalretry

Supplemental decode retry count. 2-10

randomweightcheckdigit

Enable random weight check digit. T/F

supplementalmode

Supplemental mode. none, always, auto

securitylevel

Decode security level. none, all, ambiguous

SYMBOLOGY NAMES

Symbology properties begin with “sessionX.scanner.SSS” where X is 1 through 4
and SSS represents a symbology name and may be 3 or more characters long.
The following table lists all available symbology names.

WARNING: Not all symbologies are applicable to all hardware. Different devices
may use different names to refer to similar symbologies, e.g., upce and
upce0. You should look at the symbologies available in the CETerm
configuration dialogs to determine the correct name.

Symbology Name Description
ames Ames

auspostal Australian Postal
aztec Aztec

bpo British Postal
canpostal Canadian Postal
chinapostal China Postal
codabar Codabar
codablock Codablock
code11 Code 11
code16k Code 16k
code32 Code 32

code39 Code 39

code49 Code 49

code93 Code 93
code128 Code 128
composite Composite AB and C
couponcode Coupon Code
d20f5 Discrete (standard) 2 of 5
datamatrix Datamatrix

delta Delta Code
dutchpostal Dutch Postal
ean8 EAN-8

ean13 EAN-13

i20f5 Interleaved 2 of 5
iata25 IATA 2 of 5

idtag ID Tag

isbt ISBT
japanpostal Japan Postal
koreapostal Korea Postal
label45 Label 45

m20f5 Matrix 2 of 5

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

Symbology Name Description
maxicode Maxicode
mesa Mesa

micropdf Micro PDF

msi MSI

pdf PDF 417
pdf417 PDF 417
pharma39 Pharma 39
planet Planet

plessey Plessey
posicode Posicode
postnet Postnet
grcode QR Code

rss RSS 14

rss14 RSS 14

rssexp RSS Expanded
rsslim RSS Limited
rssltd RSS Limited
telepen Telepen

tlc39 TLC 39
trioptic39 Trioptic 39
ukpostal British (UK) Postal
upca UPC-A

upce UPC-E

upce0 UPC-EO

upce1 UPC-E1
upc-ean UPC-EAN General Settings
usplanet US Planet
uspostnet US Postnet
usps4cb USPS 4CB

CETerm Scripting Guide

Page 84

Appendix 3 — Symbology LabelTypes

This appendix contains a list of symbology labeltypes that are returned in the
“type” argument of OnBarcodeRead. These are also available to a
ScannerNavigate META tag handler. Please note that not all hardware devices
return these values. You may need to test scan a known barcode to find the
labeltype value for that barcode.

LabelType Hexadecimal Symbology
Character Value
0x23 Plessey
& 0x24 Telepen
% 0x25 Codablock A
$ 0x26 Codablock F
‘ (single quote) 0x27 Matrix 2 of 5
(0x28 Code 49
) 0x29 Code 16K
* O0x2A Ankercode
+ 0x2B Aztec
, (comma) 0x2C Korea Postal
0 0x30 UPC-E or UPC-EQO
1 0x31 UPC-E1
2 0x32 UPC-A
3 0x33 MSI
4 0x34 EAN-8
5 0x35 EAN-13
6 0x36 Codabar
7 0x37 Code 39
8 0x38 Discrete 2 of 5
9 0x39 Interleaved 2 of 5
. (colon) Ox3A Code 11
; (semi-colon) 0x3B Code 93
< 0x3C Code 128
> Ox3E IATA 2 of 5
? Ox3F EAN 128

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

LabelType Hexadecimal Symbology
Character Value
@ 0x40 PDF 417
A 0x41 ISBT 128
B 0x42 Trioptic 39
C 0x43 Coupon Code
D 0x44 Bookland
E 0x45 Micro PDF
F 0x46 Code 32
G 0x47 Macro PDF
H 0x48 Maxicode
I 0x49 Datamatrix
J Ox4A QR Code
K 0x4B Macro Micro PDF
L 0x4C RSS-14
M 0x4D RSS Limited
N Ox4E RSS Expanded
\% 0x56 Composite AB
W 0x57 Composite C
X 0x58 TLC 39
a 0x61 US Postnet
b 0x62 US Planet
C 0x63 UK (British) Postal
d 0x64 Japan Postal
e 0x65 Australian Postal
f 0x66 Dutch Postal
g 0x67 Canadian Postal
p 0x70 Mesa
q 0x71 OCR
r 0x72 China Postal
S 0x73 Posicode
t 0x74 USPS4CB
u 0x75 ID Tag

CETerm Scripting Guide

Page 86

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

Appendix 4 - Constants

This appendix contains various constants that are used by CETerm Automation
Objects. Many of these constants are a direct representation of the equivalent
values from the Windows CE system APIs and constants. These constants are
presented as JavaScript variables for direct inclusion in scripts.

MESSAGEBOX CONSTANTS

// MessageBox flags
// See Microsoft SDK for documentation.

var MESSAGEBOX FLAG OK = 0x00000000;
var MESSAGEBOX FLAG OKCANCEL = 0x00000001;
var MESSAGEBOX FLAG ABORTRETRYIGNORE = 0x00000002;
var MESSAGEBOX FLAG YESNOCANCEL = 0x00000003;
var MESSAGEBOX FLAG YESNO = 0x00000004;
var MESSAGEBOX FLAG RETRYCANCEL = 0x00000005;
var MESSAGEBOX FLAG ICONERROR = 0x00000010;
var MESSAGEBOX FLAG ICONQUESTION = 0x00000020;
var MESSAGEBOX FLAG ICONWARNING = 0x00000030;
var MESSAGEBOX FLAG ICONINFORMATION = 0x00000040;

var MESSAGEBOX FLAG DEFBUTTON1 = 0x00000000;
var MESSAGEBOX FLAG DEFBUTTON2 = 0x00000100;
var MESSAGEBOX FLAG DEFBUTTON3 = 0x00000200;
var MESSAGEBOX FLAG DEFBUTTON4 = 0x00000300;

var MESSAGEBOX FLAG APPLMODAL = 0x00000000;
var MESSAGEBOX FLAG SETFOREGROUND = 0x00010000;
var MESSAGEBOX FLAG TOPMOST = 0x00040000;

// MessageBox returned values
var MESSAGEBOX IDOK = 1;

var MESSAGEBOX IDCANCEL =
var MESSAGEBOX IDABORT
var MESSAGEBOX IDRETRY
var MESSAGEBOX IDIGNORE =
var MESSAGEBOX IDYES
var MESSAGEBOX IDNO

7

12

12

1]
~ o~

Il
<N oUW N

PLAYSOUND CONSTANTS

// PlaySound flags

// See Microsoft SDK for documentation.

var PLAYSOUND FLAG ASYNC = 0x00000001; // Play asynchronously
var PLAYSOUND FLAG NODEFAULT = 0x00000002; // No default sound

CETerm Scripting Guide Page 87

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

var PLAYSOUND FLAG LOOP = 0x00000008; // Repeat play, needs ASYNC.
var PLAYSOUND FLAG NOSTOP 0x00000010; // Don’t stop current sound
var PLAYSOUND FLAG NOWAIT = 0x00002000; // Don’'t play if driver busy

FILE ATTRIBUTE CONSTANTS

// File attirbute flags
// See Microsoft SDK for documentation.

var FILE ATTRIBUTE READONLY = 0x00000001;
var FILE ATTRIBUTE HIDDEN = 0x00000002;
var FILE ATTRIBUTE SYSTEM = 0x00000004;
var FILE ATTRIBUTE DIRECTORY = 0x00000010;
var FILE ATTRIBUTE ARCHIVE = 0x00000020;
var FILE ATTRIBUTE INROM = 0x00000040;
var FILE ATTRIBUTE ENCRYPTED = 0x00000040;
var FILE ATTRIBUTE NORMAL = 0x00000080;
var FILE ATTRIBUTE TEMPORARY = 0x00000100;
var FILE ATTRIBUTE COMPRESSED = 0x00000800;
var FILE ATTRIBUTE ROMSTATICREF = 0x00001000;
var FILE ATTRIBUTE ROMMODULE = 0x00002000;

REGISTRY CONSTANTS

// Registry constants

// See Microsoft SDK for documentation.
// Root key names

var HKEY CLASSES ROOT
var HKEY CURRENT USER "HKEY CURRENT_ USER";
var HKEY LOCAL MACHINE "HKEY LOCAL MACHINE";
var HKEY USERS = "HKEY USERS";

"HKEY CLASSES ROOT";

// Data types

var REG SZ = "REG_SZ";

var REG_DWORD = "REG_DWORD";

var REG_BINARY = "REG_BINARY";
var REG MULTI_SZ = "REG_MULTI_ SZ";
var REG_EXPAND SZ = "REG_EXPAND SZ";

// Returned Status
var REGISTRY SUCCESS = 0;
var REGISTRY FAIL = -1;
var REGISTRY BAD HIVE

|
1
N

CETerm Scripting Guide Page 88

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

var REGISTRY BAD KEYNAME = -3;
var REGISTRY BAD DATATYPE = -4;
var REGISTRY BAD VALUE = -5;
var REGISTRY BAD VALUEFORMAT = -6;
var REGISTRY OUTOFMEMORY = -7;

BROWSER ERROR CONSTANTS

// Navigate Error HRESULT status codes
// See Microsoft SDK for documentation.

//

// URL string is not valid.

var INET E_INVALID URL = 0x800C0002;
// No session found.

var INET E NO SESSION = 0x800C0003;
// Unable to connect to server.

var INET E CANNOT CONNECT = 0x800C0004;
// Requested resource is not found.

var INET E RESOURCE_NOT_ FOUND = 0x800C0005;
// Requested object is not found.

var INET E_OBJECT NOT FOUND = 0x800C0006;
// Requested data is not available.

var INET E DATA NOT AVAILABLE = 0x800C0007;
// Failure occurred during download.

var INET E_DOWNLOAD FAILURE = 0x800C0008;
// Authentication required.

var INET E AUTHENTICATION REQUIRED = 0x800C0009;

// Required media not available or valid.

var INET E _NO VALID MEDIA = 0x800C000A;
// Connection timed out.

var INET E CONNECTION TIMEOUT = 0x800C000B;
// Request is invalid.

var INET E_INVALID REQUEST = 0x800C000C;
// Protocol is not recognized.

var INET E UNKNOWN PROTOCOL = 0x800C000D;
// Failed due to security issue.

var INET E SECURITY PROBLEM = 0x800CO000E;
// Unable to load data from the server.

var INET E CANNOT LOAD DATA = 0x800COO00F;

// Unable to create an instance of the object.
var INET E CANNOT INSTANTIATE OBJECT = 0x800C0010;
// Attempt to redirect the navigation failed.

var INET E REDIRECT FAILED = 0x800C0014;
// Navigation redirected to a directory.

var INET E REDIRECT TO DIR = 0x800C0015;
// Unable to lock request with the server.

var INET E_CANNOT LOCK REQUEST = 0x800C0016;
// Reilssue request with extended binding.

var INET E USE EXTEND BINDING = 0x800C0017;

// Blndlng is terminated.

CETerm Scripting Guide Page 89

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

var INET_E TERMINATED BIND = 0x800C0018;
// Permission to download is decllned

var INET E_CODE_DOWNLOAD DECLINED = 0x800C0100;
// Result is dispatched.

var INET_E RESULT DISPATCHED = 0x800C0200;
// Cannot replace a protected SFP flle

var INET E CANNOT REPLACE SFP_FILE = 0x800C0300;

CETerm Scripting Guide Page 90

Glossary

Automation Objects
Objects internal to CETerm that provide access to device, application, and
session features from the script engine.

CEBrowseX
A Naurtech ActiveX control which provides access to the CETerm Automation
Objects from a Windows Mobile device.

external
This is the name of an internal object in the DOM of the Windows CE 5.0 browser
that gives access to the CETerm Automation Objects.

IDA Action Code

An IDA Action Code defines a special device, application, or emulation action
within the Naurtech Smart Clients. IDA codes can be tied to keys, or KeyBars,
and invoked via META tags or JavaScript. See the Appendix for a list of values.

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

Index

A

AbortScript - 22, 23
AddMetaltem - 28, 29, 42, 49
Alert - 32

B

Beep - 32
Browser object - 28

Getlnput - 31, 59
GetOpenFileName - 34, 35

GetProperty - 22, 23, 41, 43, 47, 51, 75

GetSaveFileName - 34, 35
GetText - 27, 28, 54
GetTextLine - 20, 27, 48, 49
GetTextRect - 27, 28
GetValueType - 37, 38

1

IDA Action Codes - 15, 66

C

CETerm object - 22, 24, 26, 75
ClearAllTimers - 22, 23
Clearlnterval - 22, 23, 25
ClearTimeout - 22, 23, 26, 51, 56
Copy - 34

CreateDirectory - 34, 35

K

KillProcess - 31, 32

D

Delete - 35
DeleteKey - 37, 38
DeleteValue - 37, 38

L

Load at Startup - 14, 63

M

MessageBox - 32, 65, 87
Move - 36

E

EnumerateKeys - 37, 38
EnumerateValues - 37, 38
Exec - 31, 32, 33, 34, 59

ExpectMonitor - 18, 25, 26, 45, 52, 53, 54, 55, 56, 57,

59

N

Navigate - 29

F

File object - 33, 34, 36, 37
FlushKey - 37, 38

G

GetAttributes - 34, 35, 36, 61
GetErrorMessage - 31, 32

o

OnBarcodeRead - 10, 15, 16, 17, 18, 40, 41, 49, 77, 85

OnDocumentDone - 40, 41, 42, 60

OnNavigateError - 40, 42, 43, 44, 45

OnNetCheckFailed - 40, 44, 45
OnSessionConnect - 18, 40, 45
OnSessionDisconnect - 40, 46
OnSessionDisconnected - 40, 47
OnSessionReceive - 40, 47, 48
OnSessionSwitch - 40, 48, 49
OnStylusDown - 20, 40, 49
OnWakeup - 40, 50

OS object - 22, 23, 31, 33, 34

CETerm Scripting Guide

Page 92

NAURTECH SMART CLIENTS FOR WINDOWS CE AND POCKET PC

P SendText - 16, 17, 19, 22, 24, 25, 41, 54
Session object - 25, 26, 27
SetAttributes - 34, 36

PlaySound - 20, 22, 23, 32, 33, 51, 52, 87 SetInterval - 22, 25
PlayTone - 22, 23, 24, 32, 33, 63 SetProperty - 25,75
PostIDA - 24 SetScriptTimeout - 26

SetTimeout - 22, 26, 51, 56, 59, 60
Sleep - 32, 33, 58, 69, 70

R StopSound - 32, 33

Read - 36

ReadValue - 37, 38, 39, 62 T

ReadValueVBArray - 37, 39

Registry object - 34, 37, 39 TextInput - 26, 30, 31, 58

RemoveDirectory - 34, 36
RunScript - 22, 24, 28, 29, 42

w
S .
WaitForProcess - 32, 33
. Write - 36
Screen object - 27, 28 WriteValue - 37, 39, 61

SendIDA - 17, 19, 21, 22, 24, 46

CETerm Scripting Guide Page 93

