
The candidate confirms that the work submitted is their own and the appropriate credit has
been given where reference has been made to the work of others.

I understand that failure to attribute material which is obtained from another source may be
considered as plagiarism.

(Signature of student)

Implementing Lindenmayer Systems
Simon Scorer

BSc Computer Science & Mathematics
(International)

2004/2005

Summary

The objectives of this project were to research the theory of Lindenmayer systems (L-systems), and

then to develop a program with a user friendly interface that was capable of producing graphical

representations of them. L-systems are, in short, systems of rules which can be used to model some

aspects of plant growth and also some types of geometrical patterns in 2-dimensions. The main

purpose of this program is for use as an educational or research tool for investigating L-systems.

These objectives were achieved with the design and implementation of a fully functioning program

that can draw and edit various forms of L-system. The program was then tested and evaluated to

determine how well it met its specified requirements.

i

Table of Contents

Chapter 1 – Introduction .. 1
1.1 Aim 1

1.2 Objectives ... 1

1.3 Minimum Requirements .. 1

1.4 Project Schedules ... 1

Chapter 2 – Background Research .. 4
2.1 L-system Theory .. 4

2.1.1 Background .. 4

2.1.2 Formal Definition of DOL-systems ... 5

2.1.3 Geometric Interpretation .. 6

2.1.3.1 2-Dimensional Turtle Interpretation ... 6

2.1.3.2 3-Dimensional Turtle Interpretation ... 8

2.1.4 Stochastic L-systems ... 8

2.2 Research Into Currently Available Software ... 8

2.2.1 Web-based Software .. 8

2.2.2 Fractint ... 10

2.3 Quality of Resources .. 10

Chapter 3 – Design .. 11
3.1 Overview .. 11

3.2 System Requirements ... 11

3.3 The Graphical User Interface ... 11

3.4 Proposed Method ... 12

3.5 Programming Language ... 13

3.5.1 The Java Swing API .. 13

3.6 UML Outline of Proposed System ... 13

Chapter 4 – Implementation .. 15
4.1 Overview .. 15

4.2 L-system Alphabet ... 15

4.3 Input Processing ... 15

4.3.1 LSystem.java .. 15

4.3.2 Turtle.java .. 16

4.4 Drawing the Image – LSystemDiagram.java ... 18

ii

4.4.1 Scaling and Positioning the Image .. 20

4.5 The Graphical User Interface – Display.java.. 21

4.5.1 Layout Arrangement .. 22

4.5.2 Adding Actions .. 23

4.5.2.1 Drawing the Diagram .. 23

4.5.2.2 Loading Pre-set L-systems .. 24

4.5.3 The File Menu .. 24

4.5.3.1 Setting Image Size ... 24

4.5.3.2 Saving Images to File .. 25

4.6 Error Handling ... 25

4.7 Reliability ... 26

4.8 Problems Encountered ... 26

Chapter 5 – Evaluation ... 27
5.1 Evaluation Criteria ... 27

5.2 Evaluating the Program... 27

5.2.1 Image Output ... 27

5.2.2 Handling Unreliable Input ... 27

5.2.3 Dealing with Large Computations ... 28

5.2.4 Comparison to Available Software .. 29

5.3 Possible Extensions .. 30

5.3.1 3D L-systems ... 30

5.3.2 Stochastic L-systems ... 30

5.3.3 Improving the Interface ... 30

Bibliography 31

Appendices
A Project Experience .. 32

B UML Diagram ... 33

C Screen Shots .. 34

D Produced Images ... 36

iii

1 Introduction

1.1 Aim

This project aims to research the theory of Lindenmayer systems (L-systems) and ultimately to

develop a computer program that is capable of producing graphical representations of them. The

main purpose of such a program will be for use as an educational tool. The program will aid people

in understanding and investigating L-systems. There are likely to be limited practical or commercial

opportunities for such a program, but it could be used by people to explore an interesting subject

area.

This project will draw on programming experience gained during my time at the University and also

possibly on elements of algorithm analysis and computer graphics.

1.2 Objectives

The objectives of this project are to:

• Research the theory of L-systems and produce a summary of important ideas and definitions.

• Research currently available software that performs similar tasks and, with these in mind, decide

upon the specific requirements of my program.

• Design and implement a program that is capable of producing 2-dimensional graphical

representations of L-systems.

1.3 Minimum Requirements

The agreed minimum requirements of this project are:

• To produce an account of the basic theory of L-systems including a classification of the basic

types.

• To produce a system in Java that can be given an expression and will output a graphical

representation of this expression.

• That the user will be able to change the initial expression (axiom) and view the effect that this has

on the graphical representation.

• That the user of the system will be able to change various other parameters of the L-system and

view the effect that this has on the graphical representation.

Some possible extensions are:

• To produce a user manual that will accompany the system.

• To extend the graphical output of the system from 2 dimensions to 3.

1

1.4 Project Schedules

My original project schedule, as appeared in the mid-project report can be seen in table 1.1.

Task Completion Date
Research L-system theory & definitions 19/11/04
Research similar systems currently available 26/11/04
Write up a draft Research chapter 26/11/04
Plan the basic functions of my system 03/12/04
Design the basic layout of my GUI 03/12/04

* submit mid-project report * 09/12/04
Design the outline of the Java program using UML 10/12/04
Implement the GUI 10/12/04

(SEMESTER 1 EXAM PERIOD : 10/01/05 - 21/01/05)
Write up a draft Design chapter 28/01/05
Implement a basic working system 04/02/05
Implement a final working system 04/03/05
Write up a draft implementation chapter 11/03/05

* submit table of contents and a draft chapter * 11/03/05
Test & evaluate system 18/03/05
Write up a draft Evaluation chapter 01/04/05
Put Project Report together 15/04/05

* submit project report * 27/04/05
Table 1.1 : Project Plan

You will notice that the scheduled date for completion of the implementation of the program is

almost 2 months before the deadline for submission of the project report. This was to allow

sufficient leeway in the event of any delays in the implementation process. It also allowed enough

time to perform testing and evaluation as well as the considerable task of compiling the project

report. You will also notice that there is a large gap between December 10th and January 28th, this is

to allow revision for and completion of the first semester exams in January.

The implementation of the program, and in particular the graphical user interface, proved to be quite

challenging and time consuming tasks. Partly due to the fact that I had limited previous experience of

producing complex graphical programs. The knock-on effect of this was to push back many of the

subsequent deadlines. Enough time had been allowed for delays of this nature, and the project was

still completed on schedule. The revised project schedule can be seen in table 1.2.

2

Task Completion Date
Research L-system theory & definitions 19/11/04
Research similar systems currently available 26/11/04
Write up a draft Research chapter 26/11/04
Plan the basic functions of my system 03/12/04
Design the basic layout of my GUI 03/12/04

* submit mid-project report * 09/12/04
Design the outline of the Java program using UML 10/12/04

(SEMESTER 1 EXAM PERIOD : 10/01/05 - 21/01/05)
Implement a prototype GUI 28/01/05
Write up a draft Design chapter 11/02/05
Implement a basic working system 18/02/05

* submit table of contents and a draft chapter * 11/03/05
Implement a final working system 18/03/05
Write up a draft implementation chapter 25/03/05
Test & evaluate system 08/04/05
Write up a draft Evaluation chapter 15/04/05
Put Project Report together 22/04/05

* submit project report * 27/04/05
Table 1.2 : Revised Project Plan

3

2 Background Research

2.1 L-system Theory

2.1.1 Background

Lindenmayer Systems (L-systems) are named after the man who developed them – a biologist called

Aristid Lindenmayer. They are, in short, systems of rules which can be used to model some aspects

of plant growth and also some types of geometrical patterns in 2-dimensions.

Many of the ideas discussed in this chapter are from a book by Przemyslaw Prusinkiewicz and Aristid

Lindenmayer (1990) called 'The Algorithmic Beauty of Plants'. Rozenberg and Salomaa (1980) also

discuss the theory of L-systems but go into more mathematical detail than is required for this project.

L-systems were initially designed as a way of modelling the development of plants and other cellular

organisms. It is obvious that many plants possess a quality known as 'self-similarity', discussed by

Mandelbrot (1983), which is where small sections of an object strongly resemble the object as a

whole. This can be seen, for example, in many trees, where if you look at individual branch sections

or leaves they can often look geometrically very similar to the whole tree.

L-systems use the idea of rewriting to model this effect of self-similarity. Prusinkiewicz and

Lindenmayer (1990) describe rewriting as the process of successively replacing parts of an initial

object using a set of rewriting rules or productions. They illustrate this idea with the example of the

Koch Snowflake (figure 2.1). The principle of its construction is described by Mandelbrot (1983) as

follows:

One begins with two shapes, an initiator and a generator. The latter is an oriented broken

line made up of N equal sides of length r. Thus each stage of the construction begins

with a broken line and consists in replacing each straight interval with a copy of the

generator, reduced and displaced so as to have the same end points as those of the

interval being replaced.

Figure 2.1 : The Koch Snowflake

4

Prusinkiewicz and Lindenmayer (1990) discuss how Noam Chomsky (1957) included a lot of work

on formal grammars in his book, 'Syntactic Structures'. Chomsky's work generated wide interest in

rewriting systems and it was as a new type of rewriting system that Lindenmayer introduced L-

systems. A major difference between L-systems and Chomsky grammars is that L-systems apply

productions in parallel whereas Chomsky grammars apply productions sequentially. This means that

in L-systems all the letters of a given word are replaced simultaneously. The biological motivation

behind L-systems is the reason for this as the productions are intended to model cell divisions.

2.1.2 Formal Definition of DOL-systems

The simplest class of L-system are deterministic and context free L-systems, called DOL-systems.

Below is the formal definition for DOL-Systems given by Prusinkiewicz and Lindenmayer (1990):

Let V denote an alphabet, let V* be the set of all words over V, and V + be the set of all

non-empty words over V. A string OL-system is an ordered triple: G = (V, ω , P)

where V is the alphabet of the system,

ω ∈ V + is a non-empty word called the axiom.

and P ⊂ V x V* is a finite set of productions.

A production (a, χ) ∈ P is written as a → χ

where a is called the predecessor of the production,

and χ is called the successor of the production.

It is assumed that for any letter a ∈ V, there is at least one word χ ∈ V* such that a → χ .

If no production is explicitly specified for a given predecessor a ∈ V, the identity

production, a → a is assumed to belong to the set of productions P.

An OL-system is deterministic (denoted DOL-system) if and only if for each a ∈ V there

is exactly one χ ∈ V* such that a → χ .

The following example will illustrate the idea of an L-system. Let the alphabet be V = {x, y}, so all

strings are built using only the letters x and y. Let the set of productions P, that operate on these

letters, be x → y and y → xy, this means that an occurrence of the letter x is replaced by the single

letter y and an occurrence of the letter y is replaced by the string xy. Now let the axiom be ω = x, this

is the string with which we begin our rewriting process. In the first iteration the letter x is replaced

by the letter y. In the second iteration the letter y is replaced by the string xy. In the third iteration

the letter x of the string xy will be replaced by the letter y and the letter y will be replaced by the

string xy giving the string yxy. This process continues as shown below:

5

x
y
xy
yxy

xyyxy
yxyxyyxy

xyyxyyxyxyyxy
.
.

Notice that during this process all characters of each string are simultaneously replaced at each step.

2.1.3 Geometric Interpretation

Initially L-systems were only conceived as a theoretical framework and weren't capable of describing

the geometrical aspects of plant development. Consequently several ideas for geometric

interpretations of L-systems were developed, including one based on turtle interpretation which is

explained in the following couple of sections.

2.1.3.1 2-Dimensional Turtle Interpretation

Prusinkiewicz and Lindenmayer (1990) define the basic idea of turtle interpretation as follows:

A state of the turtle is defined as a triple (x, y, α)

where (x, y) are Cartesian coordinates representing the turtle's position.

and α is an angle, called the heading, and is interpreted as the direction in

which the turtle is facing.

Given the step size d and the angle increment δ , the turtle can respond to commands

represented by the following symbols:

F Move forward a step length d.

The state of the turtle changes to (x', y', α)

where x' = x + d cos α

y' = y + d sin α

A line is drawn between (x, y) and (x', y').

+ Turn left by angle δ.

The next state of the turtle is (x, y, α + δ). The positive

orientation of angles is counter-clockwise.

- Turn right by an angle δ.

The next state of the turtle is (x, y, α – δ).

The idea of turtle interpretation can be demonstrated by reconsidering the Koch Snowflake from

figure 2.1. This can be generated using turtle interpretation. The axiom would be ω = F- -F- -F, and

6

the angle increment δ = 60°. This axiom describes a shape equivalent to the initiator of the earlier

example. The production in this case would be F → F-F++F-F, which is equivalent to the generator.

The results of the first two iterations of this L-system are shown below in figure 2.2.

Figure 2.2 : Turtle Interpretation

The turtle interpretation seen so far is capable only of producing a single continuous line. This line

could double back on itself any number of times and be as complicated as you wanted, but it would

always just be a single line. However, in nature plants and other cellular organisms are frequently

branching structures and so there is an extension to turtle interpretation to allow for the

representation of these. Prusinkiewicz and Lindenmayer (1990) introduce two new symbols that

allow for branching:

[Pushes the turtle's current state onto a stack.

] Pops a state from the stack and sets this as the current state for the turtle.

You can think of the '[' operation as asking the turtle to remember its state at that given point and then

the ']' operation is used to recall the most recently stored state.

The use of brackets can be demonstrated with an example. Consider the string F[+F]F[-F]F, this can

be interpreted as follows: draw a forward line then remember this position, then rotate anti-clockwise

and draw a line, now go back to the remembered state and draw another forward line now remember

this state and then rotate clockwise and draw a forward line then go back to the remembered state and

7

finally draw another forward line. This is illustrated in figure 2.3.

Figure 2.3 : Branching Example

2.1.3.2 3-Dimensional Turtle Interpretation

Prusinkiewicz and Lindenmayer (1990) also define a 3-dimensional turtle interpretation that uses

three vectors to represent the turtle's current orientation in space. These three vectors indicate the

turtle's heading, its direction to the left and its direction up. Rotations about these vectors are then

represented by three rotation matrices.

The program created in this project could be extended to cater for 3-dimensional as well as 2-

dimensional L-systems.

2.1.4 Stochastic L-systems

Prusinkiewicz and Lindenmayer (1990) also discuss stochastic L-systems which introduce variations

between images of the same L-system. This is achieved by assigning probabilities to a set of

productions that all operate on the same character. The effect of this when generating images of

plants is designed “to introduce specimen-to-specimen variations that will preserve the general

aspects of a plant but will modify its details.”

Again the program created in this project could be extended to deal with stochastic L-systems.

2.2 Research Into Currently Available Software

This section will investigate what is currently available in the way of L-system image generators and

evaluate some of those found.

2.2.1 Web-based Software

There are several systems that are available over the over the World Wide Web. Two particular Java

applets that performed some of the tasks that this project shall address are Milan's L-System

Generator by Milan Verma (2004), from the Department of Computer Science at Queen Mary,

University of London, and one from a website called JavaView (2004). Screen shots of these two

applets can be found in Appendix C.

8

The two systems both had a similar general layout style, with the system area split vertically into two

sections, one for the displayed image, and one for the user to input and modify the parameters of the

L-system image to be generated. The parameters that could be changed were largely the same in both

systems, these were: the axiom, the replacement rules, the number of iterations and the turning angle.

Milan's L-System Generator also had the following nice features:

• a drop down menu so the user could load several pre-set example L-systems.

• a drop down menu so the user could select the line colour to be used in the image.

• an input field for the user to specify the starting angle for the L-system.

The system from the JavaView website also had several nice features including:

• a check button to choose whether the image was automatically re-sized to fit the display area.

• an area displaying all of the characters of the alphabet being used.

• sliders for the user to alter the number of iterations and the angle.

• a check button which enables the displaying of the 'Current State' of the L-system string.

Both of the systems also had some faults or areas that could be improved. Milan's L-System

Generator just had one minor issue to mention:

• although the user was able to load pre-set L-systems, once the user had done so, the string

representing that L-system remained displayed in the top drop down list, even if the user

themselves had changed any or all of the details of this L-system.

The system on the JavaView website also had a few problems:

• it didn't have a button for the user to update the displayed image, although pressing 'return' on the

keyboard performed this task. However there was a 'Reset' button that replaced whatever

information the user had changed with the systems default settings - which could be frustrating if

pressed in error.

• it offered the user the ability to define replacement rules for all the characters of the alphabet

including the operations + , - ,] and [. Which in most cases will be unnecessary and could lead to

confusion.

• the images produced by this system had small red circles at end of each straight segment which

can obscure the desired image if there are too many of them.

There was also one issue which affected both of these systems; if the number of iterations was raised

too high the system appeared to freeze. This is because the computations involved become enormous

as the complexity of the process of rewriting the strings is exponential. This causes problems if the

user raises the number of iterations too high either by accident or intentionally. A possible solution

to this problem would be for the system to issue a warning to the user if the size of the calculation

9

was likely to be above a certain size.

2.2.2 Fractint

Another piece of available software is a system called Fractint. Fractint is a free ware fractal

generator produced by The Stone Soup Group and it is available from the Fractint Homepage (2004).

It is a DOS based piece of software used to produce Fractal images, and can also be used to produce

images of L-systems.

This system is not very visually 'attractive' and it is not a particularly user friendly or intuitive piece

of software. This is mainly because the system runs under DOS which may be unfamiliar to many

users, who are more likely to be comfortable with a window based graphical user interface. It is,

however, a very powerful and versatile system. It can produce images of L-systems with a large

number of iterations much faster than the two Java applets I looked at. Also, when the system is

drawing an L-system that takes some computational time to produce it displays the following

message to the user, so that they know that the system has not frozen : L-system thinking (higher

orders take longer).

To produce images of L-systems you needed to create a file containing the relevant L-system

information (such as the angle, axiom and productions) and then use this file to produce the image.

Fractint displays its images using the full screen. Once the image is displayed you cannot change the

parameters of the L-system while the image remains on the screen because you need to go back to the

file and update the information and then ask the program to redraw the L-system. If the program is to

be used as an educational or research tool it would be desirable for the image and parameters to be in

view at the same time so the user can clearly see the effects of any changes made.

2.3 Quality of Resources

The definitions seen in section 2.1 came from a book produced by Prusinkiewicz and Lindenmayer

(1990), this is a very reliable source of information about L-systems seeing as it was Aristid

Lindenmayer himself who developed the theory of L-systems.

The two Java applets seen in section 2.2 are not professional commercial pieces of software, they are

projects undertaken by interested amateur programmers. As such, they are bound to have some faults

and limitations. The program created in this project is intended to improve upon these faults and

limitations. Again, Fractint is not a commercial piece of software as it is distributed free of charge.

It did, however, have the feel of a much more professional and powerful piece of software than the

two applets.

10

3 Design

3.1 Overview

Having taken into consideration the software reviewed in the previous chapter the program developed

in this project will follow the same basic layout as the Java applets, where the display is split roughly

into two sections, one for the image and another for the input of parameters. This is to enable the

user to view the effects of any changes to the L-system's parameters as they are made. The good and

bad features of the systems discussed in the previous chapter were taken into consideration.

3.2 System Requirements

The primary function of the program is clearly to produce an image of an L-system given the relevant

parameters that describe it. The parameters required to define an L-system are an axiom, a set of

production rules, the number of iterations and, to define the turtle interpretation, the angle increment

by which to turn as well as the starting heading of the turtle. The program will therefore need to have

features that allow the user to input and adjust all of this data, and then draw the required image at

the user's request – by clicking a 'draw' button.

These are the minimum features that the program would need, in addition to these there are also

several other attributes, some of which were available in the systems reviewed in section 2.2, that

would also be useful. These are described as follows:

The program should:

• have the ability to change both the line and background colours that are used in the image.

• be able to load the parameters for various 'pre-set' L-systems and view the images produced.

• be able to save the produced diagram as an image file (for example JPG or PNG formats), so the

image could be used in various applications.

• be able to change the size of the image created to enable use in a variety of situations.

• be able to size the image to fill the available space in the window.

• have a 'clear' button that removes all input from the input fields and clears the image from the

screen, so the user can begin inputting new information easily.

• have a 'reset' button that reverts all input fields to the values of whichever pre-set L-system was

most recently selected.

3.3 The Graphical User Interface

The next problem was to decide on the general look of the graphical user interface, or GUI. As stated

previously the program's GUI will be split into two sections, one that contains all of the areas for

entering and altering data such as the axiom, production rules etc. and another that displays the

11

generated image. The display will be split vertically with the data area on the left side and the

displayed image on the right hand side, as illustrated in figure 3.1.

Figure 3.1 : GUI Layout

The exact layout of the various data fields now needed to be decided. The most important fields are

the input fields for the axiom, production rules, turn & starting angles and the number of iterations.

These should be positioned towards the top of the data fields area. These are made up of a label (e.g.

Axiom:) followed by an area for the user to input their desired value. Beneath these will be a

selection of buttons. The draw button should be the most prominent of these as it is likely to be the

most frequently used. Finally the data fields area will also have some drop down lists; one for

selecting a pre-set L-system, and one each for selecting the background colour and line colour of the

image. These features will combine to produce a GUI with a layout similar to that seen in figure 3.2.

Figure 3.2 : GUI Layout

3.4 Proposed Method

The idea behind the program is to first collect the information from the GUI, then apply the

production rules to the axiom to produce an updated string. It will then use an implementation of

turtle interpretation to turn this string into a set of coordinates, which will then be connected as

12

necessary to produce an image representing the L-system.

3.5 Programming Language

Choosing the programming language to use in this project was an important decision. During my

first two years of study I completed modules covering object oriented programming, specifically

using C++ and Java, so it was sensible for me to take an object oriented approach using either of

these languages if they were suitable to the task. Textbooks on programming in both C++, Deitel and

Deitel (2001), and Java, Barker (2002), were consulted.

Java and C++ have many similarities and I felt that either would be suitable for the requirements of

this project, so particular features of both need to be considered. Barker (2002) explains how Java

has an extensive selection of application programming interfaces, or API's , which provide a platform

independent way of accessing operating system functions including, and of particular benefit to this

project, GUI rendering. One such API is the Java Swing API that provides a comprehensive set of

GUI components that, to a large degree, work the same way on all platforms. Java code itself is also

platform independent, whereas compiled C++ code will only run on the platform on which it was

compiled. Platform independence is a desirable feature in any program so that it may be run on

Windows machines, Unix machines, Macintosh's etc. and Barker (2002) also describes how if these

Java API's are used in developing code then “the resultant Java code is truly portable”. Because of its

platform independence and GUI packages Java was used throughout this project.

3.5.1 The Java Swing API

The Java Swing API contains GUI components that have a Java-specific look no matter what

platform they are being used on. The documentation for this package (as well as for all Java

packages) can be found on the Java API Specification website from Sun Microsystems (2005). The

components in this API have names of the form JComponentName (for example JTextField, JButton,

JFrame etc.) and these are used throughout the development of the GUI in this project.

3.6 UML Outline of Proposed System

As an object oriented approach was to be taken to the problem, the program would be made up of

several classes that perform various tasks. There needed to be a class that deals with all of the GUI

aspects of the program, this class is called Display and it extends the JFrame class from the Java

Swing API. The Display class handles all of the components of the GUI, for example the buttons and

input fields, as well as all of the user interaction with it. There is a separate class that actually deals

with drawing the diagram, this is called LSystemDiagram and it extends JPanel, also from the Java

Swing API. The Display class then contains an instance of the LSystemDiagram class as one of its

components to display the image.

13

There will be two classes that enable the processing of input by turning the information entered by

the user into a set of coordinates, these are LSystem and Turtle. The LSystem class has all the

attributes of an L-system, these being strings representing the axiom and production rules, doubles

for the start and turn angles and an integer representing the number of iterations to be calculated. The

LSystem class takes all of this information and first performs the string rewriting and then, using the

Turtle class, turns the produced string into a list of coordinates representing the image to be drawn.

The Turtle class has all of the attributes of a turtle, these being integers representing its current x and

y position, doubles to represent its current angle (or heading) and turn angle (angle increment) and a

stack to store states (a state being the turtles x and y position and heading). It also performs all the

actions seen in section 2.1.3.1: move forward, rotate, and push and pop states onto the stack. The

LSystem class has a Turtle as an attribute that it uses to turn the rewritten string into a list of

coordinates, which are then passed to the LSystemDiagram class to actually draw the image. Finally,

there is a class called LSViewer which acts as the main program.

More details about how these classes are implemented follows in chapter 4. An outline UML

diagram of the proposed system is shown in figure 3.3. A full UML diagram for the finished system

can be found in Appendix B.

Figure 3.3 : UML Outline

14

LSViewer

main()

LSystemDiagram extends JPanel Display extends JFrame

LSystem
axiom : String
prod1Successor : String
prod2Successor : String
prod3Successor : String
prod1Predecessor : char
prod2Predecessor : char
prod3Predecessor : char
iterations : int
startAngle : double
turnAngle : double
xCoords[] : double
yCoords[] : double

LSystem()
process()

**

Turtle
turnAngle : double
xPos : double
yPos : double
currentAngle : double
stateStack : Stack

Turtle()
moveForward()
rotateClockwise()
rotateAntiClockwise()
pushState()
popState()

4 Implementation

4.1 Overview

This chapter looks at how the program performs each task in more detail. It doesn't go into the detail

of how every single process of the program works, but it looks at some of the more important ideas

and implementation details. It was discussed generally in chapter 3 how the program would go about

turning the user input into a diagram, by first applying the production rules to the axiom, then using

turtle interpretation to turn this into a set of coordinates and then finally draw the diagram by

connecting the relevant points with straight lines. This would be implemented in Java with classes

called Display, LSystem, Turtle, LSystemDiagram and LSViewer.

The implementation process can be broken down into several smaller tasks. One of which is

producing the GUI, and the others are to firstly process the input to produce a set of coordinates for

the image and secondly to actually draw the diagram given this set of coordinates.

4.2 L-system Alphabet

The L-system alphabet used should include all of the 2-dimensional turtle commands seen in section

2.1.3.1. It is also helpful to have more than one character that defines the 'move forward' command

so that different types of line can be drawn by defining different production rules for each one. For

example many of the examples in Prusinkiewicz and Lindenmayer (1990) have 'left' and 'right' edges

in them. As well as 'F', the alphabet will also contain 'L', 'R', 'X' and 'Y' all representing the 'move

forward' command. The complete alphabet will be : F, L, R, X, Y, +, -,] and [.

4.3 Input Processing

The first problem considered was to process the input, regardless of how this input was gathered and

without trying to draw any diagrams. This was so that the accuracy of the input processing could be

checked before attempting the more complicated tasks of implementing a fully functioning GUI and

drawing the diagram itself.

4.3.1 LSystem.java

Given the relevant information needed to describe an L-system (an axiom, a set of production rules, a

turn angle and a number of iterations) the first step taken in processing this input is to apply the

production rules to the axiom.

This is implemented in LSystem.java by the operation called process() which stores the updated

string to a variable called outputString at the end of each iteration. It starts by copying the axiom to

outputString, if the number of iterations is zero then it is finished, however if the number of iterations

15

is greater than zero then it must apply the production rules. It examines each character of

outputString in turn – if a character matches one of the production predecessors then the

corresponding production successor is added to a temporary variable called tempOutput, if the

character examined is not matched by a production predecessor (but this character is still in the L-

system alphabet) then this character itself is added to tempOutput (this is the identity production seen

in section 2.1.2). After every character of outputString has been examined the content of tempOutput

is copied to outputString and tempOutput is cleared, then if there are more iterations to perform the

process is repeated.

This is implemented using a pair of nested for loops – the outer for loop repeats for the number of

iterations, and the inner for loop is used to examine each character of outputString in turn. This is

shown in the code in figure 4.1.

String outputString = axiom;
for (int j=0; j < iterations; j++) {
 for (int i=0; i < outputString.length(); i++) {
 if (outputString.charAt(i) == prod1Predecessor) {
 tempOutput = tempOutput + prod1Successor;
 }
 else if(outputString.charAt(i) == prod2Predecessor) {
 tempOutput = tempOutput + prod2Successor;
 }
 else if(outputString.charAt(i) == prod3Predecessor) {
 tempOutput = tempOutput + prod3Successor;
 }
 else if (outputString.charAt(i) == 'F', 'L', 'R', 'X', 'Y',
 '+', '-', '[' or ']') {
 tempOutput = tempOutput + outputString.charAt(i);
 }
 else {
 error with input...
 }
 }
 outputString = tempOutput;
 tempOutput = “”;
}

Figure 4.1 : Code Excerpt from LSystem.java

4.3.2 Turtle.java

The next step after generating the new string, is to interpret its meaning using turtle interpretation.

The Turtle class implements all of the turtle operations seen in section 2.1.3.1, these operations are

called moveForward(), rotateClockwise(), rotateAnticlockwise(), pushState() and popState(). The

state of a turtle is represented by an array of 3 doubles – one each for its x and y position and one for

its heading. The implementation of these operations can be seen in figure 4.2.

The LSystem class uses this Turtle class to interpret outputString and produce a set of coordinates. It

does this by examining each character of outputString in turn and calling the relevant turtle

commands for each character found.

16

public void moveForward() {
 xPos = xPos + Math.cos(Math.toRadians(currentAngle));
 yPos = yPos + Math.sin(Math.toRadians(currentAngle));
}

public void rotateClockwise() {
 currentAngle = currentAngle - turnAngle;
}

public void rotateAntiClockwise() {
 currentAngle = currentAngle + turnAngle;
}

public void pushState() {
 double[] state = new double[3];
 state[0] = xPos;
 state[1] = yPos;
 state[2] = currentAngle;
 stateStack.push(state);
}

public void popState() {
 double[] state = new double[3];
 state = (double[]) stateStack.pop();
 xPos = state[0];
 yPos = state[1];
 currentAngle = state[2];
}

Figure 4.2 : Code Excerpt from Turtle.java

Two of these commands, moveForward() and popState(), change the turtle's position, so after

calling either of these methods the new position of the turtle needs to be stored. LSystem has two

arrays of doubles, called xCoords and yCoords, which are used to store the x and y coordinates of the

L-system. After calling either moveForward() or popState() the position of the turtle is stored in

these arrays. The popState() command indicates the end of a branch segment, which is marked in the

coordinate arrays by placing infinity in each one, then calling popState() and storing the new

positions. This will be explained in section 4.4. After each character of outputString has been

examined there will be a full set of coordinates stored in the two arrays.

This process is implemented using a for loop to examine each character of outputString and if/else

statements to perform the relevant task. As the coordinates are being produced, LSystem keeps a

record of the largest and smallest values for both the x and y coordinates, this information will be

used for scaling and positioning the image, which is discussed later in section 4.4.1. This

implementation is shown in figure 4.3.

17

turtle = new Turtle(0.0, 0.0, turnAngle, startAngle);
xCoords[0] = yCoords[0] = 0.0;
xMax = xMin = yMax = yMin = 0.0;
numCoords = 1;

for(int i = 0; i < outputString.length(); i++) {
 if (outputString.charAt(i) == 'F', 'L', 'R', 'X' or 'Y') {
 turtle.moveForward();
 xCoords[numCoords] = turtle.getXPos();
 yCoords[numCoords] = turtle.getYPos();
 numCoords++;

 // update max/min info
 if (turtle.getXPos() > xMax) xMax = turtle.getXPos();
 else if (turtle.getXPos() < xMin) xMin = turtle.getXPos();
 if (turtle.getYPos() > yMax) yMax = turtle.getYPos();
 else if (turtle.getYPos() < yMin) yMin = turtle.getYPos();
 }

 else if (outputString.charAt(i) == '-') {
 turtle.rotateClockwise();
 }

 else if (outputString.charAt(i) == '+') {
 turtle.rotateAntiClockwise();
 }

 else if (outputString.charAt(i) == '[') {
 turtle.pushState();
 }

 else if (outputString.charAt(i) == ']') {
 // to note the end of the branch
 xCoords[numCoords] = java.lang.Double.POSITIVE_INFINITY;
 yCoords[numCoords] = java.lang.Double.POSITIVE_INFINITY;
 numCoords++;

 turtle.popState();
 xCoords[numCoords] = turtle.getXPos();
 yCoords[numCoords] = turtle.getYPos();
 numCoords++;
 }
 else {
 invalid character...
 }
}

Figure 4.3 : Code Excerpt from LSystem.java

4.4 Drawing the Image – LSystemDiagram.java

Once there is a full set of coordinates these are used to draw a 2-dimensional diagram. As discussed

earlier the program has a class called LSystemDiagram which extends JPanel, which is the

component of the GUI that displays the diagram. This class has an instance of LSystem as one of its

attributes which contains the set of coordinates needed to draw the image. The constructor for

LSystemDiagram is also given a dimension and two colour objects, one for the background colour

and one for the line colour.

The idea behind drawing the diagram is fairly simple – given the list of coordinates a straight line is

drawn from each point to the next. However, this only works if the L-system is simple (not

branching), if it is a branching L-system then you don't always want a line from one point to its

neighbour. When the end of a branch is reached you need to go back to the last point before the

branch and then draw a new line from there.

18

Figure 4.4 (a) (b) (c) : Branching Example

Consider the example of drawing the L-system defined by the string F[+F]F, this should look

something like the image in figure 4.4(c). If the coordinate arrays for this L-system were a list of the

four points in the order p1, p2, p3, p4 and these were simply joined by lines we would end up with

something looking like figure 4.4(b). This problem can be solved by placing some sort of marker in

the array of coordinates to label the end of each branching segment.

The coordinates are stored in an array of doubles so the marker must also be some kind of double

object, but one that wouldn't normally occur as a coordinate. Java has a double constant that

represents infinity which can be used because infinity would never be generated as a normal

coordinate. When the arrays of coordinates are being produced by LSystem, infinity is placed in the

arrays every time before popState() is called and then the new coordinates are placed in the arrays.

The implementation of this was seen in section 4.3.2, in figure 4.3.

When processing the above example of F[+F]F, instead of just producing a list of coordinates p1, p2,

p3, p4 and connecting these as in figure 4.4(b), the program will produce the following arrays:

xCoords = [p1x, p2x, p3x, ∞, p2x, p4x] yCoords = [p1y, p2y, p3y, ∞, p2y, p4y]

for (int i = 0; i < (numCoords - 1); i++) {

 double inf = java.lang.Double.POSITIVE_INFINITY;

 while (xCoords[i + 1] == inf | xCoords[i] == inf) {
 i++;
 }

 double x1 = xCoords[i];
 double x2 = xCoords[i + 1];
 double y1 = yCoords[i];
 double y2 = yCoords[i + 1];

 ...

 LineSegment thisLine = new LineSegment(x1, y1, x2, y2, lineColor);
 thisLine.draw(g);
}

Figure 4.5 : Code Excerpt from LSystemDiagram.java

Instead of simply connecting each point to its neighbour, the program skips over each occurrence of

infinity and draws a line between the next pair of points. The arrays above will produce a line from

19

p1 to p2, then p2 to p3, then skip over infinity and draw a line from p2 to p4 as shown in figure 4.4

(c). The implementation of this is shown in figure 4.5. LineSegment in this code is a simple class

that is given 4 doubles representing the start and end point of the line as well as a colour. Calling

LineSegment's draw method will then draw a straight line in the specified colour between the two

points.

4.4.1 Scaling and Positioning the Image

The positions of the coordinates produced will be correct relative to each other but not relative to the

display space. The only definite positioning of any of these coordinates is that the first one is at the

point (0.0, 0.0). The diagram needs to be centred and also scaled to best fill this area – the size of the

area can then be adjusted to resize the diagram.

To centre the diagram we need to know the location of the four extremes of the diagram: the largest

and smallest x and y coordinates. These are stored during the production of the coordinates. This

was seen in the code section 4.3.2, figure 4.3.

The centre of the diagram needs to be placed at the centre of the display area. The centre of the

diagram is calculated using its maximum and minimum x and y coordinates, the difference between

this and the centre of the display area is then calculated and each coordinate is adjusted by this value.

Once the diagram is centred, it is scaled. The largest dimension of the diagram needs to be calculated

first, as this is the one that will affect the scaling. Then each coordinate is translated to the origin,

scaled and then translated back to the centre of the display area.

This process is shown in figure 4.6 which shows the additions made to the code in figure 4.5. Figure

4.7 is used to illustrate what each dimension relates to. The longEdge value in the code is simply the

largest value out of imageWidth and imageHeight and the value 10 is subtracted to provide a small

border (of 10 pixels) around the image.

for (int i = 0; i < (numCoords - 1); i++) {

 double x1 = xCoords[i] + xAdjust;
 double x2 = xCoords[i + 1] + xAdjust;
 double y1 = yCoords[i] + yAdjust;
 double y2 = yCoords[i + 1] + yAdjust;
 // shift to origin, then scale, then shift back
 x1 = ((x1-halfDWidth) * ((dWidth-10) / longEdge)) + halfDWidth;
 x2 = ((x2-halfDWidth) * ((dWidth-10) / longEdge)) + halfDWidth;
 y1 = ((y1-halfDHeight) * ((dHeight-10) / longEdge)) + halfDHeight;
 y2 = ((y2-halfDHeight) * ((dHeight-10) / longEdge)) + halfDHeight;
 LineSegment thisLine = new LineSegment(x1, y1, x2, y2, lineColor);
 thisLine.draw(g);
}

Figure 4.6 : Code Excerpt from LSystemDiagram.java

20

Figure 4.7 : Diagram Positioning

4.5 The Graphical User Interface – Display.java

The graphical user interface (GUI) is implemented in Display.java. This not only displays the

produced image, but it is responsible for handling all user interaction with the program.

Barker (2002) states that the fundamental approach to programming GUIs is to assemble graphical

building blocks called components in specific ways to get the desired 'look' and then program their

logic to behave in a way that we want. We have already seen much of the behind the scenes logic

that enables the production of an image from a given input, the GUI is then responsible for gathering

this input and using this to draw the image.

As discussed in section 3.5.1, components from the Java Swing API are used to create the majority of

the GUI. A container is a type of component that can be used to contain and organise other

components. In this program contentPane is the outermost container and has two more containers

added to it. These two containers represent the splitting of the display into the data input and

diagram display area. A JPanel called infoPanel will contain all of the components for inputting and

21

amending the data. The other component is a JScrollPane called drawScrollPane. JScrollPanes are

containers that can have scroll bars along their edges when their contents are larger than the

JScrollPane itself. This allows the user to scroll around the image if its larger than the display area.

The drawScrollPane then has a JPanel called drawPanel added to it. The drawPanel is the container

that will actually hold the instance of LSystemDiagram that displays the image itself. This

arrangement is shown in figure 4.8.

Figure 4.8 : GUI Structure

4.5.1 Layout Arrangement

Containers have layout managers that arrange the component objects contained within them. The

contentPane uses a BorderLayout manager which divides the space into 5 regions: north, south, east,

west and center. The infoPanel is added to the west region of contentPane and the drawScrollPane is

added to the center region. The drawScrollPane is added to the center and not the east region because

the center region will take up any remaining space in the contentPane.

Contained within infoPanel are all of the components that allow the user to input and amend details

of the L-system. These include JTextFields for inputting text such as the axiom and production rules,

JLabels to label the JTextFields, JButtons for the draw, clear and reset buttons, JComboBoxes for

choosing the colours and pre-set L-systems, JSpinners for the angles and number of iterations and a

JTextArea that displays the contents of outputString. In order to arrange this in a grid like formation

infoPanel uses a layout manager called GridBagLayout. The result of this layout can be seen in the

screen shot in figure 4.9.

22

Figure 4.9 : GUI Screen shot

4.5.2 Adding Actions

Components such as the buttons, colour lists and pre-set list, that are required to 'do' things have

actionListeners attached to them. ActionListeners are used to control what happens when a particular

component is used, for example, figure 4.10 shows an actionListener added to the drawButton, which

calls the drawDiagram() operation of Display whenever the draw button is clicked.

drawButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 drawDiagram();
 }
});

Figure 4.10 : Code Excerpt from Display.java

4.5.2.1 Drawing the Diagram

The Display class has an instance of the LSystem class called currentLSystem as an attribute, which

stores all the information about the L-system to be drawn. The drawDiagram() operation of Display

then gathers all of the data that is contained in the various text fields and spinners and updates the

currentLSystem with these attributes. It then calls the process() operation of LSystem to generate

coordinates and creates an instance of LSystemDiagram with this currentLSystem as a variable.

LSystemDiagram also has a dimension, and two colours as variables which have also been acquired

by the GUI. This instance of LSystemDiagram, which is called diagramPanel, is then added to the

drawPanel which is contained within the drawScrollPane (see figure 4.8).

23

The drawDiagram() method is reused whenever the system needs to redraw the L-system image. For

instance whenever the draw button is pressed, the 'return' key on the keyboard is pressed, the reset

button is pressed, the clear button is pressed, a colour (line or background) is selected, a pre-set L-

system is selected or the image is resized.

4.5.2.2 Loading Pre-set L-systems

As well as currentLSystem, Display also has several more instances of LSystem as attributes which

have names of the form presetLSystemName, for example presetTree1 and presetKochSF. These

instances of LSystem are created with the relevant L-system parameters for various pre-set L-systems

that can be 'loaded'. The names of all of these L-systems appear in the pre-set list which has an

attached actionListener that changes the contents of currentLSystem to whichever one of these L-

systems was chosen before calling the drawDiagram() method to redraw the diagram of the selected

L-system.

The 'clear' button also uses a pre-set L-system, called presetCustom, to clear all the data and diagram.

This is an instance of LSystem with an empty string as the axiom, 1 as the number of iterations, 0.0

as the start angle, 90.0 as the turn angle and no production rules. When the 'clear' button is pressed

the program changes the currentLSystem to presetCustom and redraws the image. Similarly the

'reset' button reloads whichever pre-set is currently selected and redraws the image.

4.5.3 The File Menu

The GUI has a file menu which is an instance of JMenu attached to a JMenuBar. The file menu

contains a quit option, which exits the program, as well as an option to save the image and and an

option to specify the size of the image.

4.5.3.1 Setting Image Size

When the user selects the option to set the image size, an input dialog box (figure 4.11) pops up

asking the user to enter a size for the image in pixels, the image is then created as a square of this

size. This value is given to diagramPanel and the image is redrawn. There is also a button on the

GUI for resizing the image to best fit in the available space in the scroll pane. This determines the

current smallest dimension of the scroll pane and sets the dimensions of the image to be slightly less

than this before redrawing the image.

Figure 4.11 : Set Size Dialog

24

4.5.3.2 Saving Images to File

When the user selects the option to save the image a JFileChooser (another Java Swing component)

pops up from which the user specifies a file location. The program then saves the image as either a

JPEG or PNG image by creating a buffered image of the same dimensions as the displayed image and

then 'painting' a copy of the L-system diagram onto this buffered image, and finally writing the image

to the file specified by the user. The images found in Appendix D were created in this way.

4.6 Error Handling

In this program there are many opportunities for mistakes in the input to be made. The most obvious

are with the input of the axiom and production successor strings, but also with the turn and start

angles, number of iterations and production predecessors. Any faulty input needs to be clearly and

graciously dealt with to avoid nonsense output or the program crashing.

The turn and start angles and iterations are easy to deal with since we know that both of these angles

should be doubles in the range [-360.0, 360.0] and that the number of iterations should be an integer

in the range [0, n], where n is some suitable upper bound to prevent unrealistically large

computations (19 is used in this program). It is easy to impose restrictions on the input of these three

values as they all use JSpinners to gather the data and JSpinners have the ability to restrict input to a

particular data type and range.

The axiom, production successor and production predecessor strings should only contain characters

from the specified alphabet (section 4.2). If they contain characters that are not in this alphabet then

the program will issue an error message to the user via a pop-up window informing them that there is

an invalid character (and which character this is) and will not then try to process this input. An

additional check with the production predecessor is that it only consists of one single character and

not a string, although it ignores leading and trailing spaces. Two examples of the error messages

produced are shown in figures 4.12 and 4.13.

 Figure 4.12 Figure 4.13

The program also catches various exceptions that may be thrown and displays a relevant error

message. For example, an emptyStackException will be thrown if you attempt to pop an item from

an empty stack, this may occur if the brackets used for branching don't match up correctly.

25

4.7 Reliability

It was seen in section 2.2.1 that a common problem with the two Java applets was that if the

computation was too large then the programs would appear to freeze or crash. This was due to the

number of calculations involved in L-systems being exponential. This program warns the user if the

computation for a requested L-system is going to be large.

You can estimate the number of computations in a particular L-system by predicting the number of

line segments involved in the image. In the case where there is just one production rule, let a =

number of draw line commands in the axiom, p = number of draw line commands in the production

successor, and i = number of iterations. An estimate for the number of line segments, e, is then given

by the following formula:

e = a ∙ p i

An upper bound on this estimate, for cases when there is more than one production rule, can be

achieved with the following formula:

e = a ∙ pmax i

Where pmax is the greatest number of 'move forward' commands in any of the production predecessors.

Before processing the L-system, the program calculates the value of e, using the above formula, and

issues a warning (figure 4.14) to the user if this is above a certain value. The warning asks the user if

they wish to continue drawing the image, if they choose to continue there is still the possibility that

the program will fail to complete the computation, but the user gets the choice about whether to risk

this or not. This also gives the user the chance to check that the input is correct before deciding

whether to continue. The value for which it will offer a warning was calculated by trying to draw

various L-systems, printing out the value of e each time, and then noting for which values of e the

image was successfully drawn in a reasonable time. The figure decided upon was 30,000.

Figure 4.14 : Large Computation Warning Dialog

4.8 Problems Encountered

The implementation process on the whole was fairly problem free. However, the process was more

time consuming than first anticipated. In particular creating a fully functioning and 'bug' free GUI

took quite some time as well as the task of actually producing the 2-dimensional diagrams. Solving

the problem of drawing branching L-systems also proved quite troublesome.

26

5 Evaluation

5.1 Evaluation Criteria

The program now needs to be evaluated to see how well it performs the tasks required of it. The

program was intended as a tool for investigating L-systems and the following evaluation criteria are

intended to assess its suitability as such. The criteria for evaluating the program are:

• to test if diagrams created by the program are accurate.

• to test how well the program copes with unreliable input.

• to see how good the program is at warning against large computations.

• to compare this program to the software evaluated in section 2.2.

5.2 Evaluating the Program

5.2.1 Image Output

To test the image output of the program the idea was to find examples of L-system images from a

trusted source and compare the images produced by this program with those found. Prusinkiewicz

and Lindenmayer (1990) contains many suitable such diagrams with the associated information: the

number of iterations, the angle increment, the axiom and the production rules.

The drawing of a wide variety of L-systems was attempted so as to test all aspects of the program.

There was a combination of branching and non-branching L-systems and some with just a single

production rule and some with several. Specifically the images that were drawn came from

Prusinkiewicz and Lindenmayer (1990) and were figures 1.7 (a) & (b), 1.9 (a), (b), (c), (d), (e) & (f),

1.10 (a) & (b), 1.11 (a) & (b) and 1.24 (a), (b), (c), (d), (e) & (f). The images produced by this

program for these L-systems can be found in Appendix D. All of the images created were accurate

recreations of the images found in Prusinkiewicz and Lindenmayer.

5.2.2 Handling Unreliable Input

The first aspect of unreliable input that was tested was the use of characters not in the L-system's

alphabet. This was done by choosing a character not in the alphabet, 'a' for this test, and placing it

once at a time in each of the following fields: the axiom, the production predecessors and the

production successors. The rest of the input was left as a correct L-system with the following input:

Axiom: F

Production 1: F → FF-[-F+F+F]+[+F-F-F]

Production 2: BLANK

Production 3: BLANK

The result of clicking draw was noted, and the results are shown in table 5.1 below

27

Input Field Input Result
Axiom Fa Error message
Axiom a Error message

Production Predecessor 1 Fa Error message
Production Predecessor 1 a Error message

Production Predecessor 2 a Error message
Production Predecessor 3 a Error message

Production Successor 1 FF-[-F+F+aF]+[+F-F-F] Error message
Production Successor 1 a Error message

Production Successor 2 a Image drawn correctly
Production Successor 3 a Image drawn correctly

Table 5.1 : Input Error Results

The system noticed the error, cancelled drawing the image and issued an error message to the user in

all but two of these cases. In the two cases where production successors 2 and 3 were given the input

of 'a' no error message was issued and the image was drawn correctly. This was because these two

productions had no predecessor defined so the contents of their successor was irrelevant and would

have no impact on the image produced. Perhaps it would have been better if the program had warned

the user that the input in these fields was faulty.

Another possibility for error with the input is with the use of brackets. For every 'pop state'

command, indicated by a ']', there needs to be a corresponding 'push state' command, indicated by a

'['. To test this, some examples of input that shouldn't work were tried in the axiom and production

successor fields, with correct input everywhere else. The results are shown in table 5.2 below.

Input Field Input Result
Axiom F[-F]F[+F]][F] Error message
Production Successor 1 R[+L]]R[-L]+L Error message

Production Successor 2 F[+X]-X]FX Error message
Production Successor 3 FF--F+F+F]+[+F-F-F] Error message

Table 5.2 : Bracketing Error Results

The program noticed all of these errors and issued the appropriate error message to the user.

As discussed earlier in section 4.6, the JSpinners that receive the input for the start angle, turn angle

and the number of iterations prevent any erroneous input from being entered.

5.2.3 Dealing with Large Computations

To evaluate the programs ability to warn against large computations, several L-systems were chosen

28

and the number of iterations was raised until the program failed to draw the image in an allowed time

limit – chosen to be 30 seconds. The L-systems chosen are detailed in table 5.3 below.

Name Axiom Production Rule(s)
Tree 1 F F → FF-[-F+F+F]+[+F-F-F]
Koch Snowflake F++F++F F → F-F++F-F

Dragon Curve L L → L+R+
R → -L-R

Hexagonal Gosper
Curve

L L → L+R++R-L—LL-R+
R → -L+RR++R+L--L-R

 Table 5.3 : L-system details

The results of raising the number of iterations are shown in table 5.4 below.

L-system Iterations Result
Tree 1 4 Image drawn

5 Warning Issued – image then drawn after approx. 5 seconds
6 Warning Issued – image failed to draw after 30 seconds

Koch Snowflake 6 Image drawn
7 Warning Issued – image then drawn after approx. 20 seconds

8 Warning Issued – image failed to draw after 30 seconds
Dragon Curve 13 Image drawn

14 Image drawn after approx. 10 seconds
15 Warning Issued – image then drawn after approx. 30 seconds

16 Warning Issued – image failed to draw after 30 seconds
Hexagonal
Gosper Curve

5 Image drawn

6 Warning Issued – image failed to draw after 30 seconds

 Table 5.4 : Large Computation Warnings

It can be seen from table 5.4 that every time the image failed to be drawn within 30 seconds the

program had previously issued a warning to the user that it may fail. The image was successfully

drawn after issuing a warning in some cases, this is acceptable since the program is only warning the

user that the program could fail, not that it definitely will.

5.2.4 Comparison to Available Software

The program produced in this project has improved upon the software seen in section 2.2. Compared

to the two Java applets this program has many more features, including the ability to save the images

created, specify the size of the images, specify both the line and background colours of the image and

issue error messages and warnings to the user. In addition to these features, I believe that this

29

program has a better overall ease of use than the two Java applets.

This program is certainly much more user-friendly than Fractint when it comes to drawing L-systems.

This is partly is because Fractint's main purpose is not to just draw L-systems, they are just one of the

many types of fractal it can produce. Also, the graphical user interface in this program gives it a

much better ability for the user to experiment with these L-systems and view the effects of altering

parameters.

5.3 Possible Extensions

There are several areas where this project could be developed further. Two of these areas are based

around extending the types of L-systems that the program can deal with, in particular to allow for 3D

and not just 2D L-systems and also to deal with stochastic L-systems. There are also many more

possible extensions to the L-system theory. There is also scope for improving the user interface and

its features.

5.3.1 3D L-systems

As discussed briefly in section 2.1.3.2 there exists a turtle interpretation for L-systems that is capable

of producing 3-dimensional images. Much of the input processing could be dealt with in a similar

way as in this project and the Turtle class could possibly be extended to cope with 3D L-systems.

The most challenging part of this extension is likely to be implementing the actual drawing of 3D

images. If a suitable method for displaying 3D images were found then it would certainly be possible

to extend this implementation to 3-dimensions.

5.3.2 Stochastic L-systems

Again, as discussed in section 2.1.4 the theory can be extended to cover stochastic L-systems. This

project could be extended to deal with these. The GUI would have to be adapted to allow for the

input of the probabilities assigned to each production and the turtle implementation could be adapted

to apply productions based on these probabilities.

5.3.3 Improving the Interface

There are also many areas for improving or changing the user interface. The user could be given

more control over the appearance of the diagram – they could be able to change the line thickness or

style for example. A method for zooming in on particular areas of the diagram is another possibility.

Some way of making the diagrams 'animate' through several iterations to give the appearance of

growth is quite a large potential extension. These are just a few of the many possibilities for

extending the interface created in this project.

30

Bibliography

Barker, J, (2002), Beginning Java Objects. Birmingham: Wrox, pp.13-24, Chapter 16.

Chomsky, N, (1957), Syntactic Structures. The Hague: Mouton.

Deitel, H M & Deitel, P J, (2001), C++ How to Program, Third Edition. New Jersey: Prentice Hall.

Dyer, M E, (2002), Lecture notes - CO22 Theory of Computation, School of Computing, University

of Leeds.

Efford, N, (2002), SO21 Handbook, 2002-03 Session, School of Computing, University of Leeds.

Fractint, (2004), Fractint Development Team Homepage. URL:http://www.fractint.org [2nd December

2004]

JavaView, (2004), L-System Tutorial.

URL:http://www.javaview.de/vgp/tutor/lsystem/PaLSystem.html [1st December 2004]

Mandelbrot, B B, (1983), The fractal geometry of nature. Oxford: Freeman. Chapter 6.

Prusinkiewicz, P, & Lindenmayer, A, (1990), The Algorithmic Beauty of Plants. New York ; London:

Springer-Verlag, pp.1-28.

Rozenberg, G & Salomaa, A, (1980), The Mathematical Theory of L Systems. New York ; London:

Academic Press.

Sun Microsystems, (2005), Java 2 Platform, Standard Edition, v 1.4.2, API Specification.

URL:http://java.sun.com/j2se/1.4.2/docs/api/index.html [22nd April 2005]

Verma, M, (2004), Milan's L-System Generator.

URL:http://www.dcs.qmul.ac.uk/~milan/LSystemApplet.html [1st December 2004]

(2004), Fractint Homepage. URL:http://spanky.triumf.ca/www/fractint/fractint.html [2nd December

2004]

31

Appendix A: Project Experience

I had never undertaken a piece of work of this size and importance prior to this project, and initially it

seemed a very challenging prospect. However, it gave me the opportunity to develop my research,

project management and programming skills that have been gained during my degree.

I was very pleased with the end product in terms of the program produced and I found the

programming to be a rewarding and satisfying experience, although it was also an extremely

frustrating experience at times! It would have been nice to have had more time to develop the

software, as there are several enhancements that would improve the program. This wasn't possible

because the programming that was completed was fairly time consuming. In fact the programming

side of things took up the majority of time spent on this project, possibly at the expense of writing up

the work. I would urge other students not to underestimate the amount of time involved in writing

working code, especially if many of the methods involved are unfamiliar, and to ensure that work is

started on the implementation as soon as possible.

Although I did complete some of the written work during the course of the project, I left the majority

of producing the report until the end. I found that spending a good amount of time on writing the

mid-project report to be invaluable as this meant that I already had a good background chapter written

up before Christmas. In hindsight, it would have been sensible to have compiled the whole report as

the project progressed instead of leaving the bulk of it to the end. This is an especially important

consideration since it is only the report that gets marked, so its important not to spend all of the

available time on the implementation.

I found it difficult to balance the time spent working on this project with all of the other coursework

and study that my other courses entailed. This was especially difficult because this was only a 20

credit (instead of 40 credit) project, which meant that in both semesters I had five other courses to

concentrate on. I also found that this being a 20 credit project made it difficult to judge exactly how

much work was required of me, as the majority of projects were worth twice this amount.

I would advise future students to ensure that they make a start on the project as early as possible in

the first semester because the deadline may initially seem very far off but the time disappears

extremely quickly, especially with all the other work involved in final year. I would also recommend

getting started on the implementation process as soon as possible and producing good quality written

work throughout the duration of the project to save lots of time writing up the report at the end of the

project.

32

Appendix B: UML Diagram

33

LineSegment
xStart : double
y Start : double
xEnd : double
y End : double

LineSegment()
draw()

LSViewer

main()

LSy stemDiagram
xCoords[] : double
y Coords[] : double
numCoords : int
xMax : double
xMin : double
y Max : double
y Min : double

LSy stemDiagram()
paintComponent()
getTransf ormedGraphics()
f lip()

Display

Display ()
updateDisplay Inf o()
updateCurrentLSy stem()
drawDiagram()
sav eImage()
addMenu()

-diagramPanel

LSy stem
axiom : Logical View::jav a::lang::String
prod1Successor : Logical View::jav a::lang::String
prod2Successor : Logical View::jav a::lang::String
prod3Successor : Logical View::jav a::lang::String
prod1Predecessor : char
prod2Predecessor : char
prod3Predecessor : char
iterations : int
startAngle : double
turnAngle : double
outputString : Logical View::jav a::lang::String
xCoords[] : double = new double [60000]
y Coords[] : double = new double [60000]
numCoords : int
xMax : double
xMin : double
y Max : double
y Min : double

LSy stem()
process()
getXCoords()
getYCoords()
getNumCoords()
getXMax()
getXMin()
getYMax()
getYMin()
getAxiom()
getProd1Successor()
getProd2Successor()
getProd3Successor()
getProd1Predecessor()
getProd2Predecessor()
getProd3Predecessor()
getStartAngle()
getTurnAngle()
getIterations()
getOutput()

-lSy stem

**

Turtle
turnAngle : double
xPos : double
y Pos : double
currentAngle : double
stateStack : Logical View::jav a::util::Stack = new Stack ()

Turtle()
getXPos()
getYPos()
mov eForward()
rotateClockwise()
rotateAntiClockwise()
pushState()
popState()

-turtle

Appendix C: Screen Shots

Milan's L-System Generator. http://www.dcs.qmul.ac.uk/~milan/LSystemApplet.html

http://www.javaview.de/vgp/tutor/lsystem/PaLSystem.html

34

LSViewer created in this project.

35

Appendix D: Produced Images

The black and white images on the following 3 pages are those discussed in section 5.2.1.

36

37

38

The following are a small selection of images demonstrating the ability of the program to generate

pictures of varying colour and size.

39

