
Software Exploitation of a Fault-Tolerant Computer with a LargeMemoryFrank Eskesen, Michel Hack, Arun Iyengar, Richard P. King, and Nagui HalimIBM Thomas J. Watson Research CenterP.O. Box 704Yorktown Heights, NY 10598AbstractThe DM/6000 hardware (a prototype, fault-tolerant RS/6000 built at the TJ Watson ResearchCenter) provides fault tolerance and a large, non-volatile main memory. Running a commercial,general-purpose operating system on it, of itself, doesnothing to increase software availability. In fact, thetime to rebuild the contents of a large memory maydecrease availability.We describe our techniques for hiding most of themain memory, which requires the operating system toaccess it only by way of services separate from theoperating system. This can allow the memory andthose access services to achieve much higher availabil-ity, which, in turn, increases the availability of the sys-tem as a whole. We also performed simulation studiesto determine those conditions where this system orga-nization can lead to improved performance for recov-erable database applications.1 IntroductionThe DM/6000 [1] is a prototype, fault-tolerant 4-way multiprocessor RS/6000 with a large main mem-ory built at the TJ Watson Research Center. Whenprovided with su�cient backup-battery power, thismemory is as reliable as mirrored disks. The inten-tion is to run a commercial operating system withwhatever applications a customer might choose to use.Being fault-tolerant, the DM/6000 would o�er veryhigh hardware availability, but only moderately higheroverall system availability than typical RS/6000 sys-tems, since hardware failures are not the majority ofsystem failures.Although the memory is non-volatile, it cannotsurvive the ravages of an application run amok. Thus,when a large amount of memory is installed in aDM/6000, the time to recover from a failure maybe dominated by the time to rebuild the contents ofmemory. For example, the performance of a databasesystem is dependant on the state of its bu�er pool.Following a crash, performance is reduced until thatbu�er pool has been repopulated, which, for a largebu�er pool, may take quite a while.Various workers in the �eld have explored ways toexploit a non-volatile memory, for example eNVy [19],Sprite [3], and Rio [7, 16]. Their approach is to placethe �le system cache in non-volatile memory and to

modify the operating system and �le system to pre-serve this memory across reboots. Although the levelof protection that can be provided to such a cache maybe adequate for most purposes [19], this approach doesnot allow the memory to be completely isolated fromfailures in the operating system kernel, especially inthe paging subsystem, or from failures in add-on ex-tensions to the kernel. At the same time, the memoryis completely bound to that one �le system runningin that one operating system. One possible use of theDM/6000 involves having di�erent operating systemsrunning on its processors at the same time, and thesharing of data in the non-volatile memory seemed aworthy goal.We therefore decided to hide most of the memoryin the DM/6000 from the operating system and theapplications running on it. Instead of allowing an op-erating system to have access to that memory directly,a small server program is loaded in part of that hiddenmemory, and only that server program accesses any ofthe hidden memory. The operating system communi-cates with the server through an intercommunicationqueue (ICQ) using, for example, a device driver thatthe rest of the operating system regards as giving ac-cess to something like a disk, and the server operateson the hidden memory on behalf of the operating sys-tem's users.Since the server is small and o�ers a limited set ofoperations, it can be made much more reliable than ageneral-purpose operating system. A general-purposeoperating system must run run arbitrary kernel ex-tensions (e.g. device drivers), applications, and userprograms. With only the server accessing the hiddenmemory, a failure of the operating system leaves thedata in the hidden memory intact. Thus, overall sys-tem availability is higher, since less of the state of thesystem is lost due to software failures.As noted by Copeland, et al [8], the use of non-volatile main memory is particularly well-suited to ap-plications such as recoverable databases. They typi-cally maintain state in stable storage, allowing a con-sistent database state to be recovered in the event ofa system failure. In order to reduce recovery time af-ter a failure, information is periodically checkpointedto stable storage. Checkpointing to non-volatile mainmemory is considerably faster than to disk. In addi-tion, a system can reach a steady state after a fail-

ure more quickly if some of the hot pages are check-pointed to non-volatile main memory than if all pagesare checkpointed to disk. Although non-volatile mainmemory can also hurt database paging performance,the advantages often outweigh the disadvantages.The remainder of this paper is organized as fol-lows. Section 2 is where the general concepts andoverall structure of the system are explored. In section3, an exploitation of this system structure, speci�callyVDISK, will be introduced to motivate things. In sec-tion 4, we present the details of the structure and theimplementation of ICQ and the server. In section 5,some performance measures taken of our prototypeare given. Section 6 analyzes the e�ect of non-volatilemain memory on recoverable databases. A discussionof work related to ours comes in section 7, which isfollowed by our concluding remarks, in section 8.2 General ConceptsThe main requirements for the server are that itbe reliable and fast. It also has to be maintainable,with the ability to install new versions of the serverwithout a�ecting the operating system.The reason for requiring reliability is simply tojustify giving the server sole control over a large por-tion of memory. If the server were no more reliablethan, for example, AIX, there would be no reason totake the memory away from AIX. This doesn't justmean that the server should be well written and, there-fore, reliable; the server also needs to be su�cientlyisolated fromAIX that any misbehavior of AIX cannotcause the server to fail or malfunction.Speed is also an essential part of justifying tak-ing away from the operating system a resource thatwould otherwise be used to improve its performance.Hidden memory, with only some kind of client/serverinterface for getting to it, is bound to be slower thanregular memory. This was observed by Li and Pe-tersen [12]. They found that segregating a large, slowportion of memory and using the small, fast mem-ory as a cache gave poorer performance than usingthe slower memory directly. Since we are segregatingmemory of equal performance, we expect an outrightperformance loss on many applications. On the otherhand, regular memory is not durable. Programs suchas recoverable databases that must record data in sta-ble storage therefore bene�t from having part of mainmemory be durable, but only if the server providesaccess to it fast enough, compared to other forms ofdurable memory (e.g. duplexed disks), to pay for theloss of the direct use of that memory. As we shall seein Section 6, non-volatile main memory can improverecoverable database performance in certain circum-stances.The overall structure of the system we imple-mented is illustrated in Figure 1. The only meansof communication with the server is by placing re-quests on a queue, which we will call the IntercomQueue (ICQ). By placing this queue in the part ofmemory visible to all of AIX, we avoid the sugges-tion that any part of hidden memory is accessible tocode running outside of the server. Processing startswhen some program running under AIX, e.g. a device

driver, puts a request on the queue. The server de-termines the particular service for which the requestis intended and hands it o�. That particular service,using whatever information it maintains in the sta-ble memory, processes the request and formulates itsresponse.There is no speci�c mechanism for the returningof responses; this is left up to the individual services,whose requirements for interaction with their clientsmay vary considerably. As an example, however, sup-pose that some bit in the request data area is desig-nated by a particular service as the processing com-plete bit. Before sending a request, a client would setthis to zero. Another word in the request is the lo-cation of a response area. The service can build itsresponse, placing it in the response area, and thenset the processing complete bit to one. The client,meanwhile, can poll the state of this bit, or go o� anddo other work. A software-interrupt driven scenariowould be similar, with the addition of an agreed uponinterrupt level.3 Examples of Possible ServicesMost commercial applications tend to use only onekind of stable storage, namely magnetic disks. There-fore, rather than try to modify an application to bestexploit a new form of stable storage, we have insteadprovided applications with very fast versions of sta-ble storage whose interfaces they are already famil-iar with. We call these services VDISK, which is astable-storage RAM disk, and PCACHE, which pro-vides stable-storage caching for a disk.The VDISK service is like a RAM disk, exceptthat it is more isolated from the applications that useit. There is a VDISK device driver installed on AIXthat, instead of allocating memory in, say, the kernelspace, enqueues a request asking the VDISK serviceto allocate stable memory. Similarly, read and writerequests, instead of resulting in the copying of data bythe device driver, result in the construction of corre-sponding requests to the VDISK service.PCACHE is used when the data doesn't �t indurable memory. Any disk device can be providedwith a main-memory cache. For example, a pseudo-device driver can be installed on AIX that can be con-�gured to read and write to a cache and, when thereis a cache miss, pass the request on to the real de-vice driver. There are two di�erences for PCACHE.First, the cache is only accessible via ICQ requests tothe PCACHE service. This may degrade performance,but leads to the other di�erence: on recovery from afailure, PCACHE service still knows what is in thecache, which bene�ts performance after a crash.One particularly interesting application is fast-reboot of the operating system. It is possible to struc-ture the operating system's initialization sequence sothat the complete system state is in real memory atthe point where most R/W �le systems are mounted,using a VDISK for the boot �le system. This state(including the boot R/W �le system) can then be de-scribed to a FASTBOOT service, which takes a con-sistent snapshot of the relevant main memory andVDISK, and saves it in the durable memory. Once

Visible Memory

AIX

Device
Driver

ICQ

Hidden Memory

ICQ
Server

VDISK

...

Stable Memory

Service
Data
HandlesFigure 1: Overall Structure of DM/6000 Software.this FASTBOOT snapshot exists, the operating sys-tem can be rebooted in about 1 second from the timethe FASTBOOT server has received a reboot request.Since our device drivers are all virtual, in the sensethat they communicate with the server and not di-rectly with a physical I/O device, this allows a com-plete reboot in under 3 seconds.4 ICQ and the ServerThe main problems we faced in providing servicesoutside of AIX were: sharing physical memory; shar-ing the processor(s); communication between AIX andthe server; server installation and restart; and serviceinstallation and restart. The last two problem areasarise from the recognition that our intention to makethe ICQ server and services free of bugs will not neces-sarily be ful�lled. Further, even if it is, there will, un-doubtedly, be additional services invented after somesystems are already in operation. We therefore wantto be able to replace the server, and/or services, ona running system without performing a shutdown ofAIX.4.1 Sharing Physical MemoryWe want some of the main memory of theDM/6000 prototype to be accessible only to the ICQserver, but the prototype does not support hardwarefencing of memory. Thus, there is in principle noth-ing to prevent the operating system from trespassingonto the ICQ server's storage. In practice, operatingsystems avoid accessing non-existent real memory, be-cause this could lead to unrecoverable machine-checkinterruptions: they expect the ROS boot code thatloads the operating system to provide a map of avail-able real memory.

Since we are providing the equivalent of the ROSboot code ourselves, we are free to have that code builda map of memory indicating that the vast majority ofthe installed memory simply does not exist. This isnot an ideal solution, but is adequate, given that AIXoperates in real mode only until the real addresses ofthe good memory pages have been loaded into the ap-propriate tables, when virtual address translation isturned on once and for all (except for a very briefinitial sequence in �rst-level interruption handlers).Since no real addresses are ever generated, there islittle danger of an erroneous access to hidden mem-ory.4.2 Sharing ProcessorsWe could dedicate some of the DM/6000's proces-sors to the ICQ server, leaving the rest to AIX, butpossible workload changes make this ine�cient. Fur-ther, an entire processor is a rather crude granule.And, �nally, we wanted to be able to test our systemmodi�cations using standard, uniprocessor RS/6000s.Therefore, we needed a way to switch a single proces-sor between running AIX and our server.This requires a hole in the wall between visibleand hidden memory, a call stub in the kernel thattransfers control to code in hidden memory. A hard-ware call gate could be used; it would be unspoofable,though slow. In practice, su�cient protection derivesfrom running the server without address translation,in unmapped storage. The call stub is located in anarea of memory that is mapped virtual=real so thattranslation mode switching makes sense. The real ad-dress of the server code is supplied in the operatingsystem's boot data.When a request is put on the ICQ, the processormaking that request is free to spin, waiting for some

other processor to run the server code. Alternatively,it can switch to running the server code itself. Thatprocessor may �nd its own request still on the queue,or some other processor's, or none at all. This providescompletely automatic and instantaneous balancing ofprocessing resources between AIX and the server.We could treat requests as asynchronous. How-ever, a transfer of 4KB using the DMA hardwarerequires about one thousand cycles, and this is thelargest component of processing the request. The costof a task switch is around a thousand cycles, even ig-noring the cost of preparing for an I/O operation togo asynchronous and the performance e�ects of re-loading the cache after the switch, which can be tensof thousands of cycles. Like Tucker [18], therefore, weconcluded that it is faster to treat most requests assynchronous.4.3 Communication Between AIX andthe ServerThe ICQ provides the communication path be-tween AIX applications and the server. It is composedof a header record and a set of �xed-sized queue entries(request slots). The header record has o�sets, relativeto the beginning of the page, to the FIFO queue andthe free list. (By using o�sets, the queue makes senseto both AIX, in virtual mode, and the server, in realmode.) The page holds a �xed number of request slots,initially all on the free list. Allocation and dealloca-tion of queue entries result in moving a slot from or tothe free list, using lock-free pointer updates. Indeed,all accesses to the ICQ are made using lock-free pro-tocols. All of this makes it possible for AIX and theserver to share the ICQ as e�ciently as possible.Since AIX has access to the ICQ, AIX must beresponsible for allocating and maintaining it. An ob-ject in virtual memory that spans a page boundarywill, quite likely, occupy noncontiguous real pages. Toavoid this inconvenience to the server, which operatesin real mode, the ICQ must �t within a single page.After the virtual page to contain the ICQ has beeninitialized and pinned into real memory, the word invisible memory that indicates the location of the ICQis set to the real address of the ICQ.4.4 Enqueue and DequeueWe want operations on the ICQ to be very fast,very simple, but also to be completely thread safe andmultiprocessing safe. So we use lock-free protocolsbuilt on the load-and-reserve and store-conditionallyinstructions of the PowerPC processors [15]. (For anexample of a shared-queue algorithm instead usingcompare-and-swap, see [17].) These allow multiplethreads, whether they run on the same processor ornot, to access the queue without interference with eachother.To enqueue a queue entry, �rst load-and-reservethe word in the queue header that contains the o�setof the �rst entry in the queue (the head o�set). Thenset the new entry's next o�set to that value. Finally,store the o�set of the new entry in the head o�set, onthe condition that one's reservation on that word isstill present. If it isn't present, start over.

This, of course, gives a queue organized in LIFOfashion. Giving the queue a FIFO avor is done inthe dequeueing process. To dequeue an entry, startby loading-and-reserving the head o�set in the queueheader. Then steal the whole queue, by storing, con-ditionally, an End-of-Queue indicator (zero) in placeof that value. (As before, if the reservation isn't heldanymore, start over.) With the entire queue in hand,the server is free to traverse the queue (if necessary)and to take the oldest request o� of the queue. If thequeue is not empty, put back what is left.This putting back requires some care. If some-thing else has been put on the o�cial queue in themeantime, those entries must be merged with the setof entries stolen by this dequeuer. To do that, load-and-reserve the head o�set word. If it is zero, thereare no new entries, so just store, conditionally, in thehead o�set the o�set to the �rst entry of the list beingreturned. Otherwise, store, conditionally, a zero anduse the value loaded as the start of a new queue tobe merged with the old one, then try again. Eitherway, a failure to store means try again from the startof this section.An optimization is performed to avoid running tothe end of the LIFO chain every time the oldest entryon the chain is wanted: as a side-e�ect of traversingthe LIFO queue to �nd the oldest entry, the queuepointers are reversed, so that the queue is in FIFOorder by the time the server is ready to re-anchor it.FIFO elements are distinguished from LIFO elementsby having a non-null tail pointer. The tail of the FIFOqueue is the head of the original LIFO queue, i.e. theoriginal anchor value, so the entire operation can beperformed in a single pass. The tail pointer (o�set,really) allows the tail to be located quickly for inser-tions at the end. An example of this can be seen inFigure 2. While new entries are being enqueued, therewill be some LIFO entries followed by some FIFO en-tries. The next time a server performs a dequeue oper-ation, it need only scan the new LIFO portion, whichgets appended (in reverse, i.e. FIFO, order) to the tailof the FIFO portion.4.5 Using ICQ to Make a Request of theServerThe entire ICQ is contained in a single 4KB page.Individual queue entries are therefore of limited size,and are used only to identify which service a requestis intended for, and the real address of a page-alignedcollection of input parameters and space for outputags and data. It is the responsibility of, for example,the VDISK device driver to learn the real addresses ofany bu�ers the VDISK service must use. The queueentry doesn't even have the full name of the service;that goes in the input parameter area. Instead, onlythe handle for the service goes in the queue entry.When the server dequeues the request, the handle isused to look up the service unless the check valuesstored with the handle don't match. In that case, thefull name is used to search the table of services. Theservice code is then free to do whatever it wants towith the request data. For example, the VDISK ser-vice operates synchronously, setting a return code and

E CBAD Figure 2: ICQ With LIFO and FIFO Elements.a completion ag in the output area before returning.Asynchronous services may hold onto input data untilthey signal completion. These are service-speci�c as-pects of the protocol, and of no concern to the serveror the ICQ code.If a device driver runs out of ICQ request blocks(free list empty), it treats this like a busy device: someI/O is in progress. The server should get time to run(on a uniprocessor), and other threads or processorsshould get time to complete their requests. Perhapsthe driver's own earlier requests need to be completed�rst: to some extent, a device driver manages ICQslots like channel paths to a real device.4.6 Installation and RestartThe server needs to be maintainable without dis-rupting the operating system. To allow for replace-ment of the server code, this code must reside in sta-ble memory. Each time the server code starts up, itchecks for the presence of a valid version of its persis-tent data: the list of available services and the stablememory in use by any of the services. This persistentdata is used by the server to continue processing asthough no change of server had occurred. A change inserver has no e�ect on the ICQ as long as that changetakes place while the server is quiescent.Concurrent maintainability applies to individualservices as well. They are the virtual equivalent ofhot-swappable drives and hot-swappable control units.Each service is registered in the server at run time.Registration information includes the full name of theservice and the location of that services request han-dling code. The server provides a place in its own per-sistent data where each service can record one wordof information. This is used to point o� to whateverpersistent data that particular service needs. The con-tents of this word are passed back to the service everytime it is given a request to process.Restarting a service can therefore be made as in-visible to the user as can the restarting of the entireserver. As long as the service records all persistentdata in stable storage before returning to the server,that service can be restarted, or replaced, whenever itis convenient.4.7 Multiple Host Operating SystemsAll of the above has been discussed in terms of asingle host operating system, a single ICQ, and a sin-gle server. This has been done solely to simplify theexposition. There can be, in a single DM/6000, di�er-ent host operating systems using di�erent processors,multiple ICQs, and multiple servers of those queues.Multiple host operating systems might be wanted in

the same DM/6000 for functional separation of envi-ronments (e.g. development and production work), toprovide a hot standby to a critical system, or evento provide multiple operating system platforms (say,AIX and Windows/NT). Sharing of data among thesehosts is certainly possible. For example, requests frommultiple hosts could target the same VDISKs. Eachhost could just as well be assigned its own portion ofthe hidden memory and be the sole user of it, except,perhaps, in the case of a failure of that host operatingsystem. One might then arrange, for example, to havea standby running on another of these host operatingsystems take over for the failed system and to assumeownership of the data previously managed by the �rst.The access protocols for the ICQ are such thatmultiple operating systems could even share a singleICQ safely. However, this is not really practical, sinceit exposes each of the host operating systems to possi-ble contamination due to failure of the other. Further-more, it requires them to agree on the allocation andinitialization of the ICQ. It would be better to let eachoperating system manage its own ICQ, which can beconnected separately to the same server, or even to adi�erent one.5 Some Performance ResultsWe performed a test reading 64Mbytes from a rawdevice using various block sizes { a VDISK on theDM/6000, and a real disk on an RS/6000-250. Elapsedtime are shown in seconds:Block size Vdisk Hdisk--------------------------------4K 13.4 25.364K 1.6 26.21M 1.0 26.6Both machines used a PowerPC 601. TheDM/6000 prototype was clocked at a conservative40MHz, the RS/6000 at 66MHz. Block size has a dra-matic e�ect on the VDISK timing, because at smallblock sizes the request handling time dominates thetransfer time. The throughput exceeds 60MB per sec-ond at large block sizes, over 25 times faster than realI/O to the hard disk. (The actual requests issued were\ time dd if=/dev/$disk of=/dev/null bs=$blocksizecount=$blocks " such that $blocksize x $blocks =64M.)At �rst glance, these numbers seem to indicatethat the DMA hardware is not well used; it can trans-fer data at a rate of about 300MB per second. How-ever, it cannot transfer data directly from symbol-plane memory to symbol-plane memory, only between

L3 cache and symbol-plane memory [1]. These trans-fers are, therefore, two-stage transfers by way of theL3 cache. Thus, copying data at 60MB per second re-quires running the DMA at 120MB per second. Sincethis load is produced by just one of the four proces-sors, which ran the full code path for �le I/O syn-chronously with the DMA transfer, this starts to lookmore respectable.6 Database Recovery in the Presenceof Durable MemoryDatabases utilize stable storage for data pagesand transaction logs. In the event of a failure, allpages contained in conventional memory could be lost.It is then necessary to recover a consistent state ofthe database from the data pages and transaction logstored in stable storage. There are several ways inwhich a database could bene�t from durable memory:� In the event of a failure, the database would haveto be recovered from data stored in stable storage.Backing up hot pages in durable memory insteadof disk can reduce the I/O cycles required for re-covery. Throughout this section, the term diskrefers to traditional secondary storage.� Durable memory can reduce the time to bring thedatabase to a warm state after a failure.� In order to reduce recovery time in the event of afailure, pages in main memory are often periodi-cally checkpointed by writing them out to stablestorage. Pages can be checkpointed more quicklyto durable memory than to disk.� Durable memory can speed up transaction log-ging. Many databases such as IBM's DB2 use awrite-ahead logging protocol in which the trans-action log must be written to stable storage be-fore the transaction commits and before any pageupdated by the transaction is written to stablememory. Writing transaction logs to disk canslow down transactions considerably. In orderto improve performance, updates to the transac-tion logs in stable storage can be batched. How-ever, this cannot be done for transactions whichmust commit immediately. Durable memory canimprove the performance of transaction logging.The idea is to reserve space in durable memoryfor transaction logs. A single transaction recordcould then be stored in durable memory quickly.Transaction logs could be moved from durablememory to disk opportunistically when such adata transfer would not a�ect performance. Thiswill prevent durable memory from becoming full.A drawback to durable memory is that it reducesthe size of the bu�er pool and can thus hurt perfor-mance by causing more paging. The remainder of thissection examines the e�ect of durable memory on I/Oresulting from paging, checkpointing, recovery, andbringing the database to a warm state. We distinguishbetween I/O resulting from three di�erent sources:

1. Paging I/O: I/O resulting from pages beingbrought into the bu�er pool from stable storageduring normal database processing (i. e. not re-covery).2. Checkpoint I/O: I/O resulting from periodicallycheckpointing database pages in the bu�er poolto stable storage in order to reduce database re-covery time.3. Recovery I/O: I/O which results from databaserecovery after a failure.A DM/6000 which has enough main memory tostore the entire database in main memory with roomto spare will always bene�t by having durable memory.For example, suppose that a DM/6000 has a maximumof 512 mbytes of main memory which can be used forstoring database pages without signi�cantly hurtingperformance. For a database containing 400 mbytes,memory could be partitioned so that all of the data-base is stored in conventional memory and 112 pages ofdurable memory are used to back up the hottest pages.The use of durable memory will improve performanceof the system over one without durable memory.Now consider a situation where the database istoo large to �t entirely within main memory. Thedecision of whether or not to partition main memoryinto durable and conventional memory is less clear. Ifno durable memory is used for backing up databasepages, the bu�er pool size is maximized and I/O re-sulting from paging is minimized. If a fraction of mainmemory is used for durable memory, checkpointingand recovery I/O can be reduced. In the situationswe encountered, durable memory resulted in bettersteady state performance when short recovery timeswere desirable while no durable memory resulted inbetter steady state performance when longer recoverytimes were tolerable.6.1 MethodologyWe simulated databases in which dirty pages areperiodically checkpointed to disk in order to boundrecovery time. Databases are checkpointed synchro-nously after every c cycles where c remains constantthroughout each simulation. During each checkpoint,all pages which have been dirty since before the pre-vious checkpoint are backed up in durable memory.The simulator models a database running on a100 Mhz machine with 512 mbytes of main mem-ory which can be used for holding data pages. Thebandwidth between main memory and disk was 12.5mbytes/second. The bandwidth between durable andconventional memory was 100 Mbytes/second. Pagesare 4096 bytes.We used a request distribution in which 80% ofthe transactions were read requests. Hot pages con-stituted 20% of all pages. 80% of all requests were dis-tributed uniformly to hot pages, while the remaining20% were distributed uniformly to cold pages. Theperformance numbers only consider machine cyclesconsumed by I/O operations and do not take into ac-count other overheads.During each checkpoint, we attempted to back upas many pages as possible to durable memory. Pages

were only checkpointed to disk after durable memorybecame full. At the time of each checkpoint, the num-ber of candidates for durable memory was determined.A page is a candidate for durable memory if a copy ofthe page already exists in durable memory or the pageis just about to be checkpointed. When durable mem-ory is not large enough to contain all candidates, pagesare given priority based on a formula which considersthe number of hits since the last checkpoint. Priorityincreases with the number of hits since the last check-point. Priority is also given to pages in durable mem-ory which don't have to be moved at a checkpoint. Forexample, suppose that p1 and p2 have both been hitseven times since the last checkpoint. Page p1 is dirtyand needs to be backed up to stable storage. Pagep2 does not have to be checkpointed. However, thebackup copy for p2 is contained in stable storage. Ifwe just look at the number of hits since the last check-point, both pages would have equal priority. However,leaving the backup copy for p2 in place and backingup p1 to disk incurs less I/O than moving the backupcopy for p2 to disk and checkpointing p1 to durablememory. The system thus leaves the backup copy forp2 in durable memory during the checkpoint.The database manages conventional memory us-ing LRU. Two strategies were tested for sending coldpages to stable storage:1. Always send cold pages to disk. The motivation isto leave space in durable memory for checkpoint-ing hot pages. This strategy worked best whendurable memory was small.2. Send cold pages to durable memory wheneverdurable memory is not full. This strategy workedbest when durable memory was plentiful.The performance di�erences for the two strategies wasnot signi�cant. The statistics presented in this paperuse the �rst approach.We present the performance statistics obtainedfrom four di�erent con�gurations:1. A database containing 256 mbytes, no durablememory. All pages of the database �t in con-ventional memory.2. A database containing 256 mbytes for which mainmemory is partitioned into 256 mbytes of conven-tional memory and 256 mbytes of durable mem-ory.3. A database containing 1.024 gbytes, no durablememory. Conventional memory contains spacefor 512 mbytes of the database.4. A database containing 1.024 gbytes for whichmain memory is partitioned into 307.2 mbytesof conventional memory and 204.8 mbytes ofdurable memory. Partitioning was chosen tomake durable memory size equal to the hot pagesize.Unless otherwise noted, the performance statisticswere taken after the database had reached a steadystate.

Performance for a single con�guration was var-ied by varying the checkpoint interval. More frequentcheckpointing results in faster recovery after a fail-ure. However, checkpointing consumes signi�cant I/Obandwidth and has an adverse e�ect on steady stateperformance. There is thus a trade-o� between steadystate performance and recovery time. A system opti-mized for steady state performance would checkpointinfrequently. A system optimized for fast recoverytime would checkpoint frequently.6.2 Results and DiscussionFigures 3 and 4 plot recovery time as a func-tion of the average request time after the databaseis in a steady state. Recovery time is expressed asthe number of megacycles for restoring the databaseto the most recent consistent state which can be re-constructed after a failure. Average request timeswere calculated by dividing the cycles for both pagingand checkpointing over an interval of several requestswhich included multiple checkpoints by the total num-ber of requests in the interval. Measurements for av-erage request times were taken after the database wasin a steady state.Performance for a given memory con�gurationand database was varied by varying the checkpointinginterval. Recovery time varies from near zero to ar-bitrarily large times with or without durable memorydepending upon the time between checkpoints. We usethe following criterion for comparing the performanceof two memory systems m1 and m2 on the same data-base:Let max recov time be the maximum num-ber of recovery cycles which are tolerable.Let c1 be the largest number of cycles be-tween checkpoints which allows recovery onm1 using a maximum of x I/O cycles. Letc2 be the analogous quantity for m2: Systemm1 outperforms m2 if and only if the the av-erage request time in a steady state (which isa�ected by both paging and checkpointing)of m1 using a checkpoint interval of c1 is lessthan that of m2 using a checkpoint intervalof c2:If main memory is large enough to store all data-base pages with room to spare, performance can al-ways be improved by partitioning memory and reserv-ing some space for durable memory. This is the casefor the 256 mbyte database, and the performance ad-vantage resulting from durable memory is conveyed bythe graph in Figure 3. The con�guration with durablememory results in better performance than the con-�guration without durable memory for all values ofmax recov time:In Figure 4, the database is too large to �t inmain memory. The use of durable memory results inbetter performance if max recov time < 1650 mega-cycles (16.5 seconds assuming a 100 Mhz clock rate).Not creating a durable memory partition results inbetter performance if max recov time > 1650 mega-cycles. The reason for the crossover point is that

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 0.5 1 1.5 2 2.5 3 3.5

R
ec

ov
er

y
T

im
e

in
 M

eg
ac

yc
le

s

Kiloycles per Request

256 Mbyte Database

No Dur. Mem.
Dur. Mem.

Figure 3: Recovery Time versus Steady-State RequestTimes with Smaller Database.durable memory reduces checkpointing cycles but in-creases paging by reducing the bu�er pool size. Check-pointing cycles dominate the average request time ifcheckpointing is done frequently in order to providefast recovery. If fast recovery is not crucial, however,checkpointing can be done infrequently. In this situa-tion, the average request time is dominated by paging.If the limiting factor is the average request time,a similar analysis applies. The lowest average requesttime which can be achieved without durable memoryon the 1.024 Gbyte database is 8150 cycles and occurswhen there is no checkpointing. The lowest average re-quest time with durable memory is 11100 cycles andalso occurs when there is no checkpointing. If the av-erage request time must be less than 8150 cycles, 512mbytes are not su�cient to achieve this level of perfor-mance with or without durable memory. If an averagerequest time between 8150 and 11150 I/O cycles mustbe achieved, then the memory con�guration withoutdurable memory should be used. If an average re-quest time of more than 11150 I/O cycles per requestis acceptable, then the durable memory con�gurationshould be used in order to minimize recovery time.Another advantage of durable memory is thatit allows databases to be brought to a warm statequickly. For the 256 mbyte database, the con�gurationwithout durable memory required 2.8 million requestsconsuming 2.10 gigacycles for paging I/O to bring thedatabase to a steady state from a state in which nodatabase pages are stored in conventional memory. Ifall pages are backed up in durable memory, a steadystate is reached after 2.8 million requests consuming262 megacycles for paging I/O. In both cases, a steadystate was reached when all database pages were loadedinto conventional memory.For the 1.024 gbyte database, the con�gura-

0

500

1000

1500

2000

2500

3000

8 9 10 11 12 13 14

R
ec

ov
er

y
T

im
e

in
 M

eg
ac

yc
le

s

Kiloycles per Request

1.024 Gbyte Database

No Dur. Mem.
Dur. Mem.

Figure 4: Recovery Time versus Steady-State RequestTimes with Larger Database.tion without durable memory resulted in performancewhich was substantially inferior to steady state perfor-mance from the time conventional memory was emptyuntil 150 kilorequests consuming 2.4 gigacycles forpaging I/O had been satis�ed. At this point, mem-ory was 58% full. It took a total of 500 kilorequestsconsuming 4.3 gigacycles for memory to become 100%full. Between the time memory was 58% and 100%full, performance was slightly superior to steady stateperformance. The reason for this behavior is that amemory system which is not full can read in a pagefrom disk without sending a cold page to disk. There-fore, twice as many pages can be accessed from diskper unit of time compared to a memory system whichis full. After memory became 100% full, steady stateperformance was reached.The durable memory con�guration with the 1.024gbyte database did not exhibit cold start performanceproblems when all hot pages were backed up in durablememory. Surprisingly, performance was superior tosteady state performance during the time conventionalmemory was �lling up. The reason for this behavior isthe same reason why the nondurable memory con�g-uration also results in superior performance betweenthe time memory is 58% and 100% full. However,durable memory provides a signi�cant advantage be-cause hot pages can be read in from durable memorymuch more quickly than from disk. Therefore, supe-rior performance commences immediately instead ofafter memorywas 58% full. Memory became 100% fullafter 175 kilorequests consuming 1.13 gigacycles forpaging I/O had been satis�ed. At this point, steadystate performance was reached.

7 Related WorkOther well-known fault-tolerant architectures useredundant storage devices or processors, or some com-bination of both as in IBM's High Availability ClusterMulti-Processing (HACMP) [2] and Tandem's Non-Stop architecture [4]. In these systems, there is morethan one copy of the operating system and applica-tions running on more than one system, with one copyacting as a standby in case the other fails. The hyper-visor approach taken by Bressoud and Schneider [6] issimilar, but uses virtual machines within a single sys-tem. We exploit the DM/6000's hardware resiliencyby treating the hardware as fault-free and limiting ourtask to operating system isolation and fast failure re-covery.We isolate ourselves from operating system soft-ware failures by hiding a portion of memory. We placeour compact, limited function kernel in the hiddenmemory. Because our kernel is compact and has ex-tremely limited function, it is possible to be shippedessentially error free. In itself, this is not a new ornovel approach. For example, the hypervisor in CP-67 [14] and the later VM/370 [10] also limits theamount of kernel function. Our kernel design goesmuch further and is similar to that used in the Cou-pling Facility for the S/390 Parallel Sysplex [5], in thatour kernel runs in real mode and does not accept in-terrupts, instead polling for work.Unlike the Coupling Facility, however, we sharemain storage with a standard host operating system.Our prototype design prevents the host operating sys-tem from modifying our protected, hidden memoryby indicating to the operating system that the storagedoes not exist. The operating system simply does notuse hidden storage, and we are isolated from almostall operating system failures. Our design does not usehardware protection mechanisms such as those usedby VM/370 since they were not available on the pro-totype hardware. This additional protection wouldeliminate the possibility of an operating system fail-ure in boot or address translation service damagingdurable (hidden) memory.This sharing of main memory was also examinedby Li and Petersen [12]. They observed that usinga slower, extended memory as a cache (as a stage ofmemory between fast main memory and disk) gavepoorer overall system performance than accessing itdirectly (as the bulk of a much larger but slower mainmemory) for applications with large data structures.However, they did not consider the possibility of hav-ing the cache survive system crashes, how that mightbe done, or the consequences of such survival to sys-tem design or performance.IBM's Transaction Processing Facility (TPF) [13]does not recover from faults but instead restarts asquickly as possible, attempting to reuse data surviv-ing in the bu�er areas. Our architecture requires abu�er reload when AIX fails, but data are copied fromdurable memory.The VDISK service has goals that are similar tothose for the Phoenix �le system [9]. A Phoenix logicaldisk resides in memory but is kept safe from certainkinds of failures through a copy-on-write strategy that

leaves intact a timestamped version of the logical disk.However, the data is not safe from intrusion from otherparts of the kernel, nor extensions to it. In contrast,the contents and structure of a VDISK are safe fromall failures other than those of the ICQ server andthose few services it runs, and no operating systemfailure can interrupt a VDISK operation.The intent of the work done by Chen, et al, forRio [7] is similar to that behind PCACHE. Theyput their �le cache in a portion of real memory thatwill not be overwritten when the system crashes andrestarts. To protect the data from being overwritten,the write-permission bits in the page table are turnedo� except while data is being written to the cache.Their performance is better than ICQ, at the expenseof slower recovery. With DM/6000, the cache that sur-vives a crash is outside the �le system, so �le systemrecovery is not a�ected. With Rio, a recovery step isneeded during reboot, to reconcile the �le system ondisk with the surviving cache. The use of Rio is alsorestricted to just that of a cache for �les used by a sin-gle operating system, rather than a general-purposeserver that can be shared by multiple operating sys-tem images. Further, since Rio is not a device driver,it cannot be used to store a fast-boot image of the op-erating system. Rather, Rio depends on the operatingsystem to be rebooted so that the operating systemcan help bring Rio back up.For our prototype we assume, like Rio, that thevirtual memory manager will not improperly assignreal storage addresses. Rio's approach is probablymore forgiving of such a failure. Our view is that thisexposure should be corrected in hardware inaccessi-ble to the operating system, as in IBM's System/390PR/SM LPAR [11] product.8 ConclusionsOur approach to running a general-purpose oper-ating system on a fault-tolerant computer has beento hide the computer's resources from the operatingsystem. Instead, these resources are managed by alimited-functionality, highly reliable server that com-municates with the operating system only through thepassing of messages on a queue. By hiding the memoryresources of the computer from the operating system,the contents of that memory becomes as reliable asthe hardware that contains it.Our design of the communication queue provideshigh performance and safety. Through the use ofchecks in the ICQ data structures and a lock-free ac-cess protocol, the server is protected from the operat-ing system. There is never a moment when the queueis incorrectly structured. Thus, halting the operat-ing system cannot block the server. And, since all ofthe structures of the ICQ are checked during access,damage to the structure is detected by the server. Re-pair of the ICQ is also detected by the server, and oncethe operating system has restarted, it can immediatelystart to use the server. At the same time, the serverprogram is decoupled from the rest of the DM/6000 bykeeping its persistent state in memory separate fromits own volatile storage areas. If the server programneeds to be repaired or enhanced, this can be done

at any time, without loss of information and withoutany apparent interruption of service to the operatingsystem.The simulations we performed established whenthis approach actually improves performance. Whilenon-volatile main memory can reduce performance oncertain applications by reducing the amount of mainmemory available to programs, it can also improveperformance on applications such as recoverable data-bases which must periodically store information in sta-ble storage. We found that non-volatile main memoryresults in improved performance when databases aresmall, or when databases are large but small recoverytimes are essential.One direction for research that we have not yetmentioned is in the area of more intelligent servicesthat move the data farther from the application, butdo more per request to the service. One examplewould be a service that supported a main memorydatabase in stable storage. By providing high-levelrequests, such as insertion of a record in a table withmultiple indexes, the cost of making a request to theserver is amortized over more instructions. Determin-ing the right trade-o�s between service functionality,performance, and reliability is a problem requiring fur-ther study.AcknowledgmentsWe gratefully acknowledge the contributions ofBasil Smith to the DM/6000 hardware which madethe work described in this paper possible.References[1] M. Abbott et al. Durable Memory RS/6000System Design. In Digest of the 24th Interna-tional Symposium on Fault-Tolerant ComputingSystems, pages 414{423, June 1994.[2] G. Ahrens et al. Evaluating HACMP/6000: AClustering Solution for High Availability Distrib-uted Systems. In IEEE Conference on Fault-Tolerant Parallel and Distributed Systems, pages2{9, June 1994.[3] M. Baker et al. Non-Volatile Memory for Fast,Reliable File Systems. In Proceedings of ASPLOSV, pages 10{22, September 1992.[4] J. Bartlett. A NonStop Kernel. In Eighth Sympo-sium on Operating System Principles, pages 22{29, December 1981.[5] M. Bradley. Understanding the S/390 ParallelSysplex: a Technical Introduction. In CMG94Proceedings, pages 1139{1148, December 1994.[6] T. Bressoud and F. Schneider. Hypervisor-BasedFault-Tolerance. ACM Trans. Comput. Syst.,pages 80{107, February 1996.[7] P. M. Chen and W. T. Ng. The Rio File Cache:Surviving Operating System Crashes. In Pro-ceedings of ASPLOS VII, pages 74{83, September1996.

[8] G. Copeland et al. The Case for Safe RAM. InProceedings of the Fifteenth VLDB, August 1989.[9] J. Gait. Phoenix: A Safe In-Memory File Sys-tem. Communications of the ACM, 9(3):199{218,1970.[10] IBM. GC20-1801 IBM Virtual Machine Facil-ity/370 Planning Guide, 1972.[11] IBM. ZZ81-0334 Using PR/SM LPAR, 1993.[12] K. Li and K. Petersen. Evaluation of MemorySystem Extensions. In Proceedings of the 18thAnnual International Symposium on ComputerArchitecture, pages 84{93, May 1991.[13] R. J. Martin. Transaction Processing Facility:a guide for application programmers. YourdonPress, 1990.[14] P. Meyer and L. Seawright. A virtual machinetime-sharing system. IBM Syst. J., 9(3):199{218,1970.[15] Motorola. PowerPC 601 User's Manual, 1993.[16] W. T. Ng and P. M. Chen. Integrating ReliableMemory in Databases. In Proceedings of the 23rdVLDB, 1997.[17] J. Stone. A Simple and Correct Shared-QueueAlgorithm Using Compare-and-Swap. TechnicalReport RC 15675, IBM Research Division, York-town Heights, NY, April 1990.[18] S. Tucker. The IBM 3090 system: An overview.IBM Syst. J., 25(1):4{19, 1986.[19] M. Wu and W. Zwaenepoel. eNVy: A Non-Volatile Main Memory Storage System. In Pro-ceedings of IEEE 4th Workshop on WorkstationOperating Systems WWOS-III, pages 116{118,October 1993.

