

 © Physik Instrumente (PI) GmbH & Co. KG
 Auf der Römerstr. 1 ⋅ 76228 Karlsruhe, Germany
 Tel. +49 721 4846-0 ⋅ Fax: +49 721 4846-299
 info@pi.ws ⋅ www.pi.ws

 MS163E Software Manual

Mercury™ GCS Commands
PI General Command Set
Release: 1.0.2 Date: 2008-05-09

This document describes software
for use with the following products:

■ C-663
Mercury™ Step Networkable Single-Axis Stepper
Motor Controller

■ C-862
Mercury™ Networkable Single-Axis DC-Motor
Controller

■ C-863
Mercury™ Networkable Single-Axis DC-Motor
Controller

Physik Instrumente (PI) GmbH & Co. KG is the owner of the following company names and trademarks:
PI®, PIMikroMove®, Mercury™, Mercury™ Step

The following designations are protected company names or registered trademarks of third parties:
Windows, LabView

Copyright 2008 by Physik Instrumente (PI) GmbH & Co. KG, Karlsruhe, Germany.
The text, photographs and drawings in this manual enjoy copyright protection. With regard thereto, Physik
Instrumente (PI) GmbH & Co. KG reserves all rights. Use of said text, photographs and drawings is
permitted only in part and only upon citation of the source.

Document Number MS163E, Release 1.0.2
Mercury_GCS_Commands_MS163E

Subject to change without notice. This manual is superseded by any new release. The newest release is
available for download at www.pi.ws.

http://www.pi.ws/

About This Document

Users of This Manual

This manual assumes that the reader has a fundamental understanding of basic servo systems, as well as
motion control concepts and applicable safety procedures.
The manual describes the syntax of the PI General Command Set (GCS) and the individual commands
supported by Mercury™ Class controllers. With present firmware, all software which accepts these
commands must pass them to the controller via the Mercury™ Class GCS DLL or COM Server.
This document is available as PDF file on the product CD. Updated releases are available for download
from www.pi.ws or by email: contact your Physik Instrumente Sales Engineer or write info@pi.ws.

Conventions

The notes and symbols used in this manual have the following meanings:

! CAUTION

Calls attention to a procedure, practice, or condition which, if not
correctly performed or adhered to, could result in damage to equipment.

NOTE

Provides additional information or application hints.

Related Documents

The Mercury™ controller and the software tools which might be delivered with the controller are described
in their own manuals (see below). All documents are available as PDF files via download from the PI
Website (www.pi.ws) or on the product CD. For updated releases or other versions contact your Physik
Instrumente sales engineer or write info@pi.ws.

Hardware user manuals User Manual for each hardware component

Mercury™ GCSLabVIEW_MS149E LabView VIs based on PI GCS command set
Mercury™ GCS DLL_MS154E Windows DLL Library (GCS commands)
PIMikroMove User Manual SM148E PIMikroMove® Operating Software (GCS-based)
Mercury™ Commands MS163E Mercury™ GCS Command descriptions
PIStageEditor _SM144E Software for managing GCS stage-data database

Mercury™ Native Commands MS176E Native Mercury™ Commands
MMCRun MS139E Mercury™ Operating Software (native commands)
Mercury™ Native DLL & LabVIEW MS177E Windows DLL Library and LabView VIs

(native-command-based)

http://www.pi.ws/
mailto:info@pi.ws?subject=Updated%20document
http://www.pi.ws/
mailto:info@pi.ws

Contents
1 Introduction 3

1.1 Native Command Set .. 3
1.2 GCS Command Set .. 3

2 Units and GCS 5

2.1 Hardware, Physical Units and Scaling .. 5
2.2 Rounding Considerations.. 5

3 Referencing 6

3.1 Reference Mode.. 6
3.2 Perform a Reference Move ... 6
3.3 Set Absolute Position .. 6

4 Macro Storage on Controller 7

4.1 GCS Macros.. 7
4.1.1 Features and Restrictions... 7
4.1.2 Macro Creation in GCS .. 7
4.1.3 Listing Stored Macros... 10
4.1.4 Macro Translation & Listing Examples ... 11

5 GCS Command Syntax 13

5.1 Command Format ... 13
5.2 Identifiers... 14

5.2.1 Axes.. 14
5.2.2 Digital Input/Output... 14
5.2.3 Analog Input.. 15
5.2.4 Joystick Connections.. 15

6 Command Descriptions 16

6.1 Command List (Alphabetical) .. 16
6.2 Command Reference (Alphabetical) ... 17

7 Stage Parameters 44

7.1 Servo-Loop Parameters .. 44
7.2 Transmission Ratio & Scaling Factors .. 45
7.3 User-Changeable Parameters at a Glance 45

8 Error Codes 48

Introduction

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 3

1 Introduction
Mercury™ Class controllers include the C-663 Mercury™ Step open-loop,
stepper motor controller as well as the C-862 and C-863 Mercury™
DC-motor servo-controllers.

With current firmware, it is possible to operate Mercury™ controllers with two
command sets: the native ASCII command set and the PI General Command
Set (GCS)* . GCS support is currently provided via a Windows DLL which
translates GCS-command-based function calls to the native commands.
Either command set can be used to set operating modes, transfer motion
parameters and to query system and motion values.

1.1 Native Command Set

The native ASCII command set is understood by the Mercury™ firmware. It
can be used with virtually any terminal emulator software and with MMCRun
on the CD that comes with the controller.

Most native Mercury™ commands begin with a two-letter mnemonic.
Because the native networking architecture uses an address selection
mechanism, the commands themselves do not include controller or axis
designators. The syntax of the native commands and a command reference
can be found in the Native Commands Manual, MS176. This manual covers
only the GCS command set.

1.2 GCS Command Set

The GCS is the PI standard command set. This command set ensures the
compatibility between different controllers. It provides comprehensive
access to Mercury™ Class controller functionality.

The GCS command set views networked Mercury™ Class controllers as a
single multi-axis controller. Most GCS commands begin with a three-letter
mnemonic. Because they address the network as a whole, the commands
contain unique identifiers for individual axes (controllers) and for the I/O
channels on the controllers (see Identifiers p. 14 for details).

* With current Mercury™ firmware, GCS support is provided via a Windows DLL which
translates GCS-command-based function calls to the native commands (for details see the
Mercury™ GCS DLL manual). PIMikroMove® converts the GCS ASCII commands described
here to the corresponding function calls. Check www.pi.ws for availability of the planned
Mercury™ GCS firmware, and the operating software manual for the firmware update
procedure.

http://www.pi.ws/

Introduction

NOTE

Do not mix the GCS and the native commands! GCS move commands,
for example, do not work properly after the position has been changed
by a native command.

You can type GCS commands in the Command entry window of
PIMikroMove® (see the PIMikroMove® manual for details) or using the
PITerminal program in GCS DLL mode.

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 4

Units and GCS

2 Units and GCS

2.1 Hardware, Physical Units and Scaling

The GCS (General Command Set) system uses basic physical units of
measure. The default conversion factors chosen to convert
hardware-dependent units (e.g. encoder counts or steps) into millimeters or
degrees, as appropriate (see SPA and SPA? command descriptions,
parameters 14 and 15) are found in the PIstages.dat stage database. From
there, they are transferred to the controller. An additional scale factor can be
applied (see DFF command) to the basic physical unit making a working
physical unit available without overwriting the conversion factor for the first.
This is the unit referred to by the term "physical unit" in the rest of this
manual. See also Section 7.2 on p. 45.

2.2 Rounding Considerations

When converting move commands in physical units to the
hardware-dependent units required by the motion control layers, rounding
errors can occur. The GCS software is so designed, that a relative move of x
physical units will always result in a relative move of the same number of
hardware units. Because of rounding errors, this means, for example, that 2
relative moves of x physical units may differ slightly from one relative move of
2x. When making large numbers of relative moves, especially if moving back
and forth, either intersperse absolute moves, or make sure that each relative
move in one direction is matched by a relative move of the same size in the
other direction.

Examples
With, for example, 5 hardware units = 33 x 10-6 physical units:
Relative moves: cause move of
smaller than 0.000003 physical units 0 hardware units
of 0.000004 to 0.000009 physical units 1 hardware unit
of 0.000010 to 0.000016 physical units 2 hardware units
of 0.000017 to 0.000023 physical units 3 hardware units
of 0.000024 to 0.000029 physical units 4 hardware units

Hence:

2 moves of 10 x 10-6 physical units followed by 1 move of 20 x 10-6 in the
other direction cause a net motion of 1 hardware unit forward.

100 moves of 22 x 10-6 followed by 200 of -11 x 10-6 result in a net motion
of -100 hardware units

5000 moves of 2 x 10-6 result in no motion

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 5

Referencing

3 Referencing
Because the signals (encoder counts or motor steps) used for position
determination provide only relative motion information, the controller cannot
know the absolute position of an axis upon startup. This is why a referencing
procedure is required before absolute target positions can be commanded
and reached.

For the implementation of the referencing functionality in the individual host
software components, see the appropriate manuals.

3.1 Reference Mode

The current reference mode setting of the controller (ask with RON?, p. 34)
determines how referencing can be performed. In general, a reference move
must be performed (see Section 3.2), but it is also possible to set absolute
positions manually (see Section 3.3). To switch between the two reference
modes, use the RON command (p. 34).

3.2 Perform a Reference Move

When the reference mode is set to "1" (value in PIStages.DAT, usually “1”),
referencing is done by performing a reference move with REF (p. 33), MPL
(p. 30), or MNL (p. 28).

NOTES

When referencing mode = “1” neither relative nor absolute targets can
be commanded until referencing has been successfully performed.

REF requires that the axis have a reference switch (ask with REF?, p.
33), and MPL and MNL require that the axis have limit switches.

For best repeatability, always reference in the same way. The REF
command always approaches the reference switch from the same side,
no matter where the axis is when the command is issued.

When referencing mode = “0” only relative targets but no absolute
targets can be commanded as long as referencing has not been
successfully performed.

3.3 Set Absolute Position

When the reference mode is set to "0", referencing can be done by entering
an absolute position value using the POS command (p. 32) or by a
referencing move.

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 6

Macro Storage on Controller

4 Macro Storage on Controller

4.1 GCS Macros

Software that uses the Mercury™ GCS DLL can take advantage of the GCS
Macro Architecture. However, because controller macros are stored in the
command language of the controller, the DLL must translate each complete
GCS macro to a non-GCS native macro before sending anything to the
controller. Details of the native command macro architecture are given in the
Mercury™ Native Commands manual, MS176.

4.1.1 Features and Restrictions

The hardware macro storage capability has the following features, which
result in certain restrictions:

 Each macro can contain up to 16 such commands
 The macros are identified by numbers 0 to 31
 Macro 0, if defined, is the autostart macro, which is executed

automatically upon power-up or reset
 Macros are executed on the controller where they are stored, so

commands in a macro may address only the axis and/or I/O
channels associated with that controller (there is no
command-interface communication between controllers).
Interaction between separate axes is conceivable only through
suitable programming and hardwiring of I/O lines

 The position values stored in the macros are in counts or
(micro)steps. This means that a macro may not work properly if
run when different stage types are connected to the controller. A
different stage could have a very different travel ratio and thus
move to a position far different from the one intended.

4.1.2 Macro Creation in GCS

he GCS macro creation mechanism involves placing a GCS controller in
macro-recording mode, sending it commands, and then exiting macro
recording mode. While in macro-recording mode, the controller neither
executes nor responds to commands, but simply stores them in the macro.

Macro Translation

In normal operation, the GCS DLL translates GCS-command-based
functions to Mercury™ native commands. The GCS macro-recording
mechanism is easily translated to native commands with the use of a
macro-recording flag in the DLL. While the flag is set, DLL function calls

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 7

Macro Storage on Controller

create native commands as usual but they are saved rather than sent to the
controller. When recording is completed (MAC END), the saved commands
are assembled into a compound command beginning with MD, given a
cursory check, and, if they are acceptable, the macro definition compound
command is sent to the controller.
Here are some of the implications:

 The DLL may decide not to send the macro to the controller at
all. Whether or not the macro was sent can be checked with
ERR? after MAC END: If the macro was not sent, error -1010
will be set. (Admittedly, the error-description text can be
misleading)

 Referencing with REF is allowed, because with the Mercury™
native command set it is possible to tell how to move toward or
away from the reference switch, but because REF is not
implemented as single commands in the native command set, it
will occupy more than one command slot in the macro (see
examples below).

 A total of only 32 (native) commands may be stored in a macro
on a Mercury™ Class controller. That means that when using
GCS commands which translate to multiple native commands
(e.g. REF, INI), little space may be left for other commands.

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 8

Macro Storage on Controller

 The way in which a GCS command is translated into a native
command can depend on the stage connected and how it was
referenced. A macro made under one set of conditions will not
function properly if run under others*. As a result:

o Macros are only valid for the stage type that was
connected when the macro was created.

o Only relative moves can be used without concern in
macros

o Absolute moves require the axis to have been
referenced with exactly the same sequence of
referencing commands when the macro is run as when
it was created. (Note that having the software save
positions at shutdown and restore them from saved
values involves RON/POS referencing.)**

 The macro names used at the GCS level are assigned using
the following strict convention: aMC0nn where a is the current
axis designator associated with the controller and nn is a
two-digit number between 00 and 31.In addition, all the MAC
commands take an axis designator as an argument. The
macros AMC000, BMC000, etc. (for axes A, B,...,
respectively) are the autostart macros; they are executed
automatically upon startup or reset of the individual axis
controller. The name thus already specifies the axis which the
macro addresses.

 Only the following GCS commands are allowable when the
macro recording flag is set. Use of a disallowed command will
cause the next MAC END to set an error

o BRA
o DEL
o DFH
o DIO
o GOH
o HLT
o INI (generates a large number of native commands in

the macro, see below)
o JON
o MAC START (macro called must reside on the same

controller)
o MEX DIO? <ch> =
o MEX JBS? <joystk> 1 =
o MVR
o REF (generates a large number of native commands

in the macro, see below)

*For example, position values in millimeters or degrees in GCS motion commands are
converted to steps or counts. The values are calculated when the macro is created using the
parameters for the stage configured on the corresponding axis (controller).
** Because it is not possible to set the current absolute position to a desired value but only to 0,
the count values in the controller’s internal position counter after a GCS move to a given
position may be very different depending on how the axis was referenced (with REF, MNL,
MPL or a RON/POS combination),

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 9

Macro Storage on Controller

o SPA
Access to the following SPA parameters by macros is
permitted: all others will be ignored:
1: P-Term
2: I-Term
3: D-Term
4: I-Limit
8: Max.Position Error
10: Max. Velocity
11: Max Acceleration (muss >200 sein)
24: Limit Switch Mode
50: No Limit Switch
64: Stepper motor hold current (HC native command) in

mA
65: Stepper motor drive current (DC native command) in

mA
66: Stepper motor hold time (HT native command) in ms

o STP
o SVO
o VEL
o WAC ONT? <axis> = 1
o WAC DIO? <ch> =

4.1.3 Listing Stored Macros

When the MAC? command is used with a macro name to list the contents of
a macro, the native commands stored on the unit are translated back to GCS
commands, with all the implications that entails.

Functions that cause several native commands to be stored in the macro
may not be recognized when the macro is listed, making it possible to see the
GCS versions of the individual functions (see INI example below).

The native-command versions can, of course, always be listed by send the
native command TMn or TZ (Tell Macro n, Tell Macro Zero) with
Mercury™_Sendnongcsstring() DLL function (see Native Commands
manual for details).
Native commands that have no equivalent in GCS (e.g. FE3) are listed in
their original form as follows:

“<non GCS: FE3>”

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 10

Macro Storage on Controller

4.1.4 Macro Translation & Listing Examples

INI

When converted to native commands, INI is separated into all of its separate
functions; when the stored macro is listed with MAC? they are shown as a
long list of separate GCS commands. From the list it is obvious that when INI
is used, not many commands are left before the macro is full. With an
M-505.4PD, the dialog in which a macro containing INI is stored and then
listed can look as follows:

>>CST DM-505.4PD
>>ERR?
<<0

>>MAC BEG DMC003
>>INI D
>>MAC END
>>ERR?
<<0

>>MAC? DMC003
<<SPA D50 0
<<SPA D24 0
<<BRA D0
<<SPA D1 200
<<SPA D2 150
<<SPA D3 100
<<SPA D8 2000
<<SPA D4 2000
<<SVO D1
<<VEL D25
<<SPA D11 4000000
<<STP

REF

Similarly, REF A, is stored as the following sequence (shown this time in the
native command set):
"SV40000,FE2,WS,MR-40000,WS,FE,WS,SV100000”
This sequence, when read with MAC?, is recognized by the DLL and
translated back to “REF A”, obscuring the fact that it occupies 8 of the 16
possible command slots. It can thus be seen, that INI and REF will not both fit
in the same macro!

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 11

Macro Storage on Controller

MVR

The relative move sizes entered with MVR and converted into counts using
the parameters of the currently configured stage before being stored. So, if a
macro containing MVR A2 is created with an M-111.2DG configured on axis
A and later an M-505.4PD is configured for A with CST, the macro will read
out as MVR A 58.2542.

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 12

GCS Command Syntax

5 GCS Command Syntax

5.1 Command Format

GCS ASCII Commands have the format below. Exceptions are the
single-character binary commands on p. 42 ff.

CMDSPXSPsV.V[{SPXSPsV.V}]… LF

where:

CMD token (mnemonic) of the specific command

SP one space (ASCII char #32), can be omitted between the item
identifier and the (signed) parameter

X item identifier (see p. 14),
s sign (positive values can be transmitted without sign)
V.V parameter, values are doubles (double precision) or integers,

depending on the command.
[…] Square brackets “[]” indicate an optional entry or parameter.
{…} Braces “{ }” indicate a repetition of parameters, i.e. that it is possible

to access more than one item (e.g. several axes) in one command
line.

LF LineFeed (Char #10).

Example:
Send: MOVSPA10.0SPB5.0
Moves axis A to position 10.0 mm and axis B to 5.0 mm

Format of answers:
Some commands deliver a report message having the following format:
 X=sV.VLF
where:
X item identifier (see p. 14)
s sign (positive values are transmitted without sign)
V.V parameter, values are doubles or integers depending on the

command
LF LineFeed (ASCII char #10).

Example:
Send: POS? SPABLF
Report: A=10.0000SP LF
 B=5.0000LF
There is one space (SP, ASCII char #32) before the LineFeed character on
all lines of the response except the last line.
The individual spaces and linefeed characters will not all be marked in the

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 13

GCS Command Syntax

rest of this manual.

Floating Point Data Format
Some commands require parameters in floating point format. The following
syntax is possible for these arguments:
 sv
 sv.v
 sv.vEsxxx
where:
s sign(positive values can be without sign)
v integer parameter, will be converted into float by
 firmware
v.v float parameter, the decimal separator must be a
 dot (.), not a comma (,)
E exponent character
xxx exponent value

The format in which floating point values are reported (output) is always:
 sv.vvvv
where:
s sign (positive values are reported without sign)
v.vvvvvv the number of digits after the decimal point may vary

If the reply includes more than 2 floats, each will occupy one line.

5.2 Identifiers

5.2.1 Axes

If multiple Mercury™ controllers are connected together in a network, a
unique axis identifier is assigned to each controller by the
PI_Mercury™_GCS_DLL. The defaults depend on the controller addresses.
The address of a controller (0 to 15) is set in DIP switches on the front panel
and is one less than the device number (1-16). The corresponding default
axis identifiers are A, B, C, D, etc., starting with address 0, device 1. Letters
for missing addresses are skipped.

The default identifiers can be changed using SAI (p. 34). The new identifiers
must then be used with all axis commands and in macro names, even for
macros that were previously stored using different names.

5.2.2 Digital Input/Output

Each controller provides four digital output channels and four channels that
can be read as either digital or analog inputs (C-862 has only 3 analog
inputs). The digital I/O commands (DIO, DIO?) identify these channels with

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 14

GCS Command Syntax

the single-character identifiers as follows: “A B C D E F G H I J K L M N O P
Q R S T U V W X Y Z 1 2 3 4 5 6 7 8 9 0 @ ? > = < ; : ` _ ^] \ [/ . - , + *) (' &
% $ # " !” (four for each controller) with addresses 0 through 15. Identifiers
associated with missing addresses are skipped.

5.2.3 Analog Input

The same input lines can also be read as analog inputs of 0 to 5 V. The
analog input command TAV? identifies the input lines with A1 to A64, again
depending on the controller’s address setting, and skipping values
associated with any missing addresses. The fourth line on C-862 DC motor
controllers is digital only and cannot be read in analog mode.

5.2.4 Joystick Connections

Each axis associated with a controller having a joystick port, can be
associated with one axis of motion of a joystick. That axis, and the
associated joystick button, is identified in the network by the controller device
number, which is one greater than the controller address. Note that the
included joystick Y-cable permits connecting one axis and one button of one
joystick to one controller and the other axis and other button to another
controller.

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 15

Command Descriptions

6 Command Descriptions

6.1 Command List (Alphabetical)

*IDN? (Get Identity), p. 17
BRA (Set brake on or off), p. 17
BRA? (Ask if axis has brakes), p. 18
CST (Change Stage), p. 18
CST? (get stagename), p. 19
DEL (Delay), p. 19
DFF (DeFine Factor), p. 19
DFF? (get factor), p. 20
DFH (DeFine Home), p. 20
DFH? (get home positions), p. 20
DIO (set Digital Output), p. 21
DIO? (get Digital Output), p. 21
ERR? (get ERRor), p. 21
GOH (GO Home), p. 22
HLP? (HeLP), p. 23
HLT (HaLT), p. 23
INI (INItialization), p. 23
JAX? (List joystick to motion-axis assignments)
JON (activate/deactivate joystick)
JON?(get joystick enable status)
LIM? (Indicates whether axes have limit switches), p. 25
MAC (macro), p. 25
MAC? (list macro), p. 27
MEX (Stop macro execution if specified condition true), p. 27
MNL (Move to Negative Limit), p. 28
MOV (MOVe absolute), p. 29
MOV? (read target position), p. 30
MPL (Move to Positive Limit), p. 30
MVR (MoVe relatiVe), p. 31
ONT? (axis ON Target), p. 31
POS (set real position), p. 32
POS? (read real POSition), p. 32
REF (move to REFerence position), p. 33
REF? (Lists axes which have a reference sensor), p. 33
RON (set Reference mode ON | off), p. 34
RON? (get Reference mode), p. 34
SAI (Set Axis Identifier), p. 34
SAI? (get axis identifier), p. 35
SPA (Set Parameter), p. 35
SPA? (Get Parameter), p. 36
SRG? (Read register), p. 36
STP (Stop Motion), p. 36
SVO (set SerVO on or off), p. 37
SVO? (Get servo status), p. 37

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 16

Command Descriptions

TAC? (Tell Analog Channels), p. 38
TAV? (Get Analog Input), p. 38
TIO? (Tell Digital I/Os), p. 38
TMN? (Tell Minimum Travel Value), p. 39
TMX? (Tell Maximum Travel Value), p. 39
TVI? (Tell Valid axis Identifiers) p. 39
VEL (Set Velocity), p. 40
VEL? (Get Velocity), p. 40
VER? (Get Version), p. 41
VST? (Get available Stages), p. 41
WAC (Wait for condition), p. 41
#5, (Poll Motion Status), p. 42
#7, (Controller Ready?), p. 42
#8, (Macro running?), p. 43
#24, (Stop), p. 43

6.2 Command Reference (Alphabetical)

*IDN? (Get Identity Number)

Description: Reports an identity string
Format: *IDN?
Arguments: none
Response: One-line string terminated by line feed, e.g.:

Physik Instrumente,Mercury™ GCS
Network,,0.9.3.6

BRA (Set brake on or off)

Description: Sets BRAke on or off for an axis. Power-up
factory default is ON; Brake set to OFF
(brake control line high) by INI, as Brake ON
disables motors of some stages (even if
stage has no brake).

Format: BRA <AxisID> <uint>[{ <AxisID> <uint>}]
Arguments: <AxisID>: is a valid axis identifier

<uint>: if 0 = set brake off, if 1 = set brake on
Response: none
Troubleshooting: Axis has no brake

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 17

Command Descriptions

BRA? (Ask if axis has brakes)

Description: Lists the axes with brakes.
Format: BRA?
Arguments: none
Response: [{ <AxisID>}]

where
<AxisID> are the identifiers of axes with
brakes, e.g.: 13
If no axis has a brake, the answer is an
empty line.

CST (Change STage)

Description: Assigns axes to stages. With this command
the stage assignment of the connected axes
can be changed. Valid stage names can be
listed with VST? (p. 41). If no stage is
connected, stage name should be
“NOSTAGE”.

Format: CST <AxisID> <stagename>[{ <AxisID>
<stagename>}]

Arguments: <AxisID>: is a valid axis identifier
<stagename>: name of the stage connected
to the axis

Response: none
Troubleshooting: Unknown stage name
Example: Send: CST A M-403.62S B

M-110.1DG
Note: Assigns a stage of type

M-403.62S to axis A and of
type M-110.1DG to axis B

Send: SAI?
Receive: B
 A
Send: CST B NOSTAGE
Note: Disconnects axis B
Send: SAI?
Receive: A
Send: POS? B
Send: ERR?
Receive: 200
Note: PI_CNTR_NO_AXIS
Send: GOH
Note: Moves axis A (not axis B).
Send: CST?
Receive: A=M-403.62S
 B=NOSTAGE

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 18

Command Descriptions

CST? (get stage name)

Description: Returns the name of the Connected STage for
queried axes.

CST? will always return all axes, i.e. the
answer also includes the axes set to
NOSTAGE (see CST, p. 18). In contrast to
this, SAI? (p. 35) will only return the axes
which are assigned to stages.

Format: CST? [{<AxisID>}]
Arguments: <AxisID>: is a valid axis identifier, if omitted

all axes are queried
Response: {<axis>"="<string> LF}

where
<string> is a stage name, i.e. the name of
the stage assigned to an axis. Unconfigured
axes will show the stage name
"NOSTAGE".

DEL (DELay)

Description: DELays <uint> milliseconds.

During delay controller does not answer on
any queries.

DEL is used within macros primarily. Do not
mistake MAC DEL which deletes macros for
DEL which delays.

This command can be interrupted with #24.
Format: DEL <uint>
Arguments: <uint> is the delay value in milliseconds.
Response: none

DFF (DeFine Factor)

Description: Scale factor for physical units, e.g. a factor
of 25.4 sets the physical units to inches.
Changing the scale factor will change the
numerical results of other commands, but
not the underlying physical magnitudes.
See Section 7.2 on p. 45 and Section 2.1 on
p. 5 for more information.

Format: DFF <AxisID> <float>[{ <AxisID> <float>}]
Arguments: <AxisID>: is a valid axis identifier

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 19

Command Descriptions

<float>: is the value to set, can be in the
form of v.vv

Response: none
Troubleshooting: Illegal axis identifier

DFF? (get factor)

Description: Gets the scale factors set by the DFF
command for the queried axes

Format: DFF? [{<AxisID>}]
Arguments: <AxisID>: is a valid axis identifier, if omitted

answers for all axes
Response: {<AxisID>"="<float> LF}

where
<float> is the scale factor of <AxisID>

Troubleshooting: Illegal axis identifier

DFH (DeFine Home

Description: Defines the current position of given axes as
the axis home position (by setting the position
value to 0.00). If <AxisID>= all axes are
affected.

Due to the redefinition of the home (zero)
position the numeric limits of the travel range
are changed.

The home position is reset to its default
location by REF (p. 33), MNL (p. 28) and
MPL (p. 30).

Format: DFH [{<AxisID>}]
Arguments: <AxisID>: is a valid axis identifier
Response: none
Troubleshooting: Illegal axis identifier

DFH? (get home positions)

Description: Gets home position (offset)
Format: DFH? [{<AxisID>}]
Arguments: <AxisID>: is a valid axis identifier
Response: {<AxisID>"="<float> LF}

where
<float> is the distance from the default home
position to the current home position

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 20

Command Descriptions

Troubleshooting: Illegal axis identifier

DIO (set Digital I/O)

Description: Switches the specified digital output line(s)
to specified state(s). Use TIO? (p. 38) to get
the number of installed digital I/O lines. If the
controllers on the network have addresses
in order beginning with 0, then the output
line designators will begin with A, B, C, D,...,
four for each controller (see Identifiers p. 14
for more details).

Format: DIO <OutLineID> <uint>[{ <OutLineID>
<uint>}]

Arguments: <OutLineID> is one digital output line
designator

If <uint>=1 the line is set to HIGH/ON, if
<uint>=0 it is set to LOW/OFF.

Response: none
Troubleshooting:

DIO?

Description: Lists the states of the specified digital input
lines. Can be used to query externally
generated signals.

Format: DIO? {[<InLineID>]}
Arguments: <InLineID> is the identifier of the input line to

use with DIO?. If the controllers on the
network have addresses in order beginning
with 0, then the designators to be used
when reading the inputs digitally will begin
with A, B, C, D,..., four for each controller
(see Identifiers p. 14 for more details)

Response: {<InLineID>"="<uint> LF}
when
<uint>=0 digital input is LOW/OFF
<uint>=1 digital input is HIGH/ON

Troubleshooting:

ERR? (get ERRor)

Description: Get ERRor code <int> of the last error and
reset the error to 0.

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 21

Command Descriptions

Only the last error is buffered. Therefore you
might wish to call ERR? after each command.

Negative error codes (< 0) are DLL-related,
positive (> 0) command- or controller-related.
The error codes and their description are fully
listed in the Mercury™ GCS DLL Manual MS
154E.

Format: ERR?
Arguments: none
Response: The error code of the last occurred error

(int).
Troubleshooting: Communication breakdown

The following table shows a selection of possible controller errors:

0 No error
1 Parameter syntax error
2 Unknown command
5 Unallowable move attempted on unreferenced axis, or

move attempted with servo off
7 Position out of limits
8 Velocity out of limits
10 Controller was stopped by command
15 Invalid axis identifier
16 Unknown stage name
17 Parameter out of range
18 Invalid macro name
19 Error while recording macro
20 Macro not found
22 Axis identifier specified more than once
23 Illegal axis
24 Incorrect number of parameters
25 Invalid floating point number
26 Parameter missing
34 Command not allowed for selected stage(s)
50 Attempt to reference axis with referencing disabled
54 Unknown parameter
1000 Too many nested macros
-1001 Unknown axis identifier

GOH (GO Home)

Description: Move given axes to home position.
GOH [{<AxisID>}] is the same as
MOV {<AxisID> 0}

This command can be interrupted by #24
and STP.

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 22

Command Descriptions

Format: GOH [{<AxisID>}]
Arguments: <AxisID>: is a valid axis identifier, if omitted,

both axes are affected
Response: none
Troubleshooting: Illegal axis identifier

HLP? (HeLP)

Description: List a HeLP string which contains all
available commands.

Format: HLP?
Arguments: none
Response: List of commands available
Troubleshooting: Communication breakdown

HLT (HaLT)

Description: HaLT the motion of given axes smoothly.
Only commands causing non-complex motion
(e.g. MOV, GOH) can be interrupted with HLT.

Error code 10 is set.

Use #24 instead to stop complex motions like
referencing, etc.
HLT stops motion with given system
deceleration with regard to system inertia.

STP (p. 36) in contrast aborts current motion
as fast as possible for the controller without
taking care of systems inertia or oscillations.

After the axis was stopped, the target
position is set to the current position.

Format: HLT [{ <AxisID>}]
Arguments: <AxisID>: is a valid axis identifier, if omitted

all axes are halted
Response: none
Troubleshooting: Illegal axis identifier

INI (INItialization)

Description: Initializes the axis: sets reference state to
"not referenced," sets the brake control line
in the “brake off” state and if axis was under

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 23

Command Descriptions

joystick-control, disables the joystick.
Format: INI [{ <AxisID>}]
Arguments: <AxisID>: is a valid axis identifier
Response: none
Troubleshooting: Illegal axis identifier

JAX? (Get joystick-to-axis assignments)

Description: Reports correspondence between joystick
port numbers (device numbers) and axis
identifiers for axes with joystick ports.

Format: JAX?
Arguments: none
Response: {<DeviceNumber> 1= <axisID>}

where
<DeviceNumber> is one greater than the
device address of the connected Mercury™
Class motion-axis controller
<axisID> is the ID of the associated motion
axis.
“1” indicates that each device can connect
to only 1 joystick axis.

Troubleshooting:

JDT (load Joystick response Table)

Description: Load pre-defined joystick response table.
Table types are either linear or cubic
response curve.
The cubic curve offers more sensitive
control around the middle position and less
sensitivity close to the maximum velocity.

Format: JDT [{ <JoystickAxisNumber>
<TableType>}]

Arguments: <JoystickAxisNumber>: is the device
number of the individual Mercury™ Class
device to which the joystick axis is directly
connected
<TableType>: 0 for linear, 1 for cubic

Response: none
Troubleshooting: Illegal joystick axis number, unsupported

table type

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 24

Command Descriptions

JON (Activate/deactivate joystick control)

Description: Enable/disable given joystick axes. Do not
enable axes with no physical joystick
connected, as uncontrolled motion could
occur. When an axis is controlled by a
directly connected joystick, it can no longer
be moved by motion commands

Format: JON [{ <JoystickAxisNumber> <State>}]
Arguments: <JoystickAxisNumber>: is the device

number of the individual Mercury™ Class
device to which the joystick axis is directly
connected
<Mode>: 0 for disable, 1 for enable

Response: none
Troubleshooting: Illegal joystick axis number, unsupported

mode

LIM? (indicate LIMit switches)

Description: Indicates whether axes have limit switches.
Format: LIM? [{<AxisID>}]
Arguments: <AxisID>: is a valid axis identifier
Response: {<axis>"="<uint> LF}

where

<uint> indicates whether the axis has limit
switches (=1) or not (=0).

Troubleshooting: Illegal axis identifier

MAC (macro)

Description: Call a MACro function. Permits recording,
deleting and running macros on the
controller (see Macro Storage on Controller,
p. 7 for details).

Format: MAC <keyword> {<parameter>}
in particular:
MAC BEG <macroname>
MAC DEL <macroname>
MAC END
MAC NSTART <macroname> <uint>
MAC START <macroname>

Arguments: <keyword> determines which macro function

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 25

Command Descriptions

is called. The following keywords and
parameters are used:

MAC BEG <macroname>
 Start recording a macro on the

controller to be named macroname,
which must be of the form aMC0nn
where a is the axis designation of the
axis controlled by the controller on
which the macro is to be stored and nn
is the ID number for the macro, 0 to 31
(0 is used for the startup macro instead
of “STARTMAC”, the designation
understood by other GCS controllers).
This command may not be used in a
macro; the commands that follow
become the new macro, so if
successful, the error code cannot be
queried. End the recording with MAC
END. A macro cannot be overwritten,
only deleted.

MAC END
 Stop macro recording (cannot become

part of a macro); any error during
macro recording can be seen with
ERR? after MAC END

MAC DEL <macroname>
 Deletes specified macro
MAC NSTART <macroname> <uint>
 Repeat the specified macro <uint>

times. Each execution is started when
the previous one has finished. See
also MAC START for further details.

MAC START <macroname>
 Starts execution of specified macro. A

running macro sends no responses to
any interface, and will continue even if
the controller is deselected. This
means query commands, if present in
a macro, are useless. The only
communication possible with a
controller running a macro is with
single-character commands.

Response: none
Troubleshooting: Macro recording is active (keywords BEG,

DEL) or inactive (END)
Macro contained a disallowed MAC

command
Examples: MAC BEG AMC000

 Start recording a macro named
AMC000. Macros with the number
“000” are special in that they will be run

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 26

Command Descriptions

by the controller on which they are
stored upon power-up or reset, even
without a host PC connected

MAC? (list macro)

Description: List MACros or contents of a given macro.
Format: MAC? [<macroname>]
Arguments: <macroname>: name of the macro whose

contents shall be listed; if omitted, the
names of all stored macros are listed

Response: <string>
if <macroname> is given, <string> is the
contents of this macro as GCS commands,
one per line;
if <macroname> is omitted, <string> is a list
with the names of all macros stored on all
controllers in the controller network, one per
line

Troubleshooting: Macro <macroname> not found

MEX (Stop macro execution if condition true)

Description: Stop macro execution due to a given condition
of the following type: a specified value is
compared with a queried value according to a
specified rule.

This command can only be used in macros.

When the macro interpreter accesses this
command the condition is checked. If it is true
the current macro is stopped, otherwise macro
is execution is continued with the next line.
Should the condition be fulfilled later, the
interpreter will ignore it.
See also WAC, p. 41.

Format: MEX <CMD?> <OP> <value>
Arguments: <CMD?> is a query command in its usual

syntax. The answer must consist of
a single value. Supported is DIO?

<OP> is the operator to be used. The
following are allowable (controller
firmware specific)
”=” “<=” “<” “>” “>=” “!=”

<value> is the value to be compared with

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 27

Command Descriptions

the response to <CMD?>

Response: none
Example: Send: MAC START AMC001

Note: Macro "AMC001" has the following
contents:

 MAC START AMC002
 MAC START AMC003
 MEX DIO? D = 1
 MAC START MAC1
 Macro " AMC002" has the following

contents:
 MEX DIO? D = 1
 MEX DIO? A = 0
 MVR A 1.0
 DEL 100
 Macro AMC003" has the following

content:
 MEX DIO? D = 1
 MEX DIO? B = 0
 MVR A -1.0
 DEL 100
Macro AMC001 forms an infinite loop by
permanently calling AMC002, AMC003 and
itself.
AMC002 first checks the state of the digital
input channel A. If it is not set (0), the macro is
aborted, otherwise the macro will move axis A
by 1.0 in positive direction (relative move).
AMC003 checks the state of the digital input
channel B and moves axis A in negative
direction accordingly.
Connecting the digital input channels A, B and
D with pushbuttons, it is possible to implement
interactive control of an axis without any
software assistance. The delay (DEL 100) is
required to avoid generation of multiple MVR
commands while pressing the push-button for
a short time.
Channel D is used as a global exit. Since MEX
stops execution of the current macro only, it
must also be included in the calling macro,
which would otherwise continue.

MNL (Move to Negative Limit)

Description: Moves the given axis to its negative limit
switch, sets the position counter to 0, and
sets the reference state to "reference OK"
(see Section 3 on p. 6 for more information

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 28

Command Descriptions

regarding referencing).
If <AxisID> is omitted, moves all axes. If
multiple axes are affected by MNL, one axis
after another is moved to its limit switch.
This command can be interrupted by #24.

Note that MNL resets the home position set
with DFH, p. 20.

Format: MNL [{ <AxisID>}]
Arguments: <AxisID>: is a valid axis identifier
Response: {<uint> LF}

<uint> indicates success of the referencing
procedure:
0 = not successful
1 = successful

Troubleshooting: Illegal axis identifier

MOV (MOVe absolute)

Description: Set new absolute target position for given axis.
Axes will start MOVing to the new positions
only if ALL given targets are within the allowed
ranges and ALL given axes can move.

All given axes start moving simultaneously.

This command can be interrupted by #24,
STP and HLT.

Servo-control must be enabled for all
commanded axes prior to using this
command.

See also Section "Units and GCS" (on p. 5).
Format: MOV <AxisID> <float>[{ <AxisID> <float>}]
Arguments <AxisID> is a valid axis identifier

<float> is the target position in physical
units.

Response: none
Troubleshooting: Parameter out of limits, Illegal axis identifier,

joystick enabled for axis
Example 1: Send: MOV A 10 B 2

Note: Axis A moves to 10, axis B
moves to 2 (all target positions in
the physical unit valid for the
appropriate axis)

Example 2: Send: MOV A 243
Send: ERR?
Receive: 7
Note: The axis does not move. The

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 29

Command Descriptions

error code "7" replied by the
ERR? command indicates that
the target position given by the
move command is out of limits.

MOV? (read target position)

Description: Returns last valid commanded target
position. The target position is changed by
all commands that cause motion (e.g. MOV,
MVR, REF, MNL, MPL, GOH).
Note that MOV? gets the commanded
positions. Use POS? (p. 32) to get the
current positions.
See also Section "Units and GCS" (on p. 5).

Format: MOV? [{ <AxisID>}]
Arguments: <AxisID> is a valid axis identifier
Response: {<AxisID>"="<float> LF}

where
<float> is the last commanded target
position in physical units

Troubleshooting: Illegal axis identifier

MPL (Move to Positive Limit)

Description: Moves the given axis to its positive limit
switch, sets the position counter to the
maximum position value, and sets the
reference state to "reference OK" (see
Section 3 on p. 6 for more information
regarding referencing).
If <AxisID> is omitted, moves all axes. If
multiple axes are affected by MPL, one axis
after another is moved to its limit switch.

This command can be interrupted by #24.

Note that MPL resets the home position set
with DFH, p. 20.

Format: MPL [{ <AxisID>}]
Arguments: <AxisID>: is a valid axis identifier
Response: {<uint> LF}

<uint> indicates success of the referencing
procedure:
0 = not successful
1 = successful

Troubleshooting: Illegal axis identifier; reference mode must
be "1" (see RON, p. 34)

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 30

Command Descriptions

MVR (MoVe Relative)

Description: MoVe given axes Relative to their current
position.

The new target position is calculated by
adding the given value <float> to the last
-commanded target value. Axes will start
moving to the new position if ALL given targets
are within the allowed range and ALL given
axes can move.

This command can be interrupted by #24,
HLT and STP.
Servo must be enabled prior to using this
command.
See also Section "Units and GCS" (on p. 5).

Format: MVR <AxisID> < float >[{ <AxisID> <float>}]
Arguments: <AxisID> is a valid axis identifier.

<float> added to the last commanded target
position is set as new target position in
physical units.

Response: none
Example: Send: MOV A -0.5 B 12.3

Note: This is an absolute move
Send: POS? A B
Receive: A=-0.500000

B=12.300000
Send: MVR A 1 B 2
Note: This is a relative motion.
Send: POS? A B
Receive: A=0.500000

B=14.300000
Send: MVR A 1 B 2000
Note: Target position of axis B

exceeds travel range.
Command is not executed

Send: POS? A B
Receive: A=0.500000

B=14.300000

ONT? (axis ON Target)

Description: Get ON-Target status of given axis.

When <AxisID> is omitted, get all axes.

Format: ONT? [{ <AxisID>}]
Arguments: <AxisID> is a valid axis identifier.

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 31

Command Descriptions

Response: {<AxisID>"="<uint> LF}
where
<uint> = “1” when the specified axis is
on-target, “0” otherwise.

Troubleshooting: Illegal axis identifier

POS (set real POSition)

Description: Sets the current POSition (does not cause
motion).
Allowed only when the reference mode is set
to "0", see RON (p. 34).

An axis is considered as "referenced" when
the position has been set with POS (see
Section 3 on p. 6 for more information).

The minimum and maximum commandable
positions (TMN?, p. 39, TMX?, p. 39) are not
adjusted when a position is set with POS. If
the value set with POS is not correct, there will
be target positions which are allowed by the
software but cannot be reached by the
hardware and others which could be reached
by the hardware but are disallowed by the
software.
This command can change the physical
location of the home position (zero point),
perhaps putting it outside of the travel range.

Format: POS [{ <AxisID> <float>}]
Arguments: <AxisID> is a valid axis identifier.

<float> is the new numeric value for the
current position in physical units.

Response: none
Troubleshooting: Reference mode is "1",

Illegal axis identifier

POS? (read real POSition)

Description: Returns the current POSition.
If <AxisID> is omitted, all axes are queried.

Response depends on the factor set by DFF
(p. 19).
See also Section "Units and GCS" (on p. 5).

Format: POS? [{ <AxisID>}]

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 32

Command Descriptions

Arguments: <AxisID> is a valid axis identifier.
Response: {<axis>"="<float> LF}

where
<float> is the current position in physical
units

Troubleshooting: Illegal axis identifier

REF (move to REFerence position)

Description: Moves the given axis to its reference switch,
sets the position counter to the reference
position value (stage-type specific value
stored on the controller), and sets the
reference state to "reference OK" (see
Section 3 on p. 6 for more information
regarding referencing). If the move begins
on the positive side of the reference switch,
the switch will be passed and
re-approached from the negative side.
If <AxisID> is omitted, moves all axes. If
multiple axes are affected by REF, one axis
after another is moved to its switch.

The REF command always approaches the
reference switch from the same side, no
matter where the axis is when it is issued.
This command can be interrupted by #24.

Format: REF [{ <AxisID>}]
Arguments: <AxisID> is a valid axis identifier.
Response: {<uint> LF}

<uint> indicates success of the referencing
procedure:
0 = not successful
1 = successful

Troubleshooting: Illegal axis identifier; reference mode must
be "1" (see RON, p. 34)

REF? (list axes with REFerence sensor)

Description: Indicate whether specified axes have
reference sensors.

Format: REF? [{<AxisID>}]
Arguments: <AxisID> is a valid axis identifier.
Response: {<axis>"="<uint> LF}

where

<uint> indicates whether the axis has a

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 33

Command Descriptions

reference switch (=1) or not (=0).
Troubleshooting: Illegal axis identifier

RON (set reference mode)

Description: Set reference mode of given axes.

Mode = 0: referencing moves with REF (p.
33), MNL (p. 28) and MPL (p. 30) are not
possible, absolute position must be set with
POS (p. 32) to reference the axis.

Mode = 1: REF or MNL or MPL is required to
reference the axis, usage of POS is not
allowed.

See Section 3 on p. 6 for more information.
Format: RON { <AxisID> <mode>}
Arguments: <AxisID> is a valid axis identifier.

<mode> can be 0 or 1 (see description
above for the meaning). Default is taken
from stage database, usually 1.

Response: none
Troubleshooting: Illegal axis identifier

RON? (get reference mode)

Description: Get reference mode of given axes.
Format: RON? [{ <AxisID>}]
Arguments: <AxisID> is a valid axis identifier.
Response: {<AxisID>"="<mode> LF}

where
<mode> is the current reference mode of
the axis, see RON

Troubleshooting: Illegal axis identifier

SAI (Set Axis Identifier)

Description: Set old Axis Identifier to new identifier.
TVI? (p. 39) provides a list of valid axis
identifiers.

Format: SAI <AxisID> <newaxis>[{ <AxisID>
<newaxis>}]

Arguments: <AxisID> is a valid axis identifier.

<newaxis> is the new identifier for <AxisID>

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 34

Command Descriptions

Response: none
Troubleshooting: Illegal axis identifier or duplicate axis

identifier

SAI? (get axis identifier)

Description: Gets the axis identifiers.
Note that SAI? without an argument will only
return the axes which are assigned to
stages (see CST, p. 18). In contrast to this,
SAI? ALL and CST? (p. 19) will always
return all axes, i.e. the answer also includes
the axes set to NOSTAGE.

Format: SAI? [ALL]
Arguments: The parameter ALL is optional. If used, the

answer includes the axes which are not
connected to stages (stage name is
NOSTAGE).

Response: {<AxisID> LF}
<AxisID> is a valid axis identifier.

SPA (Set Parameter)

Description: Set a given PArameter of the given axis to
given value in volatile memory.
Parameter changes will be lost when the
controller is powered off or rebooted. See
the PI Stage Editor or PIMikroMove® for
ways to save parameter sets as user
stages.
CAUTION! The SPA command is for setting
hardware-specific parameters. Incorrect
values may lead to improper operation or
damage of your hardware!

Format: SPA <AxisID> <ParamNumber>
<ParamValue>[{ <AxisID>
<ParamNumber> <ParamValue>}]

Arguments <AxisID>: is a valid axis identifier
<ParamNumber> is the parameter ID. Valid
parameter IDs are given in the list on p. 45.

<ParamValue> is the value to which the
parameter <ParamNumber> of <AxisID> is
to be set.

Response: none
Troubleshooting: Illegal axis identifier, incorrect parameter ID
Example: Send: SPA A 10 0.05 B 10 0.08

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 35

Command Descriptions

Note: Set the maximum velocity for
axis A to 0.05 mm/s and for
axis B to 0.08 mm/s

SPA? (Get Parameter)

Description: Get the value of specified parameters of
specified axes

Format: SPA? [{ <AxisID> <ParamNumber>}]
Arguments: <AxisID>: is a valid axis identifier

<ParamNumber> is the parameter ID. Valid
parameter IDs are given in the list on p. 45.

Response: {<AxisID>
<ParamNumber>"="<ParamValue> LF}
where
<ParamValue> is the value to which the
parameter <ParamNumber> of <AxisID> is
set.

Troubleshooting: Illegal axis identifier, incorrect parameter ID
Example: Send: SPA? A 10 A 11 A 12

Receive: A10=0.1
 A11=10
 A12=10

SRG? (Read register)

Description: Read the values of the specified registers.
Format: SRG? [{ <AxisID> <RegisterID>}]
Arguments: <AxisID> is a valid axis identifier

<RegisterID>is the ID of the specified
register (must be 3)

Response: {<AxisID> <RegisterID> = <Value>}
where
<Value> is the signal input lines register
(byte 2 of the C-663 and byte 4 for the
C-862)

STP (Stop Motion)

Description: SToPs the motion of all axes immediately.
Error code 10 is set. After the axes were
stopped, the target position is set to the
current position.

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 36

Command Descriptions

STP always does a hard stop. Use HLT
(p. 23) instead to stop individual axes
smoothly.

Format: STP
Arguments: none
Troubleshooting: Communication breakdown

SVO (set SerVO on or off)

Description: Sets SerVO-control mode on or off for given
axes.
When servo-control is off for an axis:
• All positioning commands (e.g. MOV,

MVR) are ignored.
• With C-86x DC motor controllers,

servo-loop and motor are deactivated.
The current reference state is
kept—encoder signals are still read so
that the current position is always
known. An axis can move in the usual
way as soon as servo-control is
switched on again.

• With C-663 stepper motor controllers,
the motor is deactivated (no servo-loop
implemented). The current reference
state is reset to "not referenced"
because the C-663 can no longer know
the current position when the motor is
deactivated. This is why an axis must
always be referenced to allow for
positioning commands after
servo-control was switched on again.

When servo is switched off while stage is
moving, the stage stops.

Format: SVO <AxisID> <status>[{ <AxisID>
<status>}]

Arguments: <AxisID>: is a valid axis identifier
<status>= 0 set servo off, 1 set servo on

Response: none
Troubleshooting: Illegal axis identifier

SVO? (get servo status)

Description: Gets SerVO-control mode for given axes.

Get all axes when <AxisID>=""
Format: SVO? [{ <AxisID>}]

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 37

Command Descriptions

Arguments: <AxisID>: is a valid axis identifier
Response: {<AxisID>"="<status> LF}

where
<status>= 0 servo is off, 1 servo is on

Troubleshooting: Illegal axis identifier

TAC? (Tell Analog Channels)

Description: Get the number of installed analog lines.
Format: TAC?
Parameter: <none>
Response: <uint>

<uint> is the number of analog input lines

Troubleshooting:

TAV? (Get Analog Input)

Description: Get voltage at analog input.
Format: TAV? [{ <InputID>}]
Parameter: <InputID> ID to use to read corresponding

input line in analog mode: A1 to A64 (see
Identifiers p. 14 for details)

Response: {<InputID>"="<float> LF}
where:
<float> is the current voltage at the input
channel.

TIO? (Tell Digital I/O Lines)

Description: Tell number of installed digital I/O lines
Format: TIO?
Arguments: none
Response: I=<uint1>

O=<uint2>
where
<uint1> is the number of digital input lines.
<uint2> is the number of digital output lines.

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 38

Command Descriptions

TMN? (Tell Minimum Travel Value)

Description: Get the minimum commandable position in
physical units
The minimum commandable position is
defined by the travel range limit of the
connected stage type.
When the physical unit of an axis is scaled
with DFF (p. 19), or the zero-point shifted
with DFH, the minimum commandable
position is automatically adjusted to the
appropriate new value.

Format: TMN? [{ <AxisID>}]
Arguments: <AxisID>: is a valid axis identifier
Response {<AxisID>"="<float> LF}

where
<float> is the minimum commandable
position in physical units

TMX? (Tell Maximum Travel Value)

Description: Get the maximum commandable position in
physical units.
The maximum commandable position is
defined by the travel range limit of the
connected stage type.
When the physical unit of an axis is scaled
with DFF (p. 19), or the zero-point shifted
with DFH, the maximum commandable
position is automatically adjusted to the
appropriate new value.

Format: TMX? [{ <AxisID>}]
Arguments: <AxisID>: is a valid axis identifier
Response {<AxisID>"="<float> LF}

where
<float> is the maximum commandable
position in physical units

TVI? (Tell Valid axis Identifiers)

Description: Tell Valid set of characters which can be used
as axis Identifiers.

Note: Use SAI (p. 34) to set axis identifiers
and SAI? ALL (p. 35) to get the axis
identifiers which are currently used.

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 39

Command Descriptions

Format: TVI?
Arguments: none
Response: <string> is a list of characters
Troubleshooting:

VEL (Set Velocity)

Description: Set VELocity to use for moves of specified
axes.

Notes:
The maximum velocity of an axis is given by
SPA parameter 10 (see SPA, p. 35, and
parameter list on p. 45). VEL does not change
this maximum but sets only the currently
applied velocity (which must be lower than the
maximum velocity).

When the physical unit of an axis is scaled
with DFF (p. 19), the velocity is automatically
adjusted to the appropriate new value.
VEL can be changed while the axis is
moving.

Format: VEL <AxisID> <float>[{ <AxisID> <float>}]
Arguments: <AxisID>: is a valid axis identifier

<float> is the velocity value in physical units,
it must be positive or zero.

Response: none
Troubleshooting: Illegal axis identifiers, given velocity

exceeds the maximum velocity value (SPA
param. 10), axis is under joystick control

VEL? (Get Velocity)

Description: Get velocity settings of given axes.

Format: VEL? [{ <AxisID>}]
Arguments: <AxisID>: is a valid axis identifier, if omitted,

all axes are queried
Response: {<axis>"="<float> LF}

where:
<float> is the current velocity setting in
physical units / s.

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 40

Command Descriptions

VER? (Get Version)

Description: Returns the VERsion of the firmware.
Format: VER?
Arguments: none
Response: <string> is the version information of the

firmware, e.g.
PI_Mercury™_GCS_DLL: 1.0.0.11
A:(c)2006 Physik Instrumente(PI) Karlsruhe,
C-663, Ver. 1.06, 2006-08-04
D:(C)2000-4 DIVA Automation/PI GmbH
Karlsruhe, Ver. 8.40, 13 Jan, 2004

VST? (Get available Stages)

Description: List the names of all stages which can be
connected to the controller (with CST, p.
18).

Format: VST?
Arguments: none
Response: {<string> LF}

where
<string> is a stage name.

WAC (Wait for Condition)

Description: Wait until a given condition of the following
type occurs: a specified value is compared
with a queried value according a specified
rule.

Can only be used in macros.

See also MEX, p. 27.
Format: WAC <CMD?> <OP> <value>
Arguments: <CMD?> is a query command in its usual

syntax. The answer must consist of
a single value. Supported
commands are ONT? and DIO?

<OP> is the operator to be used. The
following are allowable (controller
firmware specific):
”=” “<=” “<” “>” “>=” “!=”.

<value> is the value to be compared with

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 41

Command Descriptions

the response to <CMD?>

Response: none
Example: Send: MAC BEG AMC028

 MVR A 1
 WAC ONT? A = 1
 MVR A -1
 WAC ONT? A = 1
 MAC START AMC028
 MAC END
 MAC START AMC028
Note: Macro AMC028 is recorded and

then started. WAC ONT? A = 1
waits until the answer to ONT? A
is A=1.

#5 (Poll Motion Status)

Description: Requests motion status of the connected
axes.
Note that when no stage is connected to an
axis (NOSTAGE is returned by CST?, p.
19), that axis is not included in the answer.

Format: #5 (single ASCII character number 5)
Arguments: none
Response: <uint> is the decimal sum of the following

codes:
1=first connected axis is moving
2=second connected axis is moving
4=third connected axis is moving
etc. with 8, 16, 32, ... , 215

Examples: 0 indicates motion of all axes complete
3 indicates that the first and the second axis
are moving (by default axes A and B)

#7 (Controller Ready?)

Description: Asks controller for ready status (tests if
controller is ready to perform a new
command).
Note: Use #5 instead of #7 to verify if motion
has finished.

Format: #7 (single ASCII character number 7)
Arguments: none
Response: B1h (ASCII character 177 = "±" in Windows)

if controller network is ready

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 42

Command Descriptions

B0h (ASCII character 176 = "°" in Windows)
if controller network is not ready
(e.g. performing a REF command)

Troubleshootin
g

The response characters may appear
differently in non-Western character sets or
other operating systems.

#8 (Macro running?)

Description: Test whether a macro is running
Format: #8 (single ASCII character number #8)
Arguments: none
Response: 0 (ASCII character 48) no macro is running

1 (ASCII character 49) a macro is running
on at least one of the controllers in the
network

#24 (Stop)

Description: Stops all motion abruptly.
This includes motion of all axes (MOV, MVR)
and referencing motion (MNL, MPL, REF).

Sets error code to 10.

After all the axes are stopped, their target
positions are set to the current positions.
This command is identical in function to STP
(p. 36), but only one character must be sent
via the interface. Therefore #24 can also be
used while the controller is performing
time-consuming tasks.

#24 always does a hard stop. Use HLT (p. 23)
to stop a single axis or to stop axes smoothly.

Format: #24 (ASCII character 24)
Arguments: none
Response: none

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 43

Stage Parameters

7 Stage Parameters

! CAUTION
Changing stage parameters may damage your stage!

Most of the parameters (which are loaded from the PiStages.dat or
ControllerUserStages.dat database) describe the physical properties and
limits of a stage. They can be changed by several commands, but modifying
them imprudently could cause damage to the stage. So be sure to handle
these parameters with care and change them only if you want to connect a
stage which is not found in the PiStages.dat or ControllerUserStages.dat
database (you get all stages from these DAT files using VST?, p. 41), or in
very special cases.
The relevant parameters are listed in the following subsections.

7.1 Servo-Loop Parameters

NOTE

Servo-loop parameters are not relevant for stepper motor controllers
because there is no servo-control algorithm implemented in the current
C-663 Mercury™ Step controller firmware.

Name Number* Description Range
En - Accumulated error terms
Kp 1 P-Term 0 to 32767
Ki 2 I-Term 0 to 32767
Kd 3 D-Term 0 to 32767
- 4 I-Limit 0 to 32767

Kvff 5 Kvff (Velocity feed forward) 0 to 32767
Kaff 59 Kaff (Acceleration feed

forward)
0 to 32767

Kout 6 Kout (output scale factor) 0 to 65536
Bias 7 Bias (motor bias) 0 to 32767

See SPA (p. 35) and SPA? (p. 36).
*Number refers to the parameter ID used with SPA.

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 44

Stage Parameters

7.2 Transmission Ratio & Scaling Factors

SF
CpuD
CpuNCntPU ×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= /

()
CpuD
CpuNSFPUCnt ×= /

Name Number
*

Description Range

PU - Physical Unit -
Cnt - Counts (with C-86x) or

steps (with C-663)
-

CpuN 14 Numerator of the counts /
steps per physical unit
factor

1 to 2147483647

CpuD 15 Denominator of the
counts / steps per
physical unit factor

1 to 2147483647

SF 18 Scale factor >0 and
≤ 1.79769313486231E308

See also DFF (p. 19).
*Number means the parameter ID.

7.3 User-Changeable Parameters at a Glance

Parameter numbers in italics apply to C-663, those in bold to C-862 (and, of
course, those in bold italics to both)

1 P-Term 0 to 32767 -
2 I-Term 0 to 32767 -
3 D-Term 0 to 32767 -
4 I-Limit 0 to 32767 -
8 Maximum

position error
0 to 32767 Counts

10 Maximum
allowed
velocity

> 0 Physical units
per second

This parameter is a maximum limit and
not the current velocity. By default the
current velocity is half the maximum
allowed velocity. To change the
current velocity use the VEL()
command.

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 45

Stage Parameters

11 Maximum
allowed
acceleration

 Physical units
per second

squared

14 Numerator of
the counts per
physical unit
factor

1 to 2147483647 - factor = num./denom.
This factor includes the physical
transmission ratio and the
resolution of the stage.

Note: To customize your physical
unit use parameter 18 instead.

15 Denominator
of the counts
per physical
unit factor

1 to 2147483647 - factor = num./denom.
This factor includes the physical
transmission ratio and the resolution of
the stage.
Note: To customize your physical unit
use parameter 18 instead.

17 Invert the
direction

-1 to invert the
direction, else 1

-

18 Scaling factor - - This factor can be used to change the
physical unit of the stage, e.g. a factor
of 25.4 converts a physical unit of mm
to inches.
It is recommended to use the DFF()
command to change this factor.

19 Rotary stage 1 = rotary stage,
else 0

-

20 Stage has a
reference

1 = the stage
has a reference,

else 0

-

21 Maximum
travel range in
positive
direction

0 to 2147483647 Physical units

22 Value at
reference
position

-2147483647 to
2147483647

Physical units

23 Distance from
the negative
limit to the
reference
position

-2147483647 to
2147483647

Physiccal units

24 Axis limit mode
(must agree
with hardware
interlock
setting, see
HW User
Manual)

0, 1, 2, 3
-

Code 0 = positive limit switch active high
(pos-HI), negative limit switch active
high (neg-HI)
1 = positive limit switch active low
(pos-LO), neg-HI
2 = pos-HI, neg-LO
3 = pos-LO, neg-LO

25 Stage type 0 = DC motor
1 = Piezo
2 = Voice coil
4 = Piezomotor
6 = Stepper

 Incorrect stage type may cause
malfunction.

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 46

Stage Parameters

48 Maximum
travel range in
negative
direction

-2147483647 to
2147483647

Physiccal unit

49 Invert the
reference

1 = invert the
reference, else 0

-

60 Stage name maximum 15
characters

-

64 Hold Current
(HC native
command)

 mA

65 Drive Current
(DC native
command)

 mA

66 Hold Time (HT
native
command)

 ms

67 max current,
max. value that
DC and HC
can have,

 mA

* ”Number” refers to the parameter ID used by Mercury_SPA().

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 47

Error Codes

8 Error Codes

The error codes listed here are those of the PI General Command Set. As
such, some may be not relevant to your controller and will simply never
occur.

Controller Errors

0 PI_CNTR_NO_ERROR No error
1 PI_CNTR_PARAM_SYNTAX Parameter syntax error
2 PI_CNTR_UNKNOWN_COMMAND Unknown command
3 PI_CNTR_COMMAND_TOO_LONG Command length out of limits or command buffer

overrun
4 PI_CNTR_SCAN_ERROR Error while scanning
5 PI_CNTR_MOVE_WITHOUT_REF_OR_NO_SERVO Unallowable move attempted on unreferenced

axis, or move attempted with servo off
6 PI_CNTR_INVALID_SGA_PARAM Parameter for SGA not valid
7 PI_CNTR_POS_OUT_OF_LIMITS Position out of limits
8 PI_CNTR_VEL_OUT_OF_LIMITS Velocity out of limits
9 PI_CNTR_SET_PIVOT_NOT_POSSIBLE Attempt to set pivot point while U,V and W not all

0
10 PI_CNTR_STOP Controller was stopped by command
11 PI_CNTR_SST_OR_SCAN_RANGE Parameter for SST or for one of the embedded

scan algorithms out of range
12 PI_CNTR_INVALID_SCAN_AXES Invalid axis combination for fast scan
13 PI_CNTR_INVALID_NAV_PARAM Parameter for NAV out of range
14 PI_CNTR_INVALID_ANALOG_INPUT Invalid analog channel
15 PI_CNTR_INVALID_AXIS_IDENTIFIER Invalid axis identifier
16 PI_CNTR_INVALID_STAGE_NAME Unknown stage name
17 PI_CNTR_PARAM_OUT_OF_RANGE Parameter out of range
18 PI_CNTR_INVALID_MACRO_NAME Invalid macro name
19 PI_CNTR_MACRO_RECORD Error while recording macro
20 PI_CNTR_MACRO_NOT_FOUND Macro not found
21 PI_CNTR_AXIS_HAS_NO_BRAKE Axis has no brake
22 PI_CNTR_DOUBLE_AXIS Axis identifier specified more than once
23 PI_CNTR_ILLEGAL_AXIS Illegal axis
24 PI_CNTR_PARAM_NR Incorrect number of parameters
25 PI_CNTR_INVALID_REAL_NR Invalid floating point number
26 PI_CNTR_MISSING_PARAM Parameter missing
27 PI_CNTR_SOFT_LIMIT_OUT_OF_RANGE Soft limit out of range
28 PI_CNTR_NO_MANUAL_PAD No manual pad found
29 PI_CNTR_NO_JUMP No more step-response values
30 PI_CNTR_INVALID_JUMP No step-response values recorded
31 PI_CNTR_AXIS_HAS_NO_REFERENCE Axis has no reference sensor

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 48

Error Codes

32 PI_CNTR_STAGE_HAS_NO_LIM_SWITCH Axis has no limit switch
33 PI_CNTR_NO_RELAY_CARD No relay card installed
34 PI_CNTR_CMD_NOT_ALLOWED_FOR_STAGE Command not allowed for selected stage(s)
35 PI_CNTR_NO_DIGITAL_INPUT No digital input installed
36 PI_CNTR_NO_DIGITAL_OUTPUT No digital output configured
37 PI_CNTR_NO_MCM No more MCM responses
38 PI_CNTR_INVALID_MCM No MCM values recorded
39 PI_CNTR_INVALID_CNTR_NUMBER Controller number invalid
40 PI_CNTR_NO_JOYSTICK_CONNECTED No joystick configured
41 PI_CNTR_INVALID_EGE_AXIS Invalid axis for electronic gearing, axis can not

be slave
42 PI_CNTR_SLAVE_POSITION_OUT_OF_RANGE Position of slave axis is out of range
43 PI_CNTR_COMMAND_EGE_SLAVE Slave axis cannot be commanded directly when

electronic gearing is enabled
44 PI_CNTR_JOYSTICK_CALIBRATION_FAILED Calibration of joystick failed
45 PI_CNTR_REFERENCING_FAILED Referencing failed
46 PI_CNTR_OPM_MISSING OPM (Optical Power Meter) missing
47 PI_CNTR_OPM_NOT_INITIALIZED OPM (Optical Power Meter) not initialized or

cannot be initialized
48 PI_CNTR_OPM_COM_ERROR OPM (Optical Power Meter) Communication

Error
49 PI_CNTR_MOVE_TO_LIMIT_SWITCH_FAILED Move to limit switch failed
50 PI_CNTR_REF_WITH_REF_DISABLED Attempt to reference axis with referencing

disabled
51 PI_CNTR_AXIS_UNDER_JOYSTICK_CONTROL Selected axis is controlled by joystick
52 PI_CNTR_COMMUNICATION_ERROR Controller detected communication error
53 PI_CNTR_DYNAMIC_MOVE_IN_PROCESS MOV! motion still in progress
54 PI_CNTR_UNKNOWN_PARAMETER Unknown parameter
55 PI_CNTR_NO_REP_RECORDED No commands were recorded with REP
56 PI_CNTR_INVALID_PASSWORD Password invalid
57 PI_CNTR_INVALID_RECORDER_CHAN Data Record Table does not exist
58 PI_CNTR_INVALID_RECORDER_SRC_OPT Source does not exist; number too low or too

high
59 PI_CNTR_INVALID_RECORDER_SRC_CHAN Source Record Table number too low or too high
60 PI_CNTR_PARAM_PROTECTION Protected Param: current Command Level

(CCL) too low
61 PI_CNTR_AUTOZERO_RUNNING Command execution not possible while

Autozero is running
62 PI_CNTR_NO_LINEAR_AXIS Autozero requires at least one linear axis
63 PI_CNTR_INIT_RUNNING Initialization still in progress
64 PI_CNTR_READ_ONLY_PARAMETER Parameter is read-only
65 PI_CNTR_PAM_NOT_FOUND Parameter not found in non-volatile memory
66 PI_CNTR_VOL_OUT_OF_LIMITS Voltage out of limits
67 PI_CNTR_WAVE_TOO_LARGE Not enough memory available for requested wav

curve
68 PI_CNTR_NOT_ENOUGH_DDL_MEMORY not enough memory available for DDL table;

DDL can not be started

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 49

Error Codes

69 PI_CNTR_DDL_TIME_DELAY_TOO_LARGE time delay larger than DDL table; DDL can not
be started

70 PI_CNTR_DIFFERENT_ARRAY_LENGTH GCS-array doesn't support different length;
request arrays which have different length
separately

71 PI_CNTR_GEN_SINGLE_MODE_RESTART Attempt to restart the generator while it is
running in single step mode

72 PI_CNTR_ANALOG_TARGET_ACTIVE MOV, MVR, SVA, SVR, STE, IMP and WGO
blocked when analog target is active

73 PI_CNTR_WAVE_GENERATOR_ACTIVE MOV, MVR, SVA, SVR, STE and IMP blocked
when wave generator is active

100 PI_LABVIEW_ERROR PI LabVIEW driver reports error. See source
control for details.

200 PI_CNTR_NO_AXIS No stage connected to axis
201 PI_CNTR_NO_AXIS_PARAM_FILE File with axis parameters not found
202 PI_CNTR_INVALID_AXIS_PARAM_FILE Invalid axis parameter file
203 PI_CNTR_NO_AXIS_PARAM_BACKUP Backup file with axis parameters not found
204 PI_CNTR_RESERVED_204 PI internal error code 204
205 PI_CNTR_SMO_WITH_SERVO_ON SMO with servo on
206 PI_CNTR_UUDECODE_INCOMPLETE_HEADER uudecode: incomplete header
207 PI_CNTR_UUDECODE_NOTHING_TO_DECODE uudecode: nothing to decode
208 PI_CNTR_UUDECODE_ILLEGAL_FORMAT uudecode: illegal UUE format
209 PI_CNTR_CRC32_ERROR CRC32 error
210 PI_CNTR_ILLEGAL_FILENAME Illegal file name (must be 8-0 format)
211 PI_CNTR_FILE_NOT_FOUND File not found on controller
212 PI_CNTR_FILE_WRITE_ERROR Error writing file on controller
213 PI_CNTR_DTR_HINDERS_VELOCITY_CHANGE VEL command not allowed in DTR Command

Mode
214 PI_CNTR_POSITION_UNKNOWN Position calculations failed
215 PI_CNTR_CONN_POSSIBLY_BROKEN The connection between controller and stage

may be broken
216 PI_CNTR_ON_LIMIT_SWITCH The connected stage has driven into a limit

switch, call CLR to resume operation
217 PI_CNTR_UNEXPECTED_STRUT_STOP Strut test command failed because of an

unexpected strut stop
218 PI_CNTR_POSITION_BASED_ON_ESTIMATION Position can be estimated only while MOV! is

running
219 PI_CNTR_POSITION_BASED_ON_INTERPOLATION Position was calculated while MOV is running
301 PI_CNTR_SEND_BUFFER_OVERFLOW Send buffer overflow
302 PI_CNTR_VOLTAGE_OUT_OF_LIMITS Voltage out of limits
303 PI_CNTR_VOLTAGE_SET_WHEN_SERVO_ON Attempt to set voltage when servo on
304 PI_CNTR_RECEIVING_BUFFER_OVERFLOW Received command is too long
305 PI_CNTR_EEPROM_ERROR Error while reading/writing EEPROM
306 PI_CNTR_I2C_ERROR Error on I2C bus
307 PI_CNTR_RECEIVING_TIMEOUT Timeout while receiving command
308 PI_CNTR_TIMEOUT A lengthy operation has not finished in the

expected time
309 PI_CNTR_MACRO_OUT_OF_SPACE Insufficient space to store macro

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 50

Error Codes

310 PI_CNTR_EUI_OLDVERSION_CFGDATA Configuration data has old version number
311 PI_CNTR_EUI_INVALID_CFGDATA Invalid configuration data
333 PI_CNTR_HARDWARE_ERROR Internal hardware error
555 PI_CNTR_UNKNOWN_ERROR BasMac: unknown controller error
601 PI_CNTR_NOT_ENOUGH_MEMORY not enough memory
602 PI_CNTR_HW_VOLTAGE_ERROR hardware voltage error
603 PI_CNTR_HW_TEMPERATURE_ERROR hardware temperature out of range

1000 PI_CNTR_TOO_MANY_NESTED_MACROS Too many nested macros
1001 PI_CNTR_MACRO_ALREADY_DEFINED Macro already defined
1002 PI_CNTR_NO_MACRO_RECORDING Macro recording not activated
1003 PI_CNTR_INVALID_MAC_PARAM Invalid parameter for MAC
1004 PI_CNTR_RESERVED_1004 PI internal error code 1004
2000 PI_CNTR_ALREADY_HAS_SERIAL_NUMBER Controller already has a serial number
4000 PI_CNTR_SECTOR_ERASE_FAILED Sector erase failed
4001 PI_CNTR_FLASH_PROGRAM_FAILED Flash program failed
4002 PI_CNTR_FLASH_READ_FAILED Flash read failed
4003 PI_CNTR_HW_MATCHCODE_ERROR HW match code missing/invalid
4004 PI_CNTR_FW_MATCHCODE_ERROR FW match code missing/invalid
4005 PI_CNTR_HW_VERSION_ERROR HW version missing/invalid
4006 PI_CNTR_FW_VERSION_ERROR FW version missing/invalid
4007 PI_CNTR_FW_UPDATE_ERROR FW Update failed

Interface Errors

0 COM_NO_ERROR No error occurred during function call
-1 COM_ERROR Error during com operation (could not be

specified)
-2 SEND_ERROR Error while sending data
-3 REC_ERROR Error while receiving data
-4 NOT_CONNECTED_ERROR Not connected (no port with given ID open)
-5 COM_BUFFER_OVERFLOW Buffer overflow
-6 CONNECTION_FAILED Error while opening port
-7 COM_TIMEOUT Timeout error
-8 COM_MULTILINE_RESPONSE There are more lines waiting in buffer
-9 COM_INVALID_ID There is no interface or DLL handle with the

given ID
-10 COM_NOTIFY_EVENT_ERROR Event/message for notification could not be

opened
-11 COM_NOT_IMPLEMENTED Function not supported by this interface type
-12 COM_ECHO_ERROR Error while sending "echoed" data
-13 COM_GPIB_EDVR IEEE488: System error
-14 COM_GPIB_ECIC IEEE488: Function requires GPIB board to be

CIC
-15 COM_GPIB_ENOL IEEE488: Write function detected no listeners
-16 COM_GPIB_EADR IEEE488: Interface board not addressed

correctly
-17 COM_GPIB_EARG IEEE488: Invalid argument to function call

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 51

Error Codes

-18 COM_GPIB_ESAC IEEE488: Function requires GPIB board to be
SAC

-19 COM_GPIB_EABO IEEE488: I/O operation aborted
-20 COM_GPIB_ENEB IEEE488: Interface board not found
-21 COM_GPIB_EDMA IEEE488: Error performing DMA
-22 COM_GPIB_EOIP IEEE488: I/O operation started before previous

operation completed
-23 COM_GPIB_ECAP IEEE488: No capability for intended operation
-24 COM_GPIB_EFSO IEEE488: File system operation error
-25 COM_GPIB_EBUS IEEE488: Command error during device call
-26 COM_GPIB_ESTB IEEE488: Serial poll-status byte lost
-27 COM_GPIB_ESRQ IEEE488: SRQ remains asserted
-28 COM_GPIB_ETAB IEEE488: Return buffer full
-29 COM_GPIB_ELCK IEEE488: Address or board locked
-30 COM_RS_INVALID_DATA_BITS RS-232: 5 data bits with 2 stop bits is an invalid

combination, as is 6, 7, or 8 data bits with 1.5
stop bits

-31 COM_ERROR_RS_SETTINGS RS-232: Error configuring the COM port
-32 COM_INTERNAL_RESOURCES_ERROR Error dealing with internal system resources

(events, threads, ...)
-33 COM_DLL_FUNC_ERROR A DLL or one of the required functions could not

be loaded
-34 COM_FTDIUSB_INVALID_HANDLE FTDIUSB: invalid handle
-35 COM_FTDIUSB_DEVICE_NOT_FOUND FTDIUSB: device not found
-36 COM_FTDIUSB_DEVICE_NOT_OPENED FTDIUSB: device not opened
-37 COM_FTDIUSB_IO_ERROR FTDIUSB: IO error
-38 COM_FTDIUSB_INSUFFICIENT_RESOURCES FTDIUSB: insufficient resources
-39 COM_FTDIUSB_INVALID_PARAMETER FTDIUSB: invalid parameter
-40 COM_FTDIUSB_INVALID_BAUD_RATE FTDIUSB: invalid baud rate
-41 COM_FTDIUSB_DEVICE_NOT_OPENED_FOR_ERASE FTDIUSB: device not opened for erase
-42 COM_FTDIUSB_DEVICE_NOT_OPENED_FOR_WRITE FTDIUSB: device not opened for write
-43 COM_FTDIUSB_FAILED_TO_WRITE_DEVICE FTDIUSB: failed to write device
-44 COM_FTDIUSB_EEPROM_READ_FAILED FTDIUSB: EEPROM read failed
-45 COM_FTDIUSB_EEPROM_WRITE_FAILED FTDIUSB: EEPROM write failed
-46 COM_FTDIUSB_EEPROM_ERASE_FAILED FTDIUSB: EEPROM erase failed
-47 COM_FTDIUSB_EEPROM_NOT_PRESENT FTDIUSB: EEPROM not present
-48 COM_FTDIUSB_EEPROM_NOT_PROGRAMMED FTDIUSB: EEPROM not programmed
-49 COM_FTDIUSB_INVALID_ARGS FTDIUSB: invalid arguments
-50 COM_FTDIUSB_NOT_SUPPORTED FTDIUSB: not supported
-51 COM_FTDIUSB_OTHER_ERROR FTDIUSB: other error
-52 COM_PORT_ALREADY_OPEN Error while opening the COM port: was already

open
-53 COM_PORT_CHECKSUM_ERROR Checksum error in received data from COM port
-54 COM_SOCKET_NOT_READY Socket not ready, you should call the function

again
-55 COM_SOCKET_PORT_IN_USE Port is used by another socket
-56 COM_SOCKET_NOT_CONNECTED Socket not connected (or not valid)

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 52

Error Codes

-57 COM_SOCKET_TERMINATED Connection terminated (by peer)
-58 COM_SOCKET_NO_RESPONSE Can't connect to peer
-59 COM_SOCKET_INTERRUPTED Operation was interrupted by a non-blocked

signal

DLL Errors

-1001 PI_UNKNOWN_AXIS_IDENTIFIER Unknown axis identifier
-1002 PI_NR_NAV_OUT_OF_RANGE Number for NAV out of range--must be in

[1,10000]
-1003 PI_INVALID_SGA Invalid value for SGA--must be one of 1, 10, 100,

1000
-1004 PI_UNEXPECTED_RESPONSE Controller sent unexpected response
-1005 PI_NO_MANUAL_PAD No manual control pad installed, calls to SMA

and related commands are not allowed
-1006 PI_INVALID_MANUAL_PAD_KNOB Invalid number for manual control pad knob
-1007 PI_INVALID_MANUAL_PAD_AXIS Axis not currently controlled by a manual control

pad
-1008 PI_CONTROLLER_BUSY Controller is busy with some lengthy operation

(e.g. reference move, fast scan algorithm)
-1009 PI_THREAD_ERROR Internal error--could not start thread
-1010 PI_IN_MACRO_MODE Controller is (already) in macro mode--command

not valid in macro mode
-1011 PI_NOT_IN_MACRO_MODE Controller not in macro mode--command not

valid unless macro mode active
-1012 PI_MACRO_FILE_ERROR Could not open file to write or read macro
-1013 PI_NO_MACRO_OR_EMPTY No macro with given name on controller, or

macro is empty
-1014 PI_MACRO_EDITOR_ERROR Internal error in macro editor
-1015 PI_INVALID_ARGUMENT One or more arguments given to function is

invalid (empty string, index out of range, ...)
-1016 PI_AXIS_ALREADY_EXISTS Axis identifier is already in use by a connected

stage
-1017 PI_INVALID_AXIS_IDENTIFIER Invalid axis identifier
-1018 PI_COM_ARRAY_ERROR Could not access array data in COM server
-1019 PI_COM_ARRAY_RANGE_ERROR Range of array does not fit the number of

parameters
-1020 PI_INVALID_SPA_CMD_ID Invalid parameter ID given to SPA or SPA?
-1021 PI_NR_AVG_OUT_OF_RANGE Number for AVG out of range--must be >0
-1022 PI_WAV_SAMPLES_OUT_OF_RANGE Incorrect number of samples given to WAV
-1023 PI_WAV_FAILED Generation of wave failed
-1024 PI_MOTION_ERROR Motion error while axis in motion, call CLR to

resume operation
-1025 PI_RUNNING_MACRO Controller is (already) running a macro
-1026 PI_PZT_CONFIG_FAILED Configuration of PZT stage or amplifier failed
-1027 PI_PZT_CONFIG_INVALID_PARAMS Current settings are not valid for desired

configuration
-1028 PI_UNKNOWN_CHANNEL_IDENTIFIER Unknown channel identifier
-1029 PI_WAVE_PARAM_FILE_ERROR Error while reading/writing wave generator

parameter file

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 53

Error Codes

-1030 PI_UNKNOWN_WAVE_SET Could not find description of wave form. Maybe
WG.INI is missing?

-1031 PI_WAVE_EDITOR_FUNC_NOT_LOADED The WGWaveEditor DLL function was not found
at startup

-1032 PI_USER_CANCELLED The user cancelled a dialog
-1033 PI_C844_ERROR Error from C-844 Controller
-1034 PI_DLL_NOT_LOADED DLL necessary to call function not loaded, or

function not found in DLL
-1035 PI_PARAMETER_FILE_PROTECTED The open parameter file is protected and cannot

be edited
-1036 PI_NO_PARAMETER_FILE_OPENED There is no parameter file open
-1037 PI_STAGE_DOES_NOT_EXIST Selected stage does not exist
-1038 PI_PARAMETER_FILE_ALREADY_OPENED There is already a parameter file open. Close it

before opening a new file
-1039 PI_PARAMETER_FILE_OPEN_ERROR Could not open parameter file
-1040 PI_INVALID_CONTROLLER_VERSION The version of the connected controller is invalid
-1041 PI_PARAM_SET_ERROR Parameter could not be set with SPA--parameter

not defined for this controller!
-1042 PI_NUMBER_OF_POSSIBLE_WAVES_EXCEEDED The maximum number of wave definitions has

been exceeded
-1043 PI_NUMBER_OF_POSSIBLE_GENERATORS_EXCEEDEDThe maximum number of wave generators has

been exceeded
-1044 PI_NO_WAVE_FOR_AXIS_DEFINED No wave defined for specified axis
-1045 PI_CANT_STOP_OR_START_WAV Wave output to axis already stopped/started
-1046 PI_REFERENCE_ERROR Not all axes could be referenced
-1047 PI_REQUIRED_WAVE_NOT_FOUND Could not find parameter set required by

frequency relation
-1048 PI_INVALID_SPP_CMD_ID Command ID given to SPP or SPP? is not valid
-1049 PI_STAGE_NAME_ISNT_UNIQUE A stage name given to CST is not unique
-1050 PI_FILE_TRANSFER_BEGIN_MISSING A uuencoded file transferred did not start with

"begin" followed by the proper filename
-1051 PI_FILE_TRANSFER_ERROR_TEMP_FILE Could not create/read file on host PC
-1052 PI_FILE_TRANSFER_CRC_ERROR Checksum error when transferring a file to/from

the controller
-1053 PI_COULDNT_FIND_PISTAGES_DAT The PiStages.dat database could not be found.

This file is required to connect a stage with the
CST command

-1054 PI_NO_WAVE_RUNNING No wave being output to specified axis
-1055 PI_INVALID_PASSWORD Invalid password
-1056 PI_OPM_COM_ERROR Error during communication with OPM (Optical

Power Meter), maybe no OPM connected
-1057 PI_WAVE_EDITOR_WRONG_PARAMNUM WaveEditor: Error during wave creation,

incorrect number of parameters
-1058 PI_WAVE_EDITOR_FREQUENCY_OUT_OF_RANGE WaveEditor: Frequency out of range
-1059 PI_WAVE_EDITOR_WRONG_IP_VALUE WaveEditor: Error during wave creation,

incorrect index for integer parameter
-1060 PI_WAVE_EDITOR_WRONG_DP_VALUE WaveEditor: Error during wave creation,

incorrect index for floating point parameter

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 54

Error Codes

www.pi.ws Mercury™ GCS Commands MS163E Version 1.0.2 Page 55

-1061 PI_WAVE_EDITOR_WRONG_ITEM_VALUE WaveEditor: Error during wave creation, could
not calculate value

-1062 PI_WAVE_EDITOR_MISSING_GRAPH_COMPONENT WaveEditor: Graph display component not
installed

-1063 PI_EXT_PROFILE_UNALLOWED_CMD User Profile Mode: Command is not allowed,
check for required preparatory commands

-1064 PI_EXT_PROFILE_EXPECTING_MOTION_ERROR User Profile Mode: First target position in User
Profile is too far from current position

-1065 PI_EXT_PROFILE_ACTIVE Controller is (already) in User Profile Mode
-1066 PI_EXT_PROFILE_INDEX_OUT_OF_RANGE User Profile Mode: Block or Data Set index out

of allowed range
-1067 PI_PROFILE_GENERATOR_NO_PROFILE ProfileGenerator: No profile has been created

yet
-1068 PI_PROFILE_GENERATOR_OUT_OF_LIMITS ProfileGenerator: Generated profile exceeds

limits of one or both axes
-1069 PI_PROFILE_GENERATOR_UNKNOWN_PARAMETER ProfileGenerator: Unknown parameter ID in

Set/Get Parameter command
-1070 PI_PROFILE_GENERATOR_PAR_OUT_OF_RANGE ProfileGenerator: Parameter out of allowed

range
-1071 PI_EXT_PROFILE_OUT_OF_MEMORY User Profile Mode: Out of memory
-1072 PI_EXT_PROFILE_WRONG_CLUSTER User Profile Mode: Cluster is not assigned to this

axis
-1073 PI_UNKNOWN_CLUSTER_IDENTIFIER Unknown cluster identifier

	1 Introduction
	1.1 Native Command Set
	1.2 GCS Command Set

	2 Units and GCS
	2.1 Hardware, Physical Units and Scaling
	2.2 Rounding Considerations

	3 Referencing
	3.1 Reference Mode
	3.2 Perform a Reference Move
	3.3 Set Absolute Position

	4 Macro Storage on Controller
	4.1 GCS Macros
	4.1.1 Features and Restrictions
	4.1.2 Macro Creation in GCS
	4.1.3 Listing Stored Macros
	4.1.4 Macro Translation & Listing Examples

	5 GCS Command Syntax
	5.1 Command Format
	5.2 Identifiers
	5.2.1 Axes
	5.2.2 Digital Input/Output
	5.2.3 Analog Input
	5.2.4 Joystick Connections

	6 Command Descriptions
	6.1 Command List (Alphabetical)
	6.2 Command Reference (Alphabetical)

	7 Stage Parameters
	7.1 Servo-Loop Parameters
	7.2 Transmission Ratio & Scaling Factors
	7.3 User-Changeable Parameters at a Glance

	8 Error Codes

