

The GLAST experiment at SLAC
The Virtual Spacecraft (VSC)
GLAST Electronics group

Users Manual

Document Version: 1.4
Document Issue: 2
Document Edition: English
Document Status: Initial public release
Document ID: LAT-TD-05601
Document Date: December 5, 2005

Stanford Linear Accelerator Center (SLAC)
2575 Sandhill Road

Menlo Park California, 94025 USA

The Virtual Spacecraft (VSC) Users Manual
December 5, 2005 Version/Issue: 1.4/2
page 2 Initial public release

This document has been prepared using the Software Documentation Layout Templates that have been
prepared by the IPT Group (Information, Process and Technology), IT Division, CERN (The European
Laboratory for Particle Physics). For more information, go to http://framemaker.cern.ch/.

The Virtual Spacecraft (VSC) Users Manual
Abstract Version/Issue: 1.4/2
Abstract

A proposal for a SLAC produced, version of the GLAST Spacecraft (S/C), called the VSC
(Virtual Spacecraft). The VSC consists of a VME crate containing modules which provide a
complete implementation of the LAT to S/C ICD, including full redundancy and
cross-strapping support. Within the crate resides the software necessary to control the
interface to the LAT as well as software implementing an additional external interface. This
interface, through TCP/IP sockets, allows an external application to interact with the VSC as if
it were in the role of a ground-station. To do so, the application codes against a set of C++
classes called the Proxy Interface. A complete description and explanation of these classes is
one of the principal goals of this document.

Intended audience

While, a design proposal, this document is intended principally as a guide for the users of the
VSC. These include:

• Testers of Flight Software

• Developers of Flight Software

• Developers of I&T (Integration and Test) based systems

Conventions used in this document

Certain special typographical conventions are used in this document. They are documented
here for the convenience of the reader:

• Field names are shown in bold and italics (e.g., respond or parity).

• Acronyms are shown in small caps (e.g., SLAC or TEM).

• Hardware signal or register names are shown in Courier bold (e.g., RIGHT_FIRST or
LAYER_MASK_1)
Initial public release page 3

The Virtual Spacecraft (VSC) Users Manual
References Version/Issue: 1.4/2
References

1 1553 Product Handbook, United Technologies Microelectronics Center Inc., 1992.

2 CCSDS Package User Manual, LAT Flight Software User Manual.

3 CTDB 1553 Drivers, LAT Flight Software User Manual.

4 EGSE Used to Test GASU, LAT-TD05787.

5 Enhanced Summit Family Product Handbook, UTMC Microelectronics Systems Inc.,
October 1999.

6 GLAST 1553 Bus Protocol Interface Control Document, Spectrum Astro, Inc.

7 GLAST LAT Instrument – Spacecraft Interface Requirements Document, 433-IRD-0001
Revision B, NASA Goddard Space Flight Center, April 2002.

8 GLAST LAT to Spacecraft Interface Control Document, Spectrum Astro, Inc.,
February 2003.

9 GLAST Spacecraft Interface Board Hardware Specification, LAT Hardware
Specification Document.

10 LTX User Manual, V1-1-0, LAT FSW User Manual, August 2003.

11 Military Standard 1553B Notice 2, United States Department of Defence,
September 1986.

12 Military Standard 1553B, Aircraft Internal Time Division Command/Response
Multiplex Data Bus, United States Department of Defence, September 1978.

13 MSG User Manual, LAT Flight Software User Manual.

14 PBS Package Documentation, LAT Flight Software Code Documentation.

15 PMC-1553 Reference Manual, Rev 1.2, Alphi Technology Corporation, June 1998.

16 Recommendation for Space Data System Standards, Advanced Orbiting Systems,
Networks and Data Links: Architectural Specification, Blue Book 701.0-B-3,
Consultative Committee for Space Data Systems, June 2001.

17 Recommendation for Space Data System Standards, Telecommand Part 3, Data
Management Service Architectural Specification, Blue Book 203.0-B-1, Consultative
Committee for Space Data Systems, January 1987.

18 Telecommand and Telemetry Formats, LAT-TD-02659.

19 “GASU Based Teststands - A hardware and software Primer,” Michael Huffer,
LAT-TD-03664.

20 Symmetricom TTM635/637VME Time and Frequency Processor, revision B Users
Guide, 8500-0138 February, 2004

21 LAT Flight Software, CMX Manual, version V2-2-3, A. P. Waite, updated 30,
November 2004
page 4 Initial public release

The Virtual Spacecraft (VSC) Users Manual
References Version/Issue: 1.4/2
22 “The GLT Electronics Module- Programming ICD specification,” Michael Huffer,
LAT-TD-01545.

23 See the LAT Flight Software, web-site for the traveller documentation for LPA
(currently undefined)

24 See the LAT Flight Software, web-site for the traveller documentation for
datagrams (currently undefined)

25 See the LAT Flight Software, web-site for the traveller documentation for LCI
(currently under project APP, package LCI)

26 “The EBM Electronics Module- Programming ICD specification,” Michael Huffer,
LAT-TD-01546.

27 “The DataFlow Public Interface,” Michael Huffer, LAT-TD-01546.

28 “Data Sheet for the Goodrich Model 0118MF High Reliability Surface
Temperature Sensor,” http://www.sensors.goodrich.com/literature/list.shtml

29 “Data Sheet for the YSI 44900 Series Thermistor (GSFC S-311-P-18)”,
http://www.ysitemperature.com/tech-home.html

Note: For additional resources, refer to the LAT Electronics, DAQ Critical Design
Requirements List. On the LAT Electronics, Data Acquisition & Instrument Flight Software
page (http://www-glast.slac.stanford.edu/Elec_DAQ/Elec_DAQ_home.htm), click
Hardware and then click List of all documents.
Initial public release page 5

http://www-glast.slac.stanford.edu/Elec_DAQ/Elec_DAQ_home.htm

The Virtual Spacecraft (VSC) Users Manual
Document Control Sheet Version/Issue: 1.4/2
Document Control Sheet

Table 1 Document Control Sheet

Document Title: The Virtual Spacecraft (VSC) Users Manual

Version: 1.4

Issue: 2

Edition: English

ID: LAT-TD-05601

Status: Initial public release

Created: February 9, 2002

Date: December 5, 2005

Access: V:\GLAST\Electronics\Design Documents\VSC\V1.4\frontmat-
ter.fm

Keywords: GASU Based Teststands

Tools DTP System: Adobe FrameMaker Version: 6.0

Layout
Template:

Software Documentation
Layout Templates

Version: V2.0 - 5 July 1999

Content
Template:

-- Version: --

Authorship Coordinator: Michael Huffer

Written by: Michael Huffer

Table 2 Approval sheet

Name Title Signature Date

Gunther Haller LAT CHIEF ELECTRONICS ENGINEER

JJ Russell FLIGHT SOFTWARE LEAD
page 6 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Document Status Sheet Version/Issue: 1.4/2
Document Status Sheet

Table 3 Document Status Sheet

Title: The Virtual Spacecraft (VSC) Users Manual

ID: LAT-TD-05601

Version Issue Date Reason for change

1.0 1 8/22/2005 First public release

1.2 1 11/10/2005 Added support for the assembly of science packets to data-
grams. See Section 4.8 and Appendix A.

1.3 1 11/21/2005 Added support for the LAT voltage and temperature monitor-
ing. See Section 3.3.6, Section 7.10, and Appendix B.

1.4 1 12/05/2005 After some reflection, changed structure of monitoring packets.
Added support for conversion from ADC counts to engineer-
ing units for these packets. See Appendix B.
Initial public release page 7

The Virtual Spacecraft (VSC) Users Manual
Document Status Sheet Version/Issue: 1.4/2
page 8 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Table of Contents Version/Issue: 1.4/2
Table of Contents

Abstract . 3

Intended audience . . 3

Conventions used in this document . . 3

References . 4

Document Control Sheet . . 6

Document Status Sheet . 7

List of Tables . 15

List of Figures . 17
List of Listings . 19

Chapter 1
Introduction . 21

1.1 Information Exchange . 22
1.1.1 Information exchange between LAT and VSC 23
1.1.2 Information Exchange between VSC and proxy interface 24

1.2 Software methodology and organization 25
1.2.1 Documentation conventions 27
1.2.2 Header files and name spaces 28
1.2.3 Configuration management 28

1.3 Observatory time . 28
1.3.1 Time representation . 29

1.3.1.1 Initializing the observatory time-base 29
1.3.2 Time Keeping . 30
Initial public release page 9

The Virtual Spacecraft (VSC) Users Manual
Table of Contents Version/Issue: 1.4/2
1.4 Routing and scheduling requests 30
1.4.1 Routing . 31
1.4.2 Queuing . 32
1.4.3 Scheduling . 33

1.4.3.1 Harvesting the work load 35
1.4.3.2 Scheduling state transitions 35
1.4.3.3 Scheduling control work 35
1.4.3.4 Scheduling command work 36
1.4.3.5 Cleanup . 36

1.4.4 Scheduler State Model . 37

Chapter 2
Hardware . 41

2.1 Electrical conventions . 42
2.2 The SBC and 1553 interface . 42
2.3 The GPS receiver . 43
2.4 The Science interface . 44
2.5 The Discrete interface . 45
2.6 Digitizer . 46
2.7 LAT Cable interface . 46
2.8 LAT Monitoring interface . 47
2.9 VSC Configurations . 48

2.9.1 The Testbed . 48
2.10 VSC Inter-Connectivity . 51

Chapter 3
Using the proxy interface . 53

3.1 Distribution of telemetry . 55
3.2 Managing the SC/GBM interface 57
3.3 Managing the SC/LAT interfaces 58

3.3.1 SIU cross-strapping . 58
3.3.2 SIU Reset . 59
3.3.3 SIU discretes . 60
3.3.4 GASU (DAQ board) cross-strapping 60
3.3.5 Enabling the Science Interface 62
3.3.6 Enabling Diagnostic Monitoring 62

3.4 Handling Incoming telemetry 64
3.4.1 APID filtering . 65

3.5 Routing Incoming telemetry . 66
3.5.1 Router registration . 68
3.5.2 APID dispatching . 69
3.5.3 Science telemetry and datagrams 70

3.6 Telecommands . 70
page 10 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Table of Contents Version/Issue: 1.4/2
3.7 Scheduling the “Magic seven” 71
3.8 Administrating the VSC . 74

3.8.1 Configuring queue sizes 74
3.8.2 Network configuration 75

3.8.2.1 VSC node name and IP address 75
3.8.2.2 Port Numbers . 76

Chapter 4
CCSDS package . 77

4.1 Name space - VscCcsds . 78
4.2 Packet sequencing . 78
4.3 Packet . 78

4.3.1 Constructor synopsis . 79
4.3.2 Member synopsis . 80

4.4 TeleCmnd . 80
4.4.1 Constructor synopsis . 81
4.4.2 Member synopsis . 82

4.5 Mangle . 82
4.5.1 Constructor synopsis . 83
4.5.2 Member synopsis . 83

4.6 Generic Telemetry packet . 84
4.6.1 Constructor synopsis . 85
4.6.2 Member synopsis . 86

4.7 Telemetry . 86
4.8 Science . 87

4.8.1 Member synopsis . 87
4.9 The “Magic 7” Telecommands 88

4.9.1 Constructor synopsis . 88
4.9.2 Member synopsis . 88

4.10 The Attitude Ancillary Telecommand 89
4.10.1 Constructor synopsis . 89
4.10.2 Member synopsis . 90

4.11 The Ancillary Data Telecommand 90
4.11.1 Constructor synopsis . 92
4.11.2 Member synopsis . 92

4.12 The Time-Tone Ancillary Telecommand 93
4.12.1 Constructor synopsis . 94
4.12.2 Member synopsis . 94

4.13 Exceptions . 94

Chapter 5
Initial public release page 11

The Virtual Spacecraft (VSC) Users Manual
Table of Contents Version/Issue: 1.4/2
The Handling package . 95

5.1 Name space - VscHandling 96
5.2 Handler . 96

5.2.1 Constructor synopsis . 97
5.2.2 Member synopsis . 97

5.3 Telemetry Handler . 98
5.3.1 Constructor synopsis . 98
5.3.2 Member synopsis . 98

5.4 Science Handler . 98
5.4.1 Constructor synopsis . 99
5.4.2 Member synopsis . 99

5.5 Telecommand Handler . 99
5.5.1 Constructor synopsis . 99
5.5.2 Member synopsis . 99

5.6 APID Range . 99
5.6.1 Constructor synopsis . 100
5.6.2 Member synopsis . 100

5.7 Exceptions . 101

Chapter 6
The Routing package . . 103

6.1 Name space - VscRouting 104
6.2 Router . . 104

6.2.1 Constructor synopsis . 105
6.2.2 Member synopsis . 105

6.3 Telemetry Router . . 106
6.3.1 Constructor synopsis . 106
6.3.2 Member synopsis . 106

6.4 Science Router . . 106
6.4.1 Constructor synopsis . 107
6.4.2 Member synopsis . 107

6.5 Telecommand Router . 107
6.5.1 Constructor synopsis . 107
6.5.2 Member synopsis . 107

6.6 Exceptions . 108
6.6.1 Insufficient Memory . 108

Chapter 7
The VSC proxy package . . 109

7.1 Name space - VscProxy . . 110
7.2 Proxy . 110

7.2.1 Constructor synopsis . 112
7.2.2 Member synopsis . 112
page 12 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Table of Contents Version/Issue: 1.4/2
7.3 Scheduler control request . . 116
7.3.1 Constructor synopsis . 116
7.3.2 Member synopsis . 116

7.4 Control request . 117
7.5 Cross-strapping options . 117
7.6 SIU interface control request 118

7.6.1 Constructor synopsis . 118
7.6.2 Member synopsis . 118

7.7 DAQ interface control request 118
7.7.1 Constructor synopsis . 119
7.7.2 Member synopsis . 119

7.8 SIU discrete control request . 119
7.8.1 Constructor synopsis . 120
7.8.2 Member synopsis . 120

7.9 SIU reset control request . 121
7.9.1 Constructor synopsis . 121
7.9.2 Member synopsis . 121

7.10 Monitor control request . 121
7.10.1 Constructor synopsis 122
7.10.2 Member synopsis . 122

7.11 SSR control request . . 122
7.11.1 Constructor synopsis 123
7.11.2 Member synopsis . 123

7.12 Down load control request 123
7.12.1 Constructor synopsis 123
7.12.2 Member synopsis . 123

7.13 GBM control request . 124
7.13.1 Constructor synopsis 124
7.13.2 Member synopsis . 124

7.14 Proxy parameters . 124
7.14.1 Constructor synopsis 124
7.14.2 Member synopsis . 125

7.15 Exceptions . . 125
7.15.1 Data Stream Allocated 125
7.15.2 No transmit port . 125
7.15.3 Network Transmit Failure 125

Appendix A
The Datagram support package . 127

A.1 Name space - VscDatagram 128
A.2 Datagram Assembler . 128
Initial public release page 13

The Virtual Spacecraft (VSC) Users Manual
Table of Contents Version/Issue: 1.4/2
A.2.1 Constructor synopsis 129
A.2.2 Member synopsis . 129

A.3 LCI Assembler . 130
A.3.3 Constructor synopsis 130
A.3.4 Member synopsis . 130

A.4 LPA Assembler . 130
A.4.5 Constructor synopsis 131
A.4.6 Member synopsis . 131

A.5 Exceptions . 131

Appendix B
Telemetry from the Monitoring System 133

B.1 Unit conversion . 133
B.1.1 LAT voltage (LatV) . . 134
B.1.2 BPU voltage (BpuV) . 134
B.1.3 BPU Current (BpuI) . . 134
B.1.4 DAQ Current (DaqI) . 134
B.1.5 Thermistor . . 135
B.1.6 RTD . 135

B.2 Telemetry from the 850 board 135
B.2.7 APID = 0x00A8 . . 137

B.3 Telemetry from the 468 board 138
B.3.8 APID = 0x00A4 . . 139
page 14 Initial public release

The Virtual Spacecraft (VSC) Users Manual
List of Tables Version/Issue: 1.4/2
List of Tables

Table 1 p. 6 Document Control Sheet

Table 2 p. 6 Approval sheet

Table 3 p. 7 Document Status Sheet

Table 4 p. 33 Queue scheduling order

Table 5 p. 59 Cross-strapping options for the SIU interface

Table 6 p. 61 Cross-strapping options for the DAQ interface

Table 7 p. 68 Streams and registration methods

Table 8 p. 78 Enumeration of sequence flag for a CCSDS telemetry packet

Table 9 p. 117 Cross-strapping options
Initial public release page 15

The Virtual Spacecraft (VSC) Users Manual
List of Tables Version/Issue: 1.4/2
page 16 Initial public release

The Virtual Spacecraft (VSC) Users Manual
List of Figures Version/Issue: 1.4/2
List of Figures

Figure 1 p. 22 Logical relationship of the VSC and its proxy interface to the observatory

Figure 2 p. 23 Logical relationship of the VSC and its external interface to the observatory

Figure 3 p. 26 Class package inter-dependencies

Figure 4 p. 31 Command and Control flow through the VSC

Figure 5 p. 32 VSC queue, both immediate and stored.

Figure 6 p. 34 Scheduling within a period

Figure 7 p. 34 Phases within a period

Figure 8 p. 38 VSC Finite State Machine Diagram

Figure 9 p. 42 SBC and 1553 interface

Figure 10 p. 43 GPS receiver

Figure 11 p. 44 Science interface

Figure 12 p. 45 Vsc components

Figure 13 p. 46 Digitizer

Figure 14 p. 47 VSC-850 module

Figure 15 p. 49 Corner teststand configuration

Figure 16 p. 50 Internal Connectivity (LAT VSC)

Figure 17 p. 51 External Connectivity (LAT VSC)

Figure 18 p. 56 One proxy interface processing all telemetry streams

Figure 19 p. 56 Multiple proxy interfaces

Figure 20 p. 58 SIU cross-strapping

Figure 21 p. 61 DAQ board cross-strapping

Figure 22 p. 72 Scheduling the “Magic seven”

Figure 23 p. 77 Class dependencies for the CCSDS package
Initial public release page 17

The Virtual Spacecraft (VSC) Users Manual
List of Figures Version/Issue: 1.4/2
Figure 24 p. 95 Class dependencies for the Handler package

Figure 25 p. 103 Class dependencies for the Routing package

Figure 26 p. 110 Class dependencies for the proxy package

Figure A.1 p. 127 Class dependencies for the datagram support package

Figure B.1 p. 137 Enumeration of 850 board monitored quantities

Figure B.2 p. 139 Enumeration of 468 board monitored quantities
page 18 Initial public release

The Virtual Spacecraft (VSC) Users Manual
List of Listings Version/Issue: 1.4/2
List of Listings

Listing 1 p. 78 Enumeration for packet sequence flags

Listing 2 p. 79 Class definition for Packet

Listing 3 p. 81 Class definition for TeleCmnd

Listing 4 p. 83 Class definition for Mangle

Listing 5 p. 85 Class definition for GenericTelemetry

Listing 6 p. 87 Class definition for Telemetry

Listing 7 p. 87 Class definition for Science

Listing 8 p. 88 Class definition for M7Cmnd

Listing 9 p. 89 Class definition for Attitude

Listing 10 p. 91 Class definition for Data

Listing 11 p. 93 Class definition for TimeTone

Listing 12 p. 96 Class definition for Handler

Listing 13 p. 98 Class definition for TelemetryHandler

Listing 14 p. 98 Class definition for ScienceHandler

Listing 15 p. 99 Class definition for TeleCmndHandler

Listing 16 p. 100 Class definition for ApidRange

Listing 17 p. 105 Class definition for Router

Listing 18 p. 106 Class definition for TelemetryRouter

Listing 19 p. 107 Class definition for ScienceRouter

Listing 20 p. 107 Class definition for TeleCmndRouter

Listing 21 p. 111 Class definition for Proxy

Listing 22 p. 116 Class definition for Scheduler

Listing 23 p. 117 Class definition for Control

Listing 24 p. 118 Class definition for SiuInterface
Initial public release page 19

The Virtual Spacecraft (VSC) Users Manual
List of Listings Version/Issue: 1.4/2
Listing 25 p. 119 Class definition for DaqInterface

Listing 26 p. 120 Class definition for ToggleLines

Listing 27 p. 121 Class definition for Reset

Listing 28 p. 122 Class definition for Monitor

Listing 29 p. 122 Class definition for SsrInterface

Listing 30 p. 123 Class definition for Download

Listing 31 p. 124 Class definition fortGrb

Listing 32 p. 124 Class definition for Parameters

Listing A.1 p. 128 Class definition for Assembler

Listing A.2 p. 130 Class definition for LciAssembler

Listing A.3 p. 131 Class definition for LpaAssembler
page 20 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 1 Introduction Version/Issue: 1.4/2
Chapter 1

Introduction

Physically, the VSC consists of a VME crate with a Single-board Computer (SBC) and up to five
different modules1. The processor executes code operating under VxWorks as its real-time
kernel. As its principal responsibility, the VSC emulates the spacecraft’s (S/C) side of the
interface between spacecraft and LAT2. A series VME modules implement the physical
interface. These modules are controlled and managed with software residing in the SBC. This
software constitutes the VSC’s internal implementation which is not described in this
document. In addition to implementing the ICD, the VSC also includes an external software
interface. The external interface allows an application to control and manage the VSC remotely.
The remote interface is called the VSC‘s Proxy Interface. This interface resides on a remote
platform (both UNIX and Windows based platforms). The sum total of the VSC’s hardware,
internal software, and external interface constitute a spacecraft simulation. Other simulations
of the spacecraft exist, each with complementary features. However, the VSC is designed
expressly to meet the specific requirements of the LAT and in particular address the needs of
the FSW group with respect to the simulation of the science data acquired by the LAT. To this
end, the VSC has some features not required of the spacecraft:

• interface to the FES (Front-End Simulator)

• the ability to set the observatory time to an arbitrary value

• the ability to start and stop observatory time

• the ability to drive, externally, the VSC’s absolute time and position model

• “real-time” access to science data

Any application, coded against the proxy interface, should partition these features in such a
way that as the VSC is moved into a more realistic observatory environment, these features can
either appropriately mutate or be disabled.

An application coded against the proxy interface would provide its users the fiction of
operating the LAT as if it were on-orbit. Logically, if the VSC represents a simulation of the

1. A description of the VSC hardware is found in Chapter 2.

2. Hereafter, referred to as the Spacecraft (S/C) ICD (Interface Control Document).
Initial public release page 21

The Virtual Spacecraft (VSC) Users Manual
Chapter 1 Introduction Version/Issue: 1.4/2
spacecraft, then the application, coded against the proxy interface, would represent a
simulation of the ground station. Because the proxy interface is a programmatic interface, a
variety of ground station simulations could be envisioned. For example, “ground stations”
whose client is:

• FSW and FSW Test, in order to both develop and test the LAT’s flight software system

• I & T (“LATTE 5”), in order to manage the integration and test of the instrument

• The ISOC, in order to both develop and test the instrument’s ground station

The relationship between the role of the VSC, its proxy interface, the Spacecraft, LAT, and
ground station is illustrated in Figure 1:

Where here (as one example) the emulation of the ground station is “LATTE 5”. Recall the LAT
itself represents an abstraction. This abstraction is realized in many forms, three examples are:
the test-stand, the test-bed, and of course, the physical realization of the real LAT. Therefore
any application implementing the proxy interface may inter-operate (through the VSC) with
any representation of the LAT, whether it’s the “real thing”, the testbed, or a teststand. This
provides the user with a powerful tool to debug and commission their own applications. As
an example, within Figure 1, the emulation of the LAT is the testbed residing in the DataFlow
lab.

1.1 Information Exchange

Vertical arrows shown between entities in Figure 1 represents flow of information.
Information is exchanged between entities using a variety of protocols, with the protocol

Figure 1 Logical relationship of the VSC and its proxy interface to the observatory

spacecraft

LATTE 5
PROXY INTERFACE

VSC

Front-End Interface

Back-End Interface

TESTBED

Back-End Interface

“emulation of”

LAT

“emulation of”

“emulation of”

ground station
page 22 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 1 Introduction Version/Issue: 1.4/2
varying on both the type of information exchanged and the information’s latency and
bandwidth requirements. Therefore, the information flow represented by a single arrow in
Figure 1 can be further decomposed into a set of individual data streams as illustrated in
Figure 2:

Each arrow represents not only the type of information exchanged on the stream, but also that
information on any one stream is exchanged asynchronously with respect to information
exchange on any other stream. The direction of the arrow represents the direction information
flows on the stream. Note that for some streams information flow is bi-directional.

1.1.1 Information exchange between LAT and VSC

1553: All information transferred by the 1553 stream is encapsulated as CCSDS packets
and these packets can flow in either direction between VSC and LAT. The LAT and
VSC specify the type of these packets as either telecommands or telemetry (see
chapter 4). Telecommands received by a recipient direct that recipient to perform
some generic type of action. Telemetry received by a recipient contains generic
information about the state or health of the entity sending the packet. The LAT
breaks its telemetry arbitrarily into two types: diagnostic and housekeeping (see
[18]). An example of a telecommand would be a dump memory request sent by
the VSC to the LAT specifying an upload of a specific piece of memory on the
processor within a SIU. An example of telemetry would be a packet sent by the
LAT to the VSC describing the current bias voltage of an ACD FREE board.

Figure 2 Logical relationship of the VSC and its external interface to the observatory

command
science

1553 reset discretes science 1-PPS monitoring

PROXY INTERFACE

VSC

LAT

VSC
diagnostic

LAT
diagnostic

VSC
telemetry

LAT
telemetry telemetry
Initial public release page 23

The Virtual Spacecraft (VSC) Users Manual
Chapter 1 Introduction Version/Issue: 1.4/2
Telecommands can either be directed to the LAT by the VSC, or directed to the VSC
by the LAT. Telemetry may be received only by the VSC from the LAT. The set of
possible telecommand and telemetry packets exchanged between LAT and VSC is
defined by the observatory Command and Telemetry Database (see [18]).

reset: Is a specific type of discrete request sent by the VSC to the LAT. This request issues
a reset to the currently selected SIU. This request causes not only a re-boot of the
SIU’s processor, but also causes the SIU to issue a global reset to the entire LAT.

discretes: Discretes are simply digital (boolean) signals exchanged between LAT and VSC.
The VSC can assert/deassert three (3) different discrete signals to the currently
selected SIU. The currently selected SIU can assert/deassert four (4) different
signals to the VSC. These signals are typically used as boot flags between VSC and
LAT (see [8]).

science: Information sent on this stream contains the LAT’s science data. This data
includes both the LAT’s accepted events and housekeeping (science telemetry).
Independent of type of data, information sent on this stream is encapsulated as
CCSDS packets.

1-PPS: This is a signal (pulse) sent by the VSC to the LAT once a second. This signal is sent
with great precision by the VSC to allow accurate correlation of time between VSC
and LAT. The absolute time corresponding to any one particular pulse is sent
sometime later by the VSC to the LAT as a 1553 telecommand (the time-tone
message, see Section 4.12). Normally this pulse and its corresponding absolute
time is maintained with great precision by the VSC using a GPS receiver. See
Section 1.3 for a discussion of how time is maintained on the VSC.

monitoring: This is a predefined set of analog voltage and temperatures on the LAT, but
measured by the VSC. The VSC uses these measurements as input into the decision
to power-on and boot the LAT. The measurement of these temperatures and
voltage are not part of the LAT’s housekeeping telemetry as they must be
monitored even when the LAT is not operating. Instead, this information is sent as
VSC telemetry (see appendix B).

1.1.2 Information Exchange between VSC and proxy interface

command: This stream transmits CCSDS telecommands from the proxy interface to the VSC.
Telecommands fit into two classes: Control requests and Commands. Control
Requests are telecommands consumed entirely within the VSC and generally
constitute the functions to manage and control the VSC and its interfaces to the
LAT. One example of a request would be the telecommand used to establish
which of two SIU’s (primary or redundant) the VSC communicates with on the
LAT. The set of telecommands which are allowed on this stream are enumerated
and described in xxx. Commands are telecommands whose final destination is
the LAT. These commands are queued on the VSC for later delivery to the LAT. The
set of commands allowed on this stream is enumerated and described within the
“The GLAST Command and Telemetry Database” (see [18]).
page 24 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 1 Introduction Version/Issue: 1.4/2
VSC diagnostic: This stream transmits solicited CCSDS telemetry from the VSC to the proxy
interface. Solicited telemetry is requested by the user’s of the proxy interface, by
queuing download requests (see Section 7.12). The set of CCSDS packets which
constitute the allowed telemetry on this stream are enumerated and described in
appendix B. Note that this stream is independent of the VSC telemetry stream
used to receive unsolicited telemetry sourced by the VSC. That stream is the VSC
telemetry stream described below.

LAT diagnostic: This stream transmits CCSDS telemetry from the VSC to the proxy interface.
This telemetry is the LAT diagnostic telemetry which was brought into the VSC
through the 1553 interface between VSC and LAT. The set of CCSDS packets which
constitute the allowed telemetry on this stream are enumerated and described
within the “The GLAST Command and Telemetry Database” (see [18]). Note that
this stream is independent of the LAT telemetry stream. That stream is the LAT
telemetry stream described below.

VSC telemetry: This stream transmits unsolicited CCSDS telemetry from the VSC to the proxy
interface. An example of such telemetry would be the voltage and temperatures
of the LAT which are measured by the VSC. The set of CCSDS packets which
constitute the allowed telemetry on this stream are enumerated and described in
xxx. Note that this stream is independent of the LAT telemetry stream used to
receive housekeeping and diagnostic telemetry sourced by the LAT, but which are
brought out to the proxy interface through the VSC. That stream is the LAT
telemetry stream described below.

LAT telemetry: This stream transmits CCSDS telemetry from the VSC to the proxy interface.
This telemetry is the LAT housekeeping and diagnostic telemetry which was
brought into the VSC through the 1553 interface between VSC and LAT. The set of
CCSDS packets which constitute the allowed telemetry on this stream are
enumerated and described within the “The GLAST Command and Telemetry
Database” (see [18]). Note that this stream is independent of the VSC telemetry
stream. That stream is the VSC telemetry stream described above.

Science: This stream transmits CCSDS telemetry from the VSC to the proxy interface. This
telemetry is the LAT science telemetry which was brought into the VSC through the
science interface between VSC and LAT. The science stream carries both the LAT’s
events and science telemetry. The set of CCSDS packets which constitute the
allowed telemetry on this stream are enumerated and described within the “The
GLAST Command and Telemetry Database” (see [18]).

1.2 Software methodology and organization

Software used for both the VSC and its proxy interface is based on object-oriented model, with
C++ as the implementation language. Consequently, the interface is expressed primarily as a
series of classes. Many of the classes work together to provide a single coherent set of services.
These classes are grouped together to form a class package1. The VSC software is comprised of
Initial public release page 25

The Virtual Spacecraft (VSC) Users Manual
Chapter 1 Introduction Version/Issue: 1.4/2
ten of these packages. Each package corresponds to both an individual name space and
individual sets of header files (see Section 1.2.2). The relationship between packages is
expressed in Figure 3:

Each box represents a single package. The name of the package is contained within the box.
Arrows between boxes represent the dependencies between packages, with the direction of
arrow pointing to the dependent package. For example, VscRouting and VscDrivers are
both dependent on VscDataHanders. Dependencies can be of three different forms:

• inheritance

• “has a” relationship

• “uses” relationship

Shaded boxes represent the packages used exclusively for implementation and are expected
to have no direct interest to a user or their applications. The four unshaded boxes constitute
the proxy interface and contain those classes which define the public (proxy) interface. It is
from these three packages that a user’s application will be constructed. A summary of the
function of these packages would be:

VscCcsds: The quanta of information exchange between VSC and proxy interface is a CCSDS
packet (see [16] and [17]). The observatory differentiates between two types of
CCSDS packets: telecommands and telemetry. Telecommands are sent by the proxy
interface to direct either the VSC or LAT to perform some generic type of action.
Telemetry is received from the VSC by the proxy interface1 and contains generic
information about the state or health of either the VSC or LAT. The CCSDS packet
package contains a variety of classes to both instantiate and inspect CCSDS
packets representing either telecommands or telemetry. See Chapter 4 for a
detailed description of the classes of this package.

1. Unfortunately, the usage of the word package in this context is quite distinct from its usage by CMX (see
Section 1.2.3).

Figure 3 Class package inter-dependencies

1. Although always received from the VSC, telemetry may originate from either the VSC or the LAT.

VscThread

VscRouting

VscQueues

VscProxy

VscHandlersVscCcsds

VscNetwork VscDrivers VscList

VscScheduler
page 26 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 1 Introduction Version/Issue: 1.4/2
VscHandlers: This package provides the mechanisms to “catch” any arrived telemetry.
Telemetry arrives on three different streams: the VSC telemetry, LAT telemetry,
Science telemetry streams. The application provides an individual handler for
each stream. This handler is used to catch and processes telemetry packet arriving
on that particular stream. Each stream is associated with a separate thread (see
Section 3.5). It is in the context of that thread that the application’s handler
executes. Chapter 5 contains a detailed description of the classes of this package.

VscProxy: This package forms the anchor around which the application’s implementation is
built. The package provides the following services:

— Connects to the VSC commanding stream.

— Allows an application to connect to any one of the five telemetry streams.
When connecting, the application registers a handler to catch and process
any and all telemetry packets arriving on the connected stream.

— Allows the user to queue on the VSC any LAT telecommand for subsequent
delivery and execution on the LAT.

— Allows the user to queue on the VSC any VSC telecommand for latter delivery
and execution on the VSC. These telecommands’ construction and
transmission are hidden behind another set of eight classes. Each class
groups together related telecommands into a single coherent interface. The
functions of these classes are to:

— control the VSC’s scheduler

— select and monitor SIU cross-strapping

— select and monitor DAQ board cross-strapping on the GASU

— control and monitor the FES (Front-End Simulator)

— queue a GRB (Gamma Ray Burst) request to the LAT

— monitor and control the state of the “device ready” line of the
science interface between VSC and LAT

— monitor and control the discrete interface between VSC and LAT

— define the scheduling of the seven different ancillary telecommands
for each and every second of the VSC’s operation

See Chapter 7 for a detailed description of the classes of this package.

Each package is assigned its own individual chapter. These chapter provide a detailed
description of the classes contained within the package. For example, the VscCcsds package
is described in chapter 4.

1.2.1 Documentation conventions

Each package is described individually in its appropriate chapter. Each description starts with
a synopsis of the package’s function, followed by a class dependency diagram expressing the
Initial public release page 27

The Virtual Spacecraft (VSC) Users Manual
Chapter 1 Introduction Version/Issue: 1.4/2
relationships between the classes of the package and the package’s linkages to other classes in
other packages. The conventions for these diagrams are as follows:

— Each box represents a class.

— A shaded box indicates a class which is outside the package and on which at least one
of the package’s classes is dependent.

— Arrows specify a relationship between classes. A solid line specifies an “inheritance”
relationship. A dotted line specifies either a “uses” or a “has a” relationship.

— The direction of the arrow is such that an arrow points away to the dependent class.

Following the class diagram is a description for each of the classes of the package. Each class
description begins with a class specification. The specification syntax is C++ as this is
implementation language for both the VSC and its proxy interface. Following the specification
is a short synopsis of the class’s constructors and members. The package description ends
with an enumeration of the exceptions the classes of the package may throw.

1.2.2 Header files and name spaces

Each package has its own name space. The name of this space corresponds to the name of the
package. Each class within the package has two associated files:

— A file with an extension “.hh” containing the interface (class) description

— A file with an extension of “.cc” containing the class’s implementation

Each file name has the form: PackageName-ClassName. For example, the class description
file of the CCSDS telemetry packet is a part of the VscCCSDS package and would, therefore,
have the file name “VscCcsds-Telemetry.hh”, while its corresponding implementation
file would have the name “VscCcsds-Telemetry.cc”.

1.2.3 Configuration management

The code base is managed using the FSW (Flight-Software) management and build system (see
[21]). The code base is organized under its own project. The project name is VSC.

The VSC package and constituent organization remains to be described.

1.3 Observatory time

The VSC has the responsibility for maintaining consistent time between it and the LAT. In turn,
the LAT is responsible for insuring its clock is consistent both within itself and the FES
(Front-End-Simulator)1. In this fashion, time is coherently maintained between spacecraft,
instrument, and event simulation. The LAT insures consistency between it and the FES by
page 28 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 1 Introduction Version/Issue: 1.4/2
driving the FES’s clock using the LAT external test connector (see [19]). Coherency between
VSC and LAT is a bit more complex and requires understanding how the VSC represents and
keeps time.

1.3.1 Time representation

The VSC represents time as an unsigned 32-bit value, in which one count equals one second. A
value of zero corresponds to the time at 00:00:00.0 hours at January 1st, 2001. This is the
common unit of time measurement between spacecraft and instrument (see [8]). The agreed
upon current time between VSC and LAT is maintained within the VSC’s observatory time-base.
The time-base is updated once a second (see Section 1.3.2), therefore, its value at any one point
corresponds to the number of seconds since the epoch 00:00:00.0 hours at January 1st, 2001.
The VSC uses the observatory time-base to:

— determine when a telecommand becomes due (Section 1.3)

— Set the period time for all ancillary commands

— time-tag any telemetry the VSC might source

— time-tag any necessary timing information sent to the LAT

In short, wherever the VSC requires an absolute time, it does so by accessing the observatory
time-base.

1.3.1.1 Initializing the observatory time-base

In addition to the observatory time-base the VSC also maintains a local or wall-clock time-base.
Both time-bases are initilized whenever the VSC is booted. First the wall-clock time-base is
initialized. Its initial value depends on the presence or absence of a GPS receiver within the
VSC (see Chapter 2).

— If a GPS receiver is present, the time-base is set to the current universal time as
determined by the GPS receiver.

— If a GPS receiver is not present, the time-base is set to the current universal time as
determined by the local vxWorks real-time clock (see xxx).

Once the wall-clock time -base is established, the observatory time-base is simply initialized
to the current value of the wall-clock time-base. However, at any time, the base value of the
observatory time-base can also established via a request through the proxy interface (see
Section 7.4). The updated initial value depends on whether or not the request specifies a a
particular value:

— If a request specifies a particular time, the time-base will be set to that time.

1. When the LAT is implemented within the testbed.
Initial public release page 29

The Virtual Spacecraft (VSC) Users Manual
Chapter 1 Introduction Version/Issue: 1.4/2
— If a request does not specify a particular time (the “don’t care” value), the time-base
will be set to the current value of the wall-clock time-base.

Note, that whatever the mechanisms the time-base is established (booting or requested) the
the VSC scheduler must be in the stopped state (see Section 1.4.3). Setting an explicit time
allows the VSC’s time to be consistent with, for example, a physics simulation which drives
the LAT through the FES.

1.3.2 Time Keeping

Both the VSC and LAT are slaved to a hardware generated 1-PPS (One-Pulse Per Second)
signal. The presence or absence of a GPS receiver (see Chapter 2), determines which one of two
types of 1-PPS signal is used:

— A stable source. A 1-PPS signal derived by VME based GPS receiver. In turn, The GPS
receiver may derive its timing externally (from satellite), or internally (“fly wheel”).

— A degraded source. A 1-PPS signal derived from a clock driven by the VSC’s science
interface (see Chapter 2).

On boot, the VSC chooses for its 1-PPS signal the most stable source available. The 1-PPS signal
has four functions:

i. re-synchronizes the wall-clock

ii. increments the observatory time-base

iii. triggers the VSC’s scheduler (see Section 1.4)

iv. is transmitted to the LAT

Shortly before the 1-PPS signal is transmitted to the LAT, the VSC generates the so-called
“time-tone” telecommand (see Section 4.12). This command announces the observatory time
for corresponding 1-PPS signal. This telecommand is one of the seven ancillary commands
sent once a second to the LAT (see [8]).

Note, that one field of this command specifies whether or not the source of the 1-PPS signal was a GPS
receiver. The value of this field is independent of which of the two types of sources are used by the VSC.

1.4 Routing and scheduling requests

The command and control of the VSC is governed by five different types of objects:

inPorts: Delivers request packets off a stream.

routers: Routs arrived requests, based on APID, to their appropriate queue.

queues: Holds telecommands in time-order for their later execution.

scheduler: Examines, once a second, each queue to determine whether there are any
telecommands due for execution. Scheduling is discussed in Section 1.4.3.
page 30 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 1 Introduction Version/Issue: 1.4/2
drivers: Transforms telecommands to appropriate LAT interface commands. Sends these
commands to the LAT.

The flow of command and control through these objects is illustrated within Figure 4:

1.4.1 Routing

The VSC receives direction through a specific type of telecommand called a control request (see
Section 7.4). Requests to the VSC originate from two different sources:

• From the Proxy, through a network interface. Requests are transmitted from the proxy
up to the VSC, through the command stream. Requests arriving on the command
stream are meant to provide direction, either to the VSC, or indirectly the LAT.

• From the LAT. These requests arrive from the LAT through the 1553 interface.

Once requests arrive at the vsc, the router (based on request contents) directs the request to its
appropriate queue.

Figure 4 Command and Control flow through the VSC

command port

commanding stream

schedule processing

queue
command

stored

queue
command
ancillary

queue
command
immediate

queue
control
stored

queue
control

immediate

1553 driverScience driverAnalog driver Discrete driver

schedule processing

queue
control

transitions

routing
Initial public release page 31

The Virtual Spacecraft (VSC) Users Manual
Chapter 1 Introduction Version/Issue: 1.4/2
1.4.2 Queuing

Queues are used to buffer requests dispatched from the router1. Nominally, the queue treats a
request as a container holding a variable number of telecommands. Each telecommand
represents a quanta of work requested of the VSC. The queue’s principal responsibility is to
decouple the rate at which the requests arrive with respect to the rate at which work (as
represented by the telecommands) can be performed. The queue serves the additional
function of storing requests to be executed at a future, specific time.

A queue contains two lists: A pending and a free list. Lists have FIFO discipline. An entry on
either list is a reference to a work request. If a work request is on the pending list, it represents
work to be performed. If a work request is on the free list, it is available as a template from
which to form a pending work request. The work request contains a variable number of
telecommands up to some predefined maximum. A work request also specifies the time at
which the actions represented by the set of telecommands are to be executed. Execution time is
specified using GLAST standard convention, where time is represented as the number of
seconds since the epoch 00:00:00.0 hours at January 1st, 2001. The relationship between list
and work request is illustrated in Figure 5:

The life cycle of a work request is basically as follows: when a request telecommand from the
router arrives, a work request is removed from the head of the free list, the contents of the
router’s request copied to the work request, and the work request inserted at the tail of the

1. With the exception of LAT based requests, which originate through the 1553 interface.

Figure 5 VSC queue, both immediate and stored.

router triggers

pending work request

telecommand0

telecommand1

telecommand2

telecommandn-1

telecommandn

of commands

execution time

pending list

head

tail

free list

scheduler triggers

head

tail
page 32 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 1 Introduction Version/Issue: 1.4/2
pending list. At an appropriate time, the scheduler (as described in Section 1.4.3), removes a
work request from the head of the pending list, performs the corresponding work and then
returns the work request by inserting at the tail of the free-list. There are seven different
activities which compete for the scheduler’s resources and thus the VSC assigns to each
activity its own queue. Each queue is differentiated by three parameters:

i. The maximum number of telecommands held by any one work request.

ii. Sort order. Entries may be ordered either in arrival time, or execution time. A queue
which sorts by arrival time is called an immediate queue. A queue which sorts by
execution time is called a stored queue.

iii. The maximum number of pending work requests. Each queue has default value, but
this value can be user configured (see Section 3.8.1).

The parameterization of these seven queues is enumerated within Table 4:

The sum of all work requests, over all queues represent the work that the VSC is asked to both
schedule and execute.

1.4.3 Scheduling

The scheduler is woken up periodically, once per second. Its principal responsibility is to both
determine and then sequence any necessary work within each one second period. The process
requires the scheduler to break up each period into twenty-five, 40 milliseconds time slots as
illustrated in Figure 6:

Table 4 Queue scheduling order

name type Contains... maximum1

1. Expressed as the maximum number of telecommands per work request.

size2

2. This is the default size, expressed as the maximum number of entries.

Transistion Immediate VSC scheduler state transitions 1 16

ControlStored Stored VSC control telecommands 7 16

Control Immediate VSC control telecommands 7 16

Ancilliary Stored LAT ancillary telecommands 7 8192

CommandStored Stored LAT telecommands 8 16

Command Immediate LAT telecommands 5 16
Initial public release page 33

The Virtual Spacecraft (VSC) Users Manual
Chapter 1 Introduction Version/Issue: 1.4/2
This figure shows the succession of periods (labelled t0, t1, etc...) and the structure of any one
period (for this example, period t2). Within the period are the twenty-five slots, numbered
such that increasing slot number corresponds to increasing time (relative to the period’s start).
Associated with each slot, is a potential telecommand to be sent by the VSC to the LAT (see
Section 1.4.3.4). For example, slot nine (9) is offset 360 milliseconds from the beginning of the
period, persists until 400 milliseconds, and is associated with the transmission of an ancillary
attitude telecommand (see Section 4.10). Spanning these twenty-five slots, scheduling involves
five distinct phases, sequenced as illustrated in Figure 7:

Figure 6 Scheduling within a period

Figure 7 Phases within a period

t0 t1 t2 t3 tn

t2

attitude

attitude

attitude

data

time-tone

attitude

attitude

000
040

080
160

200
240

280
360

400
440

480
560

600
640

680
760

800
840

880
960

1000

telecommand
telecommand

telecommand

telecommand
telecommand

telecommand

telecommand

telecommand
telecommand
telecommand

telecommand

telecommand
telecommand

0
1
2
4
5
6
7
9
10
11
12
14
15
16
17
19
20
21
22
24

slot

harvest

0 1 24

transit
control

command
cleanup
page 34 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 1 Introduction Version/Issue: 1.4/2
The activity within each of these phases is described below.

1.4.3.1 Harvesting the work load

During this phase each of the seven queues are probed for potential work. If a queue is not
empty, the due field for the work request at the queue’s head is examined. The due field
contains either zero (0) or an absolute time corresponding to the period in which the work
contained within the entry should be performed. A value of zero specifies the entry contains
immediate work. Immediate work, independent of period, is scheduled as soon as it appears1.
A non-zero value specifies the entry contains stored work. If this value is non-zero, it is
compared to the period’s time. If equal, the work contained within the entry should be
scheduled. In short, from the scheduler’s perspective, harvesting consists of requesting from
the queue its list of work for that period. The work list is a series of telecommands, each
telecommand representing one quanta of work. Therefore, at the end of harvesting, the
scheduler has seven different work lists, one for each queue. If the queue does not have any
work for the specified period its work list will be empty. This phase is the first activity within
slot zero (0).

1.4.3.2 Scheduling state transitions

During this phase the scheduler attempts to process the telecommands on the work list
associated with the transition queue (see Table 4). The scheduler’s behaviour is modelled as a
Finite State Machine (FSM). The states and transitions of this machine are discussed in
Section 1.4.4. The events which trigger state transitions correspond to the telecommands on
this work-list. Therefore, during this phase the scheduler transits to a potentially new state
consistent with its current state and the presence of any transition events. Once this phase
completes, if the scheduler is left in either the paused or stopped state the remainder of the
phases discussed below are not executed. This phase occurs within slot zero (0).

1.4.3.3 Scheduling control work

During this phase the scheduler attempts to process the telecommands on the work lists
associated with the LAT requests, immediate, and stored control queues (see Table 4). Control
telecommands provide direction to the VSC. For example, a request to download diagnostic
telemetry (see xxx for a list of these telecommands). In order to bound the time used by this
phase, the maximum number of control telecommands which can be executed during any one
period is arbitrarily limited to eight (8), however, the sum of the telecommands on the three
lists could be as many as sixteen 16). The schedular priorities telecommand execution by
processing the commands on the stored work list first, followed by the commands on the
immediate work list and last by the commands on the LAT work list. The number of
immediate commands executed is the minimum of the difference between the maximum (8)

1. Rounded to a period boundary.
Initial public release page 35

The Virtual Spacecraft (VSC) Users Manual
Chapter 1 Introduction Version/Issue: 1.4/2
and the number of stored commands processed and the number of commands on the
immediate work list. any commands on the immediate which cannot be processed will be
deferred to the subsequent period. Note that at most seven (7) telecommands can be on a
stored work list. This ensures that, independent of the number of stored telecommands, at
least one immediate telecommand is executed per period. This phase occurs within slot zero
(0).

1.4.3.4 Scheduling command work

During this phase the scheduler attempts to queue to the LAT, through the VSC’s 1553
interface, the telecommands on the work lists associated with the ancillary, immediate, and
stored command queues (see Table 4). These telecommands provide direction to the LAT. For
example, the telecommand used to take the SIU out of primary boot (see [8] for a list of these
telecommands). The spacecraft (and consequently VSC) limits transmission to, at most, one
command per slot. Five of these slots are not accessible to the user1, therefore, the maximum
number of proxy originated commands which can be sent to the LAT during any one period is
limited to twenty. Seven of these slots are pre-allocated to the ancillary sequence (the so-called
“magic seven”) and each particular ancillary command is mapped to a specific slot. For
example, the timetone command is always sent on slot five. (see Figure 6 for the complete
assignments). This leaves thirteen slots allocated to arbitrary commands, to be scattered within
arbitrary slots. The scheduler fills any given slot depending on whether the slot would be
occupied with either an ancillary or generic command:

— If the slot specifies an ancillary command, the telecommand at the head of the work
list associated with the ancillary queue is removed and transmitted. If, when
removing a command from this list the list was empty, a default command is looked
for. If the default is present, it is transmitted. If a default command is not found, the
slot is left empty.

— If the slot specifies an generic command, the telecommand at the head of the work list
associated with the stored command queue is removed and transmitted. If, when
removing a command from this list the list is empty, the telecommand at the head of
the work list associated with the immediate command queue is removed and
transmitted. If, when removing a command from this list the list is empty, the slot is
left unfilled.

This phase occurs on slots zero (0), through slot twenty-four (24).

1.4.3.5 Cleanup

This phase occurs after all the work scheduled for this period is performed. In this phase the
work requested of the period is compared with the work performed within the period. When
the two are equal, the resources required to perform the work are recovered. In detail this
involves asking each of the six queues to examine the work-list for the work request at the
head of its pending list. If the work-list is empty, the work request is removed from the
queue’s pending list and returned to its free-list. This phase occurs on the last slot (24).

1. They are reserved to the 1553 hardware/driver to solicit telemetry from the LAT.
page 36 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 1 Introduction Version/Issue: 1.4/2
1.4.4 Scheduler State Model

The scheduler has abstract behaviour. For example, it can be started or stopped. This
behaviour is modelled as a Finite State Machine (FSM) with five states. These states are:

1. Stopped. In this state:

— all queues are nominally empty

— the VSC accepts all telecommands

— time does not increment

— scheduling is disabled

2. Paused. In this state:

— the state of all queues is irrelevant

— the VSC accepts all telecommands

— time does not increment

— scheduling is disabled

3. Running. In this state:

— the state of all queues is irrelevant

— the VSC accepts all telecommands

— time increments

— scheduling is enabled

4. Flushing queues. In this state:

— the state of all queues is indeterminate

— the VSC rejects all telecommands

— time does not increment

— scheduling is disabled

5. Setting time. In this state:

— the state of all queues is irrelevant

— the VSC rejects all telecommands

— time does not increment

— scheduling is disabled

Transitions between states are triggered by the execution of a scheduler request. Commands
of this type are scheduled for execution within the phase discussed in Section 1.4.3.2. This
command has two functions:

State transition: Requests a state transition. The function code enumerates the new state
requested of the scheduler. The telecommand parameter is ignored. The set of
potential state transitions are:
Initial public release page 37

The Virtual Spacecraft (VSC) Users Manual
Chapter 1 Introduction Version/Issue: 1.4/2
— Start, put the VSC into a state of running.

— Pause, put the VSC into a paused state.

— Stop, put the VSC into a stopped state.

Set Time: Request a modification of the VSC’s time-base (see Section 1.3). The telecommand
parameter specifies the new value of the time-base.

Like all telecommands sent on the command stream, the user queues these telecommands
through the proxy interface. In this particular case, the interface is contained within the
Proxy class discussed in Section 7.2. Figure 8 illustrates the combination of states and
permitted transitions:

To summarize the main features of this diagram:

— The scheduler comes up in a Stopped state

— Two of these states (Flushing queues and Setting time) are transitory states

— One can only modify the time-base in the Stopped state

— The principle difference between the Paused and Stopped states is that a transition to
the stopped state will flush the queues.

Figure 8 VSC Finite State Machine Diagram

Stopped

start

pause

stop

Running Paused

Flushing queues

Setting time

done

doneset time

stop

start

pause

set timeset time

pausestart

initialize

stop
page 38 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 1 Introduction Version/Issue: 1.4/2
Initial public release page 39

The Virtual Spacecraft (VSC) Users Manual
Chapter 1 Introduction Version/Issue: 1.4/2
page 40 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 2 Hardware Version/Issue: 1.4/2
Chapter 2

Hardware

Physically, the VSC consists of up to eight different types of modules. Seven of the modules are
VME modules and the eighth is a PMC card. These modules are:

i. A commercial Single-Board Computer (SBC). The SBC is a VME module, model
Motorola MVE2304 (see xxx). The 2304 serves two functions: First, as the platform
under which the software of the VSC executes (see chapter 3), and, second as the
carrier for the 1553 PMC cards (see below).

ii. A commercial 1553 interface. The 1553 interface is a model PMC-1553B from Alphi
Technologies (see xxx). This interface is on a PMC form factor and resides in the SBC
described above. A fully populated VSC contains two of these interfaces. One serving
as the primary 1553 interface and the second as the redundant 1553 interface.

iii. A commercial GPS receiver. The GPS receiver is a VME module, model TTM637VME
from Symmetricom Industries (see xxx). This module serves as the time-base for the
VSC and consequently for the LAT when it is attached to the VSC.

iv. A Science interface. This interface is a in-house produced, VME module called the
VSC-SCI. A fully populated VSC contains two of these modules. One serving as the
Primary science interface and the second as the Redundant science interface.

v. A Discrete interface. This interface is a in-house produced, VME module called the
VSC-DSC. A single module implements both the primary and redundant discrete
interfaces.

vi. One or more commercial digitizer boards. The digitizer board is an industry standard
I/O pack, model VMESC5, from Systran Industries (see xxx). These boards digitize the
96 quantities sources by the LAT, but monitored by the VSC.

vii. A cable interface to the LAT. This interface is a in-house produced, VME module called
the VSCIO-850. This board is one of two cable interface modules (see below) between
the VSC and LAT. This particular module services all singles which either come from
or go to the LAT shield. This module has two functions: It adapts the cabling from the
shield to the flat ribbon cables required by the appropriate interface modules.
Initial public release page 41

The Virtual Spacecraft (VSC) Users Manual
Chapter 2 Hardware Version/Issue: 1.4/2
2.1 Electrical conventions

2.2 The SBC and 1553 interface

Figure 9 SBC and 1553 interface

Serial Port

100/Base-T Ethernet

Primary

1553 (A side)

1553 (B side)

MVE2304

A
B

T
C

L
K

1553

A
B

T
C

L
K

1553

Redundant
page 42 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 2 Hardware Version/Issue: 1.4/2
2.3 The GPS receiver

Figure 10 GPS receiver

H
O

U
R

S
M

IN
U

T
E

S
S

E
C

O
N

D
S

TTM637VME

J1

GPS ANT
Initial public release page 43

The Virtual Spacecraft (VSC) Users Manual
Chapter 2 Hardware Version/Issue: 1.4/2
2.4 The Science interface

Figure 11 Science interface

VME DATA

VSC-SCI

RCVXMT

VSC-SCI

DS-06654

LAT

SCIENCE
INTERFACE

IN

FES
OUT

PPS
OUT

FES
IN

PPS
IN
page 44 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 2 Hardware Version/Issue: 1.4/2
2.5 The Discrete interface

Figure 12 Vsc components

VME IN

VSC-DSC

RCVXMT

VSC-DSC

DS-06656

LAT

DISCRETE
INTERFACE

DSC
Initial public release page 45

The Virtual Spacecraft (VSC) Users Manual
Chapter 2 Hardware Version/Issue: 1.4/2
2.6 Digitizer

2.7 LAT Cable interface

Figure 13 Digitizer

A

V
M

E
S

C
5

B

C

D

E

S
YS

TR
A

N
 I/O

SYSTRAN
page 46 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 2 Hardware Version/Issue: 1.4/2
2.8 LAT Monitoring interface

Figure 14 VSC-850 module

P
R

IM
A

R
Y

 D
A

Q
R

E
D

U
N

D
A

N
T

 D
A

Q
S

IU
B

P
U

AB

AB

P R

RP

VSC-850

SCI-PSCI-R

rcvxmt

DSC

P1

P2

rcvxmt rcvxmt
Initial public release page 47

The Virtual Spacecraft (VSC) Users Manual
Chapter 2 Hardware Version/Issue: 1.4/2
2.9 VSC Configurations

2.9.1 The Testbed

As shown in Figure 15, the testbed configuration consists of the following modules:

— One (1) 21-slot 6U VME crate

— One (1) MVE2304 Single-Board-Computer

— Two (2) PMC-1553B 1553 interface modules

— One (1) TTM637VME GPS receiver

— Two (2) VSC-SCI science modules

— One (1) VSC-DSC discrete interface module

— One (1) Systran I/O substrate with four (4) industrial packets

— One VSC-850 LAT interface module
page 48 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 2 Hardware Version/Issue: 1.4/2

Figure 16 illustrates how these modules are cabled up. This configuration requires the
following cables:

— Six (6) LAT-DS-xxxxx

— Six (4) LAT-DS-xxxxx

— Six (5) LAT-DS-xxxxx

Figure 15 Corner teststand configuration

1 2 3 4 5 6 7 8 10 11 12

A

V
M

E
S

C
5

B

C

D

E

S
YS

TR
A

N
 I/O

P
R

IM
A

R
Y

 D
A

Q
R

E
D

U
N

D
A

N
T

 D
A

Q
S

IU
B

P
U

AB

AB

P R

RP

SYSTRAN VSC-850
A

B

T
C

L
K

1553

MVE2304
A

B

T
C

L
K

1553

H
O

U
R

S
M

IN
U

T
E

S
S

E
C

O
N

D
S

TTM637VME

J1

GPS ANT

BLANK

VME IN

VSC-DSC

RCVXMT

VSC-DSC

DS-06656

LAT

DISCRETE
INTERFACE

DSC
VME DATA

VSC-SCI

RCVXMT

VSC-SCI

DS-06654

LAT

SCIENCE
INTERFACE

IN

FES
OUT

PPS
OUT

FES
IN

PPS
IN

VME DATA

VSC-SCI

RCVXMT

VSC-SCI

DS-06654

LAT

SCIENCE
INTERFACE

IN

FES
OUT

PPS
OUT

FES
IN

PPS
IN

A

V
M

E
S

C
5

B

C

D

E

S
YS

TR
A

N
 I/O

SYSTRAN BLANK

P
R

IM
A

R
Y

 D
A

Q
R

E
D

U
N

D
A

N
T

 D
A

Q
S

IU
B

P
U

AB

AB

P R

RP

VSC-850
Initial public release page 49

The Virtual Spacecraft (VSC) Users Manual
Chapter 2 Hardware Version/Issue: 1.4/2
Figure 16 Internal Connectivity (LAT VSC)

xmt

rcv

LAT-DS-XXXXX

LAT-DS-XXXXX

rcv

xmt
SCI-R

xmt

rcv

rcv

xmt
DSC

xmt

rcv

rcv

xmt
SCI-P

J1 PPS PPS

1 2 3 4 5 6 8 10 11

LAT-DS-XXXXX

8 12
page 50 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 2 Hardware Version/Issue: 1.4/2
2.10 VSC Inter-Connectivity

Figure 17 External Connectivity (LAT VSC)

1 2 3 4 5 6 8 10 118 12

EMI shield
JL-xxx JL-xxx

BPU

p r

p r

b a

b a

A

B

JL-235 JL-233 JL-121 JL-122 JL-124 JL-125 JL-138 JL-145

A

B

JL-234JL-232

to Serial port
to Ethernet port
to GPS Antenna
Initial public release page 51

The Virtual Spacecraft (VSC) Users Manual
Chapter 2 Hardware Version/Issue: 1.4/2
page 52 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 3 Using the proxy interface Version/Issue: 1.4/2
Chapter 3

Using the proxy interface

Before starting any application assembled from the proxy interface, the application user
should be satisfied on two counts:

i. There is agreement between the VSC and proxy interface on the VSC’s host name and
the port numbers used for communication. This subject is addressed in Section 3.8.

ii. The VSC is successfully booted (see Section 3.8).

Once the VSC is successfully booted, the user’s application is ready to control the VSC through
the proxy interface. To do so, first, the application must establish a connection to the VSC. This
is very straightforward and requires only an instantiation of a Proxy object (see Section 7.2).
For example:

If the Proxy class is successfully instantiated, the application is successfully connected to the
VSC. Once connected, the application controls the VSC by instantiating one or more requests or
telecommands, and then invoking the execute member of the Proxy class (see Section 7.2),
passing the request as an argument. For example:

constructs an object which instructs the VSC to issue to the LAT a GRB (Gamma-Ray Burst) alert
(Grb, see Section 7.13) and then transmits this request to the VSC for later execution.

Note the VSC comes up in the stopped state (see Section 1.4) and needs starting before any
commands queued to the VSC are actually executed (including the previous example).
However, before starting the VSC, a user typically needs to perform some application specific
initilization. While the form of this initilization is peculiar to each application, most likely it
would include the following steps:

— for each type of telemetry define its router

Proxy vsc;

vsc.execute(Grb);
Initial public release page 53

The Virtual Spacecraft (VSC) Users Manual
Chapter 3 Using the proxy interface Version/Issue: 1.4/2
— define an appropriate set of telemetry handlers

— register an appropriate set of telemetry routers

— queue an initial set of LAT telecommands

— establish the VSC’s time

— start the scheduler

The following code fragments provide one, rather pedagogical, example of how the VSC could
be initialized. First, the necessary telemetry routers must be defined, instantiated and
registered with the proxy interface. For example, assume (albeit, unrealistically) the router
defined in Section 3.5 could be used to catch and process all incoming VSC and LAT telemetry.
Then to instantiate and register this router...

Once registered, the application must be prepared to catch and process telemetry. Note that
while VSC telemetry is inhibited with the scheduler stopped, there is no such guarantee for
LAT telemetry. While highly unlikely that telemetry could flow out of the LAT and through the
VSC with the scheduler stopped, there is nothing in the VSC to actually prohibit such an action.
So if commanding (or any other initilization) should be live before telemetry is received, the
application could defer registration until the last step of initilization.

Next, any LAT telecommands that the application wishes present before scheduling is started
are queued. For example, assume, before any user interaction with the LAT should be allowed,
the application requires assurance that the LAT ‘s housekeeping system is in a well known
state. The LAT initializes the housekeeping system in response to a SYSRET telecommand. A
class representation of this telecommand is defined in Section 3.6. Therefore, to initialize
housekeeping one simply instantiates this class, invokes the execute member of the proxy
interface, passing as an argument the instantiated telecommand:

The execute member transmits the specified telecommand to the VSC, where it is routed to
its appropriate queue for execution at the time until the scheduler is started. Once, the VSC is
started (see below), the telecommand is then set to the LAT, through its 1553 interface. Note
the execute function is synchronous, the function does not return to the caller until the
command has either been safely transmitted to the VSC, or an exception has been thrown.

The next step in the initialization requires the setting the absolute time for the VSC (and
consequently the LAT):

MyRouter* router = new MyRouter;

vsc.latDiagnostic(*router);
vsc.vscDiagnostic(*router);
vsc.latTelemetry(*router);
vsc.vscTelemetry(*router);
vsc.latScience(*router);

vsc.execute(SysReset);
page 54 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 3 Using the proxy interface Version/Issue: 1.4/2
Need some more explanation here.

Next, the scheduler (and the VSC’s clock) is started:

Finally, the LAT itself is reset:

Note, that because the VSC allows more then one command to be executed each period, the
three commands of the examples above could have been queued simultaneously:

3.1 Distribution of telemetry

The preceding example connects all five telemetry streams with one instantiation of the proxy
interface on one host. Schematically this scenario is represented by Figure 18.

#define T0 ((unsigned)0xDEADBEEF)

vsc.execute(SetTime(T0));

vsc.execute(Scheduler(Start));

vsc.execute(Reset);

vsc.execute(Scheduler(Start), SetTime(T0), Reset);
Initial public release page 55

The Virtual Spacecraft (VSC) Users Manual
Chapter 3 Using the proxy interface Version/Issue: 1.4/2
However, there is no necessity to register all streams with any one instantiation of the proxy
interface. For example, diagnostic telemetry is considered “real-time” and its prompt delivery
may be useful to the robust operation of the VSC. In such a case, dividing the diagnostic
telemetry from the housekeeping and science telemetry by directing the streams to two
different proxies could be attractive. One proxy would be responsible for the control and
monitoring of the VSC and the other proxy responsible for processing any data delivered by
the VSC. An even greater isolation between these functions could be achieved by instantiating
the proxies on separate hosts. Such as scenario is represented in Figure 19:

In this scenario, the user on host “A” would connect as follows:

Figure 18 One proxy interface processing all telemetry streams

Figure 19 Multiple proxy interfaces

ScienceVSC telemetry

Host “A”

LAT telemetry

Proxy Interface
Instantiation

VSC

VSC diagnostic LAT diagnostic

ScienceVSC telemetry

Host “A”

LAT telemetry

Proxy Interface
Instantiation

Host “B”

Proxy Interface
Instantiation

VSC

LAT diagnosticVSC diagnostic
page 56 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 3 Using the proxy interface Version/Issue: 1.4/2
While a user on host “B” would connect as follows:

Note, that independent of number of proxies instantiated, or which proxies are connected to
which telemetry streams, each proxy retains a connection to the command stream and
consequently the ability to command the VSC. Therefore, an application must be carefully
crafted when apportioning control responsibilities in order to insure the two users do not
conflict in the management of the VSC.

3.2 Managing the SC/GBM interface

The GBM instrument’s primary responsibility with respect to the LAT is notification of
candidate GRBs (Gamma-Ray-Burst). As the GBM does not communicate directly with the LAT,
these alerts are relayed through the spacecraft. When notified by the GBM, the spacecraft
sends an agreed upon signal to the LAT. This interface allows an application to trigger the VSC
to emit such a telecommand. For example:

MyRouter* router = new MyRouter;

Proxy controlAndMonitor;

controlAndMonitor.latDiagnostic(*router);
controlAndMonitor.vscDiagnostic(*router);

MyRouter* router = new MyRouter;

Proxy processor;

processor.latTelemetry(*router);
processor.vscTelemetry(*router);
processor.latScience(*router);

vsc.execute(Grb);
Initial public release page 57

The Virtual Spacecraft (VSC) Users Manual
Chapter 3 Using the proxy interface Version/Issue: 1.4/2
3.3 Managing the SC/LAT interfaces

3.3.1 SIU cross-strapping

The LAT has two SIUs (Spacecraft Interface Unit). One SIU is designated as the Primary SIU and
the other as the Redundant SIU. In orbit, the redundant SIU is called out as a cold spare. As the
name implies, SIUs interact with the spacecraft. In turn, the spacecraft mitigates against
single-point failure by having two SIU interfaces which the VSC emulates. One interface is
called out as the Primary LAT interface and the other as the Redundant LAT interface. In order
to support full redundancy each of the four units has both an “A” and “B” port. This results in
the cross-strapping of both interface and SIU as illustrated by Figure 20:

The figure illustrates that any one time the spacecraft uses one of its interfaces to communicate
with one of the LAT’s SIUs. Note that while the figure shows any one communication path as a
single “wire”, in actual fact, the wire represents communication between the three different
types of physical interfaces between SIU and VSC. These include:

i. the 1553 interface

ii. the Discrete interface

iii. the Reset interface1

Therefore, whenever the cross-strapping is changed for one, it’s changed in unison for all
three of these physical interfaces. Each one of the four options corresponds to a particular
path between the units as enumerated in Table 5:

Figure 20 SIU cross-strapping

1. Which is, from the viewpoint of the spacecraft, a part of the discrete interface.

LAT VSC

LAT Interface
Primary

A

B

LAT Interface
Redundant

A

B

SIU

Primary
A

B

SIU

Redundant
A

B

page 58 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 3 Using the proxy interface Version/Issue: 1.4/2
When the VSC is initially booted, the VSC defaults to using the AA path, which corresponds to using
the Primary LAT interface communicating with the Primary SIU.

The SiuInterface request class (see Section 7.6) is used to modify the current
spacecraft/LAT cross-strapping. The class’s constructor takes as an argument an enumeration
(see Section 7.5) which specifies which one of the four cross-strapping options should be
selected. For example, to communicate with the redundant SIU through the VSC’s redundant
interface:

Or to restore the cross-strapping to its default setting...

3.3.2 SIU Reset

The Reset request class (see Section 7.9) is used to issue a LAT Reset, as this fragment
illustrates:

This reset signal is communicated to the LAT through whatever cross-strapping is currently
established (see 3.3.1).

Table 5 Cross-strapping options for the SIU interface

Path

Use Unit...

VSC LAT

Primary Redundant Primary Redundant

AA yes no yes no

AB yes no no yes

BA no yes yes no

BB no yes no yes

vsc.execute(SiuInterface(BB));

vsc.execute(SiuInterface(AA));

vsc.execute(Reset);
Initial public release page 59

The Virtual Spacecraft (VSC) Users Manual
Chapter 3 Using the proxy interface Version/Issue: 1.4/2
3.3.3 SIU discretes

The ICD specifies three1 individual lines between the spacecraft and LAT which are driven by
the spacecraft. The spacecraft can either assert or deassert these lines.

When the VSC is initially booted the VSC interface deasserts the discrete lines.

The ToggleLines request class (see Section 7.8) is used to toggle the state of the three
discrete lines. In a single request the interface may change the value of one, two, or three of
these lines. The first argument specifies the discrete lines to toggle and the second argument
determines each line’s new value. Each bit offset of each argument corresponds to a particular
line. For example, bit-offset zero (0) corresponds to line zero. Only if a bit-offset in the first
argument is set, will the corresponding line’s value be changed. The new value of the line is
determined by the corresponding bit-offset in the second argument. The ToggleLines class
provides an enumeration for each of these offsets. For example, to deassert line zero (0) and to
assert line two (2), while leaving line one (1) unchanged:

Which one of the two sets of discrete lines (primary or redundant) actually toggled is
determined by whatever cross-strapping is currently established (see 3.3.1).

3.3.4 GASU (DAQ board) cross-strapping

The LAT has one GASU which contains two DAQ boards. One DAQ board is designated as the
Primary DAQ board and the other as the Redundant DAQ board. Only one of the two DAQ
boards is active at any one time. In turn, the spacecraft mitigates against single-point failure
by having two DAQ board interfaces which the VSC emulates. One interface is called out as the
Primary LAT interface and the other as the Redundant LAT interface. In order to support full
redundancy each of the four units has both an “A” and “B” port. This results in the
cross-strapping of both interface and DAQ boards as illustrated by Figure 21:

1. Actually four, but the fourth is used as the LAT reset and is called out separately in Section 3.3.2.

vsc.execute(ToggleLines(Line0 | Line2,));
page 60 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 3 Using the proxy interface Version/Issue: 1.4/2
The figure illustrates that any one time the spacecraft uses one of its interfaces to communicate
with one of the LAT’s DAQ boards. Note that while the figure shows any one communication
path as a single “wire”, in actual fact, the wire represents communication between the three
different types of physical interfaces between SIU and VSC. These include:

i. the science interface

ii. the 1-PPS interface

iii. the analog temperature and voltage measurements associated with the DAQ board

Therefore, whenever the cross-strapping changes, it’s changed in unison for all three of these
physical interfaces. Each one of the four options corresponds to a particular path between the
units as is enumerated in Table 6:

When the VSC is initially booted, the VSC defaults to using the AA path, which corresponds to using
the Primary LAT interface communicating with the Primary DAQ board.

The DaqInterface request class (see Section 7.7) is used to modify the current
cross-strapping. The class’s constructor takes as an argument an enumeration (see Section 7.5)

Figure 21 DAQ board cross-strapping

Table 6 Cross-strapping options for the DAQ interface

Path

Use Unit...

VSC LAT

Primary Redundant Primary Redundant

AA yes no yes no

AB yes no no yes

BA no yes yes no

BB no yes no yes

LAT VSC

LAT Interface
Primary

A

B

LAT Interface
Redundant

A

B

DAQ

Primary
A

B

DAQ

Redundant
A

B

Initial public release page 61

The Virtual Spacecraft (VSC) Users Manual
Chapter 3 Using the proxy interface Version/Issue: 1.4/2
which specifies which one of the four cross-strapping options should be selected. For
example, to communicate with the primary DAQ board through the VSC’s redundant interface:

Or to restore the cross-strapping to its initial value...

3.3.5 Enabling the Science Interface

The science interface on the spacecraft contains a data enable. This enable is the so-called
“DEVICE_READY_LINE”. In order to enable or disable the SSR interface one instantiates the
Ssr class (see Section 7.11).

When the VSC is initially booted, the science interface is disabled.

Until the science interface is enabled any science data sent to the VSC by the LAT, remains
queued on the LAT. Once the interface is enabled (the DEVICE_READY_LINE is asserted), this
queued data will be received on the VSC and forwarded to the proxy interface as science
telemetry (see [8]). For example, to enable science data:

and to disable the science data...

3.3.6 Enabling Diagnostic Monitoring

The spacecraft has the responsibility to monitor ninety-two (92) different temperatures and
voltage whose origin is the LAT. This information is acquired and brought to the ground as
one component of the spacecraft’s telemetry. In order to mitigate against single point failure,
each quantity is brought to the spacecraft from the LAT twice, therefore, in actuality, this
corresponds to monitoring 184 quantities. The spacecraft has block redundancy, with one set
of signals (the primary signals) being monitored by one monitor and the other set (the
redundant signals) being monitored by another. At any one time only a single set of signals are
acquired and sent to the ground. As the VSC emulates the spacecraft it must provide
analogous functionality. In addition, to support ground operations the VSC must also monitor
10 different voltages and currents from the BPU. Both these functions are provided by the
so-called monitor interface. Physically, this information is brought from the LAT to the VSC

vsc.execute(DaqInterface(AB));

vsc.execute(DaqInterface);

vsc.execute(Ssr(Enable));

vsc.execute(Ssr(Disable));
page 62 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 3 Using the proxy interface Version/Issue: 1.4/2
through the VSC’s 850 and 468 boards (see Chapter 2). Once brought to the VSC these data are
digitized by the VSC’s Systran boards (see Chapter 2). The monitor software on the VSC
periodically, once a second, reads these digitized temperatures and voltages, packages them
up as a set of CCSDS telemetry packets and sends these packets down to the proxy through its
VSC diagnostic stream (see Section 7.2). The monitor has two components: the primary monitor
and the redundant monitor. The user must select which one of these two monitors will be used
to collect this telemetry. Once this telemetry arrives at the proxy, the user handles this
information in the same fashion as it would process any other telemetry (see Section 3.4).
Monitor selection (primary or redundant) as well as its disabling is available through the
proxy interface (see Section 7.10). When monitoring is disabled, the VSC no longer either
acquires or transmits monitoring packets.

The VSC specifies one APID for the information digitized by the 850 board and one APID for
the information digitized by the 468 board. Therefore, once a second, the user can expect to
see two different packets on the diagnostic stream. The structure and APIDs of these packets
are defined in Appendix B. Note that the telemetry packet contains a field identifying whether
data were acquired with the primary or redundant monitor. Different versions of the VSC can
contain, zero, one, or both of these boards, consequently, the actual number of packets
transmitted per second is dependent on the number of boards. For example, if a VSC contains
only an 850 board, only the packet corresponding to that board is transmitted. If the VSC
contains neither of these boards, nothing will be transmitted. In short, to acquire and process
diagnostic telemetry from the proxy requires:

— at least one of either an 850 or 468 board

— the corresponding Systran boards

— cabling correctly established between LAT and VSC (and potentially a BPU)

— router and handler connected to VSC diagnostic stream

— monitoring to be enabled

In order to enable or disable monitoring one instantiates the Monitor class (see Section 7.10).
The argument to its constructor is an enumeration specifying which of two monitors to
enable. For example, to enable monitoring from the Primary monitor:

and to disable monitoring...

Finally, to enable monitoring from the Redundant monitor:

vsc.execute(Monitoring(Primary));

vsc.execute(Monitoring(None));
Initial public release page 63

The Virtual Spacecraft (VSC) Users Manual
Chapter 3 Using the proxy interface Version/Issue: 1.4/2
Note: When the VSC is initially booted, monitoring is disabled.

3.4 Handling Incoming telemetry

In order to catch and process telemetry an application sub-classes from one of two handlers
described in chapter 5:

— TelemetryHandler

— ScienceHandler

As an example, imagine the construction of a set of tools to assist a user in debugging an
application which processes telemetry. One potentially useful tool would be a mechanism
which simply decodes and prints the invariants associated with any CCSDS telemetry packet.
The following code fragment captures the spirit of this functionality:

This function is passed the packet to decode and print along with a character string to print as
the decode prefix1. Now, in order to simplify the examples in Section 3.5.2, gratuitously wrap
this function in a class which accepts the packet title as an argument to its constructor:

vsc.execute(Monitoring(Redundant));

void decode(VscCcsds::Telemetry& packet, const char* title)
{
printf(title);
printf(“Apid %x and function %x\n”, packet.apid(), packet.function());
printf(“Acquired at %d,%d\n”, packet.secs(),packet.usecs());
printf(“Payload size is: %d bytes\n”, packet.sizeofPayload());
printf(“Dump of first word of payload...\n”, *packet.payload());
return;
};

1. Of course, this function would, in practice, be much more sophisticated.

class Dump {
public:

Dump(const char* title) {_title = title}
~Dump() {}

public:
void decode(VscCcsds::Telemetry&);

private:
const char* _title;

};
page 64 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 3 Using the proxy interface Version/Issue: 1.4/2
Next, a class, derived from TelemetryHandler (see Section 5.3) is defined which contains
this function...

MyHandler contains an object of type Dump. A handler disposes of its caught packets through
its process method. The method is passed, as an argument, the arrived packet. As this
method is virtual, MyHandler provides the implementation:

The implementation of this method simply calls its own decode function. To actually catch
and process arriving telemetry, this handler must be both instantiated and registered with a
router as discussed in Section 3.5.

3.4.1 APID filtering

In many cases, a handler’s goal is to catch a specific type of telemetry. Typically, the type of a
CCSDS packet is determined by its APID. Therefore, catching a specific type of telemetry
amounts to catching a specific set of APIDs. This requires a straightforward usage of the
methods of the Handler and ApidRange classes. The ApidRange class allows the user to
define a range of APIDs. The constructor for this class requires two short numbers. One
number corresponds to the lowest APID of the range and the other the highest APID of the
range. If the range corresponds to a single APID, the low and high values are equal. The
Handler maintains a list of ApidRanges. This list defines the set of APIDs which the handler
is prepared to catch.

As an example, assume a handler is necessary to catch and processes only LAT housekeeping.
As defined by the ICD (see [18]) all housekeeping APIDs fit with a range which varies from
200 to 25F, hexadecimal. The handler needed for housekeeping simply inherits from the
previously defined MyHandler...

class MyHandler: public TelemetryHandler {
public:

MyHandler(const char* title) : TelemetryHandler(), _dump(title) {}
~MyHandler() {}

private:
Dump _dump;

};

void MyHandler::process(VscCcsds::Telemetry& packet)
{
_decode(packet);
return;
}

Initial public release page 65

The Virtual Spacecraft (VSC) Users Manual
Chapter 3 Using the proxy interface Version/Issue: 1.4/2
And the constructor’s implementation...

The implementation simply calls Router’s range method, passing both the necessary low
and high APIDs. Once registered with a router, the handler will catch and process those
packets whose APIDs fall only within the housekeeping range. However, what happens to
those packets which do not fall within this range specified by the handler? In such a case,
these packets are delivered to a router’s catchall method as discussed in Section 3.5. What
if a handler wishes to catch more then one range? For example, assume (poorly), the
Housekeeping handler is required to catch and process not only LAT housekeeping
telemetry, but also alert telemetry. Alert APIDs vary from 340 to 39F hexadecimal. In such a
case, the range method is used twice:

3.5 Routing Incoming telemetry

Telemetry arrives from the VSC to the proxy interface as a series of CCSDS packets (see 4.7 and
4.8). As these packets arrive they need to be dispatched to a set of appropriate telemetry
handlers (telemetry handlers are discussed in Section 3.4). In order to dispatch arriving
telemetry, the application provides the proxy interface with a router. A router is an application
specific class inheriting from Router (contained in the Routing package described in
Chapter 6). Once instantiated, a router is registered with the proxy interface. Once registered,
the router is invoked by the proxy interface for each arriving CCSDS packet.

There are four steps involved in constructing an application specific router:

Houeskeeping : public MyHandler {
public:

Housekeeping();
~Housekeeping() {}

};

Housekeeping::Housekeeping() : MyHandler(“Housekeeping...”)
{
handle(0x200, 0x25F);
}

Housekeeping::Housekeeping() : MyHandler(“Housekeeping...”)
{
handle(0x200, 0x25F); // housekeeping...
handle(0x340, 0x39F); // alert...
}

page 66 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 3 Using the proxy interface Version/Issue: 1.4/2
i. Sub-class from the router base class.

ii. Implement memory management strategy for arriving packets. If the processing of
the packet can take processed entirely within the context of the router, memory for
only one packet is necessary. If the processing of the packet is delegated to other
processes, perhaps executing in a different thread, then a scheme where packets are
allocated and deallocated from free-store may be necessary.

iii. Specify the set of necessary packet handlers.

iv. Implement a “catchall”. This is a handler to designed to catch any packets which
were not caught by the specified set of packet handlers.

As an example, suppose a router is specified which process packets entirely in its own
context. This implies a fixed packet allocation scheme is sufficient. If this router’s name is
“MyRouter”, its class definition would be as follows:

MyRouter now contains an object of type Dump (used for the catchall method, see below)
and also enough storage for any one telemetry sized packet. The constructor’s
implementation simply registers the housekeeping handler defined in Section 3.4...

When a packet arrives, it will be copied into this storage by the proxy interface. The interface
locates where to copy the packet by invoking the router’s allocate method. As this method
is virtual, MyRouter provides the implementation, which is simply...

If the handler cannot catch all packets, they will be caught and processed by the router’s
catchall method. This method is virtual, so MyRouter must provides the
implementation...

class MyRouter: public TelemetryRouter {
public:

MyRouter()
~MyRouter() {}

private:
Dump _dump;
VscCcsds::Telemetry _packet; // one packet’s worth of storage...

};

MyRouter::MyRouter() : _dump(“Unexpected packet...”)
{
insert(*(new Houskekeeping));
}

VscCcsds::Telemetry& MyRouter::allocate() {return _packet;}
Initial public release page 67

The Virtual Spacecraft (VSC) Users Manual
Chapter 3 Using the proxy interface Version/Issue: 1.4/2
Note, that the catchall handler has the same call interface as a handler’s process member.
Indeed, in this example, the implementation almost matches MyHandlers’s process
implementation. The only difference being the printing of the header string proceeding the
decode function. To actually dispatch arriving telemetry, the router must be both
instantiated and registered. This process is described in the next section.

3.5.1 Router registration

Telemetry is delivered by the proxy interface on five asynchronous streams. That implies
telemetry on any one stream arrives both unsolicited and independently with respect to
telemetry on any other stream. The proxy interface dispatches telemetry to an application
through a router (see Section 3.5). The application creates the router and registers the router
with the proxy by calling an appropriate method of the Proxy class (see Section 7.2). The
correspondence between stream and registration method is enumerated in Table 7. For
example, to catch telemetry on the LAT telemetry stream, the application would register their
router by invoking the latTelemetry function of the Proxy class, passing to the function,
as an argument, the router to be registered.

The proxy interface associates a thread with each stream. The execution code represented by
an application’s router (and its set of handlers) is all executed in the context of that thread. The
relative priority between the five potential threads is fixed by the proxy interface and cannot
be changed. These relative priorities are implicit in the ordering of Table 7. For example, the
highest priority thread is associated with the VSC diagnostic stream, while the lowest is
associated with the science stream. While relative priorities are immutable, the base priority of
the five threads can be changed by the application (see Section 7.14). This should only prove
necessary in the eventuality that the proxy interface’s threads conflict with the priorities of
other application threads.

void MyRouter::catchall(Telemetry& packet)
{
_dump.decode(packet);
return;
}

Table 7 Streams and registration methods

Stream Registration Method

VSC diagnostic vscDiagnostic

LAT diagnostic latDiagnostic

VSC telemetry vscTelemetry

LAT telemetry latTelemetry

Science telemetry latScience
page 68 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 3 Using the proxy interface Version/Issue: 1.4/2
As an example, suppose the router described in Section 3.5 was required catch and process
arriving LAT telemetry. This requires the router to first be instantiated and second, passed to
the appropriate member function to be registered...

3.5.2 APID dispatching

The previous section demonstrated how an application constructs a router which dispatches
all packets belonging to a single handler. However, the interface also supports dispatching
packets (based on APID) to different handlers. In the same fashion that a handler contains a
list of APIDs, a router contains a list of handlers. For example, assume we wish to process
alert telemetry differently then housekeeping telemetry. Start by reusing the HoueseKeeping
class1. Next, define a new handler called “Alert”...

For clarity, Alert has almost the exact implementation as Houeskeeping. In substance it
differs only in its constructor implementation...

with the implementation varying in the alert APID range and title string. A real example,
would, of course, take a very different form. Finally, modify MyRouter’s constructor and
register two handlers...

vsc.latTelemetry(*(new MyRouter));

1. But in this case we limit the handler to process only housekeeping APIDs.

class Alert: public MyHandler {
public:

Alert()
~Alert() {}

};

Alert::Alert() : MyHandler(“Alert...”)
{
range(0x340, 0x39F);
}

MyRouter::MyRouter() : _dump(“Unexpected packet...”)
{
insert(*(new Alert));
insert(*(new Houskekeeping));
}

Initial public release page 69

The Virtual Spacecraft (VSC) Users Manual
Chapter 3 Using the proxy interface Version/Issue: 1.4/2
3.5.3 Science telemetry and datagrams

To be written. At this point there are still some ambiguities about the structure of the science
data which I’m trying to resolve. Stay tuned.

3.6 Telecommands

Control of the LAT through the VSC is exercised by queuing telecommands to the VSC.
Telecommands are CCSDS packets which include a GLAST specific secondary header (see [8]).
This structure is captured by the TeleCmnd class (described in Section 4.4) which is part of
the data handling package. While all telecommands share the same shape, they all differ in
their respective payloads. This means in practice, for most applications, specific
telecommands are constructed by derivation using TeleCmnd as a base class. The
customization of these classes typically will involve additional constructors and access
methods. For example, consider an implementation of the LAT specific telcommand
SysReset (see [18]). This command resets the LAT’s housekeeping system using a specified
set of configuration files. The parameters for this telecommand packet are as follows:

— The APID is 650 (hexadecimal)

— The function code is one (1)

— The payload contains one four (4) element array. Each element of the array is an
unsigned 32-bit value which specifies a configuration file ID.

These parameters can be summarized with two #defines and one structure...

First, the class definition, which is named after the telecommand mnemonic. The IDs for
configurations files will be specified as arguments to the constructor. The number of
configuration files can actually vary from zero to four, which implies four constructors. For
pedagogical reasons, only the first few constructors are shown in the definition. In order to
access the file IDs the class has four methods, the name of the method corresponding to the
corresponding file ID passed in the constructor. The definition for this class...

struct _MyPayload {unsigned fileIds[4];};

#define APID 0x0650
#define FUNCTION 1
page 70 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 3 Using the proxy interface Version/Issue: 1.4/2
Although the documentation is not explicit with respect to unused entries in the file ID array,
the constructors will initialize these entries to null. As an example, the following code
fragment is the implementation of the constructor which requires two IDs:

Last, the implementation of one of the four accessor methods:

3.7 Scheduling the “Magic seven”

Once a second, the VSC sends to the LAT seven (7) ancillary data telecommands. These are the
so-called “magic seven” commands (see Section 4.9). Five of these telecommands are identical
in structure and contain attitude information (Section 4.10), one contains miscellaneous data

class SysReset : public TeleCmnd {
{
public: // constructors...

SysReset(unsigned fid0 = 0, unsigned fid1 = 0,...);
public: // destructor...
~SysReset();

public:
unsigned fid0() const;
unsigned fid1() const;
unsigned fid2() const;
unsigned fid3() const;

};

SysReset::SysReset(unsigned fid0, unsigned fid1) : TeleCmnd(APID, FUNCTION)
{
_MyPayload payload;

payload.fileId[0] = fid0;
payload.fileId[1] = fid1;
payload.fileId[2] = 0;
payload.fileId[3] = 0;

copy((void*payload, sizeof(_MyPayLoad));
};

unsigned SysReset::fid2()
{
unsigned long* fileId = (unsigned long*)payload();

return fileId[2];
};
Initial public release page 71

The Virtual Spacecraft (VSC) Users Manual
Chapter 3 Using the proxy interface Version/Issue: 1.4/2
(Section 4.11), and one contains the timetone for the subsequent 1-PPS signal (see Section 4.12).
Within each one second period, these commands are sequenced and scheduled in a
predefined order, as specified in [8] and discussed in Section 1.4.3. The pertinent details for
ancillary sequencing are as follows:

— The scheduler divides each one second period into twenty-five fixed time slots of
40000 microseconds each.

— As the spacecraft limits transmission to at most one command per slot, only one of
the magic seven is sent within any one slot.

— The ICD calls out a specific time slot for each of the magic seven commands.

If one assumes that t0 represents the VSC’s initial observatory time-base (see Section 1.3),
Figure 22 illustrates the scheduling process:

For example, when requested, the timetone command is always transmitted by the VSC
somewhere within slot five, while the 4th attitude command is always sent somewhere within
slot nineteen. Slot number 5 spans the interval from 200000 to 239999 microseconds, while slot
number 19 spans the interval from 760000 to 799999 microseconds.

The proxy interface provides the application with three different options in terms of how the
ancillary slots are populated:

Figure 22 Scheduling the “Magic seven”

t0 t1 t2 t3 tn

t2

attitude

attitude

attitude

data

time-tone

attitude

attitude

000000

160000
200000

360000

560000

760000
800000

960000
1000000

4
5

9

14

19
20

24

slot
page 72 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 3 Using the proxy interface Version/Issue: 1.4/2
— Do not fill. This is the default behaviour after the VSC boots. Of course, this option is
not very useful with respect to correct operation of the LAT and is intended primarily
as a tool to commission and debug the processing of the ancillary sequence by FSW on
the LAT. If a default sequence (see below) has been established, one can return to not
filling the ancillary slots by calling the schedule member of the Proxy class with no
arguments.

— Fill with the same set of commands, independent of period. The application defines a
specific set of seven commands, sends these commands to the VSC, which transmits
the same set at every period to the LAT. This option is attractive when LAT FSW either
needs to dwell on a specific set, or doesn’t care what the contents of the commands
are, as long as the appropriate slots are filled. The application specifies a fixed
sequence by calling the schedule member of the Proxy class, passing as
arguments the seven ancillary telecommands (see Section 7.2) to be used as the
default set.

— Fill with a different set of commands for each period. The application defines a set of
commands, queues these commands to the VSC where they are stored waiting
execution on the appropriate period. Once a sequence for a particular period is
defined, the application calls the schedule member of the Proxy class (see
Section 7.2) to queue the sequence for that period. The arguments to this function
specific the seven commands of the sequence along with the particular time period
the corresponding commands should be scheduled. A period is specified in GLAST
standard units (the number of seconds since the epoch 00:00:00.0 hours at January 1st,
2001).

For example, this code snippet establishes a default sequence1...

The first argument of any magic seven command specifies the acquisition time of the data
associated with that instance of the command. The acquisition time is specified in microseconds
relative to the time period. For example, the code snippet above specifies that the data for the
timetone command always occurs 2100 microseconds into any one period.

Note, that the LAT constrains the acquisition time for a command to fall within the slot
corresponding to that command. If this constraint is violated the LAT issues an error when
processing a ancillary command. By specifying an invalid acquisition time an application can
test whether this constraint is correctly enforced. For example....

1. For clarity, the bulk of the construction arguments are omitted.

vsc.schedule(Attitude(170000, ...),
 TimeTone(210000, ...),
 Attitude(370000, ...),
 Attitude(570000, ...),
 Attitude(770000, ...),
 Data(810000, ...),
 Attitude(970000, ...));
Initial public release page 73

The Virtual Spacecraft (VSC) Users Manual
Chapter 3 Using the proxy interface Version/Issue: 1.4/2
To return to the VSC to its default state of not filling the ancillary slots requires scheduling a
null sequence...

Finally, using Figure 22 as an example, to schedule a sequence for the second period relative
to the initial value of the observatory time-base (t0)...

3.8 Administrating the VSC

3.8.1 Configuring queue sizes

Each of the six queues described in Section 1.4.1 is assigned, by default a maximum number of
entries (see Table 4). In many cases, the default values may prove insufficient. In such a case,
the user may change queue sizes by manipulating an argument to the init_vsc procedure.
This procedure is called within the VSC’s startup script. This script is managed as part of any
VSC release and consequently is under the control of the FSW code management and release
system (see xxx). The path specification for this script is as follows:

where the <tag> token is replaced with a number corresponding to whatever release is
appropriate to the user. The argument used to modify the default values is a string which

vsc.schedule(Attitude(160000, ...), // OK...
 TimeTone(239900, ...), // OK...
 Attitude(380000, ...), // OK...
 Attitude(660000, ...), // Error...
 Attitude(762100, ...), // OK,,,
 Data(801000, ...), // OK...
 Attitude(1020000, ...)); // Error...

vsc.schedule();

#define T2 (T0 + (unsigned)2) // T0 is the initial observatory base time...

vsc.schedule(T2, Attitude(...),
TimeTone(...),
Attitude(...),
Attitude(...),
Attitude(...),
Data(...),
Attitude(...));

“VSC/<tag>/ptd/startup-mv2304-vsc.vx”
page 74 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 3 Using the proxy interface Version/Issue: 1.4/2
consists of a comma separated list, each item of the list corresponding to the value for a
particular queue. The syntax of this string is as follows:

Tokens expressed in brackets (for example, <name>) are replaced by the user. There are two
replaceable tokens:

“name” Is a string corresponding to the name of the queue. Allowed queue names are
enumerated in Table 4. Correct capitalization is necessary.

“count” Is an unsigned, non-zero number corresponding to the size (in entries) of the
queue. The number’s radix can be expressed in either decimal or hexadecimal. A
hexidecimal value is specified by the digit 0, followed by one of the letters x or X
followed by a string of hexadecimal digits. The hexadecimal digits are the digits 0
through 9, plus the characters a through f (or A through F), which have the
values 10 through 15, respectively. For example, a queue size of twenty-nine
could be expressed as either 29, 0X1D, or 0x1d.

For example, to change the size of the Ancillary queue the signature of the init_vsc
procedure could be as follows:

This would create an Ancillary queue capable of buffering up to one million (decimal)
seconds1 worth of ancillary sequences and the other five queues would retain their default
values. If, one the other hand, two queues required new values...

3.8.2 Network configuration

3.8.2.1 VSC node name and IP address

To be written.

“<name>:<count>, <name:<count>, ...”

init_vsc(“Ancillary:1000000”);

1. One entry on the ancillary queue holds all seven ancillary commands.

init_vsc(“Ancillary:1000000, CommandStored:0x1F”);
Initial public release page 75

The Virtual Spacecraft (VSC) Users Manual
Chapter 3 Using the proxy interface Version/Issue: 1.4/2
3.8.2.2 Port Numbers

To be written.
page 76 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 4 CCSDS package Version/Issue: 1.4/2
Chapter 4

CCSDS package

The principal quanta of information between the VSC and the LAT and consequently the
principal quanta of information between VSC and application is the CCSDS packet (see [16] and
[17]). This package contains the necessary class support for construction of these packets.
GLAST specifies two different types of CCSDS packets: Telecommands and Generic Telemetry (see
[8]). This package provides class representations for both types: TeleCmnd (see Section 4.4)
and GenericTelemetry (see Section 4.6). These representations derive from a common,
abstract representation of a CCSDS packet. The LAT specifies that telemetry comes in two
forms: Telemetry and Science. Applications are expected to construct specific commands
and telemetry by sub-classing from either of these two classes. The package itself sub-classes
from TeleCmnd in order to form the three different types of telecommands used in the
definition of a “Magic seven” sequence. The usage of these specific type of commands is
discussed in Section 4.9. The dependencies for the classes of this package are illustrated in
Figure 23:

Figure 23 Class dependencies for the CCSDS package

Science

Packet

M7CmndData

Attitude

TimeTone

GenricTelemetry

TeleCmnd

Telemetry
SeqFlag

Mangle

LargeTelemetry
Initial public release page 77

The Virtual Spacecraft (VSC) Users Manual
Chapter 4 CCSDS package Version/Issue: 1.4/2
4.1 Name space - VscCcsds

4.2 Packet sequencing

Sequencing is used when any one piece of information transmitted, using CCSDS packets,
cannot fit within the payload of any one packet. In other words, the information spans packets.
Packet sequencing is not applicable for GLAST telecommands as they are fixed size (64 bytes)
and will always fit within a single packet. However, this is not necessarily true for GLAST
telemetry. In such a case, the sequence flags and sequence number will, working in
conjunction, identify what position in a sequence of information, the packet occupies. This
position information is enumerated within Table 8:

These values are captured in the following enumeration:

4.3 Packet

This class represents a generic CCSDS packet, independent of whether the packet contains
either telemetry or a telecommand. An application never directly inherits from the class.
Instead, this class is used indirectly, through inheritance, via the TeleCmnd and Telemetry
classes (see Section 4.4 and Section 4.6). Of course, the class’s member functions still interest
an application. These methods fit into three generic categories:

— Header Inspectors. Those methods returning the primary header attributes of the
packet. For example, the version member.

— Payload Management. Those methods which both manage and control the user
payload of the packet. For example, the payload member.

— Sequencing. Those methods which are used to control packet sequencing. For
example, the seqFlags function.

Table 8 Enumeration of sequence flag for a CCSDS telemetry packet

Enumeration Value The packet is...

middle 0 part of a sequence, but neither the first nor the last packet in the sequence

first 1 the first packet of a sequence.

last 2 the last packet of a sequence.

alone 3 not part of a sequence.

Listing 1 Enumeration for packet sequence flags

1: enum SeqFlags {middle=0, first=1, last = 2, alone = 3};
page 78 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 4 CCSDS package Version/Issue: 1.4/2
The derived classes’s interest will most likely be centered around the payload methods as
these are the primary mechanism used by an application in order to provide specialization of
user’s telecommands and telemetry.

4.3.1 Constructor synopsis

Packet(short apid) This constructor initializes the CCSDS primary header of the packet
corresponding to the object as follows:

— the APID is set to the value of the constructor’s first argument.

— the secondary header (SH) is set.

— the packet type identifier (T) is set, indicating this is a telecommand.

— the packet version is set to zero, indicating a version 1 packet.

— the sequence count is set to zero.

— the sequence flag is set to “Standalone” packet (3).

— the packet length is set to zero (0).

The constructor throws no exceptions.

Packet(short apid, SeqFlags, unsigned short seqNum) This constructor initializes
the CCSDS primary header of the packet corresponding to the object as follows:

— the APID is set to the value of the constructor’s first argument.

— the secondary header (SH) is set.

— the packet type identifier (T) is cleared, indicating this is a telemetry packet.

— the packet version is set to zero, indicating a version 1 packet.

Listing 2 Class definition for Packet

1: template<unsigned T> class Packet {
2: protected: // constructors...
3: Packet(short apid);
4: Packet(short apid, Ccsds::SeqFlags, unsigned short seqNum);
5: Packet(const Packet&);
6: public:
7: ~Packet();
8: public:
9: Packet& operator = (const Packet&);

10: public: // inspectors...
11: unsigned short apid() const;
12: unsigned short version() const;
13: unsigned short length() const;
14: unsigned short seqNum() const;
15: Ccsds::SeqFlags seqFlags() const;
16: bool isTelecommand() const;
17: };
Initial public release page 79

The Virtual Spacecraft (VSC) Users Manual
Chapter 4 CCSDS package Version/Issue: 1.4/2
— the sequence count is set to the value specified by the constructor’s third
argument. If this argument is omitted, the sequence count is set to zero.

— the sequence flag is set to the value specified by the constructor’s second
argument.

— the packet length is set to zero (0).

The constructor throws no exceptions.

4.3.2 Member synopsis

apid Returns a value corresponding to the application identifier (APID) for the
corresponding CCSDS packet. APIDs range from zero (0) to FFFF (hex). This
function has no arguments and throws no exceptions.

isTelecommand Returns an boolean identifying whether or not the corresponding CCSDS
packet is a command or telemetry packet. If the value returned is TRUE, the
packet is a telecommand packet. If the value returned is FALSE, the packet is a
telemetry packet. This function has no arguments and throws no exceptions.

version Returns a value corresponding to the version identifier for the corresponding
CCSDS packet. The version identifier for all LAT CCSDS packets is zero (0), used to
indicate a Version 1 packet. This function has no arguments and throws no
exceptions.

seqNum Returns a value corresponding to the sequence number for the corresponding
CCSDS packet. This function has no arguments and throws no exceptions.

seqFlags Returns an enumeration specifying the packet’s location in a sequence of data
which could potentially span multiple packets. The return value can have one of
the four possible values enumerated within Table 8. This function has no
arguments and throws no exceptions.

length Returns the length of the packet less the primary header (six bytes). For reasons
which escape me, the value is actually the value specified above less one (1). The
length is expressed in units of bytes. The length is inclusive of any secondary
header. As all LAT CCSDS packets are a multiple of 16-bits words, the value
returned will always be odd. This function has no arguments and throws no
exceptions.

4.4 TeleCmnd

This class specifies a GLAST specific, CCSDS telecommand packet. All GLAST telecommands
share a common set of attributes. In particular:

— the isTelecommand function always returns TRUE.

— The sequence flag field is always set to alone.
page 80 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 4 CCSDS package Version/Issue: 1.4/2
— telecommands have a fixed size (which is 64 bytes), independent of the number of
significant bytes in the payload. That is, the maxPayload function will return 64
bytes less the header.

— A payload checksum. This checksum is always located at the end of the allocated
payload. Each time the payload is copied, the checksum is re-computed.

A example of how an application constructs their own telecommands is found in Section 3.6.

4.4.1 Constructor synopsis

TeleCmnd(short apid, short function) The CCSDS header is initialized in manner
appropriate for a CCSDS telecommand packet (see [16] and [17]). The APID of the
packet is derived from the first argument passed to the constructor and the
packet’s function code is derived from its second argument. The payload size is
set to zero. The constructor throws no exceptions.

TeleCmnd(const Mangle&, short apid, short function) The CCSDS header is
initialized in manner inappropriate for a CCSDS telecommand packet. This
constructor should be used only when one is testing the LAT’s response to an
ill-formed telecommand. The first argument is a reference to an object (see
Section 4.5) which defines which fields of the constructed packet should be
malformed. The APID of the packet is derived from the second argument passed
to the constructor and the packet’s function code is derived from its third
argument. The payload size is set to zero. The constructor throws no exceptions.

Listing 3 Class definition for TeleCmnd

1: class TeleCmnd : public Packet<64> {
2: public: // constructors...
3: TeleCmnd(unsigned short apid = 0, unsigned short function = 0);
4: TeleCmnd(const Mangle&, short apid = 0, short function = 0);
5: TeleCmnd(const TelCmnd&);
6: public:
7: ~TeleCmnd();
8: public:
9: TeleCmnd& operator = (const TeleCmnd&);

10: public:
11: void copy(const void*, int sizeofPayload);
12: public:
13: unsigned short function() const;
14: unsigned short maxPayload() const
15: const unsigned short* payload() const;
16: public:
17: unsigned short sizeofPayload() const;
18: unsigned short recordedChecksum() const;
19: unsigned short computedChecksum() const;
20: };
Initial public release page 81

The Virtual Spacecraft (VSC) Users Manual
Chapter 4 CCSDS package Version/Issue: 1.4/2
4.4.2 Member synopsis

copy Copies the data specified by the argument into the payload of the packet. Any
data currently in the payload is lost. The first argument is a pointer to a buffer
representing the data to be copied into the packet as the payload. The second
argument specifies the size of the payload data (in bytes). The size must be an
even number of bytes. The value of this argument must range from two (2) to the
value returned by the maxPayload function described below. This function
returns no value and throws no exceptions.

function Returns the telcommand’s function code. This member function has no
arguments and throws no exceptions.

maxPayload Returns the actual amount of storage reserved for a payload. The current
allocation of the payload is returned by the function described above. This
function has no arguments and throws no exceptions.

payload Returns a pointer to the payload portion of the corresponding CCSDS packet. This
function has no arguments and throws no exceptions.

sizeofPayload Returns the size (in bytes) of the payload portion of the corresponding
CCSDS packet. This function has no arguments and throws no exceptions.

recordedChecksum Returns the recorded payload check-sum for the packet. The
computedChecksum function described below returns the computed checksum.
A properly formed packet has a computed checksum which is equal to its
recorded checksum. The recorded checksum is replaced each time the
resizePayload function is called. This function has no arguments and throws
no exceptions.

computedChecksum Returns the computed payload check-sum for the packet. The
recordedChecksum function described above returns the recorded checksum. A
properly formed packet has a computed checksum which is equal to its recorded
checksum. This function has no arguments and throws no exceptions.

4.5 Mangle

This class is used to consciously mangle the format and structure of a GLAST telecommand.
Nominally, of course, there would seem to be no need to purposely construct and transmit an
ill-formed telecommand. The express reason for this class’s existence is to test the LAT’s
response to invalid telecommands. When, for a particular application, this reason does not
exist, its safe to assume the application can afford to ignore this class.

The class consists of a number of virtual functions, each function corresponding to a field of a
telecommand which may be mangled. Each function returns a mangled value for its
corresponding field. Because the functions are virtual, they may be over-loaded, allowing
application to customize both the fields which should be mangled and their respective values.
In practice, mangling is accomplished by instantiating either the class (or a class derived from
it) and then passing the resulting object as an argument to TeleCmnd’s constructor (see
page 82 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 4 CCSDS package Version/Issue: 1.4/2
Section 4.4). Note, that by default (that is, using the base class without derivation), each
member returns a value guaranteed to be inappropriate for its corresponding field.

4.5.1 Constructor synopsis

Just the default.

4.5.2 Member synopsis

T Returns the requested state of the “T” field of the CCSDS packet header (see [16]
and [17]). The “T” field determines whether or not the packet declares itself as a
telecommand. A value of TRUE specifies the “T” field is set, a FALSE value that
the field is clear. Note, that this function is virtual and may be over-loaded by a
derived class. By default (the member function is not over-loaded) the function
returns a FALSE value. This function has no arguments and throws no exceptions.

SH Returns the requested state of the “SH” field of the CCSDS packet header (see [16]
and [17]). The “SH” field determines whether or not the packet has a secondary
header. A value of TRUE specifies the “SH” field is set, a FALSE value that the
field is clear. Note, that this function is virtual and may be over-loaded by a
derived class. By default (the member function is not over-loaded) the function
returns a FALSE value. This function has no arguments and throws no exceptions.

version Returns the requested value of the “VERSION” field of the CCSDS packet header
(see [16] and [17]). Only the low-order three bits of the returned value are
significant. Note, that this function is virtual and may be over-loaded by a derived
class. By default (the member function is not over-loaded) the function returns a
value of seven (7). This function has no arguments and throws no exceptions.

Listing 4 Class definition for Mangle

1: class Mangle {
2: public: // constructors...
3: Mangle();
4: public:
5: virtual ~Mangle();
6: public:
7: virtual bool T() const;
8: virtual bool SH() const;
9: public:

10: virtual unsigned short version() const;
11: virtual unsigned short recordedChecksum() const;
12: };
Initial public release page 83

The Virtual Spacecraft (VSC) Users Manual
Chapter 4 CCSDS package Version/Issue: 1.4/2
recordedChecksum Returns the requested value for the initial value of the packet’s recorded
checksum. Note, that as soon as the TeleCmnd’s copy method (see Section 4.4) is
called, this value will no longer be the packet’s recorded checksum. Instead, the
packet will have the computed checksum. Note, that this function is virtual and
may be over-loaded by a derived class. By default (the member function is not
over-loaded) the function returns a value of zero (0). This function has no
arguments and throws no exceptions.

4.6 Generic Telemetry packet

This class specifies a GLAST specific, generic CCSDS telemetry packet. All GLAST telemetry
packets share a common set of attributes. In particular:

— the isTelecommand function always returns FALSE.

— A time-stamp. This time-stamp specifies when the telemetry was acquired.
Acquisition time is represented by two 32-bit quantities, the acquisition time in
granularity of both seconds and micro-seconds. The seconds quantity represents the
acquisition time as the number of seconds since the epoch 00:00:00.0 hours at January
1st, 2001. The micro-seconds quantity is the acquisition time in micro-seconds,
relative to the seconds quantity.

LAT telemetry comes in two varieties, largely differentiated by their maximum size:

i. Telemetry: All small telemetry is fixed size, independent of actual allocated payload
size (1024 bytes). That is, the maxPayload function will return 1024 bytes less the
size of the header. Telemetry packets are delivered on the LAT and VSC telemetry
streams (see Section 7.2).

ii. Science: All science telemetry is fixed size, independent of actual allocated payload
size (4096 bytes). That is, the maxPayload function will return 4096 bytes, less the
size of the header. Science packets are delivered on the LAT‘s science stream (see
Section 7.2).

A discussion on how telemetry is processed by a user application is found in Section 3.4.
page 84 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 4 CCSDS package Version/Issue: 1.4/2
4.6.1 Constructor synopsis

GenericTelemetry(short apid, unsigned secs, unsigned usecs, SeqFlags, short

seqNum) The CCSDS header is initialized in manner appropriate for a CCSDS telemetry
packet (see [8]). The APID of the packet is derived from the first argument passed
to the constructor. The allocated payload size is set to zero. The second and third
arguments specify the time at which the telemetry payload was acquired. The
second argument corresponds to the number of seconds since the epoch
00:00:00.0 hours at January 1st, 2001. The third argument corresponds to the
acquisition time relative to the second argument. This time is measured in
micro-seconds. The forth argument determines the position of the packet in a set
of information which spans packets. If this argument is omitted, the sequence flag
is set to alone. The fifth argument corresponds to the packet’s sequence number. If
this argument is omitted, the sequence number is set to zero. The constructor
throws no exceptions.

Listing 5 Class definition for GenericTelemetry

1: class GenericTelemetry : public Packet<T> {
2: protected: // constructors...
3: GenericTelemetry(short apid,
4: unsigned secs, unsigned usecs,
5: SeqFlags, unsigned short seqNum);
6: GenericTelemetry(const GenericTelemetry&);
7: public:
8: virtual ~GenericTelemetry();
9: public:

10: GenericTelemetry& operator= (const GenericTelemetry&);
11: public:
12: void copy(const void*, int sizeofPayload);
13: void append(const void*, int sizeofBuffer);
14: public:
15: unsigned short sizeofPayload() const;
16: unsigned short maxPayload() const;
17: const unsigned short* payload(); const;
18: public:
19: unsigned secs() const;
20: unsigned usecs() const;
21: };
Initial public release page 85

The Virtual Spacecraft (VSC) Users Manual
Chapter 4 CCSDS package Version/Issue: 1.4/2
4.6.2 Member synopsis

copy Copies the data specified by the argument into the payload of the packet. Any
data currently in the payload is lost. The first argument is a pointer to a buffer
representing the data to be copied into the packet as the payload. The second
argument specifies the size of the payload data (in bytes). The size must be an
even number of bytes. The value of this argument must range from two (2) to the
value returned by the maxPayload function described below. This function
returns no value and throws no exceptions.

append Appends the data specified by the argument into the payload of the packet. The
first argument is a pointer to a buffer representing the data to be appended to the
current payload. The second argument specifies the size of the appended data (in
bytes). The size must be an even number of bytes. The value of this argument
must be no larger then the difference between the values returned by the
sizeofPayload and the maxPayload functions. If so, the remainder is simply
not copied. This function returns no value and throws no exceptions.

payload Returns a pointer to the payload portion of the corresponding CCSDS packet. This
function has no arguments and throws no exceptions.

sizeofPayload Returns the size (in bytes) of the payload portion of the corresponding
CCSDS packet. This function has no arguments and throws no exceptions.

maxPayload Returns the actual amount of storage reserved for a payload. The current
allocation of the payload is returned by the function described above. This
function has no arguments and throws no exceptions.

secs Returns the time at which the telemetry payload was acquired. This time is
returned as the number of seconds since the epoch 00:00:00.0 hours at January 1st,
2001. This function has no arguments and throws no exceptions.

usecs Returns the time in micro-seconds relative to the time returned by the secs
member function described above. This function has no arguments and throws no
exceptions.

4.7 Telemetry

Telemetry packets are simply sub-classed from GenericTelemetry (see Section 4.6) with the
template (packet size) argument satisfied. Telemetry packets are fixed size, independent of the
actual allocated payload size (1024 bytes). That is, the maxPayload function will return 1024
bytes less the size of the header. Telemetry packets are delivered on both the LAT and VSC
telemetry streams (see Section 7.2).
page 86 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 4 CCSDS package Version/Issue: 1.4/2
4.8 Science

Science packets are simply sub-classed from GenericTelemetry (see Section 4.6) with the
template (packet size) argument satisfied. Science packets are fixed size, independent of the
actual allocated payload size (4096 bytes). That is, the maxPayload function will return 4096
bytes less the size of the header. Science packets are delivered on the science stream (see
Section 7.2).

4.8.1 Member synopsis

pad Returns the value of the so-called “pad” word of the corresponding CCSDS
packet. This function has no arguments and throws no exceptions.

Listing 6 Class definition for Telemetry

1: class Telemetry : public GenericTelemetry<1024> {
2: public: // constructors...
3: Telemetry(short apid,
4: unsigned secs, unsigned usecs,
5: SeqFlags flags=alone, unsigned short seqNum=0);
6: Telemetry(const Telemetry&);
7: public:
8: virtual ~Telemetry();
9: public:

10: Telemetry& operator= (const Telemetry&);
11: };

Listing 7 Class definition for Science

1: class Science : public GenericTelemetry<4096> {
2: public: // constructors...
3: Science(short apid,
4: unsigned secs, unsigned usecs,
5: SeqFlags flags=alone, unsigned short seqNum=0);
6: Science(const Science&);
7: public:
8: virtual ~Science();
9: public:

10: Science& operator= (const Science&);
11: public:
12: unsigned short pad() const;
13: const unsigned* data() const;
14: unsigned sizeofData() const;
15: };
Initial public release page 87

The Virtual Spacecraft (VSC) Users Manual
Chapter 4 CCSDS package Version/Issue: 1.4/2
data Returns a pointer to the datagram portion of the corresponding CCSDS packet.
This function has no arguments and throws no exceptions.

sizeofData Returns the size (in bytes) of the datagram portion of the corresponding CCSDS
packet. This function has no arguments and throws no exceptions.

4.9 The “Magic 7” Telecommands

To be written.

4.9.1 Constructor synopsis

M7Cmnd This constructor builds a generic ancillary GLAST telecommand as specified in [8].
This class forms the base class for the specific ancillary telecommands described
in sections 4.10, 4.10, and 4.10 and thus has little or no intrinsic interest in and of
itself. The argument corresponds to one of the three possible functions codes
corresponding to the three different types of ancillary telecommands. The
execution period time-field associated with the ancillary telecommand is
initialized to zero (0). Ancillary telecommands are transmitted for execution by
objects of the class described in Section 7.2.

4.9.2 Member synopsis

period This function returns the current period value. This function throws no
exceptions.

Listing 8 Class definition for M7Cmnd

1: class M7Cmnd : public TeleCmnd {
2: public:
3: enum FunctionCode {Attitute=1, Data=2, TimeTone=3};
4: public: // constructors...
5: M7Cmnd(FunctionCode);
6: M7Cmnd(const M7Cmnd&);
7: public:
8: ~M7Command();
9: public:

10: M7Cmnd& operator = (const M7Cmnd&);
11: public:
12: unsigned period() const;
13: unsigned isPeriod(unsigned time);
14: };
page 88 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 4 CCSDS package Version/Issue: 1.4/2
isPeriod Replaces the packet’s current period value with the value specified by the
argument. Period time is represented as the number of seconds since the epoch
00:00:00.0 hours at January 1st, 2001. This function returns the previous period
value. This function throws no exceptions.

4.10 The Attitude Ancillary Telecommand

To be written.

4.10.1 Constructor synopsis

Attitude This constructor builds an attitude ancillary GLAST telecommand as specified in
[8]. The first argument specifies the time within the execution period to schedule
the telecommand. This time is specified in micro-seconds. and may range from a
value of zero (0) to 999, 999 (decimal). The next four arguments are quaternions
which correspond to the attitude of the Spacecraft, with the third argument
corresponding to the attitude of the X-axis, the fourth the Y-axis, the fifth the

Listing 9 Class definition for Attitude

1: class Attitude : public M7Cmnd {
2: public: // constructors...
3: Attitude(unsigned usecs,
4: double QSJ_1,
5: double QSJ_2,
6: double QSJ_3,
7: double QSJ_4,
8: float WSJ_1,
9: float WSJ_2,

10: float WSJ_3);
11: Attitute& Attitude(const &Attitude);
12: public: // destructor...
13: ~Attitude();
14: public:
15: Attitude& operator = (const Attitude&);
16: public:
17: unsigned usecs() const;
18: public:
19: double QSJ_1() const;
20: double QSJ_2() const;
21: double QSJ_3() const;
22: double QSJ_4() const;
23: float WSJ_1() const;
24: float WSJ_2() const;
25: float WSJ_3() const;
26: };
Initial public release page 89

The Virtual Spacecraft (VSC) Users Manual
Chapter 4 CCSDS package Version/Issue: 1.4/2
Z-axis, and the sixth, the so-called scaler component. The last three arguments
correspond to the Spacecraft’s angular velocity, with the seventh argument
corresponding to the velocity of the X-axis, the eight the Y-axis, and the ninth the
Z-axis. Ancillary telecommands are transmitted for execution by objects of the
class described in Section 7.2.

4.10.2 Member synopsis

usecs Returns the time within the execution period to schedule the telecommand. This
time is specified in micro-seconds. and may range from a value of zero (0) to 999,
999 (decimal). This function has no arguments.

QSJ_1 Returns the X-axis component of the quaternion expressing the attitude of the
Spacecraft (S) with respect to the J2000 frame (J). This value was specified as an
argument to the classes’ constructor. This function has no arguments.

QSJ_2 Returns the Y-axis component of the quaternion expressing the attitude of the
Spacecraft (S) with respect to the J2000 frame (J). This value was specified as an
argument to the classes’ constructor. This function has no arguments.

QSJ_3 Returns the Z-axis component of the quaternion expressing the attitude of the
Spacecraft (S) with respect to the J2000 frame (J). This value was specified as an
argument to the classes’ constructor. This function has no arguments.

QSJ_4 Returns the scaler component of the quaternion expressing the attitude of the
Spacecraft (S) with respect to the J2000 frame (J). This value was specified as an
argument to the classes’ constructor. This function has no arguments.

WSJ_1 Returns the X-axis component expressing the Spacecraft’s (S) angular velocity.
Angular velocity is expressed in radians/second. This value was specified as an
argument to the classes’ constructor. This function has no arguments.

WSJ_2 Returns the Y-axis component expressing the Spacecraft’s (S) angular velocity.
Angular velocity is expressed in radians/second. This value was specified as an
argument to the classes’ constructor. This function has no arguments.

WSJ_3 Returns the Z-axis component expressing the Spacecraft’s (S) angular velocity.
Angular velocity is expressed in radians/second. This value was specified as an
argument to the classes’ constructor. This function has no arguments.

4.11 The Ancillary Data Telecommand

To be written.
page 90 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 4 CCSDS package Version/Issue: 1.4/2
Listing 10 Class definition for Data

1: class Data : public M7Cmnd {
2: public:
3: struct Flags {bool LAT_IN_SSA : 1;
4: bool IS_IN_SUN : 1;
5: bool GPS_OUTAGE : 1;
6: bool SBAND_ON : 1;
7: bool XBAND_ON : 1;
8: bool GBM_IN_SSA : 1;
9: bool ARR_ENABLED : 1;

10: unsigned int RESERVED : 9};
11:
12: enum GncMode {Idle = 0,
13: Intertial_Capture = 1,
14: Sun_Point = 2,
15: Mission_Interial_Point = 3,
16: Mission_Manuever = 4,
17: Mission_Zenith_Point = 5,
18: Reentry_Cruise = 6,
19: Reentry_Delta_V = 7};
20: public: // constructors...
21: Data(unsigned usecs,
22: float POSITION_X,
23: float POSITION_Y,
24: float POSITION_Z,
25: float VELOCITY_X,
26: float VELOCITY_Y,
27: float VELOCITY_Z,
28: Data::Gnc_Mode,
29: unsigned SSR_USAGE,
30: Data::Flags);
31: Data& Data(const &Data);
32: public: // destructor...
33: ~Data();
34: public:
35: Data& operator = (const Data&);
36: public:
37: unsigned usecs() const;
38: public:
39: float POSITION_X() const;
40: float POSITION_Y() const;
41: float POSITION_Z() const;
42: float VELOCITY_X() const;
43: float VELOCITY_Y() const;
44: float VELOCITY_Z() const;
45: Data::GncMode GNC_MODE() const;
46: unsigned SSR_USAGE() const;
47: Data::Flags FLAGS() const;
48: };
Initial public release page 91

The Virtual Spacecraft (VSC) Users Manual
Chapter 4 CCSDS package Version/Issue: 1.4/2
4.11.1 Constructor synopsis

Data This constructor builds an attitude ancillary GLAST telecommand as specified in
[8]. The first argument specifies the time within the execution period which the
information contained in the packet was acquired. This time is specified in
micro-seconds. and may range from a value of zero (0) to 999, 999 (decimal). The
next three arguments are quaternions which correspond to the position of the
Spacecraft, with the first of the three arguments corresponding to the position
with respect to the X-axis, the second with respect to the Y-axis, the third with
respect to the Z-axis, The last three arguments correspond to the velocity of the
spacecraft, with the first of the three arguments corresponding to the position
with respect to the X-axis, the second with respect to the Y-axis, the third with
respect to the Z-axis. The ninth argument is an enumeration corresponding to the
satellite’s GNC mode. The tenth argument specifies the fraction of SSR storage
used for science data not yet down-linked. This fraction is expressed as a number
between zero (0) and 100 percent. The last argument is a bit list representing the
current state of the spacecraft. (See [7] for an explanation of the possible states).
The Ancillary telecommands are transmitted for execution by objects of the class
described in Section 7.2.

4.11.2 Member synopsis

usecs Returns the time within the execution period to schedule the telecommand. This
time is specified in micro-seconds. and may range from a value of zero (0) to 999,
999 (decimal). This function has no arguments.

POSITION_X Returns the X-axis component of the quaternion expressing the attitude of the
Spacecraft (S) with respect to the J2000 frame (J). This value was specified as an
argument to the classes’s constructor. This method has no arguments and throws
no exceptions.

POSITION_Y Returns the Y-axis component of the quaternion expressing the attitude of the
Spacecraft (S) with respect to the J2000 frame (J). This value was specified as an
argument to the classes’s constructor. This method has no arguments and throws
no exceptions.

POSITION_Z Returns the Z-axis component of the quaternion expressing the attitude of the
Spacecraft (S) with respect to the J2000 frame (J). This value was specified as an
argument to the classes’s constructor. This method has no arguments and throws
no exceptions.

VELOCITY_X Returns the X-axis component of the quaternion expressing the velocity of the
Spacecraft (S) with respect to the J2000 frame (J). This value was specified as an
argument to the classes’s constructor. This method has no arguments and throws
no exceptions.
page 92 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 4 CCSDS package Version/Issue: 1.4/2
VELOCITY_Y Returns the Y-axis component of the quaternion expressing the velocity of the
Spacecraft (S) with respect to the J2000 frame (J). This value was specified as an
argument to the classes’s constructor. This method has no arguments and throws
no exceptions.

VELOCITY_Z Returns the Z-axis component of the quaternion expressing the velocity of the
Spacecraft (S) with respect to the J2000 frame (J). This value was specified as an
argument to the classes’s constructor. This method has no arguments and throws
no exceptions.

GNC_MODE Returns an enumeration corresponding to the satellite’s GNC mode. This method
has no arguments and throws no exceptions.

SSR_USAGE Returns a value which specifies the fraction of SSR storage used for science data
not yet down-linked. This fraction is expressed as a number between zero (0) and
100 percent. This method has no arguments and throws no exceptions.

FLAGS Returns a bit list representing the current state of the spacecraft. See [7] for an
explanation of the possible states. This method has no arguments and throws no
exceptions.

4.12 The Time-Tone Ancillary Telecommand

Objects of this class are instantiated automatically by the VSC in response to processing a
queued ancillary sequence (see Section 7.2). This command indicates the exact time at the next
transmission of the 1-PPS signal sent to the LAT (see Section 1.3). Nominally, this telecommand
is sent to the LAT somewhere between 500 and 800 milliseconds before the corresponding 1-PPS
signal is asserted. The LAT’s timing system uses both this telecommand and 1-PPS signal to
establish its absolute time in a fashion which is coherent with the Spacecraft’s absolute time.

Listing 11 Class definition for TimeTone

1: class TimeTone : public M7Cmnd {
2: public:
3: public: // constructors...
4: TimeTone(bool sourceIsGps=TRUE);
5: TimeTone& TimeTone(const &TimeTone);
6: public: // destructor...
7: virtual ~TimeTone();
8: public:
9: TimeTone& operator = (const TimeTone&);

10: public:
11: bool sourceIsGps() const;
12: unsigned timeIs() const;
13: };
Initial public release page 93

The Virtual Spacecraft (VSC) Users Manual
Chapter 4 CCSDS package Version/Issue: 1.4/2
4.12.1 Constructor synopsis

TimeTone This constructor builds a so-called time-tone ancillary GLAST telecommand as
specified in [8]. The first argument specifies both the execution time of the
telecommand and the and the exact time corresponding to the next transmission
of the 1-PPS signal sent to the LAT. As these two values are the same, there is no
specific access to this field, however, its value can be retrieved by calling the
execution time function associated with the telecommand (see Section 4.4). The
second argument is a boolean specifying whether or not the time indicated by the
command was synchronized by the VSC’s GPS system. If not synchronized, time
was derived by a local clock whose stability with respect to the 1-PPs signal is not
guaranteed. The default option specifies that the time was derived through GPS.
Ancillary telecommands are transmitted for execution by objects of the class
described in Section 7.2. This constructor throws no exceptions.

4.12.2 Member synopsis

sourceIsGps Returns a boolean specifying whether the time indicated by the command
was synchronized by the VSC’s GPS receiver and can, therefore, be assumed to be
stable with respect to the LAT’s clock. If the value returned is TRUE, the
telecommand was synthesized with respect to the VSC’s GPS receiver.If the value
returned is FALSE, the telecommand was synthesized with respect to the VSC’s
local clock. This function has no arguments and throws no exceptions.

timeIs Returns a value which specifies the time corresponding to the next transmission
of the 1-PPS signal sent to the LAT. The returned value will also be equal to the
time at which the telcommand will be executed, plus one (1). Time is represented
as the number of seconds since the epoch 00:00:00.0 hours at January 1st, 2001.
This function has no arguments and throws no exceptions.

4.13 Exceptions

None.
page 94 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 5 The Handling package Version/Issue: 1.4/2
Chapter 5

The Handling package

The classes of this package allow the user to register an application specific object to catch and
handle incoming CCSDS packets. Objects which catch and process CCSDS packets are called
Handlers. Incoming packets are carried on the streams discussed in Section 1.1. These packets
take three different forms:

i. 1553 (Diagnostics and housekeeping) telemetry

ii. Science telemetry which includes both science housekeeping and events

iii. Telecommands

For each of type of packet there is a corresponding handler, however, all three handlers are
derived through a common base class (see Section 5.2), as they all have exactly the same form
except for the type of the packet they are intended to handle. The user is expected to sub-class
from one of these three handlers in order to construct their own specific handler. All handlers
execute in the context of a specific thread (see Section 3.5.1). The dependencies of the classes of
this package are described in Figure 24:

Figure 24 Class dependencies for the Handler package

Handler

TeleCmnd

TelemetryPacket

ApidRange

ScienceHandler

TelemetryHandler

TeleCmndHandler

Science
Initial public release page 95

The Virtual Spacecraft (VSC) Users Manual
Chapter 5 The Handling package Version/Issue: 1.4/2
5.1 Name space - VscHandling

5.2 Handler

This class, which forms a base class for the specific handlers described below, is used to catch
and process incoming CCSDS packets. To catch a packet requires the derived class to specify a
set of APIDs which the handler is willing to catch. The handler maintains a list of APID
ranges (see Section 5.6) in order to determine which packets the handler will, or will not
handle. To process a packet requires the derived class to provide an implementation of the
abstract method process. This method is passed, as an argument, the packet to consume.

Packets arrive asynchronously on three different telemetry streams (see Section 7.2). An
application makes the connection between their handler and packets arriving on a stream by
registering their handler with an application specific router (see Section 6.2). In turn, this
router is registered with a stream.

The class specification for the abstract handler is found in Listing 12. An application is not
expected to directly inherit from this class. Instead, an application will sub-class from one of
these three specific handlers:

— TelemetryHandler (see Section 5.3)

— ScienceHandler(see Section 5.4)

— TeleCmndHandler (see Section 5.5)

Listing 12 Class definition for Handler

1: template<class T> Handler : public VscList::Link<Handler> {
2: protected: // constructors...
3: Handler();
4: public:
5: virtual ~Handler();
6: public:
7: virtual void process(T&) = 0;
8: public:
9: Handler<T&> next() const;

10: public:
11: bool catchable(const T&) const;
12: public:
13: const ApidRange* head() const;
14: const ApidRange* last() const;
15: void handle(unsigned short);
16: void handle(unsigned short low, unsigned short high);
17: };
page 96 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 5 The Handling package Version/Issue: 1.4/2
5.2.1 Constructor synopsis

Handler The constructor sets its internal list of APID ranges (see Section 5.6) to empty. This
list corresponds to the set of APIDs whose corresponding packets the handler is
willing to catch. If the list is empty, the handler will catch any packet, independent
of APID. This constructor throws no exceptions.

5.2.2 Member synopsis

process This method would be called whenever the catchable function (see below)
matches a CCSDS packet against its APID list. The argument to the method
specifies a reference to the packet to be processed. This function returns no value
and throws no exception.

next If this handler resides on a router list (see Section 6.2), this method returns a
reference to the handler on the list following this handler. If the handler is not on a
list, the method returns a reference to itself. If the handler is at a router’s tail, it
returns a reference which is equal to the list itself. This function throws no
exception.

catchable This method determines whether the handler could catch and process a
particular incoming CCSDS packet. This packet is represented by the input
argument, which is a reference to a CCSDS packet (see Section 4.2). This involves
traversing the handler’s internal range list. For each range on this list, if the
packet’s APID falls within that range, the handler should catch the packet. If the
range list is empty, the handler would catch any packet. If the packet would be
caught, this method returns a TRUE value. If the packet would not be caught, the
method returns a FALSE value. This function throws no exceptions.

head This method returns a reference to the APID range at the head of its range list. If
the list is empty, the reference returned is equal to the reference returned by the
last member (see below). This function throws no exceptions.

last This method returns a reference to the range list. By comparing, for equality, this
reference to ranges on the handler’s list (see the head method), the user can
determine whether a range is at the tail of the list. This function throws no
exceptions.

handle(unsigned short) This method allocates and constructs an ApidRange (see
Section 5.6) using a constructor appropriate for creating a range corresponding to
the single argument. The range is inserted at the tail of the list of the handler’s
APID range list. This method returns no value and throws no exceptions.
Initial public release page 97

The Virtual Spacecraft (VSC) Users Manual
Chapter 5 The Handling package Version/Issue: 1.4/2
handle(unsigned short low, unsigned short high) This method allocates and
constructs an ApidRange (see Section 5.6) using a constructor appropriate for
creating a range corresponding to the two arguments. The created range is
inserted at the tail of the handler’s APID range list. The function returns a
reference to the created range. This method returns no value and throws no
exceptions.

5.3 Telemetry Handler

This class specifies a handler for a telemetry packets (see Section 4.7). The implementation of
this class simply derives from Handler (see Section 5.2) and satisfies the template argument
with the class representing a telemetry packet. Any application which handles telemetry
packets is expected to sub-class from TelemetryHandler and provide an implementation of
its process method.

5.3.1 Constructor synopsis

see Section 5.2.

5.3.2 Member synopsis

see Section 5.2.

5.4 Science Handler

This class specifies a handler for a science packets (see Section 4.8). The implementation of this
class simply derives from Handler (see Section 5.2) and satisfies the template argument with
the class representing a science packet. Any application which handles science packets is
expected to sub-class from ScienceHandler and provide an implementation of its process
method.

Listing 13 Class definition for TelemetryHandler

1: class TelemetryHandler : public Handler<VscCcsds::Telemetry> { };

Listing 14 Class definition for ScienceHandler

1: class ScienceHandler : public Handler<VscCcsds::Science> { };
page 98 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 5 The Handling package Version/Issue: 1.4/2
5.4.1 Constructor synopsis

see Section 5.2.

5.4.2 Member synopsis

see Section 5.2.

5.5 Telecommand Handler

This class specifies a handler for a telecommand packets (see Section 4.4). The implementation
of this class simply derives from Handler (see Section 5.2) and satisfies the template
argument with the class representing a telecommand packet. Any application which handles
telecommand packets is expected to sub-class from TeleCmndHandler and provide an
implementation of its process method.

5.5.1 Constructor synopsis

see Section 5.2.

5.5.2 Member synopsis

see Section 5.2.

5.6 APID Range

This class captures the concept of an APID range. The range is represented by two numbers,
one value specifying the lowest (inclusive) value of the range and the other specifying the
(inclusive) highest value of the range. If a range consists of a single number, then both the low
and high values of the range are equal. If an incoming packet has an APID which falls within a
range, the packet is said to be catchable for that range. A handler (see Section 5.2) holds a list of
APID ranges. If any one of the ranges held by a handler would catch an incoming packet, then
the packet is said to be catchable by the handler.

Listing 15 Class definition for TeleCmndHandler

1: class TeleCmndHandler : public Handler<VscCcsds::TeleCmnd> { };
Initial public release page 99

The Virtual Spacecraft (VSC) Users Manual
Chapter 5 The Handling package Version/Issue: 1.4/2
5.6.1 Constructor synopsis

ApidRange(unsigned short low) The constructor assigns the argument as the APID
corresponding to both the low and high value of the range. By convention this
implies the range spans a single APID. The constructor throws no exceptions.

ApidRange(unsigned short low, unsigned short high) The constructor assigns the
smaller of the two arguments as the APID corresponding to the low value of the
range. The larger of the two arguments is assigned as the APID corresponding to
the high range. For good style, the first argument should correspond to the
smaller value and the second the larger value. The constructor throws no
exceptions.

5.6.2 Member synopsis

next If this range resides on a handler’s range list (see Section 5.2), this method returns
a reference to the range on the list following this range. If the range is not on a list,
the method returns a reference to itself. If the range is at the list’s tail, it returns a
reference which is equal to the list itself. This function throws no exceptions.

low This function returns the smaller of the two APIDs specifying the range. If the
range’s extent corresponds to only one APID, the value returned will be equal to
the returned value of the high function described below. This function throws no
exceptions.

high This function returns the larger of the two APIDs specifying the range. If the
range’s extent corresponds to only one APID, the value returned will be equal to
the returned value of the low function described above. This function throws no
exceptions.

Listing 16 Class definition for ApidRange

1: class ApidRange : public VscList::Link<ApidRange> {
2: public: // constructors...
3: ApidRange(unsigned short);
4: ApidRange(unsigned short low, unsigned short high);
5: public:
6: ~ApidRange();
7: public:
8: const ApidRange& next() const;
9: public:

10: unsigned short low() const;
11: unsigned short high() const;
12: };
page 100 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 5 The Handling package Version/Issue: 1.4/2
5.7 Exceptions

none.
Initial public release page 101

The Virtual Spacecraft (VSC) Users Manual
Chapter 5 The Handling package Version/Issue: 1.4/2
page 102 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 6 The Routing package Version/Issue: 1.4/2
Chapter 6

The Routing package

The classes of this package allow the user to register an application specific object to route
incoming CCSDS packets on a stream, to be caught by an appropriate handler. Objects which
catch and route CCSDS packets are called Routers. Incoming packets are carried on the streams
discussed in Section 1.1. These packets take three different forms:

i. 1553 (Diagnostics and housekeeping) telemetry

ii. Science telemetry which includes both science housekeeping and events

iii. Telecommands

For each of type of packet there is a corresponding router, however, all three routers are
derived through a common base class (see Section 6.2), as they all have exactly the same form
except for the type of the packet they are intended to route. The user is expected to sub-class
from one of these three routers in order to construct their own specific router. All routers (and
their corresponding handlers (see chapter 5) execute in the context of a specific thread (see
Section 1.1). The dependencies of the classes of this package are described in Figure 25:

Figure 25 Class dependencies for the Routing package

Router

ScienceHandlerScienceRouter

TeleCmndHandler

TelemetryHandler

TeleCmndRouter

TelemetryRouterPacket
Initial public release page 103

The Virtual Spacecraft (VSC) Users Manual
Chapter 6 The Routing package Version/Issue: 1.4/2
6.1 Name space - VscRouting

6.2 Router

This class, which forms an base class for the specific routers described below, is used to route
incoming CCSDS packets carried on a stream (see for example, the Proxy class described in
Section 7.2). A stream delegates two responsibilities to a router in order to handle packets on
their arrival. These are:

i. Packet memory allocation. The stream’s input port calls back an application derived
function (allocate) in order to place the arrived packet into a user specified area. In
this fashion, the stream relinquishes memory allocation responsibility and passes that
responsibility to the router. This allows the router to pick a memory management
strategy appropriate to application. For example, if a packet could be processed and
dismissed entirely by the router, storage for a single packet is all that is necessary and
could be allocated within the router itself. If on the other hand, arrived packets are
meant to be passed through the router to other objects for processing, then allocation
from a free-store would be more appropriate.

ii. Packet catching. Once a packet has arrived and been placed in the memory specified
by the router, the stream’s input port calls back the router’s route method in order
to dispose of the arrived packet. This method searches for a handler (see Section 5.2)
to catch and process the arrived packet.

The class specification for the abstract router is found in Listing 17. An application is not
expected to directly inherit from this class. Instead, an application will sub-class from one of
three type specific routers:

— TelemetryRouter (see Section 6.3)

— ScienceRouter (see Section 6.4)

— TeleCmndRouter (see Section 6.5)
page 104 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 6 The Routing package Version/Issue: 1.4/2
6.2.1 Constructor synopsis

Router The constructor sets its internal list of handlers (see Section 5.2) to empty. This list
corresponds to the set of handlers, which the router is prepared to dispatch
packets to. If the list is empty, the router will catch any packet, independent of
APID, by calling back its catchall method. This constructor throws no
exceptions.

6.2.2 Member synopsis

allocate This function is used to locate the memory to place an incoming CCSDS packet.
This function is always called before the appropriate handler is fired. If memory
cannot be allocated, the derived class must throw the exception described in 6.6.1.
The function returns a pointer to the allocated packet.

route This method attempts to catch and process a particular incoming CCSDS packet.
This packet is represented by the input argument, which is a reference to a CCSDS
packet (see Section 4.3). This involves traversing the routers’s internal handler
list, checking for a handler to catch the packet. If a handler is not found on the list,
the catchall method (see below) is invoked, passing the caught packet as an
argument. This function returns no value and throws no exceptions.

catchall This function is called by the router’s route method (see above) whenever
either its handler list is empty or, it cannot find a handler on its list willing to
catch the CCSDS packet associated with the call to the catch method. The
argument to the method specifies a reference to the corresponding packet. This
function returns no value and throws no exception.

Listing 17 Class definition for Router

1: template<class T> class Router {
2: public: // constructors...
3: Router();
4: public:
5: virtual ~Router();
6: public:
7: virtual T* allocate() = 0;
8: virtual void catchall(T&) = 0;
9: public:

10: void route(T&);
11: public:
12: const VscHandling::Handler<T>* head() const;
13: const VscHandling::Handler<T>* last() const;
14: public:
15: void insert(VscHandling::Handler<T>&);
16: };
Initial public release page 105

The Virtual Spacecraft (VSC) Users Manual
Chapter 6 The Routing package Version/Issue: 1.4/2
head This method returns a pointer to the handler at the head of the router’s handler
list. If the list is empty, the pointer returned is equal to the reference returned by
the last member (see below).This function throws no exception.

last This method returns a reference to the router’s handler list. By comparing, for
equality, this return value to the handlers on the list (see the head method), the
user can determine whether the handler is the range at the tail of the list. This
function throws no exception.

insert This method inserts the handler specified by its argument at the tail of the
handler’s own list. The argument is a reference to the handler (see Section 5.2) to
insert on the list. The method returns a reference to the inserted handler. This
function throws no exceptions.

6.3 Telemetry Router

This class specifies a router for a telemetry packets arriving on a telemetry stream (see
Section 7.2). The implementation of this class simply derives from Router (see Section 6.2)
and satisfies the template argument with the class representing a telemetry packet (see
Section 4.3). Any application which routes telemetry packets is expected to sub-class from
TelemetryRouter and provide an implementation of both its allocate and catchall
methods.

6.3.1 Constructor synopsis

see Section 6.2

6.3.2 Member synopsis

see Section 6.2

6.4 Science Router

This class specifies a router for a science packets arriving on a science stream (see Section 7.2).
The implementation of this class simply derives from Router (see Section 6.2) and satisfies
the template argument with the class representing a science packet (see Section 4.8). Any

Listing 18 Class definition for TelemetryRouter

1: class TelemetryRouter : public Router<VscCcsds::Telemetry> {};
page 106 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 6 The Routing package Version/Issue: 1.4/2
application which routes science packets is expected to sub-class from ScienceRouter and
provide an implementation of both its allocate and catchall methods.

6.4.1 Constructor synopsis

see Section 6.2

6.4.2 Member synopsis

see Section 6.2

6.5 Telecommand Router

This class specifies a router for a telecommand packets arriving on a telecommand stream (see
Section 7.2). The implementation of this class simply derives from Router (see Section 6.2)
and satisfies the template argument with the class representing a telecommand packet (see
Section 4.4). Any application which routes telecommand packets is expected to sub-class from
TeleCmndRouter and provide an implementation of both its allocate and catchall
methods.

6.5.1 Constructor synopsis

see Section 6.2

6.5.2 Member synopsis

see Section 6.2

Listing 19 Class definition for ScienceRouter

1: class ScienceRouter : public Router<VscCcsds::Science> {};

Listing 20 Class definition for TeleCmndRouter

1: class TeleCmndRouter : public Router<VscCcsds::TeleCmnd> {};
Initial public release page 107

The Virtual Spacecraft (VSC) Users Manual
Chapter 6 The Routing package Version/Issue: 1.4/2
6.6 Exceptions

6.6.1 Insufficient Memory

To be written.
page 108 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 7 The VSC proxy package Version/Issue: 1.4/2
Chapter 7

The VSC proxy package

The VSC package consists of the classes which will form the anchor of any user application.
The classes contained within this package have four major functions:

i. Provide a remote, network passed connection to the VSC. This is accomplished by
instantiating the Proxy class.

ii. Receive telemetry packets originating from both the LAT (through the VSC) and the
VSC itself. This is accomplished by registering telemetry routers (see Chapter 6),
using member functions of the Proxy class.

iii. Command the VSC. This is accomplished by calling member functions of the Proxy
class passing, as arguments, specific request telecommands to be queued to and
executed by the VSC. All request telecommands inherit from the Request class. The
bulk of the classes described in this chapter are request telecommands.

iv. Command the LAT. This is accomplished by calling member functions of the Proxy
class passing, as arguments, LAT specific telecommands to be queued to the VSC for
subsequent transmission over its 1553 interface to the LAT.
Initial public release page 109

The Virtual Spacecraft (VSC) Users Manual
Chapter 7 The VSC proxy package Version/Issue: 1.4/2
7.1 Name space - VscProxy

7.2 Proxy

The Proxy class provides a remote, network based interface to the functionality of the VSC.
The network protocol is packet oriented and layered on standard TCP/IP connections. The act
of instantiating the Proxy class creates all appropriate network connections to the VSC.
Because of their pervasive usage throughout the observatory the “on wire” packet protocol is
based on CCSDS (see [17] and [18]) packets. The proxy can be thought of as the nexus of six
different network streams. Five of these streams transmit down-linked packets (from the VSC
to the proxy) and one transmits up-linked information (from the proxy to the VSC). Up-linked
information consists of CCSDS telecommands. These telecommands fit into two generic
classes:

Requests: Directions to the VSC itself. Each individual request has a corresponding class,
however, all vsc requests inherit from the same base class (Request).

TeleCmnds: Directions to the LAT, which are sent through the VSC. The base class for LAT
specific telecommands is defined in Section 4.4.

VSC requests and LAT telecommands are transmitted by the application to the VSC by calling
the schedule and scheduleAt member functions. The arguments to these functions consist
of either requests or LAT telecommands to be sent to the VSC. Both functions allow an
application to package up and transmit sets of packets. Once arrived on the VSC these packets
may be either queued for immediate action or transmission by the VSC (implicitly identified

Figure 26 Class dependencies for the proxy package

Proxy

ExPort

ScienceRouter

Attitude

Parameters

TimeTone

Data

TelemetryRouter
SsrInterface

Scheduler

ToggleLines

Grb

Reset

Download

SiuInterface

TeleCmnd

TeleCmnd

DaqInterface
Path

StartPauseStop

Control

Monitor

EnableDisable

MonitorSide
page 110 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 7 The VSC proxy package Version/Issue: 1.4/2
by using the schedule function), or may be stored for subsequent action or transmission at a
specific time (implicitly identified by using the scheduleAt function).

Down-linked information is encoded as GLAST telemetry packets (see Chapter 4). The
application receives this telemetry by registering a router see Chapter 6) for each of the five,
asynchronous telemetry streams.

Listing 21 Class definition for Proxy

1: class Proxy {
2: public:
3: Proxy();
4: Proxy(Parameters&);
5: public:
6: ~Proxy();
7: public:
8: void vscDiagnostic(VscRouting::TelemetryRouter&);
9: void vscTelemetry(VscRouting::TelemetryRouter&);

10: void latDiagnostic(VscRouting::TelemetryRouter&);
11: void latTelemetry(VscRouting::TelemetryRouter&);
12: void latScience(VscRouting::ScienceRouter&);
13: public:
14: void execute(const Scheduler&);
15: void execute(const Control&...);
16: void execute(const VscCcsds::TeleCmnd&...);
17: public:
18: void executeAt(unsigned time, const Control&...);
19: void executeAt(unsigned time, const VscCcsds::TeleCmnd&...);
20: public:
21: void schedule();
22: void schedule(const VscCcsds::Attitude&,
23: const VscCcsds::TimeTone&,
24: const VscCcsds::Attitude&,
25: const VscCcsds::Attitude&,
26: const VscCcsds::Attitude&,
27: const VscCcsds::Data&,
28: const VscCcsds::Attitude&);
29: void schedule(unsigned time, const VscCcsds::Attitude&,
30: const VscCcsds::TimeTone&,
31: const VscCcsds::Attitude&,
32: const VscCcsds::Attitude&,
33: const VscCcsds::Attitude&,
34: const VscCcsds::Data&,
35: const VscCcsds::Attitude&);
36: };
Initial public release page 111

The Virtual Spacecraft (VSC) Users Manual
Chapter 7 The VSC proxy package Version/Issue: 1.4/2
7.2.1 Constructor synopsis

Proxy() This constructor creates an output port which is then connected to the VSC’s
command stream. In order to successfully connect this stream requires the VSC’s
node name and command port number. These parameters are specified by an
instance of the class described in Section 7.14. The constructor has no arguments.
The constructor throws the exceptions: Section 7.15.2 and Section 7.15.3.

Proxy(Parameters&) This constructor creates two output ports which are then connected
to the VSC’s control stream and command streams. In order to successfully connect
these two streams requires the VSC’s node name, control and command port
numbers. These parameters are specified by an instance of class described in
Section 7.14. The application can over-ride one or more these parameters by
providing its own instance of the proxy’s parameters. The argument is a reference
to an object containing these parameters. The constructor will replace its own
internal copy of these parameters with the parameters specified by the argument.
The constructor throws the exceptions: Section 7.15.2 and Section 7.15.3.

7.2.2 Member synopsis

vscDiagnostic Creates a connection to the VSC’s diagnostic stream and registers an
application specific router to process the diagnostic telemetry acquired by the VSC
and returned through the stream. The set of potential diagnostic telemetry
returned by the VSC is described in appendix B. The router’s code is executed in
the context of the thread named “VscDiagnosticThread”. The priority of the
thread is specified by adding zero (0) to a common base priority. The base priority
is returned by the basePriority function of the class described in Section 7.14.
The functions’s argument specifies a reference to the router to process incoming
packets (see Section 6.2). The router will be called back once for every received
CCSDS telemetry packet. One can only register a router once per stream. If this
member function has been previously called, the exception described in
Section 7.15.1 will be thrown. If this member function cannot transmit the
connection request to the VSC due to a network error, the exception described in
Section 7.15.3 will be thrown. This member function returns no value.

vscTelemetry Creates a connection to the VSC’s telemetry stream and registers an
application specific router to process the telemetry acquired by the VSC and
returned through the stream. The set of potential telemetry returned by the VSC is
described in xxx. The router’s code is executed in the context of the thread named
“VscTelemetryThread”. The priority of the thread is specified by adding two
(2) to a common base priority. The base priority is returned by the
basePriority function of the class described in Section 7.14. The functions’s
argument specifies a reference to the router to process incoming packets (see
Section 6.2). One can only register a router once per stream. If this member
function has been previously called, the exception described in Section 7.15.1 will
be thrown. If this member function cannot transmit the connection request to the
VSC due to a network error, the exception described in Section 7.15.3 will be
thrown. This member function returns no value.
page 112 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 7 The VSC proxy package Version/Issue: 1.4/2
latDiagnostic Creates a connection to the VSC’s LAT diagnostic stream and registers an
application specific router to process the diagnostic telemetry acquired by the LAT
and returned through the stream. The router’s code is executed in the context of
the thread named “VscLatDiagnosticThread”. The priority of the thread is
specified by adding one (1) to a common base priority. The base priority is
returned by the basePriority function of the class described in Section 7.14.
The functions’s argument specifies a pointer to the router to process incoming
packets (see Section 6.2). The router will be called back once for every received
CCSDS telemetry packet. One can only register a router once per stream. If this
member function has been previously called, the exception described in
Section 7.15.1 will be thrown. If this member function cannot transmit the
connection request to the VSC due to a network error, the exception described in
Section 7.15.3 will be thrown. This member function returns no value.

latTelemetry Creates a connection to the VSC’s LAT telemetry stream and registers an
application specific router to process the telemetry acquired by the LAT and
returned through the stream This includes both the so-called LAT housekeeping
and diagnostic telemetry. The router’s code is executed in the context of a thread
named “VscLatTelemetryThread”. The priority of the thread is specified by
adding three (3) to a common base priority. The base priority is returned by the
basePriority function of the class described in Section 7.14. The functions’s
argument specifies a reference to the router to process incoming packets (see
Section 6.2). The router will be called back once for every received CCSDS
telemetry packet. One can only register a router once per stream. If this member
function has been previously called, the exception described in Section 7.15.1 will
be thrown. If this member function cannot transmit the connection request to the
VSC due to a network error, the exception described in Section 7.15.3 will be
thrown. This member function returns no value.

latScience Registers an application specific router to process telemetry received by the
VSC on the science telemetry stream. The router’s code is executed in the context of
a thread named “VscScienceThread”. The priority of the thread is specified by
adding four (4) to a common base priority. The base priority is returned by the
basePriority function of the class described in Section 7.14. The functions’s
argument specifies a reference to the router to process incoming packets (see
Section 6.2). The router will be called back once for every received CCSDS
telemetry packet. One can only register a router once per stream. If this member
function has been previously called, the exception described in Section 7.15.1 will
be thrown. If this member function cannot transmit the connection request to the
VSC due to a network error, the exception described in Section 7.15.3 will be
thrown. This member function returns no value.

execute(Scheduler&) Transmits a scheduler requests on the command stream to the VSC,
where these requests are then queued on the VSC for subsequent execution as
soon as the VSC has the capability to do so. The scheduler requests to execute are
represented by the function’s arguments. Relative to each other, these commands
are executed by the VSC in argument order. The relative time structure between
the execution of these requests and other telecommands transmitted to the LAT is
Initial public release page 113

The Virtual Spacecraft (VSC) Users Manual
Chapter 7 The VSC proxy package Version/Issue: 1.4/2
discussed in Section 1.4. The arguments are references to a series of objects. Each
object corresponds to a scheduler request (as a telecommand, see Section 7.3) to
be sent to the LAT. This function returns no value. This function can throw either
one of the exceptions described in Section 7.15.2. and Section 7.15.3.

execute(Control&,...) Transmits a set of up to seven (7) command requests on the
command stream to the VSC, where these requests are then queued on the VSC for
subsequent execution as soon as the VSC has the capability to do so. The
command requests to execute are represented by the function’s arguments.
Relative to each other, these commands are executed by the VSC in argument
order. The relative time structure between the execution of these requests and
other telecommands transmitted to the LAT is discussed in Section 1.4. The
arguments are references to a series of objects. Each object corresponds to a
command request (as a telecommand, see Section 7.4) to be sent to the LAT. This
function returns no value. This function can throw either one of the exceptions
described in Section 7.15.2. and Section 7.15.3.

execute(TeleCmnd&,...) Transmits a set of up to five (5) commands on the command
stream to the VSC, where these telecommands are then queued on the VSC for
subsequent transmission to the LAT as soon as the VSC has the capability to do so.
The commands necessary to transmit are represented by the function’s
arguments. Relative to each other, these commands are transmitted to the LAT in
argument order. The relative time structure between these and other
telecommands transmitted to the LAT is discussed in Section 1.4. The arguments
are references to a series of objects. Each object corresponds to a telecommand
(see Section 4.4) to be sent to the LAT. This function returns no value. This
function can throw either one of the exceptions described in Section 7.15.2. and
Section 7.15.3.

executeAt(unsigned time, Control&,...) Transmits a set of up to seven (7) command
requests on the command stream to the VSC, where these requests are then
queued on the VSC for subsequent execution at a time within a specific one
second period. The period is specified by the first argument, whose value
represents the number of seconds since the epoch 00:00:00.0 hours at January 1st,
2001. The command requests to execute are represented by the arguments
following the period (first) argument. Relative to each other, these requests are
transmitted to the LAT in argument order. The relative time structure between the
execution of these requests and other telecommands transmitted to the LAT is
discussed in Section 1.4. The arguments following the first argument are
references to a series of objects. Each object corresponds to a command request
(sent as a telecommand, see Section 4.4) to be executed by the VSC within the
scheduled one second period. This function returns no value. This function can
throw either one of the exceptions described in Section 7.15.2. and Section 7.15.3.

executeAt(unsigned time, TeleCmnd&,...) Transmits a set of up to eight (8) commands
on the command stream to the VSC, where these telecommands are then queued
on the VSC for subsequent transmission to the LAT at a time within a specific one
second period. The period is specified by the first argument, whose value
represents the number of seconds since the epoch 00:00:00.0 hours at January 1st,
2001. The commands transmitted are represented by the arguments following the
period (first) argument. Relative to each other, these commands are transmitted to
page 114 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 7 The VSC proxy package Version/Issue: 1.4/2
the LAT in argument order. The relative time structure between these and other
telecommands transmitted to the LAT is discussed in Section 1.4. The arguments
following the first argument are references to a series of objects. Each object
corresponds to a telecommand (see Section 4.4) to be sent to the LAT within the
scheduled one second period. This function returns no value. This function can
throw either one of the exceptions described in Section 7.15.2. and Section 7.15.3.

schedule() Disables sending the default ancillary sequence. See the member function
below. This function returns no value. This function can throw either one of the
exceptions described in Section 7.15.2. and Section 7.15.3.

schedule(Attitude&,...) Transmits a set of seven specific commands on the command
stream to the VSC, where these telecommands form the default set of ancillary
commands. The first argument is a reference to the first of the five different,
default attitude packets (see Section 4.10). The second argument is a reference to
the default time-tone packet (see Section 4.12). The third, fourth, and fifth
arguments are references to the next three default attitude packets The sixth
argument is a reference to the single, default ancillary data packet (see
Section 4.11). The seventh (and last) argument is a reference to the fifth (and last)
default attitude packet. This function returns no value. This function can throw
either one of the exceptions described in Section 7.15.2. and Section 7.15.3.

schedule(unsigned time, Attitude&,...) Transmits a set of seven specific commands
on the command stream to the VSC, where these telecommands are then queued
on the VSC for subsequent transmission to the LAT at a time within a specific one
second period. The period is specified by the first argument, whose value
represents the number of seconds since the epoch 00:00:00.0 hours at January 1st,
2001. The seven commands transmitted are represented by the seven arguments
following the period argument. Relative to each other these commands are
transmitted to the LAT in argument order. The relative time structure between
these and other telecommands transmitted to the LAT is discussed in Section 1.4.
The second argument is a reference to the first of the five different attitude
packets (see Section 4.10) sent to the LAT within the scheduled one second period.
The third argument is a reference to the time-tone packet sent to the LAT period
(see Section 4.12)within the scheduled one second period. The fourth, fifth, and
sixth arguments are references to the next three attitude packets sent to the LAT
within the scheduled one second period. The seventh argument is a reference to
the single ancillary data packet (see Section 4.11) sent to the LAT within the
scheduled one second period. The eight (and last) argument is a reference to the
fifth (and last) attitude packet sent to the LAT within the scheduled one second
period. This function returns no value. This function can throw either one of the
exceptions described in Section 7.15.2. and Section 7.15.3.
Initial public release page 115

The Virtual Spacecraft (VSC) Users Manual
Chapter 7 The VSC proxy package Version/Issue: 1.4/2
7.3 Scheduler control request

Constructs a change scheduler state request. The new state is specified as an enumeration
passed as an argument to the constructor.

Note: If this request specifies resetting the time-base can only be issued if the VSC is currently in a
stopped state (see Section 1.4.4)

7.3.1 Constructor synopsis

Scheduler This constructor takes as its first argument an enumeration expressing the state
which the scheduler is to be driven. See Section 1.4.4 for the meaning of each
scheduler state. The second argument specifies the new, initial value of the
time-base, as measured as the time since the standard epoch (00:00:00.0 hours at
January 1st, 2001). Time is measured in units of seconds. A value of zero (the
default), specifies the time-base should be set to the current value of the
wall-clock time-base (see Section 1.3.1).The constructor throws no exception.

7.3.2 Member synopsis

state Returns the requested state, expressed as an enumeration. The member function
has no arguments and throws no exceptions. If the request was to reset the
time-base, the function will return the enumeration Stop.

time Returns the initial value of the time-base on the VSC, as the time since the
standard epoch (00:00:00.0 hours at January 1st, 2001) in seconds. This function
has no arguments and throws no exceptions. If the request did not involve
resetting the time-base, this function will return a value of zero (0).

Listing 22 Class definition for Scheduler

1: class Scheduler : VscCcsds::TelCmnd {
2: public:
3: enum StartPauseStop {Start = 1, Pause = 2, Stop = 3};
4: public:
5: Scheduler(Scheduler::StartPauseStop, unsigned timebase = 0);
6: public:
7: ~Scheduler();
8: public:
9: Scheduler::StartPauseStop state() const;

10: public:
11: unsigned time() const;
12: };
page 116 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 7 The VSC proxy package Version/Issue: 1.4/2
7.4 Control request

All telecommands which provide direction to the VSC are called control requests. In order to
differentiate request based telecommands from GLAST based telecommands, specific requests
(described below) all sub-class from Request. Usage of this class is reserved to the
implementation. An application should never directly either use or sub-class from Control.
It is documented in this chapter only for completeness.

7.5 Cross-strapping options

In order to mitigate against single point-failure both the VSC and LAT have redundant SIU and
and DAQ communication interfaces. All these interfaces are cross-strapped and any change to
the current cross-strapping is governed by the request classes described in sections 7.6 and
7.7. Each of two classes takes as an argument, the enumeration defined below:

This enumeration specifies which one of the four cross strapping options should be applied as
enumerated in Table 9:

Listing 23 Class definition for Control

1: class Control : VscCcsds::TelCmnd {
2: Request(unsigned short apid, unsigned short function);
3: public:
4: ~Request();
5: };

enum Path {AA = 1, AB = 2, BA = 3, BB = 4};

Table 9 Cross-strapping options

Path

Use Unit?

VSC LAT

Primary Redundant Primary Redundant

AA yes no yes no

AB yes no no yes

BA no yes yes no

BB no yes no yes
Initial public release page 117

The Virtual Spacecraft (VSC) Users Manual
Chapter 7 The VSC proxy package Version/Issue: 1.4/2
7.6 SIU interface control request

The LAT has two SIUs (Spacecraft Interface Unit). One SIU is designated as the Primary SIU and
the other as the Redundant SIU. In orbit, the redundant SIU is called out as a cold spare. As the
name implies, SIUs interact with the spacecraft. In turn, the spacecraft mitigates against
single-point failure by having two SIU interfaces which the VSC emulates. One interface is
called out as the Primary LAT interface and the other as the Redundant LAT interface. In order
to support full redundancy each of the four units has both an “A” and “B” port. The SIUs and
VSC interfaces are physically cross-strapped in order to allow mixing and matching of the four
units. This request is used to specify which one of the four different cross-strapping options
should be used. See Section 3.3.1 for more information.

7.6.1 Constructor synopsis

SiuInterface This constructor takes as an argument the enumeration described in
Section 7.5. This enumeration determines the exact cross-strapping option
requested. If the argument is omitted the cross-strapping request is equal to the
initial cross-strapping established by the VSC. The constructor throws no
exceptions.

7.6.2 Member synopsis

path Returns the enumeration described in Section 7.5. This enumeration specifies
which one of the four cross-strapping options is implied by the request. This
function has no arguments and throws no exceptions.

7.7 DAQ interface control request

The LAT has one GASU which contains two DAQ boards. One DAQ board is designated as the
Primary DAQ board and the other as the Redundant DAQ board. Only one of the two DAQ
boards is active at any one time. In turn, the spacecraft mitigates against single-point failure
by having two DAQ board interfaces. One interface is called out as the Primary LAT interface

Listing 24 Class definition for SiuInterface

1: class SiuInterface : public Control {
2: public:
3: SiuInterface(VscProxy::Path = AA);
4: public:
5: ~SiuInterface();
6: public:
7: VscProxy::Path path() const;
8: };
page 118 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 7 The VSC proxy package Version/Issue: 1.4/2
and the other as the Redundant LAT interface which the VSC emulates. In order to support full
redundancy each of the four units has both an “A” and “B” port. The DAQ boards and VSC
interfaces are physically cross-strapped in order to allow mixing and matching of the four
units. This request is used to specify which one of the four different cross-strapping options
should be used. See Section 3.3.1 for more information.

7.7.1 Constructor synopsis

DaqInterface This constructor takes as an argument the enumeration described in
Section 7.5. This enumeration determines the exact cross-strapping option
requested. If the argument is omitted the cross-strapping request is equal to the
initial cross-strapping established by the VSC. The constructor throws no
exceptions.

7.7.2 Member synopsis

path Returns the enumeration described in Section 7.5. This enumeration specifies
which one of the four cross-strapping options is implied by the request. This
member has no arguments and throws no exceptions.

7.8 SIU discrete control request

The function of this request is change the state of one or more of the SIU’s discrete lines.

Note: This interface allows a discrete line to be either asserted or deasserted. The definition of assertion
follows the LAT negative logic convention, where a TRUE (asserted) logical value corresponds to a

Listing 25 Class definition for DaqInterface

1: class DaqInterface : public Control {
2: public:
3: DaqInterface(VscProxy::Path = AA);
4: public:
5: ~DaqInterface();
6: public:
7: VscProxy::Path path() const;
8: };
Initial public release page 119

The Virtual Spacecraft (VSC) Users Manual
Chapter 7 The VSC proxy package Version/Issue: 1.4/2
physical FALSE (0) value and a FALSE (deasserted) logical value corresponds to a physical TRUE (1)
value.

7.8.1 Constructor synopsis

ToggleLines The first argument corresponds to a 3-bit mask which defines which of the
three discrete lines are to be changed. Each bit offset corresponds to a line. If the
bit at the corresponding offset is set, the value of the line is to be changed. If the
bit at the offset is clear, the line’s value is left unchanged. The new values of the
discrete lines are determined by the second argument. Each bit offset of this
argument also corresponds to a discrete line. If the bit at the corresponding offset
is set, and the corresponding offset in the first argument is set, the discrete line is
asserted. If the bit at the corresponding offset is clear, and the corresponding offset
in the first argument is set, the discrete is deasserted. The class provides an
enumeration for each of the bit offsets.

7.8.2 Member synopsis

lines Returns the discrete lines to be changed. Each bit offset corresponds to a line. If
the bit at the corresponding offset is set, the value of the line is to be changed. If
the bit at the offset is clear, the line’s value is left unchanged. The new values of
the discrete lines are determined by the values member function described
below. This function has no arguments and throws no exceptions.

values Returns the values of the discrete lines changed. The discrete lines changed are
determined by the lines function described above. Each bit offset corresponds
to a line. If the bit at a specified offset is set, and the corresponding bit offset in the
returned value from the lines function is set, the line is to be enabled. If the bit at
a specified offset is clear, and the corresponding bit offset in the returned value
from the lines function is set, the line is to be disabled. This function has no
arguments and throws no exceptions.

Listing 26 Class definition for ToggleLines

1: class ToggleLines : public Control {
2: public:
3: enum Lines {Line0=0x1, Line1=0x2, Line2=0x4};
4: public:
5: ToggleLines(unsigned lines, unsigned values);
6: public:
7: ~ToggleLines();
8: public:
9: unsigned lines() const;

10: unsigned values() const;
11: };
page 120 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 7 The VSC proxy package Version/Issue: 1.4/2
7.9 SIU reset control request

The function of this request is to issue a reset to the currently selected SIU, on its currently
selected path. See Section 3.3.1 for a discussion on how the SIU and its path are selected.

7.9.1 Constructor synopsis

default.

7.9.2 Member synopsis

none.

7.10 Monitor control request

The function of this request is to either enable or disable the monitoring of LAT analog
(voltage and temperature) data (see [7]). When enabled, monitoring information is sent on the
VSC diagnostic stream (see Section 7.2) as a series of CCSDS packets. The number and structure
of these packets are described in Appendix B. Their are two identical monitors: The Primary
monitor and the Redundant Monitor. Only one of these two monitors may be enabled at any
one time. By default, when the VSC is started, monitoring is disabled.

Listing 27 Class definition for Reset

1: class Reset : public Control {
2: public:
3: Reset();
4: public:
5: ~Reset();
6: };
Initial public release page 121

The Virtual Spacecraft (VSC) Users Manual
Chapter 7 The VSC proxy package Version/Issue: 1.4/2
7.10.1 Constructor synopsis

Monitor This constructor takes as an argument an enumeration which determines whether
or not monitoring is to be enabled or disabled. If enabled, the enumeration specifies
whether to enable the Primary or Redundant monitor. This constructor throws no
exceptions.

7.10.2 Member synopsis

side Returns the requested monitor, expressed as an enumeration. The member
function has no arguments and throws no exceptions.

7.11 SSR control request

The function of this request is to either enable or disable the reception of data through the SSR
Interface. Enabling or disabling the interface corresponds to asserting or deasserting the
“DEVICE READY” line of the interface (see [7]). If the interface was already enabled, this
operation has no effect.

Listing 28 Class definition for Monitor

1: class Monitor : public Control {
2: public:
3: enum MonitorSide {None, Primary, Redundant};
4: public:
5: Monitor(MonitorSide = None);
6: public:
7: ~Monitor();
8: public:
9: MonitorSide side() const;

10: };

Listing 29 Class definition for SsrInterface

1: class SsrInterface : public Control {
2: public:
3: enum EnableDisable {Enable, Disable};
4: public:
5: SsrInterface(EnableDisable = Disable);
6: public:
7: ~SsrInterface();
8: public:
9: EnableDisable state() const;

10: };
page 122 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 7 The VSC proxy package Version/Issue: 1.4/2
7.11.1 Constructor synopsis

SsrInterface This constructor takes as an argument an enumeration (see Section 7.11)
which determines whether or not the interface is to be enabled or disabled. This
constructor throws no exceptions.

7.11.2 Member synopsis

state Returns the requested state, expressed as an enumeration. The member function
has no arguments and throws no exceptions.

7.12 Down load control request

The function of this request is to be described.

7.12.1 Constructor synopsis

Download This constructor takes as an argument the APID of the telemetry packet to be
emitted (on the VSC diagnostic stream). The set of allowed APIDs is specified by
xxx. This constructor throws no exceptions.

7.12.2 Member synopsis

apid Returns the APID of the telemetry packet to be down-loaded. The function has
arguments and throws no exceptions.

tid Returns the transaction ID for the request. The transaction ID is a unique number,
generated by the constructor and reflected back in the emitted telemetry. The
function has arguments and throws no exceptions.

Listing 30 Class definition for Download

1: class Download : public Control {
2: public: // constructors...
3: Download(unsigned short apid);
4: public:
5: ~Download();
6: public:
7: unsigned short apid() const;
8: unsigned long tid() const;
9: };
Initial public release page 123

The Virtual Spacecraft (VSC) Users Manual
Chapter 7 The VSC proxy package Version/Issue: 1.4/2
7.13 GBM control request

The function of this request is to transmit a GRB pulse to the LAT.

7.13.1 Constructor synopsis

default

7.13.2 Member synopsis

none

7.14 Proxy parameters

To be written.

7.14.1 Constructor synopsis

Parameters To be written.

Listing 31 Class definition fortGrb

1: class Grb : public Control {
2: public:
3: Grb();
4: public:
5: ~Grb();
6: };

Listing 32 Class definition for Parameters

1: class Parameters {
2: public: // constructors...
3: Parameters();
4: public:
5: ~Parameters();
6: public:
7: virtual const char* vsc();
8: public:
9: virtual int control();

10: public:
11: virtual int basePriority();
12: };
page 124 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Chapter 7 The VSC proxy package Version/Issue: 1.4/2
7.14.2 Member synopsis

vsc Returns the TCP/IP host name of the VSC. Note: this function is virtual. While
there should be no necessity to do so, if the host name agreement between VSC
and proxy interface is broken, the default assignment may be changed by
over-riding this function. This function has no arguments and throws no
exceptions.

control Returns the port number of the TCP/IP port used to send outgoing CCSDS
telecommand packets to the VSC. These telecommands are handled internally by
the VSC. See the command function described below for the port number used to
send telecommands which are relayed to the LAT. Note: this function is virtual.
While there should be no necessity to do so, if the port number agreement
between VSC and proxy interface is broken, the default assignment may be
changed by over-riding this function. This function has no arguments and throws
no exceptions.

basePriority Returns the priority base used to establish the priority of the three different
threads used to process incoming CCSDS telemetry packets (see Section 7.2). The
returned value may vary from zero (0) to 125 (decimal), with increasing priority
corresponding to decreasing return value. The relative priority between these three
threads is fixed and cannot be changed, however, as this function is virtual it may
be over-ridden and the base priority re-assigned.

7.15 Exceptions

7.15.1 Data Stream Allocated

To be written.

7.15.2 No transmit port

To be written.

7.15.3 Network Transmit Failure

To be written.
Initial public release page 125

The Virtual Spacecraft (VSC) Users Manual
Chapter 7 The VSC proxy package Version/Issue: 1.4/2
page 126 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Appendix A The Datagram support package Version/Issue: 1.4/2
Appendix A

The Datagram support package

By LAT convention, information passed on the science stream is always organized in units of
datagrams (see [23]). A Datagram is a common structure used to encapsulate all science data
created and transmitted by Flight Software (FSW). Much (but not all) of the complication of
processing science as opposed to housekeeping telemetry is due to this encapsulation. For
example, while in principal, datagram size is unbounded, this is not the case for CCSDS
packets. To deal with this eventuality FSW transmits datagrams as a series of one or more
science CCSDS packets with the same APID. In other words, a datagram may span CCSDS
science packets. Sequencing information within the packet (see [16]) is used to identify which
packet is which part of a datagram. The principal function of this package is therefore the
assembly of CCSDS science packets into datagrams. An assembled datagram is represented by
the Datagram class (see [27]). As packets for these datagrams arrive potentially out of order
they must be sequenced before assembly. Further, as packet transmission is not considered
reliable, the package must assure a mechanism to both catch and report both duplicate
packets and incomplete datagrams. The classes used to support datagram assembly are all
based on the Assembler class described in Section A.2.

The relationship between the classes of this package is illustrated in Figure A.1:

Figure A.1 Class dependencies for the datagram support package

ScienceHandler

Dfi::Datagram

AssemblerLciAssembler LpaAssembler
Initial public release page 127

The Virtual Spacecraft (VSC) Users Manual
Appendix A The Datagram support package Version/Issue: 1.4/2
A.1 Name space - VscDatagram

A.2 Datagram Assembler

This class, which forms a base class for specific handlers described below is used to catch and
assemble into datagrams incoming CCSDS science packets. This class is derived from the
canonical science handler (see Section 4.8). As packets arrive to assemble, the class triggers the
validate method passing as an argument the incoming packet. Once the datagram is
assembled, the dispose method is triggered. This method receives, as an argument, both the
assembled datagram and the number of packets which were used in its assembly.

The class retains state, based on APID, for any each pending assembly datagram. As packets
arrive they must satisfy the following constraints:

— Their sequence flag value is expected

— Their sequence number is monotonically increasing

— Their contributed size will not cause the datagram to overflow

If any of these constraints are violated the datagram cannot be successfully assembled. The
class discards the runt (pending) datagram and triggers the unexpected method. This
method receives, as an argument, the unexpected packet, the expected state1 and sequence
flags.

Typically, this class is not used directly. Instead, use one of the two derived classes:
LciAssembler (see Section A.3) or LpaAssembler (see Section A.4).

The definition for this class is contained in Listing A.1:

1. The explanation for state is TBD.

Listing A.1 Class definition for Assembler

1: class Assembler : public VscHandling::ScienceHandler {
2: public:
3: Assembler(unsigned maxDatagramSize);
4: public:
5: virtual ~Assembler();
6: public:
7: virtual void validate(const VscCcsds::Science&) = 0;
8: virtual void dispose(const Datagram&, unsigned fragments) = 0;
9: virtual void unexpected(const VscCcsds::Science&,

10: unsigned state, unsigned seqNum) = 0;
11: public:
12: unsigned maxDatagramSize() const;
13: };
page 128 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Appendix A The Datagram support package Version/Issue: 1.4/2
A.2.1 Constructor synopsis

Assembler The argument is the maximum size (in bytes) of any datagram expected to be
assembled by the class. The constructor throws no exceptions.

A.2.2 Member synopsis

validate This method will be called whenever a CCSDS science packet arrives which is to
be assembled into the resulting datagram. The default implementation is a no-op
and simply returns. The argument is a reference to the arrived CCSDS science
packet. Note that the argument referenced by this method (and any objects it may
reference) is ephemeral. When the method returns these objects are no longer
accessible. Consequently, any information in these objects which the user finds
necessary to persist across calls to this method must be copied. Note: This
function is pure virtual and, therefore, its implementation must be provided by a
derived class.This function returns no value and throws no exceptions.

dispose This method is called once per assembled datagram. It will be called immediately
after all the packets which constitute the datagram have been processed. The first
argument is a reference to the assembled datagram (see [27]). The second
argument is these number of fragments (CCSDS science packets) used in the
assembly of the datagram. Note that the argument referenced by this method
(and any objects it may reference) is ephemeral. When the method returns these
objects are no longer accessible. Consequently, any information in these objects
which the user finds necessary to persist across calls to this method must be
copied. Note: This function is pure virtual and, therefore, its implementation
must be provided by a derived class.This function returns no value and throws no
exceptions.

unexpected This method will be called whenever a CCSDS science packet arrives at the
assembler which was not expected. For example, the assembler may be waiting
for the last packet of a sequence, and is sent instead the first packet of the
sequence. The first argument is a reference to the unexpected CCSDS packet. The
second argument is the expected state expressed as a value from zero to fifteen
(decimal). The third argument is the expected sequence number. Note: This
function is pure virtual and, therefore, its implementation must be provided by a
derived class.This function returns no value and throws no exceptions.

maxDatagramSize This method returns the maximum size (in bytes) of any expected,
assembled datagram. This value was passed as an argument to the constructor.
This function has no arguments and throws no exceptions.
Initial public release page 129

The Virtual Spacecraft (VSC) Users Manual
Appendix A The Datagram support package Version/Issue: 1.4/2
A.3 LCI Assembler

This class allows for the assembly of datagrams which originated from FSW’s LAT Charge
Injection (LCI) system (see [25]). The implementation of this class is straightforward:

— it inherits from Assembler (see Section A.2)

— determines and sets the maximum size of any expected datagrams

— determines and registers the APIDs corresponding to legitimate LCI datagrams

Note: Because the APIDs produced by the LCI system are both fixed and determined by FSW, the user
calls the base class’s handle method (see Section 5.2) at their own peril.

The definition for this class is contained in Listing A.2:

A.3.3 Constructor synopsis

Just the default.

A.3.4 Member synopsis

See the base class (Section A.2)

A.4 LPA Assembler

This class allows for the assembly of datagrams which originated from FSW’s LAT Physics
Analysis (LPA) system (see [25]). The implementation of this class is straightforward:

— it inherits from Assembler (see Section A.2)

— determines and sets the maximum size of any expected datagrams

Listing A.2 Class definition for LciAssembler

1: class LciAssembler : public Assembler {
2: public:
3: LciAssembler();
4: public:
5: virtual ~LciAssembler();
6: };
page 130 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Appendix A The Datagram support package Version/Issue: 1.4/2
— determines and registers the APIDs corresponding to legitimate LPA datagrams

Note: Because the APIDs produced by the LPA system are both fixed and determined by FSW, the user
calls the base class’s handle method (see Section 5.2) at their own peril.

The definition for this class is contained in Listing A.3:

A.4.5 Constructor synopsis

Just the default.

A.4.6 Member synopsis

See the base class (Section A.2)

A.5 Exceptions

none.

Listing A.3 Class definition for LpaAssembler

1: class LpaAssembler : public Assembler {
2: public:
3: LpaAssembler();
4: public:
5: virtual ~LpaAssembler();
6: };
Initial public release page 131

The Virtual Spacecraft (VSC) Users Manual
Appendix A The Datagram support package Version/Issue: 1.4/2
page 132 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Appendix B Telemetry from the Monitoring System Version/Issue: 1.4/2
Appendix B

Telemetry from the Monitoring System

The VSC monitors, once per second, 102 analog voltage, current, and temperatures from the
LAT and its BPU. Once acquired, this information is transmitted from VSC to proxy as a series
of CCSDS packets on the VSC telemetry stream (see Section 7.2). Physically, the monitored
information originates from two different types of VSC boards: the 850 and 468 board (see
Chapter 2). For each board, the monitoring system generates a single packet, with the packet’s
APID used to differentiate board. In short, 102 points are monitored and their information is
spread over two type of packets giving a transmission rate of two packets per second. This
appendix describes, for each type of packet, the telemetry produced by the VSC’s monitoring
system. These CCSDS packets follow the standard GLAST telemetry standards as described in
Section 4.7. Section B.2 describes the telemetry packet produced by the 850 board and
Section B.2 describes the telemetry packet produced by the 468 board. In actuality, to mitigate
against single point failure, data for these 102 quantities are brought twice into the VSC,
however, only one set is transmitted at any one time (see Section 3.3.6). Each packet contains,
as its last field, a boolean which identifies whether this data originates from the primary or
redundant set of signals. A value of one (1) indicates the primary signals and a value of two (2)
indicates the redundant signals. For each quantity monitored, the corresponding VSC digitizer
produces 11 bits of magnitude and one bit of sign. This 12 bit value is sign-extended to a 16-bit
value before transmission.

B.1 Unit conversion

There are six different types of conversion necessary to translate between raw (sign extended)
ADC counts and engineering units. The relationship between conversion type and monitored
quantity is enumerated in the spreadsheets of figures B.1 and B.2. The following six sections
define, for each of these six conversion types, the necessary conversion equation.
Initial public release page 133

The Virtual Spacecraft (VSC) Users Manual
Appendix B Telemetry from the Monitoring System Version/Issue: 1.4/2
B.1.1 LAT voltage (LatV)

Equation (1) converts voltage sensor counts (vn) to voltage (V), where: vn is the signed 16-bit
ADC value and V is measured in volts.

(1)

B.1.2 BPU voltage (BpuV)

Equation (2) converts BPU voltage sensor counts (vn) to voltage (V), where: vn is the signed
16-bit ADC value and V is measured in volts.

(2)

B.1.3 BPU Current (BpuI)

Equation (3) converts BPU current sensor counts (vn) to current (A), where: vn is the signed
16-bit ADC value and A is measured in amperes.

(3)

B.1.4 DAQ Current (DaqI)

Equation (4) converts DAQ current sensor counts (vn) to current (A), where: vn is the signed
16-bit ADC value and A is measured in amperes.

V c0 c1⁄ vn×=

where:
c0 20V=

c1 4096counts=

V c0 c1⁄ vn×=

where:
c0 200V=

c1 4096counts=

A c0 c1⁄ vn×=

where:
c0 20A=

c1 4096counts=
page 134 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Appendix B Telemetry from the Monitoring System Version/Issue: 1.4/2
(4)

B.1.5 Thermistor

Equation (5) converts thermistor sensor counts (vn) to resistance (r), where: vn is the signed
16-bit ADC value and r is measured in kilo-ohms. The conversion from resistance to
temperature is specified in reference [29].

(5)

B.1.6 RTD

Equation (6) converts RTD sensor counts (vn) to resistance (r), where: vn is the signed 16-bit ADC
value and r is measured in kilo-ohms. The conversion from resistance to temperature is
specified in reference [28].

(6)

B.2 Telemetry from the 850 board

The spread-sheet illustrated in Figure B.1 enumerates the quantities monitored by the 850
board and encapsulated in the telemetry packet whose APID is defined in Section B.2.7. Each
entry in the spread-sheet corresponds to one, specific monitored quantity. For each quantity,
the spread-sheet specifies the relative location of its data, sensor type, and description. Data
offsets are described in units of 16-bit (decimal) words with offset zero (0) beginning
immediately following the standard telemetry header (i. e., the start of the packet’s payload).

A c0 c1⁄ vn×=

where:
c0 200A=

c1 4096counts=

r c0 vn⁄ c1–=

where:
c0 191488kΩcounts=

c1 120kΩ=

r c0 c1 vn×+() c2 c3 vn×–()⁄=

where:
c0 775.5kΩ=

c1 0.097656kΩ/count=

c2 361.25=

c3 0.049142/count=
Initial public release page 135

The Virtual Spacecraft (VSC) Users Manual
Appendix B Telemetry from the Monitoring System Version/Issue: 1.4/2
For example, offset eight (8) corresponds to a measurement of the GASU’s temperature on its
primary DAQ board. The sensor type is “thermistor” which specifies temperature as measured
through a thermistor.
page 136 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Appendix B Telemetry from the Monitoring System Version/Issue: 1.4/2
B.2.7 APID = 0x00A8

Figure B.1 Enumeration of 850 board monitored quantities

Offset Conversion Description
0 Thermistor Primary SIU Temperature
1 LatV Primary SIU Voltage
2 Thermistor Primary SIU Spare Temperature
3 LatV Primary SIU Spare Voltage
4 Thermistor Redundant SIU Temperature
5 LatV Redundant SIU Voltage
6 Thermistor Redundant SIU Spare Temperature
7 LatV Redundant SIU Spare Voltage
8 Thermistor Primary GASU DAQ Board Temperature
9 LatV Primary GASU DAQ Board Converter AEM/EBM Digital Voltage (3.3V)

10 LatV Primary GASU DAQ Board Converter AEM/EBM Digital Voltage (2.5V)
11 LatV Primary GASU DAQ Board Converter CRU/GEM Digital Voltage (3.3V)
12 LatV Primary GASU DAQ Board Converter CRU/GEM Digital Voltage (2.5V)
13 Thermistor Primary GASU DAQ Board Spare Temperature
14 LatV Primary GASU DAQ Board Spare Voltage 1
15 LatV Primary GASU DAQ Board Spare Voltage 2
16 Thermistor Redundant GASU DAQ Board Temperature
17 LatV Redundant GASU DAQ Board Converter AEM/EBM Digital Voltage (3.3V)
18 LatV Redundant GASU DAQ Board Converter AEM/EBM Digital Voltage (2.5V)
19 LatV Redundant GASU DAQ Board Converter CRU/GEM Digital Voltage (3.3V)
20 LatV Redundant GASU DAQ Board Converter CRU/GEM Digital Voltage (2.5V)
21 Thermistor Redundant GASU DAQ Board Spare Temperature
22 LatV Redundant GASU DAQ Board Spare Voltage 1
23 LatV Redundant GASU DAQ Board Spare Voltage 2
24 Thermistor PDU 0 Board Temperature
25 LatV PDU 0 Voltage
26 Thermistor PDU 1 Board Temperature
27 LatV PDU 1 Voltage
28 LatV PDU Spare Voltage 1
29 LatV PDU Spare Voltage 2
30 LatV Analog sum of primary VCHP heater switch outputs on the +Y radiator
31 LatV Analog sum of primary VCHP heater switch outputs on the -Y radiator
32 LatV Analog sum of redundant VCHP heater switch outputs on the +Y radiator
33 LatV Analog sum of redundant VCHP heater switch outputs on the -Y radiator
34 LatV +Y Heater Control Box Spare Voltage 1
35 LatV +Y Heater Control Box Spare Voltage 2
36 LatV -Y Heater Control Box Spare Voltage 1
37 LatV -Y Heater Control Box Spare Voltage 2
38 BpuV Regulated BPU SIU feed Voltage
39 BpuI Regulated BPU SIU feed Current
40 BpuV Regulated BPU DAQ feed Voltage
41 DaqI Regulated BPU DAQ feed Current
42 BpuV Regulated BPU VCHP Voltage
43 BpuI Regulated BPU VCHP Current
44 BpuV Unregulated BPU Primary Grid Radiator Voltage
45 BpuI Unregulated BPU Primary Grid Radiator Current
46 BpuV Unregulated BPU Redundant Grid Radiator Voltage
47 BpuI Unregulated BPU Redundant Grid Radiator Current
48 NA Which SC monitor was used to generate this packet
Initial public release page 137

The Virtual Spacecraft (VSC) Users Manual
Appendix B Telemetry from the Monitoring System Version/Issue: 1.4/2
B.3 Telemetry from the 468 board

The spread-sheet illustrated in Figure B.2 enumerates the quantities monitored by the 468
board and encapsulated in the telemetry packet whose APID is defined in Section B.3.8. Each
entry in the spread-sheet corresponds to one, specific monitored quantity. For each quantity,
the spread-sheet specifies the relative location of its data, sensor type, and description. Data
offsets are described in units of 16-bit (decimal) words with offset zero (0) beginning
immediately following the standard telemetry header (i. e., the start of the packet’s payload).
For example, offset twenty-six (26) corresponds to a measurement of the +X tile temperature.
The sensor type is “Rtd” and specifies temperature as measured through a RTD.
page 138 Initial public release

The Virtual Spacecraft (VSC) Users Manual
Appendix B Telemetry from the Monitoring System Version/Issue: 1.4/2
B.3.8 APID = 0x00A4

Figure B.2 Enumeration of 468 board monitored quantities

Offset Conversion Description
0 Rtd +Y Radiator Panel Upper Left Survival Heater Temperature
1 Rtd +Y Radiator Panel Upper Right Survival Heater Temperature
2 Rtd +Y Radiator Panel Lower Left Survival Heater Temperature
3 Rtd +Y Radiator Panel Lower Right Survival Heater Temperature
4 Rtd +Y VCHP Reservoir Heater Temperature 0
5 Rtd +Y VCHP Reservoir Heater Temperature 1
6 Rtd +Y VCHP Reservoir Heater Temperature 2
7 Rtd +Y VCHP Reservoir Heater Temperature 3
8 Rtd +Y VCHP Reservoir Heater Temperature 4
9 Rtd +Y VCHP Reservoir Heater Temperature 5

10 Thermistor +Y VCHP-XLHP Interface +X Side Temperature
11 Thermistor +Y VCHP-XLHP Interface -X Side Temperature
12 Thermistor +Y Spare Temperature channel 0
13 Rtd -Y Radiator Panel Upper Left Survival Heater Temperature
14 Rtd -Y Radiator Panel Upper Right Survival Heater Temperature
15 Rtd -Y Radiator Panel Lower Left Survival Heater Temperature
16 Rtd -Y Radiator Panel Lower Right Survival Heater Temperature
17 Rtd -Y VCHP Reservoir Heater Temperature 0
18 Rtd -Y VCHP Reservoir Heater Temperature 1
19 Rtd -Y VCHP Reservoir Heater Temperature 2
20 Rtd -Y VCHP Reservoir Heater Temperature 3
21 Rtd -Y VCHP Reservoir Heater Temperature 4
22 Rtd -Y VCHP Reservoir Heater Temperature 5
23 Thermistor -Y VCHP-XLHP Interface -X Side Temperature
24 Thermistor -Y VCHP-XLHP Interface +X Side Temperature
25 Thermistor -Y Spare Temperature channel 0
26 Rtd +X ACD Tile Temperature
27 Rtd -X ACD Tile Temperature
28 Rtd +Y ACD Tile Temperature
29 Rtd -Y ACD Tile Temperature
30 Rtd +Z ACD Tile Temperature
31 Thermistor +X ACD Inside Composite Shell Temperature
32 Thermistor -X ACD Inside Composite Shell Temperature
33 Thermistor +Y ACD Inside Composite Shell Temperature
34 Thermistor -Y ACD Inside Composite Shell Temperature
35 Thermistor +Z ACD Inside Composite Shell Temperature
36 Thermistor -X ACD PMT Rail Right Temperature
37 Thermistor -Y ACD PMT Rail Right Temperature
38 Thermistor +X ACD PMT Rail Right Temperature
39 Thermistor +Y ACD PMT Rail Right Temperature
40 Thermistor X-LAT Plate Heat Pipe Temperature 1
41 Thermistor X-LAT Plate Heat Pipe Temperature 2
42 Thermistor X-LAT Plate Heat Pipe Temperature 3
43 Thermistor X-LAT Plate Heat Pipe Temperature 4
44 Thermistor +Y Grid-Radiator Interface +X Side Temperature
45 Thermistor +Y Grid-Radiator Interface -X Side Temperature
46 Thermistor +Y Grid Make-up Heaters +X Side Temperature
47 Thermistor +Y Grid Make-up Heaters -X Side Temperature
48 Thermistor +Y Spare Temperature channel 1
49 Thermistor -Y Grid-Radiator Interface -X Side Temperature
50 Thermistor -Y Grid-Radiator Interface +X Side Temperature
51 Thermistor -Y Grid Make-up Heaters -X Side Temperature
52 Thermistor -Y Grid Make-up Heaters +X Side Temperature
53 Thermistor -Y Spare Temperature channel 1
54 NA Which SC monitor was used to generate this packet
Initial public release page 139

The Virtual Spacecraft (VSC) Users Manual
Appendix B Telemetry from the Monitoring System Version/Issue: 1.4/2
page 140 Initial public release

	The Virtual Spacecraft (VSC)
	Abstract
	Intended audience
	Conventions used in this document
	References
	Document Control Sheet
	Document Status Sheet
	Table of Contents
	List of Tables
	List of Figures
	List of Listings
	Chapter 1 Introduction
	1.1 Information Exchange
	1.1.1 Information exchange between LAT and VSC
	1.1.2 Information Exchange between VSC and proxy interface

	1.2 Software methodology and organization
	1.2.1 Documentation conventions
	1.2.2 Header files and name spaces
	1.2.3 Configuration management

	1.3 Observatory time
	1.3.1 Time representation
	1.3.1.1 Initializing the observatory time-base

	1.3.2 Time Keeping

	1.4 Routing and scheduling requests
	1.4.1 Routing
	1.4.2 Queuing
	1.4.3 Scheduling
	1.4.3.1 Harvesting the work load
	1.4.3.2 Scheduling state transitions
	1.4.3.3 Scheduling control work
	1.4.3.4 Scheduling command work
	1.4.3.5 Cleanup

	1.4.4 Scheduler State Model

	Chapter 2 Hardware
	2.1 Electrical conventions
	2.2 The SBC and 1553 interface
	2.3 The GPS receiver
	2.4 The Science interface
	2.5 The Discrete interface
	2.6 Digitizer
	2.7 LAT Cable interface
	2.8 LAT Monitoring interface
	2.9 VSC Configurations
	2.9.1 The Testbed

	2.10 VSC Inter-Connectivity

	Chapter 3 Using the proxy interface
	3.1 Distribution of telemetry
	3.2 Managing the SC/GBM interface
	3.3 Managing the SC/LAT interfaces
	3.3.1 SIU cross-strapping
	3.3.2 SIU Reset
	3.3.3 SIU discretes
	3.3.4 GASU (DAQ board) cross-strapping
	3.3.5 Enabling the Science Interface
	3.3.6 Enabling Diagnostic Monitoring

	3.4 Handling Incoming telemetry
	3.4.1 APID filtering

	3.5 Routing Incoming telemetry
	3.5.1 Router registration
	3.5.2 APID dispatching
	3.5.3 Science telemetry and datagrams

	3.6 Telecommands
	3.7 Scheduling the “Magic seven”
	3.8 Administrating the VSC
	3.8.1 Configuring queue sizes
	3.8.2 Network configuration
	3.8.2.1 VSC node name and IP address
	3.8.2.2 Port Numbers

	Chapter 4 CCSDS package
	4.1 Name space - VscCcsds
	4.2 Packet sequencing
	4.3 Packet
	4.3.1 Constructor synopsis
	4.3.2 Member synopsis

	4.4 TeleCmnd
	4.4.1 Constructor synopsis
	4.4.2 Member synopsis

	4.5 Mangle
	4.5.1 Constructor synopsis
	4.5.2 Member synopsis

	4.6 Generic Telemetry packet
	4.6.1 Constructor synopsis
	4.6.2 Member synopsis

	4.7 Telemetry
	4.8 Science
	4.8.1 Member synopsis

	4.9 The “Magic 7” Telecommands
	4.9.1 Constructor synopsis
	4.9.2 Member synopsis

	4.10 The Attitude Ancillary Telecommand
	4.10.1 Constructor synopsis
	4.10.2 Member synopsis

	4.11 The Ancillary Data Telecommand
	4.11.1 Constructor synopsis
	4.11.2 Member synopsis

	4.12 The Time-Tone Ancillary Telecommand
	4.12.1 Constructor synopsis
	4.12.2 Member synopsis

	4.13 Exceptions

	Chapter 5 The Handling package
	5.1 Name space - VscHandling
	5.2 Handler
	5.2.1 Constructor synopsis
	5.2.2 Member synopsis

	5.3 Telemetry Handler
	5.3.1 Constructor synopsis
	5.3.2 Member synopsis

	5.4 Science Handler
	5.4.1 Constructor synopsis
	5.4.2 Member synopsis

	5.5 Telecommand Handler
	5.5.1 Constructor synopsis
	5.5.2 Member synopsis

	5.6 APID Range
	5.6.1 Constructor synopsis
	5.6.2 Member synopsis

	5.7 Exceptions

	Chapter 6 The Routing package
	6.1 Name space - VscRouting
	6.2 Router
	6.2.1 Constructor synopsis
	6.2.2 Member synopsis

	6.3 Telemetry Router
	6.3.1 Constructor synopsis
	6.3.2 Member synopsis

	6.4 Science Router
	6.4.1 Constructor synopsis
	6.4.2 Member synopsis

	6.5 Telecommand Router
	6.5.1 Constructor synopsis
	6.5.2 Member synopsis

	6.6 Exceptions
	6.6.1 Insufficient Memory

	Chapter 7 The VSC proxy package
	7.1 Name space - VscProxy
	7.2 Proxy
	7.2.1 Constructor synopsis
	7.2.2 Member synopsis

	7.3 Scheduler control request
	7.3.1 Constructor synopsis
	7.3.2 Member synopsis

	7.4 Control request
	7.5 Cross-strapping options
	7.6 SIU interface control request
	7.6.1 Constructor synopsis
	7.6.2 Member synopsis

	7.7 DAQ interface control request
	7.7.1 Constructor synopsis
	7.7.2 Member synopsis

	7.8 SIU discrete control request
	7.8.1 Constructor synopsis
	7.8.2 Member synopsis

	7.9 SIU reset control request
	7.9.1 Constructor synopsis
	7.9.2 Member synopsis

	7.10 Monitor control request
	7.10.1 Constructor synopsis
	7.10.2 Member synopsis

	7.11 SSR control request
	7.11.1 Constructor synopsis
	7.11.2 Member synopsis

	7.12 Down load control request
	7.12.1 Constructor synopsis
	7.12.2 Member synopsis

	7.13 GBM control request
	7.13.1 Constructor synopsis
	7.13.2 Member synopsis

	7.14 Proxy parameters
	7.14.1 Constructor synopsis
	7.14.2 Member synopsis

	7.15 Exceptions
	7.15.1 Data Stream Allocated
	7.15.2 No transmit port
	7.15.3 Network Transmit Failure

	Appendix A The Datagram support package
	A.1 Name space - VscDatagram
	A.2 Datagram Assembler
	A.2.1 Constructor synopsis
	A.2.2 Member synopsis

	A.3 LCI Assembler
	A.3.3 Constructor synopsis
	A.3.4 Member synopsis

	A.4 LPA Assembler
	A.4.5 Constructor synopsis
	A.4.6 Member synopsis

	A.5 Exceptions

	Appendix B Telemetry from the Monitoring System
	B.1 Unit conversion
	B.1.1 LAT voltage (LatV)
	B.1.2 BPU voltage (BpuV)
	B.1.3 BPU Current (BpuI)
	B.1.4 DAQ Current (DaqI)
	B.1.5 Thermistor
	B.1.6 RTD

	B.2 Telemetry from the 850 board
	B.2.7 APID = 0x00A8

	B.3 Telemetry from the 468 board
	B.3.8 APID = 0x00A4

