

College of Information Science and Technology

The Pennsylvania State University

A Gentle Introduction to Herbal

(Version 3.0.3)

Mark A. Cohen

mcohen@lhup.edu

Frank E. Ritter

ritter@ist.psu.edu

Damodar Bhandarkar

dnb133@psu.edu

Olivier Georgeon

olg1@psu.edu

Technical Report No. ACS 2007 - 1

November 7, 2008

acs.ist.psu.edu

Phone +1 (814) 865-4455 Fax +1 (814) 865-6426

Applied Cognitive Science Lab.

The College of Information Science and Technology.

The Pennsylvania State University, University Park, PA 16802

 A Gentle Introduction to Herbal 1

Table of Contents

1.0 INTRODUCTION..4

1.1. WHY USE HERBAL...4
1.2. STRUCTURE OF HERBAL...4

2.0 INSTALLING HERBAL...5

3.0 LESSON 1: THE BASICS OF THE HERBAL INTERFACE ..6

3.1. STARTING HERBAL AND INITIALIZING THE INTERFACE ...7
3.2. ADDITIONAL EXERCISES ..8

4.0 LESSON 2: CREATING A VERY HUNGRY AND THIRSTY AGENT NAMED SALLY......................8

4.1. CREATING A NEW HERBAL PROJECT ...8
4.2. BUILDING AGENT SALLY ...9
4.3. CREATING AN AGENT ..9
4.4. CREATING A PROBLEM SPACE ...10
4.5. CREATING OPERATORS ..10
4.6. CREATING TYPES ...10
4.7. CREATING CONDITIONS ...11
4.8. CREATING ACTIONS...12
4.9. ASSOCIATING CONDITIONS AND ACTIONS WITH OPERATORS..15
4.10. WRAPPING UP THE SALLY AGENT ...16
4.11. ADDING DESIGN RATIONALE...17
4.12. BROWSING THE AGENT IN THE MODEL BROWSER VIEW ...18
4.13. TESTING SALLY ...18
4.14. ADDITIONAL EXERCISES ..21

5.0 LESSON 3: DEBUGGING SALLY ...21

5.1. DEBUGGING SALLY IN SOAR..21
5.2. DEBUGGING SALLY IN JESS..23
5.3. ADDITIONAL EXERCISES ..23

6.0 LESSON 4: ADDING HIERARCHY TO SALLY ...23

6.1. PREPARING THE PROBLEM SPACES ..24
6.2. BUILDING THE HIERARCHY..25
6.3. VIEWING THE HIERARCHICAL MODEL IN THE MODEL BROWSER ..26
6.4. RUNNING THE HIERARCHICAL MODEL ..27

 A Gentle Introduction to Herbal 2

6.5. ADDITIONAL EXERCISES ..30

7.0 LESSON 5: DEBUGGING A HIERARCHICAL MODEL...30

7.1. DEBUGGING THE HIERARCHICAL MODEL IN SOAR ..30
7.2. DEBUGGING THE HIERARCHICAL MODEL IN JESS ..32
7.3. DEBUGGING THE HIERARCHICAL MODEL IN HERBAL..32
7.4. ADDITIONAL EXERCISES ..34

8.0 LESSON 6: LEARNING ...34

8.1. RUNNING SALLY WITH LEARNING ENABLED ..34
8.2. PRESCRIPT AND POSTSCRIPT ..36
8.3. ADDITIONAL EXERCISES ..37

9.0 LESSON 7: CREATING A SIMPLE VACUUM CLEANER MODEL IN HERBAL37

9.1. INTERACTING WITH AN EXTERNAL ENVIRONMENT...37
9.2. MANAGING MULTIPLE PROJECTS ..38
9.3. CREATING TYPES THAT INTERACT WITH AN ENVIRONMENT...39
9.4. VIEWING, EDITING, AND SHARING LIBRARY CODE ...40
9.5. CREATING VACUUM CLEANER CONDITIONS..41
9.6. CREATING VACUUM CLEANER ACTIONS ...44
9.7. CREATING VACUUM CLEANER OPERATORS ..45
9.8. CREATING VACUUM CLEANER PROBLEM SPACES ...46
9.9. WRAPPING UP THE VACUUM CLEANER AGENT ...47
9.10. RUNNING TOM IN THE VACUUM CLEANER ENVIRONMENT ...47
9.11. ADDITIONAL EXERCISES ..48

10.0 LESSON 8: CREATING A SIMPLE DTANK MODEL IN HERBAL..50

10.1. DTANK I/O ...58
10.2. INSTANTIATING THE DTANK PREDEFINED MODEL...62
10.3. UNDERSTANDING THE PREDEFINED DTANK MODEL..62
10.4. EXECUTING THE HERBAL TANK IN THE DTANK ENVIRONMENT ..64
10.5. DEBUGGING DTANK MODELS ..65
10.6. ADDITIONAL EXERCISES ..67

11.0 ADVANCED FEATURES ..67

11.1. PREFERENCES...67
11.2. ELABORATIONS..69

12.0 REFERENCES...71

 A Gentle Introduction to Herbal 3

 A Gentle Introduction to Herbal 4

1.0 Introduction
Herbal is a high level behavior representation language that is realized through an integrated

development environment consisting of a high-level language, a compiler, and a graphical editor

that acts as a first step towards creating development tools that support the wide range of users of

intelligent agents and cognitive models.

1.1. Why Use Herbal

The main objective of Herbal is to allow developers to focus on the architectural aspects of the

cognitive agent while the detailed aspects of the programming nuances are managed by the Herbal

compiler.

Additionally, the distinguishing characteristic of Herbal is to create models that explain

themselves. To achieve this, Herbal formalizes the programming process through the use of an

explicit ontology of classes (Cohen, Ritter, & Haynes, 2005) that represent concepts of the

Problem Space Computational Model (Newell, 1990) including models, states, operators,

elaborations, conditions, actions and working memory, all as first class model objects.

Programming in Herbal involves instantiating objects using these ontological classes. Thus, the

programming process is reduced to simply instantiating objects, rather than coding the classes and

structure implicitly in a large set of heterogeneous Soar productions. As a result of using Herbal,

the power of cognitive architectures like Soar can be taken advantage of. Current development of

Herbal is focused on using the information contained in the Herbal ontology to generate

explanations while the model is running.

1.2. Structure of Herbal

Herbal is built on the Problem Space Computational Model. For a detailed introduction to the

model refer to “A Gentle Introduction to Soar”, which can be found at Lehman, Laird and

Rosenbloom (1998).

Herbal is designed based on the concept of self-explanation, where the model is built with the

capability of explaining itself (Cohen, Ritter, & Haynes, 2005; Haynes, Councill, & Ritter, 2004) .

In Herbal, the topmost entity, the agent, operates within a problem space which is driven by a

global goal. The goal defines the reason for the agent’s existence. Each problem space is a

 A Gentle Introduction to Herbal 5

collection of several sub problem spaces which are also goal driven and, in turn, define smaller and

more local goals in the service of the topmost problem space.

Problem spaces also form a collection of procedural knowledge realized as operators. An operator

associates conditions to actions. Conditions are, in essence, patterns that match facts in working

memory. Some of these facts may be the result of sensor readings. Actions result in the creation

of new facts in working memory that may result in the agent performing tasks. When an operator

is created, it defines the conditions in the environment that trigger necessary actions.

At the most basic level, working memory is defined by instantiations of working memory elements

based on types. Types are similar to data types in traditional programming languages and provide

structures for storing facts from the environment. A schematic view of the Herbal structure is

given in Figure 1.

Figure 1 - Structure of Herbal.

2.0 Installing Herbal
Herbal is developed in the Eclipse Integrated Development Platform, and requires that Eclipse

(version 3.1.2 or version 3.2) be installed on your computer. The Eclipse Platform is written in the

Java language and supports extensive plug-in based toolkit construction. Full documentation and

downloads of Eclipse are available at http://www.eclipse.org.

 A Gentle Introduction to Herbal 6

Before starting the Herbal installation, we encourage you to spend some time reviewing the

Eclipse tutorial to reduce your cognitive load while learning Herbal. Specifically, you should read

the Getting Started section of the Eclipse Workbench User Guide. This can be found by clicking

on the Help>Help Contents menu item in Eclipse.

To install Herbal, follow the instructions below. The installation process is remarkably similar for

Macintosh and Microsoft Windows machines.

1. To begin with, you need the ability to install software, and have write permission to the

applications you install.

2. Go to http://acs.ist.psu.edu/Herbal/index.html

3. Click Download on the left frame.

4. On the Download Page, right-click on Download Herbal (Version xx Release).

5. Download it to a local folder.

6. Make sure the extension of the file is “.jar” and not “zip” (Internet Explorer 7 may convert

the .jar file to a .zip file). If the extension is “.zip” rename it to “.jar”

7. Go to the Eclipse application’s plugin folder. For example, go to C:\Program

Files\eclipse\eclipse\plugins\ . On the Mac, go to Macintosh HD/ My Applications/ Eclipse/

Eclipse/ Plugins/

8. Copy and paste the downloaded “.jar” file to this folder.

9. Close the Eclipse application (if it was open) and reopen it.

10. If an Herbal menu has been added to the main menu in Eclipse, the installation was

successful.

You are now ready to begin writing agents in Herbal.

3.0 Lesson 1: The Basics of the Herbal Interface
The goal of this lesson is to demonstrate how to execute Herbal and provide an overview of the

Herbal Interface.

 A Gentle Introduction to Herbal 7

3.1. Starting Herbal and Initializing the Interface

Figure 2 provides a brief overview of the major components of the Herbal interface within the

Eclipse environment. All development within the Herbal environment should be done starting

with the window arrangement shown in Figure 2. To configure Eclipse so that it contains this

arrangement, perform the following steps:

1. Start Eclipse.

2. After the Eclipse application finishes loading, you may be presented with the Eclipse

Welcome Screen. If the welcome screen is displayed, close it.

3. If the Outline View is open on the right hand side of the Eclipse window, close it.

4. Click on the Open Perspective Button located near the top right corner of the Eclipse

window. Choose Other… and then select the Herbal Perspective.

5. Select the Herbal>Show GUI Editor menu Item

Figure 2 - The Herbal Window.

The Herbal Menu: launches the
Herbal GUI Editor.

Problems View: Lists warnings
and errors in the currently loaded
project.

The Herbal Perspective: Initializes
the views within the Eclipse
environment for Herbal development.

Tasks View: Allows the developer
to keep a “todo list”.

Model Browser: A read only view
that allows the developer to view an
explanation for how an agent was
designed and how it works.

Navigator: Displays all of
the Herbal projects within
the workspace.

 A Gentle Introduction to Herbal 8

3.2. Additional Exercises

TBD

4.0 Lesson 2: Creating a Very Hungry and Thirsty Agent

Named Sally
To get you started with Herbal, this section will guide you through the creation of a very hungry

and thirsty agent named Sally.

Sally has a simple life: at any given time she may be hungry, thirsty, or both. If Sally is hungry,

she will eat; thus causing her to no longer be hungry. Unfortunately, eating causes Sally to

become thirsty. If Sally is thirsty, she will drink; thus causing her to no longer be thirsty.

Naturally, drinking causes Sally to become hungry again. This cycle continues until Sally’s life is

ended by way of halting her execution.

4.1. Creating a New Herbal Project

To create a new Herbal project, follow the sequence below.

1. Select File>New>Project

2. On the New Project Window, select Herbal Project and click Next.

3. For the project name enter HungryThirsty and choose the default file location to store the

project.

4. Click Next.

5. The next screen allows you to select from a set of predefined models. In this example,

please select Empty because we will be building a model from scratch.

6. Click Finish.

7. Make sure that your workspace in Eclipse resembles the one shown in Figure 2. If it

doesn’t, review the steps given in Section 3.0.

After your project is created, you should see it listed in the Navigator View located in the left pane

of the Eclipse window.

 A Gentle Introduction to Herbal 9

4.2. Building Agent Sally

In the following sections, Sally will be constructed from a collection of problem spaces, operators,

conditions, actions, and types. The order in which Sally is constructed is arbitrary and only loosely

constrained by the Herbal environment. Keep this in mind when you start developing your own

agents in Herbal. In addition, you should find Figure 2 useful, as the upcoming sections frequently

reference the components shown in Figure 2.

4.3. Creating an Agent

From this point on you will be working primarily within the Herbal GUI Editor. Taking a top-

down approach, we begin by creating the agent itself. To create an agent in Herbal, perform the

following steps:

1. Select the Agents tab inside the Herbal GUI Editor (if you don’t see the Herbal GUI

Editor, select the Herbal>Show GUI Editor menu item).

2. Click on the New button located next to the list of existing agents.

3. Accept the default value given in the Library Field. Libraries are an advanced feature and

will be explained later.

4. Enter Sally in the Element Name field and click Finish.

Agents must have at least one goal and operate within at least one problem space to achieve this

goal. At this point, Sally is not associated with any problem spaces and therefore will not exhibit

any behavior. Herbal recognizes this and places a warning in the Problems View in order to

remind the developer that at some point Sally should be associated with a problem space. Take the

time now to view this reminder in the Problems View.

It is good practice to consult the Problems View often; as it will keep you informed of the various

components of the model that remain incomplete. As we build more model components, and

create relationships between these components, these warnings will disappear and the model will

be ready for testing.

 A Gentle Introduction to Herbal 10

4.4. Creating a Problem Space

To keep this initial example simple, Sally’s world will consist of a single goal – survival – realized

using a single problem space. To create a problem space for Sally to operate within, perform the

following steps:

1. Select the Problem Spaces tab inside the Herbal GUI Editor (if you don’t see the Herbal

GUI Editor, select the Herbal>Show GUI Editor menu item).

2. Click on the New button located next to the list of existing problem spaces.

3. Accept the default value given in the Library Field.

4. Enter Survive in the Element Name field and click Finish.

4.5. Creating Operators

In order to stay alive, Sally must eat when she is hungry and drink when she is thirsty. Actions

such as these are performed using operators. To create an eat and drink operator, perform the

following steps:

1. Select the Operators tab inside the Herbal GUI Editor.

2. Click on the New button located next to the list of existing operators.

3. Accept the default value given in the Library Field.

4. Enter eat in the Element Name field and click Finish.

5. Repeat steps 1-4 in order to create an additional operator called drink.

Operators are similar to “if-then rules” (but are more complex) and contain conditions and actions.

When the conditions in the operator are true, the operator may be chosen by the architecture,

resulting in the execution of actions. Because the operators just created (eat and drink) do not

contain conditions or actions yet, additional warnings will appear in the Problems View. In the

upcoming sections, these warnings will be resolved as conditions and actions are created and

eventually associated with these operators.

4.6. Creating Types

For Sally to operate in her very simplified world, a representation of Sally’s world must be created.

In Herbal, the world is represented by a set of data types. In this simplified world, only a single

 A Gentle Introduction to Herbal 11

type is needed to represent Sally’s current state of hunger and/or thirst. To create this data type,

follow these steps:

1. Select the Types tab inside the Herbal GUI Editor.

2. Click on the New button located next to the list of existing data types.

3. Accept the default value given in the Library Field.

4. Enter Person in the Element Name field

5. Because this agent does not operate within a simulated environment, Sally will not be

interacting with sensors and motors. As a result, this type will not be used for input or

output. Please do not check the Will this type be used for I/O? checkbox.

6. Click Finish.

Each data type should contain fields that further qualify the data type. For example, the Person

data type needs to contain two boolean fields: one that is true if Sally is hungry and one that is true

if Sally is thirsty. To add these fields to the Person data type, follow these steps:

1. Select the Person data type in the list of existing data types.

2. Click on the Add button located next to the list of current fields.

3. Select boolean and click Next.

4. Enter hungry for the name of the field and click Finish.

5. Repeat steps 1-4 in order to create an additional boolean field named thirsty.

4.7. Creating Conditions

For Sally to achieve her goal of survival, there are two specific conditions that she needs to look

out for: hunger and thirst. These conditions are indicated by the presence of a fact of data type

Person with a hungry field of true and/or a thirsty field of true. To create these conditions, follow

these steps:

1. Select the Conditions tab inside the Herbal GUI Editor.

2. Click on the New button located next to the list of existing conditions.

3. Accept the default value given in the Library Field.

 A Gentle Introduction to Herbal 12

4. Enter isHungry for the name of the condition and click Finish.

5. Repeat steps 1-4 in order to create an additional condition name isThirsty.

6. Each condition should contain one or more clauses that must all be true for the condition to

be true. To add clauses to the isHungry and isThirsty conditions, follow these steps:

7. Select the isHungry condition in the list of existing conditions.

8. Click on the Add button located next to the list of current clauses.

9. Choose the data type that you want to use in the clause. In this case, you want to see if an

instance of the Person data type exists in working memory with its hungry field equal to

true. As a result, select the Person data type, but do not click Next yet.

10. If the clause being created happens to successfully match an instance of the Person data

type, it is helpful to give that instance a name so that it can be used later on in an action.

For example, if we find an instance of the Person data type with a true hungry field, we

need to set that field to false after Sally eats. To give the matching instance a name, enter

hungryPerson into the Output Variable Name field in the dialog, and click Next.

11. Select the hungry field and then click on the Restrict button.

12. The next window allows you to specify the conditions upon which you will restrict the

hungry field. In this case, you want to restrict the value to be equal to true. To accomplish

this, select = from the list of Relational Operators and type true in the Literal field.

13. Click Finish and click Finish again.

14. Repeat steps 1-4 for the isThirsty condition, naming the matching instance thirstyPerson.

4.8. Creating Actions

Creating actions for Sally is perhaps the most involved step in the model creation process. The

actions Sally will need are shown below in Table 1.

 A Gentle Introduction to Herbal 13

Table 1. Actions used by Sally.

Action Name Description

Init Initialize Sally’s hungry and thirsty status by creating an

instance of the Person data type and setting its hungry field to
true and its thirsty field to false.

markHungry Sets the hungry field of a named instance of the Person data
type to true.

markNotHungry Sets the hungry field of a named instance of the Person data
type to false.

markThirsty Sets the thirsty field of a named instance of the Person data
type to true.

markNotThirsty Sets the thirsty field of a named instance of the Person data
type to false.

printSlurp Prints “Slurp” to the console.

printChomp Prints “Chomp” to the console.

To create the actions shown in Table 1, follow these steps:

1. Select the Actions tab inside the Herbal GUI Editor.

2. Click on the New button located next to the list of existing actions.

3. Accept the default value given in the Library Field.

4. Enter init for the name of the action and click Finish.

5. Repeat steps 1-4 in order to create the remaining actions shown in Table 1.

The steps actually performed by an action are determined by the action clauses. To give our

actions some substance, we need to add clauses to all seven of the actions shown in Table 1.

Starting with the init action, follow these steps:

1. Select the init action in the list of existing actions.

2. Click on the Add button located next to the list of current clauses.

3. The purpose of the init action is to create an initial fact in working memory representing

Sally’s initial state. As a result, select Add a new fact from the list of choices for the action

and then click Finish.

4. In the next window, select the type of fact you want to create. In this case, select the

Person data type and click Next.

 A Gentle Introduction to Herbal 14

5. We want Sally to start life hungry and not thirsty, so we need to set the two fields of the

Person data type appropriately. Select the hungry field and click on the Literal button.

This allows you to specify a literal value for the hungry field. Enter true and click Finish.

6. Repeat step 5 for the thirsty field, setting it to false.

7. Click on Finish.

The actions in Table 1 starting with “mark” are responsible for altering the field values of a named

Person fact. In other words, these actions edit existing, named facts. To complete the actions,

follow these steps:

1. Select the markHungry action in the list of existing actions.

2. Click on the Add button located next to the list of current clauses.

3. Select “edit an existing fact” from the list of choices for the action and then click Finish.

4. In the next window, select the type of fact you want to edit. In this case, select the Person

data type (but don’t click Next yet).

5. This action relies on having a named instance available to it for editing. The name you

provide will be used later when the action is assigned to an operator. To provide a name

for this instance to be edited, type person in the Input Variable Name field and click Next.

6. Select the hungry field and click on the Literal button. This allows you to specify a literal

value for the hungry field. Enter true and click Finish and then click Finish again.

7. Repeat steps 1-6 for the remaining actions in Table 1 that start with “mark”.

The final two actions that need to be created are the printChomp and printSlurp actions. These

actions exist only to provide visual feedback about Sally’s behavior. To create the actions, follow

these steps:

1. Select the printChomp action in the list of existing actions.

2. Click on the Add button located next to the list of current clauses.

3. Select print from the list of choices for the action and then click Finish.

4. In the next window, click on the Literal button and enter “Chomp, Chomp, …” (be sure to

include quotes around the text) and click Finish and then click Finish again.

 A Gentle Introduction to Herbal 15

5. Repeat steps 1-4 for printSlurp action.

4.9. Associating Conditions and Actions with Operators

As mentioned earlier, operators are similar to “if-then rules” and contain conditions and actions. If

all of an operator’s conditions are true, it may be chosen by the architecture resulting in its actions

being performed. To associate the appropriate conditions to the eat and drink operators, follow

these steps:

1. Select the Operators tab inside the Herbal GUI Editor.

2. Select the eat operator located in the existing operators list.

3. Click the Add button located next to the list of current conditions.

4. Select the isHungry condition and click Finish.

5. Repeat steps 1-4 to add the isThirsty condition to the drink operator.

The final step for completing our operators is to associate the appropriate actions to the eat and

drink operators. The act of eating in our simple world involves the execution of the following

actions:

• printChomp (when Sally eats she makes noise)

• markNotHungry (when Sally eats she is no longer hungry)

• markThirsty (when Sally eats she becomes thirsty)

To add these actions to the eat operator, follow these steps:

1. Select the eat operator located in the existing operators list.

2. Click the Add button located next to the list of current actions.

3. Select the printChomp action and click Finish.

4. Click the Add button located next to the list of current actions.

5. Select the markNotHungry action. Because this action is expecting input variables,

additional information must be provided. As a result, you need to click Next.

6. The next window allows you to assign (wire) the output variables captured by the

conditions with input variables required by the actions. In this case, the markNotHungry

 A Gentle Introduction to Herbal 16

action is expecting an instance of the Person data type named person. Meanwhile, the

isHungry condition names the instance of the Person data type that matches its clause to

hungryPerson. As a result, we need to assign the hungryPerson output variable to the

person input variable. To do this, select the hungryPerson variable in the Condition Output

Variables list, and the person variable in the Action Input variable list, and then click on the

Assign button. This creates a wire between the input and output variables so that working

memory elements matched in the conditions are “passed” to the input variables in the

actions.

7. Click on Finish.

8. Repeat steps 4-7 to add the markThirsty action. However, in step 6, because we have

already wired the output variable hungryPerson to the input variable person, you do not

need to make the assignment again (so you just click Finish).

The drink operator functions much like the eat operator. At this point you should feel comfortable

with adding the appropriate actions (printSlurp , markNotThirsty, and markHungry) to the drink

operator.

4.10. Wrapping Up the Sally Agent

We are almost done creating the Sally agent. To complete the agent, an initial action, along with

the eat and drink operators, must be added to the Survive problem space so that this problem space

can use the operators to achieve its goal of survival. Lastly, the Survive problem space must be

assigned to Sally so that she is aware of this goal.

To add the initial action and operators to the Survive problem space, follow these steps:

1. Select the Problem Spaces tab inside the Herbal GUI Editor.

2. Select the Survive problem space in the list of existing problem spaces.

3. Click on the Add button located next to the list of current initial actions.

4. Select the init action and click on Finish.

5. Click on the Add button located next to the list of initial current operators.

6. Select the eat operator and click on Finish.

 A Gentle Introduction to Herbal 17

7. Repeat steps 5-6 in order to add the drink operator.

Finally, to add the Survive problem space to the agent named Sally, follow these steps:

1. Select the Agents tab inside the Herbal GUI Editor.

2. Select Sally in the list of existing agents.

3. Click on the Add button located next to the list of current problem spaces.

4. Select the Survive problem space and click on Finish.

Congratulations! A quick glance at the Problems View should reveal that all warnings have been

resolved. In other words, your agent is complete!

4.11. Adding Design Rationale

In order to make it easier to understand and explain the design of an agent, Herbal supports the

addition of design rationale to model elements. For each element in the model, rationale about

what the element is, how it is used, and how it works, can be provided. For the purposes of this

tutorial, you will add design rationale for Sally. Specifying rationale for the rest of the model

elements is left as an additional exercise.

To add design rationale to Sally, follow these steps:

1. Select the Agents tab inside the Herbal GUI Editor.

2. Select the Sally agent located in the existing agents list.

3. Click on the Rationale button.

4. In the What is this element? field, enter the following: This agent is designed specifically to

show beginner users how to program a simple agent in Herbal.

5. In the How do I use this element? field type: This agent does not need special agent

environment and can be executed directly in both the Soar and Jess debugging

environments.

6. In the How does this element work? field, enter the following: This agent operates in a

single problem space called Survive that has the goal of survival. Survival is accomplished

by eating when hungry and drinking when thirsty.

7. Click Finish.

 A Gentle Introduction to Herbal 18

4.12. Browsing the Agent in the Model Browser View

Herbal provides a Model Browser View (see Figure 2) that allows you to view the structure of an

agent, along with design rationale and other explanatory information about an agent’s components.

The Model Browser is included by default in the Herbal perspective (if you don’t see the Model

Browser, make sure your Eclipse workspace matches Figure 2 by reviewing the steps given in

Section 3.0). However, due to the amount of information in this view, it is best viewed when

maximized within the Eclipse environment. To browse your agent’s structure, follow these steps:

1. Maximize the Model Browser View by double clicking on the Model Browser tab.

2. On the left side of the view click Sally.

3. On the right side of the view, expand the “What is this?”, “How do I use it?”, and “How

does it work?” sections. Within each of these sections you will find the design rationale

you entered about Sally.

4. On the left side of the view, expand Sally and then select the Survive problem space.

Information about the Survive problem space, if you had entered it, would be shown on the

right side of the view.

5. Continue to expand and select nodes in the model structure section of the view in order to

see the operators and their conditions and actions. Naturally, the more diligent you are

about entering design rationale for your model elements, the more useful the Model

Browser will be.

6. When you are done viewing your model, you can restore the view to its original size and

position by double clicking on the Model Browser tab.

4.13. Testing Sally

To test Sally out, you need to load the agent source code into an environment and execute it.

Herbal currently supports two different environments: Soar and Jess. Before you execute the code,

it is a good idea to view the code that was generated by Herbal. In fact, alternating between the

Herbal GUI Editor and the generated code is a good way to learn Soar and Jess syntax.

To view the source code generated by Herbal for the Sally agent, follow these steps:

1. In the Navigator View, locate and expand the HungryThirsty project.

 A Gentle Introduction to Herbal 19

2. Expand the output folder.

3. Expand the jess and soar folders.

4. The jess and soar folders will each contain a file containing the source code for Sally.

These files will be named Sally.soar and Sally.jess.

5. Double click on either of these two files to view the source code.

After examining the source code, you are ready to execute Sally.

4.13.1. Executing Sally in Soar

To run Sally in Soar, follow these steps:

1. Launch the Soar Debugger (consult the Soar documentation if you are unsure how to

launch the debugger).

2. Select the File>Load Source File… menu item and browse to the Sally.soar file. You will

find this file located in the output subfolder of the HungryThirsty project. If you are not

sure where your project is located on your disk, right-click (ctrl-click for the Mac) on the

HungryThirsty project listed in the Eclipse Navigator View and choose the properties menu

item. This will show you the project’s properties, which includes the complete path to the

project folder.

3. Select Sally.soar and click on the Open button.

 A Gentle Introduction to Herbal 20

4. Repeatedly click on the Step button and watch Sally survive by eating and drinking. The

output you see in the Soar Debugger should resemble Table 2. Don’t worry if you are

getting different output because in the next section you will learn how to debug your model

in Soar.

Table 2. Watching Sally Eat and Drink in the Soar Debugger.

Line Soar Trace

1
2
3
4
5
6
7
8
9

 1: O: O1 (|initialize-Survive|)
 2: O: O2 (eat)
Chomp, chomp....
 3: O: O3 (drink)
Slurp, slurp....
 4: O: O4 (eat)
Chomp, chomp....
 5: O: O5 (drink)
Slurp, slurp....

4.13.2. Executing Sally in Jess

To run Sally in Jess, follow these steps:

1. Open a console window and navigate to the output subfolder of the HungryThirsty project.

If you are not sure where your project is located on your disk, right-click (ctrl-click for the

Mac) on the HungryThirsty project listed in the Eclipse Navigator View and choose the

properties menu item.

2. Launch the Jess Shell from this console window (consult the Jess documentation if you

unsure how to start the Jess Shell).

3. Type (reset)

4. Type (watch focus)

5. Type (watch rules)

6. Type (batch Sally.jess)

7. Type (run 10) and watch Sally survive by eating and drinking. The output you see in the

Jess Shell should resemble Table 3. Don’t worry if you are getting different output because

the next section you will learn how to debug your model in Jess.

 A Gentle Introduction to Herbal 21

Table 3. Watching Sally Eat and Drink in the Jess Shell.

Line Jess Trace

1
2
3
4
5
6
7
8

FIRE 1 Survive::HungryThirsty.operators.eat f-2
Chomp, chomp....
FIRE 2 Survive::HungryThirsty.operators.drink f-2
Slurp, slurp....
FIRE 3 Survive::HungryThirsty.operators.eat f-2
Chomp, chomp....
FIRE 4 Survive::HungryThirsty.operators.drink f-2
Slurp, slurp....

4.14. Additional Exercises

TBD

5.0 Lesson 3: Debugging Sally
Both Soar and Jess provide features that make it possible to observe Sally in action at a much more

detailed level. By debugging Sally at this level, you can obtain a deeper understanding of how the

model works and fix any problems with the model. If the output of your running model did not

match Table 2 (for Soar) or Table 3 (for Jess), you may find this lesson especially useful.

5.1. Debugging Sally in Soar

In this section you will re-run Sally, using the Soar debugger to closely follow the execution of the

model. Follow these steps to learn how to debug Sally:

1. Launch the Soar Debugger if it is not already open (consult the Soar documentation if you

are unsure how to launch the debugger).

2. Click on the Excise all button to remove all the rules that are currently in Soar (if you just

opened the debugger this is not necessary).

3. Select the File>Load Source File…menu item and browse the Sally.soar file. You will

find this file located in the output subfolder of the HungryThirsty project. If you are not

sure where your project is located on your disk, right-click (ctrl-click for the Mac) on the

HungryThirsty project listed in the Eclipse Navigator View and choose the properties menu

item.

4. Select Sally.soar and click on the Open button.

5. Click on the Step button.

 A Gentle Introduction to Herbal 22

6. Type print s1 into the command text box near the bottom of the Soar debugger. This will

print the contents of the Survive problem space. This should produce the output shown in

Table 4 . The names of the attributes for the problem space are identified using the ^

symbol. Each attribute name is followed by its value. You can tell what problem space

you are looking at by examining the name attribute (in this case you are looking at the

Survive problem space).

Table 4. Printing the Survive Problem Space.

Survive Problem Space

(S1
 ^io I1
 ^name Survive
 ^operator O2 +
 ^parent S1
 ^superstate nil
 ^top S1
 ^type state
 ^|HungryThirsty.types.Person| H1)

7. If you recall, the Sally model uses a working memory element called Person that keeps

track of Sally’s current hungry and thirsty state. This working memory element is located

in the ^|HungryThirsty.types.Person| attribute of the Survive problem space (see Table 4).

If you look at the output shown in Table 4 you will notice that this working memory

element is designated as H1. To view the contents of this working memory element, type

print H1 into the command text box. This should produce the output shown in Table 5.

Notice that the hungry attribute of the Person working memory element is currently equal

to true (Sally starts out hungry) and that the thirsty element is currently false (Sally is not

yet thirsty).

Table 5. Printing the Person Working Memory Element.

Person Working Memory

(H1 ^hungry true ^thirsty false)

8. Click on the Step button and watch the output generated in the debugger window. As

expected, the eat operator is applied and the text “Chomp, Chomp, …” is printed in the

window (the printChomp action was responsible for this). This operator will cause Sally to

no longer be hungry and to become thirsty. To verify this, type print H1 again. This time

 A Gentle Introduction to Herbal 23

you should see that the hungry attribute has been changed to false by the eat operator

(specifically the markNotHungry action changed the attribute) and that the thirsty attribute

has been changed to true (this was done by the markThirsty action).

9. If you continue to hit the Step button and type print H1 you should be able to watch the

Person working memory element change as the eat and drink operators are applied.

10. If you wish to restart the model at any time, click on the Init-soar button. This button

initializes Soar by emptying working memory and re-initializing any run-time statistics.

However, Init-soar does not delete the rules in your model. As a general rule, it is a good

idea to click on the Excise all button every time you load the source code for a new model,

and it is a good idea to click on the Init-soar button every time you restart a model that is

already loaded.

The Soar debugger provides a lot more functionality than was described here. You will learn a

few more features in the next lesson. In addition, you can learn more sophisticated techniques by

referring to Chapter 5 of the Soar User’s Manual (Laird & B., 2005) and also the manual entitled

“Intro to the Soar Debugger” (Intro to the Soar Debugger in Java, 2005). Both of these documents

are included with the Soar distribution.

5.2. Debugging Sally in Jess

TBD

5.3. Additional Exercises

TBD

6.0 Lesson 4: Adding Hierarchy to Sally
Herbal is based on the Problem Space Computational Model, which allows for behavior based on a

hierarchy of problem spaces. Recall that a problem space is designed to accomplish a specific

goal. In order to further divide a problem solving strategy into smaller pieces, the goal of a

problem space can be broken down into sub goals; each sub goal is represented by a child problem

space. In the upcoming lesson, we will change Sally so that her behavior is driven by a hierarchy

of problem spaces.

 A Gentle Introduction to Herbal 24

For the purposes of this lesson, Sally will accomplish her goal of surviving by continually

achieving two sub goals: ResolveHunger and ResolveThirst. These sub goals will take the form of

problems spaces that are children of the top level Survive problem space.

As the design of Sally becomes more complex, it is useful to draw upon design patterns to improve

the model. A design pattern is a general solution that can be implemented to solve recurring

design problems (Gamma, Helm, Johnson, & Vlissides, 1995). In this particular case we will use a

design pattern that is commonly used to coordinate the interaction between a parent problem space

and its many children. The design pattern works as follows:

1. The parent problem space (in this case the Survive problem space) does not contain any

operators. Instead, this problem space acts only as a controller for its child problem spaces

(in this case ResolveHunger and ResolveThirst).

2. When a child problem space is assigned to a parent, it is given a set of conditions. During

model execution, if the set of conditions is met, the child problem space is created and

remains active until the conditions are no longer true. At that point, the child space is

destroyed and the parent space regains control.

3. If the set of conditions for more than one child problem space is satisfied, the underlying

architecture (Soar or Jess) decides which child problem space should be created and

activated.

6.1. Preparing the Problem Spaces

To implement the design described above, the Survive problem space must be cleared of its

operators. In addition, two new problem spaces must be created and operators must be assigned to

them.

To clear the operators from the Survive problem space follow these steps:

1. Select the Problem Spaces tab inside the Herbal GUI Editor.

2. Select the Survive problem space located in the existing problem spaces list.

3. Select the eat operator located in the current operators list.

4. Click on the Remove button located to the right of the current operators list.

5. Repeat steps 1-4 for the drink operator.

 A Gentle Introduction to Herbal 25

To create two new problem spaces, follow these steps:

1. Select the Problem Spaces tab inside the Herbal GUI Editor.

2. Click on the New button located next to the list of existing problem spaces.

3. Accept the default value given in the Library Field.

4. Enter ResolveHunger in the Element Name field and click Finish.

5. Repeat steps 1-4 for the ResolveThirst problem space.

Recall that in our new design, the Survive problem space acts as a controller and its two child

problem spaces actually perform all of the interesting work. In Herbal, all of the actual work is

done by operators. As a result, the two new problem spaces need to have operators assigned to

them that eat and drink. Fortunately, these operators were created in the previous lesson and can

be reused here. All that has to be done is to add these operators to the new problem spaces.

To assign operators to the ResolveHunger and ResolveThirst problem spaces, follow these steps:

1. Select the Problem Spaces tab inside the Herbal GUI Editor.

2. Select the ResolveHunger problem space in the list of current problem spaces.

3. Click the Add button to the left of the current operators list.

4. Select the eat operator and click Finish.

5. Repeat steps 1-4 in order to add the drink operator to the ResolveThirst problem space.

6.2. Building the Hierarchy

Now that the problem spaces are configured correctly, they can be assigned to an agent and

arranged into a hierarchy. The Survive problem space is already assigned to Sally as the top most

problem space. All that is left to do is assign ResolveHunger and ResolveThirst as children of the

Survive problem space. In addition, the conditions that will be used to activate these child problem

spaces need to be specified.

To add the child problem spaces and specify the appropriate conditions, follow these steps:

1. Click on the Agents tab in the Herbal GUI Editor.

2. Select Sally in the list of current agents.

 A Gentle Introduction to Herbal 26

3. Select Survive in the list of current problem spaces.

4. Click on the Add button located to the right of the current problem spaces list. This allows

you to added children to the Survive problem space.

5. Select ResolveHunger and click Next.

6. Select isHungry in the list of available conditions and click on the button labeled >>. This

will move the isHungry condition into the list of conditions that will be used to determine

when the ResolveHunger problem space will be created and activated. In other words,

when Sally is hungry, RevolveHunger will become active. Notice how the isHungry

condition can be reused in different contexts. All of the components in Herbal can be

reused freely within a single model, or across multiple models.

7. Click Finish.

8. Repeat steps 1-7 in order to add the ResolveThirst problem space as a child of the Survive

problem space. Use the isThirsty condition when you specify the conditions in step 6.

Congratulations! You just created your first hierarchical model using Herbal!

6.3. Viewing the Hierarchical Model in the Model Browser

Now that the Sally model has more structure in its behavior, it is a good idea to go back to the

Model Browser View (see Figure 2) in order to view the model (if you don’t see the Model

Browser, make sure your Eclipse workspace matches Figure 2 by reviewing the steps given in

Section 3.0).

1. Maximize the Model Browser View by double clicking on the Model Browser tab.

2. On the left side of the view click the Sally node and expand it. You should see the Survive

problem space located as a child of Sally.

3. Expand the Survive problem space. This should display the child problem spaces

ResolveHunger and ResolveThirst.

4. Expand ResovleHunger and ResolveThirst to see the operators used by these problem

spaces. You can also expand the operators to view the conditions and actions that make up

the operators.

 A Gentle Introduction to Herbal 27

5. Click on the ResolveHunger problem space and, on the right side of the view, expand the

“How does it work?” section. Within this section you can see the entry conditions for

ResolveHunger. Notice that ResolveHunger is created and activated when the isHungry

condition is true.

6. Continue to expand and select nodes in the model structure section of the view in order to

see the structure of the model. Once again, the more design rationale that you enter for

your model (see Section 4.11), the more useful the Model Browser will be.

7. When you are done viewing your model, you can restore the view to its original size and

position by double clicking on the Model Browser tab.

6.4. Running the Hierarchical Model

Please run your model using either Soar or Jess by following the steps in Section 4.13. The output

you see should match Table 6 (if you ran your model in Soar) or Table 7 (if you rand your model

in Jess). If it does not match, you will need to debug your model (see Section 7.0) but you should

finish reading the rest of this section first.

 A Gentle Introduction to Herbal 28

Table 6. Watching the Hierarchical Model Execute in Soar.

Line Soar Trace

1
2
3
4
5
6
7
8
9
10
11

 1: O: O1 (|initialize-Survive|)
 2: O: O2 (|impasse*ResolveHungerps|)
 3: ==>S: S2 (operator no-change)
 4: O: O3 (|initialize-ResolveHunger|)
 5: O: O4 (eat)
Chomp, chomp....
 6: O: O5 (|impasse*ResolveThirstps|)
 7: ==>S: S3 (operator no-change)
 8: O: O6 (|initialize-ResolveThirst|)
 9: O: O7 (drink)
Slurp, slurp....

Table 7. Watching the Hierarchical Model Execute in Jess.

Line Jess Trace

1
2
3
4
5
6
7
8
9
10
11
12
13

FIRE 1 Survive::HungryThirsty.models.impasse1 f-1, f-2
 <== Focus Survive
 ==> Focus ResolveHunger
FIRE 2 ResolveHunger::HungryThirsty.operators.eat f-2, f-2
Chomp, chomp....
FIRE 3 ResolveHunger::ResolveHunger-exit f-4
 <== Focus ResolveHunger
 ==> Focus Survive
FIRE 4 Survive::HungryThirsty.models.impasse2 f-3, f-2
 <== Focus Survive
 ==> Focus ResolveThirst
FIRE 5 ResolveThirst::HungryThirsty.operators.drink f-2, f-2
Slurp, slurp....

The hierarchical nature of the model can be seen in the output traces shown in Table 6 and Table 7.

Understanding this output is an important part of understanding the new behavior of Sally. The

next two sections will explain the Soar and Jess output respectively.

6.4.1. Interpreting the Soar output trace

The first line of output in the Soar trace illustrates the initialization of the Survive problem space.

The second line is new: the model has encountered an impasse. In other words, the Survive

problem space has recognized the fact that Sally is hungry, but it does not know how to solve this

dilemma and thus has reached an impasse. This impasse causes Sally to enter the ResolveHunger

problem space in an attempt to resolve this impasse. The impasse is considered resolved as soon

 A Gentle Introduction to Herbal 29

as Sally is no longer hungry. Lines 2-4 illustrate the impasse and the creation of the

ResolveHunger problem space.

Fortunately for Sally, the ResolveHunger problem space is well equipped to handle the situation

because it is armed with the eat operator. Lines 5 and 6 show the operator in action: the eat

operator changes the Person working memory element so that it is no longer hungry, and at the

same time it marks the thirsty field in working memory true. Because Sally is not hungry

anymore, the conditions that caused the ResolveHunger problem space to be created are no longer

satisfied and the problem space is destroyed. This brings the model back to the Surivive problem

space.

At this point in time Sally is thirsty and this causes a new impasse, as shown on line 7-8. The

impasse results in the model entering the ResolveThirst problem space (line 9) and eventually

drinking (line 10-11).

6.4.2. Interpreting the Jess output trace

Although not shown in the trace, the Jess model begins in an initialized Survive problem space.

Because Sally starts life hungry, the model immediately encounters an impasse: the Survive

problem space has recognized the fact that Sally is hungry, but it does not know how to solve this

dilemma (line 1). This impasse causes Sally to leave the Survive problem space and enter the

ResolveHunger problem space, all in an attempt to resolve this impasse (line 2 and 3). The

impasse is considered resolved as soon as Sally is no longer hungry.

Fortunately for Sally, the ResolveHunger problem space is well equipped to handle the situation

because it is armed with the eat operator. Lines 4 and 5 show the operator in action: the eat

operator changes the Person working memory element so that it is no longer hungry, and at the

same time it marks the thirsty field in working memory true. Because Sally is not hungry

anymore, the conditions that caused the ResolveHunger problem space to be created are no longer

satisfied and the problem space is destroyed (line 6 and 7). This brings the model back to the

Survive problem space (line 8).

At this point in time Sally is thirsty and this causes a new impasse, as shown on line 9. The

impasse results in the model entering the ResolveThirst problem space (line 11) and eventually

drinking (line 12 and 13).

 A Gentle Introduction to Herbal 30

6.5. Additional Exercises

TBD

7.0 Lesson 5: Debugging a Hierarchical Model
As models become more complicated, it becomes more important to be able to debug them

effectively. In this lesson you will learn how to debug a more complex, hierarchical model.

7.1. Debugging the Hierarchical Model in Soar

In this section you will run the new hierarchical Sally model, using the Soar debugger to closely

follow the execution of the model. It is assumed that you are already familiar with the basics of

the Soar Debugger covered in Section 5.0.

Table 8 contains the output from the interactive debugging session you are about to perform. You

will find it useful to refer to Table 8 while you perform the following steps:

1. Launch the Soar Debugger if it is not already open (consult the Soar documentation if you

are unsure how to launch the debugger).

2. Click on the Excise all button to remove all the rules that are currently in Soar (if you just

opened the debugger this is not necessary).

3. Select the File>Load Source File…menu item and browse the Sally.soar file. If you are

not sure where your project is located on your disk, right-click (ctrl-click for the Mac) on

the HungryThirsty project listed in the Eclipse Navigator View and choose the properties

menu item. This will show you the project’s properties, which includes the complete path

to the project folder.

4. Select Sally.soar and click on the Open button.

5. Click on the Step button. You should see the output shown on line 2 in Table 8. At this

point the model has entered the top most problem space: Survive.

6. Type print s1 into the command text box near the bottom of the debugger in order to see

the attributes for the Survive problem space (lines 4-5 in Table 8).

7. Type print H1 to see the state of the Person working memory element (line 7 in Table 8).

 A Gentle Introduction to Herbal 31

8. Type step and you should see an impasse encountered in the Survive problem space (line

9). Type step two more times and you should see the creation of the ResolveHunger

problem space in order to resolve the impasse (lines 10-13 in Table 8).

9. Type print s2 in order to view the attributes for the new ResolveHunger problem space

(lines 15-17 in Table 8).

10. Type print -s to see the current problem space hierarchy (lines 19-21 in Table 8). Notice

that at the top of the hierarchy is S1 (Survive). Also notice that S1 has a child problem

space S2 (ResolveHunger) that was created by an impasse.

11. Type step again to see the eat operator get applied (lines 23-24 in Table 8).

12. Type print H1 to see the state of the Person working memory element (line 26 in Table 8).

Notice that Sally is no longer hungry and has become thirsty.

13. Type print -s to view the problem space hierarchy again (line 27-28 in Table 8). Notice

that the ResolveHunger problem space has been destroyed and that the hierarchy only

contains the top state (Survive). This happened because the conditions that caused the

impasse have been resolved (Sally is no longer hungry!).

If you continue to debug the model you should see Sally enter the ResolveThirst problem space

and drink.

 A Gentle Introduction to Herbal 32

Table 8. Output From the Interactive Debugging Session of a Hierarchical Model.

Line Output From the Interactive Debugging Session

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Step
 1: O: O1 (|initialize-Survive|)
print s1
(S1 ^io I1 ^name |Survive| ^operator O2 + ^parent S1 ^superstate nil ^top S1
 ^type state ^|HungryThirsty.types.Person| H1)
print H1
(H1 ^hungry true ^thirsty false)
step
 2: O: O2 (|impasse*ResolveHungerps|)
step
 3: ==>S: S2 (operator no-change)
step
 4: O: O3 (|initialize-ResolveHunger|)
print s2
(S2 ^attribute operator ^choices none ^impasse no-change ^name
|ResolveHunger|
 ^operator O4 + ^parent S1 ^quiescence t ^superstate S1 ^top S1
 ^type state)
print -s
 : ==>S: S1
 : O: O2 (|impasse*ResolveHungerps|)
 : ==>S: S2 (operator no-change)
step
 5: O: O4 (eat)
Chomp, chomp....
print H1
(H1 ^hungry false ^thirsty true)
print -s
 : ==>S: S1

7.2. Debugging the Hierarchical Model in Jess

TBD

7.3. Debugging the Hierarchical Model in Herbal

Herbal provides its own debugging support for Soar models. This support requires the Soar/Jess

bridge provided with the Soar distribution.

To use the Herbal debugger, follow these steps:

1. Copy the following Soar distribution files (located in the Soar 8.6.1 installation folder) into

the Eclipse program directory (the same directory that contains eclipse.exe):

 A Gentle Introduction to Herbal 33

For Windows:

soar-library\ElementXML.dll

soar-library\Java_sml_ClientInterface.dll

soar-library\SoarKernelSML.dll

soar-library\sml.jar

For Mac OS:

lib/libElementXML.0.0.0.dylib

lib/libElementXML.0.dylib

lib/libElementXML.dylib

lib/libJava_sml_ClientInterface.0.0.0.jnilib

lib/libJava_sml_ClientInterface.0.jnilib

lib/libJava_sml_ClientInterface.jnilib

lib/libSoarKernelSML.0.0.0.dylib

lib/libSoarKernelSML.0.dylib

lib/libSoarKernelSML.dylib

soar-library/sml.jar

2. Be sure that your Herbal perspective is up to date by selecting Window->Reset Perspective

in Eclipse.

3. Activate the Herbal Debug View by clicking on the Debug View Tab near the bottom of the

Eclipse window.

4. Run the Soar Debugger and load the Sally model as described in section 7.1.

5. In Herbal, click on the Connect button.

6. Next, in Herbal, select the Soar agent from the drop down list (it will probably be called

soar1).

7. In Herbal, click on the Listen button.

8. In the Soar Debugger click on the Step button several times and watch as the Herbal

debugger builds a trace of your model in the debug view. The Herbal debugger keeps track

of debug events on the left hand side of the window. Clicking on an event displays the

conditions that were true during that event, the operators that were proposed, the operator

 A Gentle Introduction to Herbal 34

that was applied (shown in all capital letters), and the actions that were performed. Finally,

the state of working memory, after the actions were executed, is shown at the bottom of the

debug window.

7.4. Additional Exercises

TBD

8.0 Lesson 6: Learning
As described earlier, Herbal is capable of producing models in both Soar and Jess and each of

these architectures has advantages and disadvantages. One of the advantages of using Soar is that

it is capable of modeling learning. This lesson will demonstrate how to execute the Sally model so

that it learns.

8.1. Running Sally With Learning Enabled

Soar models must operate within a hierarchy of problem spaces in order for them to be able to

learn. Fortunately, the model created in Section 6.0 is hierarchical and as a result can learn when it

is run within Soar.

Soar simulates learning by creating a chunk when a model successfully uses problem solving to

resolve an impasse. If the model encounters the same impasse later on, it can immediately resolve

it using the learned chunk, instead of repeating the problem solving tasks it used to resolve the

impasse the first time. This allows the model to accomplish tasks more quickly.

Getting the latest Sally model to learn is as easy as turning on learning inside the Soar debugger.

Output generated by the Soar Debugger during the execution of a learning Sally model is listed in

Table 9. You will find it useful to refer to Table 9 throughout this lesson.

To watch Sally learn, follow these steps:

1. Launch the Soar Debugger (consult the Soar documentation if you are unsure how to

launch the debugger).

2. Select the File>Load Source File…menu item and browse to the Sally.soar file. You will

find this file located in the output subfolder of the HungryThirsty project. If you are not

sure where your project is located on your disk, right-click (ctrl-click for the Mac) on the

 A Gentle Introduction to Herbal 35

HungryThirsty project listed in the Eclipse Navigator View and choose the properties menu

item. This will show you the project’s properties, which includes the complete path to the

project folder.

3. Select Sally.soar and click on the Open button.

4. Turn learning on by typing learn -e in the command text box near the bottom of the Soar

debugger (see line 1 in Table 9).

5. Instruct the Soar debugger to print chunks as they are created by typing watch -L print in

the command text box near the bottom of the Soar debugger (see line 2 in Table 9).

6. Click on the Step button until Sally successfully resolves the first impasse that is

encountered (ResolveHunger). This impasse is resolved by applying the eat operator.

Immediately after the eat operator is applied, and “Chomp, chomp…” is printed, the

debugger will notify you of the creation of a chunk (see line 14 in Table 9).

7. Click on the Step button until Sally successfully resolves the second impasse that is

encountered (ResolveThirst). This impasse is resolved by applying the drink operator.

Immediately after the drink operator is applied, and “Slurp, slurp…” is printed, the

debugger will notify you of the creation of a chunk (see line 24 in Table 9)

8. Continue to click on the Step button. From this point on, Sally will know what to do to

resolve her hunger and her thirst without having to create the ResolveHunger or

ResolveThirst problem spaces (see lines 25-28 in Table 9).

You may be wondering why Sally stopped printing “Chomp, chomp…” and “Slurp, slurp…” after

learning. Recall that the eat and drink operators perform three actions. Two of these actions

modify working memory to record the fact that Sally has just eaten or drank and one of these

actions prints a message. The learning process in Soar only includes actions that alter working

memory. As a result, when the chunks are learned only two of the three actions are included in the

chunk: the actions that print are lost.

 A Gentle Introduction to Herbal 36

Table 9. Debug Output for a Learning Sally.

Line Output From the Interactive Debugging Session

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

learn -e
watch -L print
step
 1: O: O1 (|initialize-Survive|)
step
 2: O: O2 (|impasse*ResolveHungerps|)
step
 3: ==>S: S2 (operator no-change)
step
 4: O: O3 (|initialize-ResolveHunger|)
step
 5: O: O4 (eat)
Chomp, chomp....
Building chunk-1*d5*opnochange*1
step
 6: O: O5 (|impasse*ResolveThirstps|)
step
 7: ==>S: S3 (operator no-change)
step
 8: O: O6 (|initialize-ResolveThirst|)
step
 9: O: O7 (drink)
Slurp, slurp....
Building chunk-2*d9*opnochange*1
step
 10: O: O8 (|impasse*ResolveHungerps|)
step
 11: O: O9 (|impasse*ResolveThirstps|)

8.2. Prescript and Postscript

In the previous section, you learned how to turn on learning and instruct the Soar debugger to

notify you when a chunk is learned. If you are using learning often, you may find it tedious to

enter these commands each time you load and run a model. Fortunately, Herbal supports the

automatic insertion of Soar or Jess commands at the beginning and end of the generated source

code.

To have Herbal automatically add the required learning commands to the top the generated Soar

code for Sally, follow these steps:

1. Look in the Navigator View for a file called prescript.soar. This file should be located in

the model folder of the HungryThirsty project. If you do not find the prescript.soar file,

you can create it by following these steps:

a. Right-clicking on the model folder and selecting New>Other…

 A Gentle Introduction to Herbal 37

b. In the New Dialog Box, open the Simple Folder, select File, and then click Next.

c. Type prescript.soar in the File name text field and click Finish.

2. Double click on the prescript.soar file. This will open the file in the Eclipse editor. The

file should be empty.

3. Everything you type in this file will automatically be included at the top of the generated

Soar code. Type learn -e on the first line of the file and watch -L print on the second line

of the file.

4. When you save the file, the model will automatically be regenerated. To confirm that the

commands were added to the model, double-click on the Sally.soar file located in the

output/soar folder of the HungryThirsty project.

Herbal supports four different script files: prescript.soar, prescript.jess, postscript.soar, and

postscript.jess. The contents of these files are included at the top or bottom of the Soar or Jess

model output files. Feel free to create/edit these files a needed to insert custom code into the

source files generated by Herbal.

8.3. Additional Exercises

TBD

9.0 Lesson 7: Creating a Simple Vacuum Cleaner Model in

Herbal
In order to make the process of learning Herbal more interesting, an animated vacuum cleaner

agent environment was created, and is available on the Herbal website as a separate download.

This environment is based on the vacuum cleaner world introduced in the popular Artificial

Intelligence textbook written by Russell and Norvig (2003). The goal of this lesson is to

demonstrate how to create an Herbal model that executes in this environment.

9.1. Interacting With an External Environment

The model created in this lesson differs from the previous Sally models because it executes in an

external environment. Herbal assumes that agents interact with their environment by way of

sensors and effectors. Information that is detected by an agent’s sensor is placed in working

 A Gentle Introduction to Herbal 38

memory so the agent can react to it. In addition, agents can perform actions by placing commands

in working memory that activate its effectors.

Each environment must provide documentation on the working memory elements represent sensor

readings and the working memory elements that represent agent actions. The input and output

working memory elements supported by the vacuum cleaner environment are listed in Table 10.

Table 10. Vacuum Cleaner Environment Input and Output Working Memory Elements.

Type Field Description

vacuum.types.action move (string) Allows the vacuum cleaner to perform an operation

within the environment. Supported operations are:

left, right, up, down, and suck.

vacuum.types.position x (number) Represents the vacuum cleaner’s current horizontal

position

 y (number) Represents the vacuum cleaner’s current vertical

position.

vacuum.types.spot status (string) Represents the status of the vacuum cleaners

current location. Possible values are clean or dirty.

vacuum.types.radar dir (string) Represents the location of the radar reading.

Possible values are left, right, up, and down.

 reading (string) Represents the status of the location specified by

dir. Possible values are clean, dirty or wall.

9.2. Managing Multiple Projects

The first step towards creating a vacuum cleaner model is to create a new Herbal project. Please

take the time now to create a new project called VacuumCleaner (if you do not remember how to

create an Herbal project, please revisit Section 4.1).

You should now have two projects listed in the Navigation View: HungryThirsty and

VacuumCleaner. Herbal allows for multiple projects to be open at the same time and switching

 A Gentle Introduction to Herbal 39

between projects can be done from the Welcome tab in the Herbal GUI Editor. To make sure that

the VacuumCleaner project is the current project, follow these steps:

1. Select the Welcome tab inside the Herbal GUI Editor (if you don’t see the Herbal GUI

Editor, select the Herbal>Show GUI Editor menu item).

2. In the middle of the Welcome tab should be a link that contains the name of the current

project. If the VacuumCleaner project is not the current project, click on this link to switch

to the VacuumCleaner project.

You can use the Welcome tab at any time to determine what the current project is and to switch

between Herbal projects.

9.3. Creating Types that Interact With an Environment

The next step towards creating a vacuum cleaner model is to build the data types that will allow

the model to interact in the environment. The required types are listed in Table 10 and can be

created from within the Types tab in the Herbal GUI Editor. These new types will be created a

little differently than those created in Section 4.6 because they must be placed in a different

library, and because they interact with the environment.

Please complete the following steps in order to create these types:

1. Select the Types tab inside the Herbal GUI Editor.

2. Click on the New button located next to the list of existing data types.

3. The I/O types names are defined by the vacuum environment, as given in Table 10. To

conform to these names, we have to create them in a different library. To do that, change

the default value given in the Library Field to vacuum.types. If vacuum.types is not a

choice in the drop-down list, you will have to type it directly into the Library Field (be

careful not to capitalize the v of vacuum).

4. Enter action in the Element Name field.

5. Because this type is used to interact within the vacuum cleaner environment, please be sure

to check the Will this type be used for I/O? checkbox.

6. Click Finish.

 A Gentle Introduction to Herbal 40

7. Select the action data type in the list of existing data types.

8. Click on the Add button located next to the list of current fields.

9. Select string and click Next.

10. Enter move for the name of the field and click Finish.

11. Repeat steps 1-11 for the remaining types listed in Table 10.

9.4. Viewing, Editing, and Sharing Library Code

Each library in Herbal is represented in its own XML file (W3C, 2004). While it is not required

that Herbal modelers know XML, it can be useful for advanced users. As a result, this section will

demonstrate how to view and edit a library’s XML code.

In the previous section you created a new type library called vacuum.types. Consequently, Herbal

has created a new XML file called vacuum.types.xml located in the model folder of the

VacuumCleaner project. To view the contents of this file, just double-click on it in the Navigation

View.

Even if you are not familiar with XML, it is still relatively easy to figure out how the

vacuum.types.xml file is organized. Take the time to browse the contents of this file looking for

the spot type that was created in Section 9.3. You should be able to find a section of text that

resembles Table 11.

Table 11. The Spot Type Represented in XML.

Line XML

1
2
3
4
5
6
7
8

<type name='spot' isIO='true'>
 <rationale>
 <what></what>
 <how></how>
 <why></why>
 </rationale>
 <field name='status' type='string'/>
</type>

The code shown in Table 11 is used internally by Herbal to represent the vacuum.types.spot type.

In fact, users comfortable with XML can create entire models by editing the XML directly instead

of using the Herbal GUI Editor. To demonstrate how models can be edited using XML, complete

the following steps:

 A Gentle Introduction to Herbal 41

1. Locate the what section of the XML that represents the vacuum.types.spot type (see line 3

in Table 11.

2. Add design rationale by changing line 3 (in Table 11) as follows:

<what>
This type represents the condition of the current square (clean or dirty).
</what>

3. Save the file.

4. Select the Types tab inside the Herbal GUI Editor.

5. Select the spot data type in the list of existing data types.

6. Click on the Rationale button located next to the list of current data types. You should see

the design rationale that you entered directly into the XML file in step 2 above.

7. Click Finish.

In Herbal, all libraries (agents, problem spaces, operators, conditions, actions, and types) are

represented in XML and can be found in a project’s model folder (in the Navigation View). As you

learn more about Herbal, and become more adventurous, you may choose to slowly move away

from the Herbal GUI Editor, and do more of your model development by directly editing the

XML.

Another advantage of storing libraries in separate XML files is that it makes them easy to share.

For example, the next time you, or someone you know, create an Herbal project that uses vacuum

cleaner agents, you can copy the vacuum.types.xml file into the model folder of your new project

and the types will automatically become available.

9.5. Creating Vacuum Cleaner Conditions

Each vacuum cleaner is equipped with radar that informs it of the status of the nearby squares.

Radar is represented in working memory using the vacuum.types.radar type (see Table 10). For

example, Table 12 shows the status of working memory when the vacuum cleaner has a clean

square above it, a wall below it, and a dirty square to its right and to its left.

Table 12. Example of Radar in Working Memory.

Working Memory

 A Gentle Introduction to Herbal 42

vacuum.types.radar
 dir = up
 reading = clean
vacuum.types.radar
 dir = down
 reading = wall
vacuum.types.radar
 dir = right
 reading = dirty
vacuum.types.radar
 dir = left
 reading = dirty

In this section, two conditions will be created: one to detect when there is at least one dirty square

near the vacuum cleaner and another that detects when there are no dirty square nearby. These

conditions will be called nearbyDirty and nearbyAllClean respectively.

Complete these steps to create the nearbyDirty condition:

1. Select the Conditions tab inside the Herbal GUI Editor.

2. Click on the New button located next to the list of existing conditions.

3. Accept the default value given in the Library Field.

4. Enter nearbyDirty for the name of the condition and click Finish.

5. Select the nearbyDirty condition in the list of existing conditions.

6. Click on the Add button located next to the list of current clauses.

7. Because you want to see if an instance of the radar data type exists in working memory

with its reading field equal to dirty, select the radar data type, but do not click Next yet.

8. If this clause happens to successfully match an instance of the radar data type, it is

necessary to give that instance a name so that it can be used later on in an action. For

example, if we find an instance of the radar data type that is reporting a dirty square, we

may want to move the vacuum cleaner in the direction of that dirty square. To give the

matching instance a name, enter dirtySquare into the Output Variable Name field and click

Next.

9. Select the reading field and then click on the Restrict button.

10. Select = from the list of Relational Operators and type dirty in the Literal field.

11. Click Finish and click Finish again.

 A Gentle Introduction to Herbal 43

Complete these steps to create the nearbyAllClean condition:

1. Select the Conditions tab inside the Herbal GUI Editor.

2. Click on the New button located next to the list of existing conditions.

3. Accept the default value given in the Library Field.

4. Enter nearbyAllClean for the name of the condition and click Finish.

5. Select the nearbyAllClean condition in the list of existing conditions.

6. Click on the Add button located next to the list of current clauses.

7. Select the radar data type and click Next.

8. A radar reading indicates that a square is not dirty if its reading field is equal to either

clean or wall. To specify this condition, click on the reading field and then click on the

Restrict button.

9. Select = from the list of Relational Operators and type clean in the Literal field.

10. Click on the Or button.

11. Select = from the list of Relational Operators and type wall in the Literal field.

12. Click Finish.

13. Click on the dir field and then click on the Restrict button.

14. Select = from the list of Relational Operators and type up in the Literal field.

15. Click Finish and click Finish again.

16. You have just created a clause for the current action that is true if the square above the

vacuum cleaner is either a wall or is clean. However, we want this condition to be true if

this is the case for all squares, not just the one above the vacuum. As a result, you need to

create three more clauses for the remaining directions. Please repeat steps 6-15 three times,

specifying down, left, and right for the value of the dir field. When your are done, your

condition clauses should resemble Figure 3.

 A Gentle Introduction to Herbal 44

Figure 3 - Condition Clauses for the nearbyAllClean Condition.

9.6. Creating Vacuum Cleaner Actions

In this section, two actions will be created in Herbal. The first action, called moveToDirt, will

cause the vacuum cleaner to move to a nearby dirty square. The second action, called

moveRandom, will cause the vacuum cleaner to move in a random direction.

Follow these steps to create the moveToDirt action:

1. Select the Actions tab inside the Herbal GUI Editor.

2. Click on the New button located next to the list of existing actions.

3. Accept the default value given in the Library Field.

4. Enter moveToDirt for the name of the action and click Finish.

5. Select the moveToDirt action in the list of existing actions.

6. Click on the Add button located next to the list of current clauses.

7. Select “add a new fact” from the list of choices for the action and then click Finish.

8. In the next window, select action data type and click Next.

9. For this particular action we want to move in the direction of a nearby dirty square. The

actual direction that the vacuum cleaner will move will depend on its current situation. As

a result, we must depend on a condition to provide us with the correct direction.

Specifically, we will use the output variable of the nearbyDirty condition to determine

what direction to move to. Select the move field and click on the Get button.

10. Because we will rely on a matched a radar fact to tell us what direction to move in, select

on radar and click Next, and then select dir and click Next.

11. This action relies on having a named instance available to it so it knows what direction to

move in. The name you provide will be used later when the action is assigned to an

 A Gentle Introduction to Herbal 45

operator. To provide a name for this instance, type dirtySquare in the Input Variable Name

field and click Finish.

12. Click Finish again.

Follow these steps to create the moveRandom action:

1. Select the Actions tab inside the Herbal GUI Editor.

2. Click on the New button located next to the list of existing actions.

3. Accept the default value given in the Library Field.

4. Enter moveRandom for the name of the action and click Finish.

5. Select the moveRandom action in the list of existing actions.

6. Click on the Add button located next to the list of current clauses.

7. Select “add a new fact” from the list of choices for the action and then click Finish.

8. In the next window, select action data type and click Next.

9. For this particular action we want to move in a random direction. This can be

accomplished using the random function. Select the move field and click on the Function

button.

10. Select the rand function and click on the Literal button.

11. Type “left” (be sure to include the quotation marks) in the Literal Field and click on

Finish.

12. Repeat steps 10 and 11 entering “right”, “up”, and “down” for the literal values.

13. Click Finish and Finish again.

9.7. Creating Vacuum Cleaner Operators

Operators can be created to give our vacuum cleaner some tools in which to exhibit behavior. In

this section you will create two operators: randomMove and smartMove. The randomMove

operator should cause the vacuum cleaner to move in a random direction when there is no nearby

dirty square. The smartMove operator should cause the vacuum cleaner to move to a nearby dirty

square when such a square exists.

 A Gentle Introduction to Herbal 46

Figure 4 illustrates these operators. Using what you learned in Section 4.5, please create the

operators shown in Figure 4. Leave the scope of conditions and actions at their default value:

“Top”.

Figure 4 - The smartMove and randomMove Operators.

9.8. Creating Vacuum Cleaner Problem Spaces

To facilitate learning, and to provide some organization to the behavior of the vacuum cleaner, it

will be useful to create some problem spaces for our agent to operate within. These problem

spaces will produce the higher level behaviors of wandering around the board (Wander) and

pursuing dirty squares (Pursue).

For now, each of these higher level behaviors will be implemented with a single operator and will

be controlled by a top-level space called Top. However, if the model were made more intelligent

in the future, these behaviors would become more complex; utilizing many operators and residing

in a deeper problem space hierarchy.

Using what you learned in Section 4.4 and Section 4.10, please create the problem spaces listed in

Table 13.

Table 13. Vacuum Cleaner Problem Spaces.

Problem Space Initial Actions Operators

Top None None

 A Gentle Introduction to Herbal 47

Wander None randomMove

Pursue None smartMove

9.9. Wrapping Up the Vacuum Cleaner Agent

The last step needed to complete our vacuum cleaner agent is to instantiate an Agent object and

assign a problem space hierarchy to it. Using what you learned in Section 4.3, create an agent

named Tom. Finally, using what you learned in Section 6.2 assign a hierarchy of problems to Tom

based on.

Figure 5 - Vacuum Cleaner Problem Space Hierarchy.

9.10. Running Tom in the Vacuum Cleaner Environment

To run Tom (the new vacuum cleaner agent), you will need to install the vacuum cleaner

environment. Instructions for downloading and installing the environment can be found from the

Mark Cohen’s webpage at http://www.marklisa.us/markacohen.

Once you get the environment running, you can load your model using the File menu. Because the

environment supports both Jess and Soar, you can run either version of Tom. While Tom is

running, trace statements will appear in the console that will help you view the details of the model

while it is executing. The exact output depends on if you chose to run the Soar or Jess model.

 A Gentle Introduction to Herbal 48

9.11. Additional Exercises

Once you have Tom up and running there is a whole host of things you can try. Here are just two

you may find interesting:

1. Use the Options>Configure Board… menu item in Vacuum to create a board that is 2 x 2

and has 2 dirty squares. Try running your model four times, each time with a different

instance of this board configuration (hitting reset will generate a new random instance of

the board). What does the model do? Why?

2. Create a second agent (within the same project) that operates in the problem space

hierarchy shown in Figure 6. You will find the syntax of the action and perception you

need in Table 10. Here are a few hints:

a. You will need to create a condition squareDirty that is true when the agent is on a

dirty square, and another squareClean that is true when it is on a clean square.

b. You will need to create an action cleanUp that causes the agent to clean up the

current square.

c. You will need to create an operator CleanUp that will clean up the current square if

it is dirty. This operator will use the condition squareDirty and the action cleanUp,

created it step (a) and (b).

d. You will need a new problem space called Clean that contains the operator

CleanUp created in step (c).

e. You will need to create a new agent called CleaningTom (within the same

VacuumCleaner project), and add the problem space hierarchy shown in Figure 6 to

this agent.

 A Gentle Introduction to Herbal 49

Figure 6 – The problem space hierarchy used by CleaningTom the vacuum cleaner.

 A Gentle Introduction to Herbal 50

10.0 Lesson 8: Multi problem space levels and scope of facts
In this lesson, we will see that each fact "belongs" to a specific problem space. This problem space

constitutes the "scope" of this fact. That is, when a fact is asserted, its scope is defined and cannot

be changed.

In Herbal 3, if the scope is not explicitly overridden, when an Operator is triggered within a

problem space, its scope is set to this current problem space. That means that its conditions will

refer to facts whose scope is this problem space, and its actions will modify, remove or assert new

facts in the scope of this problem space.

However, this default scope can be overridden at two levels:

- At the level of the association of the operator to the problem space: when an operator is

associated to a problems pace, the scope of its conditions and the scope of its actions can be

overridden.

- At the level of the association of conditions and actions to an operator. When a condition or

an action is associated to an operator, its scope can be overridden.

This second overriding takes prevalence over the first one.

This overriding can take three values: Top, Parent, or Local. That means that each problem space

has the possibility to access facts either in the Top problem space, or in its direct parent, or in

itself.

Note that in Herbal 3, when an operator is associated to a problem space, the first overriding is set

to Top by default.

In addition, we should notice that in Herbal 3, the scope of the conditions to enter a sub problem

space cannot be overridden. Their scope is always the current problem space, which is the parent

of the new sub problem space.

That will be illustrated by the example of the multi level vacuum cleaner presented below.

10.1. Creating a multi level Vacuum model

 A Gentle Introduction to Herbal 51

In this new lesson, we want to improve our vacuum cleaner model. When observing the behavior

of our previous model CleaningTom, we can notice that it could be improved in several ways. For

example, it can be improved if, when wandering, it would at least never go back to the square

where it just comes from.

Let us call such a model CleaningBull. To implement its behavior, we will need to provide

CleaningBull with a memory of where it was just coming from, so that we can prevent it to go

back there.

We propose a solution consisting of decomposing the movement into two steps:

• First step: choose a direction acceptable with regard to the previous memorized move.

• Second step: memorize this new direction and move to it.

We can implement this model with the problem space hierarchy shown in Figure 7.

Figure 7 – The problem space hierarchy used by CleaningBull the vacuum cleaner.

In this new hierarchy, the choice of the direction will be done in the Pursue and Wander problem

spaces, and the memorization and actual move will be performed in the Move sub problem space.

10.2. Creating types

This new model will have to hold the previous move, and the choice for the next move, in working

memory. We can store them in a single fact of type direction, which will have two fields:

 A Gentle Introduction to Herbal 52

1. The field from, of type string, which will store the direction from where the vacuum cleaner

is just coming.

2. The field to, of type string, which will store the next chosen move, that is, the direction to

where the vacuum cleaner attends to go.

Notice that only one fact of direction type needs to be instantiated in the model at any time.

Because this memory of direction has to be available in both the Wander and the Pursue problem

spaces, then its scope has to be the Top problem space. Because the next chosen move will have to

be compared to the previous one, we have to give it also the Top scope, otherwise we could not

compare them in a single condition.

We will also need another fact to indicate that a move direction has been chosen and that we are

ready to enter the Move sub problem space. This fact has to have either the scope of the Wander or

the Pursue problem space.

We can call the type of this new fact: moving. It needs no field.

Using what you have learned in Section 4.6, please create the direction type with its two fields

from and to; and the moving type, with no field.

When this is done, your Types tab should look like Figure 8.

Figure 8: CleaningBull’s data types

 A Gentle Introduction to Herbal 53

10.3. Creating conditions

We will need several new conditions for our new model:

1. An isMoving condition, which is true if it exists a fact of type moving. This condition will

trigger the sub problem space Move. It will be also used to remove the fact moving.

2. An isDir condition, which is true if the to field of the moving fact is not equal to "no". It

will be used to trigger the operator that will perform the actual move.

3. A noDir condition, which is true if the to field of the moving fact is equal to "no". It will be

used to trigger the operator that will propose a new moving direction.

4. A condition goDown, which is true if the field to of the direction fact is equal to "down". It

will be used to memorize that the vacuum cleaner was going to down, and thus was coming

from up.

5. Three other conditions goLeft, goRight, goUp, similar to the goDown condition, but which

are respectively true when the field to of the direction fact is equal to "Left", "Right", and

"up".

6. A condition goBack, which is true if the field to of the fact of type direction is equal to its

field from. This condition will be used to reject a chosen direction that would go back to

the square where the vacuum cleaner was just before.

7. A condition goToWall which is true if the radar detects a wall in the chosen direction. This

condition will be used to reject the chosen direction in this case.

Please use what you have learned in paragraph 4.7 to create the conditions isMoving, isDir, noDir,

goDown, goLeft, goRight, goUp.

To create the clause of the condition goBack, you will have to use a literal value to bind the to field

to the from field in a comparison clause. Please follow the steps bellow:

1. Make sure you have the goBack condition selected in the list of existing conditions, in the

edit condition tab of the Herbal GUI Editor.

2. Click on the Add button located next to the list of current clauses.

 A Gentle Introduction to Herbal 54

3. Select the direction data type in the first page of the wizard. Type "direction" as an output

variable name. Click Next.

4. In the "restrict field values" page (second page of the wizard), select from and click

Restrict.

5. In the "Enter Literal Value" page, select "=" as a Rational operator and type ?to as a

Literal. Then click finish.

6. Back in the "restrict field values"page, select to. Type ?to as a "Local variable name". Click

Finish.

To create the clause of the condition goToWall, you will have to use a literal value to bind the to

field of the direction type to the dir field of the radar type. Please follow the steps bellow:

1. Make sure you have the goToWall condition selected in the list of existing conditions, in

the edit condition tab of the Herbal GUI Editor.

2. Click on the Add button located next to the list of current clauses.

3. Select the direction data type in the first page of the wizard. Type "direction" as an output

variable name. Click Next.

4. In the "restrict field values" page, select to. Type ?to as a "Local variable name". Click

Finish.

5. Click Finish again to terminate the clause definition.

6. Click again on the Add button located next to the list of current clauses.

7. Select the radar data type in the first page of the wizard. Click Next.

8. In the "restrict field values" page, select dir and click Restrict.

9. In the "Enter Literal Value" page, select "=" as a Rational operator and type ?to as a

Literal. Then click finish.

10. Back in the "restrict field values" page, select reading and click Restrict.

11. In the "Enter Literal Value" page, select "=" as a Rational operator and type wall as a

Literal. Then click finish.

12. Click Finish again to terminate the clause definition

 A Gentle Introduction to Herbal 55

Note that the two conditions goBack and goToWall could have been merged into a single one, but

they are kept separated for more clarity.

10.4. Creating actions

We will also need several new actions:

1. An init action, which will assert the direction fact with both its from and to field initialized

to "no". Note that this action will have to be performed in the Top scope.

2. A moveToDir action, which will add a new output fact of type action with its move field

binded to a direction input variable. It will perform the actual move to the chosen direction.

This action will have to be performed in the Top scope.

3. A startMoving action, which will assert a moving fact. It will trigger the entrance into the

Move sub problem space. This action will have to be performed in either the Wander or the

Pursue scope.

4. A stopMoving action, which will delete the moving fact, when the move will have been

performed. This action will be performed in the Move problem space by referring to its

parent scope wich will be either Wander or Pursue. It will use a moving input variable

5. An abortMove action, which will set the to field of the direction fact to the value of "no". It

will be used to reject a direction if the conditions goToWall or goBack are true. This action

will have to be performed in the Top scope.

6. A memoFromDown actions, which will change the from field of the direction fact to

"down". It will be called when the goToUp condition is true, in order to memorize this

move. This action will have to be performed in the Top scope.

7. Three other actions memoFromLeft, memoFromRight, memoFromUp, which will

respectively change the from field of the fact of direction type to "Left", "Right", "Up",

when the conditions goToRight, goToLeft, goToDown will be true.

In addition, compared to the previous model of cleaningTom, the moveRandon and moveToDirt

actions have to be changed, in order to change the direction fact instead of performing the actual

move. So:

 A Gentle Introduction to Herbal 56

1. The moveRandon action must edit the direction fact and set its to field to the value

rendered by the randon function. This action will have to be performed in the Top scope.

2. The moveToDirt action must edit the direction fact and set its to field to the value given by

the dir field of the fact of radar type, which will be identified by the input variable called

dirtySquare. This action will have to be performed in the Top scope. Please refer to

paragraph 9.6 for the creation of this action.

10.5. Creating operators

Now that we have created conditions and actions, we have to link them within operators. We will

need the following additional operators:

1. The abortGoBak operator. It will be triggered if the goBack condition is true and will fire

the abortMove action. It will wire the direction variables of this condition and this action.

We can keep blank the "overriding scope" property of its conditions and actions.

2. The abortGoToWall operator. It will be triggered if the goToWall condition is true and will

fire the abortMove action. It will wire the direction variables of this condition and this

action. We can keep blank the "overriding scope" property of its conditions and actions.

3. The memoFromDown operator. It will be triggered if the goUp condition is true and will

fire the memoFromDown action. It will wire the direction variables of this condition and

this action. We can keep blank the "overriding scope" property of its conditions and

actions.

4. The memoFromLeft, memoFromRight, memoFromUp operators similar to the

memoFromDown.

5. The moveToDir operator. It will be triggered if the isDir condition is true and will fire the

moveToDir action. It will wire the direction variables of this condition and this action. We

can keep blank the "overriding scope" property of its conditions and actions.

6. The stopMoving operator. It will be triggered if the isMoving condition is true and will fire

the stopMoving action. It will wire the moving variable of this condition to the moving

variable of this action. This operator will be trigger by the Move problem space and should

be executed in its parent scope, as it applies to the moving fact, which is either asserted in

the Wander or in the Pursue problem space.

 A Gentle Introduction to Herbal 57

The randomMove and smartMove operators will remain unchanged from the cleaningTom model.

Only their actions have been changed.

10.1. Creating the problem spaces

Now we can create the problem spaces of our model.

Pursue:

Initial action : startMoving

Operators: smartMove

Wander

 Initial action : startMoving

 Operators : abortGoBack , abortGoToWall, randomMove (best)

Move

 Operators : memoFromDown (best), memoFromLeft(best), memorFromUp(best),

moveToDir (10), stopMoving (worst).

10.1. Creating the cleaningBull agent

We can now organize our problem space hierarchy according to the Figure 7.

The Move problem space can be added as a sub problem space of both the Wander and the Pursue

problem spaces. In each case the condition to enter it is the isMove condition. Note that it will not

be entered as long as there is still an operator to fire in its parent problem space. Therefore, it is ok

if the moving fact is assessed as an initial action of the Wander and Pursue problem spaces.

11.0 Lesson 9: Creating a Simple dTank Model in Herbal
While the vacuum cleaner environment is interesting, the challenges it presents are quickly

overcome. A more challenging and rich environment is needed to teach more advanced agent

programming. dTank (acs.ist.psu.edu/dtank) is such an environment, and in this lesson you will

learn how to create a dTank agent.

 A Gentle Introduction to Herbal 58

11.1. dTank I/O

dTank provides a competitive battleground where battalions of tanks fight it out for supremacy.

Tanks can be driven by human interaction or by intelligent agents written in a variety of languages.

Much like the vacuum cleaner environment, dTank defines a set of working memory that allows

the agent to interact with its environment. All of the nuances of the dTank environment are not

specified in this tutorial. Instead, just enough information is provided to get you started building

simple models. For a more complete description of dTank, see the dTank manual located on the

dTank website (acs.ist.psu.edu/dtank).

The input and output working memory elements supported by the dTank environment are listed in

Table 14.

 A Gentle Introduction to Herbal 59

Table 14. dTank I/O

Type Field Description

dtank.types.turretHeading value (number) Turns the tank’s turret in the specified

direction. Direction is specified as degrees

clockwise from 0 to 360. What the tank

operator sees, and the direction of its fire, is

based on the direction that the turret is

pointing.

dtank.types.tankHeading value (number) Turns the tank’s body in the specified

direction. Direction is specified as degrees

clockwise from 0 to 360.

dtank.types.throttle value (number) Starts the tank moving either forward or

backward. The throttle can be set to a

number between -1.0 and 1.0. Zero stops the

tank; negative numbers move the tank

backward; and positive numbers move it

forward.

dtank.types.action value (string) Can have any of the following values: fire,

faster, slower, rotateTurret, rotateTank. Fire

sends a missile in the direction that the turret

is facing. Faster and slower either speed the

tank up or slow the tank down by 0.1.

Finally, rotate Turret and rotateTank move

the turret or tank body an addition 30 degrees

clockwise from its current orientation.

dtank.types.friend x (number) Represents the x location of a friendly tank.

Note, you only see the tank if your turret is

pointing in its direction.

 A Gentle Introduction to Herbal 60

Type Field Description

 y (number) Represents the y location of a friendly tank.

Note, you only see the tank if your turret is

pointing in its direction.

 nationality (string) Represents the nationality of the friendly

tank.

 distance (number) Represents the distance the friendly tank is

from your tank.

 heading (number) Represents the heading (in degrees) of the

friendly tank.

dtank.types.enemySpotted flag (boolean) This flag is set to true when an enemy tank is

spotted.

dtank.types.inTrouble flag (boolean) This flag is set to true when your tank is

severely damaged.

dtank.types.enemy x (number) Represents the x location of an enemy tank.

Note, you only see the tank if your turret is

pointing in its direction.

 y (number) Represents the y location of an enemy tank.

Note, you only see the tank if your turret is

pointing in its direction.

 nationality (string) Represents the nationality of the enemy tank.

 distance (number) Represents the distance the enemy tank is

from your tank.

 heading (number) Represents the heading (in degrees) of the

enemy tank.

dtank.types.me x (number) Represents the x location of your tank.

 y (number) Represents the y location of your tank.

 A Gentle Introduction to Herbal 61

Type Field Description

 nationality (string) Represents the nationality of your tank.

 ammunition (number) Represents the amount of ammunition your

tank has left.

 fuel (number) Represents the amount of fuel your tank has

left.

 tankHeading (number) Represents the direction (in degrees) your

tank is facing.

 speedMPS (number) The speed of your tank in miles per hour.

 speedKPS (number) The speed of your tank in km per hour.

 throttle (number) The current setting of your tank’s throttle (-

1.0 to 1.0).

 armor (number) The state of your tank’s armor.

dtank.types.terrain right (string) The type of terrain located to the right of

your tank. Possible values include

OFF_MAP, STONE, WOODS, LOW_HILL,

HIGH_HILL, GRASS, ROAD.

 left (string) The type of terrain located to the left of your

tank. Possible values include OFF_MAP,

STONE, WOODS, LOW_HILL, HIGH_HILL,

GRASS, ROAD.

 up (string) The type of terrain located above your tank.

Possible values include OFF_MAP, STONE,

WOODS, LOW_HILL, HIGH_HILL, GRASS,

ROAD.

 A Gentle Introduction to Herbal 62

Type Field Description

 down (string) The type of terrain located to below your

tank. Possible values include OFF_MAP,

STONE, WOODS, LOW_HILL, HIGH_HILL,

GRASS, ROAD.

11.2. Instantiating the dTank Predefined Model

At this point in the tutorial you should be fairly familiar with the Herbal environment. As a result,

in this lesson you will be instructed how to instantiate a predefined dTank model that you can later

modify on your own. This predefined model serves as a starting point for more complicated

models.

To instantiate the predefined dTank model, follow the sequence below.

8. Select File>New>Project

9. On the New Project Window, select Herbal Project and click Next.

10. For the project name enter tank and choose the default file location to store the project.

11. Click Next.

12. The next screen allows you to select from a set of predefined models. Select dTank and

Click Finish.

11.3. Understanding the Predefined dTank Model

The best way to get to know the predefined dTank model is to browse it using the Model Browser

View.

Double-click on the Model Browser tab in order to maximize this view (remember, you can

double-click again to restore it to its original size). On the left hand side of the view, expand all of

the model elements. Your model browser should look like Figure 9.

 A Gentle Introduction to Herbal 63

Figure 9. Browsing the dTank Model

From the Model Browser View you can see that the model’s behavior is represented using three

problem spaces: attack, wander, and retreat. The attack problem space contains two operators:

aim and fire, and its entry conditions occur when an enemy is spotted and your tank is healthy

(Figure 9). You can also tell from the Model Browser that upon entering the attack problem space

your tank will stop moving. Please continue to browse the model using the Model Browser so that

you can determine the complete behavior of the tank.

The Model Browser will provide you with a good understanding of the high-level structure of the

model. However, without any design rationale, it is hard to grasp the details without using the

Herbal GUI Editor. If you plan on modifying the model to suit your needs, you will want to

explore the details.

 A Gentle Introduction to Herbal 64

Take the time now to open the Herbal GUI Editor and explore the inner workings of the dTank

model. As you discover how the model works, be sure to enter design rational for the model

elements so that you can capture this information for future reference.

11.4. Executing the Herbal Tank in the dTank Environment

Before you make any modifications to the dTank model, you should run it in the dTank

environment to see how well it does against other tanks. The dTank environment is available for

download from the dTank website (acs.ist.psu.edu/dtank). The website contains instructions on

how to install and execute dTank. Please take the time now to download and install dTank.

When you execute dTank you will see the dTank Startup Control Panel shown in Figure 10.

Figure 10. dTank Startup Control Panel

Using the Startup Control Panel, you can configure a battle. Each battle consists of an allied

battalion of tanks and an axis battalion of tanks. You can add tanks to a battalion by selecting the

type of commander to drive your tank, and the tank type. If you choose a SoarCommander, you

 A Gentle Introduction to Herbal 65

must also select a file that contains the Soar rules (generated by Herbal) that will be used by your

commander. To add a Tiger tank driven by a SoarCommander to the allied battalion, follow these

steps:

1. Select SoarCommander from the drop down list of commanders.

2. Select Tiger from the drop down list of tank types.

3. Click on the button labeled “…” and browse to the tank.soar file generated by Herbal for

the predefined dTank model. You will find this file located in the output subfolder of the

tank project. If you are not sure where your project is located on your disk, right-click

(ctrl-click for the Mac) on the tank project listed in the Eclipse Navigator View and choose

the properties menu item. This will show you the project’s properties, which includes the

complete path to the project folder.

4. Click on the Add button next to the list of allied tanks.

To add an opponent to the axis battalion, follow these steps:

1. Select SmartCommander from the drop down list of commanders.

2. Select Sherman from the drop down list of tank types.

3. Click on the Add button next to the list of axis tanks.

To watch the battle, click on the Start button. Your Soar tank will show up on the right hand side

of the map.

11.5. Debugging dTank Models

The details of a dTank battle are meticulously recorded in a log file during execution. This log file

is stored in the dTank installation folder and is called dTankResults.log. By default, this file

records only the output produced by print statements in your model. For example, Table 15

contains the top of a log file generated by a SoarCommander.

Table 15. Default dTank/Soar Log File Output

Log File Contents

 A Gentle Introduction to Herbal 66

========== Starting dTank4.0 version: 26 Nov 2006 ==========

========== Starting Battle 'null' Combattants: Axis: AlliedCommander vs.
Allied: AlliedCommander ===========
SoarCommander Allied Tiger NoDisplay 1 (C:\Documents and Settings\mcohen\My
Documents\Development\runtime-EclipseApplication\tank\output\soar\tank.soar)
SmartCommander Axis Sherman NoDisplay 1 (C:\Documents and Settings\mcohen\My
Documents\Development\runtime-EclipseApplication\tank\output\soar\tank.soar)
Soar agent file: C:\Documents and Settings\mcohen\My
Documents\Development\runtime-EclipseApplication\tank\output\soar\tank.soar
SoarAgent0: turning
SoarAgent0: scanning
SoarAgent0: moving
SoarAgent0: scanning
SoarAgent0: turning

The default output shown in Table 15 is helpful, but there are times when more information is

needed. Additional debug information can be generated by adding Soar watch commands to the

prescript.soar file. To add more debug information to the log file, follow these steps:

1. In Herbal, look in the Navigator View for a file called prescript.soar. This file should be

located in the model folder of the tank project. If you do not find the prescript.soar file,

you can create it by following these steps:

a. Right-clicking on the model folder and selecting New>Other…

b. In the New Dialog Box, open the Simple Folder, select File, and then click Next.

c. Type prescript.soar in the File name text field and click Finish.

2. Add the following soar command to the prescript.soar file:

 watch --productions

This command will tell Soar to trace all production firings. For a list of all of the available

watch commands see Chapter 5 of the Soar User’s Manual (Laird & B., 2005).

3. Rerun the tank battle. The output in your log file should contain the kind of detail shown in

Table 16. The trace shown in Table 16 illustrates the tank’s transition from the wander

problem space into the attack problem space. This transition took place because an enemy

was spotted during a scanning operation.

Table 16. dTank Log File With Production Watch Enabled

Log File Contents

 A Gentle Introduction to Herbal 67

SoarAgent3>: Firing |apply*global*remove-dtank-types-turretHeading|
Firing propose*wander*turn
Firing propose*wander*scan
Firing propose*wander*move
Retracting propose*wander*move
Retracting propose*wander*scan
Retracting propose*wander*turn
SoarAgent3>: Firing apply*wander*scan
scanning
SoarAgent3>: Firing propose*topspace*impasse*attackps
Retracting propose*topspace*impasse*wanderps
SoarAgent3>: Firing |apply*global*remove-dtank-types-turretHeading|
SoarAgent3>: Firing propose*initialize-attack
SoarAgent3>: Firing apply*initialize-attack
stopping
Firing propose*attack*fire
Firing propose*attack*aim
Retracting propose*initialize-attack
SoarAgent3>: Firing apply*attack*fire
firing

11.6. Additional Exercises

TBD

12.0 Advanced Features
Herbal contains a set of advanced features that you will find useful as you create more complicated

models. These features often behave differently depending on the architecture you run your model

in. As a result, you should avoid many of these features unless you are planning on running your

model in only a single architecture (i.e. only Soar or only Jess).

In addition, it is strongly recommended that the Soar or Jess manual is consulted to get a better

understanding of how these features work, before using them in Herbal.

The following sections describe these features in detail. Be sure to pay close attention to the areas

in which the features vary by architecture.

12.1. Preferences

As you learned earlier in the tutorial, a problem space consists of a set of operators that are

proposed and applied when the conditions for those operators are true. There will be times when

the conditions for several operators, within a single problem space, will be true. As a result, more

than one operator will be proposed. This raises the question of which operator will actually be

applied.

 A Gentle Introduction to Herbal 68

The underlying architecture you are using (Jess or Soar) will determine how this conflict will be

resolved. If you want more control over which operator will be chosen in the event of a conflict,

you can use preferences. Preferences make it possible to specify an ordering between proposed

operators within a problem space.

Preferences are specified when you add an operator to a problem space. Follow these steps to

specify a preference for a specific operator:

1. Select the Problem Spaces tab inside the Herbal GUI Editor.

2. Select the operator you would like to add a preference to, and then click on the Edit button

located next to the list of existing operators.

3. Click Next.

4. Select either best, worst, or enter a positive integer in the drop down list entitled

Preference. The meaning of this preference value is described in detail in Table 17.

5. Click Finish.

Table 17. Description of Allowed Preference Values

Preference Value Behavior in Soar Behavior in Jess

best The operator will be favored over

all other operators not given best

preference. If two operators have

best preference, Soar will choose

randomly between them.

The operator will be favored over all

other operators not given best

preference. If two operators have

best preference, Jess will choose

using a depth first strategy.

worst The operator will rank below all

other operators that were not

given worst preference. If all

operators have worst preference,

Soar will choose randomly

between them.

The operator will rank below other

all operators that were not given

worst preference. If all operators

have worst preference, Jess will

choose using a depth first strategy.

positive integer The operator will be chosen

based on a probability calculated

Operators given an integer

preference will be ranked

 A Gentle Introduction to Herbal 69

using the numeric preferences of

all other operators. For example,

if operator 1 has a numeric

preference of 25 and operator 2

has a numeric preference of 100,

operator 2 will be 4 times more

likely to be chosen. See the Soar

manual for more details.

numerically from highest to lowest,

and the operator with the highest

numeric preference will be chosen

first. See the Jess manual for more

details. NOTE: this behavior is

different than what happens in the

Soar compilation (see column to the

left).

negative integer Negative preference values are

not allowed in Herbal.

Negative preference values are not

allowed in Herbal.

all other values Value will be inserted in place of

the default preferences used by

Herbal (indifferent and

acceptable). This allows the

Herbal programmer to override

the default preferences used by

Herbal. This feature is for

advanced users only.

Value will be ignored by Herbal.

NOTE: this behavior is different than

what happens in the Soar

compilation (see column to the left).

12.2. Elaborations

In Soar, a special type of rule called a state elaboration can be created to alter working memory

before operators are proposed and applied. You can think of elaborations as background processes

that wait for a specific event, and then alter working memory when that event takes place.

Elaborations are similar to operators in that they have an “if-part” and a “then-part”. The “if-part”

contains a series of conditions and the “then-part” contains a series of actions. When the

conditions are true, the actions are executed.

What makes elaborations different than operators is that the working memory elements they create

are retracted as soon as the conditions that supported them change. In addition, elaborations take

place before the operators are proposed. This allows you to create elaborations that configure

 A Gentle Introduction to Herbal 70

working memory in a way that supports your operators. It is recommended that you consult the

Soar Manual to learn more about elaborations before using them in Herbal.

Because elaborations are made using the same if/then structure that operators use, you create

elaborations by marking an operator as an elaboration. This allows for an added dimension of

reuse, in which you can use a rule as both an operator and an elaboration within, and across

problem spaces. To specify that an operator should be used as an elaboration, follow these steps:

1. Select the Problem Spaces tab inside the Herbal GUI Editor.

2. Select the operator you would like turn into an elaboration and then Click on the Edit

button located next to the list of existing operators.

3. Click Next.

4. Check the “Is this an elaboration?” checkbox.

5. Click Finish.

6. Notice that the operator will be displayed with an asterisk “*” at the end of its name. This

indicates that the operator will be used as an elaboration.

Currently, the elaboration flag is ignored in the Jess compilation. As a result, in the Jess

compilation operators marked as elaborations will function as if they were “plain-old” operators.

Due to the special properties of elaborations in Soar, models that use elaborations will likely

demonstrate different behavior between the Soar and Jess compilations. For this reason,

elaborations should be avoided unless you only plan to run your model in Soar.

 A Gentle Introduction to Herbal 71

13.0 References

Cohen, M. A., Ritter, F. E., & Haynes, S. R. (2005). Herbal: A high-level language and
development environment for developing cognitive models in Soar. In proceedings of the
14th Behavior Representation in Modeling and Simulation, 133-140. University City, CA.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns : elements of reusable
object-oriented software. Reading, MA.: Addison-Wesley.

Haynes, S. R., Councill, I. G., & Ritter, F. E. (2004). Responsibility-driven explanation
engineering for cognitive models. In R. M. Jones, R. E. Wray & M. Scheutz (Eds.), AAAI
Workshop on intelligent agent architectures: Combining the strengths of software
engineering and cognitive systems (pp. 46-52). Menlo Park, CA: AAAI Press.

Intro to the Soar Debugger in Java. (2005).): ThreePenny Software LLC.
Laird, J. E., & B., C. C. (2005). The soar user's manual version 8.6: University of Michigan.
Lehman, J. F., Laird, J. E., & Rosenbloom, P. S. (1998). A gentle introduction to Soar: An

architecture for human cognition. In D. Scarborough & S. Sternberg (Eds.), An Invitation to
Cognitive Science (Vol. 4). New York: MIT Press.

Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University Press.
Russell, S., & Norvig, P. (2003). Artificial Intelligence: A Modern Approach (2nd ed.). Upper

Saddle River, NJ: Prentice Hall.
W3C. (2004). The Extensible Markup Language.

