
Expert I/O
Software User Manual

Revision 2 | January 6, 2010

© 2008-2010 Dajac Inc. All Rights Reserved.

www.dajac.com

sales@dajac.com

Expert I/O
Software User Manual

Contents

SOFTWARE..3

INSTALLATION..3
National Instruments LabView Driver...4

APPLICATION PROGRAMMING INTERFACE..5
Initialization..5

eioOpen...5
eioClose...5
eioGetDescriptors..6
eioClaimInterface..7
eioClaimInterfaceEz..7
eioReleaseInterface..8

Analog Input (ADC)...8
eioAdcReadCount..9

Analog Output (DAC)..9
eioDacInOut..9
eioDacIn..10
eioDacInToOut..11
eioDacGetCount..11
eioDacSetClear..12
eioDacGetClear...12
eioDacSetRange...13
eioDacGetRange..14

Digital I/O..15
eioDioGet..15
eioDioSet...15
eioDioGetPull..16
eioDioSetPull...16

EEPROM..17
eioEepromRead...17
eioEepromWrite...18

Motor Control...19
eioMcSetVelocity..19
eioMcGetVelocity...19
eioMcSetBrakeState..20
eioMcGetBrakeState..21
eioMcGetCurrent...21
eioMcSetCurrentThreshold..22
eioMcGetCurrentThreshold...22

Status...23
eioPollGetStatus..23
eioPollGetStatusString...24

Product Information...25
eioProdInfoGetFirmwareVersion...25

Rev. 2 - 1 - 1/6/10

Expert I/O
Software User Manual

eioProdInfoGetFirmwareVersionEz..26

Rev. 2 - 2 - 1/6/10

Expert I/O
Software User Manual

Software
The software distribution contains an application programming interface (API), source code examples and demo
applications. The API is within a dynamic link library (DLL) and allows the user to control every aspect of the
Expert I/O. Since a DLL is used, the API is accessible from any programming or script language that supports
DLL's. A few examples are C, C++, C#, Visual Basic, Delphi, Java, Python, PHP, etc.

All functions use the __stdcall calling convention.

You may freely distribute the API library (eio.dll) with any application you create. See the license agreement for
complete licensing information.

A National Instruments LabView driver is also included in the SDK.

Installation
To install, run setup.exe. This will install the driver, the API, examples and documentation.

Power the Expert I/O and attach the USB cable from the Expert I/O to the PC. The following MS Windows message
will appear.

Select “No, not this time” and click Next.

Rev. 2 - 3 - 1/6/10

Expert I/O
Software User Manual

Select “Install the software automatically (Recommended)” and click Next.

The Expert I/O is now ready to use.

Each time a new Expert I/O is attached, MS Windows will display the Found New Hardware Wizard. Follow the
steps above for each occurrence. Once the Found New Hardware Wizard is completed, it will not be shown again for
that Expert I/O.

National Instruments LabView Driver
To use the LabView driver, you must first install the SDK as described above. During the SDK installation, the
LabView driver will be placed in the directory you chose for the SDK install. Simply unzip the LabView driver into

Rev. 2 - 4 - 1/6/10

Expert I/O
Software User Manual

your LabView instr.lib directory and restart LabView. From within LabView, you can access full documentation
and examples.

Application Programming Interface
The following sections describe the API in detail.

Initialization
These functions are used for initialization and cleanup. Declarations are in eio_init.h.

eioOpen

Syntax:

int eioOpen(void)

Description:

Initialize the API. Call this function before communicating with any Expert I/O units.

Parameters:

none

Return Value:

eioSUCCESS: No problems.

eioERROR: An error occured.

eioClose

Syntax:

int eioClose(void)

Description:

Call this function when it is no longer necessary to communicate with any Expert I/O units.

Return:

eioSUCCESS: No problems.

eioERROR: An error occured.

Rev. 2 - 5 - 1/6/10

Expert I/O
Software User Manual

eioGetDescriptors

Syntax:

int __stdcall eioGetDescriptors(eioTDescriptorGroup *DescriptorGroup)

Description:

Get descriptors for all the Expert I/O units attached to all the USB buses. This function searches all the
USB buses and returns a descriptor for each Expert I/O device found. Descriptors provide information
about the devices found.

Parameters:

DescriptorGroup

This is a pointer to a structure that holds a descriptor for every Expert I/O device found. Memory for each
descriptor is allocated by this library. The memory will be released when eioClose() is called. The
descriptor memory is owned by this library and should not be modified by outside code.

The DescriptorGroup structure must be allocated prior to calling this function.

eioTDescriptorGroup is defined in eio_common.h as follows.

typedef struct
{
 int NumDescriptors;
 eioTDescriptor **Descriptors;
} eioTDescriptorGroup;

NumDescriptors is the number of descriptors contained in the group.

Descriptors is an array of the descriptors and eioTDescriptor is a structure defined in
eio_common.h.

typedef struct
{
 unsigned int SerialNumber;
 unsigned short ModelId;
 char ModelString[MAX_MODEL_STR_LEN];
} eioTDescriptor;

SerialNumber is the serial number of the Expert I/O.

ModelId is the model ID of the Expert I/O.

ModelString is a NULL terminated string version of the model ID. This is useful when the model ID
must be shown to the user.

Return:

eioSUCCESS: No problems.

eioERROR: An error occured.

Rev. 2 - 6 - 1/6/10

Expert I/O
Software User Manual

eioClaimInterface

Syntax:

int eioClaimInterface(eioTDescriptor *Descriptor, eioTHandle *Handle)

Description:

Claim the interface of the device with the given descriptor. The device's interface must be claimed before
the device can be accessed. Once a claimed interface is no longer needed, it must be released. If a device's
interface has been claimed, it can't be claimed again until it has been released.

Parameters:

Descriptor

The descriptor for the device whose interface is to be claimed.

Handle

Upon successful return, this will be a handle to the specified device. If unsuccessful, it will be NULL.

Return:

eioSUCCESS: No problems.

eioDEVICE_NOT_FOUND: Could not find the requested device.

eioUNABLE_TO_CLAIM_INTERFACE: The device was found, but its interface could not be claimed. A
couple possible causes are not enough memory or the interface has already been claimed.

eioClaimInterfaceEz

Syntax:

int eioClaimInterfaceEz(unsigned short ModelId, unsigned int
SerialNumber, eioTHandle *Handle)

Description:

This function is provided as a simpler alternative to eioClaimInterface. It allows you to claim an
interface by only providing model ID and serial number. Using this method, you don't need to scan the
USB for descriptors.

The device's interface must be claimed before the device can be accessed. Once a claimed interface is no
longer needed, it must be released. If a device's interface has been claimed, it can't be claimed again until it
has been released.

Rev. 2 - 7 - 1/6/10

Expert I/O
Software User Manual

Parameters:

ModelId

The model ID for the device whose interface is to be claimed. See the eioMID_EIOxx defines in
eio_prod_info.h for a list of valid model ID's. The model ID is also included in the hardware manual.

SerialNumber

The serial number of the device whose interface is to be claimed.

Handle

Upon successful return, this will be a handle to the specified device. If unsuccessful, it will be NULL.

Return:

eioSUCCESS: No problems.

eioDEVICE_NOT_FOUND: Could not find the requested device.

eioUNABLE_TO_CLAIM_INTERFACE: The device was found, but its interface could not be claimed. A
couple possible causes are not enough memory or the interface has already been claimed.

eioReleaseInterface

Syntax:

int eioReleaseInterface(eioTHandle Handle)

Description:

Release a device's interface. Call this function after a device's interface has been claimed and is not longer
needed. Once freed, the interface is available to be claimed again.

Parameters:

Handle

A handle to the device that owns the interface to be released.

Return:

eioSUCCESS: No problems.

eioERROR: An error occured.

Analog Input (ADC)
Use the analog input interface to read analog voltages. Declarations for this interface are in eio_adc.h.

Rev. 2 - 8 - 1/6/10

Expert I/O
Software User Manual

eioAdcReadCount

Syntax:

int eioAdcReadCount(eioTHandle Handle, int Input, unsigned int *Count)

Description:

Read the ADC count for the given input.

Parameters:

Handle

The handle of the Expert I/O device to query.

Input

The input to read.

Count

Upon return, this will hold the ADC count of the given input.

Return:

eioSUCCESS: No problems.

eioERROR: A problem occurred.

Analog Output (DAC)
The analog output interface allows controlling the analog output voltages. Declarations for this interface are in
eio_dac.h.

The DAC digital inputs are double buffered. When controlling a DAC, control values can be loaded into the input
register and then shifted to the output register to make the control value active at the output. Alternatively, control
values can be loaded into the input and output registers at the same time.

Output voltages are set by loading the DAC registers with values relative to the number of bits supported by the
DAC and the current output range setting. For example, loading 128 into an 8-bit DAC whose range is 0V to 5V,
results in a 2.5V level at the output. If the range were -5V to +5V, then the output voltage would be 0V. As can be
seen, zero count always results in the minimum output voltage and the maximum count always results in the
maximum output voltage.

eioDacInOut

Syntax:

int eioDacInOut(eioTHandle Handle, int Dac, unsigned int Count)

Rev. 2 - 9 - 1/6/10

Expert I/O
Software User Manual

Description:

Load a count into both, the input and the output registers simultaneously. The new voltage will appear at
the analog output immediately.

Parameters:

Handle

The handle of the Expert I/O device.

Dac

The analog output port to act upon. Use eioDAC_ALL to change all analog outputs to the given value.

Count

The value that will be loaded into the input and output registers.

Return:

eioSUCCESS => No problems.

eioERROR => An error occurred.

eioDacIn

Syntax:

int eioDacIn(eioTHandle Handle, int Dac, unsigned int Count)

Description:

Load a count into the input register. The new voltage will not appear at the analog output until the count is
transferred to the output register.

Parameters:

Handle

The handle of the Expert I/O device.

Dac

The analog output port to act upon. Use eioDAC_ALL to act upon all analog outputs.

Count

The value that will be loaded into the input register.

Return:

eioSUCCESS: No problems.

Rev. 2 - 10 - 1/6/10

Expert I/O
Software User Manual

eioERROR: An error occurred.

eioDacInToOut

Syntax:

int eioDacInToOut(eioTHandle Handle, int Dac)

Description:

Transfer the value in the input register to the output register. The transferred value becomes effective at the
analog output immediately.

Parameters:

Handle

The handle of the Expert I/O device.

Dac

The analog output port to act upon. Use eioDAC_ALL to act upon all analog outputs.

Return:

eioSUCCESS: No problems.

eioERROR: An error occurred.

eioDacGetCount

Syntax:

int eioDacGetCount(eioTHandle Handle, int Dac, unsigned int *Count)

Description:

Read the value currently in the output register.

Parameters:

Handle

The handle of the Expert I/O device.

Dac

The analog output port of interest.

Count

Upon return, this will contain the value currently in the output register.

Rev. 2 - 11 - 1/6/10

Expert I/O
Software User Manual

Return:

eioSUCCESS: No problems.

eioERROR: An error occurred.

eioDacSetClear

Syntax:

int eioDacSetClear(eioTHandle Handle, int Dac, eioTBool Clear)

Description:

Each analog output can be cleared. When cleared, the output is immediately forced to ground. The output
will remain at ground until the clear status is deactivated.

Parameters:

Handle

The handle of the Expert I/O device.

Dac

The analog output port to act upon. Use eioDAC_ALL to act upon all analog outputs.

Clear

Set to eioTRUE to activate the clear condition. The analog output and all internal registers immediately go
to zero. The analog output will remain zero until the clear condition is removed.

Set to eioFALSE to release the clear condition. After being released, the analog output can once again be
set to values other than zero.

Return:

eioSUCCESS: No problems.

eioERROR: An error occurred.

eioDacGetClear

Syntax:

int eioDacGetClear(eioTHandle Handle, int Dac, eioTBool *Clear)

Description:

Get the current value of the analog output's clear feature.

Rev. 2 - 12 - 1/6/10

Expert I/O
Software User Manual

Parameters:

Handle

The handle of the Expert I/O device.

Dac

The analog output port of interest.

Clear

Upon return, this will contain the current setting of the clear feature. The clear feature can be either
eioTRUE (active) or eioFALSE (inactive).

Return:

eioSUCCESS: No problems.

eioERROR: An error occurred.

eioDacSetRange

Syntax:

int eioDacSetRange(eioTHandle Handle, int Dac, int Range,
 unsigned int Count)

Description:

Each analog output can be set to one of several output ranges. This function sets a new range for the
specified analog output.

Parameters:

Handle

The handle of the Expert I/O device.

Dac

The analog output port of interest. Use eioDAC_ALL to act upon all analog outputs.

Range

The range can be set as follows.

Rev. 2 - 13 - 1/6/10

Expert I/O
Software User Manual

Setting Minimum
(V)

Maximum
(V)

eioDAC_P5 0 5
eioDAC_P10 0 10
eioDAC_N5_P5 -5 5
eioDAC_N10_P10 -10 10
eioDAC_2N5_2P5 -2.5 2.5
eioDAC_2N5_7P5 -2.5 7.5

Count

When the range is set, this count will be loaded into the input and output registers.

Return:

eioSUCCESS: No problems.

eioERROR: An error occurred.

eioDacGetRange

Syntax:

int eioDacGetRange(eioTHandle Handle, int Dac, int *Range)

Description:

Get the current range of the specified analog output.

Parameters:

Handle

The handle of the Expert I/O device.

Dac

The analog output port of interest.

Range

Upon return, this will contain the current range setting. The description of the eioDacSetRange
function lists the allowable range settings.

Return:

eioSUCCESS: No problems.

eioERROR: An error occurred.

Rev. 2 - 14 - 1/6/10

Expert I/O
Software User Manual

Digital I/O
The digital I/O interface declarations are in eio_dio.h. Using this interface, it is possible to read the digital inputs and
control the digital outputs. Additionally, this interface is used to control the programmable pull feature that allows
programming pull ups and pull downs on the I/O lines.

eioDioGet

Syntax:

int eioDioGet(eioTHandle Handle, int Port, unsigned char *PinLevels)

Description:

Read a digital I/O port. This works for inputs as well as outputs.

Parameters:

Handle

The handle of the Expert I/O device.

Port

The port of interest.

PinLevels

Upon return, this will contain the pin levels of the specified port. Each bit corresponds to a digital I/O pin.
A bit value of one means the pin is at a high voltage and a bit value of zero means it is at ground.

Return:

eioSUCCESS: No problems.

eioERROR: An error occurred.

eioDioSet

Syntax:

int eioDioSet(eioTHandle Handle, int Port, unsigned char PinLevels)

Description:

Set the output voltage levels of the specified port.

Parameters:

Handle

The handle of the Expert I/O device.

Rev. 2 - 15 - 1/6/10

Expert I/O
Software User Manual

Port

The port of interest.

PinLevels

Each pin's voltage level will be set according to the value of this parameter. Each bit in PinLevels
corresponds to a digital output pin. A bit value of one means the pin will be set to a high voltage and a bit
value of zero means it will be set to ground.

Return:

eioSUCCESS: No problems.

eioERROR: An error occurred.

eioDioGetPull

Syntax:

int eioDioGetPull(eioTHandle Handle, int Port, int *PullLevel)

Description:

Get the pull setting of the given port.

Parameters:

Handle

The handle of the Expert I/O device.

Port

The port of interest.

PullLevel

Upon successful return, this will contain the level to which the port is being pulled. See eioDioSetPull
for valid pull levels.

Return:

eioSUCCESS: No problems.

eioERROR: An error occurred.

eioDioSetPull

Syntax:

int eioDioSetPull(eioTHandle Handle, int Port, int PullLevel)

Rev. 2 - 16 - 1/6/10

Expert I/O
Software User Manual

Description:

Set the pull level of the given port.

Parameters:

Handle

The handle of the Expert I/O device.

Port

The port of interest.

PullLevel

The port's pull feature will be set to this value. Valid pull levels are shown below.

Pull Level Description
eioDIO_PULL_B Pull is to +B.
eioDIO_PULL_B1 Pull is to +B1.
eioDIO_PULL_3_3 Pull is to 3.3V.
eioDIO_PULL_GND Pull is to ground. This is not a valid setting for the

digital outputs.
eioDIO_PULL_NONE Pull is disabled. This is not a valid setting for the digital

outputs.

Return:

eioSUCCESS: No problems.

eioERROR: An error occurred.

EEPROM
Use the EEPROM interface to access the EEPROM. This interface is declared in eio_eeprom.h.

eioEepromRead

Syntax:

unsigned int eioEepromRead(eioTHandle Handle, unsigned int Address,
 unsigned int NumBytes, void *Destination)

Description:

Read data from the EEPROM.

Rev. 2 - 17 - 1/6/10

Expert I/O
Software User Manual

Parameters:

Handle

The handle of the Expert I/O device.

Address

The EEPROM address at which to read.

NumBytes

The number of data bytes to read.

Destination

The data read from the EEPROM will be stored here. The calling code must ensure that enough memory
has been allocated to hold NumBytes of data.

Return:

The number of bytes read. This will be less than NumBytes if an error occurred or if there was an attempt
to read past the last address in the EEPROM.

eioEepromWrite

Syntax:

unsigned int eioEepromWrite(eioTHandle Handle, unsigned int Address,
 unsigned int NumBytes, void *Source)

Description:

Write data to the eeprom.

Parameters:

Handle

The handle of the Expert I/O device.

Address

The EEPROM address at which to write.

NumBytes

The number of data bytes to write.

Source

The data to write into the EEPROM.

Rev. 2 - 18 - 1/6/10

Expert I/O
Software User Manual

Return:

The number of bytes written. This will be less than NumBytes if an error occurred or if there was an
attempt to write past the last address in the EEPROM.

Motor Control
This interface is used to access the motor controllers. Declarations are in eio_mc.h.

eioMcSetVelocity

Syntax:

int eioMcSetVelocity(eioTHandle Handle, int Controller, int Velocity)

Description:

Set the motor velocity.

Parameters:

Handle

The handle of the Expert I/O device.

Controller

The controller of interest. Use eioMC_ALL to simultaneously set the velocity of all motors to the same
value.

Velocity

This is the PWM pulse width count. The maximum count is MC_MAX_PULSEWIDTH. Positive velocity
rotates the motor clockwise. Negative velocity rotates the motor counterclockwise.

Return:

eioSUCCESS: No problems.

eioERROR: An error occurred.

eioMcGetVelocity

Syntax:

int eioMcGetVelocity(eioTHandle Handle, int Controller, int *Velocity)

Description:

Get the current motor velocity.

Rev. 2 - 19 - 1/6/10

Expert I/O
Software User Manual

Parameters:

Handle

The handle of the Expert I/O device.

Controller

The controller of interest.

Velocity

Upon return, this contains the current PWM pulse width count. See eioMcSetVelocity for
interpretation of this value.

Return:

eioSUCCESS: No problems.

eioERROR: An error occurred.

eioMcSetBrakeState

Syntax:

int eioMcSetBrakeState(eioTHandle Handle, int Controller,
 int BrakeState)

Description:

Set the motor controller brake state. The motor stops immediately when the brake is enabled and continues
at the current velocity setting when the brake is disabled.

Parameters:

Handle

The handle of the Expert I/O device.

Controller

The controller of interest. Use eioMC_ALL to simultaneously set the brake of all motors to the same state.

BrakeState

The desired state of the motor controller brake. Valid values are eioON and eioOFF.

Return:

eioSUCCESS: No problems.

eioERROR: An error occurred.

Rev. 2 - 20 - 1/6/10

Expert I/O
Software User Manual

eioMcGetBrakeState

Syntax:

int eioMcGetBrakeState(eioTHandle Handle, int Controller,
 int *BrakeState)

Description:

Get a motor controller's brake state.

Parameters:

Handle

The handle of the Expert I/O device.

Controller

The controller of interest.

BrakeState

Upon return, this will be the current state of the motor controller brake. Valid values are eioON and
eioOFF.

Return:

eioSUCCESS: No problems.

eioERROR: An error occurred.

eioMcGetCurrent

Syntax:

int eioMcGetCurrent(eioTHandle Handle, int Controller,
 double *Current)

Description:

Use this function to read the amount of current being used by a motor.

Parameters:

Handle

The handle of the Expert I/O device.

Controller

The controller of interest.

Rev. 2 - 21 - 1/6/10

Expert I/O
Software User Manual

Current

The amount of current flowing through the motor. This is a count from 0 to 255, with 0 signifying no
current and 255 signifying the maximum current.

Return:

eioSUCCESS: No problems.

eioERROR: An error occurred.

eioMcSetCurrentThreshold

Syntax:

int eioMcSetCurrentThreshold(eioTHandle Handle, int Controller,
 double Threshold)

Description:

To help prevent injury and/or damage, the motor controller features a current threshold. If a motor's current
exceeds the set threshold, the motor's brake is immediately activated. Use this function to set the threshold.

Parameters:

Handle

The handle of the Expert I/O device.

Controller

The controller of interest. Use eioMC_ALL to simultaneously set the threshold for all motors to the same
value.

Threshold

The threshold will be set to this value. The threshold is a count, equivalent to that obtained using the
eioMcGetCurrent function. Value 0 is no current and 255 is maximum current.

Return:

eioSUCCESS: No problems.

eioERROR: An error occurred.

eioMcGetCurrentThreshold

Syntax:

int eioMcGetCurrentThreshold(eioTHandle Handle, int Controller,
 double *Threshold)

Rev. 2 - 22 - 1/6/10

Expert I/O
Software User Manual

Description:

Get a motor controller's current threshold value.

Parameters:

Handle

The handle of the Expert I/O device.

Controller

The controller of interest.

Threshold

Upon return, this will be the value of the current threshold. See the eioMcSetCurrentThreshold
function for an explanation of how to interpret this value.

Return:

eioSUCCESS: No problems.

eioERROR: An error occurred.

Status
The status interface, declared in eio_poll.h, provides status information for the Expert I/O. Status messages are
saved in a priority queue within the Expert I/O and delivered to the PC when requested. Status messages are
prioritized based on importance. For instance, multiple digital input changes are not going to block motor current
threshold violation messages.

eioPollGetStatus

Syntax:

int eioPollGetStatus(eioTHandle Handle, unsigned int *Status,
 unsigned int *NumStatusWaiting)

Description:

Read a status messages from the specified Expert I/O.

Parameters:

Handle

The handle of the Expert I/O device.

Status

Upon return, this will contain a status ID. Valid status IDs are shown below..

Rev. 2 - 23 - 1/6/10

Expert I/O
Software User Manual

Status ID Description
eioPS_OK Status OK.
eioPS_MC1_THERMAL_FLAG Motor controller 0 thermal flag set.
eioPS_MC2_THERMAL_FLAG Motor controller 1 thermal flag set.
eioPS_MC1_CURRENT_THRESH Motor controller 0 threshold current exceeded.
eioPS_MC2_CURRENT_THRESH Motor controller 1 threshold current exceeded.
eioPS_DIO_INPUT_CHANGE At least one digital input changed state.
eioPS_DIO_INPUT_COMM A communications error occurred while accessing the

digital inputs.
eioPS_DIO_OUTPUT_COMM A communications error occurred while accessing the

digital outputs.
eioPS_DIO_JUMPERS_COMM A communications error occurred while accessing the

programmable pulls.
eioPS_EEPROM_COMM Error communicating with EEPROM.
eioPS_USB_STALL USB endpoint stall.
eioPS_USB_PID_ERR USB PID error.
eioPS_USB_CRC5_ERR USB CRC5 error.
eioPS_USB_CRC16_ERR USB CRC16 error.
eioPS_USB_DFN8_ERR USB DFN8 error.
eioPS_USB_BTO_ERR USB BTO error.
eioPS_USB_WRT_ERR USB WRT error.
eioS_USB_OWN_ERR USB OWN error.
eioPS_USB_BTS_ERR USB BTS error.
eioPS_USB_CABLE_DET USB cable has been detached.
eioPS_GLOBAL_WDT Watchdog timeout.

NumStatusWaiting

Upon return, this will be the number of status messages that are waiting to be returned by the Expert I/O.

Return:

eioSUCCESS: No problems.

eioERROR: An error occurred.

eioPollGetStatusString

Syntax:

char *eioPollGetStatusString(unsigned int Status)

Rev. 2 - 24 - 1/6/10

Expert I/O
Software User Manual

Description:

Get a string that describes the status returned by the eioPollGetStatus function.

Parameters:

Status

The status returned by eioPollGetStatus.

Return:

Upon return, this will point to a null terminated string that describes the status. The string must not be
changed by the caller and could be modified by the next call to this function.

If a status string does not exist for the given status, NULL will be returned.

Product Information
The product information interface provides a way to query the Expert I/O for product related information. The
interface is declared in eio_prod_info.h.

eioProdInfoGetFirmwareVersion

Syntax:

int eioProdInfoGetFirmwareVersion(eioTHandle Handle,
 eioTFirmwareVersion *FirmwareVersion)

Description:

Get the Expert I/O's firmware version number.

Parameters:

Handle

The handle of the Expert I/O device.

FirmwareVersion

Upon return, this will contain the firmware version number. eioTFirmwareVersion is defined as
follows.

typedef struct
{
 unsigned short Major;
 unsigned short Minor;
 unsigned short SubMinor;
} eioTFirmwareVersion;

The version number is assembled as Major.Minor.SubMinor.

Rev. 2 - 25 - 1/6/10

Expert I/O
Software User Manual

Return:

eioSUCCESS: No problems.

eioERROR: An error occurred.

eioProdInfoGetFirmwareVersionEz

Syntax:

int eioProdInfoGetFirmwareVersionEz(eioTHandle Handle, unsigned short
*Major, unsigned short *Minor, unsigned short *SubMinor)

Description:

Get the Expert I/O's firmware version number. The version number is assembled as
Major.Minor.SubMinor.

Parameters:

Handle

The handle of the Expert I/O device.

Major

Upon return, this will contain the Major portion of the version number.

Minor

Upon return, this will contain the Minor portion of the version number.

SubMinor

Upon return, this will contain the SubMinor portion of the version number.

Return:

eioSUCCESS: No problems.

eioERROR: An error occurred.

Rev. 2 - 26 - 1/6/10

	Software
	Installation
	National Instruments LabView Driver

	Application Programming Interface
	Initialization
	eioOpen
	eioClose
	eioGetDescriptors
	eioClaimInterface
	eioClaimInterfaceEz
	eioReleaseInterface

	Analog Input (ADC)
	eioAdcReadCount

	Analog Output (DAC)
	eioDacInOut
	eioDacIn
	eioDacInToOut
	eioDacGetCount
	eioDacSetClear
	eioDacGetClear
	eioDacSetRange
	eioDacGetRange

	Digital I/O
	eioDioGet
	eioDioSet
	eioDioGetPull
	eioDioSetPull

	EEPROM
	eioEepromRead
	eioEepromWrite

	Motor Control
	eioMcSetVelocity
	eioMcGetVelocity
	eioMcSetBrakeState
	eioMcGetBrakeState
	eioMcGetCurrent
	eioMcSetCurrentThreshold
	eioMcGetCurrentThreshold

	Status
	eioPollGetStatus
	eioPollGetStatusString

	Product Information
	eioProdInfoGetFirmwareVersion
	eioProdInfoGetFirmwareVersionEz

