

1 of 23

FFTC SDK User Manual
Issue 2.3 March 15, 2012

FFTC SDK User Manual

Project PowerFFT SDK Enhancement
Title FFTC SDK User Manual
Reference
Client Reference
Author(s) Nicholas Kopp
Date March 15, 2012

REVISION HISTORY

Date Changes Made Issue Initials

August 06, 2009 First draft 1.0 Nko

December 09, 2010 Reflect changes made for
NLR

2.0 Nko

December 22, 2010 Further update. 2.1 Nko

May 09, 2011 Add links to on-line docs 2.2 Nko

March 15, 2012 Update contact info, minor
changes

2.3 Nko

2 of 23

FFTC SDK User Manual
Issue 2.3 March 15, 2012

Hybrid DSP Systems
Koningin Emmalaan 3
2635HH Den Hoorn ZH
Netherlands

Tel: +31 (0) 15 8700817

Email: info@hybriddsp.nl
Web: www.hybriddsp.nl
Web: http://www.hybriddsp.com/Products/ESAFFTCSDK.aspx

© Copyright 2009-2012 - Hybrid DSP Systems for ESA / Hybrid DSP Systems for NLR

3 of 23

FFTC SDK User Manual
Issue 2.3 March 15, 2012

References
[REF 1] FTAB Architectural design document FFTC-ASD-ADD-001
[REF 2] FFTC API Requirements Document – FFTC-ASD-RS-002
[REF 3] SoW PowerFFT SDK Enhancement TEC-EDP/2008.22/MS Issue 1, Rev. 3

4 of 23

FFTC SDK User Manual
Issue 2.3 March 15, 2012

Revision History .. 1

References ... 3

1 Background ... 5

2 Introduction .. 6

2.1 Overview ... 6

2.2 Benefits ... 6

2.3 Features .. 6

2.4 Installing the SDK .. 7

2.4.1 Third Party Libraries .. 7

2.4.2 Native Libraries ... 7

2.4.3 32-bit and 64-bit .. 7

3 Algorithm Library ... 8

3.1 Background ... 8

3.2 Using Visual Studio 2010 .. 9

3.3 Key Classes of ESA.FFTC .. 12

3.3.1 FFTCModule ... 12

3.3.2 Block and FFTCBlock ... 14

3.3.3 Derived Blocks – FFTCBlockInput, FFTCBlockOutput, FFTCBlockMem
 15

3.3.4 FFTCBlockFFT ... 16

3.3.5 ControlVector and FFTCControlVector ... 16

3.3.6 Control Vector Wizard ... 18

4 FFTC Simulator and Performance Profiler Library .. 19

4.1 FFTCModuleSimulator .. 19

4.1.1 Simulation ... 19

4.1.2 Performance Profiler ... 22

5 FFTC Controls and Utilities ... 23

5.1 Graphical Controls ... 23

5.2 Non-graphical Components ... 23

5.2.1 Data formats ... 23

5.2.2 Data generators .. 23

5.2.3 General numeric operations .. 23

5 of 23

FFTC SDK User Manual
Issue 2.3 March 15, 2012

1 Background
The FFTC is a space qualified processor for high performance, low power Fourier
transform processing. The FFTC SDK is a software development kit (SDK) for the
FFTC and the standard control FPGA firmware and it is described in this guide. It is
intended for developers who are working with products based on this processor such
as the FTAB from Astrium or the OPDP from NLR. An understanding of the basic
FFTC architecture is a requirement.

The following resources may be useful when working with the SDK.

Resource Description Location
FFTC / FTAB SDK API
Documentation (also
included in installer)

Detailed API
reference.

http://www.hybriddsp.nl/esa/doc150312/ftabsde.chm

Email address for
questions / support

 support@hybriddsp.nl

6 of 23

FFTC SDK User Manual
Issue 2.3 March 15, 2012

2 Introduction

2.1 Overview
The SDK is a set of programmers’ libraries and applications for assisting in the
development of algorithms for products based on the ESA FFTC space qualified
processor. Currently the FTAB board developed by Astrium and the OPDP board
from NLR are supported but the base classes can be extended for other products
built around the FFTC.

The libraries make algorithm development and testing faster and easier. The
learning curve for new users is reduced. In addition to the libraries there are
graphical based applications (GUIs), also built on top of the libraries. The GUIs
permit easy demonstration of the FFTC and simple testing of algorithms in a visual
manner.

2.2 Benefits
Some of the benefits of the SDK are described below:

• Easy to use – The FFTC libraries are written for the Microsoft .NET
framework. This is an easy to use run-time that is standard with Windows
Vista and 7 and a free download for Windows XP. .NET allows developers to
use a wide range of languages including C++, Visual Basic and C#.

• Flexible – By use of Mono the same binaries can be used also under Linux.
• Powerful – By using the libraries from an established framework and

language, highly complex applications can be developed that integrate
compile and run-time sections into one application.

• Low cost – Compilers and software development environments are available
free of charge (e.g. Visual Studio Express and Sharp Develop).

• Encourages development – The SDK includes a simulator and performance
profiler that allows algorithms to be run and benchmarked without FFTC based
hardware.

2.3 Features
A software development kit or SDK is an often used phrase; however its meaning is
broad, ranging from simply installing a set of documents to providing a complete
graphical based user environment. The ESA FFTC SDK comprises the following:

• Algorithm Library – A programmers library (DLL) consisting of a set of
classes for describing an algorithm and ultimately producing it in a form that
can be used with the hardware.

• FFTC Simulator Library – A programmers library (DLL) consisting of a

simulator and performance profiler for the FFTC chip and control firmware.

7 of 23

FFTC SDK User Manual
Issue 2.3 March 15, 2012

Generally the developer will not need to access this library directly, rather
access is via the target board simulator.

• FFTC Utils Library – A DLL featuring a number of utilities that may be useful

to developers. These include the specific data formats used by the board and
various data generators for testing purposes.

2.4 Installing the SDK
The SDK comes with a Microsoft installer. Double click the installer and follow the
steps. The software is installed under Program Files/ESA/FFTC.

2.4.1 Third Party Libraries
FFTW library (libfftw3f-3.dll) must be either in the executing directory, in the
system32 directory or on search path. It is included by default with the installer.

If working with an actual board then the appropriate drivers, software and hardware
must be installed on the host computer.

If you wish to compile the unit test projects then NUnit must be installed. This is a
free unit testing framework. Ensure that these projects reference nunit.framework.dll.

2.4.2 Native Libraries
It is necessary to copy the native library esafftcsimwin32.dll to either the directory you
are running the executable from, the Windows System32 directory or somewhere
else on the search path.

2.4.3 32-bit and 64-bit
By default the target is 32-bit since this is compatible with both 32-bit and 64-bit OS.
However you wish to target 64-bit because your application requires this then
remember you will need 64-bit versions of esafftcsimwin32.dll and libfftw3f-3.dll.
Failure to use these will result in a bad image format exception. Another advantage
64-bit is the performance of the simulator which can improve by up to 20%.

8 of 23

FFTC SDK User Manual
Issue 2.3 March 15, 2012

3 Algorithm Library
The heart of the SDK is the algorithm library. The base classes are contained within
ESA.Dataflow.dll and ESA.FFTC.dll. The latter contains the classes required to
create valid instructions for the FFTC chip and standard control firmware.

3.1 Background
A board based on the FFTC such as the FTAB receives control vectors to instruct it
as to what to do. The NLR OPDP receives macro images comprising of loops and
one or more control vectors. Both control vectors and macro images derive from
program images. Seen from the hardware control vectors and maco images are
simply binary instructions comprising of one or more commands. A command
describes a single data flow operation such as transferring data from the input (P0) to
the first memory bank (P1).

This library is designed to be non-specific to the boards and instead specific to the
FFTC processor and the standard control firmware. This firmware makes full use of
the FFTC and provides additional features such as memory loop controllers.

The algorithm library is comprised of multiple classes that when used together can
produce control vectors. The main class – FFTCModule - describes the standard
FFTC architecture – essentially 7 controllers. These 7 are:

1. Input – P0
2. Memory bank 1 – P1
3. Memory bank 2 – P2
4. Memory bank 3 – P3
5. Memory bank 4 – P4
6. Output – P5
7. FFT Core – P6

The input controller is a data source. The output is a data sink. The memories can
be either, dependent on whether they are being written to or read from. The FFT
core is a process.

By use of additional classes such as Block , Command and ControlVector we can
easily build control vectors by use of any .NET language. We write a program or
script that upon execution creates a control vector in binary, xml or object form.

Blocks can essentially be thought of as vector variables. However unlike in a regular
computer program we must say where the data it represents will be located. This
can be on any sink or source controller (therefore not the FFT core which is a
process). Blocks are therefore a convenient way of describing data.

Commands as stated earlier represent an operation such as transferring data from
P0 to P1. Command objects are then added to ControlVector objects. Once

9 of 23

FFTC SDK User Manual
Issue 2.3 March 15, 2012

complete the control vector can be serialized to file as binary or xml or used later in
the application as an object.

In C# a very simple example is shown below:

// Create an instance of FFTCModule
FFTCModule fftc = new FFTCModule();

// Create Blocks on the desired controllers
FFTCBlock bP0 = fftc.P0.CreateBlock(32, 64);
FFTCBlock bP1 = fftc.P1.CreateBlock(32, 64, 256, 12 8);

// Perform an operation on the Blocks resulting in a Command
Command c = bP1.Write(bP0);

// Add Command to Control Vector
ControlVector cv = new ControlVector();
cv.Add(c);

// Write to binary file
cv.Save("myCV.bin");

In this application we begin by creating an instance of the FFTCModule called fftc.
This object contains a representation of the FFTC control firmware. Accessible as
properties are the seven main controllers P0-P6. We can create a block by
accessing these controllers on the fftc object then using the CreateBlock method.
The type of block returned from this method is dependent on the type of controller,
however all blocks inherit from the base block type ‘Block’ and for an FFTC module
all blocks inherit from FFTCBlock. In this case we have made a block on P0 with
width 32 samples and height 64 samples. On P1 we create a block of the same
dimensions and also specify the location as x = 256 and y = 128.

With a block declared on P0 and a block on P1 a simple operation can be performed
that will result in a Command for transferring data. Calling the Write method on the
destination block with the source block as the argument results in this command.
The Write method of the block is actually a short hand for FFTCModule.Write(Block,
Block). Every Block created has a pointer to its parent Controller and every
Controller has a pointer to its parent FFTCModule. More complex functions such as
an FFT require calling methods of the FFTCModule directly.

A ControlVector is then instantiated and the Add method adds the Command. Finally
we decide to create a binary file from the control vector by calling the Write method.

For detailed documentation see TBD [http://www.hybriddsp.nl/esa/doc280609/]

3.2 Using Visual Studio 2010
The SDK libraries have been compiled for Microsoft .NET 3.5 and 32-bit. To use the
libraries Visual Studio 2010 is the SDE of preference. If these are not available then
the free Express version or Sharp Develop will also suffice. Below is a simple walk

10 of 23

FFTC SDK User Manual
Issue 2.3 March 15, 2012

through for getting started with a C# project (note that any .NET language can be
used).

1. Create a new project by clicking File :: New Project… Select ‘Console
Application’ and name it FFTCTest.

2. You’ll see something like this:

3. Next add references to the necessary DLLs. Go to the solution explorer and
right click References, Add Reference…

11 of 23

FFTC SDK User Manual
Issue 2.3 March 15, 2012

Select the Browse tab and select the ESA.FFTC.Utils, ESA.FFTC and ESA.Dataflow
DLLs (the latter is not shown in the screen shot above but you must add it). The
DLLs are originally to be found in the SDK directory under Program Files if you ran
the installer.

4. Back in the code add the following line under the other using statements. This
imports the namespace from the DLLs just referenced.

using ESA.FFTC;
using ESA.Dataflow;

5. Enter the code shown earlier to result in.

 static void Main(string [] args)
 {
 // Create an instance of FFTCModule
 FFTCModule fftc = new FFTCModule ();

 // Create Blocks on the desired controllers
 FFTCBlock bP0 = fftc.P0.CreateBlock(32, 64);
 FFTCBlock bP1 = fftc.P1.CreateBlock(32, 64, 256, 128);

12 of 23

FFTC SDK User Manual
Issue 2.3 March 15, 2012

 // Perform an operation on the Blocks resulting in a Command
 Command c = bP1.Write(bP0);

 // Add Command to Control Vector
 ControlVector cv = new FFTCControlVector ();
 cv.Add(c);

 // Write to binary file
 cv.Save(“myCV.bin”);

 // Write to xml file
 cv.Serialize(“myCV.xml”);
 }

6. Run the application by clicking Debug :: Start Debugging (or F5 if default C#

settings are used). In the bin\Debug directory of the project there will be two
new files called ‘myCV.bin’ and ‘myCV.xml’.

3.3 Key Classes of ESA.FFTC

3.3.1 FFTCModule
The FFTCModule is the key class of the algorithm libraries. It exposes a model of
the seven controllers, references to the supported data formats and various methods
for performing operations on blocks of defined data. See on-line documentation for
further information.

3.3.1.1 Primary Public Properties

Name Description
FFTCore The FFT core FFTController .
Name Gets or sets the module name.
P0 P0 InputController.
P1 P1 MemoryController.
P2 P2 MemoryController.
P3 P3 MemoryController.
P4 P4 MemoryController.
P5 P5 OutputController.
State Gets the state of the module.

Of particular note here are the controllers P0 to P5. To declare a block of data call
the CreateBlock method of the desired controller.

3.3.1.2 Primary Static Fields – Supported Data Form ats
A data format can be specified by use of a static field on FFTCModule.

Name Description
d16BIT_PAR 16-bit parallel.

13 of 23

FFTC SDK User Manual
Issue 2.3 March 15, 2012

d16BIT_PAR_SI 16-bit parallel sign inverted.
d16BIT_SEQ 16-bit sequential.
d16BIT_SEQ_SI 16-bit sequential sign inverted.
d32BIT_PAR 32-bit parallel.
d32BIT_PAR_SI 32-bit parallel sign inverted.
d32BIT_SEQ 32-bit sequential.
d32BIT_SEQ_SI 32-bit sequential sign inverted.
defaultFormat Default data format of the module.
dHYBRID_LONG Hybrid long.
dIEEE_PAR IEEE-754 parallel.
dIEEE_SEQ IEEE-754 sequential.

All data formats are static for the FFTCModule. Access them as
FFTCModule.dIEEE_PAR for example. When creating a block this can be specified
as part of one of the overloaded methods. If not specified then the default format for
that controller is used.

3.3.1.3 Primary Public Methods
Name Description

Add Uses the ALU to add two Blocks together.
Conjugate Performs a transparent conjugate multiply on Block b.
Double Performs a double operation on BlockFFT b.
FFT Overloaded. Performs an FFT.
IFFT Performs an inverse FFT.
Multiply Overloaded. Uses the ALU to multiply two Blocks together.
Negate Performs a negate operation on BlockFFT b.
Reset Creates a Command containing a reset operation.
ResetControllers Resets all the Controllers
Square Overloaded. Performs a square operation on Block b.
Subtract Uses the ALU to subtract one Block from another, thus a – b.
Write Overloaded. Creates a Command for transferring data from the Controller

represented by Block src to that represented by Block dst.

An example of a more complex operation that uses both the FFT and ALU units of
the core in one pass is shown below:

 // Create an instance of FFTCModule
 FFTCModule fftc = new FFTCModule ();

 // Create Blocks on the desired controllers
 FFTCBlock bP1 = fftc.P1.CreateBlock(32, 64);
 FFTCBlock bP2 = fftc.P2.CreateBlock(32, 64);
 FFTCBlock bP3 = fftc.P3.CreateBlock(32, 64);

 // Perform an operation on the Blocks resulting in a Command
 Command c1 = bP3.Write(fftc.FFT(bP1 * bP2));
 Command c2 = bP3.Write(bP1 * fftc.IFFT(bP2));

14 of 23

FFTC SDK User Manual
Issue 2.3 March 15, 2012

3.3.2 Block and FFTCBlock
The Block class defines 2-dimensional data as being on a particular sink or source
controller (P0 to P5). A block is created by calling the CreateBlock method of the
desired controller. All blocks are derived from the abstract Block class. A block is
either given an automatic name or a user specified name. It must be unique. On an
FFTC module all blocks are actually FFTCBlocks which is derived from Block.

Operations can be performed on blocks by use of the Read, Write and arithmetical
operators +, - and *. Depending on the location (controller) of the block some
operations will not be valid. For example it is not possible to multiply a block on the
P5 controller as this would entail a read operation, something impossible for an
output (sink). If this is attempted an exception would be thrown upon running the
application.

Therefore to multiply two blocks together using the FFTC’s arithmetic logic unit the
following can be written:

 // Create an instance of FFTCModule
 FFTCModule fftc = new FFTCModule ();

 // Create Blocks on the desired controllers
 FFTCBlock bP1 = fftc.P1.CreateBlock(32, 64);
 FFTCBlock bP2 = fftc.P2.CreateBlock(32, 64);
 FFTCBlock bP3 = fftc.P3.CreateBlock(32, 64);

 // Perform an operation on the Blocks resulting in a Command
 Command c = bP3.Write(bP1 * bP2);

3.3.2.1 Primary Public Properties (FFTCBlock)
Name Description

DataSamples Same as TotalSamples.
Format Gets the DataFormat of the Block.
Height Gets the height in samples.
Location Gets the Controller on which the Block was declared.
Name Gets or sets the name of the Block. Must be unique.
NoSequences Gets the number of sequences.
SequenceSize Gets the sequence size.
TotalDataSamples Gets the number of DataSamples multipled by Height.
TotalLoops Gets the total number of loops.
TotalSamples Gets the total number of samples in the block.
Width Gets the width in samples.

3.3.2.2 Primary Public Methods (FFTCBlock)
Name Description

operator - a – b: Subtract Block b from Block a using the ALU.
operator * a * b, 1 * b: Multiply Block a by b or b by 1 using the ALU. In latter case source A of the

FFTC chip will be transparent.
operator + a + b: Add Block a to Block b using the ALU.
Read Overloaded. Generates a Command that reads data from the Controller defined by this

15 of 23

FFTC SDK User Manual
Issue 2.3 March 15, 2012

Block to the Controller defined by dst Block. If reading from a block defined on P0
then there can be up to two destinations in the one command.

Write Generates a Command that writes data from the Controller defined by Block src to the
Controller defined by this Block.

3.3.3 Derived Blocks – FFTCBlockInput, FFTCBlockOutput,
FFTCBlockMem

The FFTCBlock class is abstract. Blocks created by the CreateBlock method are
specific to that type of controller. Therefore the input controller P0 returns a
FFTCBlockInput type for example. This has some additional and overridden
properties compared to the base FFTCBlock and Block classes.

3.3.3.1 FFTCBlockInput Primary Public Properties
Name Description

DataSamples SequenceSize minus TotalZeros.
LeadingZeros Gets the number of leading zeros.
TotalDataSamples DataSamples multipled by Height.
TotalZeros Gets the total number of zeros.
TrailingZeros Gets the number of trailing zeros.

3.3.3.2 FFTCBlockOutput Primary Public Properties
Name Description
Scale Gets the scale.

3.3.3.3 FFTCBlockMem Primary Public Properties
Name Description

Direction Gets or sets the read/write direction to horizontal or vertical.
h Sets the addressing to horizontal mode for all subsequent commands and returns

itself.
NoSequences Gets the number of sequences.
SequenceSize Gets the sequence size.
TotalHeight Gets the total height of the defined Block taking into consideration loop controllers.
TotalLoops Gets the total number of loops.
TotalSamples Gets the total number of samples based on width, height and the loop controllers.
TotalWidth Gets the total width of the defined Block taking into consideration loop controllers.
TotalZeros Gets the total number of zeros.
TrailingZeros Gets the number of trailing zeros.
v Sets the addressing to vertical mode for all subsequent commands and returns

itself.
VerticalReverse Gets or sets the vertical reverse mode. Cannot use Y direction with horizontal

addressing.
X Gets the start position of the Block.
Y Gets the start line of the Block.

16 of 23

FFTC SDK User Manual
Issue 2.3 March 15, 2012

3.3.3.4 FFTCBlockMem Primary Public Methods
Name Description

addLoop Adds a loop to the loops controller.
GetLoopAddressing Gets the MemoryAddressing3Loop associated with this Block.
removeLoop Removes the last loop added to the loop controller.

Since a memory bank can be read from or written to and that it supports vertical,
horizontal and looped addressing schemes it is far more complex than the input and
output blocks. Of particular interest are:

• h, v properties: Putting a .v or .h after a BlockMem object will alter the
addressing direction from that point on to vertical or horizontal respectively. It
is a short hand method for setting the Direction property.

• X, Y properties: The memory banks are arranged in a 2D format. They can be
randomly accessed. It is therefore possible to set the x and y parameters of
the corner of the 2D block nearest the origin.

• Loops: The loop controllers permit up to 3 nested loops to be added for
reading and writing. The properties beginning with ‘Total’ all take into
consideration the loop settings. Loops are added or removed by use of the
addLoop and removeLoop properties. In addition a VerticalReverse flag can
be enabled or disabled that will reverse reading or writing when using loops in
the vertical direction.

3.3.4 FFTCBlockFFT
The result of an operation in the FFT core is an FFTCBlockFFT object. These cannot
be explicitly created by the user. For example the operation BlockA * BlockB will
result in an automatically generated block of type FFTCBlockFFT. This can then be
consumed by a Write method on a conventional destination block (FFTCBlockMem
or FFTCBlockOutput).

3.3.5 ControlVector and FFTCControlVector
Commands are added to ControlVector objects. On the FFTC module the type of
control vector is FFTCControlVector which is derived from ControlVector. The key
methods and properties of a ControlVector are shown below:

3.3.5.1 Primary Public Properties (FFTCControlVecto r)
Name Description

Count Total number of Commands
HasInput Is there at least one command that uses P0?
HasOutput Is there at least one command that uses P5?
HasPaddingWord Returns true if there is a padding word in this ControlVector, else

false. Padding words are required if the number of bits in complete
control vectors is not a multiple of 64.

Length Gets the length of the control vector in words including any padding

17 of 23

FFTC SDK User Manual
Issue 2.3 March 15, 2012

word.
LengthExcludingPaddingWord Gets the length of the control vector in words excluding any padding

word.
Name Gets or sets the name of the ControlVector.
Target Gets the target module which the instance of the FFTCModule that

created the first command added to the control vector. All
subsequent commands added must also be of same instance.

Words Gets control vector as a list of 32-bit words. If length is not multiple of
64-bits then add a padding word.

3.3.5.2 Primary Public Methods
Name Description

Add Adds a Command
Clear Removes all Commands.
Deserialize Overloaded. Deserializes the given XML file into the ControlVector object.
Copy Makes a deep copy.
Equals Determines whether the specified Object is equal to the current Object.
GetInputCount Gets the number of commands featuring P0.
GetOutputCount Gets the number of command featuring P5.
Load Overloaded. Loads the control vector from the binary file specified.
Save Overloaded. Writes the ControlVector to a binary file.
Serialize Overloaded. Serializes the ControlVector to an XML file with name based on

current Name.
SetInputFormats Sets all inputs found in the ControlVector to the given DataFormat.
SetOutputFormats Sets all outputs found in the ControlVector to the given DataFormat.

Of interest are:

• Deserialize, Serialize: These methods read from and write to an xml file. A
snippet of the generated xml is shown below. Per ControlVector its name,
length in words, type, target name, target type and target assembly (dll that
contains the target type) are present as attributes. Per Command the length
in words and command availability are shown. Each Command consists of
one ControllerSettings element per controller and these contain either one or
two SettingsLayout elements (P0 and P5 have two separate sections of the
control vector layout). A SettingsLayout has name, length (in words) and
command availability bit attributes. Each setting has its own element. The
attributes W, SB and NB are the word, start-bit and number of bits
respectively. These are present in the xml to permit the xml representation to
be self-describing and thus allow sanity checks and applications independent
of these libraries to be written.

<?xml version="1.0" encoding="utf-8"?>
<ControlVector Name="CV7" Length="48" Type="ESA.FFT C.FFTCControlVector"
Assembly="ESA.FFTC, Version=2.0.0.1, Culture=neutra l, PublicKeyToken=null"
TargetName="FFTC9" TargetType="ESA.FFTC.FFTCModule" TargetTypeAssembly="ESA.FFTC,
Version=2.0.0.1, Culture=neutral, PublicKeyToken=nu ll">
 <Command Length="12" CommandAvailability="25">
 <ControllerSettings ControllerName="P0" Count=" 2">
 <SettingsLayout Name="ITC" Length="1" CAB="0" >
 <Dest_P0_2 W="0" SB="0" NB="3">0</Dest_P0_2 >
 <Dest_P0_1 W="0" SB="8" NB="3">1</Dest_P0_1 >
 <Format_P0 W="0" SB="16" NB="5">3</Format_P 0>

18 of 23

FFTC SDK User Manual
Issue 2.3 March 15, 2012

 </SettingsLayout>

• GetInputCount, GetOutputCount: These methods get the number of

commands in the control vector that feature inputs or outputs.
• Load, Save: Loads and saves a binary control vector (effectively assembly

and disassembly).
• Equals and not equals operators: Permits simple comparison of control

vectors. ControlVectors do not have to be pointing to same object or have
same name, but all settings must otherwise be identical.

• SetInputFormats, SetOutputFormats: Sets the data format of all inputs or
outputs to a given format.

3.3.6 Control Vector Wizard
The class FFTCControlVectorWizard has a number of static methods for quickly
creating control vectors for:

• Echo
• Write
• Read
• FFT 1D Long
• FFT 1D Short
• FFT 2D

All these methods return ControlVectorList objects. This is a simple wrapper for
holding multiple control vectors. Only the long 1D FFT method actually returns more
than one control vector (one for loading twiddle vectors, one for processing).

19 of 23

FFTC SDK User Manual
Issue 2.3 March 15, 2012

4 FFTC Simulator and Performance Profiler Library
The FFTC simulator and performance profiler are available in the
ESA.FFTC.Simulator dll. The simulator can either be used directly or more
commonly and as recommended via the wrapper of the target board (e.g. OPDP or
FTAB). The performance profiler is accessed via this library directly. The output of
the profiler is an xml file that can be used as input for the performance profiler
viewing control or a third party custom tool.

The FFTC module simulator is derived from DataflowModuleSimulator abstract class.

The following is provided as reference only for the simulator.

4.1 FFTCModuleSimulator

4.1.1 Simulation
The basic pattern for using the simulator directly is to instantiate
FFTCModuleSimulator, then set it with a control vector, then read or write data as the
algorithm requires. It can be instantiated and used according to the following pattern.

 FFTCModuleSimulator fftcsim = new FFTCModuleSimulator ();

fftcsim.Set(myControlVector);
fftcsim.Write(dataBuffer);
byte[] resultBuffer = new byte[1024];
int bytesRead = fftcsim.Read(resultBuffer, 0, 1024) ;

4.1.1.1 Primary Public Properties relating to Simul ator Functionality
Name Description

ControlVectorQueueLength Gets the length of the control vector queue in words.
ControlVectorQueueMaxLength Gets the maximum size of the queue in words.
Status Gets the status of the simulator.
FFTCPerformanceProfileSettings Gets or sets the performance profiler settings
Input Gets the P0 input FIFO. This is encapsulated by the Write method.
Output Gets the P5 output FIFO. This is encapsulated by the Read

method.
P0 to P6 The controller simulators. It is typically not required for a user to

access these explicitly.

4.1.1.2 Primary Public Methods relating to Simulato r Functionality
Name Description

GetControllerIDs Gets an array of the controller ids.
GetControllerNames Gets an array of the controller names.
GetControllerState Overloaded. Gets the state of the controller unit specified.
Read Reads from the simulator into the specified buffer.
ReadBytes Reads the number of bytes specified by length from the simulator.
ReadInt64 Reads an eight-byte unsigned integer from the simulator.

20 of 23

FFTC SDK User Manual
Issue 2.3 March 15, 2012

Reset Resets the simulator.
Set Sends a new control vector to the simulator.
Write Overloaded. Writes to the simulator.
Flush Flushes the input FIFO. It is important to call this method after a sequence

of write operations.
CanSet Tests whether the simulator is currently in a state to accept the given control

vector.
RunPeformanceProfiler Runs a performance profile for the given ControlVector.

Below is a code sample. Note that a reference to nunit.framework is required if use
of the Assert command is desired. Furthermore the use of reading and writing a long
integer is purely for test purposes. Combined with data formats of IEEE parallel and
no use of leading and trailing zeros or scaling factor the data will be transparently
processed by the simulator and we should receive the same data out as we put in. A
more efficient implementation would create the complete input buffer before writing
this to the simulator in one operation. Also note that is it possible to wrap the Input
and Output FIFOs (these are properties of the simulator) with standard .NET
BinaryWriter or BinaryReader instances. The simulator library contains extension
methods to these that permit the writing or reading of the supported complex data
formats (CplxInt32, CplxInt16 and CplxFloat).

 [Test]
 public void FFTCSimIOSingleFFTCControlVectorSingleSample()
 {
 FFTCModule fftc = new FFTCModule();
 int w = 1024;
 int h = 1024;
 int loops = 3;

 // Create Blocks on the desired controllers
 FFTCBlock bP0 = fftc.P0.CreateBlock(FFTCModule.dIEEE_PAR, w, h);
 FFTCBlock bP1 = fftc.P1.CreateBlock(w, h);
 FFTCBlock bP2 = fftc.P2.CreateBlock(w, h);
 FFTCBlock bP5 = fftc.P5.CreateBlock(FFTCModule.dIEEE_PAR, w, h, 0);

 FFTCModuleSimulator fftcsim = new FFTCModuleSimulator();

 FFTCControlVector cv2 = new FFTCControlVector();
 cv2.Add(bP1.Write(bP0));
 cv2.Add(bP5.Write(bP1));

 DateTime st = DateTime.Now;
 for (int x = 0; x < loops; x++)
 {
 fftcsim.Set(cv2);
 for (long i = 0; i < w * h; i++)

 {
 fftcsim.Write(i);
 }
 fftcsim.Flush();
 for (long i = 0; i < w * h; i++)
 {
 long f = fftcsim.ReadInt64();
 Assert.AreEqual(i, f);
 }
 }
 TimeSpan ts = DateTime.Now - st;
 fftcsim.Reset();
 Console.WriteLine(string.Format("Done in {0}s", ts.TotalSeconds));
 Console.WriteLine(string.Format("Samples/sec {0}", (long)(w * h) * loops /
ts.TotalSeconds));
 }

21 of 23

FFTC SDK User Manual
Issue 2.3 March 15, 2012

 [Test]

 public void FFTCSimP0LeadingAndTrailingZeros()
 {
 // Some variables to make setting the data blocks easier
 // w = width, h = height, lz = leading zeros, tz = trailing zeros
 int w = 1024;
 int h = 768;
 int lz = 128;
 int tz = 64;

 // Instaniate the FFTCModule of the algorithm library
 FFTCModule fftc = new FFTCModule();

 // Create Blocks on the desired controllers
 FFTCBlockInput bP0 = fftc.P0.CreateBlock(FFTCModule.dIEEE_PAR, w, h, lz, tz);
 FFTCBlockMem bP1 = fftc.P1.CreateBlock(w, h);
 FFTCBlockOutput bP5 = fftc.P5.CreateBlock(FFTCModule.dIEEE_PAR, w, h, 0);

 // Make the control vector
 FFTCControlVector cv = new FFTCControlVector();
 cv.Add(bP1.Write(bP0));
 cv.Add(bP5.Write(bP1));

 // Instaniate the simulator
 FFTCModuleSimulator fftcsim = new FFTCModuleSimulator();

 // Set a counter for data generation and verification
 int ctr = 0;

 // Create binary readers and writers
 BinaryWriter bw = new BinaryWriter(fftcsim.Input);
 BinaryReader br = new BinaryReader(fftcsim.Output);

 // Set control vector on the control vector queue of the simulator
 fftcsim.Set(cv);

 // Note the start time for performance monitoring purposes.
 DateTime st = DateTime.Now;

 for (int j = 0; j < h; j++)
 {
 for (int i = 0; i < bP0.DataSamples; i++)
 {
 bw.Write(new CplxFloat(ctr++));
 }
 }
 bw.Flush();

 // Read per sequence lz zeros, then DataSamples of the
 // ramp,then tz zeros. Repeat h times.
 // Perform asserts on data received (csUnit)

 ctr = 0;
 for (int c = 0; c < h; c++)
 {
 for (int j = 0; j < lz; j++)
 {
 CplxFloat f = br.ReadCplxFloat();
 Assert.AreEqual(CplxFloat.Zero, f);
 }

 for (int i = 0; i < bP0.DataSamples; i++)
 {
 CplxFloat f = br.ReadCplxFloat();
 Assert.AreEqual(new CplxFloat(ctr++), f);
 }

 for (int j = 0; j < tz; j++)
 {

 CplxFloat f = br.ReadCplxFloat();

22 of 23

FFTC SDK User Manual
Issue 2.3 March 15, 2012

 Assert.AreEqual(CplxFloat.Zero, f);
 }

 }

 TimeSpan ts = DateTime.Now - st;
 fftcsim.Reset();
 Console.WriteLine(string.Format("Done in {0}s", ts.TotalSeconds));
 Console.WriteLine(string.Format("Samples/sec {0}",
 w * h / ts.TotalSeconds));
 }

4.1.2 Performance Profiler
The simulator class FFTCModuleSimulator also contains the functionality to perform
performance profiling; that is produce an estimate of the timings on each of the FFTC
controllers for a given control vector. The FFTCModuleSimulator must not also be
running a simulation at the same time as the profiling or an exception will be thrown.
The steps taken to use the profiler are:

1. Create an instance of FFTCModuleSimulator
2. Set any relevant properties of the FFTCPeformanceProfileSettings property:

a. Clock speeds for the various controllers (in Hz)
b. Maximum expected speed for input and output (P0 and P5) as these

are typically constrained by the speed of the external bus (e.g.
SpaceWire). Specified in bytes per second.

c. Set the independent IO flag – some external buses are cannot run true
duplex therefore P0 and P5 cannot run at the same time. Set to false is
this is the case.

3. Call the RunPerformanceProfile method passing in a control vector. This
returns a ControlVectorTiming object containing the results. Results can be
accessed either programmatically, via xml or via the PerformanceProfile
graphical control (in the ESA.FFTC.Controls library).

23 of 23

FFTC SDK User Manual
Issue 2.3 March 15, 2012

5 FFTC Controls and Utilities

Many of the low level classes used by the SDK may also be useful to developers
writing their own FFTC based applications. These utilities are split between graphical
and non-graphical.

5.1 Graphical Controls
The graphical controls used to build the SDE are also available for users to create
their own graphical applications. They are contained within the ESA.Dataflow.GUI
library.

5.2 Non-graphical Components
These are contained in the ESA.FFTC.Utils library. They include:

• Data formats
• Data sources and sinks
• Data generators
• General numeric operations

5.2.1 Data formats
The FFTC natively only supports complex numbers. These are not supported as
standard by programming languages so the ESA.FFTC.Utils library provides:

• Complex floating point
• Complex 16-bit integer
• Complex 32-bit integer
• Complex 8-bit integer

They permit standard arithmetic and logic operations.

5.2.2 Data generators
Data generators are included for creating twiddle vectors, sine, spikes and LFSR.

5.2.3 General numeric operations
The Numeric class contains a number of useful data conversion routines.

