Accountable System Administration Through
Integrity Reporting

No author given

No institute given

Abstract. System administrators are, by necessity, some of the most
trusted people in an organisation. Unfortunately, the administrator of
a remote service platform is usually unknown and therefore difficult to
gain trust in. We propose that this problem can be solved if platforms
attest to the administrative actions carried out rather than just the soft-
ware they are running. We describe an example of how this could be re-
alised through the implementation of an integrity-measuring menu-based
Unix shell. To manage the log of attested actions, we also introduce a
generalised framework based on process algebra for verifying integrity
measurement logs.

Keywords: Attestation, System administration, Integrity reporting, Pro-
cess algebra

1 Introduction

The increasing popularity of service-oriented architectures and cloud computing
means that more data are being stored and processed on remotely administered
platforms. Service providers are therefore becoming more trusted. This may be
reasonable: a remote service provider is likely to be contractually obliged to
keep data in a secure manner and severe penalties may apply should anything
go wrong. However, this level of assurance is not always enough. If the data is
worth more than the contract, or is particularly commercially sensitive, then the
threat of an insider attack remains. Furthermore, while the company may be
trusted, the individual system administrators may be motivated to compromise
the service platform and steal valuable intellectual property or alter the results
of computation. One example of this is when processing confidential or contro-
versial scientific data — such as research on pharmaceuticals or climate change
— significant financial rewards may exist to copy or alter the results. As a re-
sult, methods of assurance that do not assume that the system administrator is
trustworthy are required.

Attestation, as defined by the Trusted Computing Group, can potentially
provide relying parties with a high level of assurance in the integrity of remote
software platforms. However, it is generally accepted that attestation does not
report enough information to trust the behaviour of those platforms [I]. This
is partly because most software can be used for both good and bad purposes,

and merely knowing the identity and integrity of that software is insufficient to
trust it. There is a significant part of the system’s execution context missing: the
administrators and users of the platform who may alter the behaviour of its soft-
ware in undesirable ways. As a result, we propose to extend integrity reporting
to attest to administrative actions, demonstrating that the administrators are
behaving in a trustworthy manner with securely identified and trusted software.

In doing so we address three key problems. Firstly, the practical problems of
remote attestation [2I3] and the overhead of managing many configurations of
software [4]. Secondly, the fact that system administrators must have privileged
accounts on the system in order to do their job, and that an assurance system
must allow for emergency actions to be taken. Thirdly, the task of verifying
potentially complex attestations of platform state.

The paper is structured as follows. In section [2] we introduce trusted com-
puting concepts as well as the basis of our solution: a menu-based Unix shell.
A more detailed scenario and threat model are covered in section [Bl Section [4]
describes our proposed method for attesting administrative actions and section[j]
introduces a new integrity verification approach using the CSP process algebra.
In section[6] the solutions are analysed to see how well they address the identified
security issues and threats. Section [7] covers related work and several discussion
points and in section |8 we conclude.

2 Background

2.1 Trusted computing

Trusted computing is a paradigm developed and standardised by the Trusted
Computing Group [5]. It aims to enforce trustworthy behaviour of computing
platforms by identifying a complete ‘chain of trust’, a list of all hardware and
software that has been used. If a platform owner can reliably find out exactly
what software and hardware is in use, they should be able to recognise and
eliminate any malware, viruses and trojans. A great deal of infrastructure is
required to make this idea practical, including new hardware, modifications to
applications and databases of known, trustworthy platform configurations.

The technologies proposed by the TCG are centred on the Trusted Platform
Module (TPM). In a basic server implementation, the TPM is a chip connected
to the CPU. It provides isolated storage of RSA keys and Platform Configuration
Registers (PCRs). PCRs can be used to hold integrity measurements, in the form
of 20 byte SHA-1 hashes. They can only be written to in one way: through the
extend(..) command. This appends the current register value to the supplied
input, hashes it, and stores the result in the PCR. A PCR value therefore reflects
a list of hashes. In order to work out what individual inputs have been added
to a PCR, a separate log must be kept. When this log is replayed, by rehashing
every entry in order, that final result should match the PCR value.

The limited functionality offered by the TPM is ideal for recording the boot
process of a platform. The idea being that, starting from the BIOS, every piece

of code to be executed is first hashed and extended (‘measured’) into a PCR by
the preceding piece of code. This principle is known as measure before load and
must be followed by all applications. If so, no program can be executed before
being measured, and because the PCRs cannot be erased, this means that no
program can conceal its execution from the TPM. The first module cannot be
measured, and is referred to as the root of trust for measurement. A platform is
said to support authenticated boot when it follows this process as it provides a
way for the platform’s boot process to be authenticated against reference values
at a later time.

Authenticated boot can be extended to the application level through an
integrity-measuring operating system. IMA Linux [6] is a Linux Security Module
which can measure all executed applications and shared libraries (as well as other
files) into PCRs.

2.2 Remote attestation

In order for users to assess a remote machine, the TPM supports remote attes-
tation, a process that allows a platform to report the integrity measurements
collected during authenticated boot. When challenged, the TPM can create a
signed copy of its PCR values. This is given to the challenger for inspection,
along with the measurement log. The PCRs are signed using a private key held
by the TPM, guaranteeing the key’s confidentiality. This is called an Attesta-
tion Identity Key (AIK) and the public half must be certified by a certificate
authority (a ‘Privacy CA’). Full details are on the TCG website [5].

In addition to PCRs, TPMs also contain at least four monotonic counters.
These counters can only be incremented and may be used to count the number
of times a platform has booted. Counter value can be attested through creating
a log of a TPM transport session where a TPM_ReadCounter operation is called,
and signing it using an AIK [7].

2.3 Protecting data and keys

The TPM can encrypt arbitrary data so that it can only be decrypted when
its PCRs have certain pre-defined, trustworthy values. This can be used, for
example, to prevent an unauthorised operating system from accessing a private
SSL key. One way this can be implemented is by creating a TPM key which is
bound to the PCR values through the CreateWrapKey command. The private
half of the key is then always held securely in the TPM. When it needs to be
used, a request (‘unseal’ or ‘unbind’) is made to apply the private key to the
encrypted data. The TPM will only complete the request when the PCRs are in
the state defined upon key creation.

2.4 PDMenu: a menu-based Unix shell

Menu-based shells are alternatives to UNIX command-line shells such as BASH.
Instead of providing a command interpreter with free-form input, they limit the

user to running commands given in the menu. A menu-based shell can be set as
the user’s default shell in /etc/passwd so that it will run whenever the user logs
in or opens a terminal. The security of a menu-based shell is largely determined
by the menu options it allows, as well as the quality of the implementation.
Should any of the menu items allow launching another application then the
security benefit of a menu-based shell is lost. The general principle of the menu-
based shell is very similar to a secure boot [§] concept in trusted computing: the
user is limited in what they are allowed to run, but that may not necessarily be
trustworthy.

The PDMenu [9] shell is an example of a simple menu-based shell. It presents
users with a menu containing options specified in the . pdmenurc file. The PDMenu
configuration file is powerful, but we will only be concerned with the exec option
which creates a menu item for running an application. An example of a menu
configuration is shown in figure [2l Each ezec line takes the form:

exec:description:flags:command

The description section is the menu option that will be displayed to the user
when PDMenu starts. The flags are details of how to run the command. The
command itself is the string passed to the system(...) function and executed.

Pdmenu

Main Menu.
Vi
Start rmiregistry
Kill rmiregistry
[emergency] Open a BASH shell
Process Viewer

Who's online?

Show IMA measurements
Display event Log
Show PCR values

Exit

elcome to Pdmenu 1.2.96+ by Joey Hess <joey@kitenet.net

Fig. 1. An example instance of PDMenu.

3 Scenario and Threat Model

We imagine a scenario based on administration of a single remote server. This
may be a web service or a cloud computing instance. The users of the server
have high confidentiality and integrity requirements. They may be running sci-
entific simulations for controversial research, have valuable intellectual property
or be processing financial data. The main assets requiring protection are the

menu:main:Main Menu
exec:Change administrator password:p:passwd
exec:Vi::vi
exec:Start rmiregistry:p:rmiregistry &
exec:Kill rmiregistry:p:killall rmiregistry
exec: [emergency] Open a BASH shell::
./jtt.sh pcr_extend -f emergency.txt -p 12; bash
exec:Process Viewer:truncate:ps aux
exec:Who’s online?:truncate:echo "These users are online:";w
exec:Show IMA measurements:display:cat /sys/kernel/security/ima/ascii*
exec:Display event Log:display:cat ./menulog.txt
exec:Show PCR values:truncate:./jtt.sh pcr_read
exit:Exit

Fig. 2. An example PDMenu terminal configuration file

programs and the data being used and produced. For cost or availability reasons
the server is being administered by a remote provider. There may be many ad-
ministrators and they are relied upon to do a combination of basic maintenance:
running backups or restoring from them, adding or remove users, starting or
stopping jobs, changing passwords, installing patches, and so on. However, their
most important task is rescuing the system when something goes wrong: when a
process is taking too much CPU and needs to be killed, for example. An equally
valid scenario would be management of a particular individual application via
an administrative interface.

The users of the remote server do not want to have to trust every adminis-
trator. They trust the software that is being run — either it was developed by the
users or they have performed a thorough audit — but have no way of assessing the
honesty of the administrator. They also have concerns about malware such as
rootkits and therefore challenge the server to attest regularly. The server must
therefore be using authenticated boot and be running an integrity-measuring
operating system. Furthermore, they require the server to be available as of-
ten possible and every attestation failure will be expensive for their day-to-day
operations.

There are many threats we do not consider in the paper. Hardware attacks
are ignored, as these can be mitigated through insisting the hardware is provided
by a third-party infrastructure (IAAS) provider. Runtime attacks by a remote
party are out of scope for this paper, but remain a problem. For this reason,
the solution we propose has a small code footprint to minimise the chance of
a runtime vulnerability being exploited. We assume that secure, TPM-backed
storage is implemented so that a rogue administrator cannot reboot the server
into an untrustworthy operating system or copy the hard drive contents.

The threat that we seek to minimise is that of a rogue administrator using
privileged access to either steal confidential data or modify the running appli-

cations. However, the administrator is assumed to have (and need) command-
line access to the server, as well as sometimes requiring the ability to run as a
super-user. We assume that they do not have access to any other administra-
tion interfaces. The next section proposes a compromise solution which allows a
certain amount of system administration while restricting access and providing
attestable audits of every action.

4 Using TPDMenu to Attest to Administrative Actions

Providing system administration and attestable assurance of the platform de-
spite a potentially untrustworthy administrator appears to be a fundamentally
impossible task. If the administrator is given root access to a command line, for
example, they would be able to perform any number of attacks. However they
may need this capability to fix important issues.

One obvious solution is to provide accountability for administrative tasks. If
all actions the administrator takes are logged, and that log cannot be tampered
with, then users could at least know when their system has been attacked. This
would discourage potential inside attackers. One way to do this, as suggested by
Sailer et al. [6], is to use an integrity-measuring operating system and shell. Ev-
ery executable and command run in the shell is extended into a PCR, providing
the desired accountability as the system can now attest to what the adminis-
trator has done. However, this has two major drawbacks. Firstly, this may be
too limited a solution as the damage may already have been done. Secondly
and perhaps more importantly, the overhead on the challenger is enormous. Not
only must they interpret the attestation, they must be able to identify malicious
behaviour from lines run in a command shell. These could be obfuscated in any
number of ways making this impractical. Almost every tool that the administra-
tor might use can probably be used for untrustworthy reasons. Simple integrity
measurement of commands is not a viable solution.

Instead, the range of commands that the administrator is able to perform
must be limited to a reasonable number. To do this we propose the use of a
customised menu-based shell. As described in section the shell presents the
administrator with a selection of menu items for actions he or she is allowed
to perform. In the example in figure [I} the administrator is limited to only a
few options, including changing their password, opening an editor, starting or
stopping the rmiregistry (a Java service required for remote method invocation),
opening a BASH shell and a few other functions. When an option is selected the
relevant executable is run and, on completion, the user is returned to the menu-
based shell. The menu is configured using a simple configuration file, the one
used in this case is shown in figure 2] This configuration file is effectively a white
list of allowed administrator actions.

To prove that the administrator is limited to this shell a number of changes
are required in the operating system of the server. We assume that PCR integrity
measurement is supported through a system such as IMA Linux [6]. The kernel
must be capable of measuring when a user logs in, which the IMA system does

already through measurement of the PAM authentication module and/or SSHD
service. Next, the kernel’s login program must measure the name of the user and
the /etc/passwd file. This shows that the logged-in user is running the menu-
based shell. The shell must then be measured along with the configuration file
itself. Assuming the OS and other software is trusted and that it is not possible
to break out of this shell or modify the boot sequence, then attestation should
provide sufficient evidence that the administrator can only use this shell.

4.1 Implementation

We developed our prototype, TPDMenu, by customising the open source PDMenu
shell [9]. The shell was modified to measure the configuration file it loads into
PCR 10. We then modified menu execution to make PDMenu measure the com-
mand string executed at runtime into PCR 11. We allow the IMA system to
measure the actual executable. This means that a verifying party knows the
exact command executed and the hash of the binary.

In order to protect the data stored on the server we suggest using sealed
TPM keys. A key can be created sealed to the server’s PCR values ezcept for
PCR 11, the one extended with administrator actions. However, the key must be
sealed to all binaries and the menu configuration file. Doing this in a reliable way
relies upon pre-measurement of binaries as suggested by Kyle and Brustoloni [10]
which should be straight-forward to implement and is easily verifiable. The same
key can also be sealed to the server’s configuration before anyone attempts to log
into the shell. These sealed keys allow the limited administrator actions without
loss of availability.

An alternative, equivalent option to pre-measurement of binaries would be a
secure boot menu which is pre-loaded with the expected hashes of the executables
it will launch and checks these before actually running them.

The original shell consists of nearly 2000 lines of C codeﬂ Our modifications
introduced fewer than 200 more. We could reduce the total significantly by re-
moving the code we had considered unsafe and disabled. We believe this makes
it a reasonable size for auditing and therefore sensible to potentially trust. The
menu files are small and could easily be analysed by an external party.

4.2 ‘Break-the-glass’ policies

Menu-based shells can also be used to implement ‘break-the-glass’ policies [11].
These allow emergency actions to be performed so long as they are reported or
result in additional constraints. The menu item given on line six of figure[2]is an
example of this: ‘exec: [emergency] Open a BASH shell’. A bash terminal can
be opened, but results in another PCR, number 12, being extended. The terminal
can also extend all commands into the PCR for auditing. This will be reported in
attestations. Any ‘top secret’ data can be sealed to PCR 12 in order to prevent
an administrator from ‘breaking the glass’ and then making an unauthorised

1 All line counts generated using David A. Wheeler’s ‘SLOCCount’.

copy. This provides the balance between availability and protection of the most
critical data. Other actions might be necessary, such as deleting local caches or
stopping processes which are still using confidential data. The key advantage of
this approach is that remote parties can be sure that these will be carried out
before super-user privileges are granted. Of course, to recover access to this data
the system must be restarted. Future work will investigate solving this problem.

An alternative way to provide this functionality is to allow login to the sys-
tem with another username who is configured in /etc/passwd to use the bash
prompt. Again, this would require a customisation to measure a value into PCR
12, but would otherwise provide the same functionality.

Measured item PCR Data sealed

Boot process and TPDMenu 0-10 Secret and top secret user data
TDPMenu admin events 11 None

‘break the glass’ events 12 Top secret user data

Table 1. Protecting confidential data

4.3 Protecting against system reboots

A malicious system administrator attempting to cover his or her actions might
reboot the platform such that the evidence (as stored in PCRs) is removed.
Although the use of sealed storage will protect data despite this, it may be
important to know that an administrator temporarily put the platform into
an untrustworthy state. One way of achieving this is through use of a TPM
monotonic counter. Early in the boot process the counter is incremented. When
shutting down, the platform creates an attestation of its counter and PCR values
and saves these along with the integrity measurement log to persistent storage.
This record can be exported later to relying parties. Improperly shutting down
the platform will not create this log and will therefore alert another administrator
(or users) that something bad may have occurred.

However, attempting to forge the shutdown record might be possible (e.g., by
creating the log and then aborting the shutdown process). This can be avoided
by extending random values to all PCRs before creating the log and therefore
removing access to all sealed data after a reboot has been requested. We leave
a full solution to this problem as future work.

5 Integrity Verification with CSP

The implementation described is relatively straight-forward to verify. Standard
integrity verification is used to check the first 8 PCR values against trusted ones.

This is followed by verification of the login state (has an administrator logged
in?), other executables, TPDMenu shell binary hash and menu configuration
file hash in PCR 9 and 10. Finally, PCR 12 can be checked for any emergency
administration actions and PCR 11 can be analysed to see what actions have
occurred. Assuming data is sealed in the manner described previously then this
is sufficient.

However, when PCRs are being used for both binary measurements and run-
time events — the system administrator’s actions — verification has the potential
to become complicated. Other systems such as [TO[I2/T3[14] take a similar ap-
proach and rely on increasingly complicated verification processes. For this rea-
son we propose a sophisticated general approach to integrity verification using
process algebra. The goal of this method is to provide a general framework for
integrity verification of any system.

51 CSP

Communicating Sequential Processes (CSP) is a process algebra commonly used
to describe interacting concurrent systems. A full explanation of CSP can be
found in [I5]. Processes are defined by name and make a series of communica-
tions before either stopping (taking the behaviour of process ‘STOP’ which is
defined as a process that never communicates) or behaving like another process.
For example, process P communicates ¢ and then behaves like Q. Process @
communicates b and then never communicates again:

P=a—Q
Q=b— STOP

Arrows (—) show the sequence of events. Processes may be composed in parallel
and must synchronise on any communications they share. These are defined
explicitly in the composition, for example P | a,b] @ shows process P and Q
must synchronise on communications a and b. External choice is shown with a
square (0O).

Messages can be communicated between processes through channels which
have inputs and outputs. In the figures, inputs are shown with a question mark
and outputs are shown with an exclamation mark. For example, the TPM process
in figure [6] shows the TPM waiting to synchronise on channel exztend, where it
receives a message into object z and then outputs the same value on channel
tpmextend. Multiple input and outputs are separated using the same question
mark, dot or exclamation mark. If a specific message is defined for the input,
the process will only synchronise if the right output on that channel is given by
another process. For example, the PCRLOG1 process in figure [4] synchronises
on two values, the first of which must be 1 and the second must be bios.

5.2 Approach

We have used the CSP language to model a platform and describe how it interacts
with trusted computing components. We propose that all measured executables
have a representation as processes in CSP and that a complete system is simply
a composition of these processes. Each process is defined in terms of what it
extends to each PCR and how it passes control to other processes. A system
model can be seen in figure [6] which shows the TPM and a simplified boot
process including the BIOS, boot loader and IMA Linux operating system. An
overview of the entire process is given in figure [3|

Service Platform Integrity Measurement Log

Attestation 0: [0x534..., OXFOl..., ...]

1: [0x137..., OXA2D..., ...]
.
:
!
‘ 12:[0x119..., OxBF4..., ...
1. Identify components: PCR Event Model PCREvenlModel PCR Event Model

EgAd

< >
Policy 2. Combine N
i [CSP Model runner Qg}
4. Make trust decision 3. Run model against
based on platform -« / Platform integrity measurement
state and policy State log: find platform state

Fig. 3. An overview of the CSP IML verification approach

Assuming that all system components are defined using CSP, the FDR2
tool [16] can be used to check a system model against a sequence of TPM extend
actions — the measurement log — through trace refinement. Trace refinement [15]
can confirm that a measurement log could have been produced by the system
model. An example of this process can be seen in figure [4] where the SYSTEMH
process (defined in figure @ is checked against the PCR logs.

We cannot say for certain that this system model is accurate, only that it is a
plausible explanation for the integrity measurement log. As such, we rely on the
software to work in the way that its model describes, and on the authenticate
boot process guaranteeing that no other software has been executed. We also
rely on the composition of these models (and any interference or incompatibility

between them) being accurately described. With these assumptions, we believe
this process to be sound.

Having established that the measurement log could have been produced by a
system conforming to the CSP model, the verifier can then inspect the resulting
system state to identify how it may behave in the future. One approach is to
reason about (in CSP terms) the ‘afters’ of the trace: what the model can still
do. This is useful for establishing what possible events could occur, for example,
after an administrative intervention, will the platform still accept user input?
Furthermore, in the case of ‘break-the-glass’ policies, it is possible to show that
any potentially unsafe action must occur after a specific PCR has been extended.

However, the process models describe only how the system will behave with
respect to PCR usage. It is perhaps more sensible, therefore, to stop after obtain-
ing the system state and examine the remaining processes that are, according
to the model, currently running or able to run. The method for doing this will
depend on the verifier’s security policy and is out of scope of this paper. In situ-
ations where PCRs are used to measure specific events, however, the verifier can
go further and identify the internal state of a particular process and whether it
can be trusted. Again, this will depend on the process and security policy, but
this approach provides a standard way of describing the system state.

5.3 Example

To demonstrate how this approach might be used, a basic model of the TPDMenu
shell is given in figure [5] For clarity, all applications are shown extending their
own name rather than an application hash, e.g., extendreq!tpdmenu . In this
model the SHELL process starts and then launches the TPDMENU process, which
offers two menu options: who and ps, each of which corresponds to other appli-
cation models which have been omitted.

Figure [6] shows process SYSTEMH, which composes together a platform boot
process (BIOS, BOOTLOADER, IMA, TTY) with a TPM and applications (APPS). The
BIOS starts by extending its own measurement to PCR 1, then extending the
bootloader to PCR 2 and then transferring execution to the BOOTLOADER process.
BOOTLOADER extends PCR, 7 with the IMA measurement, in this case representing
the whole of IMA Linux. IMA then loops indefinitely, waiting for communications
either through the launchreq channel, which is for executing new applications
and extending their hash to PCR 10 and the extendreq channel, which is for
extending arbitrary values to PCR 11. Caching is supported such that PCR 10
is only extended once per application. Applications, such as the TPDMENU process
in figure [5| must be prefixed with a communication waiting to synchronise with
the operating system, e.g. launch. tpdmenu so that they cannot start until the
IMA process has had the chance to be extended into a PCR.

Log VerificationExample

channel
extend, tpmextend, finishextend

process
PCRLOG1 = tpmextend.1.bios — ...

process
PCRLOG?2 = tpmexztend.2.bootloader — ...

assert

SYSTEMH T, (PCRLOG1 || PCRLOG2...)

Fig. 4. CSP log verification example

TPDMenu

process

SHELL = launch.shell — launchreq!tpdmenu — STOP

process

TPDMENU = launch.tpdmenu — TPDMCONF

process
TPDMCONF = extendreq!11!who — hasextended.who — launchreq!who
— TPDMCONF O
extendreq!11!ps — hasextended.ps — launchreq!ps
— TPDMCONF O
TPDMENU

Fig. 5. CSP model of the TPDMenu menu-based shell

6 Evaluation

6.1 TPDMenu Security Analysis

This section considers the security of a platform running TPDMenu against a
malicious system administrator. The assets requiring protection are the data on
the platform (confidentiality, integrity) and the software (integrity). The system
administrator may attack in a number of ways: by logging in and reading files
or memory state, simulating an emergency condition, executing a local exploit,
or bypassing the shell and using a different interface.

Firstly, they might log into the platform and try to modify or read a file. This
would only be possible if they can log into the TPDMenu shell and one of the
options allows access to important files or a normal terminal. The presence of this
option would be logged to a PCR and would not be trusted by a remote party.
They would therefore not seal any data to this configuration or run software
on this platform when it was in this state. The same system would prevent the
administrator from booting an alternative OS or installing new software.

SystemBoot

channel
extend, tpmextend, finishextend

channel
channellaunch, launchreq, extendreq, hasextended, invalidate, hasinvalidated

process
TPM = extend?p?x — tpmextend!plzs — finishextend!pls — TPM

process
BIOS = extend!1!bios — finishextend.l.bios —
extend!2!bootloader — finishextend.2.bootloader — BOOTLOADER

process
BOOTLOADER = extend!7!ima — finishextend.7.ima — IMA(())

process
IMA(s) = launchreq?z — CACHE (s, z) O
extendreq?r — extend!11llz — finishextend.1l.z —
hasextended!z — IMA(s)

process
CACHE(s,z) = if elem(z, s)
then launch!z — IMA(s)
else extend!10'z — finishextend.10.z — launchlz — IMA(s ™ seqx)

process
SYSTEM = (TPM | extend, finishextend)|
(BIOS |[launchreq, launch, extendreq, hasextended,
invalidate, hasinvalidated]| (APPS)))

process
SYSTEMH = SYSTEM \
{extend, finishextend, launch, launchreq, extendreq, hasextended,
invalidate, hasinvalidated}

process
TTY = launchreq!shell — TTY

Fig. 6. CSP model of the TPM, platform boot process and IMA Linux

If there was an emergency requiring intervention by the administrator, this
could be an opportunity to gain access to the system. Temporarily this would be
the case: the administrator may need root access and could copy files or modify
executables. However, as soon as this happened, the ‘break-the-glass’ rules would
apply and some data could be made inaccessible. Furthermore, these emergency
actions could still be logged. For the system’s functionality to be fully trusted
again the system must reboot. This will restore a known-good platform state.

However, the system administrator is now given the possibility of performing
denial-of-service attacks on the platform. By claiming that an emergency action
which requires extending PCR, 12 is necessary, they can disable access to sealed
data. This may be unacceptable in some situations but is still an improvement
on systems which either provide full administrative access or require a reboot on
any unusual intervention. A potential solution would be to allow remote users

to send a new version of the key to their sealed data to the new platform state
should they deem the administrative action acceptable.

Local exploits remain possible, but are constrained by what actions can be
carried out by the administrator. As the TPDMenu shell limits their input sig-
nificantly, they must exploit an option that is considered ‘trusted’ by users. For
example, in figure [I| the administrator could run Vi and gain access to a shell or
find another flaw. The administrator might alternatively take advantage of an
exploit remotely, but this issue is almost the same as an external attacker. We
consider this a reasonable limitation.

Perhaps the most obvious attack is to bypass the TPDMenu shell and take
advantage of some other interface. For example, through an FTP server or web
interface. Again, this comes down to the trustworthiness of the rest of the soft-
ware stack: we expect that users will only trust a system which is not running
such programs. Breaking out of the TPDMenu shell might be possible. However,
as mentioned earlier, the shell is extremely simple and it seems plausible to make
this system attack-proof. The most common ways of breaking out of the shell
otherwise would involve one of the allowed menu options or the exploit of an
operating system bug. However, we think that the use of TPDMenu has at least
reduced the attack surface.

In summary, TPDMenu limits the potential for most attacks that an admin-
istrator could perform, although it does rely on the trustworthiness of the rest
of the software stack.

6.2 Practicality of administration with a menu-based shell

Administration of a complex system with a simple menu-driven system may not
be practical. Some systems may not require any routine administrative actions,
but will often need the superuser to have full root access and be able to issue
arbitrary commands. In these systems, TPDMenu can only provide ‘break the
glass’-style policies.

However, we suggest that the same approach could be applied to many other
administrative interfaces, such as network routers or web hosting control panels.
For future work we would like to investigate the most appropriate context for
using this approach and validate whether it is secure as well as usable.

7 Discussion and Related Work

There are several areas for further discussion, particularly in comparison to re-
lated work. The principle behind a menu-based shell is analogous to the execution
of a trusted hypervisor from a list of known-trusted options in Intel TXT [17].
PRIMA [I8] could also be considered similar, as it also constrains the platform
using attestation of a trusted component: the SELinux security framework and
policy. However, TPDMenu is more specific to the threat of an administrator,
and is far less complicated an implementation. However, TPDMenu does not

allow the same flexibility as PRIMA for controlling untrusted applications and
relies on the use of data sealing.

UCLinux [I0] is the most closely related system, but focuses on usage con-
trol rather than system administration. From it we borrow TCB pre-logging.
However, as an improvement, the TPDMenu system provides ‘break-the-glass’
functionality as well as administration without requiring system reboots.

Our approach to verification is novel, although some existing work touches
on similar areas. Rohrmair [I9] uses CSP to model platform start-up processes
and the TPM. However, the focus is on verifying protocols rather than integrity
measurement logs. Namiluko and Martin [20] use CSP to create an abstract
model of a platform. Again, however, the focus is different. They aim to model
platforms in sufficient detail to verify against architectural properties. This pro-
vides more detail but is significantly more complicated in comparison too our
scheme. Naumann et al. [I3] and Alam et al. [21] have developed a similar process
for verifying behavioural updates on a platform. Their framework is intention-
ally abstract, and has been refined primarily for enforcing usage control, rather
than the validation of reported attestations. Our approach based on CSP could
be a useful alternative implementation of this model for more general integrity
verification.

8 Conclusion

We have demonstrated that administrative actions can be captured and attested
through TPDMenu, a menu-based UNIX shell. It takes advantage of platform
configuration registers to make a limited amount of system administration pos-
sible without the end user having to completely trust the administrator. We
have shown that it is simple to implement, requiring only limited modifications
to the existing shell, and that it allows for potentially powerful security policies
including ‘break-the-glass’ behaviour suitable for high-availability environments.
The key realisation is that systems such as TPDMenu are easy to attest because
they contain their own measurement white lists, in this case through the menu
configuration file.

As a second contribution, we describe a general-purpose integrity measure-
ment verification procedure using Communicating Sequential Processes (CSP).
This allows for a model of platform state to be generated from system mod-
els and integrity measurements. CSP component models can provide a general-
purpose, compositional method of describing any system that interacts with a
TPM. There is a great deal of future work in this area, particularly in imple-
menting policies to take advantage of the models that CSP generates. However,
our main proposal for future work is the identification of further practical issues
and improvements in a real deployment scenario. This will allow us to evaluate
the cost and benefit with this approach in context.

References

1.

2.

10.

11.

12.

13.

14.

15.
16.

17.
18.

19.

20.

21.

Poritz, J.A.: Trustled | in] Computing, Signed Code and the Heat Death of the
Internet. In: Proceedings of SAC ’06, New York, NY, USA, ACM (2006) 1855-1859
Lyle, J., Martin, A.: On the Feasibility of Remote Attestation for Web Services.
In: Proceedings of SecureCom ’09. Volume 3., IEEE Computer Society (Sep 2009)
283-288

Coker, G., Guttman, J.D., Loscocco, P., Sheehy, J., Sniffen, B.T.: Attestation:
Evidence and Trust. In: Proceedings of ICICS ’08. Volume 5308 of LNCS., Springer
(2008) 1-18

England, P.: Practical Techniques for Operating System Attestation. In: Proceed-
ings of TRUST ’08. Volume 4968/2008 of Lecture Notes in Computer Science.,
Villach, Austria, Springer Berlin/Heidelberg (March 2008) 1-13

The Trusted Computing Group: Website. http://www.trustedcomputinggroup.
org/ (2012)

Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and Implementation of
a TCG-based Integrity Measurement Architecture. In: USENIX Security Sympo-
sium. (2004) 223-238

Sarmenta, L.F.G., van Dijk, M., O’Donnell, C.W., Rhodes, J., Devadas, S.: Virtual
monotonic counters and count-limited objects using a TPM without a trusted OS.
In: STC ’06: Proceedings of the first workshop on Scalable Trusted Computing,
New York, NY, USA, ACM (2006) 27-42

Arbaugh, W.A., Farber, D.J., Smith, J.M.: A secure and reliable bootstrap archi-
tecture. In: Proceedings of the IEEE Symposium on Security and Privacy. SP ’97,
Washington, DC, USA, IEEE Computer Society (1997) 65—

Hess, J.: PDMenu Website. http://kitenet.net/~joey/code/pdmenu/| (August
2009)

Kyle, D., Brustoloni, J.C.: Uclinux: a linux security module for trusted-computing-
based usage controls enforcement. In: Proceedings of STC ’07, ACM (2007) 63-70
Ferreira, A., Cruz-Correia, R., Antunes, L., Farinha, P., Oliveira-Palhares, E.,
Chadwick, D.W., Costa-Pereira, A.: How to Break Access Control in a Controlled
Manner. In: Proceedings of CBMS 06, IEEE Computer Society (2006) 847-854
Gu, L., Ding, X., Deng, R.H., Xie, B., Mei, H.: Remote attestation on program
execution. In: Proceedings of STC 08, ACM (2008) 11-20

Nauman, M., Alam, M., Zhang, X., Ali, T.: Remote Attestation of Attribute
Updates and Information Flows in a UCON System. In: Proceedings of TRUST
’09. Volume 5471 of LNCS., Springer (2009) 63-80

Lyle, J.: Trustable Remote Verification of Web Services. In: Proceedings of the
TRUST ’09. Volume 5471 of LNCS. (2009) 153-168

Roscoe, A.: The Theory and Practice of Concurrency. Prentice Hall (1998)
Formal Systems (Europe) Ltd: FDR2 User Manual. (1992) http://www.fsel.com/
fdr2_manual.html.

Grawrock, D.: Dynamics of a Trusted Platform. Intel Press (February 2009)
Jaeger, T., Sailer, R., Shankar, U.: PRIMA: policy-reduced integrity measurement
architecture. In: Proceedings of SACMAT ’06. (2006) 19-28

Rohrmair, G.T.: Using CSP to Verify Security-Critical Applications. PhD thesis,
University of Oxford (Hilary 2005)

Namiluko, C., Martin, A.: Abstract model of a trusted platform. In: Proceedings
of INTRUST ’10. (2010)

Alam, M., Zhang, X., Nauman, M., Ali, T., Seifert, J.P.: Model-based behavioral
attestation. In: Proceedings of SACMAT ’08, ACM (2008) 175-184

http://www.trustedcomputinggroup.org/
http://www.trustedcomputinggroup.org/
http://kitenet.net/~joey/code/pdmenu/
http://www.fsel.com/fdr2_manual.html
http://www.fsel.com/fdr2_manual.html

	Accountable System Administration Through Integrity Reporting
	No author given

