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1 Overview 
This is a guide to understanding CRL Opto SXGA ferroelectric reflective microdisplays. It contains background 
information about how the displays can be used, and how both the displays themselves and the interfaces work. 

Because the displays are most commonly supplied as part of the SXGA-R2 kit, this document will generally 
describe their use within such a kit, although occasionally reference will be made to other actual or potential 
interface systems. 

This is not a user manual for the specifics of the SXGA-R2 kit, but is intended to help users and potential users 
of the display understand its capabilities. 

 

 

Important: The SXGA-R2 kit is available in a number of versions which may vary from time to 
time. Not all features discussed here are present on every version of the kit, so potential 
purchasers should check the specifications of current kit versions before ordering. Because this 
document discusses the potential of the technology, rather than any particular system, some of 
the possibilities described here may not be available off-the-shelf, and will require additional 
custom firmware and/or hardware to be produced. 
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2 The display 
The SXGA reflective LCOS display is normally supplied bonded to a flexi-circuit (known as the M49), as 
shown in Figure 2.1. 

 

Figure 2.1 : CRL Opto SXGA LCOS display 

The display has an active area of 1280×1024 pixels (illustrated in Figure 2.2), surrounded on all four sides by a 
32-pixel wide border, giving a total pixel array measuring 1344×1088. Generally the active area is used for 
image data, and the borders are preset to black (but see also Section 6.1). 

By convention, the bonded edge of the display is referred to as the �top�. 
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Figure 2.2 : Active area and border 
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2.1 Data transfer 

Data is transferred into the display on a 64-bit data bus, clocked at 68MHz. Control information is multiplexed 
onto the same bus, and a control word indicator bit (CW_ID) distinguishes between control and data words. 

 CK Data Bus 

64 

CW_ID 

 

Figure 2.3 : Data bus 

During an upload of image data to the display, the data for each row is carried in a single burst of 21 words: 

• 1 control word, containing the row address, the data for the side border in that row and various control 
signals; followed by 

• 20 data words, each carrying 64 pixels of data for the 1280 pixel-wide central area. 

Each row thus takes 21 clock cycles, or approx. 309ns to upload. 

Rows can be sent in any order, and unused rows can be initialized to black at power-on time then omitted from 
all subsequent uploads. In most applications, the top and bottom 32 rows are handled this way, and the central 
1024 rows are retransmitted on each upload. In this case, an upload will take 21×1024 = 21504 cycles, or 
approximately 316µs to complete. 

Other upload arrangements are possible � see also Section 6.1. 

2.2 Pixel functionality 

Pixels are switched by holding the front electrode (a transparent conductive layer on the cover glass) at 2.5V, 
while switching the pixel mirrors to 0V or 5V. Typically, the polarising optics used to view the display are 
aligned so that the 0V state (state 0) appears dark, while the 5V state (state 1) is bright. 

Each pixel contains an SRAM latch to maintain the state of the pixel, and two spare bits of SRAM into which 
bitplanes of data can be pre-loaded. This data can then be copied forward from either of the spare bits to the 
pixel mirror in a single operation which is �rippled down� through all the pixels at a rate of two rows per clock 
cycle. This takes 1088/2 = 544 cycles, or 8µs. 

Other functionality includes the ability to set all pixels to the 1 state, or invert the state of all pixels (for DC 
balancing � see Section 3.1.2). These operations also ripple down in 8µs. 
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2.3 Ferroelectric and nematic liquid crystals 

Ferroelectric liquid crystals (FLCs) have several important differences from the more traditional nematic liquid 
crystal (NLC), and these are listed in Table 2-1, together with some similarities. 

 Nematic Ferroelectric 
Optical basis Both types require polarized illumination, and work by rotating polarization state. 

Switching speed From 1-2ms up to hundreds of ms. Much faster: tens of µs. 
Mode of 

operation 
Analog � continuous range of states. Digital � two stable states. 

Electrical 
response 

Response depends on time-averaged RMS 
amplitude of AC drive waveform. 

State depends on instantaneous 
polarity of drive voltage. 

DC balance Both types require drive voltage to average zero over a period of order 100ms � 1s. 
Colour technique Spatial � either 3 panels, or single panel with 

coloured subpixels and a spatial filter. 
Temporal, i.e. colour sequential. 

Greyscale 
technique 

Inherently analog (see Section 7.2). Binary-weighted temporal dithering 
(see Section 3.1). 

Greyscale 
response curve 

Sigmoidal � may be made linear by pre-
correction. 

Inherently linear. 

Table 2-1: Nematic vs. Ferroelectric displays 

A comparison of FLC with other display technologies can be found in Section 7. 
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3 Greyscale & colour rendering 

3.1 Rendering greyscale & colour on a digital display 

3.1.1 Binary weighting principle 
The SXGA display has a digital backplane, and each pixel is stable in a white or black state. In order to achieve 
greyscale images, the pixel is time-dithered, which means that it is rapidly switched on and off. If this switching 
is fast enough, the human retina will act as a low-pass temporal filter (cut-off between 40 and 120Hz depending 
on intensity) and a constant grey level will be perceived. 

The principle of dithering is illustrated in Figure 3.1. In this example, we have a four-bit grey-scale image, 
which allows us 16 levels, from black (0) to white (15). The time period for a frame is divided into 4 time-slots, 
of 8, 4, 2 and 1 fifteenth of the frame period respectively. The image is converted to a series of bit-frames, where 
the most significant bit b3 is displayed for 8/15 of the frame period, then b2 for 4/15 of the period, and so on. In 
this example, the desired intensity is 5, and the pixel is converted to a binary value of 0101, and switched on for 
5 of the available 15 time units. 

 
b3 b2 b1 b0 

8 4 2 1 

 

Figure 3.1 : Binary-weighted temporal dithering 

The interface supplied with the display takes care of all the dithering required, with up to 8 bit-frames per 
colour. The actual drive waveforms used are much more complicated than those shown, for a number of reasons, 
but the same principle applies. 

For colour, as for greyscales, temporal dithering is used, but this time the illumination of the display changes 
colour rapidly. Depending on the interface option chosen, illumination can be changed in various ways, such as 
LEDs, a colour wheel, or an LCD colour shutter. 

The image is split into colour separations, and each colour separation is shown when the corresponding colour of 
light is on the display. 

3.1.2 DC Balance 
As mentioned in Table 2-1, the liquid crystal must be DC balanced, i.e. its drive voltage averaged over a period 
of 100ms�1s must equal zero. When showing images using bitplanes, this means that each bitplane must be set 
up on the display in inverse for the same amount of time as it is in positive. 

In order to preserve image integrity, however, we must avoid having inverse bitplanes being perceived by the 
eye. This can be achieved either by turning off illumination during inverse bitplanes, or by �optically inverting� 
the bitplane using a compensation cell (see also Section 6.4). 
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Depending upon application, it may be more desirable either to: 

• to DC balance each bitplane immediately after (or before) its respective positive (adjacent balancing), 
or to 

• show several bitplanes together in positive, then balance them all at another time (grouped balancing). 

The standard interface supports both strategies. 

3.1.3 Example drive scheme 
Rather than commit the system to a single method of colour rendering, the interface can be programmed to show 
bitplanes in any order and for any duration. The piece of firmware which determines the sequence of bitplanes is 
called a sequence file. The handling of sequence files is discussed in Section 4.4.2, but here we will look inside 
a real display sequence to see how bitplanes are shown. 

In this sequence, the total times for the illumination of bitplanes are as shown in Table 3-1. The interface handles 
24-bit colour, and the bitplanes are designated R7�R0 (R7 is most significant, R0 is least significant) for red, 
G7�G0 for green and B7�B0 for blue. 

In many sequences, higher significance bitplanes are split into two or more separate illumination pulses, while 
shorter bitplanes need just one pulse. In this example sequence, R7, G7, and B7 are each split into four parts, and 
R6, G6 and B6 are each split in two, as shown in Table 3-1. 

Bitplane Time (each) in µs Organisation 
R7, G7, B7 1024 4 × 256 
R6, G6, B6 512 2 × 256 
R5, G5, B5 256 256 
R4, G4, B4 128 128 
R3, G3, B3 64 64 
R2, G2, B2 32 32 
R1, G1, B1 16 16 
R0, G0, B0 8 8 

Table 3-1 : Bitplane durations 

In contrast to the simplified scheme of Figure 3.1, there are gaps between the bitplanes. These are used for data 
setup, liquid crystal settling, and DC balancing. (In the terminology of Section 3.1.2, this example sequence uses 
adjacent balancing.) As can be seen in Figure 3.2, although each R6 pulse is weighted at 256µs, the data spends 
more time electrically present on the pixel electrode than that. The perceived weighting is correct because the 
display is only illuminated for 256µs during that period. The inverse data is unseen, as the display is not 
illuminated during that time. 
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Figure 3.2 : Illuminating a bitplane
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The illumination pulses are delivered over the course of the frame period as given in Table 3-2. (Both the pulse 
durations and the LED on and off times are rounded to the nearest microsecond, so any apparent "off-by-one" 
errors are the result of rounding.) 

 
Bitplane Pulse start (µs) Pulse end (µs) 

R7 654 910 
R0 1236 1244 
R7 1324 1580 
R1 1907 1923 
R7 2010 2266 
R2 2593 2625 
R7 2729 2984 
R3 3312 3376 
R6 3512 3768 
R4 4094 4222 
R6 4422 4678 
R5 5006 5262 
G7 5589 5845 
G0 6172 6180 
G7 6260 6516 
G1 6842 6858 
G7 6946 7202 
G2 7529 7561 
G7 7664 7920 
G3 8248 8312 
G6 8448 8704 
G4 9030 9158 
G6 9358 9614 
G5 9942 10197 
B7 10525 10781 
B0 11108 11116 
B7 11195 11451 
B1 11778 11794 
B7 11882 12138 
B2 12464 12496 
B7 12600 12856 
B3 13184 13248 
B6 13383 13639 
B4 13966 14094 
B6 14294 14550 
B5 14876 15132 

Table 3-2 : Illumination pulse timing 

There is also a lot of work going on behind the scenes. Before each bitplane of data can be applied to the pixel 
electrodes, it must first be uploaded from the interface onto the display�s backplane. This is done using a 
4.35Gb/s link along the flexi, and takes approximately 316µs per bitplane. Because it would be undesirable to 
have the pixels in a mixed state for this long, the upload copies data into one of two SRAM latches behind the 
pixel electrode, where it can be held until required. 

This means that data upload can be running one or two bitplanes ahead of bitplane display, and ensures that the 
next bitplane of data is always available when needed, even after a bitplane whose weighting is much less than 
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the 316µs upload time. It also means that split bitplanes only need to be uploaded once, provided that a latch can 
be kept free for that bitplane over its entire span. 

3.1.4 Duty cycles 
The example sequence of Section 3.1.3 has each LED switched on for a total of 2039µs, out of a frame period of 
16661µs. This gives us a duty cycle of 12.24% per colour, or 36.72% overall. 

3.1.5 Varieties of drive scheme 
The sequence described in Section 3.1.3 above is just one example how a drive scheme can be constructed. 
Other sequences can differ from this in a number of ways: 

• Red, green and blue bitplanes may be interleaved instead of grouped together. 

• Illumination can be spread across the whole frame period, or concentrated into a smaller part of it. 

• Some sequences use more, or less, splitting of high significance bitplanes. Bitplanes may be split into 
equal or unequal parts. 

• As mentioned in Section 3.1.2, grouped balancing can be used, which means that positive bitplanes are 
grouped together, and DC balanced at another time. This technique is often used in systems which 
contain a colour wheel and/or compensation cell, in order to work with continuous light sources. 
Grouped balancing generally requires two uploads per bitplane, rather than the one upload needed when 
adjacent balancing is used. 

• The number of bitplanes may be reduced and traded for a faster refresh rate e.g. 120 or 180Hz. 

• Drive schemes may vary more radically than this � further possibilities are discussed in Section 6. 
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4 System 
The SXGA-R2 interface is based upon the MDD1304B display driver ASIC, which is a low-cost 24-bit colour 
driver specifically designed for our SXGA LCOS displays.  Other interfaces are possible � see also Section 6.2. 
The remainder of this section applies to the standard SXGA-R2 system, unless stated otherwise. 

4.1 System layout 

The SXGA-R2 display system takes an incoming computer graphics signal, normally in VESA standard 
SXGA60 format, and shows it in 24-bit colour on the SXGA LCOS display, at 60 frames per second. 

Optionally, a PC can be connected by an RS-232 serial cable to configure the interface (see Section 4.4.4). This 
PC may also be the image source, or not, as the user prefers. 

 

SXGA 60Hz 
image source 

(e.g. PC) 

 
 
 
 
 
 

CRL Opto SXGA Interface 

CRL Opto 
SXGA display 

PC for 
configuration 

Proprietary format VGA or DVI cable 

RS 232 

 

Figure 4.1 : System diagram 

Depending on the firmware version on the board (see also section 4.4.1), it may also be possible to feed in lower 
resolution images (VGA, SVGA, XGA, HDTV 720p etc.) and show them in a window within the SXGA 
display.  

4.2 Input signals and capture 

Image data may be fed in via a 15-pin D-type VGA connector, or through a DVI connector. 

When DVI is used, the digital RGB level shown on the display will match precisely that generated by the 
software on the image source. The pixel clock is carried by a twisted pair in the DVI cable. 

When a VGA connector is used, the signal undergoes digital-to-analog (D/A) conversion on the PC graphics 
card, and analog-to-digital (A/D) conversion on the interface. Such a process is always imprecise, due to 
component tolerances and analog noise. As a result, digital levels may no longer match exactly. In many 
applications, this doesn�t matter much, but in a few cases it could be important (see also section 6). When analog 
input is used, the pixel clock is not transmitted on the cable � the analog capture chip reconstructs the pixel 
clock from Hsync using a PLL multiplier. 
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4.3 Timing and geometry 

The SXGA60 input signal, whether transmitted through DVI or VGA, should have the same timing. 

The timing reference, for horizontal and vertical timing respectively, is the leading edge of the corresponding 
sync signal. Since SXGA60 uses positive-going sync pulses, this is the rising edge. The horizontal waveform is 
as shown in Figure 4.2. 

 

Hsync 

Video data 

Sync 
width 
112 

pixels 

back 
porch 
248 

pixels 
active data 1280 pixels 

front 
porch 

48 
pixels 

total line width 1688 pixels 

 

Figure 4.2 : Horizontal waveform 

The nominal pixel clock is 108MHz, which leads to the timings given in Table 4-1. Note that the number of 
pixel cycles is definitive, while the absolute times or frequencies are derived and approximate. The VESA 
standard allows the pixel clock frequency to drift by ±0.5%. When this happens, the number of cycles of the 
pixel clock for each of the other parameters is maintained, so their absolute times will vary in the same 
proportion. 

Parameter Pixel clock cycles Approx. time / frequency 
Hsync 1688 15.63µs / 63.981kHz 
Hsync width 112 1.037µs 
Back porch 248 2.296µs 
Active data 1280 11.85µs 
Front porch 48 0.444µs 

Table 4-1 : Horizontal timing 
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Vertical timings are shown in Figure 4.3 and Table 4-2. 
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38 
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front 
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1 line 

total height 1066 lines 

 

Figure 4.3 : Vertical waveform 

Parameter Lines Approx. time / frequency 
Vsync period 1066 16.661ms / 60.020Hz 
Vsync width 3 46.889µs 
Back porch 38 593.93µs 
Active data 1024 16.005ms 
Front porch 1 15.630µs 

Table 4-2 : Vertical timing 

With appropriate firmware, the MDD1304B driver chip can accept other video resolutions and frame rates, 
including custom video modes, with any bit-depth up to 24 and any pixel clock rate up to 108MHz. 

Video with a lower resolution can be shown in a window, in the middle of the display, containing the same 
number of pixels as the source image. 

The timing of bit-planes on the display is derived from the incoming Vsync signal, and will always have a fixed 
phase relationship to it. 

The standard system does not, at time of writing, support re-sizing or frame rate conversion (but see also 
Section 6.2). 

4.4 System software 

4.4.1 Micro code 
The MDD1304B ASIC contains an embedded microcontroller which has access to the configuration registers 
inside the chip, and also to its ports, which can be used for controlling other devices in a system. The firmware 
for this micro is called the application program (AP), and is stored in an external serial flash device. 

The ASIC can be configured either to control a complete system (acting as system master) or to be a subsidiary 
(slave) chip controlled by a separate micro. The differences are listed in Table 4-3. 
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Master mode Slave Mode 
Designed for CRL Opto evaluation kit boards, where a 
known set of external chips is present. 

Designed for system integrators, who will determine 
system architecture for themselves. 

Avoids need for external micro to control system. System controlled by external micro. 
ASIC configures all of its own settings at power-on 
from flash memory. 

ASIC defaults to test image (colour bars), and awaits 
further instructions. 

ASIC controls other programmable chips. ASIC does not control any other chips. 
User can alter configuration using SXprog utility. Configuration is by industry-standard two-wire 

interface, not user interface. 
ASIC firmware must be changed (by CRL Opto) if 
new programmable chips are added to system. 

System integrator changes firmware for external 
micro if new programmable chips are added to 
system. 

Control protocol is proprietary. Control protocol is documented in data sheet. 
Supplied firmware supports a fixed video format (e.g. 
SXGA, HDTV etc.), or a finite number of 
predetermined video formats, depending on firmware 
version. 

System integrator has documentation to allow them to 
support any video format they choose (within 
hardware limitations) including non-standard formats. 

Drive sequences are stored and managed by ASIC. Drive sequences are stored and managed by external 
micro. 

Colour look-up tables configured by a fixed, built-in 
function which only supports gamma control. 

System master has complete freedom to define 
arbitrary contents for look-up tables. 

ASIC will automatically switch to test pattern when 
video signal is absent, thus ensuring DC balance. 

System master has responsibility to monitor video, 
and put display into DC-safe standby mode when 
absent. 

Table 4-3 : Comparison of Master and Slave modes 

In general, systems based on the M43 interface will be shipped with master mode code, while slave mode is 
better suited to custom interfaces. 

We are not able to support users wishing to generate their own micro code, but slave mode should have all the 
flexibility needed for system integrators. In the event that custom micro code is required, this can be developed 
for users by CRL Opto. 

SXGA-R2 kits are supplied pre-programmed with master mode code, and can be upgraded with new micro code 
in the field, using the SXprog utility (see Section 4.4.4). 

4.4.2 Sequences 
The sequence is a piece of firmware which determines the order and timing of bitplanes. As mentioned in 
Section 3.1.5, there is enormous flexibility in the way sequences can be created. 

Sequences are produced in-house by CRL Opto, using special software tools. At time of writing, there are no 
plans to make these tools available to third parties, but a custom sequence-building service is available from 
CRL Opto. 

SXGA-R2 kits are supplied pre-programmed with one or more general purpose sequences, and can be upgraded 
with new sequence files in the field, using the SXprog utility (see Section 4.4.4). The SXGA-R2 kit can store up 
to 10 sequences in its onboard flash filing system and, using SXprog, any loaded sequence can be made the 
default for loading on power-up. 
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4.4.3 EDID code 
EDID (Extended Display Identification Data) files are small data structures which can be uploaded by a PC or 
other graphics source through the VGA or DVI cable. Most present-day CRT monitors, flat-panel displays and 
projectors contain an EDID, and the SXGA-R2 kit is no exception. The EDID structure contains information 
such as the make and model of monitor and the resolutions and frame rates it can accept. 

EDID code is not essential for analog video connections, but is usually required by DVI graphics cards before a 
DVI signal will be produced. 

EDID is a trademark of the Video Electronics Standards Association (VESA) and the standard can be obtained 
from them at http://www.vesa.org/. Several third-party EDID editors are available, such as �EDID Editor� from 
ViewSonic (http://www.viewsonic.com/). 

SXGA-R2 kits are supplied pre-programmed with EDID code, and can be upgraded with new EDID files in the 
field, using the SXprog utility (see Section 4.4.4). 

4.4.4 SXprog 
SXprog is a utility program for configuring and reprogramming the SXGA-R2 kit through an RS-232 cable. It 
presents a user interface as shown in Figure 4.4. 

   

 

Figure 4.4 : The SXprog user interface 

SXprog�s capabilities include: 

• re-programming of micro code, sequences and EDID code, 

• adjustment of LED brightness and gamma look-up tables, 

• colour wheel control and miscellaneous other functions. 

A separate user manual is available for SXprog, describing its features in detail. 

Note: It is not necessary to connect SXprog to the SXGA-R2 kit every time it is powered on � only when the 
configuration is to be changed. 

http://www.vesa.org/
http://www.viewsonic.com/
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4.4.5 Supported platforms 
SXprog is currently supported under Windows 98 and XP. It is not recommended for Windows NT or 2000, due 
to difficulties with the use of the serial port. It has not been tested under Windows 95 or ME. 

A Linux version of SXprog is under development. 
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5 Illumination and Optics 

5.1 Optical principle 

To understand how the FLCOS microdisplay works, it may help to consider the following: 

If a light source, a mirror, and a polarizing beamsplitter (PBS) are arranged as shown in Figure 5.1, no light will 
reach the observer. The sequence of events is as follows: 

1. The illuminator produces unpolarized light, which hits the PBS. 
2. The P-polarized component passes through the PBS and leaves the system as waste light. 
3. The S-polarized component is reflected by the PBS onto the mirror. 
4. The light reflected by the mirror is still S-polarized. 
5. The PBS reflects the S-polarized light back to the illuminator, and no light reaches the observer. 

 
 Illuminator 

2 (P) 

1 (S+P) 

3 (S) 

5 (S) 

4 (S) 

Observer 

 

Figure 5.1 : Polarizing beamsplitter and mirror 

In a second example (not illustrated), a quarter-wave plate (λ/4) is inserted between the mirror and beam-splitter, 
and orientated at an angle of 0° relative to the S-polarized light (i.e. aligned with it). This has no effect. The light 
returning from the mirror�quarter-wave plate combination is still S-polarized. 

In a third example (Figure 5.2), the quarter-wave plate is rotated by 45° relative to the S-polarized light. In this 
case, there is a new sequence of events, as follows: 

1. The illuminator produces S- and P-polarized light, which hits the PBS (as before). 
2. The P-polarized light passes through the PBS and leaves the system as waste light (again as before). 
3. The S-polarized light is reflected by the PBS onto the mirror, this time via the quarter-wave plate, so it 

is circularly polarized when it reaches the mirror. 
4. The reflected light, is circularly polarized in the opposite direction, and having passed through the 

quarter-wave plate a second time, is once again linearly polarized, but this time rotated by 90°, i.e. P-
polarized. 

5. The PBS passes the P-polarized light through to the observer. 
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 Illuminator 

2 (P) 

1 (S+P) 

3 (S) 

5 (P) 4 (P) 

Observer 
Mirror 

Quarter-wave 
plate 

 

Figure 5.2 : Polarizing beam-splitter, mirror and quarter-wave plate 

The liquid crystal layer in the display acts like an electrically switchable quarter-wave plate. In the off state it is 
aligned with the incoming S-polarized light, while in the on state it is at an angle, thus causing light to reach the 
observer. Each pixel is individually switchable, allowing the creation of images. 

5.1.1 Orientation 
A suitable orientation for the PBS and microdisplay is as shown in Figure 5.3. A correct polarity image will also 
be obtained at 90° increments from this position. The contrast ratio of the system is sensitive to the accuracy of 
orientation of the microdisplay and PBS. 

It is also possible to use the P-polarized beam to illuminate the display, rather than the S-polarized beam as 
illustrated, and with some types of PBS this may be preferable. 

PBS 

1024 

1280 

S + P 

S 

P 

SXGA 

illuminator 

 

Figure 5.3 : Example polarizer orientation 
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5.2 Polarizers and polarization converters 

A polarizing beamsplitter is seldom if ever perfect, i.e. the transmitted light is not quite 100% P-polarized and 
the reflected light is not quite 100% S-polarized. MOXTEK sheet PBSs generally have better performance than 
glass-cube PBSs, which in turn generally out-perform polymer sheet PBSs. 

In order improve the contrast ratio of a real system, it is common practice to add a pre-polarizer to ensure that 
the light reaching the PBS is already mostly in the desired S-polarized state. 

Normal-incidence sheet polarizers are available in absorbent and reflective varieties, as shown in Figure 5.4. In 
low-power systems, pre- and clean-up polarizers are usually made from sheet absorbent material. High power 
systems use reflective polarizers (for pre-polarization especially) as these are less prone to burning out. 

 
S+P S 

P 
absorbed 

S+P S 

P 
reflected 

(a) (b)  

Figure 5.4 : Absorbent (a) and reflective (b) sheet polarizers 

A separate application note is available describing the use of CRL Opto displays with MOXTEK ProFluxTM 
polarizers. 

As an alternative to pre-polarizers, a variety of types of polarization converter are available. These are devices 
which separate light into S and P orientation, and then convert the light in one polarization state into the other. 
By this means, unpolarized light from the source can be converted to useful plane polarized light with over 75% 
efficiency. 

5.3 f number 

The thin cell gap of the CRL Opto microdisplay, allows it to be used right down to f1.8 � much lower than 
most other comparable technologies. 

5.4 Near-eye systems 

Near-eye systems will almost always use LED illumination (see Section 5.5). An example configuration for a 
near-eye system is shown in Figure 5.5.  
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Telecentric 
Illuminator 

Polarizing 
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Display 

Magnifying 
Lens 

Pre-polarizer 

Clean-up 
polarizer 

Observer 

 

Figure 5.5 : Basic near-eye viewer 

An alternative near-eye system, known as the �bird-bath�, uses a magnifying mirror instead of a lens, and a non-
polarizing as opposed to polarizing beamsplitter as illustrated in Figure 5.6. A Bird-bath viewer can also be built 
with a polarizing beamsplitter, but in this case a quarter-wave plate must be added to the magnifying mirror. 

Telecentric 
Illuminator 

Beamsplitter 
(non-polarizing) 

Display 

Magnifying 
Mirror 

Pre-polarizer 

Clean-up 
polarizer 

Observer 

 

Figure 5.6 : Bird-bath viewer 

5.5 LEDs 

These are used principally in near-eye applications, but the recent advent of high-powered LEDs is making 
LED-based projection a reality. Although white LEDs are available, the colour sequential nature of display 
makes it much more effective to have separately switchable red, green and blue light sources. 

5.5.1 Switching speed 
The fast switching performance of LEDs makes them ideal illuminators for the CRL Opto SXGA LCOS display. 
The SXGA-R2 kit switches LEDs on and off in under 500ns, but switching as fast as this is not essential. What 
is important is that the amount of light generated in each pulse remains in correct proportion to the other pulses 
in the frame. 
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Some applications involve using laser diodes, or much higher-powered LEDs than those supplied with a 
standard kit � and these might perhaps switch more slowly than the usual LEDs. If a light source takes several 
microseconds to turn on, and an equal number to turn off (and with a similarly shaped curve) then there should 
be no problem with the greyscale. If, however, the light source is much slower to turn on than off, or vice versa, 
then the effective pulse width can be distorted. Figure 5.7 shows the effect that asymmetrical switching can have 
on an 8µs least-significant bitplane (LSB). The effect on higher significance bitplanes is in absolute terms the 
same, but proportionally less � and here lies the problem. 

Some greyscale levels have the pixel switched on during more pulses than others. Assuming, for simplicity, that 
there is no splitting of bitplanes (and in some sequences, there is none), there will be 8 pulses per colour. A pixel 
at level 0 will be switched on during none of them, while a pixel at level 255 (0xFF) will be switched on during 
all of them. Some neighbouring bitplanes have very different pulse counts, for example level 127 (0x7F) is on 
during seven pulses, while level 128 (0x80) uses just one pulse. 

Let us assume, for example, that a hypothetical light source turns on much faster than off, to the extent that the 
LSB has 20% more light than it should have. Every other bitplane will also be too long, but by 0.2 LSBs rather 
than 20% of its own length. This will make level 127, with its seven pulses, long by 7×0.2 = 1.4 LSBs; level 
128, with its single pulse will be long by 1×0.2 = 0.2LSBs. The effect on step size between these two grey-levels 
is shown in Table 5-1. 

The end result of distorted weighting is the appearance of false contours in smoothly shaded images, especially 
at particular steps such as 127-128, 63-64, and 31-32. If, however, a given light source is known to have 
significantly asymmetrical switching, this can be compensated for by building a new sequence with adjusted 
pulse widths. Using the new special sequence, it should once more be possible to achieve smooth shading. 

 

illumination 

8µs 

LED enable 
signal 

(c) area under curve 
too small 

illumination (b) area under curve 
too large 

illumination (a) area under curve 
OK 

 

Figure 5.7 : Pulse shapes: (a) slow-on–slow-off; (b) fast-on–slow-off; (c) slow-on–fast-off 

 level 127 (0x7F) level 128 (0x80) step size 
Ideal 64.0+32.0+16.0+8.0+4.0+2.0+1.0 = 127.0 128.0 = 128.0 1.0 
ideal-0.2 63.8+31.8+15.8+7.8+3.8+1.8+0.8 = 125.6 127.8 = 127.8 2.2 
ideal+0.2 64.2+32.2+16.2+8.2+4.2+2.2+1.2 = 128.4 128.2 = 128.2 -0.2 

Table 5-1 : The effect of weighting errors in bitplanes 
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5.5.2 High-power LEDs 
A number of vendors (e.g. Lumileds) are now offering LED emitters in the high tens of lumens output (or low 
tens for blue). The LED circuitry in the SXGA-R2 kit (at time of writing) is set up to provide peak currents of up 
to 250mA for LEDs or LED arrays with forward voltage (plus cable IR drop) of up to 6.7V. Component value 
changes can provide modestly increased common anode voltage and peak current. 

The circuitry can be further modified, on request, to support peak currents up to 6A (mean up to 1A), or forward 
voltages up to 48V, with an external common anode supply. Beyond this, custom drive circuitry will be 
required, and can be controlled by red, green and blue enable signals exported from the circuit board. (Exporting 
enable signals may require modifications to the kit, depending on its version.) 

Duty cycles per LED are typically in the range of 7 to 14% (depending on sequence), so LEDs can be driven at 
peak currents often much higher than their continuous rated currents. 

5.6 Projection 

Like nematic microdisplays, CRL Opto SXGA LCOS microdisplays can be used in three-channel projection 
system. Unlike most nematic displays, however, our ferroelectric displays can also be used in single-channel 
colour sequential systems.  

CRL Opto has demonstrated a prototype LED-illuminated projector, using high-power LEDs (see Section 5.5.2). 
Energy efficiency is very good and image quality (particularly colour gamut) is exceptional (see also Section 7). 
Based on this prototype, an LED projection evaluation kit is planned � contact CRL Opto Sales for an update. 
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6 Possibilities and limitations 
This section explores potential special applications of the technology which are not supported by the standard-
recipe displays or by the interface electronics normally supplied, but which might be possible with a customised 
display or interface. 

In this section, the description of a feature or application as possible does not imply that a suitable product is 
available, or even that it is likely to become available as a standard product. The intention here is simply to 
separate ideas which could be technically feasible from those which are not. 

We also aim to distinguish here between limitations of the interface firmware, the interface hardware, the 
display recipe and the display backplane. 

6.1 Active area 

In most applications, all border pixels are set to black, and most interface systems will support only this 
functionality. It would be possible, though, with an appropriate interface, to address individually the central 
1280 pixels of all 1088 rows; the pixels in the side borders are addressable two at a time in horizontally adjacent 
pairs. 

It is also possible to use fewer than 1024 rows (e.g. 1280×720 for a 16:9 aspect ratio), and with appropriate 
firmware each upload can be completed in a proportionally smaller time. (This feature is known as 
letterboxing.) Shorter uploads allow more flexibility in the construction of a drive scheme (see Section 3.1). 

6.2 Interface design 

The SXGA-R2 kit is based around the MDD1304B display driver ASIC, which is a low-cost 24-bit colour driver 
specifically designed for our SXGA LCOS displays. 

By adding to the standard kit, support for many other features could be provided, such as the  following: 

• image re-sizing, 
• frame rate conversion and re-synchronization, 
• colour-space manipulation (over and above the gamma correction already provided), 
• image conditioning and filtering, 
• image warping, 
• on-screen display, 
• picture-in-picture and genlocking. 

 
Other interface options, e.g. FPGA-based systems can also be made available where extra flexibility is required 
for non-standard applications. In such a system, the images used need not necessarily come from a video stream, 
but might instead be pre-loaded by a remote or embedded processor. 

6.3 Liquid crystal material 

Display devices are normally filled with ferroelectric liquid crystal (see also Section 2.3). 

To optimise the SLM for a particular application, it is often necessary to modify the cell spacing, or the liquid 
crystal filling. In some applications, for example, there might be an advantage in using a nematic or a guest-host 
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material. The SXGA backplane is capable of driving such materials, although its performance (in terms of  bit-
depth etc.) has not yet been characterised in this context. 

Although the microdisplay is generally used as a display device, it can be used as a spatial light modulator 
(SLM) in a diverse range of optical systems.  These applications include adaptive optics, imaging, microscopy, 
optical communications, laser machining, and optical trapping.  As an SLM, the device can be configured to 
operate either as a binary amplitude (0,1), or a pure binary phase (0, π) modulator.  

6.4 Illumination 

6.4.1 Arc lamps and colour wheels 
Apart from pulsed light sources, it is also possible to use continuous sources such as arc lamps, in conjunction 
with colour wheels and/or compensation cells, and the SXGA-R2 contains circuitry to support such applications. 
The SXGA LCOS display has been successfully used in single-channel systems with lamps of over 10,000 
lumens at source. 

As the SXGA LCOS display is a reflective device, its rear surface can be used for heat extraction, making it 
easier to cool than a transmissive device in very high-power applications. 

6.4.2 Wavelength 
Standard devices are designed to work across the visible spectrum, and are well suited to single-panel full-colour 
applications. 

Ultra violet applications are not currently viable, as the device lifetime is affected when exposed to high-
intensity light at wavelengths of 410nm or less. When used with illumination sources (e.g. arc lamps) which 
generate a strong UV or near-UV component, a filter is used to remove dangerous wavelengths. 

Infra-red applications are viable, but require a non-standard display recipe. Displays optimised for use at 
1550nm (telecomms) and 1064nm (Nd:YAG) are under development at time of writing. 

6.5 Increased bit-depth 

The colour depth of a binary-weighted three-colour scheme is constrained by the M43 interface electronics (and 
the MDD1304B ASIC thereon) to 24 bits. A custom interface might allow this to be increased slightly, but the 
bandwidth of the data bus to the backplane means that only a modest increase could be obtained while retaining 
full SXGA resolution. Reducing the height of the image allows the upload of each bitplane to be completed 
faster,  and potentially higher colour depth. 

The maximum achievable bit-depth in monochrome applications is not yet confirmed, but is estimated to be in 
the range of 10-12 bits. Higher bit-depth monochrome images could be fed into the standard interface hardware 
using false-colour DVI; alternatively a custom analog capture module could be added. Applying these 
techniques to a three-channel system (with three interfaces) colour at more than 24 bits could be achieved. 

It is also possible, by changing firmware, to trade bits of one colour for bits of another. This also requires the 
user to generate false-colour images and feed them in through DVI. 
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6.6 Fast binary applications 

Bitplanes need not necessarily be weighted in a binary greyscale pattern. For example, by compositing 24 one-
bit images into a 24-bit false-colour image and feeding it in through DVI, 1440 evenly spaced one-bit images per 
second can be achieved. (Analog input is not recommended for these applications, for reasons discussed in 
Section 4.2.) 

Applications include printing, telecomms, volumetric displays and optical correlators. 
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7 Comparison to other display technologies 
In this section we compare our FLC technology to other display technologies, namely cathode ray tube (CRT), 
nematic liquid crystal (NLC), digital micromirror device (DMD) and plasma display panel (PDP). 

7.1 Image generating methods 

 CRT NLC FLC DMD PDP 
Greyscale Analog Analog Digital Digital Digital 
Colour Spatial Spatial Temporal Temporal Spatial 
Large image Direct/Projected Direct/Projected Projected Projected Direct 
Channels reqd. 
(if projected) 

3 3 1 or 3 1 or 3 n/a 

Light modulation Emissive Reflective or Transmissive Reflective1 Reflective Emissive 
Phase mode available No Yes Yes No No 

1Reflective in CRL Opto displays, but FLCs are also used in transmissive cells, shutters etc. 

Table 7-1 : Comparison of methods of image generation 

7.2 Greyscale transfer curves 

The greyscale transfer curve is, roughly speaking, the relationship between the luminance signal going into the 
display and the amount of light coming out. This is usually expressed as a graph with signal input on the X axis 
and light output on the Y axis. Some examples are shown in Figure 7.1. 

 input signal 

light
output

input signal 

light 
output 

input signal 

light
output

(a) (b) (c)  

Figure 7.1 : Greyscale transfer curves: (a) CRT; (b) NLC; (c) FLC, DMD, PDP 

The CRT gives an exponential curve called a gamma curve. The name is derived from its usual equation 

γ= xy , 

where x  and y  are normalized over a range of 0 to 1. A typical figure for γ  is around 2.4. 

Nematic liquid crystals inherently have a sigmoidal transfer curve, but NLC based displays often contain look-
up tables to linearize the curve. 

CRL Opto FLC displays, along with their DMD and PDP counterparts, have a linear transfer function. Because 
some image sources pre-compensate their images to produce linear fades on a CRT (this is called gamma 
correction), some systems, including the SXGA-R2 kit, contain gamma-adjustment look-up tables to allow the 
displays to mimic the transfer curve of a CRT. 
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Some transmission artefacts (as opposed to display artefacts, discussed in Section 7.3), such as �blocking� in 
dark areas of MPEG-compressed video streams, can be more visible in linear-greyscale devices (or in linearized-
greyscale systems), because the starting gradient is higher than in the sigmoidal or gamma curve (see also 
Section 7.2). SXGA-R2 kits usually come pre-adjusted to a gamma of 1.4, which is sufficient to make MPEG 
blockiness invisible, while still retaining the vibrancy which comes from low gamma. 

7.3 Artefacts 

Every display technology is susceptible to artefacts, but the type and severity varies from type to type. 

In the table below, X means that the problem occurs and is difficult or impossible to prevent or significantly 
reduce; x means that the problem occurs but that techniques exist to significantly reduce it; an empty box means 
the artefact is not a problem to begin with. 

 CRT NLC FLC DMD PDP Notes 
Moiré X     Fine textures can produce coarser-texture artefacts. 
smearing 
(trails) 

(x) x    Occurs if material has some persistence lasting longer 
than one frame period. Most modern CRT phosphors are 
fast enough to avoid this, majority of NLCs are not. 

temporal 
skewing 

X X1   X Can affect any technology in which data is shown by 
progressive scan down the display over a frame period.  

False 
contours2 

  x x x Can be combated by appropriate design of drive scheme. 

wagon 
wheel 

X X X X X This takes its name from old Wild West films in which 
the wheels of a fast-moving wagon appear to be turning 
backwards. This was first noticed on film movies, and 
also affects every other frame-based display technology. 

 

1Affects TFT transmissive NLC, but not LCOS reflective NLC. 
2Static false contours can appear on any display technology if the image source has insufficient bit depth. 

Table 7-2 : Comparison of display artefacts 
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7.4 Colour gamut 

No display technology can replicate the entire range of colours perceivable by the human visual system, but 
some technologies come closer than others. The range of colours which a display can render is called its gamut, 
and in RGB systems this is generally represented as a triangle on a CIE chromaticity chart. (Some image 
transmission media impose restrictions of their own, leading to a non-triangular system gamut, but we will not 
cover that here.) 

In general, LED-illuminated systems will have the best gamut (especially in red and green), as shown in Figure 
7.2 � the precise gamut depends upon choice of LEDs.  

Typical mass-market CRT phosphors have a smaller gamut (again, as shown in Figure 7.2), although high-end 
specialist CRTs can have significantly wider gamut than an ordinary TV or monitor. Plasma panels are 
comparable to CRTs, although the choice of phosphors is currently more restricted. 

 

 
LED 

CRT 

Lamp 

 

Figure 7.2 : Colour gamuts for various display technologies 

The poorest gamuts come from systems which generate white light, then split the spectrum into three broad 
bands. This applies both to colour-wheel�based systems (Section 6.4.1) and three-channel lamp-based systems. 

Gamut is less sensitive to microdisplay type, where microdisplays are used, although it is worth observing that 
low contrast ratio tends to reduce saturation of all colours. 

 

 



 

8 Contacting CRL Opto 
CRL Opto technical support may be contacted as shown below: 
 
Telephone: +44 (0) 208 848 6400 
 
Facsimile: +44 (0) 208 848 6653 
 
E-mail:  tech-support@crlopto.com 
 
Website:  http://www.crlopto.com 
 
Address:  CRL Opto Limited 

Dawley Road 
Hayes  
Middlesex 
UB3 1HH 
United Kingdom 
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