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CHAPTER 3

INTRODUCTION

Much work has been done on minimal microkernels in the past 15 years or so,

starting with Jochen Liedtke’s L3.[21] Liedtke’s key insight was that first-generation

microkernels such as Mach, derived from monolithic kernels,[1] had too much inherited

baggage to be efficient. By starting from scratch with L3, he was able to build a system

that made better use of the virtues of microkernels. L3, though, turned out to be

still too inefficient, so Liedtke started over with L4, focusing on high-speed IPC.[23]

More recently, Herder and Tanenbaum have produced MINIX v3. MINIX v3 is an-

other minimal microkernel, but motivated by reliability, rather than performance.[17]

MINIX v3 is based on MINIX v2, but with (nearly) all its drivers moved into user

space. The key stylistic difference between L4 and MINIX v3 is that L4 is a general-

purpose platform, while MINIX v3 has knowledge of individual drivers hard-wired

into the kernel, so that it can enforce a fixed security policy.

3.1 Comparison with L4

PackOS builds on the lessons of L4; it is a minimal microkernel, offering only a

handful of services. Its key difference from L4 is that the kernel’s IPC services are

simpler. To compare, see table 3.1.

3.1.1 Paradigm

Like most microkernels, L4 structures its IPC as RPC. The rationale for RPC has

always been that procedure calls are a familiar mechanism, which integrate well into
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Table 3.1. Comparison of services between L4 and PackOS

Feature L4 PackOS

Paradigm RPC Network
Messages Structured Unstructured
Zero-Copy Partially Yes
Synchronous Yes No
Routed Yes No
Remote IPC Yes (to L4 systems) Yes (to any IPv6 host)

a procedural program. However, RPC does not lend itself well to complex commu-

nications patterns; it forces all interactions into the client-server model. In addition,

an RPC system designed for IPC cannot travel across a network without a gateway;

generally, these gateways are limited to joining similar systems. L4 systems can make

RPC calls to other L4 systems, but not to Mach systems. The traditional solution

to this is to write another gateway, bridging L4 to Mach; but such bridges almost

inevitably introduce mismatches, since no two IPC systems have identical semantics.

PackOS takes a new approach, by structuring its IPC as an IPv6 network: every

PackOS process is an IPv6 host, able to enter into whatever communications patterns

are appropriate. In addition, the problem of providing interhost IPC reduces to the

(solved) problem of IPv6 routing. A PackOS process can access services on remote

IPv6 hosts as easily as local services, regardless of whether those remote hosts are

running PackOS (Figure 3.1) or not (Figure 3.2). This kernel-area network (KAN) is

central to PackOS; all other elements of the design rely upon it.

In addition, by using IP-based IPC, PackOS can benefit from decades of devel-

opment of IP-based protocols. For example, rather than develop and debug a new

filesharing protocol, PackOS can use NFS or AFS directly. Since protocol design

is difficult and error-prone, this design reuse can help PackOS avoid many typical

stumbling blocks.

2



Figure 3.1. Two PackOS systems. The right-hand system is running an NFS server,
which is being used by processes P1 and P2. Arrows show client-to-server direction.

3.1.2 Message

In L4, an RPC request takes the form of a tree; leaves in the tree can be either

byte strings or memory pages. Pages are mapped into the recipient’s memory space;

byte strings, and the tree structure itself, are simply copied. Since the tree can be

arbitrarily complex, the time the kernel must spend on this copying is unbounded.

In PackOS, an IPC message is simply an IPv6 packet. The packet is stored in its

own memory page, and is mapped into the recipient’s space.

3.1.3 Zero-Copy

As explained above, L4 and PackOS both offer the ability to send memory pages

from process to process, avoiding the memory-to-memory copies common in Unix

IPC. However, L4 embeds a page as a node in a tree; PackOS just sends the page.

This simplicity permits the PackOS kernel to offer a guarantee of O(1) delivery time

for all packets.

3.1.4 Synchronous

As is typical for RPC systems, L4’s IPC is synchronous. As explained by Jonathon

Shapiro[37], this can present difficulties with security: whenever a client C issues a

request to server S, S can cause C to block indefinitely. In a system with complex

3



Figure 3.2. A heterogeneous network including two PackOS systems and one Linux
system. The left-hand PackOS system is using the Linux system’s LDAP server for
authentication; the LDAP server is using the right-hand PackOS system’s NFS server
for its configuration files.

interaction patterns (e.g., a pager depends on a file server, which depends on a network

service, which uses virtual memory and so depends on the pager), this offers an

unacceptably high risk of denial of service attacks. PackOS avoids this problem–at

least at the kernel level–by offering only asynchronous packet delivery.

3.1.5 Routed

L4’s “Clans and Chiefs” model[22] arranges processes into a heirarchy of clans;

the chief of each clan acts as a firewall for all messages entering or leaving the clan.

This permits sophisticated behaviors, including filtering, proxying, and rewriting re-

quests and responses; but the performance cost is high–so high that some more recent

versions of L4 have dropped support for Clans and Chiefs.[20][10].

PackOS does not support any such routing; instead, the KAN acts as a virtual link

layer. Every packet is either delivered immediately or discarded. There are routers

present, routing packets between the KAN and the outside world; they correspond to

network interfaces. But they’re not part of the kernel; they run in user space.

4



3.1.6 Remote IPC

L4 systems can have user-space gateways to forward RPC requests across a net-

work. However, like all gateways, RPC forwarders are necessarily imperfect; for one

thing, they cannot easily connect to systems which are not based on the same form

of RPC.

Since PackOS is based on IPv6, it can communicate with any IPv6 host, without

having to do any translation.

3.2 The prototype

The present design for PackOS is based on lessons learned in building a prototype.

This thesis presents PackOS, the difficulties encountered in the prototype, the lessons

learned, the revised design, and an implementation plan that avoids the difficulties

of the prototype.
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CHAPTER 4

OVERVIEW

In the initial design, the PackOS kernel offers only three services:

1. The KAN.

2. Interrupt dispatch.

3. Context switching.

These services are all designed to be as lightweight as possible. In particular, there

is no such thing as an outstanding kernel operation, which means that there is no

need for kernel threads, which means that threading should be much cheaper than in

systems where every thread requires the allocation of a kernel-space stack.

In addition, all operations should be achievable in O(1) time. With a guarantee

that all kernel calls complete in N µs, it may become feasible to use a big kernel lock

even on an SMP implementation, vastly simplifying the kernel.

4.1 The KAN.

All microkernels need high-speed IPC.[23] PackOS’s IPC mechanism is the KAN,

the kernel-area network. The KAN is a virtual link layer, specialized for carrying IPv6

packets. IPv6 was chosen because of the large address space. When each process needs

at least one address, and processes need to communicate over the Internet, the nearly

exhausted IPv4 address space simply is not enough. (PackOS hosts which need IPv4

connectivity can provide it via proxies, just as is done in IPv6 networks whose hosts

6



need IPv4 connectivity. NATs which translate between IPv4 and IPv6 are another

possibility, but have recently been deprecated by the IETF.[2])

The KAN’s link-layer addresses are IPv6 addresses, and the packets it carries

are IPv6 packets prefixed with a link-layer header (just the link-layer source and

destination addresses). Packet delivery is zero-copy. When process A wants to send

a packet to process B, A allocates a page-aligned packet, fills it out, and calls the

kernel’s send-packet function. The kernel then inserts the packet into B’s queue of

incoming packets, removes the packet’s page from A’s address space, and adds it

to B’s. (If B’s queue is full, the kernel reports an error and leaves the packet in A’s

space.) See Figure 4.1. This provides the efficiency of L4 messages consisting of pages,

without the complexity of L4’s structured messages. Finally, as explained above, the

fact that the KAN is asynchronous means that PackOS should not be vulnerable to

the denial-of-service risks identified by Jonathon Shapiro.[37]

User-space applications do not normally call the kernel’s KAN functions directly;

instead, they use user-space libraries which provide UDP or TCP functionality. These

libraries are in turn built on the IP library, which makes it possible to implement

network interface classes to abstract away the differences between link layers. The IP

library implements the IPv6 network layer, such as IP headers and ICMP messages.

The simplest way to implement this model is for a packet to have exactly one

owner. However, adding multicast to the picture adds complications.1 Clearly, when

a packet p is delivered to N contexts, where N > 1, it would not do for p to be

mapped read-write into all N contexts. There are a few options here:

1Multicast is important for service discovery, so that PackOS applications can find the servers
they need. (They can’t rely on configuration files, since that would impose a bootstrap problem:
how to find the file server with the configuration files?) The prototype doesn’t implement multicast,
but it should be included in the new design.

7



Figure 4.1. Zero-copy packet delivery. Arrows from processes to packets show
memory page mappings; arrows across the user/kernel boundary show packets being
sent/received.
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1. Make N copies of p and deliver them to the several recipients. This would

eliminate the KAN’s zero-copy efficiencies and the kernel’s O(1) guarantee. See

figure 4.2.

2. Map p read-only into the N recipients, and maintain a reference count. This

would maintain zero-copy, but not the O(1) guarantee. See figure 4.3.

3. Instead of modifying the KAN, introduce a user-space multicast server: the

server keeps track of multicast group membership, and forwards multicast pack-

ets to the members of the group. This would maintain the O(1) guarantee, but

not zero-copy. See figure 4.4.

4. Combine the user-space multicast server with the reference count approach. In

this scenario, the KAN is purely unicast, but it permits sender X to send p to

recipient Y without giving up its reference to p. Instead, p becomes read-only

in all memory spaces. This approach preserves both zero-copy and the O(1)

guarantee. See figure 4.5.

5. Define a new type of KAN endpoint which represents a multicast group. End-

points can ask to join or leave a group; for each group which has at least one

member, there is a circular buffer of packets. When a process attempts to re-

ceive a packet on a given endpoint, if there is a multicast packet available, it

will be returned, and the endpoint’s pointer into the circular buffer will be ad-

vanced. Reference counting will be used to avoid leaking packets (note that the

buffer counts as a reference). When all endpoints have advanced their pointer

past a given packet, it is removed from the buffer. See figure 4.6.

Since the O(1) guarantee is an essential part of PackOS’s design, options 1 and 2

are not really viable. Option 3 would be acceptable, and would impose no extra re-

quirements on the kernel. Option 4, though, provides better performance than option

9



Figure 4.2. Multicast option 1: p gets copied into p′ and p′′.

Figure 4.3. Multicast option 2: p gets mapped into P2 and P3. Numbers in squares
are reference counts.
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Figure 4.4. Multicast option 3: p gets sent to MCS, which copies it into p′ and p′′

and sends them to P2 and P3.

Figure 4.5. Multicast option 4: p gets sent to MCS, which sends it, without copying,
to P2 and P3. Numbers in squares are reference counts.
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Figure 4.6. Multicast option 5: P1 sends p to group G1; P2 receives it; then P3
receives it, whereupon it is no longer in the group queue. Numbers in squares are
reference counts.

3 (by offering zero-copy multicast), and the extra kernel features are not excessive.

Option 5 seems to offer even better performance (by removing the latency of a mul-

ticast server), and preserves both zero-copy and O(1). The design presented here

chooses option 5.

4.2 Context switching

By design, the PackOS kernel knows nothing about processes; processes are man-

aged by the user-space scheduler. Instead, the kernel exposes facilities for creating

contexts, manipulating their memory maps, and switching to them; the scheduler can

use these facilities to provide abstractions such as processes and threads.

There is some natural overlap between packet delivery and context switching.

When sending a packet, the usual behavior is to yield the CPU to the receiving

context, if the recipient is waiting for a packet. The effect is something like the

behavior of rendezvous-based IPC, as in MINIX v3.[17] The scheduler is the main

exception to this behavior; if it yielded the CPU every time it sent a packet, its job

of scheduling processes would be complicated. This exception is not wired into the

kernel; the KAN API allows the sender to specify whether or not to yield.

12



One important lesson that was learned from the prototype is that having a one-

to-one relationship between contexts and KAN addresses is too inflexible. Permitting

multiple contexts to share a single KAN address would be useful in some sorts of

multithreading. For example, a high-performance DNS server might have multiple

threads reading from the same UDP socket; each incoming UDP packet is delivered

to the next thread in a queue, and gets processed by that thread. On the other

hand, permitting a context to have multiple KAN addresses would be useful, too.

For example, PackOS process migration will require Mobile IP[19]; the Mobile IP

home agent will need one KAN address for each process it serves. Accordingly, the

new design has a many-to-many relation among contexts and KAN addresses.

4.2.1 Device access

Context switching must address the question of how device drivers get access to

their hardware. For memory-mapped devices, the answer is simple: the scheduler

configures the MMU to map such a device’s memory range into its driver’s address

space. There are some architectures where accesses to memory-mapped devices have

to be treated differently. For example, MIPS has special-purpose memory ranges

which are hardwired to map to I/O memory, bypassing the cache and the MMU.

The Linux solution to this is to provide inline functions to be used for accessing

devices’ memory ranges; for example, readw() reads a word, writeb() writes a byte.

However, even on MIPS, these functions translate into memory-access operations,

possibly with some remapping. It’s likely that the remapping, when needed, can be

handled up front, by passing the device driver the remapped address of the range. On

most platforms (including x86, PowerPC, and ARM), no such remapping is needed.

However, the x86 presents an unusual problem: the I/O bus. With its pedigree

rooted in Intel’s first CPUs, the x86 has an I/O bus, separate from the memory bus
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and not subject to the MMU.2 On the PC platform, there are various devices that can

be accessed only via the I/O bus. These are mostly the legacy devices, such as PS/2

and serial ports; modern PCI devices rarely require use of the I/O bus.3 However,

those legacy devices include some important functionality; if PackOS is to support

them, drivers will need to be able to access the I/O bus.

MINIX’s solution is to provide system calls to perform I/O instructions, with

appropriate access control. This is a workable solution; it is clearly less efficient than

invoking I/O instructions directly, but it’s more secure. Furthermore, the legacy

devices that require the I/O bus are all relatively low-speed, so inefficiency is less of

a problem than it would be for, say, a Gigabit Ethernet controller.

Another solution is to use the I/O Permission Map feature of the x86’s Task Switch

Segment (TSS), which provides fine-grained control over which I/O ports a process

may use. The designers of MINIX v3 considered this option, but opted against it,

because performance was not their major priority.[17] In addition, Tanenbaum is of

the opinion that the system call approach is superior, because it allows for greater

portability.[43] His point is that, even though non-x86 CPUs don’t have I/O ports, the

kernel could provide I/O ports as an abstraction, mapping I/O accesses to memory

accesses.

PackOS uses the solution based on the I/O Permission Map. The problem with

the portability argument is that it presumes the devices are similar enough to share

driver code. Since non-x86 systems are unlikely to have devices identical to the PC

legacy devices, they are unlikely to be able to share driver code for these devices.

2AMD64 has I/O ports because it’s binary-compatible with IA32, which is binary-compatible
with the 8086, which was source-compatible with the 8080, which was source-compatible with the
8008, which was a successor to the 4004, which had I/O ports to simplify access to the calculator’s
screen and keyboard.

3The PCI spec permits a device to specify I/O and/or memory space, but nearly all devices
which specify I/O space also specify equivalent memory space. As of PCI 3.0, I/O space is strongly
deprecated. [31], pg. 44
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There could, conceivably, be some PCI devices which are available in dual versions,

one that uses only I/O ports and one that uses only memory mapping. Drivers for

these devices would be slightly simplified if the kernel abstracted away the difference

between memory and I/O ports; but PackOS’s design principles dictate that the

kernel be simplified at the expense of these rare drivers.

4.3 Interrupt dispatch

In PackOS, drivers are user-space processes, as in MINIX v3[42] and L4.[3] Drivers

register with the kernel to handle interrupts; when interrupts occur, the kernel delivers

them as packets.

As in most OSes, most drivers need to be separated into top and bottom halves.

In PackOS, the two halves are separate contexts; they may be either processes or

threads, depending on the needs of the driver’s design (Figure 4.7). The bottom half

is required to be built in a loop around a send-and-receive kernel call, which both

sends a packet and blocks waiting for a packet to receive. The bottom half makes

no other kernel calls; if it’s not actively processing an interrupt, it’s waiting for a

packet. When an interrupt occurs, the kernel places an interrupt packet into the

bottom half’s queue and resumes the bottom half. The bottom half manages the

device, extracts whatever extra information the device is trying to send, clears the

interrupt, and sends a packet to the top half. At this point, the kernel knows that

the interrupt has been handled, and it’s safe to reenable interrupts. The top half,

meanwhile, handles requests from other processes, manipulates the device, and reacts

to packets from the bottom half.

One interesting point is that, since the KAN is a best-effort network, there is no

guarantee that packets from the bottom half to the top half will be received; this is

equivalent to dropped interrupts on a more conventional kernel. One way to mitigate

the problem is for the top half to have a separate endpoint, dedicated to receiving
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Figure 4.7. Sending a packet over Ethernet. Dotted lines indicate interaction with
the Ethernet device. peth is an Ethernet packet encapsulated in UDP; pint is a UDP
packet notifying of an interrupt; psent is a UDP packet whereby the bottom half
notifies the top half that the packet has been sent.
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packets from the bottom half. Packets from the kernel to the bottom half, on the

other hand, are always received, because the bottom half never receives any packets

except from the kernel, and never delays in reading them. As a result, its queue never

contains more than one packet.

One driver which may reasonably profit from being placed in kernel space is the

clock. MINIX v3 places its clock driver in the kernel, because clock ticks occur

frequently enough to make the context-switching overhead of a user-space driver pro-

hibitive. The PackOS prototype uses a user-space clock driver, which has proven

to be inefficient; the new design presented here follows MINIX’s lead and adopts a

kernel-space driver.
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CHAPTER 5

THE PROTOTYPE

The initial prototype of PackOS, developed in Spring 2006, as a semester project

for 91.516, ran inside a Linux process, on x86 or PowerPC, using the POSIX function

swapcontext() for context switching.1 (Naturally, this meant it was impractical to

provide memory protection.) This version had the following functionality:

1. Unicast KAN.

2. An API for implementing IPv6 interfaces.

3. An IPv6 API, based on the interface system.

4. An IPv6 interface based on the KAN.

5. An IPv6 interface for exchanging packets with the outside world via shared

memory.

6. The Linux side of the shared-memory-based network interface.

7. A router process, to route packets between the KAN and the outside world.

8. ICMP, UDP, TCP.

9. A basic user-space scheduler.

10. Interrupt handling.

1It was also tried on ARM, but the ARM Linux in question turned out not to support
swapcontext().
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11. A clock interrupt service.

12. A basic file access API, with filesystem drivers.

13. A filesystem driver for a simple file sharing protocol.

14. A Linux-based file server.

15. An API to enable schedulers to provide timer services.

16. An API for requesting timer services.

17. A basic HTTP/1.0 server.

In Summer 2006, it was ported to run on raw hardware.2 The x86-based PC

platform was chosen, partly because it was most available, partly because it meant it

would be easier to compare PackOS to other OSes, which are generally available for

x86. By the end of the summer, PackOS was running on PC hardware, in protected

mode, but still with no context switching; all processes ran in the same memory space,

and all code was linked into a single binary.

In Fall 2006, basic PCI support was added, after which work was begun on sepa-

rate memory spaces. This work uncovered a serious problem in the implementation

strategy: because the original PackOS code had been written to run in a single mem-

ory space, there were global variables that spanned processes. Various solutions were

tried:

1. Eliminate the cross-process globals. This proved to be an enormous amount of

work; they were woven too deeply into the code.

2Actually, most development was done under QEMU[5]; but frequent testing was done on actual
hardware.
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Figure 5.1. Functionality in the prototype, presented as classes. (The prototype
is in C, but much of the user-space code is organized as pseudoclasses.) Boxes with
dashed lines represent kernel functionality. Arrows indicate inheritance; circles indi-
cate association; dashed lines indicate network communication.

2. Share the ELF data segment between processes, so that all global variables

will be shared. This supported sharing of the variables that needed it; but, of

course, it made for weaker memory protection, which was unsatisfactory.

3. Copy the initial values of the ELF data segment into each new process, so that

no global variables will be shared. This preserved memory protection, but ran

afoul of the global variables which actually needed to be shared. This last was

what really brought home how extensive the problem was.

In January 2007, the decision was made that converting the PackOS code base

to run in protected memory was just not going to be feasible in the time available;

instead, the prototype would have to be finished without protection.

As of April 2007, PackOS has the following functionality:
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Figure 5.2. Processes in the prototype.

1. Unicast KAN.

2. An API for implementing IPv6 interfaces.

3. An IPv6 API, based on the interface system.

4. Multicast support for interfaces (not implemented for the KAN).

5. An IPv6 interface based on the KAN.

6. A basic user-space scheduler.

7. Interrupt handling.

8. A clock interrupt service.

9. PCI device discovery.

10. Generic Ethernet support.

11. IPv6 over Ethernet.

12. A device driver for the Realtek RTL8139 PCI Ethernet interface.3

13. A router process, to route packets between the KAN and the Ethernet.

3The RTL8139 was chosen because it was available in QEMU, and because RTL8139-based PCI
cards were cheap.
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14. UDP, TCP, ICMP (with basic NDP[30]).

15. A basic file access API, with filesystem drivers.

16. A filesystem driver for a simple file sharing protocol.

17. A Linux-based file server.

18. An API to enable schedulers to provide timer services.

19. An API for requesting timer services.

20. A basic HTTP/1.0 server.
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CHAPTER 6

ORIGINAL GOALS

The primary goal was to study PackOS and see where it lies on the continuum of

tradeoffs among performance, flexibility, and reliability. PackOS emphasizes flexibil-

ity over performance; its design should make it more flexible than MINIX v3, which

emphasizes reliability.[17] For example, in order to prevent unauthorized operations,

MINIX v3 maintains an access control list for each process, specifying which drivers

and servers the process is permitted to communicate with. This prevents certain large

classes of failure, but at the cost of flexibility: the ACL is maintained as a bitmap,

meaning that the very semantics of the kernel embody knowledge of specific drivers

and servers. This may be expected to complicate the task of developing novel drivers.

Unlike MINIX v3, which was derived from MINIX v2[17], L4 was designed from

scratch.[21] Perhaps as a result, the L4 kernel does not embody knowledge of specific

servers, so L4 is a more flexible basis for OS development than MINIX v3. PackOS

should be at least as flexible as L4: all of the capabilities which L4 offers in the kernel

can be replicated in user space on PackOS. For example, L4 has in-kernel support

for nested pagers, in which a pager responsible for memory range R can delegates

responsibility for a subrange S ⊂ R to another pager. Since PackOS’s paging logic

lives entirely in user space, this sort of capability can be provided if desired.

PackOS’s design does not focus on reliability. It should be possible to build a reli-

able system on PackOS, but it does not offer as much in-kernel support for reliability

as does MINIX v3. For example, PackOS’s KAN has no notion of access control; any

process may send any packet to any other process. However, MINIX v3 does have

23



some features, not present in PackOS, that may detract from reliability. MINIX v3’s

synchronous IPC may be subject to denial of service and other vulnerabilities;[37]

and its drivers and servers are permitted to access the memory space of their callers,

which is a significant risk. (It’s a performance feature, of course, to reduce memory

copying. Mach[35], L4[21], and PackOS solve the problem by using the MMU to

provide zero-copy IPC.) L4 also has synchronous IPC, but it does not have (or need)

drivers which can access their callers’ memory.

Similarly, PackOS’s design does not focus on performance. The retransmissions

implicit in its best-effort KAN may make for poorer performance than the IPC of L4

and MINIX v3. However, in a clustered environment, it may be possible to build a

faster system with PackOS than with systems which require IPC gateways to bridge

the network.[4]

Unfortunately, due to the setbacks described above, PackOS is still not sufficiently

mature to support the sort of experimentation which would answer these questions.

To make meaningful comparisons to other microkernels, it will be necessary to finish

the implementation. Since the implementation is trapped in a cul-de-sac, a fresh

implementation is required, ideally one whose design is informed by the lessons learned

from the prototype.
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CHAPTER 7

LESSONS LEARNED

The experience of the prototype teaches several lessons:

1. Include memory protection from the start.

2. PackOS needs threads.

3. Separate user and kernel binaries.

4. DMA is dangerous.

5. The kernel should include a clock.

7.1 Include memory protection from the start.

The original version of the prototype could not have memory protection, since

it ran in user space under Linux. Further, it did not have separate data segments

for separate processes; all processes were linked into the same binary. As a result,

certain crucial libraries had state which crossed PackOS process boundaries. This

unfortunate condition remained when PackOS was ported to x86. Once memory

protection was added, it turned out that large amounts of user-space code needed to

be rewritten to permit applications to function.

The second implementation of PackOS will have to start out as a kernel with

protected memory, even before other features are added.
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7.2 PackOS needs threads.

In the prototype, all processes are single-threaded. As a result, every process

has a familiar event-driven design: a main loop, polling for incoming packets. Even

the canonical “Hello, World!” program would have to have such a loop: it would

open a TCP connection to a “print on the screen” server, and then would need to

poll for packets, so that the TCP stack could get its traffic.1 This has proven to

be an unreasonably difficult model to work with. The new design, with a many-to-

many relationship among contexts and KAN addresses, will permit multithreaded

processes. In this model, one thread will read from the KAN and run the TCP stack;

other threads will then be able to use TCP sockets in a conventional I/O model,

blocking until the TCP thread notifies them that their I/O has completed.

7.3 Separate user and kernel binaries.

In the prototype, all code is linked into the same executable. This was a natural

approach for the original implementation, in which processes were user-space Linux

threads; but, once memory protection was added, it proved to be a hindrance, since

there was no strong separation between code expected to run in kernel space and

code expected to run in user space. In the second implementation, PackOS should

have separate binaries from the start. Note that this does not require the kernel to

understand the executable format (e.g., ELF[45]); the loader which does understand

the format can live in userspace. This loader will have to be bootstrapped by including

its code in the kernel, but it will not run in the kernel.

1In PackOS, since every process is an IPv6 host, every process has its own TCP stack.
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7.4 DMA is dangerous.

One of the original goals of PackOS was to ensure that device drivers did not

need to be trusted; they would have no special access to anything other than their

respective devices.

Unfortunately, with much existing hardware, that turns out to be impossible,

because DMA does not go through the CPU’s MMU. For example, the RTL8139

Ethernet device allows the driver to specify a physical memory address into which

to write incoming Ethernet packets. A malicious driver could specify the address of

sensitive information, and get it overwritten.

It would be possible to minimize this problem via a trusted intermediary. All

writes to PCI registers would have to run through the intermediary, which would

then block inappropriate values from being written to registers which specified DMA

addresses. Of course, for this to work, the intermediary would have to know the

details of all supported devices.2 That is probably infeasible. In addition, using TCP

for all PCI writes may be a performance bottlneck.

It appears that this risk is intrinsic to all operating systems which use DMA. It

would be possible to solve the problem in hardware; for example, the PCI bus could

be modified to require all DMA operations to target a reserved area of memory. Then

the memory management system would avoid allocating memory out of the reserved

area except when it was specifically requested. As a refinement, the DMA area could

be specified in software; the memory management system would be the only process

with access to the PCI registers specifying the DMA area.

Since this problem cannot be solved in software, the new design does not address

it. However, it is noted here because the prototype ran into trouble with it, and it’s

worth remembering when developing the second implementation.

2Obviously, those details cannot be obtained from the drivers: a malicious driver would just have
to declare that the device doesn’t use any DMA addresses.
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7.5 The kernel should include a clock.

The PackOS design dictates that every interrupt should be handled by a minimal-

ist kernel-space ISR, which simply sends a UDP packet to a registered address, to be

handled by a user-space context. In the prototype, this is what happens. However, in

the case of the clock interrupt, this turns out to be prohibitively expensive. Delivering

ticks to the scheduler works well enough; but the scheduler is not the only process

which needs a clock. In particular, every process which uses TCP needs a clock, to

handle retransmissions. In the prototype, this is done via a protocol for requesting

timer messages from the scheduler. This works, after a fashion; but it has two major

limitations. The first is an unavoidable bootstrap problem: since the timer protocol

has no other timer mechanism to rely on, it cannot use retransmissions, which means

that, if the system is busy when a context submits its timer request, the request

packet may be dropped.

The second limitation is one of performance: the timer protocol is so inefficient

that all TCP-based connections in the system suffer. A more pragmatic approach

would be to move the clock interrupt handler into the kernel, and replace the timer

protocol with a few extra system calls. Timer notifications would still be delivered as

packets; but, if the notification protocol were designed properly, all timer notifications

could be the same packet, avoiding the overhead of packet allocation. (Obviously, this

would require the reference counting mechanism proposed for multicast.)
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CHAPTER 8

DESIGN

The design has to cover both the kernel and how it is used; i.e., the essential parts

of user space:

1. Kernel services

2. Process scheduling

3. Memory management

4. Threading

5. IPv6 interfaces

6. UDP

7. TCP

8. IPv6 routing

9. Multicast

10. File systems

11. Service discovery
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8.1 Kernel services

Any kernel can be described in terms of the services which it offers to user space.

The revised PackOS will oferr:

1. The KAN

2. Interrupt dispatch

3. Context switching

4. A clock

Kernel calls will be described in a pseudo-C syntax. Error reporting is elided

for clarity. In the prototype, every function call (kernel or user-space) takes a

PackosError*; this avoids the multithreaded risks of POSIX errno, at the cost of

adding complexity to each call. In the new implementation, user-space code may be

written in C++, in which case error reporting may be performed via exceptions.

8.1.1 KAN

The revised KAN will be much the same as the original, with two major exceptions:

it will support reference-counted packets, in order to permit multicast (as described

in 4.1, page 7), and endpoints will be decoupled from contexts, in order to support

threading and Mobile IP (as described in 4.2, page 12). A further change necessary

for multicast is that KAN packets will no longer have a KAN header. In the unicast-

only prototype, the KAN header carries the source and destination address; but, in

a multicast world, the destination address has to be different for each recipient. So,

instead, the KAN will carry address information out of band.

The KAN-related kernel calls will be:

1. Endpoint NewEndpoint(void)

Creates a new KAN endpoint.
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2. void DeleteEndpoint(Endpoint e)

Deletes a KAN endpoint.

3. Address GetEndpointAddress(Endpoint e)

Gets the IPv6 address of a KAN endpoint.

4. String SerializeEndpoint(Endpoint e)

Serializes the given endpoint, to pass to another process.

5. Endpoint DeserializeEndpoint(String s)

Deserializes an endpoint received from another process.

6. void AllocatePacket(void)

Allocate a page-aligned packet.

7. void ReleasePacket(Packet p)

Release a page-aligned packet, so that it can be deallocated.

8. void SendPacket(Endpoint e, Packet p, Address dest,

Boolean alsoRelease=true, Boolean yieldToRecipient=false)

Send a packet to another process.

9. Packet ReceivePacket(Endpoint e, Address* src)

Receive a packet (blocking).

10. Packet SendAndReceivePacket(Endpoint e, Packet p,

Address dest, Address* src, Boolean alsoRelease=true,

Boolean yieldToRecipient=false)

Send a packet, then block waiting for a received packet.

11. Boolean CheckForPendingPackets(Endpoint e)

Check whether there are any packets in the endpoint’s incoming queue.
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NewEndpoint() will create a new KAN endpoint. The Endpoint which is re-

turned is a capability, analogous to a POSIX file descriptor. It can be passed

from one context to another as a byte string, by using SerializeEndpoint() and

DeserializeEndpoint(). DeleteEndpoint() deletes an Endpoint. Note, though,

that DeserializeEndpoint() constructs a new Endpoint, a new capability for the

same KAN endpoint, meaning that, if there are other Endpoints referring to the

same KAN endpoint, the KAN endpoint will not be deleted. By way of illustration,

consider the following pseudocode:

Endpoint e1=NewEndpoint()

String s=SerializeEndpoint(e1)

Endpoint e2=DeserializeEndpoint(s)

DeleteEndpoint(e1)

At the end of this sequence, e2 is valid, but e1 is not.

AllocatePacket() will allocate a page-aligned packet out of a global pool, with

a reference count of 1.1 ReleasePacket() will decrement the reference count of the

specified packet; if the count drops to 0, the packet will be deleted.

SendPacket() will send the given packet over the KAN, from the given endpoint,

to the given destination address. First, the destination address is checked; if there is

no endpoint with that address, or if the endpoint’s receive queue is full, an error is

returned. Next, the packet is marked read-only. Then, it is placed into the recipient

endpoint’s packet queue (annotated with the source address), and its reference count

is incremented. If alsoRelease as true, the reference count will then be decremented,

exactly as if ReleasePacket() had been called. Finally, if yieldToRecipient is true,

1To prevent global resource-starvation attacks, no context may have more than a certain number
of packets mapped into its memory space.
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the sender will then yield its timeslice to the recipient. (Obviously, the order of these

operations is significant.)

ReceivePacket() returns a packet from the specified endpoint’s queue. If src

is non-null, it will be filled out with the sender’s KAN address. As described under

SendPacket(), the packet will be read-only. If the queue is empty, ReceivePacket()

will block until a packet is available. If multiple contexts are blocking on the same

endpoint, exactly one will return when a packet is available; which one is not de-

fined. This behavior is similar to the POSIX standard behavior for read()ing from

a datagram socket.

SendAndReceivePacket() can be thought of as SendPacket() followed by

ReceivePacket(). The difference is that SendAndReceivePacket() is a single ker-

nel operation, so there is no intermediate state between send and receive. This is

important for the bottom halves of device drivers.

CheckForPendingPackets() returns true if, and only if, there is a packet in the

specified endpoint’s queue.

8.1.2 Interrupt dispatch

1. void RegisterForInterrupt(int interrupt, Address, int udpPort)

Requests the kernel to send interrupt packets for the given interrupt to the

given address and port.

2. void UnregisterForInterrupt(int interrupt)

Requests the kernel not to send interrupt packets for the given interrupt.

These calls manage interrupt handlers. RegisterForInterrupt() specifies that,

when the given interrupt occurs, the kernel should deliver a UDP packet to the given

address, at the given UDP port. If there is already a handler registered for the given

interrupt, it will report an error.
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Only the scheduler can make these calls; other processes must request the sched-

uler to do so on their behalf. This permits the scheduler to implement whatever

access control policy is desired.

8.1.3 Context switching

A context is a processor state, which can be activated to resume a thread of

control. In the prototype, the data structure for a context contains the memory map

for that context, rather than a reference to the map. This means that no two contexts

may share the same memory map, which prevents the prototype from supporting

threads. In the new design, the data structure for a context contains a reference to

its memory map; many contexts may use the same memory map, in which case they

act as multiple threads in the same context. Memory maps are reference counted,

and may not exist apart from contexts; when the last context using memory map M

is deleted, M is deleted. Endpoints (above) are associated with memory maps, not

contexts, so that they can be shared among threads in the same process.

Task State Segments

The x86 Task State Segment (TSS) contains the process’s memory map, I/O

permissions map, and some other information. In the prototype, there is one TSS

per context. The alternative is to have just one TSS for the system, and modify it on

context switches. One per context was slightly simpler to implement, but the general

consensus is that it doesn’t scale very well. In new design, there should probably be

just one TSS for the system.

Yielding the processor

1. void Yield(Boolean block=false)

Yield the processor to the scheduler; block the current context if block is true.
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2. void YieldToContext(Context context, Boolean block=false)

Yield the processor to the given context; block the current context if block is

true.

3. void UnblockContext(Context context)

Unblock the given context.

YieldToContext() yields the processor to the specified context. The scheduler

uses it when it grants a timeslice; other contexts use it in implementing in-process

mutexes. When thread A holds mutex X, and thread B requests X, then B must

block. If A is not blocked, then B will yield to A, in the hopes of getting access to X

sooner.

Yield() yields the processor to the scheduler; it’s analogous to the POSIX call

sched yield().

Both these calls have an optional parameter block; if block is true, then the

calling context’s user-space block flag is set. YieldToContext(c) clears c’s user-

space block flag, as does UnblockContext(c). This flag is used by the synchronization

system, to ensure that the scheduler doesn’t yield the processor to a thread which is

blocking on a mutex or condition variable.

YieldToContext() and UnblockContext() may not refer to a context which does

not share the same memory map as the caller, unless the caller is the scheduler.

Manipulating contexts

These functions are not actually kernel calls, but they are a necessary part of the

kernel’s interface. They are implemented in a user-space library used by the scheduler.

The Context structures live in the scheduler’s user space, but are accessible to the

kernel. The scheduler manipulates the Contexts; the kernel uses the information in

the Contexts to determine how to configure the processor. For example, the page

mappings added with AddMapping() get translated into TLB entries.
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1. Boolean IsBlocked(Context context)

Is the given context blocked?

2. Context NewContext(void* logicalStartAddr, String args[])

Create a new Context.

3. Context CloneContext(Context context)

Clone the given context (as in the Linux system call clone(2)).

4. void DeleteContext(Context context)

Delete the given context.

5. Mapping AddMapping(Context context, void* logicalAddr,

void* physicalAddr, int numBytes, Boolean readOnly)

Add an address mapping to the given context.

6. void DeleteMapping(Mapping mapping)

Delete an address mapping from its context.

7. void GrantIOPorts(Context context, int from, int to)

Grant the given context permission to read/write the given range of I/O ports

(x86 only).

8. void DenyIOPorts(Context context, int from, int to)

Deny the given context permission to read/write the given range of I/O ports

(x86 only).

IsBlocked() tests whether the given context is blocked (either because it’s block-

ing in ReceivePacket() or because its user-space block flag has been set). This is

for the use of the scheduler, so that it won’t yield to blocked contexts.
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NewContext() creates a context from scratch, with a new memory map, containing

no Endpoints, and with its program counter initialized to logicalStartAddr2 and

its arguments (equivalent POSIX argv and argc) equal to args.

CloneContext() creates a new context which is a clone of an existing one. The

clone has the same memory map, which means it has the same Endpoints. It also

has the same register values. This is intended for use with threading.

DeleteContext() deletes the specified context. If the context’s memory map is

no longer in use, it will be deleted, along with all Endpoints it contains.

AddMapping() creates a mapping for the given addresses. If numBytes is not a

multiple of the page size, or if the specified logical range overlaps an existing mapping

in the specified context, an error will be reported. A Mapping reference is returned,

which can be used later with DeleteMapping(), which removes the given mapping

from the memory map where it lives.

GrantIOPorts() and DenyIOPorts() are x86-specific functions; on other archi-

tectures, they report an error. They grant, or deny, respectively, the specified context

permission to access the specified range of I/O ports.

8.1.4 Clock

1. int RequestTicks(int ms)

Ask the kernel to send clock-tick packets.

2. int GetTime(void)

Get the current time.

RequestTicks() asks the kernel to send a tick packet every ms milliseconds, or

the system-specific minimum, whichever is higher. It will return the value actually

2Note that, since no mappings have been added yet, logicalStartAddr is guaranteed to be
invalid. That’s fine; it could be a reasonable strategy to defer creating any mappings for a context
until it gets a timeslice.
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used. Each time RequestTicks() is called, it overwrites the value previously set.

RequestTicks(0) means “do not send tick packets”.

GetTime() is identical to POSIX’s time(0): it returns the current time, in seconds

since midnight UTC, 1 January 1970.

8.2 Process scheduling

8.2.1 Exposed interfaces

Naturally, a wide variety of scheduling policies are possible, which suggests that

there could be a wide variety of schedulers to install. However, for other processes to

interact with the scheduler (e.g., to launch new processes), there must be a standard-

ized set of services offered by all schedulers. To express them, again, in pseudo-C:

1. Process ForkProcess()

Create a new process running the same program, as in POSIX fork(2).

2. void KillProcess(Process)

Kill the given process.

3. void Exec(String program, String args[])

Run the given program.

4. typedef void* (*ThreadFunc)(void* arg)

The type of function run in a thread.

5. ThreadHandle NewThreadHandle(ThreadFunc f, void* arg)

Create (and run) a new thread.

6. void KillThreadHandle()

Kill the given thread.
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7. void SetNotificationThreadHandle(ThreadHandle handle,

Boolean isNotification) Set the “notification handler” flag on the given

thread.

8. typedef void (*ThreadHandleDestructorMethod) (ThreadHandle handle,

void* userdata)

Function run when a thread exits.

9. ThreadHandleDestructor AddThreadHandleDestructor(

ThreadHandle handle, ThreadHandleDestructorMethod f,

void* userdata)

Add a destructor to a thread.

10. void RemoveThreadHandleDestructor( ThreadHandleDestructor

destructor)

Remove a destructor from a thread.

On the other hand, all schedulers must be able to send certain standardized mes-

sages to other processes. In pseudo-C:

1. typedef enum { Interrupt, IllegalInstruction, BusError,

SegmentationViolation, FloatingPointException} Signal

2. Process NotifyProcess(Signal)

First we must define “process” (as explained before, the kernel only knows about

contexts). In this interface, a process is a bundle of contexts which share the same

memory map. A ThreadHandle is simply an identifier for a context.

ForkProcess() is analogous to POSIX fork(); the scheduler is required to con-

struct a new context, with a new memory map copied from the caller’s, and with a

new IPv6 address. The new context, when it first gets a timeslice, will start out by

returning from ForkProcess(), with a null return value.
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On the other hand, KillProcess() is not directly analogous to POSIX kill(),

which can deliver an arbitrary signal. It’s more like kill(9): it directs the scheduler

to delete the given process, without giving it any further timeslices. The closest ana-

logue to kill() is NotifyProcess(), which sends a process a network message. If a

process wishes to receive such notifications, it reserves a thread which will be respon-

sible for processing incoming packets, and uses SetNotificationThreadHandle()

to set that thread’s “notification handler” flag.3 When an exception (e.g., segmen-

tation violation) occurs, the scheduler receives an interrupt packet from the kernel,

and checks the current context’s “notification handler” flag. If it is set, the current

context is killed, as are all threads which share memory maps with it; otherwise, a

Signal message is sent to the current context’s primary KAN address (the first one

created when the context was created).

AddThreadHandleDestructor() is used to specify a destructor for a thread. A

ThreadHandleDestructorMethod is a pointer to a function to run; a

ThreadHandleDestructor is a reference to a destructor method specified on a par-

ticular thread. If the need for the destructor passes before the thread exits, then the

thread passes the ThreadHandleDestructor to RemoveThreadHandleDestructor()

to remove the destructor. When a thread is killed (or exits normally), all destructors

are run; each method is passed the handle of the thread and the userdata pointer

specified in the call to AddThreadHandleDestructor().

Note that thread destructors are important for ForkProcess(): they are used to

clean up user-space resources (e.g., the data structures for a TCP connection) which

do not make sense in multiple processes. The thread destructors are run in the new

process.

3The initial value of the notification handler flag is always false.
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Exec() is analogous to POSIX exec(): it discards the calling process’s state

(including all threads but one) and launches a new program, identified by the program

string argument. How that program is identified is specific to the scheduler. It might

be a filename, as in Unix; but it might also be a URI, in a Web-centric operating

system, or a simple name, in an embedded system.

The threading functions are fairly basic; they express manipulations which the

scheduler is to perform on Contexts. For higher-level threading operations, see the

in-process thread API, below. NewThreadHandle() creates a thread in the same

process, via CloneContext(). The new thread will start by calling the specified

ThreadFunc. No join functionality is provided in this interface, because it can be

implemented in-process (see Synchronization API, below). KillRawThread() asks

the scheduler to terminate the specified thread: invoke its destructors, remove it

from the scheduling queue, and delete the Context.

8.2.2 Default scheduling policy

The basic scheduler implementation can get by with just a round-robin scheduling

algorithm. The other functionality of the scheduler should be isolated into libraries,

so that it can be shared among schedulers with different scheduling policies.

8.3 Memory management

Memory management is performed by the scheduler, which needs to provide other

processes with memory management services, which must be standardized, just as

with with process management:

1. SegmentHandle NewSegment(int size, Boolean expandDownwards)

Creates a new segment of virtual memory of the given size. expandDown-

wards indicates whether resizing the segment moves its lower bound or its upper

bound.
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2. void DeleteSegment(SegmentHandle)

Deletes an existing segment of virtual memory.

3. int ResizeSegment(SegmentHandle, int newSize)

Resizes an existing segment of virtual memory. Returns the new size of the

segment (which may be greater than newSize, for example because the requested

size was not page-aligned). Note that a shareable segment may not be resized.

4. (String,String) ShareSegment(SegmentHandle)

Makes the given segment shareable. Returns a pair of character strings, capa-

bilities which can be passed to AttachSegment(), below. The first string is a

capability which will provide a read/write segment; the second will provide a

read-only segment.

5. SegmentHandle AttachSegment(String)

Attaches the given segment to the current context’s memory map.

6. void DetachSegment(SegmentHandle)

Detaches the given segment from the current context’s memory map.

There are a few client-side functions which can extract information from a

SegmentHandle without incurring a round trip to the scheduler:

1. void* GetSegmentAddress(SegmentHandle)

Gets the base address of the segment (in the current memory map, that is; a

shared segment may be at different addresses in different maps).

2. int GetSegmentSize(SegmentHandle)

Gets the size of the segment, in bytes.

3. Boolean GetSegmentExpandDownwards(SegmentHandle)

Gets the segment’s expandDownwards flag.
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4. Boolean GetSegmentShareable(SegmentHandle)

Returns true iff the segment is shareable.

5. Boolean GetSegmentWritable(SegmentHandle)

Returns true iff the segment is writable.

8.4 Threading

Threads are the user-space view of contexts; for each thread in a process, there

is a corresponding Context in the kernel (and in the scheduler). In some operating

systems, a thread would imply a kernel stack; in PackOS, there are no kernel stacks.

The purpose of a kernel stack is to save state when a kernel call is interrupted; in

PackOS, that never happens. Instead, all kernel functionality is kept simple enough

that every kernel call completes in O(1) time. As a result, PackOS kernel threads

are cheap enough that there is no need to map N user threads onto M < N kernel

threads.

8.4.1 Thread API

1. Thread NewThread(ThreadFunc f, void* arg)

Create and start a new thread.

2. void KillThread(Thread t)

Stop the given thread.

3. void* JoinThread(Thread t)

Join the given thread: wait for it to stop, then return the result returned from

its ThreadFunc. If two join calls are made on the same thread, only one of them

reports success.
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4. void YieldToThread(Thread t, Boolean block=false)

Stop running and allow the given thread to run. If block is true, the calling

thread will be blocked.

5. void UnblockThread(Thread t)

Unblock the given thread.

These functions are used in user-space processes to manage multithreading. They

are built on top of the more basic thread functionality exposed by the scheduler, as

described in 8.2.1.

JoinThread() can be implemented by associating a mutex with each thread.

When the thread starts, the mutex is locked; on exit, the thread stores its return

value and unlocks the mutex. JoinThread() attempts to lock the mutex; when it

gets the mutex, it reads the return value, clears it, and unlocks the mutex. This will

provide the guarantee that no two threads joining on the same thread will return

nonzero results.

YieldToThread() and UnblockThread() are thin wrappers around

YieldToContext() and UnblockContext(), respectively.

8.4.2 Synchronization API

Note that this API is for synchronization among threads in the same process.

Synchronization across process boundaries can be performed via any of a variety of

distributed locking protocols.[18][44][40][41]

1. Mutex NewMutex(void)

Create a new mutex.

2. void Lock(Mutex)

Lock a mutex.
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3. void Unlock(Mutex)

Unlock a mutex.

4. void DeleteMutex(Mutex)

Delete a mutex.

5. Condition NewCondition(void)

Create a condition variable.

6. void Wait(Condition)

Wait on a condition variable.

7. void Broadcast(Condition)

Broadcast a condition variable.

8. void Signal(Condition)

Signal a condition variable.

9. void DeleteCondition(Condition)

Delete a condition variable.

These synchronization primitives are designed around the usual meanings of “mu-

tex” and “condition variable”. Mutexes are taken to be reentrant. All these primitives

can be implemented with the threading API and atomic operations such as Compare-

AndSwap.

8.5 IPv6 interfaces

An IPv6 interface is, essentially, an object. As such, it can be expressed more

cleanly in terms of pseudo-C++ than pseudo-C:

class Interface {

protected:
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// Implemented by subclasses; reads the next incoming packet.

virtual Packet Receive()=0;

public:

// Send the given packet on this interface.

virtual void Send(Packet)=0;

// Join/leave the specified multicast group.

virtual void JoinMulticastGroup(Address a)=0;

virtual void LeaveMulticastGroup(Address a)=0;

// Objects to handle incoming packets.

class Handler {

public:

// Returns true if the packet has been handled.

virtual Boolean handle(Packet)=0;

};

// Add/remove a packet handler.

void AddHandler(Handler);

void RemoveHandler(Handler);

// Get the address to which this interface is bound.

Address GetAddress();

// Get the address mask for the addresses to which this

// Interface can send.

AddressMask GetAddressMask();
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// Of all the Interfaces existing in this process, find the

// one (if any) which should be used to send to the given

// address.

static Interface* FindForSend(Address dest);

// Find the Interface, if any, with the given address.

static Interface* Find(Address local);

};

A Handler is an object to handle incoming packets. Each Interface has a chain

of Handlers; each packet received is passed to each Handler’s handle() method in

turn, until one of them returns True (meaning, yes, it has been handled). Handlers

are used to implement firewalls (analogous to Linux ipchains), and also to permit

upper-layer protocols such as TCP to intercept incoming IP packets. There is no

receive functionality other than Handlers, because none is needed.

8.6 UDP

In pseudo-C++:

class UDPSocket {

Condition received;

list<UDPPacket> incomingQueue;

public:

// Constructor: bind to the given port, on all interfaces.

UDPSocket(int port=0);

// Constructor: bind to the given port, on the given address.
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UDPSocket(Address interface, int port=0);

// Block until a packet has been received on this socket; then

// return the packet.

UDPPacket receive();

// Send the given packet.

void send(UDPPacket);

};

The UDP stack installs a Handler into each Interface, which watches for packets

with UDP headers. There is also a per-interface registry of UDPSockets; when a UDP

packet arrives, it is delivered to the correct UDPSocket, if any. (If there is no such

socket, the UDP stack sends an ICMP Connection Refused packet, and the incoming

packet is dropped.) The packet is placed into the socket’s incomingQueue, and the

received condition variable is signalled.

Note that a UDPPacket includes the source and destination addresses and ports.

8.7 TCP

In pseudo-C++:

class TCPSocket {

Condition received;

list<byte> incomingQueue;

public:

// Constructor: bind on the given port, on all interfaces.

TCPSocket(int port);
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// Constructor: bind on the given port, on the given address.

TCPSocket(Address interface, int port);

// Constructor: create an unbound socket.

TCPSocket();

// Destructor: close the socket.

~TCPSocket();

// Connect to the given address.

void connect(Address remote, int port);

// Listen for connections.

void listen();

// Return the next available connection. If non-blocking has

// not been set, blocks until a connection is available.

TCPSocket accept();

// Read from a connected socket. If non-blocking has

// not been set, blocks until nbytes have been read.

int read(void* buff, int nbytes);

// Write to a connected socket. If non-blocking has

// not been set, blocks until nbytes have been written.

int write(const void* buff, int nbytes);
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// Set the socket’s non-blocking flag (defaults to false).

void setNonBlocking(Boolean);

// Get the socket’s non-blocking flag.

Boolean getNonBlocking();

// Is this socket connected?

Boolean isConnected();

// Is there any data available for read?

Boolean canRead();

// Is there available buffer space for a write?

Boolean canWrite();

};

The TCP stack installs a Handler into each Interface, which watches for packets

with TCP headers. There is also a per-interface registry of TCPSockets; when a TCP

packet arrives, it is processed by the correct socket’s state machine.[34] (If there is no

such socket, the TCP stack sends a appropriate ICMP packet. This will Connection

Refused if the packet has the SYN flag set, or Connection Reset otherwise. If there is

a socket, but it’s in the TIME WAIT state, a Connection Reset packet will be sent.

In any of these cases, the incoming packet will be dropped.) When data emerges

from the state machine, it is enqueued into the incomingQueue, and the received

condition variable is signalled.
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8.8 IPv6 routing

A Router is an object which monitors two or more Interfaces and forwards

packets as appropriate. The monitoring is done via Handlers, meaning that a Router

may not need its own thread.

class Router {

set<Interface> interfaces;

public:

// Add an interface to the set routed among.

void AddInterface(Interface);

// Remove an interface from the set routed among.

void RemoveInterface(Interface);

// Add a route.

void AddRoute(AddressMask,Interface);

// Add a route.

void RemoveRoute(AddressMask,Interface);

};

Of course, in itself, this API supports only static routes. Routing protocols such

as BGP[36] and MLD[11] are handled by higher-level libraries, which feed routes to

a Router.4 For example:

class BGPSession {

4An alternate design would be for a BGP-enabled router to be implemented by a subclass of
Router. However, when more than one routing protocol is needed, this leads to the complexities of
multiple inheritance.
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Router router;

TCPSocket conn;

public:

BGPSession(Router, Interface, Address peer);

void run();

};

The BGPSession would run in a thread of its own, reading from and writing to

its TCPSocket, and feeding information to the specified Router.

8.9 File systems

Files and file systems can be expressed cleanly in pseudo-C++. A FileSystem

is essentially a factory[14] constructing Files; at the same time, a File is a factory

constructing OpenFiles, which are used for actual file I/O. (A File can also be used

to access file metadata.)

class FileSystem {

public:

// Is it possible to write to this filesystem?

Boolean isWritable() const;

// Look up a file in this filesystem.

virtual File* getFile(const char* path)=0;

};

// Refers to a file (or directory) in a filesystem,

// not necessarily open.

class File {
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public:

// Open this file; return a new FileHandle.

virtual FileHandle* open(Boolean forRead, Boolean forWrite) const=0;

// Delete this file.

virtual void delete()=0;

// How many bytes in this file?

virtual int length() const=0;

// Is this file readable?

virtual Boolean isReadable() const=0;

// Is this file writable?

virtual Boolean isWritable() const=0;

// Make this file readable.

virtual void setReadable(Boolean readable)=0;

// Make this file writable.

virtual void setWritable(Boolean writable)=0;

// Is this file a directory?

virtual Boolean isDirectory() const=0;

// Get this file’s containing directory.

virtual File getParent() const=0;
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// Get the time this file was created.

virtual Time getCreationTime() const=0;

// Get the time this file was last modified.

virtual Time getModificationTime() const=0;

// Get the time this file was last accessed.

virtual Time getAccessTime() const=0;

// Get the files in this directory.

virtual Iterator<File> getDirectoryChildren()=0;

// Truncate the file at given size.

virtual void truncate(int size)=0;

// Get the filesystem on which this file exists.

FileSystem& getFileSystem() const;

};

// Refers to an open file (not directory) in a filesystem.

class FileHandle {

public:

// Get the file from which this FileHandle was opened.

File& getFile() const;

// Destructor: Close this file.
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~FileHandle();

// Read from the file.

virtual int read(void* buff, int nbytes)=0;

// Write to the file.

virtual int write(const void* buff, int nbytes)=0;

// Truncate the file at the current position.

virtual void truncate()=0;

// Move the current position.

virtual void seek(int pos)=0;

// Get the current position.

virtual int tell()=0 const;

// Is this file readable?

virtual Boolean isReadable() const=0;

// Is this file writable?

virtual Boolean isWritable() const=0;

// Is this file in nonblocking mode?

virtual Boolean isNonBlocking() const=0;

// Set this file’s nonblocking flag.
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virtual void setNonBlocking(Boolean)=0;

};

The details of how one gets a FileSystem in the first place are specific to the

underlying filesystem protocol. For example, if one needs access to an NFS[39] filesys-

tem, one might use an NFSFileSystem:

class NFSFileSystem: public FileSystem {

public:

NFSFileSystem(const char* hostname,

const char* remotePath,

Boolean writable,

int uid);

virtual File* getFile(const char* path);

};

To manage all filesystems available to a process, one might use an

OverlayFileSystem:

class OverlayFileSystem: public FileSystem {

public:

void mount(FileSystem&, const char* mountPoint);

void unmount(FileSystem&);

void unmount(const char* mountPoint);

virtual File* getFile(const char* path);

};
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As with Plan 9[33]5 and some other microkernels, filesystems are process-specific.6

Note, though, that this design goes further: since a FileSystem is just another user-

space object, there is no requirement that there be a unique process-wide file system.

In some applications, different parts of the program may use different FileSystems.

Consider a Web browser, using an HTTPFileSystem7 to access requested pages and an

NFSFileSystem to access its settings; depending on the design of the browser, there

could be no piece of code which requires access to both filesystems. (In particular,

it would be possible to enhance security by building a JavaScript interpreter with

no access to the local filesystem.) There could even be code with no access to any

filesystem at all.8 For example, in an application with an X11-based user interface, the

X11 libraries wouldn’t need any file access at all; they’d just open a TCP connection

to the X server.[38]

8.10 Service discovery

Service discovery is the process of finding servers providing the services one needs.

Service discovery in PackOS will be provided via multicast DNS[7][8], or mDNS.

5Plan 9 is a trademark of AT&T.

6However, there could, and probably should, be conventions for configuring widely used sections
of the namespace. For example, if filesystems can be identified by URIs[6], then a particular section
of the namespace, say /etc, could be given a URN[29][9], say URN:PackOS:NS:/etc, which could
then be looked up via DDDS[24][25][26][27][28], yielding the URL of the filesytem to overlay at /etc.

7Note that, via WebDAV[15] and byte ranges,[13] HTTP can be used as a full-featured filesystem.

8This smacks of heresy to one steeped in the Unix approach; but it makes sense for PackOS. In
PackOS, the fundamental role of Unix files has been usurped by IPv6 servers.
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CHAPTER 9

IMPLEMENTATION PLAN

With this design, we can lay out a plan for the fresh implementation, which will

avoid the pitfalls encountered by the prototype.

Unfortunately, the dependency graph of our design is not loop-free: the design

for IP interfaces relies upon the thread API, which, in turn, relies upon TCP (and

hence IP interfaces) for communication with the process management server. Worse,

this same loop manifests itself at runtime: to connect to the server and request the

creation of the TCP thread, the process needs TCP, for which it needs the TCP

thread.

In order to break this loop, we need a particular implementation strategy for IP

interfaces and the TCP stack. The TCPStack and Interface classes will each have

an option to deliver data via a callback instead of enqueueing it and signalling a

condition variable. When a process is starting up, the callback will be used to create

an event loop; once the process has a connection to the scheduler, and has created

threads for the Interface and the TCPStack, the callbacks will be removed, and the

threads will take over the event loops.

This strategy for breaking the runtime dependency loop will also work to break

the implementation dependency loop: first the TCPStack and Interface classes will

be built, relying upon the callback approach; then, once the scheduler interface is in

place, they will be modified to run in their own threads. There is one potential risk

to this approach: the singlethreaded implementation might break when required to

run in multiple threads.
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Table 9.1. Components and dependencies

ID# Category Component Dependencies

1 Kernel Context switching, with memory protection
2 Kernel KAN 1
3 Kernel Interrupt dispatch 2
4 Kernel Clock services 3
5 Scheduler Timeslice management 4
6 Kernel Memory map manipulation 1
7 Scheduler Process management server 1, 6
8 Scheduler Memory management server 1, 6
9 User IP interfaces, single-threaded 2
10 User TCP, single-threaded 9
11 User Memory management API 8, 10
12 User Thread API, less JoinThread() 7, 10
13 User Mutexes 1
14 User JoinThread() 12, 13
15 User Condition variables 14
16 User IP interfaces, multithreaded 9, 15
17 User TCP, multithreaded 10, 16
18 User UDP 16
19 User Router 16
20 User Multicast 16
21 User NDP 20
22 User Ethernet API 21
23 User Filesystem API
24 User HTTPFileSystem 17, 23
25 User OverlayFileSystem 23
26 User DNS resolver 18
27 User mDNS 20, 26
28 User DNS SRV 26

With this approach in mind, the components to be implemented, and their de-

pendencies, are laid out in table 9.1.
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Figure 9.1. Implementation dependency graph.
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CHAPTER 10

CONCLUSION

The PackOS prototype was a limited success: it produced a microkernel system

with a full TCP/IPv6 stack, capable of serving HTTP over Ethernet, with no kernel

services other than packet delivery, context switching, and interrupt dispatch. Al-

though it ran aground on the problems of migrating to a memory-protected model, it

did establish that the fundamental idea is sound. With the knowledge gained in the

experiment, it should be possible to produce a new, more succesful implementation,

based on the design presented here.

10.1 Future Work

Clearly, if more is to be learned about the ideas on which PackOS is based, further

work is necessary, starting with developing a new version based on the new design.

Beyond that, there are some interesting possibilities.

10.1.1 Process migration

One of the motivating goals of PackOS was the opportunity to implement trans-

parent process migration. In theory, it ought to be achievable, by serializing a context,

with its memory map, sending the serialized form over the network, and creating an

identical context on a different machine. With Mobile IP[19], the process can con-

tinue communicating with resources on the original machine. Of course, efficiency

can be improved by notifying the process of the migration, so that it can attempt to

find local resources to provide the services it needs.
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10.1.2 POSIX support

Providing a POSIX compatibility layer on top of PackOS would simplify the task of

porting existing applications. This would make the operating system more useful, and

also make it easier to experiment with. Implementing POSIX file-centric semantics

on top of PackOS’s network-centric semantics would be a challenge, of course, but an

interesting one.

10.1.3 Hardware support

The PackOS prototype has neglibile hardware support. It can write to the com-

puter’s screen (text mode only), and it can interact with a PCI controller and an

RTL8139 Ethernet interface. More hardware support would make the operating sys-

tem more useful, and also easier to compare with existing systems. At a minimum,

PackOS can’t be a standalone system without support for at least one sort of disk

drive. Beyond that, high-priority hardware includes keyboards, mice, VGA, and more

Ethernet interfaces.

10.1.4 Performance comparisons

Once PackOS is more full-featured, it will be feasible to compare its performance

to that of existing operating systems. (Some small-scale comparisons can be done

earlier, such as examining the cost of context switches.)

10.1.5 Flexibility exploration

It is my belief that PackOS is flexible enough for user space to provide services

usually found in more specialized kernels, such as EROS’s capabilities, or L4’s nested

pagers. Some work on providing such services would be interesting.
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