
intel мсs-80

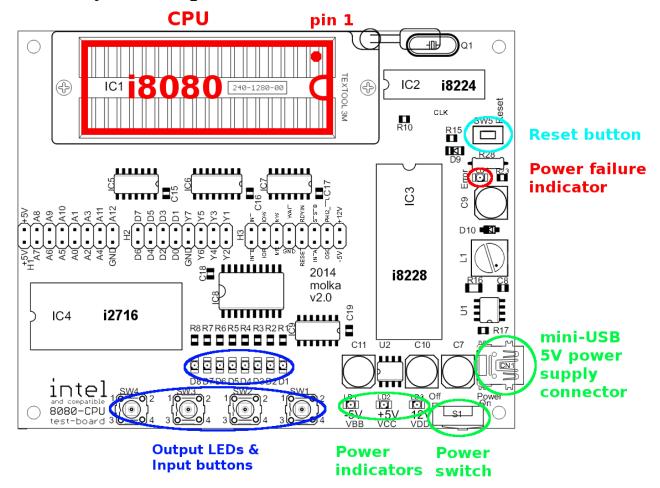
i8080 CPU Test board User's Manual

Overview

The i8080 test board is intended to test the working condition of Intel MCS-80 system's i8080 and compatible CPUs.

The board consists of the base components of MCS-80:

- -an i8224 clock generator (provides 1.11MHz clock that is slow enough for all kinds of 8080 CPUs)
- -an i8228 system controller and bus driver
- -and a 40-pin ZIF socket for i8080 CPU provides easy replacement of the CPUs.


A 2716 2KB EPROM holds the test program. This program handles 4 push buttons – as input – and 8 LEDs – as output devices.

The board requires a single +5V power supply (450mA) provided through a mini-USB connector. The board contains the DC-DC converters needed for providing the -5V and +12V powers required by the CPU.

There is a power failure indicator and protection circuit implemented on the board. When the input power level is less than 4.2V the failure indicator LED is illuminated and the +12V level is limited to 4V.

Address, data, chip select, control and power lines are attached to the three 16-pin expansion headers, so that the board may be used for other projects.

Board layout and parts

- mini-USB 5V power supply connector. The board consumes around 450mA
 current so a computer USB connector or cell phone charger, that can provide at least 500mA (800mA 1A is recommended), can be used as power source.
- Power supply can be turned on and off by the sliding switch at the bottom right corner.
- Three LEDs, next to the power switch, indicates power level of -5V, +5V and +12V.
- The board contains a Power-Up reset circuit, but can be reset manually by pressing Reset button.
- A Red LED near the Reset button indicates power failure.
- A 40-pin ZIF socket for the i8080 CPU. Ensure proper CPU orientation!!! The pin-1 is at upper-right corner, next to the release lever of the socket.
- Eight output LEDs shows simple animations, flashes indicate that the CPU is working.
- There are four push buttons for testing inputs and changing animation sequences.

Usage

- Before changing the CPU in the ZIF socket, make sure the power is off. All power indicator LEDs should be off!
- Place the CPU into the socket. Ensure proper orientation to prevent damage to the test board and CPU! Pin 1 must be at the upper-right corner, next to the release lever of the ZIF socket. Then lock the socket by moving the level down into the lock position.
- Connect the power through the USB connector.
- The three power indicator LEDs should be illuminated.
- If the CPU is in working condition the 8 output LEDs should be flashing (1s on/1s off pattern).
- At this point the CPU can be considered WORKING. Congrats!
- When you press any of the four push buttons (SW1 4) the output LEDs copy the state of the buttons, duplicated in the low and high nibbles.
- Releasing the buttons causes one of the four different animation sequences to start, corresponding to the button released last.

Troubleshooting

 After connecting the power supply the power indicator LEDs remains off or power failure indicator LED is illuminated. Turn off the power immediately!

This may be caused by:

- The power supply is unable to provide enough current. Check that it can provide at least 500mA. (800mA to 1A recommended)
- Thin, poor quality USB cable can also cause this problem.
- There is short-circuit (fault) in the CPU.
- The 8 output LEDs do not start flashing.
 - Press the Reset button. If the output LEDs continue to remain off then the CPU may be faulty.

Tested CPUs:

Manufacturer Variant

Intel 8080A, 8080A-1, 8080A-2, 8080A-9

Clones:

AMD AM9080A, AM9080A-2, 1820-1701

CCCP KP580BM80A ECG ECG8080A MEV 8080A PC Mitsubishi M5L8080AP

National Semiconductors INS8080AD, INS8080AN

NEC D8080A, D8080AFC, D8080AFC-1

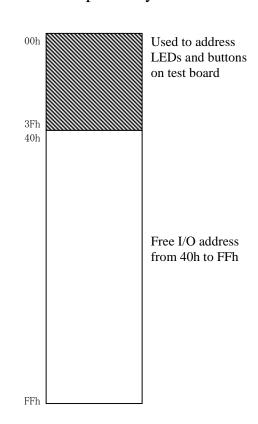
Poland MCY7880 Siemens SAB8080A-C Signetics MP8080A1

Tesla MHB8080AC, MHB8080A

Texas Instruments TMS8080ANL Tungsram 8080A, 8080APC

Expansion

The following lines are connected to the expansion heads (H1-3):


- ADDRESS A0-12
- DATA D0-7
- CHIP SELECT Y1-7
- IOR, IOW
- MEMR, MEMW
- INTE
- INT
- INTA
- RDYIN
- WAIT
- STSTB
- RESET
- OSC, Φ2-TTL
- POWER +5V, -5V, +12V

Memory and IO organization

Memory map 64KB

2KB test board's base program from 07FFh 0000h to 07FFh0800h 1 x 8KB occupied by the test board **Y0** program 1FFFh First expansion block must contain 2000h byte 55h at address 2000h 2002h byte AAh at address 2001h Expansion code start at 2002h **Y1** 1 x 8KB for expansion program 3FFFh 4000h 6 x 8KB free blocks DFFFh E000h **Y7** FFFFh

I/O map 256 Byte

Thanks to CPUShack for review and advises!

Feel free to write an e-mail to me at $\underline{\text{molnar.kalman@freemail.hu}}$ or send a PM to molka at CPU-World forum if you have any question.