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Abstract. In this tutorial, we give an overview of the Maude-NRL Pro-
tocol Analyzer (Maude-NPA), a tool for the analysis of cryptographic
protocols using functions that obey di�erent equational theories. We
show the reader how to use Maude-NPA, and how it works, and also
give some of the theoretical background behind the tool.

1 Introduction

The Maude-NPA is a tool and inference system for reasoning about the security
of cryptographic protocols in which the cryptosystems satisfy di�erent equational
properties. The tool handles searches in the unbounded session model, and thus
can be used to provide proofs of security as well as to search for attacks. It is
the next generation of the NRL Protocol Analyzer [36], a tool that supported
limited equational reasoning and was successfully applied to the analysis of many
di�erent protocols.

The area of formal analysis of cryptographic protocols has been an active
one since the mid 1980's. The idea is to verify protocols that use encryption to
guarantee secrecy, and that use authentication of data to ensure security, against
an attacker (commonly called the Dolev-Yao attacker [17]) who has complete
control of the network, and can intercept, alter, and redirect tra�c, create new
tra�c on his/her own, perform all operations available to legitimate participants,
and may have access to some subset of the longterm keys of legitimate principals.
Whatever approach is taken, the use of formal methods has had a long history,
not only for providing formal proofs of security, but also for uncovering bugs and
security 
aws that in some cases had remained unknown long after the original
protocol's publication.

A number of approaches have been taken to the formal veri�cation of crypto-
graphic protocols. One of the most popular is model checking, in which the inter-
action of the protocol with the attacker is symbolically executed. Indeed, model-
checking of secrecy (and later, authentication) in protocols in the bounded-
session model (where a session is a single execution of a process representing
an honest principal) has been shown to be decidable [42], and a number of
bounded-session model checkers exist. Moreover, a number of unbounded model
checkers either make use of abstraction to enforce decidability, or allow for the
possibility of non-termination.



The earliest protocol analysis tools, such as the Interrogator [30] and the NRL
Protocol Analyzer (NPA) [35], while not strictly speaking model checkers, relied
on state exploration, and, in the case of NPA, could be used to verify security
properties speci�ed in a temporal logic language. Later, researchers used generic
model checkers to analyze protocols, such as FDR [32] and later Murphi [40].
More recently the focus has been on special-purpose model-checkers developed
speci�cally for cryptographic protocol analysis, such as Blanchet's ProVerif [8],
the AVISPA tool [3], and Maude-NPA itself [23].

There are a number of possible approaches to take in the modeling of cryp-
toalgorithms used. In the simplest case, the free algebra model, cryptosystems
are assumed to behave like black boxes: an attacker knows nothing about en-
crypted data unless it has the appropriate key. This is the approach taken, for
example, by the above-cited use of Murphi and FDR to analyze cryptographic
protocols, and current tools such as SATMC [4] and TA4SP [9] , both used in the
AVISPA tool. However, such an approach, although it can work well for proto-
cols based on generic shared key or public key cryptography, runs into problems
with algorithms such as Di�e-Hellman or algorithms employing exclusive-or,
which rely upon various algebraic properties such as the law of exponentiation
of products, associativity-commutativity and cancellation. Without the ability
to specify these properties, one needs to rely on approximations of the algorithms
that may result in formal proofs of secrecy invalidated by actual attacks that are
missed by the analysis (see, e.g., [41,43,46]). Thus there has been considerable
interest in developing algorithms and tools for protocol analysis in the presence
of algebraic theories [1,11,10,12,7].

Another way in which tools can di�er is in the number of sessions. A session is
de�ned to be one execution of a protocol role by a single principal. A tool is said
to use the bounded session model if the user must specify the maximum number
of sessions that can be generated in a search. It is said to use the unbounded
session model if no such restrictions are required.

Secrecy is known to be decidable in the free theory together with the bounded
session model [42], and undecidable in the free theory together with the un-
bounded session model [18]. The same distinction between bounded and un-
bounded sessions is known to hold for a number of di�erent equational theories
of interest, as well as for some authentication-related properties; see for example
[10]. Thus, it is no surprise that most tools, whether or not they o�er support
for di�erent algebraic theories, either operate in the bounded session model, or
rely on abstractions that may result in reports of false attacks even when the
protocol being analyzed is secure.

Maude-NPA is a model-checker for cryptographic protocol analysis that both
allows for the incorporation of di�erent equational theories and operates in the
unbounded session model without the use of abstraction. This means that the
analysis is exact. That is, (i) if an attack exists using the speci�ed algebraic
properties, it will be found; (ii) no false attacks will be reported; and (iii) if
the tool terminates without �nding an attack, this provides a formal proof that
the protocol is secure for that attack modulo the speci�ed properties. However,
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it is always possible that the tool will not terminate; although, as explained in
Section 7, a number of heuristics are included to drastically reduce the search
space and make nontermination less likely. In order to have a steady, incremental
approximation of the analysis, the user is also given the option of restricting the
number of steps executed by Maude-NPA.

Maude-NPA is a backwards search tool, i.e., it searches backwards from a
�nal insecure state to determine whether or not it is reachable from an initial
state. This backwards search is symbolic, i.e., it does not start with a concrete
attack state, but uses instead a symbolic attack pattern, i.e., a term with logical
variables describing a general attack situation. The backwards search is then
performed by backwards narrowing. Each backwards narrowing step denotes a
state transition, such as a principal sending or receiving a message or the intruder
manipulating a message, all in a backwards sense. Each backwards narrowing
step takes a symbolic state (i.e., a term with logical variables) and returns a
previous symbolic state in the protocol (again a term with logical variables).
In performing a backwards narrowing step, the variables of the input term are
appropriately instantiated in order to apply the concrete state transition, and
the new previous state may contain new variables that are di�erentiated from
any previously used variable to avoid confusion. To appropriately instantiate
the input term, narrowing uses equational uni�cation. As it is well-known from
logic programming and automated deduction (see, e.g., [5]), uni�cation is the
process of solving equations t = t0. Standard uni�cation solves these equations
in a term algebra. Instead, equational uni�cation (w.r.t. an equational theory
E) solves an equation t = t0 in a free algebra for the equations E, that is,
modulo the equational theory E. In the Maude-NPA, the equational theory E

used depends on the protocol, and corresponds to the algebraic properties of the
cryptographic functions (e.g. cancellation of encryption and decryption, Di�e-
Hellman, or exclusive-or).

Sound techniques for equational uni�cation are paramount to Maude-NPA,
and much of the research behind it has concentrated on that. The idea is to
develop, not only special{purpose equational uni�cation techniques that can be
used for speci�c theories, but general methods that can be extended to di�erent
theories that arise in actual practice. We thus consider a broad class of theories
that incorporate those equational axioms commonly appearing in cryptosystems
and for which Maude has dedicated uni�cation algorithms [13], such as com-
mutativity (C) or associativity-commutativity (AC) of some function symbols
[19]. Our approach is designed to be as extensible as possible to di�erent alge-
braic theories, and Maude-NPA is designed with this in mind. Maude-NPA has
thus both dedicated and generic narrowing-based methods for solving uni�ca-
tion problems in such theories [27], which under appropriate checkable conditions
yield narrowing-based uni�cation algorithms with a �nite number of solutions
[26]. Maude-NPA currently supports a number of algebraic theories, including
exclusive-or, cancellation of encryption and decryption (both public and shared
key), bounded associativity, and Di�e-Hellman exponentiation. We include ex-
amples of several of these in this tutorial; others can be found in the Maude-
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NPA manual [23] and in our previous papers [21,19]. Moreover, we continue to
explore new generic uni�cation algorithms which we plan to incorporate into
Maude-NPA in the future.

Since Maude-NPA allows reasoning in the unbounded session model, and
because it allows reasoning about di�erent equational theories (which typically
generate many more solutions to uni�cation problems than syntactic uni�cation,
leading to bigger state spaces), it is necessary to �nd ways of pruning the search
space in order to prevent in�nite or overwhelmingly large search spaces. A key
technique for preventing in�nite searches is the generation of formal grammars
describing terms unreachable by the intruder; such formal grammars are de-
scribed in [36,20] and in Section 7.7. However, grammars do not prune out all
in�nite searches, and there is a need for other techniques. Moreover, even when
a search space is �nite it may still be necessary to reduce it to a manageable
size. State space reduction techniques for doing that have been provided in [22],
with an empirical average state-space size reduction of 96% (i.e., the average size
of the reduced state space is 4% of that of the original one). Furthermore, our
often combined techniques are e�ective in obtaining a �nite state space for all
protocol analyses in many of our experiments.

The rest of this tutorial is organized as follows. Section 2 gives de�nitions of
some of the terminology that is used throughout this tutorial; we have tried to
reduce de�nitions to a minimum and to illustrate each de�nition by means of
examples. Sections 3 and 4 explain the basic mechanics of using Maude-NPA,
including writing speci�cations and formulating queries. It gives the minimum
amount of background needed for using the tool. Sections 5 and 6 describe
how Maude-NPA actually works. They are intended for two types of readers:
�rst the reader who wants to get better insight into how to use the tool to
best advantage, and secondly for the reader who wants to understand the basic
concepts behind Maude-NPA, without necessarily using the tool. Section 7, on
state space reduction, is somewhat more specialized. It is intended for someone
who is interested in the design of crypto protocol analysis tools and wants a
more complete picture of the techniques Maude-NPA uses or plans to use, but
is not really necessary to read it in order to be able to use the tool. Section 8
concludes the tutorial.

Maude-NPA is publicly available4, including a user manual and some proto-
col examples. Maude-NPA is written in Maude, which is a publicly available5

implementation of rewriting logic. To be more speci�c, Maude-NPA requires a
version of Maude that includes the implementation of order-sorted uni�cation
modulo commutativity and associativity{commutativity [13], e.g., version 2.4 or
later.

4 At http://maude.cs.uiuc.edu/tools/Maude-NPA.
5 At http://maude.cs.uiuc.edu.
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2 Preliminaries

We follow the classical notation and terminology from [47] for term rewriting
and from [37,38] for rewriting logic and order-sorted notions. We assume an
order-sorted signature � with a �nite poset of sorts (S;�) and a �nite number of
function symbols. For example, consider a signature with sorts Msg, Encryption,
Concatenation, Nonce, Fresh, and Name that satisfy the following subsort order
between sorts:

Msg

Concatenation Encryption

oooooo

Nonce

JJJJJ

Name

and function symbols pk (for \public" key encryption), sk (for \secret" or \pri-
vate" key encryption), n (for nonces), and _;_ (for concatenation) that satisfy
the following sort declarations6:

pk : Name� Msg! Encryption n : Name� Fresh! Nonce

sk : Name� Msg! Encryption _;_ : Msg� Msg! Concatenation

We assume an S-sorted family X = fXsgs2S of disjoint variable sets with
each Xs countably in�nite. T�(X )

s
is the set of terms of sort s, and T�;s is the

set of ground terms (i.e., without variables) of sort s. We write T�(X ) and T�
for the corresponding term algebras. We write Var(t) for the set of variables
present in a term t.

A term is viewed as a tree labeled with function symbols, where the arity
of a symbol coincides with the number of its children in the tree (and the sort
declaration for the symbol is satis�ed by its children). For example, the term7

t = n(a; r) ; (n(b; r0) ; n(b; r00)), where a, b, and c are symbols with arity 0
(called constants) of sort Name and r, r0, and r00 are variables of sort Fresh, is a
term of sort Concatenation and has the following tree representation

;

n

oooooo ;

UUUUUUUUUUU

a

~~~
r

???

n

mmmmmmm
n

PPPPPP

b

{{{{
r0

@@@

b

���
r00

BBB

A position p of a term t is described by a string of natural numbers that
speci�es a path from the root of the term to the desired subterm position. For

6 Note that Maude allows function declarations of symbols with a user-de�ned syntax,
where each underscore denotes the position of one function argument, e.g. \ ; "
denotes a symbol ; with two arguments written in an in�x notation.

7 For a Maude term with symbols that contain underscores, a blank space must appear
between the subterm corresponding to an underscore and any other part of the term,
e.g. \n(a,r) ; n(b,r')".
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example, in the term t above, position p1 = 1:1 identi�es the subterm a, and po-
sitions p2 = 2:1:1 and p3 = 2:2:1 both identify the subterm b, although di�erent
occurrences of it. The set of positions of a term t is written Pos(t). The set of
non-variable positions of a term t is written Pos�(t). The root of a term is �.
The subterm of t at position p is tjp, and t[u]p is the result of replacing tjp by u
in t. For example, we have tjp1 = a and tjp2 = tjp3 = b.

A substitution � is a sort-preserving mapping from a �nite subset of X to
T�(X ). The application of substitution � to term t is denoted �(t). The identity
substitution is id. Substitutions are naturally extended to homomorphic func-
tions � : T�(X ) ! T�(X ). The restriction of � to a set of variables V is �jV .
The composition of two substitutions �; � is (��)(X) = �(�(X)) for X 2 X .

A �-equation is an unoriented pair of terms (t; t0), written t = t0, where
t; t0 2 T�(X )

s
for some sort s 2 S. Given � and a set E of �-equations such

that T�;s 6= ; for every sort s, order-sorted equational logic induces a congruence
relation =E on terms t; t0 2 T�(X ) (see [38]). Throughout this tutorial we assume
that T�;s 6= ; for every sort s. The E-subsumption order on terms T�(X )

s
,

written t 4E t0 (meaning that t0 is more general than t), holds if there exists
a substitution � such that t =E �(t0). The order on terms T�(X )

s
is naturally

extended to substitutions, i.e., � 4E �0 i� there exists a substitution � such that
� =E �0�.

An E-uni�er for a �-equation t = t0 is a substitution � s.t. �(t) =E �(t0).
Given two E-uni�ers �1 and �2 for a �-equation t = t0, �2 is more general
than �1, written �1 4E �2, if there exists � such that �2� =E �1, i.e., for each
variable X, (�2�)(X) =E �1(X). A complete set of E-uni�ers of an equation
t = t0, written CSUE(t = t0), is a set of uni�ers of t = t0 such that for each E-
uni�er � of t = t0, there exists � 2 CSUE(t = t0) such that � 4E � . We say that
CSUE(t = t0) is �nitary if it contains a �nite number of E-uni�ers. We say that
CSUE(t = t0) is the set of most general uni�ers if each uni�er � 2 CSUE(t = t0)
is maximal among all uni�ers of t = t0 w.r.t. 4E . For example, consider an
in�x symbol _*_ : Msg � Msg ! Msg satisfying the following associativity and
commutativity (AC) equational properties (where X;Y; Z are variables of sort
Msg):

X � Y = Y �X X � (Y � Z) = (X � Y ) � Z

A complete set of most general AC-uni�ers of the two terms t = X � Y and
s = U � V (where X;Y; U; V are variables of sort Msg) is

�1 = f X 7! X 0; Y 7! Y 0; U 7! X 0; V 7! Y 0 g
�2 = f X 7! X 0; Y 7! Y 0; U 7! Y 0; V 7! X 0 g
�3 = f X 7! X 0; Y 7! Y 0 � Y 00; U 7! X 0 � Y 00; V 7! Y 0 g
�4 = f X 7! X 0; Y 7! Y 0 � Y 00; U 7! Y 00; V 7! X 0 � Y 0 g
�5 = f X 7! X 0 �X 00; Y 7! Y 0; U 7! X 00; V 7! X 0 � Y 0 g
�6 = f X 7! X 0 �X 00; Y 7! Y 0; U 7! X 00 � Y 0; V 7! X 0 g
�7 = f X 7! X 0 �X 00; Y 7! Y 0 � Y 00; U 7! X 00 � Y 00; V 7! X 0 � Y 0 g

Consider now the exclusive-or symbol _� _ : Msg� Msg! Msg and the constant
0 : Msg satisfying the following xor-properties (where X;Y; Z are variables of
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sort Msg):
X � Y = Y �X X �X = 0

X � (Y � Z) = (X � Y )� Z X � 0 = X

A complete set of most general xor-uni�ers of the two terms t = X � Y and
s = U � V (where X;Y; U; V are variables of sort Msg) is the unique uni�er
�1 = fX 7! Y 0 � U 0 � V 0; Y 7! Y 0; U 7! U 0; V 7! V 0g.

3 Protocol Speci�cation in Maude-NPA

In this section, we describe how to specify a protocol and all its relevant items
in the Maude-NPA. We postpone until Section 4 the topic of formal protocol
analysis in the Maude-NPA.

3.1 Templates and File Organization for Protocol Speci�cation

Protocol speci�cations are given in a single �le (e.g., foo.maude), and consist
of three Maude modules, having a �xed format and �xed module names. In
the �rst module, the syntax of the protocol is speci�ed, consisting of sorts,
subsorts, and operators. The second module speci�es the algebraic properties of
the operators. Note that algebraic properties cannot be arbitrary and must satisfy
some speci�c conditions described in Section 6.3. The third module speci�es the
actual behavior of the protocol using a strand-theoretic notation [28]. This third
module includes the intruder strands (Dolev-Yao strands) and regular strands
describing the behavior of principals. Attack states, describing behavior that
we want to prove cannot occur, are also speci�ed in this third module, but we
postpone their presentation until Section 4.

We give a template for any Maude-NPA speci�cation below. Throughout,
lines beginning with three or more dashes (i.e., ---) or three or more asterisks
(i.e., ***) are comments that are ignored by Maude. Furthermore, the Maude
syntax is almost self-explanatory [14]. The general point is that each syntactic
element {e.g. a sort, an operation, an equation, a rule{ is declared with an
obvious keyword: sort, op, eq, rl, etc., ended by a space and a period.

fmod PROTOCOL-EXAMPLE-SYMBOLS is

protecting DEFINITION-PROTOCOL-RULES .

------------------------------------------------------------

--- Overwrite this module with the syntax of your protocol.

--- Notes:

--- * Sorts Msg and Fresh are special and imported

--- * Every sort must be a subsort of Msg

--- * No sort can be a supersort of Msg

--- * Variables of sort Fresh are really fresh

--- and no substitution is allowed on them

--- * Sorts Msg and Public cannot be empty

------------------------------------------------------------

endfm
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fmod PROTOCOL-EXAMPLE-ALGEBRAIC is

protecting PROTOCOL-EXAMPLE-SYMBOLS .

----------------------------------------------------------------

--- Overwrite this module with the algebraic properties

--- of your protocol.

--- * Use only equations of the form (eq Lhs = Rhs [nonexec] .)

--- * Maude attribute owise cannot be used

--- * There is no order of application between equations

----------------------------------------------------------------

endfm

fmod PROTOCOL-SPECIFICATION is

protecting PROTOCOL-EXAMPLE-SYMBOLS .

protecting DEFINITION-PROTOCOL-RULES .

protecting DEFINITION-CONSTRAINTS-INPUT .

----------------------------------------------------------

--- Overwrite this module with the strands

--- of your protocol and the attack states

----------------------------------------------------------

eq STRANDS-DOLEVYAO =

--- Add Dolev-Yao intruder strands here. Strands are

--- properly renamed.

[nonexec] .

eq STRANDS-PROTOCOL =

--- Add protocol strands here. Strands are properly renamed.

[nonexec] .

eq ATTACK-STATE(0) =

--- Add attack state here

--- More than one attack state can be specified, but each

--- must be identified by a number (e.g. ATTACK-STATE(1) = ...

--- ATTACK-STATE(2) = ... etc.)

[nonexec] .

endfm

--- THE FOLLOWING COMMAND HAS TO BE THE LAST ACTION !!!!

select MAUDE-NPA .

In what follows we explain in detail how each of these three modules, com-
prising a Maude-NPA protocol speci�cation, are speci�ed.
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3.2 Specifying the Protocol Syntax

The protocol syntax is speci�ed in the module PROTOCOL-EXAMPLE-SYMBOLS.
Note that, since we are using Maude also as the speci�cation language, each
declaration has to be ended by a space and a period.

We begin by specifying sorts. In general, sorts are used to specify di�erent
types of data, that are used for di�erent purposes. We have a special sort called
Msg that represents the messages in our protocol. If only keys can be used for
encryption, we would want to have a sort Key, and specify that an encryption
operator e can only take a term of sort Key as its �rst argument, which can be
speci�ed in Maude as follows:

op e : Key Msg -> Msg .

Sorts can also be subsorts of other sorts. Subsorts allow a more re�ned distinc-
tion of data within a concrete sort. For example, we might have a sort Masterkey
which is a subsort of Key. Or two sorts PublicKey and PrivateKey that are sub-
sorts of Key. These two relevant subsort relations can be speci�ed in Maude as
follows:

subsort MasterKey < Key .

subsorts PublicKey PrivateKey < Key .

Most sorts are user-de�ned. However, there are several special sorts that
are automatically imported by any Maude-NPA protocol de�nition through
the DEFINITION-PROTOCOL-RULES module. The user must make sure that cer-
tain constraints are satis�ed for the sorts and subsorts speci�ed in PROTOCOL-

EXAMPLE-SYMBOLS, which are the following:

Msg. Every sort speci�ed in a protocol must be connected to the sort Msg, i.e.,
for every sort S given by the user, and every term t of sort S, there must
be a term t0 in Msg and a position p in t0 such that t0jp = t. Any subsort of
Msg is of course directly connected to Msg. No sort de�ned by the user can
be a supersort of Msg. The sort Msg should not be empty, i.e., there should
be enough function symbols and constants such that there is at least one
ground term (i.e., a term without variables) of sort Msg.

Fresh. The sort Fresh is used to identify terms that must be unique. No sort
can be a subsort of Fresh. It is typically used in protocol speci�cations as
an argument of some data that must be unique, such as a nonce, or a session
key, e.g., \n(A,r)" or \k(A,B,r)", where r is a variable of sort Fresh. It
is not necessary to de�ne symbols of sort Fresh, i.e., the sort Fresh can be
empty, since only variables of such sort will be allowed.

Public. The sort Public is used to identify terms that are publicly available,
and therefore assumed known by the intruder. No sort can be a supersort of
Public. This sort cannot be empty.

To illustrate the de�nition of sorts, we use the Needham-Schroeder Public
Key Protocol (NSPK) as the running example. This protocol uses public key
cryptography, and the principals exchange encrypted data consisting of names
and nonces. We recall the informal speci�cation of NSPK as follows:
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1. A! B : pk(B;A;NA)

2. B ! A : pk(A;NA;NB)

3. A! B : pk(B;NB)

where NA and NB are nonces generated by the respective principals.

Thus, we will de�ne sorts to distinguish names, keys, nonces, and encrypted
data. This is speci�ed as follows:

--- Sort Information

sorts Name Nonce Enc .

subsort Name Nonce Enc < Msg .

subsort Name < Public .

The sorts Nonce and Enc are not strictly necessary, but they can make the
search more e�cient, since Maude-NPA will not attempt to unify terms with
incompatible sorts. For example, if in this speci�cation a principal is expecting
a term of sort Enc, he/she will not accept a term of sort Nonce; technically
because Nonce is not declared as a subsort of Enc. If we are looking for type
confusion attacks, we would not want to include these sorts, and instead would
declare everything as having sort Msg or Name. See Section 3.3 for details on type
confusion attacks.

We can now specify the di�erent operators needed in NSPK. These are pk and
sk, for public and private key encryption, the operator n for nonces, designated
constants for the names of the principals, and concatenation using the in�x
operator \_;_".

We begin with the public/private encryption operators.

--- Encoding operators for public/private encryption

op pk : Name Msg -> Enc [frozen] .

op sk : Name Msg -> Enc [frozen] .

The frozen attribute is technically necessary to tell Maude not to attempt
to apply rewrites in arguments of those symbols. The frozen attribute must
be included in all operator declarations in Maude-NPA speci�cations, excluding
constants. The use of sort Name as an argument of public key encryption may
seem odd at �rst. But it is used because we are implicitly associating a public
key with a name when we apply the pk operator, and a private key with a name
when we apply the sk operator. A di�erent syntax specifying explicit keys could
have been chosen for public/private encryption.

Next we specify some principal names. For NSPK, we have three constants
of sort Name, a (for \Alice"), b (for \Bob"), and i (for the \Intruder").

--- Principals

op a : -> Name . --- Alice

op b : -> Name . --- Bob

op i : -> Name . --- Intruder
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These are not all the possible principal names. Since Maude-NPA is an un-
bounded session tool, the number of possible principals is unbounded. This is
achieved by using variables (i.e., variables of sort Name in this speci�cation of
NSPK) instead of constants. However, we may have a need to specify constant
principal names in a goal state. For example, if we have an initiator and a re-
sponder, and we are not interested in the case in which the initiator and the
responder are the same, we can prevent that by specifying the names of the
initiator and the responder as di�erent constants. Also, we may want to iden-
tify the intruder's name by a constant, so that we can cover the case in which
principals are talking directly to the intruder.

We now need two more operators, one for nonces, and one for concatenation.
The nonce operator is speci�ed as follows.

--- Nonce operator

op n : Name Fresh -> Nonce [frozen] .

Note that the nonce operator has an argument of sort Fresh to ensure unique-
ness. The argument of type Name is not strictly necessary, but it provides a con-
venient way of identifying which nonces are generated by which principal. This
makes searches more e�cient, since it allows us to keep track of the originator
of a nonce throughout a search.

Finally, we come to the message concatenation operator. In Maude-NPA, we
specify concatenation via an in�x operator \_;_" de�ned as follows:

--- Concatenation operator

op _;_ : Msg Msg -> Msg [gather (e E) frozen] .

The Maude operator attribute \gather (e E)" indicates that symbol \_;_"
has to be parsed as associated to the left; whereas \gather (E e)" indicates as-
sociation to the right (see [14, Section 3.9]). Note that this gather information is
speci�ed only for parsing purposes: it does not specify an associativity property,
although the associativity of an operator is certainly expressible in Maude ei-
ther as an explicit \equational rule", or as an \equational axiom" as explained in
Section 3.4 below. Therefore, _;_ in this NSPK example is just a free function
symbol, which, when no parenthesis are added, is parsed in a left{associative
way.

3.3 User-de�ned Subsorts of Sort Msg in Protocol Speci�cation

The Maude-NPA tool always assumes that the sort Msg is the top sort, but
it allows user-de�ned subsorts of Msg that can be speci�ed by the user for a
more accurate protocol speci�cation and analysis. However, protocol modeling in
Maude-NPA should pay careful attention to when and why a subsort of sort Msg
can be used, since an overly general speci�cation using sort Msg will negatively
a�ect performance, whereas a too restrictive speci�cation may jeopardize �nding
some attacks, since some attacks possible in a less restrictive speci�cation may
become excluded by using some subsort in the reception of a message.
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The two relevant concepts here are: (i) whether a principal can check the sort
of a bit string and (ii) whether a principal can check the structure of a term to
�nd out if it matches some given pattern. In general, data received by a principal
for which the principal cannot check its structure, but can check its sort, must
be represented by a variable of the appropriate sort. For example, if a principal
receives a message that he/she expects to be a nonce but he/she cannot check
that is has sort Nonce, then such a message will be represented by a variable
of sort Msg. Sometimes, even though we do not assume that type-checking is
possible, we may want to use sorts to limit the size of the search space. How
this can be done, and the rami�cations of doing this, are discussed later in this
tutorial.

Therefore, if we are interested in a type confusion attack for a given informal
protocol speci�cation, we would like a protocol speci�cation in Mauge-NPA that
makes no distinctions on messages, i.e., principals cannot perform type checking
of messages (for instance, may not be able to detect whether a string of bits
is a nonce) and may not even be able to separate messages into their di�erent
components. In this very general case, we are interested in a unsorted protocol,
i.e., there will be no extra sorts and every symbol will be of sort Msg. See [21]
for an example of a type confusion attack speci�ed in Maude-NPA.

A third relevant concept here is the use of variables of sort Fresh. Every
variable of sort Fresh denotes an unguessable message. Those variables of sort
Fresh that a principal generates have to be explicitly written in the protocol
speci�cation (see Section 3.6). Therefore, every nonce that a principal generates
is represented by a message containing a variable of sort Fresh, e.g. n(A; r), with
r a variable of sort Fresh. If a principal is expecting this nonce again, it will be
represented in the protocol speci�cation by the same term n(A; r), meaning that
the principal can check the sort of the message and can also check the structure
of the message. This is safe because typically a principal can verify whether
two nonces are the same, i.e., whether the sequences of their bits coincide. If
a principal is expecting a nonce di�erent from one of his/her nonces, it will be
represented in the protocol speci�cation by a variable N of sort Nonce or of sort
Msg, depending on the type checking facilities available to the principal.

3.4 Algebraic Properties

There are two types of algebraic properties: (i) equational axioms, such as com-
mutativity, or associativity-commutativity, called axioms, and (ii) equational
rules, called equations. Equations are speci�ed in the PROTOCOL-EXAMPLE-

ALGEBRAIC module, whereas axioms are speci�ed within the operator declara-
tions in the PROTOCOL-EXAMPLE-SYMBOLS module, as illustrated in what follows.

An equation is oriented into a rewrite rule in which the left{hand side of the
equation is reduced to the right{hand side. In writing equations, one needs to
specify the variables involved, and their type. Variables can be speci�ed globally
for a module, e.g., \var Z : Msg .", or locally within the expression using it,
e.g., a variable A of sort Name in \pk(A:Name,Z)". Several variables of the same
sort can be speci�ed together, as \vars X Y Z1 Z2 : Msg .". In NSPK, we
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use two equations specifying the relationship between public and private key
encryption, as follows:

var Z : Msg .

var A : Name .

--- Encryption/Decryption Cancellation

eq pk(A,sk(A,Z)) = Z [nonexec] .

eq sk(A,pk(A,Z)) = Z [nonexec] .

The nonexec attribute is technically necessary to tell Maude not to use an
equation or rule within its standard execution, since it will be used only at the
Maude-NPA level rather than at the Maude level. The nonexec attribute must
be included in all user-de�ned equation declarations of the protocol. Furthermore,
the Maude attribute owise (i.e., otherwise) cannot be used in equations, since
no order of application is assumed for the algebraic equations.

Since Maude-NPA uses built-in uni�cation algorithms [13] for the case of op-
erators having either no equational axioms, or the commutative (C) or associative-
commutative (AC) equational axioms, these are speci�ed not as standard equa-
tions but as axioms in the operator declarations. For example, suppose that we
want to specify exclusive-or. We can specify an in�x associative-commutative
operator \<+>" in the PROTOCOL-EXAMPLE-SYMBOLS module as follows:

--- XOR operator and equational axioms

op _<+>_ : Msg Msg -> Msg [frozen assoc comm] .

op null : -> Msg .

where the associativity and commutativity axioms are declared as attributes of
the <+> operator with the assoc and comm keywords. Similarly, we could specify
an operator that is commutative but not associative with the comm keyword
alone. 8

We specify the equational rules for <+> in the PROTOCOL-EXAMPLE-ALGEBRAIC
module as equations declared with the eq keyword as follows9:

vars X Y : Msg .

--- XOR equational rules

eq X <+> X <+> Y = Y [nonexec] .

8 In Maude, it is possible to specify and operator that is associative but not commu-
tative using the assoc keyword, but in the Maude-NPA, symbols having the assoc
but not the comm attribute should not be speci�ed. The reason for this is that as-
sociative uni�cation is not �nitary (see, e.g., [5]) and is not supported in Maude.
Various forms of bounded associativity with �nitary uni�cation are possible, but this
is done di�erently, namely, by specifying bounded associativity with rules, see [21]
for details.

9 Note that the �rst equational rule, i.e., X <+> X <+> Y = Y, is not essentially needed
for the exclusive-or theory, but it is necessary for rewriting purposes to ensure co-
herence, see Section 6.2.
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eq X <+> X = null [nonexec] .

eq X <+> null = X [nonexec] .

If we want to include a Di�e-Hellman mechanism, we need two operations.
One is exponentiation, and the other is modular multiplication. Since Di�e-
Hellman is a commonly used algorithm in cryptographic protocols, we discuss it
also here.

We begin by including several new sorts in PROTOCOL-EXAMPLE-SYMBOLS: Gen,
Exp, GenvExp, and NeNonceSet.

sorts Name Nonce NeNonceSet Gen Exp Key GenvExp Enc Secret .

subsorts Gen Exp < GenvExp .

subsorts Name NeNonceSet GenvExp Enc Secret Key < Msg .

subsort Exp < Key .

subsort Nonce < NeNonceSet .

subsorts Name Gen < Public .

We now introduce three new operators. The �rst, g, is a constant that serves
as the Di�e-Hellman generator of the multiplicative group. The second is expo-
nentiation, and the third is an associative-commutative multiplication operation
on nonces and products of such nonces.

op g : -> Gen .

op exp : GenvExp NeNonceSet -> Exp [frozen] .

op _*_ : NeNonceSet NeNonceSet -> NeNonceSet [frozen assoc comm] .

We then include the following equational property, to capture the fact that
zx

y

= zx�y:

eq exp(exp(W:Gen,Y:NeNonceSet),Z:NeNonceSet)

= exp(W:Gen, Y:NeNonceSet * Z:NeNonceSet) [nonexec] .

There are several things to note about this Di�e-Hellman speci�cation. The
�rst is that, although modular multiplication has a unit and inverses, this is not
included in our equational speci�cation. Instead, we have only included the key
algebraic rule that is necessary for Di�e-Hellman to work. The second is that we
have speci�ed types that will rule out certain kinds of intruder behavior. In actual
fact, there is nothing that prevents an intruder from sending an arbitrary string
to a principal and passing it o� as an exponentiated term. The principal will then
exponentiate that term. However, given our de�nition of the exp operator, only
terms of type GenvExp can be exponentiated. This last restriction is necessary
in order to ensure that the uni�cation algorithm is �nitary; see Section 6.3 for
technical details. The omission of units and inverses is not necessary to ensure
�nitary uni�cation, but rules out behavior of the intruder that is likely to be
irrelevant for attacking the protocol, or that is likely to be easily detected (such
as the intruder sending an exp(g,0)).

We note that if one is interested in obtaining a proof of security using these
restrictive assumptions, one must provide a proof (outside of the tool) that
security in the restricted model implies security in the more general model. This
could be done along the lines of the proofs in [39,33,34].
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3.5 Protocol Speci�cation: Intruder Strands

The protocol itself and the intruder capabilities are both speci�ed in the PROTOCOL-
SPECIFICATION module. They are speci�ed using strands. A strand, �rst de�ned
in [28], is a sequence of positive and negative messages10 describing a princi-
pal executing a protocol, or the intruder performing actions, e.g., the strand for
Alice in NSPK is:

[ pk(KB ; A;NA)
+; pk(KA; NA;Z)

�; pk(KB ; Z)
+ ]

where a positive node implies sending, and a negative node implies receiving.
However, in our tool each strand is divided into the past and future parts by
means of a vertical line. That is, the messages to the left of the vertical line
were sent or received in the past, whereas the messages to the right of the line
will be sent or received in the future. Also, we keep track of all the variables of
sort Fresh generated by a concrete strand; see Section 5.2 for technical details.
That is, all the variables r1; : : : ; rj of sort Fresh generated by a strand are made
explicit right before the strand, as follows:

:: r1; : : : ; rj :: [ m1
�; : : : ; mi

� j mi+1
�; : : : ; mk

� ]

Note that there is some di�erence between the variables of sort Fresh generated
in a strand and those appearing in a strand. In the speci�cation of a role, they
must coincide, in the sense that all the variables appearing in the description
of a principal are generated during an execution (an instance) of such a strand.
However, in a given protocol state, a strand may contain many more variables
of sort Fresh than those speci�ed at the left of the strand due to the message
exchange between the principals.

We begin by specifying all the variables that are used in this module, together
with the sorts of these variables. In the NSPK example, these are

vars X Y Z : Msg .

vars r r' : Fresh .

vars A B : Name .

vars N N1 N2 : Nonce .

After the variables are speci�ed, the next thing to specify is the actions of the
intruder, or Dolev-Yao rules [17]. These specify the operations an intruder can
perform. Each such action can be speci�ed by an intruder strand consisting of
a sequence of negative nodes, followed by a single positive node. If the intruder
can (non-deterministically) �nd more than one term as a result of performing
one operation (as in deconcatenation), we specify each of these outcomes by
separate strands. For the NSPK protocol, we have four operations: encryption
with a public key (pk), decryption with a private key (sk), concatenation (_;_),
and deconcatenation.

10 We write m� to denote m+ or m�, indistinctively. We often write +(m) and �(m)
instead of m+ and m�, respectively.
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Encryption with a public key is speci�ed as follows. Note that we use a
principal's name to stand for the key. That is why names are of type Name. The
intruder can encrypt any message using any public key.

:: nil:: [ nil | -(X), +(pk(A,X)), nil ]

Encryption with the private key is a little di�erent. The intruder can only
apply the sk operator using his own identity. So we specify the rule as follows,
assuming that i denotes the name of the intruder:

:: nil:: [ nil | -(X), +(sk(i,X)), nil ]

Concatenation and deconcatenation are straightforward. If the intruder knows
X and Y , he can �nd X;Y . If he knows X;Y he can �nd both X and Y . Since
each intruder strand should have at most one positive node, we need to use three
strands to specify these actions:

:: nil :: [ nil | -(X), -(Y), +(X ; Y), nil ]

:: nil :: [ nil | -(X ; Y), +(X), nil ]

:: nil :: [ nil | -(X ; Y), +(Y), nil ]

The �nal Dolev-Yao speci�cation looks as follows. Note that our tool requires
the use of the constant symbol STRANDS-DOLEVYAO as the repository of all the
Dolev-Yao strands, and uses the associative-commutative symbol _&_ as the
union operator to form sets of strands. Note, also, that our tool considers that
variables are not shared between strands, and thus will appropriately rename
them when necessary.

eq STRANDS-DOLEVYAO

= :: nil :: [ nil | -(X), -(Y), +(X ; Y), nil ] &

:: nil :: [ nil | -(X ; Y), +(X), nil ] &

:: nil :: [ nil | -(X ; Y), +(Y), nil ] &

:: nil :: [ nil | -(X), +(sk(i,X)), nil ] &

:: nil :: [ nil | -(X), +(pk(Ke,X)), nil ]

[nonexec] .

Every operation that can be performed by the intruder, and every term
that is initially known by the intruder, should have a corresponding intruder
strand. For each operation used in the protocol we should consider whether or
not the intruder can perform it, and specify a corresponding intruder strand that
describes the conditions under which the intruder can perform it.

For example, suppose that the operation requires the use of exclusive-or. If
we assume that the intruder can exclusive-or any two terms in its possession, we
should represent this by the following strand:

:: nil :: [ nil | -(X), -(Y), +(X <+> Y), nil ]

If we want to give the intruder the ability to generate his own nonces, we
should represent this by the following rule:
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:: r :: [ nil | +(n(i,r)), nil ]

In general, it is a good idea to provide Dolev-Yao strands for all the operations
that are de�ned, unless one is explicitly making the assumption that the intruder
can not perform the operation. It is also strongly recommended that operations
not used in the protocol should not be provided with Dolev-Yao strands. This
is because the tool will attempt to execute rules associated with these strands,
even if they are useless, and this will negatively a�ect performance.

3.6 Protocol Speci�cation: Protocol Strands

In the Protocol Rules section of a speci�cation we de�ne the messages that
are sent and received by the honest principals. We will specify one strand per
role. However, since the Maude-NPA analysis supports an arbitrary number of
sessions, each strand can be instantiated an arbitrary number of times.

In specifying protocol strands it is important to remember to specify them
from the point of view of the principal executing the role. For example, in NSPK
the initiator A starts out by sending her name and a nonce encrypted with B's
public key. She gets back something encrypted with her public key, but all she
can tell is that it is her nonce concatenated with some other nonce. She then
encrypts that other nonce under B's public key and sends it out.

As explained in Section 3.3, we represent the construction of A's nonce ex-
plicitly as n(A,r), where r is a variable of sort Fresh therefore appearing in the
header of A's strand, and the extra nonce that she receives is represented by a
variable N of sort Nonce. The entire strand for the initiator role is as follows:

:: r ::

[ nil | +(pk(B,A ; n(A,r))), -(pk(A,n(A,r) ; N)), +(pk(B, N)), nil ]

In the responder strand, the signs of the messages are reversed. Moreover, the
messages themselves are represented di�erently. B starts out by receiving a name
and some nonce encrypted under his key. He creates his own nonce, appends the
received nonce to it, encrypts it with the key belonging to the name, and sends
it out. He gets back his nonce encrypted under his own key. This is speci�ed as
follows:

:: r ::

[ nil | -(pk(B,A ; N)), +(pk(A, N ; n(B,r))), -(pk(B,n(B,r))), nil ]

Note that, as explained in Section 3.3, the point here is to only include things
in a strand that a principal executing a strand can actually verify. The complete
STRANDS-PROTOCOL speci�cation for NSPK is as follows.

eq STRANDS-PROTOCOL =

:: r ::

[nil | +(pk(B,A ; n(A,r))), -(pk(A,n(A,r) ; N)), +(pk(B, N)), nil]

&

:: r ::

[nil | -(pk(B,A ; N)), +(pk(A, N ; n(B,r))), -(pk(B,n(B,r))), nil]

[nonexec] .
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As a �nal note, we remark that, if B received a message Z encrypted under a
key he does not know, he would not be able to verify that he received pk(A,Z),
because he cannot decrypt the message. So the best we could say here is that A
received some term Y of sort Msg.

The complete speci�cation of the Needham-Schroeder shared-key protocol
and the Di�e-Hellman protocol can be found in [23].

4 Protocol Analysis

In this section we describe how to analyze a protocol in practice. First, we
explain how a protocol state looks like, and how an attack state is speci�ed in
the protocol. Then, we explain how the actual protocol analysis is performed.
Technical details on how the backwards search is performed are postponed until
Section 5.

4.1 Protocol States

In Maude-NPA, each state associated to the protocol execution (i.e., a backwards
search) is represented by a term with four di�erent components separated by
the symbol || in the following order: (1) the set of current strands, (2) the
current intruder knowledge, (3) the sequence of messages encountered so far in
the backwards execution, and (4) some auxiliary data.

Strands || Intruder Knowledge || Message Sequence || Auxiliary Data

The �rst component, the set of current strands, indicates in particular how ad-
vanced each strand is in the execution process (by the placement of the bar). The
second component contains messages that the intruder already knows (symbol
_inI) and messages that the intruder currently doesn't know (symbol _!inI) but
will learn in the future. Note that the set of strands and the intruder knowledge
grow along with the backwards reachability search (see Section 5.2 for technical
details) as follows:

{ by propagation of the substitutions computed by uni�cation modulo the
equational theory,

{ by introducing more protocol or intruder strands,
{ by introducing more positive knowledge of the intruder (e.g., M inI), and
{ by transforming positive knowledge into negative knowledge due to the back-
wards execution (e.g., M inI ! M !inI).

The third component, the sequence of messages, is nil for any attack state
at the beginning of the backwards search and records the actual sequence of
messages exchanged so far in the backwards search from the attack state. This
sequence grows as the backwards search continues and some variables may be
instantiated in the backwards search. It gives a complete description of an attack
when an initial state is reached but this component is intended for the bene�t of
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the user, and is not actually used in the backward search itself, except just by
recording it. Finally, the last component contains information about the search
space that the tool creates to help manage11 its search. It does not provide any
information about the attack itself, and is currently only displayed by the tool
to help in debugging. More information about this last component can be found
in Sections 5 and 7.

4.2 Initial states

An initial state is the �nal result of the backwards reachability process and is
described as follows:

1. in an initial state, all strands have the bar at the beginning, i.e., all strands
are of the form :: r1; : : : ; rj :: [ nil j m1

�; : : : ; mk
� ];

2. in an initial state, all the intruder knowledge is negative, i.e., all the items
in the intruder knowledge are of the form (m !inI).

From an initial state, no further backwards reachability steps are possible, since
there is nothing for the intruder to unlearn or to learn due to the following
two facts: (i) since all the intruder knowledge is already negative (m !inI), no
positive knowledge can be unlearned, and (ii) there is no further reception of
messages (no negative node in a strand) that might introduce positive items
(m inI) in the intruder knowledge. Note that in an initial state, the third com-
ponent of a protocol state denotes the concrete message sequence from this initial
state to the given attack state.

4.3 Unreachable states

Another interesting concept is that of an unreachable state. An unreachable
state is a protocol state from which we cannot reach an initial state by further
backwards reachability analysis. Interpreted in a forwards way, this of course
means that it is an state that can never be reached from an initial state by
forward execution. Early detection of unreachable states is essential to achieve
e�ective protocol analysis. In Section 7, we describe several techniques for early
detection of unreachable states. For instance, consider the following state found
by the Maude-NPA for the NSPK:

:: nil :: [nil | -(pk(i, b ; n(b, r))), +(b ; n(b, r)), nil] &

:: nil :: [nil | -(n(b, r)), +(pk(b, n(b, r))), nil] &

:: nil :: [nil | -(b ; n(b, r)), +(n(b, r)), nil] &

:: r :: [nil | +(pk(i, b ; n(b, r))), nil] &

:: r :: [nil, -(pk(b, a ; N)), +(pk(a, N ; n(b, r)))

| -(pk(b, n(b, r))), nil])

||

11 Indeed, we use the fourth component of a protocol state to store the data related to
the Super Lazy Intruder of Section 7.6.
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pk(b, n(b, r)) !inI, pk(i, b ; n(b, r)) !inI, n(b, r) !inI,

(b ; n(b, r)) !inI

||

+(pk(i, b ; n(b, r))), -(pk(i, b ; n(b, r))), +(b ; n(b, r)),

-(b ; n(b, r)), +(n(b, r)), -(n(b, r)), +(pk(b, n(b, r))),

-(pk(b, n(b, r)))

||

nil

This state is unreachable, since there are two strands that are generating the
same fresh variable r and this is impossible because the fresh data generated by
each strand must be unique.

4.4 Attack States

Attack states describe not just single concrete attacks, but attack patterns (or
if you prefer attack situations), which are speci�ed symbolically as terms (with
variables) whose instances are the �nal attack states we are looking for. Given an
attack pattern, Maude-NPA tries to either �nd an instance of the attack pattern
or prove that no such instance is possible. We can specify more than one attack
state. Thus, we designate each attack state with a natural number.

When specifying an attack state, the user should specify only the �rst two
components of the attack state: (i) a set of strands expected to appear in the at-
tack, and (ii) some positive intruder knowledge. The other two state components
should have just the empty symbol nil. Note that the attack state is indeed a
term with variables; however, the user does not have to provide the variables
denoting \the remaining strands", \the remaining intruder knowledge", and the
two variables for the two last state components, since these variables are sym-
bolically inserted by the tool (see Section 7.2 for technical details).

For NSPK, the standard attack is represented as follows:

eq ATTACK-STATE(0) =

:: r ::

[ nil, -(pk(b,a ; N)), +(pk(a, N ; n(b,r))), -(pk(b,n(b,r))) | nil ]

|| n(b,r) inI

|| nil

|| nil

[nonexec] .

where we require the intruder to have learned the nonce generated by Bob.
Therefore, we have to include Bob's strand in the attack in order to describe
such speci�c nonce n(b,r).

There are several possibilities to build an attack state by combining what the
intruder learned at the attack state and what honest strands are expected to have
occurred at the attack state. The most common situation is to include positive
intruder facts of the form (m inI) and �nished strands (i.e., strands that have
the bar at the end). Note that an attack state can also contain negative intruder
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facts of the form (m !inI) although this is not common. Partially executed
strands of the form

:: r1; : : : ; ri :: [ nil; m1
�; : : : ; mi

� j mi+1
�; : : : ; mk

�; nil ]

are represented in attack states by truncated strands in which only the terms
before the bar appear. For instance, a situation in which the intruder learns
Bob's nonce without requiring Bob to �nish the protocol, is represented as:

eq ATTACK-STATE(0) =

:: r :: [ nil, -(pk(b,a ; N)), +(pk(a, N ; n(b,r))) | nil ]

|| n(b,r) inI

|| nil

|| nil

[nonexec] .

The intruder knowledge can also contain inequalities (the condition that a
term is not equal to some other term), which we can also include in the intruder
knowledge component of an attack state. For example, suppose that we want to
specify that a responder executes a strand, apparently with an initiator a, but
the nonce received is not generated by a. This can be done as follows:

eq ATTACK-STATE(0) =

:: r ::

[ nil, -(pk(b,a ; N)), +(pk(a, N ; n(b,r))), -(pk(b,n(b,r))) | nil ]

|| N != n(a,r')

|| nil

|| nil

[nonexec] .

where t != s means that for any ground substitution � applicable to t and s

(i.e., �(t) and �(s) are ground terms), �(t) cannot be equal to �(s) modulo the
equational theory. Note that, since a is a constant and r0 is a variable of the
special sort Fresh, N != n(a,r') means that N cannot be a term of the form
n(a,r').

In summary, we note the following requirements on attack state speci�ca-
tions:

1. Strands in an attack state must have the bar at the end. This also applies
to partially executed strands, for which the future messages are discarded.

2. If more than one strand appears in the attack state, they must be separated
by the & symbol. If more than one term appears in the intruder knowledge,
they must be separated by commas. If no strands appear, or no intruder
items appear, the empty symbol should be used, in the strands or intruder
knowledge components, respectively.

3. Items that can appear in the intruder knowledge may include not only terms
known by the intruder, but also inequality conditions on terms. Terms un-
known to the intruder are also possible but are not common in attack states.

4. The last two �elds of an attack state must always be nil. These are �elds
that contain information that is built up in the backwards search, but should
be empty in the attack state.
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4.5 Attack States With Excluded Patterns: Never Patterns

It is often desirable to exclude certain patterns from transition paths leading
to an attack state. For example, one may want to determine whether or not
authentication properties have been violated, e.g., whether it is possible for a
responder strand to appear without the corresponding initiator strand. For this
there is an optional additional �eld in the attack state containing the never
patterns. It is included at the end of the attack state speci�cation.

Here is how we would specify an initiator strand without a corresponding
responder in the NSPK protocol12:

eq ATTACK-STATE(1)

= :: r ::

[ nil, -(pk(b,a ; N)), +(pk(a, N ; n(b,r))), -(pk(b,n(b,r))) | nil ]

|| empty

|| nil

|| nil

butNeverFoundAny *** for authentication

(:: r' ::

[ nil | +(pk(b,a ; N)), -(pk(a, N ; n(b,r))), +(pk(b,n(b,r))), nil ]

& S:StrandSet

|| K:IntruderKnowledge

|| M:SMsgList

|| G:GhostList)

[nonexec] .

The tool will now look for all paths in which the intruder strand is executed,
but the corresponding responder strand is not. That is, when we provide an
attack state and some never patterns, a backwards reachability sequence leading
to an initial state will not contain any state that matches any of the never
patterns, where the place of the bar at each strand appearing in a never pattern
is not taken into consideration for matching purposes.

It is also possible to use never patterns to specify negative conditions on terms
or strands. Suppose that we want to ask whether it is possible for a responder
in the NSPK protocol to execute a session of the protocol, apparently with an
initiator, but the nonce received was not the initiator's. This can be done as
follows:

eq ATTACK-STATE(1)

= :: r ::

12 Note that variable r' in the never pattern is not an error. The regular strand in the
attack state is the initiator strand, which generates variable r. The strand in the
never pattern is a pattern that must be valid for any responder strand. Any responder
strand would generate his variable r'', which would be part of the variable N written
in the never pattern if such a pattern is matched. Indeed, note that the variable r

written in the never pattern is di�erent by de�nition from the variable r written
in the regular strand, since we are de�ning an actual strand and a pattern to be
matched.
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[ nil, -(pk(b,a ; N)), +(pk(a, N ; n(b,r))),

-(pk(b,n(b,r))) | nil ]

|| empty

|| nil

|| nil

butNeverFoundAny

( ::: r ::

[ nil | -(pk(b,a ; n(a,r'))), +(pk(a, n(a,r') ; n(b,r))),

-(pk(b,n(b,r))), nil ] & S:StrandSet

|| K:IntruderKnowledge

|| M:SMsgList

|| G:GhostList )

[nonexec] .

It is possible to include more than one never pattern in the speci�cation of
an attack state, but then each such pattern must be contained within a pair of
parentheses, e.g.,

butNeverFoundAny

( ... State 1 ... )

( ... State 2 ... )

Never patterns can also be used to cut the down the search space. Suppose,
for example, that one �nds in the above search that a number of states are
encountered in which the intruder encrypts two nonces, but they never seem to
provide any useful information. One can reduce the search space by ruling out
such intruder behavior with the second never pattern in the following attack
state:

eq ATTACK-STATE(1)

= :: r ::

[ nil, -(pk(b,a ; N)), +(pk(a, N ; n(b,r))),

-(pk(b,n(b,r))) | nil ]

|| empty

|| nil

|| nil

butNeverFoundAny

(:: r' :: [nil | +(pk(b,a ; N)), -(pk(a, N ; n(b,r))),

+(pk(b,n(b,r))), nil] & S:StrandSet

|| K:IntruderKnowledge

|| M:SMsgList

|| G:GhostList)

(:: nil :: [nil | -(N1 ; N2), +(pk(B, N1 ; N2)), nil] & S:StrandSet

|| K:IntruderKnowledge

|| M:SMsgList

|| G:GhostList)

[nonexec] .

Note that adding never patterns to reduce the search space, as distinguished
from their use for verifying authentication properties, means that failure to �nd
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an attack does not necessarily imply that the protocol is secure. It simply means
that any attack against the security property speci�ed in the attack state must
use at least one strand that is speci�ed in the set of never patterns.

There are several things about never patterns that should be noted:

1. The bar in any strand in a never pattern should be at the beginning of the
strand. If it is not, the tool does not report any error and places the bar at
the beginning.

2. Variables in a never pattern are renamed by the tool to assure that they never
appear in the main attack state speci�cation nor in other never patterns.

3. The last two �elds in a never pattern must be variables of type SMsgList,
and Ghostlist, respectively, as illustrated in the above examples.

4. The �rst two �elds must end in variables of type Strandset and
IntruderKnowledge, respectively.

5. More than one never pattern can be used in an attack state. However, each
one must be delimited by its own pair of parentheses.

For a good example of the use of never patterns, which makes the Maude-NPA
search considerably more e�cient without compromising the completeness of the
reachability analysis, we refer the reader to the analysis of the Di�e-Hellman
protocol in [23].

4.6 Maude-NPA Commands for Attack Search

The commands run, summary, and initials are the tool's commands for attack
search. They are invoked by reducing them in Maude, that is, by typing the
Maude red command followed by the corresponding Maude-NPA command,
followed by a space and a period. To use them we must specify the attack state
we are searching for and the number of backwards reachability steps we want to
compute. For example, the Maude-NPA command

run(0,10)

tells Maude-NPA to construct the backwards reachability tree up to depth 10
for the attack state designated with natural number 0. The Maude-NPA run

command yields the set of states found at the leaves of the backwards reach-
ability tree of the speci�ed depth that has been generated. When the user is
not interested in the current states of the reachability tree, he/she can use the
Maude-NPA summary command, which outputs just the number of states found
at the leaves of the reachability tree and how many of those are initial states,
i.e., solutions for the attack. For instance, when we give the reduce command in
Maude with the Maude-NPA command summary(0,2) as shown below for the
NSPK example, the tool returns:

red summary(0,2) .

result Summary: States>> 4 Solutions>> 0
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The initial state representing the standard NSPK attack is found in seven steps.
That is, if we type

red summary(0,7) .

the tool outputs:

red summary(0,7) .

result Summary: States>> 3 Solutions>> 1

A slightly di�erent version of the run command, called initials, outputs only
the initial states, instead of all the states at the leaves of the backwards reacha-
bility tree. Thus, if we type

red initials(0,7) .

for the NSPK example, our tool outputs the following initial state13, which
implies that the attack state has been proved reachable and the protocol is
insecure:

Maude> red initials(0,7) .

result IdSystem: < 1 . 5 . 2 . 7 . 1 . 4 . 3 . 1 > (

:: nil :: [nil | -(pk(i, n(b, #1:Fresh))), +(n(b, #1:Fresh)), nil] &

:: nil :: [nil | -(pk(i, a ; n(a, #0:Fresh))), +(a ; n(a, #0:Fresh)), nil] &

:: nil :: [nil | -(n(b, #1:Fresh)), +(pk(b, n(b, #1:Fresh))), nil] &

:: nil :: [nil | -(a ; n(a, #0:Fresh)), +(pk(b, a ; n(a, #0:Fresh))), nil] &

:: #1:Fresh :: [nil | -(pk(b, a ; n(a, #0:Fresh))),

+(pk(a, n(a, #0:Fresh) ; n(b, #1:Fresh))), -(pk(b, n(b, #1:Fresh))), nil] &

:: #0:Fresh :: [nil | +(pk(i, a ; n(a, #0:Fresh))),

-(pk(a, n(a, #0:Fresh) ; n(b, #1:Fresh))), +(pk(i, n(b, #1:Fresh))), nil])

||

pk(a, n(a, #0:Fresh) ; n(b, #1:Fresh)) !inI,

pk(b, n(b, #1:Fresh)) !inI,

pk(b, a ; n(a, #0:Fresh)) !inI,

pk(i, n(b, #1:Fresh)) !inI,

pk(i, a ; n(a, #0:Fresh)) !inI,

n(b, #1:Fresh) !inI,

(a ; n(a, #0:Fresh)) !inI

||

+(pk(i, a ; n(a, #0:Fresh))),

-(pk(i, a ; n(a, #0:Fresh))),

+(a ; n(a, #0:Fresh)),

-(a ; n(a, #0:Fresh)),

+(pk(b, a ; n(a, #0:Fresh))),

-(pk(b, a ; n(a, #0:Fresh))),

+(pk(a, n(a, #0:Fresh) ; n(b, #1:Fresh))),

-(pk(a, n(a, #0:Fresh) ; n(b, #1:Fresh))),

13 Maude-NPA associates an identi�er, e.g. 1:5:2:7:1:4:3:1, to each state generated by
the tool. These identi�ers are for internal use and are not described here.
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+(pk(i, n(b, #1:Fresh))),

-(pk(i, n(b, #1:Fresh))),

+(n(b, #1:Fresh)),

-(n(b, #1:Fresh)),

+(pk(b, n(b, #1:Fresh))),

-(pk(b, n(b, #1:Fresh)))

||

nil

This corresponds to the following textbook version of the attack:

1. A! I : pk(I; A;NA)
2. IA ! B : pk(B;A;NA)
3. B ! A : pk(A;NA;NB), intercepted by I;
4. I ! A : pk(A;NA;NB)
5. A! I : pk(I;NB)
6. IA ! B : pk(B;NB)

It is also possible to generate an unbounded search by specifying the second
argument of run, initials, or summary as unbounded. In that case the tool
will run until it has shown that all the paths it has found either begin in initial
states or in unreachable ones. This check may terminate in �nite time, but in
some cases may run forever.

We demonstrate this unbounded search with NSPK:

red summary(0,unbounded) .

result Summary: States>> 1 Solutions>> 1

This tells us, that Maude-NPA terminated with only one attack. If we want to
see what that attack looks like, we would instead type

red run(0,unbounded) .

to get the attack displayed above.
The complete analysis of the Di�e-Hellman protocol can be found in [23],

including the initial state proving that the protocol in insecure.

5 How Maude-NPA Works: Backwards Reachability

First, we recall some de�nitions on rewriting and narrowing in Section 5.1. Then,
we explain in Section 5.2 how the backwards reachability analysis works in prac-
tice.

5.1 Rewriting and Narrowing

Continuing Section 2, we recall some de�nitions on term rewriting and illustrate
each de�nition by means of examples.
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A rewrite rule is an oriented pair of terms (l; r), written l ! r, where l 62 X
and l; r 2 T�(X )

s
for some sort s 2 S. An (unconditional) order-sorted rewrite

theory is a triple R = (�;E;R) with � an order-sorted signature, E a set of
�-equations, and R a set of rewrite rules. The rewriting relation !R on T�(X )

is t
p
!R t0 (or !R) if p 2 Pos�(t), l ! r 2 R, tjp = �(l), and t0 = t[�(r)]p for

some �. The relation!R=E on T�(X ) is =E ;!R; =E , where ; denotes relation
composition. The relation !R=E is much harder to implement and the weaker
rewrite relation !R;E is usually provided, as it happens in Maude. Assuming
a �nitary and complete matching algorithm modulo the equational theory E,

the rewriting relation !R;E on T�(X ) is de�ned as t
p
!R;E t0 (or !R;E) if

l! r 2 R, tjp =E �(l), and t0 = t[�(r)]p.

Maude supports matching modulo any combination of free, associative, com-
mutative, associative-commutative, and associative-commutative with identity
symbols, so that we in e�ect can rewrite terms modulo any combination of
such axioms. Suppose, for example, an unconditional order-sorted rewrite theory
R = (�;E;R) where � contains an in�x symbol +, E contains the commutativ-
ity property for symbol +, and R contains a rule of the form X + 0 = X. Then
we can apply such a rule to the term 0 + 7 modulo commutativity, even though
the constant 0 is on the left of the + symbol. That is, the term 0 + 7 matches
the left-hand side pattern X +0 modulo commutativity, i.e., 0 + 7 =E (X +0)�
where � = fX 7! 7g. We would express this rewrite step modulo commutativity
with the arrow notation:

0 + 7!R;E 7

Likewise, we denote by !�
R;E the re
exive-transitive closure of the one-step

rewrite relation !R;E with the rules R modulo the axioms E. That is, !�
R;E

corresponds to taking zero, one, or more rewrite steps with the rules R modulo
E.

Narrowing generalizes term rewriting by allowing free variables in terms (as
in logic programming) and by performing uni�cation instead of matching in order
to (non{deterministically) reduce a term. Intuitively, the di�erence between a
rewriting step and a narrowing step is that in both cases we use a rewrite rule
l! r to rewrite t at a position p in t, but narrowing �nds values for the variables
in the chosen subject term tjp before actually performing the rewriting step. The

narrowing relation  R on T�(X ) is t
p
 �;R t

0 (or  �;R,  R) if p 2 Pos�(t),
l! r 2 R, � 2 CSU;(tjp = l), and t0 = �(t[r]p). Assuming that E has a �nitary
and complete uni�cation algorithm, the narrowing relation  R;E on T�(X ) is

t
p
 �;R;E t

0 (or  �;R;E ,  R;E) if p 2 Pos�(t), l ! r 2 R, � 2 CSUE(tjp = l),
and t0 = �(t[r]p).

Maude supports uni�cation modulo di�erent user-de�ned theories including
any combination of free, commutative, and associative-commutative symbols; see
Section 6.3 for the algebraic theories admissible for such equational uni�cation
procedure, and Section 6.4 for some examples of admissible theories. Suppose,
for example, the same unconditional order-sorted rewrite theory used above for
rewriting. Then, we can apply the rule X + 0 = X above to the term Z + 7,
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where X is a variable, modulo commutativity. That is, the term Z+7 uni�es the
left-hand side pattern X + 0 modulo commutativity, i.e., (Z + 7)� =E (X + 0)�
where � = fZ 7! 0; X 7! 7g. We would express this narrowing step modulo
commutativity with the arrow notation:

Z + 7;�;R;E 7

We denote by ;�
�;R;E the re
exive-transitive closure of the one-step narrowing

relation;R;E with the rules R modulo the axioms E, where � is the composition
of all the uni�ers obtained during the sequence.

In Maude-NPA, narrowing is used at two levels: for backwards reachability
analysis from a term with variables (i.e., an attack state), and for equational
uni�cation. We postpone until Section 6 how the narrowing-based equational
uni�cation is performed in Maude-NPA.

5.2 Backwards Reachability Analysis

Given a protocol P and an equational theory EP , Maude-NPA performs back-
wards narrowing reachability analysis from a state St representing an attack
pattern (i.e., a term with variables) using the relation  R�1

P
;EP

, where the

rewrite rules RP are obtained from the protocol strands P. The rewrite the-
ory RP = (�;EP ; RP) is topmost, i.e., there is a sort State such that for each
l ! r 2 RP , l; r 2 T�(X )

State
, r 62 X , and no operator in � has State as an

argument sort. Intuitively, a topmost rewrite theory describes a speci�cation of
a system such that a rewrite or narrowing step can only be performed at the
root of each term denoting a state. The fact that R = (�;EP ; RP) is a topmost
rewrite theory has several advantages:

1. The rewriting relation !RP=EP can be safely simulated by the rewriting
relation !RP ;EP .

2. Similarly, the narrowing relation RP ;EP achieves the same e�ect as a more
general narrowing relation  RP=EP (see [48]).

3. We obtain the following completeness result between narrowing ( RP ;EP )
and rewriting (!RP=EP ):

Theorem 1 (Topmost Completeness). [48] Let R = (�;E;R) be a
topmost rewrite theory such that E has a �nitary uni�cation algorithm,
t; t0 2 T�(X ), and let � be a substitution such that �(t)!�

R=E t0. Then, there

are substitutions �; � and a term t00 such that t  �
�;R;E t00, �(t) =E �(�(t)),

and t0 =E �(t00).

A state in the protocol execution is a set of Maude-NPA strands unioned
together with an associative and commutativity union operator & with identity
operator empty, along with an additional term describing the intruder knowledge
at that point. Note that two extra state components are associated to a Maude-
NPA state in Section 4, but they are irrelevant and useful only for user debugging
of the protocol, so we omit them in this section and in Section 7.
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The intruder knowledge is represented as a set of facts unioned together with
an associative and commutativity union operator _,_ with identity operator
empty. There are two kinds of intruder facts: positive knowledge facts (the in-
truder knows m, i.e., (m inI)), and negative knowledge facts (the intruder does
not yet know m but will know it in a future state, i.e., (m !inI)), where m is a
message expression.

Strands communicate between them via a unique shared channel, i.e., by
sending messages to the channel and retrieving messages from the channel. How-
ever, we do not explicitly represent the channel in our model. Instead, since the
intruder is able to learn any message present in the channel, we use the intruder
knowledge as the channel. When the intruder observes a message in the channel,
then he/she learns it. The intruder has the usual ability to read and redirect
tra�c, and can also perform operations, e.g., encryption, decryption, concate-
nation, exclusive or, exponentiation, etc., on messages that it has received. As
explained in Section 3, the nature and algebraic properties of such operations de-
pend on the given cryptographic theory EP . Intruder operations are described in
terms of the intruder sending messages to itself, which are represented as di�er-
ent strands, one for each action. All intruder and protocol strands are described
symbolically, using a mixture of variables and constants, so a single state spec-
i�cation as a term with variables symbolically represents many concrete state
instances. There is no restriction on the number of principals, number of sessions,
nonces, or time, i.e., no data abstraction or approximation is performed.

The user can make use of a special sort Fresh in the protocol-speci�c signa-
ture � for representing fresh unguessable values, e.g., for nonces. The meaning
of a variable of sort Fresh is that it will never be instantiated by an E-uni�er
generated during the backwards reachability analysis. This ensures that if nonces
are represented using variables of sort Fresh, they will never be merged and no
approximation for nonces is necessary. We make the Fresh variables generated
by a strand explicit by writing (r1; : : : ; rk : Fresh) [msg�1 ; : : : ;msg�n ]; where
r1; : : : ; rk are all the variables of sort Fresh generated by msg�1 ; : : : ;msg�n . If it
does not generate any fresh variable, we add nothing to the strand. As explained
in Section 3, the types and algebraic properties of the operators used in messages
(cryptographic and otherwise) are described as an equational theory EP .

In principle, the rewrite rules RP obtained from the protocol strands P are
represented by the following rewrite rules14:

SS& [L j M�
; L

0] & ((M inI); IK)! SS& [L;M� j L0] & ((M inI); IK) (1)

SS& [L j M+
; L

0] & IK ! SS& [L;M+ j L0] & IK (2)

SS& [L j M+
; L

0] & IK ! SS& [L;M+ j L0] & ((M inI); IK) (3)

14 The top level structure of the state is a multiset of strands formed with the &
union operator. The protocol and intruder rewrite rules are \essentially topmost"
in that, using an extension variable matching the \remaining strands" they can
always rewrite the whole state. Therefore, as explained in [48], completeness results
of narrowing for topmost theories also apply to them.
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In a forward execution of the protocol strands, Rule (1) synchronizes an input
message with a message already learned by the intruder, Rule (2) accepts output
messages but the intruder's knowledge is not increased, and Rule (3) accepts out-
put messages and the intruder's knowledge is positively increased. New strands
will be added to the state by explicit introduction through dedicated rewrite
rules (one for each honest or intruder strand), e.g.

SS&((sk(i;M) inI); IK)! SS& [M� j sk(i;M)+] & ((sk(i;M) inI); IK)

However, we are interested in a backwards execution of the protocol from an
attack state that contains positive facts in the intruder knowledge. Therefore,
the rule increasing the intruder knowledge, Rule (3), must make explicit when
the intruder learned message M :

SS& [L j M+
; L

0] & ((M !inI); IK)! SS& [L;M+ j L0] & ((M inI); IK) (4)

Note that this is recorded in the previous state by the negative fact (M !inI),
which can be paraphrased as: \the intruder does not yet know M , but will learn
it in the future".

For the introduction of new additional strands, we simply record when the
intruder learned message M in each of the rewrite rules explicitly introducing
new strands but, since they are applied backwards, reversing the introduction of
the new strand:

f [ l1 ju
+; l2 ] & f(u !inI);Kg ! f(u inI);Kg j [ l1; u

+; l2 ] 2 Pg (5)

For example, the following Dolev-Yao action:

SS& [M� j sk(i;M)+] & ((sk(i;M) !inI); IK)! SS&((sk(i;M) inI); IK) (6)

Thus, we can conclude that the set of rewrite rules obtained from the protocol
strands that are used for backwards narrowing reachability analysis is RP =
f(1); (2); (4)g [ (5).

For example, consider the the NSPK attack state:

(r : Fresh)[ pk(b; a;N)�; pk(a;N ;n(b; r))+; pk(b; n(b; r))� j nil ] & (n(b; r) inI)

and the Rule (6). We can apply this rule to our attack state modulo the equa-
tional theory for NSPK. That is, the attack term above uni�es with the left-hand
side of the rule modulo the following cancellation equational rules EP :

pk(A; sk(A;Z)) = Z sk(A; pk(A;Z)) = Z

To be more concrete, the term n(b; r) uni�es15 with the term sk(i;M) modulo
the cancellation equational rules yielding the uni�er � = fM 7! pk(i; n(b; r))g.

15 This equational uni�cation procedure is also performed by narrowing and is ex-
plained in Section 6 below.
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Therefore, we obtain the following predecessor state using the narrowing relation
;�;R�1

P
;EP

from the NSPK attack state:

[ pk(i; n(b; r))� j n(b; r)+ ] &

(r : Fresh)[ pk(b; a;N)�; pk(a;N ;n(b; r))+; pk(b; n(b; r))� j nil ] & (n(b; r) !inI)

In a backwards execution of the protocol using narrowing we start from an
attack pattern, i.e., a term with variables, containing: (i) some of the strands
of the protocol to be executed backwards, (ii) a variable SS denoting a set of
additional strands, (iii) some terms the intruder knows at the attack state, i.e.,
of the form (t inI), and (iv) a variable IK denoting a set of additional intruder
facts. We then perform narrowing with the rules RP in reverse to move the
bars of the strands to the left until either we �nd an initial state, or cannot
perform any other useful backwards narrowing steps. Note that variables SS
and IK will be instantiated by backwards narrowing to additional strands and
additional intruder facts, respectively, in order to �nd an initial state. Indeed,
these variables SS and IK are not required for the speci�cation of the attack
state as explained in Section 4.4; see Section 7.2 for further technical details.

6 How Maude-NPA Works: Equational Uni�cation

Sound techniques for equational uni�cation are paramount to Maude-NPA, since
it performs symbolic reachability analysis modulo the equational theory of the
protocol. This makes Maude-NPA veri�cation much stronger than veri�cation
methods based on a purely syntactic view of the algebra of messages as a term
algebra using the standard Dolev-Yao model of perfect cryptography in which no
algebraic properties are assumed. Indeed, it is well-known that various protocols
that have been proved secure under the standard Dolev-Yao model can be bro-
ken by an attacker who exploits the algebraic properties of some cryptographic
functions (see, e.g., [41,43,46]).

In the standard Dolev-Yao model, symbolic reachability analysis typically
takes the form of representing sets of states symbolically as terms with logical
variables, and then performing syntactic uni�cation with the protocol rules to
explore reachable states. This can be done in either a forwards or a backwards
fashion. In the Maude-NPA (which can also be used for analyses under the
standard Dolev-Yao model when no algebraic properties are speci�ed) symbolic
reachability analysis is performed in a backwards fashion (as already explained
in Section 5), beginning with a symbolic representation of an attack state, and
searching for an initial state, which then provides a proof that an attack is
possible; or a proof that no such attack is possible if all such search paths fail
to reach an initial state.

However, if the Maude-NPA analyzes a protocol for which algebraic proper-
ties have been speci�ed by an equational theory T , the same symbolic reacha-
bility analysis is performed in the same fashion, but now modulo T . What this
means precisely is that, instead of performing syntactic uni�cation between a
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term representing symbolically a set of states and the righthand-side (in the
backwards reachability case) of a protocol rule, we now perform equational uni-
�cation with the theory T , (also called T -uni�cation, or uni�cation modulo T )
between the same term and the same righthand side of a protocol rule. In what
follows we explain several things regarding T -uni�cation in the Maude-NPA:

{ In Section 6.1, equational axioms for which the Maude-NPA provides built-in
support for equational uni�cation.

{ In Section 6.2, narrowing-based equational uni�cation in general, which is
however infeasible for Maude-NPA analysis when the number of uni�ers
generated is in�nite.

{ In Section 6.3, the most general class of equational theories for which the
Maude-NPA can currently support uni�cation by narrowing, with the im-
portant requirement of the number of uni�er solutions being �nite. These
are called admissible theories.

{ Some examples of admissible theories in Section 6.4.

6.1 Built-in support for Uni�cation Modulo Equational Axioms

The Maude-NPA has built-in support for uni�cation modulo certain equational
theories T thanks to the underlying Maude infrastructure. Speci�cally, the
Maude-NPA automatically supports uni�cation modulo T for T any order-sorted
theory of the form T = (�;Ax), where � is a signature declaring sorts, sub-
sorts, and function symbols (as we have already illustrated with examples in
Section 3.2) and Ax is a collection of equational axioms where some binary
operators f in the signature � may have axioms in Ax for either commuta-
tivity (f(x; y) = f(y; x)), or commutativity and associativity (f(x; f(y; z)) =
f(f(x; y); z)). Associativity alone is not supported, because it is well-known that
uni�cation problems modulo associativity may have an in�nite number of uni-
�ers (see, e.g., [5]). As already illustrated in Section 3.4, the way associativity,
and/or commutativity axioms are speci�ed in Maude for a function symbol f
is not by giving those axioms explicitly, but by declaring f in Maude with the
assoc and/or comm attributes. For example a function symbol f of sort S which
is associative and commutative is speci�ed in Maude as follows:

op f : S S -> S [assoc comm] .

6.2 Narrowing-Based Equational Uni�cation and its Limitations

Of course, many algebraic theories T of interest in protocol analysis fall outside
the scope of the above-mentioned class of theories T based on combinations of
associativity and/or commutativity axioms, for which the Maude-NPA provides
automatic built-in support. Therefore, the burning issue is how to support more
general classes of algebraic theories in the Maude-NPA.

In this regard, a very useful, generic method to obtain T -uni�cation algo-
rithms is narrowing [29,31]. Mathematically, an algebraic theory T is a pair of
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the form T = (�;E [Ax), where � is a signature declaring sorts, subsorts, and
function symbols, and where E [ Ax is a set of equations, that we assume is
split into a set Ax of equational axioms such as our previous combinations of
associativity and/or commutativity axioms, and a set E of oriented equations
to be used from left to right as rewrite rules. In Maude, the axioms Ax are
declared by means of the assoc and/or comm attributes. Instead, the equations
E are declared with the eq keyword as we have illustrated with examples in
Section 3.4.

An algebraic theory T = (�;E [Ax) must satisfy the following four require-
ments:

1. The axioms Ax can declare some binary operators in � to be commutative
(with the comm attribute), or associative-commutative (with the assoc and
comm attributes).

2. The equations E are con
uent modulo Ax.
3. The equations E are terminating modulo Ax.
4. The equations E are coherent modulo Ax.

We now explain in detail what these requirements mean. First, the equational
theory T = (�;E[Ax) is viewed as an unconditional order-sorted rewrite theory
RT = (�;Ax;E), so that we perform rewrite steps with the rewrite rules E
modulo Ax, i.e., the reduction relation !E;Ax explained in Section 5.1, where,
in the notation !R;E , now R = E and E = Ax.

Con
uence. The equations E are called con
uent modulo Ax if and only if for
each term t in the theory T = (�;E [ Ax), if we can rewrite t with E modulo
Ax in two di�erent ways as: t �!�

E;Ax u and t �!�
E;Ax v, then we can always

further rewrite u and v to a common term up to identity modulo Ax. That is,
we can always �nd terms u0; v0 such that:

{ u �!�
E;Ax u

0 and v �!�
E;Ax v

0, and
{ u0 =Ax v

0

That is, u0 and v0 are essentially the same term, in the sense that they are equal
modulo the axioms Ax. In the example of Section 5.1, we have, for instance,
0 + 7 =Ax 7 + 0.

Termination. The equations E are called terminating modulo Ax if and only
if all rewrite sequences terminate; that is, if and only if we never have an in�nite
sequence of rewrites

t0 !E;Ax t1 !E;Ax t2 : : : tn !E;Ax tn+1 : : :

Coherence. Rather than explaining the coherence modulo Ax notion in general
(the precise de�nition of the general notion can found in [31]), we explain in
detail its meaning in the case where it is needed for the Maude-NPA, namely,
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the case of associative-commutative (AC) symbols. The best way to illustrate
the meaning of coherence is by its absence. Consider, for example, an exclusive or
operator � which has been declared AC. Now consider the equation X�X = 0.
This equation, if not completed by another equation, is not coherent modulo AC.
What this means is that there will be term contexts in which the equation should
be applied, but it cannot be applied. Consider, for example, the term b� (a� b).
Intuitively, we should be able to apply to it the above equation to simplify it to
the term a�0 in one step. However, since we are using the weaker rewrite relation
!E;Ax instead of the stronger but much harder to implement relation !E=Ax,
we cannot! The problem is that the equation cannot be applied (even if we match
modulo AC) to either the top term b � (a � b) or the subterm a � b. We can
however make our equation coherent modulo AC by adding the extra equation
X �X � Y = 0� Y , which, using also the equation X � 0 = X, we can slightly
simplify to the equation X�X�Y = Y . This second variant of our equation will
now apply to the term b� (a� b), giving the simpli�cation b� (a� b) �!E;Ax a.
Technically, what coherence means is that the weaker relation !E;Ax becomes
semantically equivalent to the stronger relation !E=Ax.

For the Maude-NPA, coherence is only an issue for AC symbols. And there
is always an easy way, given a set E of equations, to make them AC-coherent.
The method is as follows. For any symbol f which is AC, and for any equation
of the form f(u; v) = w in E, we add also the equation f(f(u; v); X) = f(w;X),
where X is a new variable not appearing in u; v; w. In an order-sorted setting, we
should give to X the biggest sort possible, so that it will apply in all generality. As
an additional optimization, note that some equations may already be coherent
modulo AC, so that we need not add the extra equation. For example, if the
variable X has the biggest possible sort it could have, then the equation X �
0 = X is already coherent, since X will match \the rest of the �-expression,"
regardless of how big or complex that expression might be, and of where in the
expression a constant 0 occurs. For example, this equation will apply modulo AC
to the term (a�(b�(0�c)))�(c�a), with xmatching the term (a�(b�c))�(c�a),
so that we indeed get a rewrite (a�(b�(0�c)))�(c�a)!E;Ax (a�(b�c))�(c�a).

Limitations. Although narrowing is a very general method to generate T -
uni�cation algorithms, general narrowing has a serious limitation. The problem is
that, in general, narrowing with an equational theory T = (�;E[Ax) satisfying
requirements (1){(4) above may yield an in�nite number of uni�ers. Since, for
T the algebraic theory of a protocol, T -uni�cation must be performed by the
Maude-NPA at each single step of symbolic reachability analysis, narrowing is
in general not practical as a uni�cation procedure, unless the theory T satis�es
the additional requirement that there always exists a �nite set of uni�ers that
provide a complete set of solutions; and that such a �nite set of solutions can be
e�ectively computed by narrowing. We discuss this extra important requirement
in what follows.
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6.3 General Requirements for Algebraic Theories

The Maude-NPA's uni�cation technique is based on narrowing and in order to
provide a �nite set of uni�ers, �ve speci�c requirements must be met by any
algebraic theory specifying cryptographic functions that the user provides. If
these requirements are not satis�ed, Maude-NPA may exhibit non-terminating
and/or incomplete behavior, and any completeness claims about the results of
the analysis cannot be guaranteed. We call theories that satisfy these criteria
admissible theories. We show in Section 6.4 how all the examples presented in
Section 3.4 are admissible theories.

In the Maude-NPA we call an algebraic theory T = (�;E [Ax) speci�ed by
the user for the cryptographic functions of the protocol admissible if it satis�es
the four requirements speci�ed in Section 6.2 and strongly right irreducibility,
i.e., the following �ve requirements:

1. The axioms Ax can declare some binary operators in � to be commutative
(with the comm attribute), or associative-commutative (with the assoc and
comm attributes). No other combinations of axioms are allowed; that is, a
function symbol has either no attributes, or only the comm attribute, or only
the assoc and comm attributes.16

2. The equations E are con
uent modulo Ax.
3. The equations E are terminating modulo Ax.
4. The equations E are coherent modulo Ax.
5. The equations E are strongly right irreducible.

Con
uence, termination, and coherence were explained in Section 6.2. We
now explain in detail what strongly right irreducibility means. Given a theory
T = (�;E [Ax), which we assume satis�es requirements (1)-(4) above, we call
the set E of equations strongly right irreducible i� for each equation t = t0 in
E, we cannot further simplify by the equations E modulo Ax either the term t0,
or any substitution instance �(t0) where the terms in the substitution � cannot
themselves be further simpli�ed by the equations E modulo Ax. Obvious cases
of such righthand-sides t0 include:

{ a single variable;
{ a constant for which no equations exist;
{ more generally, a constructor term, i.e., a term whose function symbols have
no associated equations.

But these are not the only possible cases where strong right irreducibility can
be applied. Typing, particularly the use of sorts and subsorts in an order-sorted
equational speci�cation, can greatly help in attaining strong right irreducibility.
We refer the reader to [21,19] for two examples of how order-sorted typing helps
narrowing-based uni�cation to become �nitary. We discuss one of these examples,
namely Di�e-Hellman, in the following section.

16 In future versions of the Maude-NPA we also plan to support operators having the
assoc, comm and id attributes, adding an identity axiom. At present, identity axioms
in Maude-NPA theories should only be de�ned by means of equations.
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Finally, let us motivate with an example how this narrowing-based equational
uni�cation works. Consider the exclusive-or theory:

X �X � Y = Y

X �X = 0
X � 0 = X

viewed as the order-sorted rewrite theory R = (�;Ax;E) where Ax contains the
associativity and commutativity of � and E contains the three equational rules

above. Given the equational problem t
?
= s, where t = X � Y and s = U � V ,

we perform narrowing on t with the equations E modulo the axioms Ax. We
can apply a renamed version (e.g. Z � Z �W ) of the �rst equation to the term
X � Y . That is, the term X � Y uni�es modulo AC with the term Z � Z �W

and one of the uni�ers is � = fX 7! W 0 � Z 0; Y 7! Z 0;W 7! W 0; Z 7! Z 0g. We
express this narrowing step as

X � Y ;�;E;Ax W
0

Note that, according to [27], we simply unify the termsW 0 and U�V modulo AC
to �nish the equational uni�cation procedure, obtaining �0 = fX 7! (U � V )�
Z 0; Y 7! Z 0g as an equational uni�er of terms t and s modulo the equational
theory for exclusive-or. This uni�er is not necessarily the only one possible: given
an equation t = t0, by successive narrowing of t and t0 followed by attempts of
Ax-uni�cation, other uni�ers can be computed. However, since the exclusive or
theory satis�es conditions (1)-(5) above, we are guaranteed that there will be a
�nite complete set of uni�ers obtained this way by narrowing.

6.4 Some Examples of Admissible Theories

Since any user of the Maude-NPA should write speci�cations whose algebraic
theories are admissible, i.e., satisfy requirements (1){(5) in Section 6.3, it may
be useful to illustrate how these requirements are met by several examples. This
can give a Maude-NPA user a good intuitive feeling for how to specify algebraic
theories that the Maude-NPA currently can handle. For this purpose, we revisit
the theories already discussed in Section 3.4.

Let us begin with the theory of Encryption/Decryption:

var Z : Msg .

var A : Name .

*** Encryption/Decryption Cancellation

eq pk(A,sk(A,Z)) = Z [nonexec] .

eq sk(A,pk(A,Z)) = Z [nonexec] .

In this case Ax = ;. It is obvious that in this case the equations E terminate,
since the size of a term as a tree (number of nodes) strictly decreases after the
application of any of the above two rules, and therefore it is impossible to have an
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in�nite chain of rewrites with the above equations. It is also easy to check that the
equations are con
uent : by the termination of E this can be reduced to checking
con
uence of critical pairs, which can be easily discharged by automated tools
[16], or even by hand. Since Ax = ;, coherence is a mute point. The equations
are also strongly right irreducible, because in both cases they are the variable Z,
and any instance of Z by a term that cannot be further simpli�ed by the above
equations, obviously cannot be further simpli�ed by hypothesis.

Let us now consider the Exclusive Or Theory:

--- XOR operator

op _<+>_ : Msg Msg -> Msg [frozen assoc comm] .

op null : -> Msg .

vars X Y : Msg .

--- XOR equational properties

eq X <+> X <+> Y = Y [nonexec] .

eq X <+> X = null [nonexec] .

eq X <+> null = X [nonexec] .

In this case Ax = AC. Termination modulo AC is again trivial, because
the size of a term strictly decreases after applying any of the above equations
modulo AC. Because of termination modulo AC, con
uence modulo AC can
be reduced to checking con
uence of critical pairs, which can be discharged by
standard tools [16]. Coherence modulo AC is also easy. As already explained,
the �rst equation has to be added to the second to make it coherent. As also
explained above, since the sort Msg is the biggest possible for the exclusive or
operator, the variable X in the last equation has the biggest possible sort it can
have, and therefore that equation is already coherent, so that there is no need
to add an extra equation of the form

eq X <+> null <+> Y = X <+> Y [nonexec] .

because modulo AC such an equation is in fact an instance of the third equation
(by instantiating X to the term X <+> Y). Finally, strong right irreducibility is
also obvious, since the righthand sides are either variables, or the constant null,
for which no equations exist.

Turning now to the Di�e-Hellman theory we have:

sorts Name NeNonceset Nonce Gen Exp GenvExp Enc .

subsort Name NeNonceset Enc Exp < Msg .

subsort Nonce < NeNonceset .

subsort Gen Exp < GenvExp .

subsort Name Gen < Public .

op g : -> Gen [frozen] .

op exp : GenvExp NeNonceSet -> Exp [frozen] .

op _*_ : NeNonceSet NeNonceSet -> NeNonceSet [frozen assoc comm] .
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eq exp(exp(W:Gen,Y:NeNonceSet),Z:NeNonceSet)

= exp(W:Gen, Y:NeNonceSet * Z:NeNonceSet) [nonexec] .

Again, this theory is AC. Termination modulo AC is easy to prove by using
a polynomial ordering with AC polynomial functions (see [47]). For example,
we can associate to exp the polynomial x + y + 1, and to * the polynomial
x + y. Then the proof of termination becomes just the polynomial inequality
w + y + z + 2 > w + y + z + 1. Because of termination modulo AC, con
uence
modulo AC can be reduced to checking the con
uence of critical pairs. Here
things become interesting. In an untyped setting, the above equation would have
a nontrivial overlap with itself (giving rise to a critical pair), by unifying the
lefthand side with the subterm exp(W:Gen,Y:NeNonceSet). However, because
of the subsort and operator declarations

subsort Gen Exp < GenvExp .

op exp : GenvExp NeNonceSet -> Exp [frozen] .

we see that the order-sorted uni�cation of the subterm exp(W:Gen,Y:NeNonceSet)

(which has sort Exp) and the lefthand side now fails, because the sorts Gen and
Exp are mutually exclusive and cannot have any terms in common. Therefore
there are no nontrivial critical pairs and the equation is con
uent modulo AC.
Coherence modulo AC is trivially satis�ed, because the top operator of the equa-
tion (exp) is not an AC operator. As in the case of con
uence modulo AC, the
remaining issue of strong right irreducibility becomes particularly interesting in
the order-sorted context. Note that in an untyped setting, an instance of the
righthand side by applying a substitution whose terms cannot be further simpli-
�ed could itself be simpli�ed. For example, if we consider the untyped righthand
side term exp(W, Y * Z), the substitution � mapping W to exp(Q,X) and being
the identity on Y and Z is itself irreducible by the equations, but when applied
to exp(W, Y * Z) makes the corresponding instance reducible by the untyped
version of the above equation. However, in the order-sorted setting in which
our equation is de�ned, the equation is indeed strongly right irreducible. This
is again because the sorts Gen and Exp are mutually exclusive and cannot have
any terms in common, so that the variable W:Gen cannot be instantiated by any
term having exp as its top operator.

It may perhaps be useful to conclude this section with an example of an
algebraic theory that cannot be supported in the current version of Maude-
NPA. Consider, the extension of the above exclusive or theory in which we add
a homomorphism operator and the obvious homomorphism equation:

op h : Msg -> Msg .

vars X Y : Msg .

eq h(X <+> Y) = h(X) <+> h(Y) [nonexec] .

The problem now is that the righthand side h(X) <+> h(Y) fails to be strongly
right-irreducible. For example, the substitution � mapping X to U <+> V and Y to
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Y is itself irreducible, but produces the instance h(U <+> V) <+> h(Y), which is
obviously reducible. Since strong irreducibility is only a su�cient condition for
narrowing-based equational uni�cation to be �nitary, one could in principle hope
that this homomorphism example might still have a narrowing-based �nitary
algorithm17. However, the hopes for such a �nitary narrowing-based algorithm
are dashed to the ground by results in both [15], about the homomorphism
theory not having the \�nite variant" property, and the variant-based uni�cation
methods in [25].

In summary, the main point we wish to emphasize is that the equational
theories T for which the current version of Maude-NPA will work properly are
order-sorted theories of the form T = (�;E [ Ax) satisfying the admissibility
requirements (1){(5). Under assumptions (1){(5), T -uni�cation problems are
always guaranteed to have a �nite number of solutions and the Maude-NPA will
�nd them by narrowing.

As a �nal caveat, if the user speci�es a theory T where any of the above
requirements (1){(5) fail, besides the lack of completeness that would be caused
by the failure of conditions (2){(4), a likely consequence of failing to meet con-
dition (5) will be that the tool may loop forever trying to solve a uni�cation
problem associated with just a single transition step in the symbolic reachability
analysis process. However, we are investigating conditions more general than (5)
(such as the above-mentioned �nite variant property) that will still guarantee
that a T -uni�cation problem always has a �nite complete set of solutions. Future
versions of Maude-NPA will relax condition (5) to allow more general conditions
of this kind.

7 State Space Reduction Techniques

In this section, we describe the di�erent state-reduction techniques identifying
unproductive backwards narrowing reachability steps. First, let us brie
y re-
call a protocol state in Maude-NPA. A state in the protocol execution is a set
of Maude-NPA strands unioned together with an associative and commutativ-
ity union operator & with identity operator empty, along with an additional
term describing the intruder knowledge at that point. The intruder knowledge is
represented as a set of facts unioned together with an associative and commu-
tativity union operator _,_ with identity operator empty. There are mainly two

17 The fact that an equational theory T does not have a �nitary narrowing-based al-
gorithm does not by itself preclude the existence of a �nitary uni�cation algorithm
obtained by other methods. In fact, the homomorphic theory we have just described
does have a �nitary uni�cation algorithm [2]; however this dedicated uni�cation
algorithm is not an instance of a generic narrowing-based algorithm. However, as
already explained, in the Maude-NPA the theories for which �nitary uni�cation is
currently supported are either order-sorted theories with built-in axioms of commu-
tativity and associativity-commutativity, or theories modulo such built-in axioms
that are con
uent, terminating, and coherent modulo Ax, and that are also strongly
right irreducible.
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kinds of intruder facts: positive knowledge facts (m inI), and negative knowl-
edge facts (m !inI). Strands communicate between them via a unique shared
channel represented by the intruder knowledge.

There are three reasons for detecting unproductive backwards narrowing
reachability steps (i.e., the relation St �;R�1

P
;EP

St0 described in Section 5.2).

One is to reduce, if possible, the initially in�nite search space to a �nite one, as
in the use of grammars. Another is to reduce the size of a (possibly �nite) search
space by eliminating unreachable states early, i.e., before they are eliminated by
exhaustive search. This elimination of unreachable states can have an e�ect far
beyond eliminating a single node in the search space, since a single unreachable
state may appear multiple times and/or have multiple descendants. Finally, it is
also possible to use various partial order reduction techniques that can further
shrink the number of states that need to be explored.

7.1 Public data

The simplest optimization possible is when we are searching for some data that it
is considered public using a subsort de�nition, e.g. \subsort Name < Public".
That is, given a state St that contains an expression (t inI) in the intruder
knowledge where t is of sort Public, we can remove the expression (t inI) from
the intruder knowledge, since the backwards reachability steps taken care of such
a (t inI) are trivially leading to an initial state but their inclusion in the message
sequence is unnecessary.

7.2 Limiting Dynamic Introduction of New Strands

Our second optimization helps explain why attack states given in Section 5.2
contain a variable SS denoting a set of strands and a variable IK denoting a
set of intruder facts, whereas the attack states explained in Section 4.4 do not
contain those variables.

As pointed out in Section 5.2, Rules of type (5) allow the dynamic introduc-
tion of new strands. However, new strands can also be introduced by uni�cation
of a state containing a variable SS denoting a set of strands and one of the
Rules (1), (2), and (4), where variables L and L0 denoting lists of input/output
messages will be introduced by instantiation of SS. The same can happen with
new intruder facts of the form (X inI), where X is a variable. That is, consider
a state containing a variable SS denoting a set of strands and a variable IK
denoting a set of intruder knowledge, and the Rule (1):

SS0& [L j M�; L0] & ((M inI); IK 0)! SS0& [L;M� j L0] & ((M inI); IK 0)

The following backwards narrowing step applying such a rule can be performed
from the state above using the uni�er � = fSS 7! SS0& [L;M� j L0]; IK 7!
((M inI); IK 0)g

SS & IK
�
 R;E SS

0& [L j M�; L0] & ((M inI); IK 0)
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but this backwards narrowing step is unproductive, since it is not guided by the
information in the attack state. Indeed, the same rule can be applied again using
variables SS0 and IK 0 and this can be repeated many times.

In order to avoid a huge number of unproductive narrowing steps, we allow
the introduction of new strands and/or new intruder facts only by rule applica-
tion instead of just by uni�cation. For this, we do two things:

1. we remove any of the following variables from attack states; SS denoting a
set of strands, IK denoting a set of intruder facts, and L;L0 denoting a set
of input/output messages; and

2. we replace Rule (1) by the following Rule (7), since we do no longer have a
variable denoting a set of intruder facts that has to be instantiated:

SS& [L j M�; L0] & f(M inI); IKg!SS& [L;M� j L0] & fIKg (7)

Note that in order to replace Rule (1) by Rule (7) we have to assume that
the intruder knowledge is a set of intruder facts without repeated elements, i.e.,
the union operator _,_ is ACUI (associative-commutative-identity-idempotent).
This is completeness-preserving, since it is in line with the restriction in [20]
that the intruder learns a term only once; if the intruder needs to use a term
twice he must learn it the �rst time it is needed; if he learns a term and needs
to learn it again in the backwards search, the state will be discarded as un-
reachable. Therefore, the set of rewrite rules used for backwards narrowing is
RP = f(7); (2); (4)g [ (5).

Furthermore, one may imagine that Rule (4) and Rules of type (5) must
also be modi�ed in order to remove the (M inI) expression from the intruder
knowledge of the right-hand side of each rule. However, this is wrong, since, by
keeping the (M inI), we force the backwards application of such rule only when
there is indeed a message for the intruder to be learned. This provides some sort
of on-demand evaluation of the protocol.

7.3 Partial Order Reduction Giving Priority to Input Messages

The di�erent rewrite rules on which the backwards narrowing search from an
attack state is based are in general executed nondeterministically. This is because
the order of execution can make a di�erence as to what subsequent rules can
be executed. For example, an intruder cannot receive a term until it is sent by
somebody, and that send action within a strand may depend upon other receives
in the past. There is one exception, Rule (7) (originally Rule (1)), which, in a
backwards search, only moves a negative term appearing right before the bar into
the intruder knowledge. The execution of this transition in a backwards search
does not disable any other transitions; indeed, it only enables send transitions.
Thus, it is safe to execute it at each stage before any other transition. For the
same reason, if several applications of Rule 7 are possible, it is safe to execute
them all at once before any other transition. Requiring all executions of Rule
7 to execute �rst thus eliminates interleavings of Rule 7 with send and receive
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transitions, which are equivalent to the case in which Rule 7 executes �rst. In
practice, this typically cuts down in half the search space size.

Similar strategies have been employed by other tools in forward searches. For
example, in [45], a strategy is introduced that always executes send transitions
�rst whenever they are enabled. Since a send transition does not depend on any
other component of the state in order to take place, it can safely be executed
�rst. The original NPA also used this strategy; it had a receive transition which
had the e�ect of adding new terms to the intruder knowledge, and which always
was executed before any other transition once it was enabled.

7.4 Detecting Inconsistent States Early

There are several types of states that are always unreachable or inconsistent. If
the Maude-NPA attempts to search beyond them, it will never �nd an initial
state. For this reason, we augment the Maude-NPA search engine to always mark
the following types of states as unreachable, and not search beyond them any
further:

1. A state St containing two contradictory facts (t inI) and (t !inI) for a term
t.

2. A state St whose intruder knowledge contains the fact (t !inI) and a strand
of the form [m�

1 ; : : : ; t
�; : : : ;m�

j�1 j m
�
j ; : : : ;m

�
k ].

3. A state St containing a fact (t inI) such that t contains a fresh variable r
and the strand in St indexed by r, i.e., (r1; : : : ; r; : : : ; rk : Fresh) [m�

1 ; : : : ;

m�
j�1 j m

�
j ; : : : ;m

�
k ], cannot produce r, i.e., r is not a subterm of any output

message in m�
1 ; : : : ;m

�
j�1.

4. A state St containing a strand of the form [m�
1 ; : : : ; t

�; : : : ;m�
j�1 j m

�
j ; : : : ;

m�
k ] for some term t such that t contains a fresh variable r and the strand

in St indexed by r cannot produce r.

Note that case 2 will become an instance of case 1 after some backwards narrow-
ing steps, and the same happens with cases 4 and 3. The proof of inconsistency
of cases 1 and 3 is obvious.

7.5 Transition Subsumption

Partial order reduction techniques (POR) are common in state exploration tech-
niques due to their simpli�cation properties. However, partial order techniques
for narrowing-based state exploration have not been explored in detail, although
they may be extremely relevant and even simplify much more than in standard
state exploration techniques, based on ground terms rather than terms with vari-
ables. For instance, the simple concept of two states being equivalent modulo
renaming of variables does not apply to standard state exploration techniques
whereas it does apply to narrowing-based state exploration. In [24], Escobar
and Meseguer explored narrowing-based state exploration and POR techniques,
which may transform an in�nite-state system into a �nite one. However, the
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Maude-NPA needs a dedicated POR technique that should combine di�erent
previous ideas in order to be applicable to the concrete execution model.

Let us motivate this with an example before giving more technical explana-
tions. Consider again the NSPK attack state:

(r : Fresh)[ pk(b; a;N)�; pk(a;N ;n(b; r))+; pk(b; n(b; r))� j nil ] & (n(b; r) inI)

After a couple of backwards narrowing steps, the Maude-NPA �nds the following
state:

[ nil j n(b; r)�; pk(b; n(b; r))+ ] &

(r : Fresh)[ pk(b; a;N)�; pk(a;N ;n(b; r))+ j pk(b; n(b; r))� ] &

((pk(b; n(b; r)) !inI); (n(b; r) inI))

which corresponds to the intruder generating (i.e., learning) the message
pk(b; n(b; r)) from the message n(b; r), which he/she already knows; and the
following state

(r : Fresh)[ pk(b; a;N)�; pk(a;N ;n(b; r))+ j pk(b; n(b; r))� ] &

(r0 : Fresh)[pk(b; A0;n(A0; r0))+ j pk(A0; n(A0; r0);n(b; r))�; pk(b; n(b; r))+ ] &

((pk(b; n(b; r)) !inI); (pk(A0; n(A0; r0);n(b; r)) inI); (n(b; r) inI))

which corresponds to the responder (identi�ed by variable r) talking to an ini-
tiator (identi�ed by variable r0). However, this second state is implied by the
�rst state. Intuitively, the elements present in the �rst state that are relevant
for the backwards reachability are both included in the second state, namely the
(n(b,r) inI) item and the message pk(b; a;N)� that will be converted at some
point into (pk(b,a;N) inI). Indeed, the unreachability of the following \kernel"
state implies the unreachability of both states, although this kernel state is never
computed by the Maude-NPA:

(r : Fresh)[ pk(b; a;N)�; pk(a;N ;n(b; r))+ j pk(b; n(b; r))� ] & (n(b; r) inI)

Note that the converse is not true, i.e., the second state does not imply the �rst
one, since it contains one more intruder item relevant for backwards reachability
purposes, namely (pk(A',n(A',r');n(b,r)) inI).

In the following, we write IK2 (resp. IK 62) to denote the subset of intruder
facts of the form (t inI) (resp. (t !inI)) appearing in the set of intruder facts
IK. We abuse the set-theoretic notation and write IK1 �EP IK2 for IK1 and
IK2 sets of intruder facts to denote that all the intruder facts of IK1 appear in
IK2 (modulo EP).

De�nition 1. Given a topmost rewrite theory R = (�;EP ; RP) representing
protocol P, and given two non-initial states St1 = SS1& fIK1g and St2 =
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SS2& fIK2g, we write St1 . St2 (or St2 / St1) if IK
2
1 �EP IK2

2 , and for each
non-initial strand [m�

1 ; : : : ;m
�
j�1 j m

�
j ; : : : ;m

�
k ] 2 SS1, there exists [m�

1 ; : : : ;

m�
j�1 j m�

j ; : : : ;m
�
k ;m

�
k+1; : : : ;m

�
k0 ] 2 SS2. Note that the comparison of the

non-initial strand in SS1 with the strands in SS2 is performed modulo EP .

De�nition 2 (P-subsumption relation). Given a topmost rewrite theory
R = (�;EP ; RP) representing protocol P and two non-initial states St1; St2.
We write St1 �P St2 and say that St1 is P-subsumed by St2 if there is a
substitution � s.t. St1 / �(St2).

This technique is used as follows: we keep all the states of the backwards
narrowing-based tree and compare each new leaf of the tree with all the previous
states in the tree. If a leaf is P-subsumed by a previously generated node in the
tree, we discard such leaf.

7.6 The Super Lazy Intruder

Sometimes terms appear in the intruder knowledge that are trivially learnable
by the intruder. These include terms initially available to the intruder (such as
names) and variables. In the case of variables, the intruder can substitute any
arbitrary term of the same sort as the variable,18 and so there is no need to try
to determine all the ways in which the intruder can do this. For this reason it
is safe, at least temporarily, to drop these terms from the state. We will refer
to those terms as lazy intruder terms. The problem of course, is that later on
in the search the variable may become instantiated, in which case the term
now becomes relevant to the search. In order to avoid this problem, we take an
approach similar to that of the lazy intruder of Basin et al. [6] and extend it to
a more general case, that we call the super-lazy terms. We note that this use of
what we here call the super-lazy intruder was also present in the original NPA.

Super-lazy terms are de�ned inductively as the union of the set of lazy terms,
i.e., variables, with the set of terms that are produced out of other super-lazy
terms using operations available to the intruder. That is, e(K;X) is a super-lazy
term if the intruder can perform the e operation, and K and X are variables.
More precisely, the set of super-lazy intruder terms is de�ned as follows.

De�nition 3. Given a topmost rewrite theory R = (�;EP ; RP) representing
protocol P, and a state St where IK 62(St) = fx j (x !inI) 2 Stg, its set of
super-lazy terms w.r.t. St (or simply super-lazy terms) is de�ned as the union
of the following:

{ the set of variables of sort Msg or one of its subsorts,
{ the set of terms t appearing in strands of the form [t+], and

18 This, of course, is subject to the assumption that the intruder can produce at least
one term of that sort. But since the intruder is assumed to have access to the network
and to all the operations available to an honest principal, this is a safe assumption
to make.
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{ the set of terms of the form f(t1; : : : ; tn) where ft1; : : : ; tng are super-lazy
intruder terms w.r.t. St, ft1; : : : ; tng 6� IK 62(St), and there is an intruder
strand [(X1)

�; : : : ; (Xn)
�; (f(X1; : : : ; Xn))

+] with X1; : : : ; Xn variables.

The idea behind the super-lazy intruder is that, given a term made out of lazy
intruder terms, such as \a; e(K;Y )", where a is a public name and K and Y are
variables, the term \a; e(K;Y )" is also a (super) lazy intruder term by applying
the operations e and ; .

Let us �rst brie
y explain how the (super) lazy intruder mechanism works
before formally describing it. When we detect a state St with a super lazy term
t, we replace the intruder fact (t inI) in St by a new expression ghost(t) and
keep the modi�ed version of St in the history of states used by the transition
subsumption of Section 7.5. If later in the search tree we detect a state St0 con-
taining an expression ghost(t) such that t is no longer a super lazy intruder term
(or ghost expression), then t has been instantiated in an appropriate way and
we must reactivate the original state St that introduced the ghost(t) expression
(and that precedes St0 in the narrowing tree) with the new binding for variables
in t applied. That is, we \roll back" and replace the current state St0 with an
instantiated version of state St.

However, if the substitution � binding variables in t includes variables of
sort Fresh, since they are unique in our model, we have to keep them in the
reactivated version of St. Therefore, the strands indexed by these fresh variables
must be included in the \rolled back" state, even if they were not there originally.
Moreover, they must have the bar at the place it was when the strands were
originally introduced. We show below how this is accomplished.

Furthermore, if any of the strands thus introduced have other variables of
sort Fresh as subterms, then the strands indexed by those variables must be
included too, and so on. Thus, when a state St0 properly instantiating a ghost
expression ghost(t) is found, the procedure of rolling back to the original state
St that gave rise to that ghost expression implies not only applying the bindings
for the variables of t to St, but also introducing in St all the strands from St0

that produced fresh variables and that either appear in the variables of t or are
recursively connected to them.

First, before formally de�ning the super-lazy intruder technique, we must
modify Rules of type 5 introducing new strands:

f [ l1 ju
+] & f(u !inI);Kg ! f(u inI);Kg s.t. [ l1; u

+; l2 ] 2 Pg (8)

Therefore, the set of rewrite rules used by narrowing in reverse are now RP =
f(7); (2); (4)g [ (8). Note that Rules of type (5) introduce strands [ l1 j u

+; l2 ],
whereas here Rules of type (8) introduce strands [ l1 j u

+ ]. This slight modi�-
cation allows to safely move the position of the bar back to the place where the
strand was introduced.

We extend the intruder knowledge to allow an extra fact ghost(t). Indeed, this
corresponds to the fourth component of a Maude-NPA state explained in Sec-
tion 4. We �rst describe how to reactivate a state. Given a strand s = (r1; : : : ; rk :
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Fresh) [m�
1 ; : : : j : : : ;m

�
n ], when we want to move the bar to the rightmost posi-

tion (denoting a �nal strand), we write s� = (r1; : : : ; rk : Fresh) [m
�
1 ; : : : ;m

�
n j

nil].

De�nition 4. Given a state St containing an intruder fact ghost(t) for some
term t with variables, we de�ne the set of strands associated to t, denoted SSSt(t),
as follows: for each strand s in St of the form (r1; : : : ; rk : Fresh) [m�

1 ; : : : j
: : : ;m�

n ], if there is i 2 f1; : : : ; kg s.t. ri 2 Var(t), then s� 2 SSSt(t); or if
there is another strand s0 2 SSSt(t) of the form (r01; : : : ; r

0
k0 : Fresh) [w

�
1 ; : : : j

: : : ; w�n0 ], i 2 f1; : : : ; kg, and j 2 f1; : : : ; n0g s.t. ri 2 Var(wj), then s� 2
SSSt(t).

Improving the super lazy intruder. When we detect a state St with a
super lazy term t, we may want to analyze whether the variables of t may be
eventually instantiated or not before creating a ghost state. Therefore, if for
each strand [m�

1 ; : : : ;m
�
j�1 j m�

j ; : : : ;m
�
k ] in St and each i 2 f1; : : : ; j � 1g,

Var(t) \ Var(mi) = ;, and for each term (w inI) in the intruder knowledge,
Var(t) \Var(w) = ;, then we can clearly infer that the variables of t can never
be instantiated and adding a ghost to state St is unnecessary.

Interaction with transition subsumption. When a ghost state is reacti-
vated, we see from the above de�nition that such a reactivated state will be
P-subsumed by the original state that raised the ghost expression. Therefore,
the transition subsumption of Section 7.5 has to be slightly modi�ed to avoid
checking a resuscitated state with its predecessor ghost state, i.e., St1 �

0
P St2

i� St1 �P St2 and St2 is not a resuscitated version of St1.

7.7 Grammars

The Maude-NPA's ability to reason e�ectively about low-level algebraic prop-
erties is a result of its combination of symbolic reachability analysis using nar-
rowing modulo equational properties (see Section 6), together with its grammar-
based techniques for reducing the size of the search space, as well as other state
space reduction techniques explained in this section. Here we brie
y explain
how grammars work as a state space reduction technique and refer the reader
to [35,20] for further details.

Automatically generated grammars hG1; : : : ; Gmi represent unreachability
information (or co-invariants), i.e., typically in�nite sets of states unreachable
for the intruder. That is, given a message m and an automatically generated
grammar G, if m 2 G, then there is no initial state Stinit and substitution �

such that the intruder knowledge of Stinit contains the fact �(m) !inI, i.e., the
intruder will never be able to learn messagem in the future. These automatically
generated grammars are very important in our framework, since in the best
case they can reduce the in�nite search space to a �nite one, or, at least, can
drastically reduce the search space.
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Let us motivate this with the NSPK attack state:

(r : Fresh)[ pk(b; a;N)�; pk(a;N ;n(b; r))+; pk(b; n(b; r))� j nil ] & (n(b; r) inI)

After a couple of backwards narrowing steps, the Maude-NPA �nds the following
state:

[ nil j (n(b; r);M)�; n(b; r)+ ] &

(r : Fresh)[ pk(b; a;N)�; pk(a;N ;n(b; r))+ j pk(b; n(b; r))� ] &

((n(b; r) !inI); (pk(b; n(b; r)) inI); ((n(b; r);M) inI))

which corresponds to the intruder generating (i.e., learning) the message
n(b; r) from a bigger message (n(b; r);M), although the contents of variable
M have not yet been found by the backwards reachability analysis. This process
of adding more and more intruder strands that look for terms ((n(b; r);M);M 0),
(((n(b; r);M);M 0);M 00), : : : can go in�nitely. Note that if we carefully check the
strands for the NSPK protocol given in Page 17, we can see that the honest
strands never produce a message of the form \Nonce ; Message" or such a
message is under a public key encryption (and thus he/she cannot get into the
contents), so the previous state is clearly unreachable and can be discarded. The
grammar, which is generated by Maude-NPA, capturing the previous state as
unreachable is as follows:

grl M inL => pk(A, M) inL . ;

grl M inL => sk(A, M) inL . ;

grl M inL => (M' ; M) inL . ;

grl M inL => (M ; M') inL . ;

grl M notInI, M notLeq n(i, r) => (i ; M) inL . ;

grl M notInI, M notLeq n(i, r) => (M ; M') inL . ;

grl M notInI, M notLeq n(i, r) => pk(A, B ; M) inL .

Intuitively, the last production rule in the grammar above says that any
term of the form pk(A;B;M) cannot be learned by the intruder if it is di�erent
to pk(A;B;n(i; r)) (i.e., it does not match such pattern) and the constraint
(M !inI) appears explicitly in the intruder knowledge of the current state being
checked for unreachability. Moreover, any term of any of the following forms:
pk(A;M), sk(A;M), (M 0;M), or (M ;M 0) cannot be learned by the intruder if
subterm M is also not learnable by the intruder.

Unlike the grammars used in NPA, described in [35], and the version of
Maude-NPA described in [20], in which initial grammars needed to be spec-
i�ed by the user, Maude-NPA now generates initial grammars automatically.
Each initial grammar consists of a single seed term of the form grl C =>

f(X1; � � � ; Xn) inL, where f is an operator symbol from the protocol speci�-
cation, the Xi are variables, and C is either empty or consists of the single
constraint (Xi notInI), similar to expression (Xi !inI) but used in a di�erent
context. For instance, the seed term for the grammar above is \grl M notInI =>
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(M ; M') inL". However, Maude-NPA provides features to control such auto-
matically generated grammars, e.g., adding more seed terms; see [23] for further
details.

8 Conclusions

In this tutorial, we have given an overview of the Maude-NRL Protocol Analyzer
(Maude-NPA). We have explained the basic mechanics of using Maude-NPA, in-
cluding writing speci�cations and formulating queries, that gives the minimum
amount of background for using the tool. We have also explained how the Maude-
NPA actually works at the backwards reachability level and at the equational
uni�cation level. Finally, we have described the di�erent state-reduction tech-
niques identifying unproductive backwards narrowing reachability steps. This,
we believe, is enough to give a basic understanding of how Maude-NPA works,
and also to get started using it.

Maude-NPA is still under development, and we are currently working on
a number of ways of extending its applicability and usability, including more
sophisticated narrowing-based algorithms, as mentioned in this tutorial, and a
graphical user interface [44] that allows a user to examine a Maude-NPA search
tree in detail. However, it still remains grounded in the principles described in
this tutorial, and we believe the ideas and techniques we have presented here
will remain a useful introduction even as it matures.
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